
10 Service ROMs
Service ROMs are ROMs which contain code which is entered via
the service entry point. Service ROM code will always be
executed in the ROM itself i.e. always in the I/O processor c.f.
language ROMs. The calls made by the operating system to
service ROMs are called paged ROM service calls but will
usually be referred to as just ‘service calls’ .

The type of software which might be implemented in service type
ROMs are filing systems, user printer drivers, extension VDU
commands and languages; In fact just about anything. It should be
noted that extreme care should be taken to implement routines in
service ROMs correctly.

To understand how software can be incorporated into a paged
ROM, be interfaced correctly with the operating system and thus
executed at the appropriate time an understanding of paged ROM
service calls is essential.

When a hard reset occurs the operating system makes a note of
where physical ROMs exist in paged ROM sockets. Subsequently
as the machine carries out its various tasks each time something
which may be of significance to software in paged ROMs occurs
these ROMs are given an opportunity to respond.

10.1 Paged ROM service calls

The mechanism by which this is performed is as follows. The
operating system pages in each paged ROM in turn starting with
that ROM in the highest priority socket (paging is performed by
writing a value to a hardware latch, the hardware responds to the
value written to this location and performs the relevant switching
of the chip select signals). If the ROM has a service entry point
this code is executed. Before entering the code the accumulator is
loaded with a reason code, the X register will contain the current
ROM number (a ROM is thus able to tell which socket it is in)
and the Y register will be loaded with any further relevant
information. The paged ROM can return control to the operating
system following an RTS instruction. If the ROM has responded

152

and does not wish any further action to be taken, the accumulator
should be set to zero to claim the call otherwise all registers
should be unchanged. Below is a list of the reason codes which
may be presented to a paged ROM when a service call is
performed.

Reason code &00: No operation

No operation, this service call should be ignored because a higher
priority ROM has already claimed it.

Reason code &01: Absolute filing system space claim

This call is made during a reset. The operating system is
interrogating each ROM to determine how much workspace
memory would be required if that ROM was called. This
workspace is available temporarily while the filing system ROM
is active. Pages &E00 and above are available as a fixed area on
the BBC micro and the Electron. Each paged ROM is entered
with A=&01 , X=ROM number and Y=top of fixed area. For the
highest priority ROM on a BBC micro the Y register will contain
&E. The Y register value should be increased in accordance to the
requirements of the ROM. If the Y register setting is sufficient or
greater than required then the service routine should return the Y
register unaltered.

Before using this workspace, the new filing system ROM should
deselect the old filing system with OSFSC with A=6 (indirected
through (&20E), see section 5.7); and the workspace must be
claimed with OSBYTE &8F, X=&0A (see Reason Code &0A of
this section).

Reason code &02: Relative space claim

This call is made by the operating system during a reset to
determine how much private RAM workspace is required by each
ROM. The position of this private area will start from the top of
the absolute space claimed by the ROMs and on the relative space

153

claimed by higher priority ROMs. This call is made with the Y
register containing the value of the first available page. This value
should be stored in the ROM workspace table at &DFO to &DFF
(for ROMs 0 to 15 respectively) and the Y register returned
increased by the number of pages of private workspace required.

Reason code &03: Auto-boot call

This call is issued during a reset to allow each service ROM to
initialise itself. This enables the highest priority filing system to
set up its vectors automatically rather than require explicit
selection with a *command. To allow lower priority sevices to be
selected the service ROM should examine the keyboard and
initialise only if either no key is pressed or if its own ROM
specific key is being pressed (e.g. D+BREAK for Acorn DFS). If
the ROM initialises it should attempt to look for a boot file
(typically !BOOT) to RUN, EXEC or LOAD if the Y register
contains zero. This call is made during a reset after the start-up
messages have been printed.

Reason code &04: Unrecognised *command

When a line of text is offered to the command line interpreter
(CLI) the operating system will pass on any unrecognised
command firstly to each of the paged ROMs and then if still
unrecognised to the currently active filing system. When the
unrecognised command is offered to the paged ROMs this service
call is made.

Entry parameters:
A=&04
X=ROM number
Y contains an offset which if added to the contents of &F2

and &F3 point to the beginning of the text with the
asterisk and leading spaces stripped off and terminated
with a carriage return

On exit:
Registers restored
A=0 if recognised

154

Filing systems should not intercept filing system commands
(which will be common to all filing systems) using this service
call but may intercept some filing system utilities (e.g. *DISC,
*NET).

Reason code &05: Unknown interrupt

An interrupt which is not recognised by the operating system or
which has been masked out by software will result in this call
being generated. A service ROM which services devices which
might cause interrupts should interrogate such devices to
determine if they have generated this interrupt. If the interrupt has
been recognised and processed the accumulator should be
returned with zero to prevent other ROMs being offered the
interrupt. The routine should terminate with an RTS not an RTI.

Reason code &06: BRK has been executed

If a BRK instruction is encountered this call will be generated
before indirecting through the BRK vector (BRKVEC, &202).
BRKs are usually used to indicate that an error condition has
occurred, service ROMs are informed before the current language
is able to respond to the BRK via the BRKVEC.

Entry parameters:
A=&06
X=ROM number
Y is undefined but should be preserved
&F0 contains the value of the stack pointer
&FD and &FE point to the error number which is not
necessarily in the current ROM (OSBYTE &BA yields this
ROM number)

On exit:
All registers should be preserved

155

Reason code &07: Unrecognised OSBYTE call

When an OSBYTE call has been made and is not recognised by
the operating system it is offered to the paged ROMs by this
service call. The contents of the A, X and Y registers at the time of
the OSBYTE call are stored in locations &EF, &F0 and &F1
respectively.

Reason code &08: Unrecognised OSWORD call

This service call is performed in response to the user issuing an
OS WORD call not catered for in the operating system. The
contents of the A, X and Y registers at the time of the call are
stored in locations &EF, &F0 and &F1 respectively. Unrecognised
OSWORD calls with accumulator values greater than or equal to
&E0 are offered to the user vector (USERV, &200). An OS
WORD call with A=7 (equivalent to the SOUND command in
BASIC) given an unrecognised channel will also generate this
service call.

Reason code &09: *HELP command interception

When the *HELP command is passed through the CLI this service
call is generated. The remainder of the command line is pointed to
by the address stored in locations &F2 and &F3 plus an offset in
Y. Each ROM is required to respond to this call. If the remainder
of the command line is blank the ROM should print its name and
version number followed by a list of subheadings to which the
ROM will respond.

e.g. Acorn DFS (version 0.90) outputs:

DFS 0.90
 DFS
 UTILS

Indicating that this ROM responds to *HELP DFS and *HELP
UTILS

156

If the rest of the command line is not blank the service routine
should compare it against its subheadings and if a match occurs
should output the information under that subheading.

e.g. Acorn DES responds to *HELP UTILS with:

DFS 0.90
 BUILD <fsp>
 DISC
 DUMP <fsp>
 TYPE <fsp>

If there is more than one item on a line then the ROM should deal
with them individually. All registers should be preserved across
the service routine.

Reason code &0A: Claim absolute workspace

This service call originates from a paged ROM which requires the
use of the absolute workspace. When a filing system ROM is
active and requires use of this workspace it should perform an
OSBYTE call &8E with X=&0A which will generate this service
call. The previous owner of the absolute workspace is then able to
save any valuable contents of this memory in its own private data
area in the relative workspace. The previous owner should also
update a flag within its private data area indicating that it no
longer owns the absolute workspace.

The active filing system is selected independently of the
ownership of the absolute workspace. Thus while a filing system
ROM may have ownership of this workspace the tape filing
system may be selected (the tape ES does not require any absolute
workspace). Problems may arise when the active filing system
paged ROM is called upon but does not have ownership of the
absolute workspace. The active filing system should then issue
this service call to obtain the use of the absolute workspace. This
call should only be made by a filing system starting (see also
Reason code &01).

157

Reason code &0B: NMI released

This service call also originates from paged ROMs and should be
generated by performing an OSBYTE call &8F. This call should
be issued when a ROM no longer requires the NMI. This releases
the zero page locations &A0 to &A7 and the space for the NML
routine in page &D00. On entry the Y register contains the filing
system number of the previous owner (see OSARGS, section 5.2)
and this should be compared to the ROM' s own identity before
reasserting control of the NMI.

Reason code &0C: NMI claim

This call should be generated by a paged ROM using OSBYTE
&8F when it wishes to take posession of the NMI. The service
call should be generated passing &FF in the Y register (i.e.
OSBYTE A=&8F, X=&0C and Y=&FF). The current owner
should relinquish control returning its filing system number in the
Y register in response to this call.

Reason code &0D: ROM filing sytem initialise

When the ROM filing system (RES) is activated in response to a
*ROM command this call will be issued when a file is being
searched for. On entry the Y register contains 15 minus the ROM
number of the next ROM to be scanned. If this ROM number is
less than the current ROM' s ID this call should be ignored.
Otherwise the active ROM number should be stored in &F5 (in
the form 15-ROM number) where the RFS active ROM number is
stored. The current ROM should indicate that the service call has
been claimed by returning zero in the accumulator and should
store a pointer to the data stored within the ROM in locations &F6
and &F7 set aside for use by the RFS.

See chapter 11.

158

Reason code &0E: ROM filing system get byte

This service call may be issued after a ROM containing RFS data
has been initialised with service call &0D, A ROM should
respond only if it is the active RFS ROM as indicated by the value
in location &F5 (stored in the form 15-ROM number). The
fetched byte should be returned in the Y register.

See chapter 11.

Reason code &0F: Vectors claimed

This service call should be generated by any paged ROM (using
OSBYTE &8F) which has been initialised and then changed any
operating system vector. This call warns paged ROMs that a
vector change has occurred.

Reason code &10: SPOOL/EXEC file closure warning

This service call should be produced by the operating system prior
to closure of any SPOOL or EXEC files when there is a change of
the current filing system. This enables any paged ROM using such
a file to respond to the possibly premature closure of these files.
SPOOL/EXEC file closure may be prevented by returning a zero
in the accumulator otherwise all registers should be preserved.

Reason code & 11 : Font implosion/explosion warning

When OSBYTE &14 is used to change the RAM allocation for
user defined characters this service call is issued. This call is
issued to warn languages that the OSHWM has been changed and
thus the user RAM allocation has changed.

159

Reason code &12: Initialise filing system

This call enables third party software to switch between one or
more filing systems without having to issue *commands. A
program may want to switch between two filing systems in order
to transfer files. A filing system ROM should respond to this call
if the value in the Y register corresponds to its filing system
number. All filing systems should allow files to be open while
inactive and so on receiving this call should restore any such files.

Reason code &13: Character placed in RS423 buffer

This call is made when the Electron OS has placed a character in
the RS423 buffer. Expansion software handling RS423 hardware
should respond to this call. If not claimed the operating system
purges the RS423 buffer.

Reason code &14: Character placed in printer buffer

This call is made when the Electron OS has placed a character in
the printer buffer. Expansion software controlling printer
hardware should respond to this call.

Reason code &15: 100 Hz poll

The Electron operating system will provide a 100 Hz polling call
for the use of paged ROMs. A paged ROM requiring this call
should increment the polling semaphore using OSBYTE &16 (22)
on initialisation and decrement it using OSBYTE &17 (23) when
it no longer requires polling. The operating system will issue this
service call when the semaphore is non-zero. The semaphore itself
may be read using OSBYTE &B9 (185). This facility is
implemented mainly so that hardware devices may be supported
as a background task without being interrupt driven. This would
be suitable for hardware not requiring particularly urgent
servicing.

160

The Y register contains the semaphore value, and should be
decremented by the service routine if it is being polled. If a
service routine finds it has decremented the Y register to zero, it
should claim the call (set A to 0) to improve machine speed (there
are no more ROMs which require polling).

Reason code &16: A BEL request has been made

When the external sound flag (OSBYTE &DB/219) is set this call
is issued by the OS in response to an ASCII BEL code being
output (VDU 7). This is to enable the external sound system to
respond appropriately.

Reason code &17: SOUND buffer purged

This call is made when an external sound system is flagged on the
Electron and an attempt has been made to purge any of the
SOUND buffers.

Reason code &FE: Post initialisation Tube system call

The operating system makes this call during a reset after the
OSHWM has been set. The Tube service ROM responds to this by
exploding the user defined character RAM allocation.

Reason code &FF: Tube system main initialisation

This call is issued only if the Tube hardware has been detected.
This call is made prior to message generation and filing system
initialisation.

The fact that these calls are shared by all the service ROMs can
lead to wide spread consequences if a service call is misused by
one of the ROMs. The programmer should consider the
consequences of his ROM claiming calls (or not claiming calls)
when present.

161

10.2 Service ROM example

The program below is a ROM based version of the enlarged
printer buffer program originally described in chapter 6, and will
only be of use to machines with the Plus 1 expansion. It is short
by paged ROM standards but the assembler program is not a short
example.

This program should only be taken as an illustration of the use of
some of the service calls described above : it does not conform to
paged service ROM standards, as it uses Econet zero page
workspace. This may be of little consequence to the vast majority
of Electrons, but properly implemented service ROMs should
never assume that they won' t be used with any particular system
configuration.

 10 REM Assembler program printer buffer ROM

 20 DIM code% &400
 30 INSV=&22A:nI=&2A/2
 40 RMV=&22C:nR=&2C/2
 50 CNPV=&22E:nC=&2E/2
 60 ptrblk=&90
 70 ip_ptr=ptrblk+2
 80 op_ptr=ptrblk+4
 90 old_bfr=&880
 100 begin=old_bfr
 110 end=old_bfr+2
 120 wrkbt=old_bfr+4
 130 size=old_bfr+5
 140 vec_cpy=old_bfr+6
 150 line=&F2
 160 OSASCI=&FFE3
 170 OSBYTE=&FFF4

 180 FOR I=4 TO 7 STEP 3
 190 P%=&8000:O%=code%
 200 [
 210 OPT I

 220 .romstrt EQUB 0 \ null language entry point
 230 EQUB 0
 240 EQUB 0
 250 JMP service \ service entry point
 260 EQUB &8? \ ROM type byte, service ROM
 270 EQUB (copyr-romstrt)\ offset to copyright

162

 280 EQUB 0 \ nul l byt e
 290 . t i t l e EQUB &A \ t i t l e st r i ng
 300 EQUS " BUFFER"
 310 EQUB &0 \ nul l byt e
 320 EQUS " 1. 00" \ ver s i on st r i ng
 330 EQUB &D \ car r i age r et ur n
 340 . copyr EQUB 0 \ t er mi nat or byt e
 350 EQUS " (C) 1984 Mar k HoLmes" \ copyr i ght message
 360 EQUB 0 \ t er mi nat or byt e

 370 \ End of ROM header , st ar t of code

 380 . name EQUS " REFFUB" \ command name

 390 \ Ser v i ce handl i ng code, A=r eason code, X=ROM i d &

 400 . ser v i ce CMP #4 \ i s r eason unknown command?
 410 BEQ command \ i f so got o PAGEcommand'
 420 CMP #9 \ i s r eason * HELP
 430 BEQ hel p \ i f so got o ' hel p'
 440 CMP #2 \ i s r eason pr i vat e wr kspace
 450 BEQ wkspcl m \ i f so got o PAGEwkspcl m'
 460 CMP #3 \ i s r eason aut oboot cal l
 470 BNE not boot \ i f NOT got o PAGEnot boot '
 480 JMP aut or un \ BEQ aut or un, out of r ange
 490 . not boot RTS \ ot her r eason, pass on

 500 \ Unknown command, i s i t * BUFFER ?
 510 \ (command Li ne addr ess i n &F?, &F3 (l i ne) + of f set Y)

 520 . command TYA: PHA: TXA: PHA \
 530 LDX #6 \ X=l engt h of name
 540 . l oop1 LDA (l i ne) , Y \ A=next l et t er of command
 550 CMP name- 1, X \ compar e wi t h my name
 560 BNE not me \ not equal , got o PAGEnot me'
 570 I NY \ f or next l et t er of command
 580 DEX \ f or next Let t er of name
 590 BNE l oop1 \ i f X<>0 r ound agai n
 600 BEQ par mch \ 6 Let t er s mat ched, do j ump
 610 . not me PLA: TAX: PLA: TAY \ no mat ch, r est or e r egi st r s
 620 LDA #4 \ r est or e r eason code
 630 RTS \ pass on cal l

 640 \ * HELP r esponse (par amet er s as f or cal l above)

 650 . hel p TYA: PHA: TXA: PHA \ save r egi st er s
 660 LDX #0 \ use X as i ndex count er
 670 . l oop2 LDA t i t l e, X \ A=next Let t er f r om t i t l e $
 680 BNE over 1 \ i f A<>0 j ump next i nst r ct n
 690 LDA #&20 \ r epl ace 0 by space char .
 700 . over 1 JSR OSASCI \ wr i t e char act er

163

 710 INX \ increment index counter
 720 CPX #(copyr-title) \ end of title ?
 730 BNE loop2 \ if not get another char.
 740 PLA:TAX:PLA:TAY \ restore registers
 750 LDA #9 \ restore A
 760 RTS \ pass on *HELP call

 770 \ Oportunity to claim private workspace
 780 \ (Y=lst page free, call inc's Y by no. pages claimed)

 790 .wkspclm TYA \ copy page no. to A
 800 STA &DFO,X \ table for ROMs' workspace
 810 PHA \ save page no. on stack
 820 LDA #&FD
 830 LDX #0
 840 LDY #&FF \ OSBYTE call to read last
 850 JSR OSBYTE \ BREAK type
 860 CPX #0 \ X=0 after soft reset
 870 BEQ softrst \ soft brk, dont reset size
 880 LDA #8 \ 8 pages for printer buffr
 890 STA size \ location for buffer size
 900 .softrst CLC \ clear carry, for add
 910 PLA \ original Y on stack
 920 ADC size \ A=A+?size
 930 TAY \ Y=A
 940 LDX &F4 \ X=ROMid
 950 LDA #2 \ restore A (reason code)
 960 RTS \ pass on workspace call

 970 \ *BUFFER command issued, reset buffer size

 980 .parmch LDA (line),Y \ get char. from cmnd line
 990 CMP #&D \ car.ret.? end of line ?
1000 BNE ok_init \ if not, cont. line input
1010 LDA #1 \ no parameters so set
1020 JMP defauLt \ default buffer size
1030 .ok_init INY \ increment index counter
1040 CMP #&20 \ was char. a space?
1050 BEQ parmch \ if so get next character
1060 SEC \ set carry for subrtact
1070 SBC #&30 \ A=AASNASC"0"
1080 CMP #0 \ was character zero
1090 BEQ deinit \ if so, switch off
1100 BMI rngerr \ char.<0, out of range
1110 CMP #6 \ compare char. to 6
1120 BPL rngerr \ A>=6, out of range
1130 .defauLt CLC \ clear carry for ASL
1140 ASL A:ASL A:ASL A \ A=A*8
1150 STA size \ store for buffer size
1160 .prntmes LDA #&87 \ Use OSBYTE &87 to read
1170 JSR OSBYTE \ current screen MODE

164

1180 TYA \ A=Y
1190 TAX \ X=A
1200 LDY #&F8 \ Use OSBYTE &FF to write
1210 LDA #&FF \ MODE selected on reset
1220 JSR OSBYTE \ (i.e. MODE preserved)
1230 TAX \ X=&FF
1240 .loop6 INX \ increment index counter
1250 LDA message,X \ A=next byte of message
1260 JSR OSASCI \ print character
1270 CMP #&D \ was it carriage return
1280 BNE loop6 \ if not get next character
1290 PLA:TAX:PLA:TAY \ restore registers
1300 LDA #0 \ claim call, 0 reason code
1310 RTS \ return
1320 .message EQUB &A \ message string
1330 EQUS "Press BREAK to change buffer size"
1340 EQUB &D
1350 .rngerr LDX #&FF \ set index counter
1360 .loop7 INX \ increment index counter
1370 LDA errdata,X \ A=character from string
1380 STA &100,X \ copy to bottom of stack
1390 CMP #&FF \ was byte terminator
1400 BNE loop7 \ if not Loop again
1410 JMP &100 \ goto &100(BRK)
1420 .errdata EQUB 0 \ BRK opcode
1430 EQUB 0 \ error number 0
1440 EQUS "Invalid buffer size"\error
1450 EQUB 0 \ message string end
1460 EQUB &FF \ terminator byte

1470 \ Routine for deselecting buffer ROM routines

1480 .deinit LDA #3 \ VDU3, just in case
1490 JSR OSASCI
1500 SEI \ disable interrupts
1510 LDY #0
1520 STY size \ size=0
1530 .loop8 LDA vec_cpy,Y \ Load old vector contents
1540 STA INSV,Y \ store in vector
1550 INY \ increment index counter
1560 CPY #6 \ copied 6 bytes yet
1570 BNE loop8 \ if not Loop again
1580 CLI \ enable interrupts
1590 JMP prntmes \ print message + return

1600 \ Initialise buffer routines automaticalLy

1610 .autorun TYA:PHA:TXA:PHA \ preserve registers
1620 LDA size \ A=buffer size in pages
1630 BEQ no_init \ A=0, don't initialise
1640 LDA #&84 \ HIMEM OSBYTE number

165

1650 JSR OSBYTE \ make call
1660 STY end \ store page address
1670 LDA #&83 \ OSHWM OSBYTE number
1680 JSR OSBYTE \ make call
1690 CPY end \ is OSHWM > HIMEM
1700 BCC room \ if so continue
1710 JMP no_room \ no room so cause error
1720 .room JSR init \ call initialise routine
1730 .no_init PLA:TAX:PLA:TAY \ restore registers
1740 LDA #3 \ restore A
1750 RTS \ return
1760 .init LDA #&A8
1770 LDX #0
1780 LDY #&FF \ OSBYTE to read address of
1790 JSR OSBYTE \ extended vector table
1800 STX ptrblk \ set up zero page Locations
1810 STY ptrblk+1 \ for indirect indexed adr.
1820 LDY #3*nI \ offset into table (INSV)
1830 LDA #ins AND &FF \ address of new routine
1840 SEI \ disable interrupts
1850 STA (ptrblk),Y \ copy address to vector
1860 INY \ Y=Y+1
1870 LDA #ins DIV &100 \ high byte of address
1880 STA (ptrblk),Y \ copy to extended vector
1890 INY \ Y=Y+1
1900 LDA &F4 \ A=ROMid
1910 STA (ptrblk),Y \ complete extended vector
1920 INY \ Y=Y+1
1930 LDA #rem AND &FF \ REMV new routine address
1940 STA (ptrblk),Y \ lo byte to extended vector
1950 INY \ YY+1
1960 LDA #rem DIV &100 \ Hi byte of new routine
1970 STA (ptrblk),Y \ place in extended vector
1980 INY \ Y=Y+l
1990 LDA &F4 \ A=ROMid
2000 STA (ptrblk),Y \ complete REMV 3 byte vect.
2010 INY \ Y=Y+1
2020 LDA #cnp AND &FF \ repeat, store address of
2030 STA (ptrblk),Y \ new CNPV routine in the
2040 INY \ extended vector together
2050 LDA #cnp DIV &100 \ with ROM number.
2060 STA (ptrblk),Y
2070 INY
2080 LDA &F4
2090 STA (ptrblk),Y
2100 TAX \ X=ROMid
2110 LDY #0 \ Y=0
2120 .Loop3 LDA INSV,Y \ Aold vector contents
2130 STA vec_cpy,Y \ copy to workspace
2140 INY \ Y=Y+1
2150 CPY #6 \ copied 6 bytes yet ?

166

2160 BNE Loop3 \ if not loop again
2170 LDA &DFO,X \ Aworkspace addr. hi byte
2180 STA begin+1 \ store in zero page
2190 CLC \ clear carry for add
2200 ADC size \ add begin+size
2210 STA end+1:DEC end+1 \ store in zero
2220 LDY #&10 \ lo byte of begin
2230 STY begin \ (room for return vect's)
2240 LDY #&FF \ lo byte of end
2250 STY end \ store in zero page
2260 JSR rstptrs \ reset ip+op ptrs
2270 LDA #nI*3 \ for the extended vector
2280 STA INSV \ system the vectors must
2290 LDA #nR*3 \ now point to &FFOO +
2300 STA RMV \ vector number*3
2310 LDA #nC*3
2320 STA CNPV
2330 LDA #&FF
2340 STA INSV+1
2350 STA RMV+1
2360 STA CNPV+1
2370 CLI \ enable interrupts
2380 RTS \ return
2390 .no_room CLI \ clear interrupts
2430 .Loop9 LDA nrmerr,X \ fetch next byte of data
2440 STA &100,X \ store at bottom of stack
2450 INX \ increment index counter
2460 CMP #&FF \ reached terminator ?
2470 BNE Loop9 \ if not loop again
2480 JMP &100 \ execute BRK (not in ROM)
2490 .nrmerr EQUB 0 \ BRK instruction opcode
2500 EQUB 0 \ error number 0
2510 EQUS "Not enough room for print buffer, Press
BREAK"
2520 EQUB 0 \ string terminator
2530 EQUB &FF \ data end

2540 \ Purge buffer by setting i/p + o/p ptrs to buffer start

2550 .rstptrs LDA begin \ lo byte bufr start address
2560 STA ip_ptr \ store input pointer
2570 STA op_ptr \ store output pointer
2580 LDA begin+1 \ hi byte of buffer start
2590 STA ip_ptr+1 \ store input pointer
2600 STA op_ptr+1 \ store output pointer
2610 RTS \ return

2620 .wrngbfl PLA:PLP:JMP (vec_cpy)\ old INSV routine

2630 \ New insert char. into buffer routine

2640 .ins PHP:PHA \ save 5 and A on stack

167

2650 CPX #3 \ is buffer id 3 ?
2660 BNE wrngbfl \ if not pass to old routine
2670 PLA:PLP:PHA \ not passing on, tidy stack
2680 LDA ip_ptr \ A=lo byte of input pointer
2690 PHA \ store on stack
2700 LDA ip_ptr+1 \ A=hi byte of input pointer
2710 PHA \ store on stack
2720 LDY #0 \ Y=O so ip_ptr incremented
2730 JSR inc_ptr \ by the inc_ptr routine
2740 JSR compare \ compare the two pointers
2750 BEQ insfail \ if ptrs equal, buffer full
2760 PLA:PLA:PLA \ don't need ip_ptr copy now
2770 STA (ip_ptr),Y \ A off stack, insrt in bufr
2780 CLC \ insertion success, C=0
2790 RTS \ finished
2800 .insfail PLA \ buffer was full so must
2810 STA ip_ptr+1 \ restore ip_ptr which was
2820 PLA \ stored on the stack
2830 STA ip_ptr
2840 PLA
2850 SEC \ insertion failes so C=1
2860 RTS \ finished

2870 .wrngbf2 PLP:JMP (vec_cpy+2) \ old REMV routine

2880 \ New remove char. from buffer routine

2890 .rem PHP \ save status register
2900 CPX #3 \ is buffer id 3 ?
2910 BNE wrngbf2 \ if not use OS routine
2920 PLP \ restore status register
2930 BVS examine \ V=1, examine not remove
2940 .remsr JSR compare \ compare i/p and o/p ptrs
2950 BEQ empty \ if the same, buffer empty
2960 LDY #2 \ Y=2 so that increment ptr
2970 JSR inc_ptr \ routine inc's op_ptr
2980 LDY #0 \ YO, for next instruction
2990 LDA (op_ptr),Y \ fetch character from bufr
3000 TAY \ return it in Y
3010 CLC \ buffer not empty, C=0
3020 RTS \ return
3030 .empty SEC \ buffer empty, C=1
3040 RTS \ return
3050 .examine LDA op_ptr \ examine only, so store a
3060 PHA \ copy of the o/p pointer
3070 LDA op_ptr+1 \ on the stack to restore
3080 PHA \ ptr after fetch
3090 JSR remsr \ fetch byte from buffer
3100 PLA \ restore ptr from stack
3110 STA op_ptr+1 \ (if buffer was empty
3120 PLA \ C=1 from fetch call)

168

3130 STA op_ptr
3140 TYA \ examine requires ch. in A
3150 RTS \ finished

3160 .wrngbf3 PLP:JMP (vec_cpy+4) \ old CNPV routine

3170 \ New count/purge buffer routine

3180 .cnp PHP \ save status reg. on stack
3190 CPX #3 \ is buffer id 3 ?
3200 BNE wrngbf3 \ if not pass to old subr
3210 PLP \ restore status register
3220 PHP \ save again
3230 BVS purge \ if V1, purge required
3240 BCClen \ if CO, amount in buffer
3250 LDA ip_ptr \ o/w free space request
3260 PHA
3270 LDA ip_ptr+1 \ store ipptr on stack
3280 PHA
3290 LDX #0 \ X=0 for use as counter
3300 STX wrkbt \ wrkbt0 for hi counter
3310 LDY #0 \ YO, so ip_ptr incr'd
3320 .loopl JSR inc_ptr \ increment ipptr
3330 JSR compare \ does it equal op_ptr
3340 BEQ finshdl \ if so countfree space
3350 INX \ XX+1
3360 BNE no_inc \ if X=0 don't inc wrkbt
3370 INC wrkbt \ hi byte of count inc'd
3380 .no_inc JMP loop1 \ Loop round again
3390 .finshdl PLA \ restore ip_ptr off
3400 STA ip_ptr+1
3410 PLA
3420 STA ip_ptr
3430 LDY wrkbt \ Yhi byte of free space
3440 PLP \ restore status register
3450 RTS \ finished
3460 .len LDA op_ptr \ store op_ptr on stack
3470 PHA
3480 LDA op_ptr+1
3490 PHA
3500 LDX #0 \ X=0 for use as counter
3510 STX wrkbt \ wrkbt0 hi byte of count
3520 LDY #2 \ Y? so op_ptr incremented
3530 .loop2 JSR compare \ are ptrs equal ?
3540 BEQ finshd2 \ if so buffer empty
3550 JSR inc_ptr \ increment op_ptr
3560 INX \ increment count
3570 BNE no_inc2 \ if X=0 then increment hi
3580 INC wrkbt \ byte of count
3590 .no_inc2 JMP loop2 \ loop round again
3600 .finshd2 PLA \ restore op_ptr off stack

169

3610 STA op_ptr+1
3620 PLA
3630 STA op_ptr
3640 LDY wrkbt \ Yhi byte of length
3650 PLP \ restore status register
3660 RTS \ finished
3670 .purge JSR rstptrs \ reset i/p & o/p pointers
3680 PLP \ restore status register
3690 RTS \ return

3700 \ Increment pointer routine. YO op_ptr, Y? ipptr

3710 .inc_ptr CLC \ clear carry for add
3720 LDA ip_ptr,Y
3730 ADC 111
3740 STA ip_ptr,Y
3750 LDA ip_ptr+1,Y
3760 ADC #0
3770 STA ip_ptr+1,Y \ pointerpointer+1
3780 CMP end+1 \ hi byte reached buffr end?
3790 BNE home \ if not finish
3800 LDA ip_ptr,Y
3810 CMP end \ Lo byte reached end ?
3820 BNE home \ if not finish
3830 LDA begin \ reached end of buffer
3840 STA ip_ptr,Y \ so reset pointer to
3850 LDA begin+1 \ start address of buffer
3860 STA ip_ptr+1,Y
3870 .home RTS \ return

3880 \ Compare pointers, if equal Z1 don't care otherwise

3890 .compare LDA ip_ptr+1
3900 CMP op_ptr+1 \ compare ptr high bytes
3910 BNE return \ if not equal return
3920 LDA ip_ptr
3930 CMP op_ptr \ compare pointr low bytes
3940 .return RTS \ return

3950]
3960 NEXT
3970 OSCLI"*S.BRM "+STR$~code%+" "+STR$~O%

When this program is run, the ROM image blown into an EPROM
and then inserted in an Electron with a Plus 1 expansion an
enlarged printer buffer of 2k is automatically initialised.

170

Typing ‘ *BUFFERn’ with n from 1 to 5 selects a buffer size of
n*2K at the next BREAK. ‘ *BUFFER0’ deselects the enlarged
buffer and re-initialises the normal OS routines. ‘ *BUFFER’ (no
parameters) reselects the default buffer size (2K).

10.3 Extended Vectors

In the example above the operating system buffer maintenance
vectors had to be set to point to routines held within the service
ROM. The operating system supports a system of extended
vectors to enable each of the OS vectors to point to routines held
in paged ROMs.

Each OS vector is identified by a number which may be
calculated by subtracting &200 (the vector space base address)
from the vector address and dividing by two (each vector is two
bytes).

The operating system vector should be pointed to a routine at
&FF00 plus the vector number multiplied by 3. This routine will
use a three byte vector stored in the extended vector space (this
address returned by OSBYTE &A8) with an offset of the buffer
number multiplied by 3. This vector should contain the address of
the routine in the paged ROM followed by its ROM number.

The procedure for a paged ROM to intercept a vector is:

(a) Determine buffer number n
(b) Establish extended vector space, V using OSBYTE &A8
(c) Store new routine' s address in (V+3*n)
(d) Store ROM number following address
(e) Make copy of OS vectors contents if required for return
(f) Store address (&FF00+3*n) in OS vector (&200+2*n)

It is usually a good idea to disable interrupts during this
changeover so that an interrupt routine is not able to use the
vector in the middle of the change.

171

