
11 Serially accessed
ROMs and the *ROM
filing system
The Electron has been designed to use software contained in
ROM cartridge packs. The ROM packs which plug into the Plus 1
expansion may contain up to two paged ROMs, The ROM pack
paged ROMs may contain up to about 16K of data and/or
programs which is paged into memory as required. On the BBC
microcomputer the facility also extends to phrase ROMs
(PHROMS) associated with the speech upgrade. When the
programs or data stored in these ROM packs are required it may
be loaded into user RAM in the same way as programs or data
may be loaded off tape or disc.

These ROM packs are intended to provide a reliable and rapidly
accessible medium for the distribution of programs. The market
for such a product being amongst owners of tape based machines
who would otherwise have to rely upon the much slower and
inherently less reliable medium.

The advantage to the software producer is that there is no
requirement for a special version of the program to be written. A
system is required for the formatting of the program for inclusion
in a ROM pack but no modification of the program itself is
required.

The *ROM filing system is a subset of the tape filing system.
Paged ROMs are interrogated to determine whether they contain
information intended for this filing system and are then serially
accessed by the *ROM filing system.

Paged ROMs containing information intended for access via the
*ROM filing system are no different from other paged ROMs.
They are service type ROMs and as such have sevice entry points.
They are distinguishable as *ROM filing system ROMs only by
their response to paged ROM service calls issued by the *ROM
filing system code. When the user selects the *ROM filing system

172

any further requests for files result in the *ROM filing system
section of the operating system scanning the paged ROMs for
these files. A paged ROM containing files intended for the *ROM
filing system should respond to one of two paged ROM service
calls.

The two service calls and the responses expected from ROMs
containing *ROM data are described in detail below. One call
expects the ROM to prepare to yield any data it has and the
second call is used to extract this data, one byte at a time. The
data should be formatted in a similar way to the data stored on
tape but is modified in such a way as to minimise the storage
overheads involved in using such a format. The reason for
adopting this format is to minimise the requirements for extra
code in the operating system while utilising the exhaustive error
checking already in existence. Accompanying these advantages
there is a concurrent reduction in response time performance but
this is of little importance to the users of tape based machines who
are still able to appreciate a substantial improvement on their
system's existing performance.

11.1 Converting files to *ROM format

In order to produce a ROM containing files which will be
recognised by the *ROM filing system it is necessary to fulfill
two criteria, The first requirement is for some header code which
will recognise the *ROM filing system paged ROM service calls
and respond accordingly. The second requirement is that the data
which makes up the files is formatted in the manner in which the
*ROM filing system expects to find it.

11.2 The header code

As has been stated above a paged ROM which is to be recognised
by the *ROM filing system is a perfectly standard paged ROM
which responds to the apporpriated service calls. As a result of
this requirement the first part of each *ROM filing system ROM
consists of a standard format paged ROM header followed by a
small amount of code which responds to the necessary service
calls. By convention *ROM paged ROMs do not respond to the

173

*HELP sevice call but should these ROMs anounce their presence
in this way it would obviously leave less space for programs and
data.

The two paged ROM service calls which should elicit a response
from *ROM paged ROMs are described in the next two
paragraphs.

11.3 Paged ROM service call with A=&D

This call is the *ROM filing system initialise call. When the filing
system is active and wishes to scan the next ROM this call is
issued.

The initialise service call is made with the ROM number of the
next ROM to be scanned in the Y register. Having received this
service call a filing system ROM should only respond if its own
ROM ID (stored in location &F4) is greater than or equal to the
ROM number passed in the Y register.

Having decided to claim this service call the ROM should place
its own ROM number in location &F5 which marks it as the
currently active *ROM filing system ROM. It should then write
the address of the start of the data it contains in locations &F6 and
&F7. This provides a zero page pointer which is used by the filing
system code to extract bytes of data serially from the ROM.

Having performed these two operations the service routine should
return with the accumulator containing zero to indicate that the
call has been claimed, In the case of the paged ROM ID being less
than the ROM number in the Y register the service routine should
exit with &D in the accumulator and the operating system will
then offer the call to the next ROM.

The actual mode in which the *ROM filing system ROM numbers
are represented differs from the way in which the paged ROM IDs
are usually represented (i.e. as stored in &F4, a number 0 to 15).
The filing system ROM numbers are represented by a value which
is 15 minus the physical paged ROM number. One way of
converting numbers from one form to another is, given the
number to be converted in the accumulator,

174

EOR #&FF
AND #&F

which returns the inverted number in the accumulator. These
instructions will always convert a number into the other
representation.

11.4 Paged ROM service call with A=&E

Having obtained a response from a paged ROM to service call
&D the *ROM filing system will use this service call to read
bytes from the data contained in the ROM.

There is a difference in how the service routine can be
implemented on the BBC Microcomputer OS 1.00 and later OS
versions (including the Electron). The actual response required
from the service call is essentially the same however.

When called by OS 1.00 a paged ROM should only respond to
this call if its own ROM ID is the same as the current *ROM
filing system ROM number. A comparison of the contents of
memory location &F4 (current paged ROM) should be made with
the inverted contents of &F5 (current *ROM) If these are not the
same the call should be returned unclaimed.

The service routine for OS 1.00 should return the byte of data
pointed to by the pointer in &F6 and &F7 in the Y register (e.g.
LDA (&F6),Y:TAY) and increment this pointer so that it is ready
for the next call.

Later operating system versions contain a routine (OSRDRM)
which given the paged ROM ID of the current *ROM filing
system ROM in the Y register will read a byte from this paged
ROM using the pointer at &F6+&F7. Thus this paged ROM
service call may be serviced by the highest priority *ROM filing
system ROM and the operating system does not have to scan all
the ROMs before getting a response. This leads to a significant
improvement in performance of the *ROM filing system.

175

The service routines are able to determine which operating system
has called them by the value of the Y register passed with this
service call. On operating systems supporting the OSRDRM call
the Y register contains a negative value while other versions of the
operating system make this call with a positive value in the Y
register.

The example given at the end of this section shows how the
service routine at the head of a *ROM filing system ROM detects
the operating system type and responds appropriately. This
example will function on both types of operating system but will
take advantage of OSRDRM routine if available. *ROM filing
system ROMs designed for use on the earlier operating systems
will still work with later versions.

11.5 *ROM data format

The format in which data should be stored in *ROM filing system
ROMs is very similar to the tape data format. The data is divided
into blocks which may be up to 255 bytes long. Each block of
data is preceded by a header which contains information about the
block. Both the block of data itself and the header are followed by
a 16 bit cyclic redundancy check (CRC) value, The filing system
calculates its own values for these CRCs during the loading
process and compares them. If the filing sysem's value differs
from the stored value then the filing system flags an error and
rejects the data. (A routine for calculating CRCs is included in the
example at the end of this section.)

176

The *ROM filing system data format is as follows:

offset description length

Block Header

0 &2A, a synchronisation byte 1
1 a file name (ito 10 chars.) n
1+n &00, a file name terminator 1
2+n load address (low byte first) 4
6+n execution address 4
10+n block number (low byte first) 2
12+n block length (in, in bytes) 2
14+n block flag (see below) 1
15+n address of next file 2
17+n header CRC(1 to n + l6 incl.) 2

Block Data

19+n data m
19+n+m data block CRC 2

(next blocks)

z &2B, end of ROM marker 1

The block flag:

bit 0 Protection bit (file only allowed to be *RUN)
bit 6 Set if block contains no data
bit 7 Set if this is the last block of the file

For the *ROM filing system the headers for all but the first and
last blocks may be replaced by a single byte header of value &23
(‘#’) with no CRC. This is implemented to reduce the memory
overheads inherent with the tape style data format.

177

By convention the first file in a *ROM filing system ROM should
be a title file. This is a file of zero length which serves to identify
the ROM. The name of this file will appear on catalogue listings
of the ROM. The file name of this title file should consist of a
name and a version number preceded and followed by an asterisk
e.g.‘ *Mon00* ’ or ‘ *GAMESO5* ’ .

11.6 An example of a *ROM filing system ROM

The program below is written in BASIC 2 to assemble a ROM
image which can be ‘blown’ into an EPROM and placed in a BBC
microcomputer paged ROM socket or into a ROM cartridge slot
on the Electron Plus 1 expansion.

Included in the program below is a routine for calculating CRC
values (FNdo_crc). The actual CRC values required for this ROM
image are included in the comments so that the actual values may
be inserted directly if someone wanted to reduce the typing load
when trying out this example.

 10 REM *************************************
 20 REM * *
 30 REM * *ROM filing system ROM example *
 40 REM * *
 50 REM *************************************
 60 REM Assemble CRC caLcuLating routine

 70 DIM MC% &100:PROCassm

 80 REM Set up constants required for ROM assembLy

 90 serROM=&F5
 100 ROMid=&F4
 110 ROMptr=&F6
 120 OSRDRM=&FFB9
 130 version=0

 140 REM Reserve space for ROM image and prepare to assemble

 150 DIM code% &4000
 160 FORI=4 TO 7 STEP3
 170 P%=&8000:O%=code%
 180 [

178

 190 OPT I
 200 .ROMstart EQUB 0 \ null language entry
 210 EQUB 0
 220 EQUB 0
 230 JMP service \ service entry point
 240 EQUB &82 \ ROM type, service ROM
 250 EQUB copyr-ROMstart \ offset to copyrights
 260 EQUB version \ binary version number
 270 EQUS "Serial Rom" \ ROM titLe string
 280 EQUB 0
 290 EQUS "0" \ ROM version string
 300 .copyr EQUB 0
 310 EQUS "(C) 1982 Acorn Computers" \ copyright$
 320 EQUB 0 \ end of paged ROM header
 330 .service CMP #&D \ service routine
 340 BEQ initsp \ initialise call?
 350 CMP #&E
 360 BEQ rdbyte \ read byte call?
 370 RTS \ not my call

 380 \ Routine for paged ROM service call &D

 390 .initsp PHA \ save accumulator
 400 JSR invsno \ invert *ROM number
 410 CMP ROMid \ compare with ROM id
 420 BCC exit \ if *ROM > me, not my
 430 LDA #data AND 255 \ low byte of data address
 440 STA ROMptr \ store in pointer
 450 LDA #data DIV &100 \ high byte of data
 460 STA ROMptr+1 \ store in pointer
 470 LDA ROMid \ get my paged ROM number
 480 JSR invert \ invert it
 490 STA serROM \ make me current *ROM
 500 .claim PLA \ restore
 510 LDA #0 \ service call claimed
 520 RTS \ finished
 530 .exit PLA \ call not claimed restore
 540 RTS \ accumulator and return

 550 \ Routine for paged ROM service call &E

 560 .rdbyte PHA \ save accumulator
 570 TYA \ copy Y to A
 580 BMI os120 \ if Y -ye OS has OSRDRM

 590 \ this part for OS with no OSRDRM

 600 JSR invsno \ invert *ROM number
 610 CMP ROMid \ is it my paged ROM no.
 620 BNE exit \ if not do not claim call
 630 LDY #0 \ Y=0

179

 640 LDA (ROMptr),Y \ load A with byte
 650 TAY \ copy A to Y
 660 .claim1 INC ROMptr \ increment ptr low byte
 670 BNE claim \ no overflow
 680 INC ROMptr+1 \ increment ptr high byte
 690 JMP claim \ claim call and return

 700 \ this part for OS with OSRDRM

 710 .os120 JSR invsno \ A=current *ROM number
 720 \ not necessarily me
 730 TAY \ copy A to Y
 740 JSR OSRDRM \ OS will select ROM
 750 TAY \ byte returned in A
 760 JMP claim1 \ incremnt ptr & claim

 770 \ Subroutine for inverting *ROM numbers

 780 .invsno LDA serROM \ A=*ROM number
 790 .invert EOR #&FF \ invert bits
 800 AND #&F \ mask out unwanted bits
 810 RTS \ finished

 820 \ End of header code/beginning of data

 830 .data EQUB &2A \ synchronisation byte
 840 .hdstrt EQUS "*EXAMPLE*" \ *R0M title
 850 EQUB 0 \ name terminator
 860 EQUD 0 \ Load address0
 870 EQUD 0 \ execution address=0
 880 EQUW 0 \ block number0
 890 EQUW 0 \ block length=0
 900 EQUB &CO \ block flag
 910 EQUD eof \ pointer to next file
 920 .hdcrc EQUW FNdo_crc(hdstrt,hdcrc) \ CRC (&246F)
 930 .eof

 940 \ No data block for this file

 950 EQUB &2A \ synchronisation byte
 960 .filel EQUS "TEXT" \ file title
 970 EQUB 0
 980 EQUD 0 \ null load address
 990 EQUD 0 \ null execution address
1000 EQUW 0 \ first block
1010 EQUW dat2-datl \ length of data
1020 EQUB &80 \ first & last block
1030 EQUD eofl \ pointer to end of file
1040 .hdcrcl EQUW FNdo_crc(filel,hdcrcl) \ CRC (&E893)
1050 .datl EQUS "REM This is a very short text file."
1060 EQUB &D \ The file contents

180

1070 .dat2 EQUW FNdo_crc(datl,dat2) \ Block CRC (&655D)
1080 .eofl
1090 EQUB &2B \ end of ROM marker
1100 .eor
1110]
1120 NEXT
1130 PRINT" *S.ROM ";~code%;" ";~O%
1140 END

1150 REM Define function which calculates CRC
1160 REM Requires start and end of block up to 255 bytes

1170 DEF FNdo_crc(start,end)
1180 ?&82=(start-&8000+code%) AND &FF
1190 ?&83=(start-&8000+code%) DIV &100
1200 ?&84=end-start
1210 CALL crc
1220 =(!&80) AND &FFFF

1230 REM Define procedure which assembles CRC routine

1240 DEF PROCassm
1250 startaddr=&82
1260 Lo_crc=&81
1270 Hi_crc=&80
1280 len=&84
1290 FORI=0 TO 3 STEP3
1300 P%=MC%
1310 [
1320 OPT I
1330 .crc LDA #0
1340 STA Hi_crc
1350 STA Lo_crc
1360 TAY
1370 .label1 LDA Hi_crc
1380 EOR (startaddr),Y
1390 STA Hi_crc
1400 LDX #8
1410 .label2 LDA Hi_crc
1420 ROL A
1430 BCC label3
1440 LDA Hi_crc
1450 EOR #8
1460 STA Hi_crc
1470 LDA Lo_crc
1480 EOR #&10
1490 STA Lo_crc
1500 .label3 ROL Lo_crc
1510 ROL Hi_crc
1520 DEX
1530 BNE label2

181

1540 INY
1550 CPY len
1560 BNE label1
1570 RTS
1580]
1590 NEXT
1600 CALL crc:ENDPROC

When the resultant ROM is installed in the machine the following
dialogue may ensue.

>*ROM
>*CAT

EXAMPLE
TEXT
>*EXEC TEXT
>REM This is a very short text file.

182

