
7 Interrupts
7.1 An introduction to interrupts

An interrupt is a hardware signal to the microprocessor. It informs
the 6502 that a hardware device, somewhere in the Electron or on
an expansion module, requires immediate attention. When the
microprocessor receives an interrupt, it suspends whatever it was
doing, and executes an interrupt servicing routine. Upon
completion of the servicing routine, the 6502 returns to whatever
it was doing before the interrupt occured.

A simple analogy of an interrupt is a man working hard at his desk
writing a letter (a foreground task). Suddenly the telephone rings
(an interruption). The man has to stop writing and answer the
telephone (the interrupt service routine). After completion of the
call, he has to put the telephone down, and pick up his writing
exactly where he left off (return from interrupt).

In an Electron, the main objective is to perform foreground tasks
such as running BASIC programs. This is equivalent to writing
the letter in the above example. The computer may however be
concerned with performing lots of other functions in the
background (equivalent to the man answering the telephone). An
Electron which is running the house heating system for example
would not wish to keep on checking that the temperature in every
room is correct − this would take up too much of its processing
time. However, if the temperature gets too high or too low in any
of the rooms it must do something about it very quickly. This is
where interrupts come in. The thermostat could generate an
interrupt, causing the computer to jump quickly to the interrupt
service routine, switch a heater on or off, and return to the main
program.

There are two basic types of interrupts available on the 6502.
These are maskable interrupts (IRQs) and non-maskable interrupts
(NMIs). To distinguish between the two types, there are two
separate pins on a 6502. One of these is used to generate IRQs
(maskable) and the other is used to generate NMIs (nonmaskable).
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7.1.1 Non-Maskable Interrupts

In order to generate a non-maskable interrupt, a piece of hardware
must pull the NMI line low. This forces the 6502 to stop whatever
it was doing, and to start executing the NMI service routine at
&0D00. NMLs are extremely powerful, because they cannot be
turned off under software control. If the ULA is currently
accessing RAM to produce the video display in modes 0 to 3, it is
also forced to give the memory back to the 6502. NMIs can
therefore create snow on the screen − the urgency of this signal is
such that even the screen cannot take priority over the interrupting
device.

Only very high priority devices, such as the Floppy Disc or
Econet interfaces, are allowed to generate NMIs. This ensures that
the 6502 is only interrupted in very urgent situations. These high
priority devices are then guaranteed to get immediate attention
from the 6502. To return to the main program from an NMI, an
RTI instruction is executed. It is always necessary to ensure that
all of the 6502 registers are restored to their original state before
returning to the main program. If they are modified , the main
program will suddenly find garbage in its registers in the middle
of some important processing. It is highly probable that a total
system crash would result from this.

7.1.2 Maskable Interrupts

Maskable interrupts are similar to non-maskable interrupts in
most respects. A hardware device can generate a maskable
interrupt to which the 6502 must normally respond. The
difference is that the 6502 can choose to ignore all maskable
interrupts, if it so desires, using software control. To disable
interrupts (only the maskable ones though), an SEL (set interrupt
disable flag) instruction is executed. Interrupts can be reenabled at
a later time using the CLI (clear interrupt disable flag) instruction. 

When an interrupt is generated, the processor knows that an
interrupt must have come from either the ULA, or an expansion
module device. Initially though, it can't tell where the interrupt
has come from. If there was only one device that could have
caused the interrupt, then there would be no problem. However,

136



since there is more than one device causing interrupts in the
Electron, each device must be interrogated. Each device is asked
whether it caused the interrupt, This is normally quite easy,
because all of the standard Electron devices are controlled by the
ULA register at address &FE00. Any other devices connected to
the expansion bus would have to be interrogated seperately.

When the interrupt processing routine has discovered the source
of a maskable interrupt, it must decide upon the type of action is
required. This usually involves transferring some data to or from
the cassette interface, incrementing the clock, or flashing the
colours on the screen. The interrupt condition must then be
cleared by writing to &FE05. This is because most devices
(except the cassette receive and transmit registers) continue to
signal an interrupt until they have been serviced. The completion
of servicing often has to be signalled by the processor writing to a
special register in the device, or, in the case of interrupts from the
ULA, to address &FE05.

Interrupts must never affect the interrupted program. All of the
processor registers and flags must therefore be exactly the same
after return from an interrupt routine as they were before the
interrupt occured. Thus an interrupt routine must either not alter
any registers (which is difficult) or restore all register contents to
their original values before returning.

Interrupt routines are entered with interrupts disabled. An
additional interrupt will therefore not be recognised whilst the
first interrupt routine is still processing. If the interrupt service
routine is going to take an appreciable time, this could create
problems. Other more urgent interrupts may occur, and have to
wait until the previous one has finished processing. The solution
is normally to ensure that interrupt routines are not too long.
However, if care is taken, interrupts can be re-enabled inside a
long interrupt routine, In this case, fixed memory locations must
not be used to store variables within the routine, because these
locations will be overwritten if another interrupt routine uses them
(or indeed if the same interrupt occurs again!). All variables
should therefore be stored on the stack so they can be restored at
the end of any routine.
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7.2 Interrupts on the Electron

Interrupts are required on the Electron to process all of the
background operating system tasks. These tasks include
incrementing the clock, processing envelopes, or transferring keys
pressed to the input buffer. All of these tasks must continue whilst
the user is typing in, or running his program. Using interrupts
gives the impression that there is more than one processor; one for
the user, one for updating the clock, one for processing envelopes,
etc.

As was mentioned in the introduction, normal (maskable)
interrupts can be disabled. Interrupts should only be disabled for
critical operations. For example, when changing the two bytes of
a vector. If an interrupt occurs in the middle of the change, it
might be indirected to an erroneous address.

When interrupts are disabled, the clock stops, and all other
interrupt activities cease. Interrupts are disabled by the SEL
assembler instruction, and re-enabled with CLI. Most devices that
generate interrupts will continue to signal an interrupt until it is
serviced. The cassette read register is one exception. If it isn't
serviced within 2ms, data from the cassette will almost certainly
be lost forever.

7.3 Using Non-Maskable Interrupts

Generally, NMIs are reserved for specialised pieces of hardware
which require very fast response from the 6502. NMIs are not
used on a standard system. They are used on DISC and ECONET
systems. An NMI causes a jump to location &0D00 to be made. 

7.4 Using Maskable Interrupts

Most of the interrupts on the Electron are maskable. This means
that a machine code program can choose to ignore the interrupts
by disabling them. Since all of the operating system features such
as scanning the keyboard, updating the clock, and running the
cassette system are run on an interrupt basis, interrupts should
never be disabled for more than about 2ms.
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There are two levels of priority for maskable interrupts, defined
by two indirection vectors in page &02. The priority of an
interrupt indicates its relative importance with respect to other
interrupts. If two devices signal an interrupt simultaneously, the
higher priority interrupt is serviced first.

7.5 Intercepting interrupts

Maskable interrupts can be intercepted on the Electron, and
redirected to a user specified address. This interception process
consists of changing the value of a vector.

There are two interrupt interception vectors called IRO1V and
IRO2V, The first of them is indirected via the vector stored at
&204,5 and the second via &206,7. If either of the vectors stored
in these locations is changed to point at a user supplied routine,
that user routine will be called when there is next an interrupt. 

Interrupt Request Vector 1 (IRQV1)

Indirects through &204,5

This is the highest priority vector through which all maskable
interrupts are indirected, This is nominally reserved for the system
interrupt processing routine, which copes with all of the interrupts
from the ULA. Any interrupt which cannot be dealt with by the
operating system routine (those which are generated by a user
expansion module) are passed on through the second interrupt
vector, IRQ2V. Occasionally, IRQ1V can be intercepted before
the operating system gets hold of it. This will only be necessary
for high priority user interrupts.

Interrupt Request Vector 2 (IRQ2V)

Indirects through &206,7

This vector is normally used to deal with any interrupts which
cannot be dealt with by the operating system. On an unexpanded
Elecctron, the vector simply points to a couple of lines of code to
restore the A register from &FC, then return from the interrupt
service.
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Several points should be born in mind when producing interrupt
service routines.

a) When the vector value is changed to point at the new user
supplied routine, the previous contents of the vector should be
saved somewhere. This will allow the user routine to go on to
the correct address after it has finished, Note that this method
of linking into IRQ1V or IRQ2V allows several independent
routines to link in seperately. Each stores the previous
contents of the vector (which point to the next routine).

b) Disable interrupts using the SEI instruction before changing
the contents of the interrupt vectors, This is merely a
precaution to guard against the possibility of interrupts
occuring between writing the low and high bytes of the vector
If an interrupt were to occur in the middle of this operation,
the indirection vector would be erroneous, and would
probably cause the machine to crash.

c) The conditions which will be in force when the user routine is
entered are that; the original 6502 status byte and return
address are already stacked on the 6502 stack (ready for an
RTI instruction to resume normal operation). The X and Y
registers are still in their original states, but haven't been
saved anywhere. The original A register contents are in
location &FC.

d) Operating system calls should not normally be made from
within an interrupt service routine, This is because they may
not be re-entrant (eg. if any zero page locations are used).
Most OSBYTEs and some OSWORDs are ‘ IRO-proof ’ .
Avoid *FX0, OSBYTE &81 (positive INKEY), fast Tube
BPUT, OSWORD 0, and all VDU OSWORDs except palette
write/read. Such use of OS calls will often cause the
foreground task to be disturbed and crash.

e) The user's interrupt routine should be re-entrant. This means
that if there is a possibility of interrupts being re-enabled
during the routine (eg. because it is very long), the code can
be run again without affecting the first foreground interrupt.
This can only be done by pushing the X and Y registers plus
the contents of &FC onto the stack, and restoring them after
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the call. It is also important to ensure that no fixed memory
locations are used for storing variables, since these will be
overwritten by an interrupting routine.

The following example illustrates most of these points. When run,
it will cause the Electron to make a continuous decreasing pitch
tone.

Several points in the program are worthy of note. The first is that
IRQ1V is used instead of IRQ2V. On an unexpanded Electron, all
interrupts are serviced by IRQ1V, so the OS doesn’t bother to pass
them on to IRQ2V, When the tone is running, switch the listing to
page mode (by pressing CTRL N). Then list the program. The
sound is totally messed up because the OS is writing to the ULA
as well. This illustrates one of the reasons why the official
operating system calls should normally be used − to avoid clashes
like that.

 10 REM Interrupt utilisation example 
 20 REM Must operate in mode 6 
 30 MODE 6 
 40 REM AlLocate space for program 
 50 DIM M% 100
 60 FOR opt%= 0 TO 3 STEP 3 
 70 P%=M% 
 80 [ 
 90 OPT opt% 
100 .init SEI \ Disable interrupts 
110 LDA &204 \ Save old IRQ1V vector 
120 STA oldv 
130 LDA &205 
140 STA oldv+1 
150 LDA #int MOD 256 \ Low byte of address
160 STA &204 \ IRQ1V Low 
170 LDA #int DIV 256 \ High byte of address 
180 STA &205 
190 CLI \ Turn interrupts on again 
200 RTS \ Exit initialisation routine 
205  
210 \ This is the interrupt service routine 
220 .int TXA \Save X register 
230 PHA 
240 TYA \Save Y register 
250 PHA 
260 INC &70 \ Counter in zero page 
270 LDA &70
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280 STA &FE06 \ Load into ULA counter 
290 LDA #&32 \ Set sound mode 
300 STA &FE07 \ Write to ULA control register 
310 PLA \ Restore the registers 
320 TAY 
330 PLA 
340 TAX 
350 JMP (oldv) \ Go on to next service routine 
355  
360 .oldv EQUW0 \ Reserve space for old vector 
370 ] 
380 NEXT opt% 
390 REM Grab the interrupt vector 
400 CALL init 
410 REM Bleeping should now start 
420 END 
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