
9 Language ROMs
The term language ROM is something of a misnomer given most
peoples’ idea of what a language is. In the context of paged ROM
software the language is the primary paged ROM. Other paged
ROMs may perform functions transiently but control is then
returned to the current language ROM. The language ROM
receives a large allocation of zero page workspace and is allocated
pages 4 through to 7 as private workspace. In addition to this the
language has control of the user RAM which may or may not be
used as additional workspace. BASIC, for example, uses a
variable portion of the user RAM (from LOMEM to HIMEM) for
the storage of program variables.

Languages are most typically implemented in language ROMs as
would be expected. Thus BASIC, FORTH, LISP and BCPL are all
language ROMs but other software implemented as language
ROMs include word processors and terminal emulators.

No paged ROM software should be executed unless a service call
has been performed first with the possible exception of a language
entered following a reset. The language entered after a hard reset
will be the language ROM identified by the ROM type byte in its
header occupying the highest priority socket. Following a soft
reset the language active when the reset occurred will be
reinitialised. Any language should respond to a *command to
enable its activation when this command is issued. This
mechanism allows the user to switch between languages. This
command would be unrecognised by the operating system which
would then issue an unrecognised * command paged ROM
service call to which the language ROM would respond via its
service entry point.

9.1 Language initialisation

A language ROM will be entered via the language entry point
with an accumulator value of &01 when the language is selected.
The language is entered with a JMP instruction and no return is
expected. The stack pointer should be reinitialised as the stack
state is undefined on entry.

148



The language ROM should also be able to respond to service calls
which may affect it (see below) e.g. be able to respond to the
service call which warns of a changing OSHWM due to font
explosion.

9.2 Firm keys

On the Electron the function keys are implemented as a
combination key press requiring the use of the CAPS LK/FUNC
key with the number keys. In addition to these soft keys there are
a number of non-programmable firm keys which also produce text
strings when pressed. The other character keys (A to Z plus the
comma, full stop and slash keys) pressed in combination with the
CAPS LOCK/FUNC key constitute the firm keys.

A language ROM indicates that it has the facility to expand these
keys by bit 4 of the ROM type byte being set (see section 8.4).
When the operating system detects that a firm key has been
pressed it calls the language via its entry point to request the
expansion of the key. The language should then yield the firm key
string one character at a time in response to further calls.

The two calls made through the language entry point are:

A=2 This call expects the next key in the firm key expansion to be
returned in Y.

A=3, Y=firm key code This call is an initialising call. The
language should return the length of the firm key string in Y.

149



The key values passed to the language with this call are:

&90 to &A9 FUNC+A to FUNC+Z
&AA FUNC+:
&AB FUNC+;
&AC FUNC+,
&AD FUNC+=
&AE FUNC+.
&AF FUNC+/

The operating system inserts these key values into the input buffer
as they are received.

OSBYTE &CC (204) may be used to read or write the OS copy of
its firm key pointer and OSBYTE &CD (205) may be used to read
or write the length of the current firm key string being expanded. 

9.3 Language ROM compatability

It is quite feasible to write a language ROM which will work with
the entire range of Acorn machines supporting paged ROMs in all
their configurations.

The first question that a programmer should consider before
implementing software in a Language type ROM is whether it
actually needs to be a language ROM? Many utilities are only
required transiently and it is better to implement them as service
type ROMs. A routine in a service type ROM can then be used
from the language environment.

As has been mentioned above the language should have a service
entry point so that it may be selected by a *command and be able
to respond to changes in OSHWM. For information about service
type ROMs read the next chapter. It must be remembered however
that a language ROM is copied across to the second processor
when a Tube is active. Therefore, when executing, the language
must not rely on receiving service calls (i.e. the only ones the

150



language code should respond to are those of relevance when on
an I/O processor such as the font explosion warning). The service
code should not share or use the language work space (&400-
&7FF or language zero page) because the service code is executed
in the I/O processor of a Tube machine where the Tube code has
the status of the current ‘ language’ and the actual language is
across on the second processor. The language code should not
attempt to perform any manipulation of hardware by direct poking
because this would make it machine dependent. The programmer
may wish to implement hardware dependent routines in the
service section of the ROM. The language code should
communicate with the service code using unknown OSBYTE calls
etc. for this purpose.

It is always easier to write ROM code to create software with
limited compatability, It is often the case that software written
originally with just one machine or configuration in mind will be
just as useful on another machine. A programmer should always
have confidence in his or her skills such that they consider the
extra effort worthwhile. The discipline in thought required to
adhere to the compatability protocols represents a professional
attitude. The Electron and other Acorn products were designed by
experts, and while ultimately human and thus fallible, have put
great consideration into making it possible to run software over a
wide a range of machines.

151


