
6 Operating System
Vectors

Many of the operating system routines are indirected through
addresses stored in RAM. This enables other software to intercept
these calls as they are made.

During a reset the operating system stores the addresses of its
internal routines for such things as reading and writing characters
in locations in page two. The official entry point of these routines
point to instructions like JMP (vector). If another piece of
software replaces the address stored in the vector then each
subsequent call is passed to the intercepting software.

Consider the following example:

This program assembles a routine which intercepts ‘$’ and ‘£’
characters passed to the OSWRCH routine and exchanges them.

 10 DIM code% 100
 20 WRCHV=&20E
 30 FOR opt%=0 TO 3 STEP3
 40 P%=code%
 50 [
 60 OPT opt%
 70 .init LDA WRCHV \ A=lo byte of vector
 80 STA ret_vec \ make a copy
 90 LDA WRCHV+1 \ A=hi byte of vector
100 STA ret_vec+1 \ make a copy
110 LDX #intrcpt AND &FF \ X=lo byte of new routine
120 LDY #intrcpt DIV &100 \ Y=hi byte of new routine
130 SEI \ disable interrupts
140 STX WRCHV \ store new routine address
150 STY WRCHV+1 \ in WRCH Vector
160 CLI \ enable interrupts
170 RTS \ finished initialisation
180 .intrcpt CMP #ASC"£" \ trying to print a £ ?
190 BEQ pound \ if so branch
200 CMP #ASC"$" \ trying to print a $?
210 BEQ dollar \ if so branch
220 JMP (ret_vec) \ neither goto old routine
230 .pound LDA #ASC"$" \ replace £ with $
240 JMP (ret_vec) \ goto old routine

110

250 .dollar LDA #ASC"£" \ replace $ with £
260 JMP (ret_vec) \ goto old routine
270 .ret_vec EQUW 0 \ space for return vector
280]
290 NEXT
300 CALL init

This program, although not very long, illustrates a few points
regarding the way in which vectors should be intercepted.

One of the most important aspects concerning the interception of
calls through vectors is to make sure that the call is passed on to
the previous owner of the vector. There are occasions when a
routine is intended to be the sole replacement of a vector but as a
rule it is good programming practice to copy the old vector
contents to a returning vector. By returning via the old vector
contents any number of intercepting routines can be daisy chained
into the operating system call.

While the initialising routine is changing the vector contents to
point at the new routine it is wise to disable interrupts, It would
obviously be quite catastrophic if the OSWRCH routine were to
be called when the vector was only half changed. An interrupt
handling routine is unlikely to use the WRCHV but there is no
reason why it should not.

The intention in this section has been to make programmers aware
of the problems which may occur when intercepting these vectors.
They have been implemented so that they may be used to insert
extra code into some of the operating system routines and
individuals should not be afraid of using them to this end.
However, careful thought is required; take full account of the
ramifications of altering the operating systems usual response to
calls. If in doubt try out a routine. Play about with trivial
examples such as the one given above. There is nothing to be lost
and much to be learnt. Os and filing system calls indirection
vectors

111

OS and filing system calls indirection
vectors
The vector addresses associated with those operating system calls
which are indirected are given in the detailed description of each
call in chapter 2. The entry conditions with which the routine
whose address is containedwithin these vectors will be unchanged
from the initial OS call.

Other page 2 vectors
The other vectors reserved for containing the addresses of other
operating system and miscellaneous routines are described below.
These are :

Name addr. description

USERV &200 The user vector
BRKV &202 The BRK vector
IRO1V &204 Primary interrupt vector
IRO2V &206 Unrecognised IRQ vector
FSCV &21E File system control entry
EVNTV &220 Event vector
UPTV &222 User print routine
NETV &224 Econet vector
VDUV &226 Unrecognised VDU commands
KEYV &228 Keyboard vector
INSV &22A Insert into buffer vector
REMV &22C Remove from buffer vector
CNPV &22E Count/purge buffer vector
IND1V &230 unused/reserved for future expansion
IND2V &232 unused/reserved for future expansion
IND3V &234 unused/reserved for future expansion

112

6.1 The User Vector &200

The user vector is called by the operating system in three
circumstances.

(a) When *CODE is passed to the command line interpreter

The *CODE command takes two parameters which are placed in
the X and Y registers. The user vector is then called with an
accumulator value of zero. OSBYTE &88 may also be used to
generate a *CODE command.

(b) When *LINE is passed to the command line interpreter

The *LINE command takes a line of text as a parameter. The user
vector is entered with the X and Y registers containing the address
of this text and A=1.

(c) When an OS WORD call &E0 to &FF has been made The user
vector is entered with the register values they were when the
original OS WORD call was made.

The default address stored in this vector points to a routine which
generates an error with the message ‘Bad command’ and error
number &FE.

This vector is fully implemented on the BBC microcomputer and
the Electron. On a Tube machine only the vector on the I/O
processor is offered these calls.

Listed below is a program which assembles a routine to intercept
calls made to the user vector. It may be noticed that this routine
does not offer the calls back to the original vector routine, this is
because the default routine generates an error. There should only
be one user vector handling routine active at any one time.

113

 0 REM User vector handling routine

 10 DIM code% &100
 20 OSASCI=&FFE3
 30 USERV=&200
 40 FOR opt%=0 TO 3 STEP 3
 50 P%=code%
 60 [
 70 OPT opt%

 80 .init LDX #userrt AND &FF \ X=lo byte of routine addr.
 90 LDY #userrt DIV &100 \ Y=hi byte of routine addr.
100 SEI \ disable interrupts
110 STX USERV \ set up vector with addr.
120 STY USERV+1
130 CLI \ enable interrupts
140 RTS \ and return
150 .userrt CMP #1 \ compare contents of A with1
160 BCC code \ A<1 then must be *CODE
170 BNE osword \ now if A<>1 must be OSWORD

180 STX &70 \ *LINE routine
190 STY &71 \ store text address in page0
200 LDY #&FF \ set Y as loop counter
210 .loop INY \ beginining of loop Y=Y+1
220 LDA (&70),Y \ load first byte of string
230 JSR OSASCI \ print it
240 CMP #&D \ was character a cr?
250 BNE loop \ if not get the next char.
260 RTS \ if it was return

290 .code TXA \ A=X
300 JSR prntbt \ print value of X
310 JSR space \ print a space
320 TYA \ A=Y
330 JSR prntbt \ print value of Y
340 JMP new_ln \ print newline and return

350 .osword PHA \ save contents of A
360 LDX #&FF \ set X as loop counter
370 .loop1 INX \ beginning of loop, X=X+1
380 LDA string,X \ load character from string
390 JSR OSASCI \ print it
400 CMP #ASC"&" \ & char. is end of string
410 BNE loop1 \ loop if not end of string
420 PLA \ reload the value of A
430 JSR prntbt \ print it out in hex
440 JMP new_ln \ print cr and return
450 .space LDA #&20 \ A=space character
460 JMP OSASCI \ print and return

470 .new_ln LDA #&D \ A=carriage return character

114

480 JMP OSASCI \ print cr and return

490 .string EQUS "OSWORD &" \ string for OSWORD routine

499*** This routine prints hex number given in A

500 .prntbt PHA \ save copy of accumulator
510 LSR A
520 LSR A
530 LSR A
540 LSR A \ shift nibble hi to lo
550 JSR nibble \ print hi nibble hex digit
560 PLA \ reload accumulator
570 .nibble AND #&0F \ mask out high nibble
580 CMP #&0A \ digit or letter?
590 BCC number \ A<10print number
600 ADC #&06 \ otherwise add 7 (C=1)
610 .number ADC #&30 \ add &30 to convert to ASCII
620 JMP OSASCI \ print character and return

630]
640 NEXT
650 CALL init

Once assembled this routine will respond to *CODE by printing
out the parameters passed with the command. A *LINE command
will result in the parameter string being repeated on the screen and
an OS WORD in the region &E0 to &FF will print out the number
of the call.

e.g.

>*CODE 1,2
01 02
>*LINE SOME TEXT
SOME TEXT
>A%=&E0:CALL &FFF1
OSWORD &E0
>

115

6.2 The BRK Vector &202

When a BRK instruction (op code value 0) is executed an
interrupt is generated. The operating system stores the address of
the byte following the BRK instruction in &FD and &FE, offers
the BRK to paged ROMs with service call &06, stores the ROM
number of the currently active paged ROM for recovery using
OSBYTE &BA (ROM active at last BRK), restores registers,
selects the current language ROM and then passes the call to the
BRKV code.

The BRK instruction is normally used on Acorn machines to
represent an error condition and the BRK vector routine is an
error handling routine. In BASIC this error handling routine starts
off by putting its house in order and then prints out an error
message.

In addition to the use of BRKs for the generation of errors it is
often useful in machine code programming to include BRKs
(break-points) as a debugging aid.

If a BRK instruction is executed on the Electron, the BRK vector
is entered with the following conditions:

(a) The A, X and Y registers are unchanged from when the BRK
instruction was executed.

(b) An RTI instruction will return execution to the address two
bytes after the BRK instruction (i.e. jumps over the byte following
the BRK). The RTL instruction also restores the status register
value from the stack.

(c) The address of the byte following the BRK instruction is
stored in zero page locations &FD and &FE, This address can
then be used for indexed addressing.

Error handling BRK routines should not return to the code which
executed the BRK but should reset the stack (using a TXS
instruction) and JMP into a suitable reset entry point. In fact the
convention used by Acorn is to follow the BRK instruction by:

116

a single byte error number
an error message
a zero byte to terminate the message

and the BRK routine prints out the error name. The BRK handling
routine should normally be implemented by the current language.
Service paged ROMs should copy a BRK instruction followed by
the error number and message down into RAM when wishing to
generate an error. This has to be done because otherwise the
current language ROM is paged in and the BRK handling routine
tries to print out the error message from the wrong ROM. The
bottom of page 1 is often used and is quite safe as long as the
BRK handling routine resets the stack pointer.

The use of BRKs as break-points in machine code programming
can be of great use to the machine code programmer. The example
below shows how a BRK handling routine may be used to print
out the register values. This routine could be further enhanced by
printing out the value of the byte following the BRK instruction
which would then give the programmer 256 individually
identifiable break-points.

 10 REM Primitive BRK handling routine
 20 DIM code% &100
 30 OSASCI=&FFE3
 40 OSRDCH=&FFE0
 50 BRKV=&202
 60 FOR opt%=0 TO 3 STEP 3
 70 P%=code%
 80 [
 90 OPT opt%

100 .init LDX #brkrt AND &FF \ load registers with address
110 LDY #brkrt DIV &100
120 SEI \ disable interrupts
130 STX BRKV \ set up BRK vector
140 STY BRKV+1
150 CLI \ enable interrupts and return
160 RTS

170 .brkrt PHA \ save A (X and Y not used)
180 STA byte \ store A in workspace
190 LDA #ASC"A" \ register id
200 JSR prntrg \ print register value
210 STX byte \ store X in workspace
220 LDA #ASC"X" \ register id

117

230 JSR prntrg \ print register value
240 STY byte \ store Y in workspace
250 LDA #ASC"Y" \ register id
260 JSR prntrg \ print register value
270 JSR new_ln \ print carriage return
280 JSR OSRDCH \ wait for key press
290 PLA \ restore A
300 RTI \ return

310 .prntrg JSR OSASCI \ print register id
320 LDA #ASC":"
330 JSR OSASCI \ print colon
340 JSR space \ print space
350 LDA #ASC"&"
360 JSR OSASCI \ print ampersand
370 LDA byte \ get register value
380 JSR prntbt \ print hex number
390 JSR space
400 JSR space \ print two spaces
410 RTS

420 .space LDA #&20
430 JMP OSASCI \ print space

440 .new_ln LDA #&D
450 JMP OSASCI \ print carriage return

460 .prntbt PHA \ for comments refer to
470 LSR A \ previous example
480 LSR A
490 LSR A
500 LSR A
510 JSR nibble
520 PLA
530 .nibble AND #&0F
540 CMP #&0A
550 BCC number
560 ADC #&06
570 .number ADC #&30
580 JMP OSASCI
590 .byte EQUB 0 \ workspace byte

600 .test BRK \ cause an error
610 EQUB 0 \ RTI returns to next byte
620 DEX \ Loop X times
630 BNE test \ if X=0 loop again
640 RTS
650]
660 NEXT
670 CALL init
680 A%=1:X%=8:Y%=&FF:CALL test

118

6.3 The interrupt vectors, IRQ1V &204 and IRQ2V &206

The interrupt system on the Electron is described in chapter 7.
The function of the two interrupt vectors are described there.

6.4 The event vector, EVNTV &220

This vector is called by the operating system during its interrupt
routine to provide users with an easy to use interrupt, A number of
‘events’ may cause the event handling routine to be called via this
vector but unlike an interrupt the reason for the call is passed to
the routine. The value in the accumulator indicates the type of
event:

event no. cause of event

0 output buffer becomes empty
1 input buffer becomes full
2 character entering input buffer
3 ADC conversion complete
4 start of VSYNC
5 interval timer crossing zero
6 ESCAPE condition detected
7 RS423 error detected
8 Econet event
9 user event

To avoid unecessary and time consuming calls to the event vector
two OSBYTE calls are used to enable and disable these event
calls being made. These are &D (13) for disabling and &E (14)
for enabling events.

The event handling routine should not enable interrupts and not
last for more than about 2 milliseconds. So that event handling
routines may be daisy chained they should preserve registers and
return using the old vector contents.

119

Output buffer empty 0

This event enters the event handling routine with the buffer
number (see OSBYTE &15/*FX21) in X. It is generated when a
buffer becomes empty (i.e. just after the last character is
removed).

Input buffer full 1

This event enters the event handling routine with the buffer
number (see OSBYTE &15/*FX 21) in X. It is generated when
the operating system fails to enter a character into a buffer
because it is full. Y contains the character value which could not
be inserted.

Character entering input buffer 2

This event is normally generated by a key press and the ASCII
value of the key is placed in Y, It is generated independently of
the input stream selected.

ADC conversion complete 3

When an ADC conversion is completed on a channel this event is
generated. The event handling routine is entered with the channel
number on which the conversion was made in Y. This event is
generated by the Plus 1 expansion software.

Start of vertical sync 4

This event is generated 50 times per second coincident with
vertical sync. One use of this event is to time the change to a
video ULA register so that the change to the screen occurs during
fly back and not while the screen is being refreshed. This avoids
flickering on the screen.

120

Interval timer crossing zero 5

This event uses the interval timer (see OSWORD calls &3 and
&4, in chapter 4). This timer is a 5 byte value incremented 100
times per second. The event is generated when the timer reaches
zero.

ESCAPE condition detected 6

When the ESCAPE key is pressed or an ESCAPE is received
from the RS423 (if RS423 ESCAPEs are enabled) this event is
generated.

RS423 error event 7

This event should be generated by software servicing expansion
RS423 hardware.

Network error event 8

This event is generated when a network event is detected. If the
net expansion is not present then this could be used for user
events.

User event 9

This event number has been set aside for the user event, This is
most usefully generated from a user interrupt handling routine to
enable other user software to trap an interrupt easily (e.g. an event
generated from an interrupt driven utility in paged ROM). An
event may be generated using OSEVEN, see section 2.10

6.5 User print vector, UPTV &222

A user print routine can be implemented by intercepting this
vector, Whenever a change in printer type is made using OSBYTE
&05 the print vector is called. A user print routine should respond
when printer type 3 is called.

121

The operating system will activate the user printer routine and
there after call it regularly at intervals of 10 milliseconds.
Characters will be placed in the printer buffer and it is up to the
user printer routine to remove characters and send them to the
printer hardware. When the printer routine finds that the buffer is
empty it should then declare itself inactive. The operating system
will then re-activate the routine when characters start entering the
buffer again.

The user printer driver should preserve all registers and return via
the old UPTV value.

On entry:

X contains the buffer number to be used
Y contains the printer number (i.e. the *FX 5 value)

N. B. The routine should only respond if it recognises the printer
number as its own.

The accumulator contains a reason code for the call:

A=0

When the printer driver is active the operating system makes this
call every 10 ins. The printer driver should examine its hardware
and if it is ready for another character should remove a character
from the assigned buffer and send it to the printer. A call to the
REMV vector should be made to obtain the character (see section
6.9.2) or use OSBYTE &91, When the printer driver has emptied
the printer buffer it should then declare itself inactive by making
an OSBYTE call &7B. This will allow the user to select a new
printer driver using OSBYTE &5, will stop further calls with A=0
and thereafter when the printer buffer is used again will cause a
call with A=1 to be made (see below).

A=1

When a printer driver is inactive this call is made to tell the
routine that the printer buffer is no longer empty and the printer
driver should now become active. If the printer driver is able to
become active it should remove a character from the assigned

122

buffer and if the buffer is still not empty it should return with the
carry flag clear to indicate that it is now active. Having thus
signalled itself as active the printer driver will receive the 10 ms
calls with A=0.

A=2

When the VDU drivers receive a VDU2 this call is made.
Characters may be printed even when this control character has
not been received if certain *FX3 options are selected.

A=3

This call is made when a VDU3 is received.

A=5

The selection of a new printer driver will cause this call to be
made to the printer vector. Any OSBYTE &5 call causes this call
to be made.

6.6 Econet vector, NETV &224

The Econet vector allows the Network filing system to intercept a
wide range of operating system functions. This vector is called
with a reason code in the accumulator. The conditions under
which this vector is called are:

A=0,1,2,3 and 5

These codes are used to control the net printer. These calls are
made under identical circumstances as for the user print vector
described above. The net printer is assigned the printer number 4.

A=4

OSWRCH call made. This call is indirected through the net vector
after OSBYTE &D0 has been used. The Y register contains the
value originally passed in the accumulator. If, on exit, the carry
flag is set then the output call is not performed.

123

A=6

OSRDCH call made. This call is indirected through the net vector
after OSBYTE &CF has been used. The ASCII value for a key
read should be returned in the accumulator.

A=7

OSBYTE call made. This indirection is performed after OSBYTE
&CE has been used. The OSBYTE parameters are stored in
locations &EF, &F0 and &F1. If the overflow flag is set on return
from this call then the OSBYTE call is not performed.

A=8

OSWORD call made. Circumstances as for call with A=7.

A=&0D

After completion of a line of input using OSWORD &01 this call
is made. This is implemented so that the Network filing system
doesn’t takeover the RDCH routine in the middle of line input.

6.7 VDU extension vector, VDUV &226

This vector is called when the VDU drivers are presented with an
unknown command or a known command in a non-graphics
MODE.

A VDU 23,n command with a value of n in the range 2 to 31 will
cause a call to be made to this vector with the carry flag set. The
accumulator will contain the value n.

An unrecognised PLOT command or the use of a PLOT command
in a non-graphics MODE will result in this call being made with
the carry flag clear. The accumulator will contain the PLOT
number used.

124

6.8 The keyboard vector, KEYV &228

This vector is used whenever the keyboard is being looked at.
There are four different calls made through this vector on the
Electron.

(a) Test SHIFT and CTRL keys On entry: C=0, V=0

Should exit with the N (negative) flag set if the CTRL key is
pressed and with the V (overflow) flag set if the SHIFT key is
pressed.

(b) Scan keyboard as for OSBYTE &79

On entry: C=1 , V=0 other parameters identical to OSBYTE &79

Should exit with the appropriate register values (see OSBYTE
details) but with A=X.

(c) Timer interrupt service with keys active

On entry: C=1, V=1

This entry is actually used for the bulk of all keyboard processing.
After an interrupt the actual keyboard scan is carried out during
this call. On the Electron which doesn’t use an interrupt driven
keyboard, intercepting this call to the KEYV routine and returning
it speeds up the machine enormously.

(d) Timer interrupt service with no keys active

On entry: C=0, V=1

125

6.9 The buffer maintenance vectors

This vector and the two following vectors enable the user to
intercept or use the operating system buffer maintenance routines.

The operating system uses buffers for keyboard input, RS423
input and output, the printer, the sound system (4 buffers) and the
speech system. These buffers contain data which should be
processed by the various routines. Even though the servicing
routine may not be able to respond to the request immediately the
calling routine returns (unless the buffer is full) and is able to get
on with its foreground task. While a buffer contains a queue of
data for processing, the interrupt routine (the background task)
sees to it that the relevant routines service this data.

In this way the user is able to type ahead when the machine is
unable to respond immediately and may initiate sounds which
then continue while he issues further commands.

Buffers operate on a first in first out (FIFO) basis for obvious
reasons.

The Acorn BBC range of machines use the following numbers as
buffer IDs:

title number

keyboard buffer 0
RS423 input buffer 1
RS423 output buffer 2
printer buffer 3
SOUND channel 0 buffer 4
SOUND channel 1 buffer 5
SOUND channel 2 buffer 6
SOUND channel 3 buffer 7
speech buffer 8

On the BBC microcomputer and the Electron memory is reserved
for each of these buffers even though the software/hardware using
the buffer may not be present. The buffer maintenance calls still
service these buffers but the contents will not be processed by the
relevant service routine. The expansion software/hardware will

126

use the appropriate buffer when installed. Thus when the speech
expansion is fitted on a BBC microcomputer the speech buffer is
used and on an Electron with a Plus 1 the printer buffer is used.

The following OSBYTE calls may also be of interest when
considering the buffer facilities:

description OSBYTE number

flush selected buffer class &0F (15)
flush particular buffer &15 (21)
get buffer status &80 (128)
insert value into buffer &8A (138)
get character from buffer &91 (145)
examine buffer status &98 (152)
insert value into i/p buffer &99 (153)

6.9.1 Insert value into buffer vector, INSV &22A

This vector contains the address of a routine which inserts a value
into a selected buffer.

Entry parameters:
A=value to be inserted
X=buffer id

On exit:
A and X are preserved
Y is undefined

C flag is set if insertion failed (i.e.buffer full)

6.9.2 Remove value from buffer vector, REMV &22C

This vector contains the address of a routine which removes a
value from the selected buffer. This routine may also be used to
examine the next character to be removed from a buffer without
actually removing it.

127

Entry parameters:
X=buffer ID
V= 1 (overflow flag set) if only examination requested

On exit:
A contains next byte to be removed (examination call)
(A undefined for removal call)
X is preserved
Y contains the value of the byte removed from the buffer
(Y undefined for examination call)
C flag is set if buffer empty when call made

6.9.3 Count/purge buffer vector, CNPV &22E

This vector contains the address of a routine which may be used
to clear the contents of a buffer or to return information about the
free space or contents of a buffer.

Entry parameters:
X=buffer ID
V=1 (overflow flag set) to purge buffer
V=0 (overflow flag clear) for count operation
C=1 count operation returns amount of free space
C=0 count operation returns length of buffer contents

On exit:
X and Y contain value of count (low byte, high byte)
X and Y are preserved for a purge operation
A is undefined
V and C are preserved

6.9.4 Using the buffer vectors

It should be noted that none of the buffer maintenance routines
check for valid buffer IDs. Using a buffer ID outside the assigned
range will have undefined effects unless specifically intercepted.

None of these vectors are implemented on second processors and
so none of the buffer maintenance calls are sent across the Tube.
Calls using the buffer vectors should always be made by code

128

resident in the I/O processor. It should be noted that considerable
manipulation of the buffers may be carried out using OS routines
such as OSBYTE, OSWRCH, OSWORD etc. which may affect
buffer contents either directly or indirectly. Routines intercepting
these vectors must always be resident on the I/O processor, ideally
in service type paged ROMs.

The program below illustrates how the buffer vectors can be
intercepted to implement a much larger printer buffer. The
standard printer buffer is less than &100 bytes long and since
printers as a rule tend to be quite sluggish peripherals this buffer
rapidly fills up. A buffer is required which will hold a reasonable
sized listing, or a document before filling up and refusing to
accept further input. Having placed the item for printing in an
enlarged buffer the user may return to word processing or
programming leaving the operating system to get on with the
printing.

The routine used below creates a buffer of variable size as defined
by the variable ‘size’. The usefulness of this program is limited.
For the reasons given above it will only work when run on a non-
Tube mahine. It will only work as long as its code is not
corrupted; this means that renumbering the program after it has
been run will crash the machine as BASIC tramples all over the
area originally reserved for the assembled code. Similarly another
language ROM is unlikely to allow the routine to run in peace. If
this routine becomes corrupted the machine is totally disabled
because each time a key is pressed this routine is called.
Experimenting with this example will provide valuable experience
in the use of critical operating system routines. One note of
warning however, be sure to save a copy of the program before
trying to run it; it is quite possible for the program to corrupt itself
or even crash the machine irrevocably so that a power on reset is
required (that is, the machine will have to be turned off, then on
again).

This program consists of three main routines which intercept the
buffer maintenance calls for the printer buffer. Calls for any of the
other buffers are carefully handed on to the original routines
pointed to by the contents of the buffer vectors. An area of RAM
is reserved for use as a buffer by using a DIM statement. Four
bytes of zero page memory are used to house two 16 bit pointers.

129

One pointer is used as an index for the insertion of values into the
buffer and the other pointer is used as an index for the removal of
bytes. When a pointer reaches the end of the buffer it is pointed to
the beginning again, In this way the two pointers cycle through
the buffer space. A full buffer is detected by incrementing the
input pointer and comparing it to the output pointer. If the two
pointers are equal the buffer is full, the character cannot be
inserted; the input pointer is restored. If after the removal of a
character the output pointer becomes equal to the input pointer
then the buffer is now empty. By using this system the full size of
the buffer is always available to contain data.

 10 REM user printer buffer routine
 20 MODE7
 30 size=&2000
 40 DIM buffer size
 50 DIM code% &400
 60 INSV=&22A
 70 RMV=&22C
 80 CNPV=&22E
 90 ptrblk=&80: !ptrblk=buffer+buffer*&10000
 100 ip_ptr=ptrblk:op_ptr=ptrblk+2
 110 FOR I=0 TO 3 STEP 3
 120 P%=code%
 130 [
 140 OPT I
 150 .init LDA INSV \ make copies of old vector
 160 STA ret1 \ contents to pass on calls
 170 LDA INSV+1
 180 STA ret1+1
 190 LDA RMV
 200 STA ret2
 210 LDA RMV+1
 220 STA ret2+1
 230 LDA CNPV
 240 STA ret3
 250 LDA CNPV+1
 260 STA ret3+1
 270 LDX #ins AND &FF \ store address of new
 280 LDY #ins DIV &100 \ routines in vectors
 290 SEI \ disable interrupts
 300 STX INSV
 310 STY INSV+1
 320 LDX #rem AND &FF
 330 LDY #rem DIV &100
 340 STX RMV
 350 STY RMV+1
 360 LDX #cnp AND &FF

130

 370 LDY #cnp DI V &100
 380 STX CNPV
 390 STY CNPV+1
 400 CLI \ enabl e i nt er r upt s
 410 RTS \ f i ni shed
 420 . wr kbt EQUB 0 \ byt e of RAM wor kspace
 430 . r et 1 EQUW 0 \ r eser ve space f or vect or s
 440 . r et 2 EQUW 0
 450 . r et 3 EQUW 0
 460 . wr ngbf 1 PLP: PLA: JMP (r et 1) \ r est or e S & A, cal l OS
 470 \ New i nser t char . i nt o buf f er r out i ne
 480 . i ns PHA: PHP \ save A and st at us r egi st er
 490 CPX #3 \ i s buf f er i d 3 ?
 500 BNE wr ngbf 1 \ i f not pass t o ol d r out i ne
 510 PLP \ not passi ng on, t i dy st ack
 520 LDA i p_pt r \ A=l o byt e of i nput poi nt er
 530 PHA \ st or e on st ack
 540 LDA i p_pt r +1 \ A=hi byt e of i nput poi nt er
 550 PHA \ st or e on st ack
 560 LDY #0 \ Y=0 so i p_pt r i ncr ement ed
 570 JSR i nc_pt r \ by t he i nc_pt r r out i ne
 580 JSR compar e \ compar e t he t wo poi nt er s
 590 BEQ i nsf ai l \ i f pt r s equal , buf f er f ul l
 600 PLA: PLA: PLA \ don' t need i p_pt r copy now
 610 STA (i p_pt r) , Y \ A of f s t ack, i nsr t i n buf r
 620 CLC \ i nser t i on success, C=0
 630 RTS \ f i ni shed
 640 . i nsf ai l PLA \ buf f er was f ul l so must
 650 STA i p_pt r +1 \ r est or e i p_pt r whi ch was
 660 PLA \ st or ed on t he st ack
 670 STA i p_pt r
 680 PLA
 690 SEC \ i nser t i on f ai l es so C=a
 700 RTS \ f i ni shed
 710 . wr ngbf 2 PLP: JMP (r et 2) \ r est or e 5, cal l OS
 720 \ New r emove char . f r om buf f er r out i ne
 730 . r em PHP \ save st at us r egi st er
 740 CPX #3 \ i s buf f er i d 3 ?
 750 BNE wr ngbf 2 \ i f not use OS r out i ne
 760 PLP \ r est or e st at us r egi st er
 770 BVS exami ne \ V=1, exami ne not r emove
 780 . r emsr JSR compar e \ compar e i / p and o/ p pt r s
 790 BEQ empt y \ i f t he same, buf f er empt y
 800 LDY #2 \ Y=2 so t hat i ncr ement pt r
 810 JSR i nc_pt r \ r out i ne i nc ' s op_pt r
 820 LDY #0 \ Y=0, f or next i nst r uct i on
 830 LDA (op_pt r) , Y \ f et ch char act er f r om buf r
 840 TAY \ r et ur n i t i n Y
 850 CLC \ buf f er not empt y, C=0
 860 RTS \ r et ur n

131

 870 .empty SEC \ buffer empty, C=a
 880 RTS \ return
 890 .examine LDA op_ptr \ examine only, so store a
 900 PHA \ copy of the oip pointer
 910 LDA op_ptr+1 \ on the stack to restore
 920 PHA \ ptr after fetch
 930 JSR remsr \ fetch byte from buffer
 940 PLA \ restore ptr from stack
 950 STA op_ptr+1 \ (if buffer was empty
 960 PLA \ C=1 from fetch call)
 970 STA op_ptr
 980 TYA \ examine requires ch, in A
 990 RTS \ finished
1000 .wrngbf3 PLP:JMP (ret3) \ restore 5, call OS
1010 \ New count/purge buffer routine
1020 .cnp PHP \ save status reg. on stack
1030 CPX #3 \ is buffer id 3 ?
1040 BNE wrngbf3 \ if not pass toold subr
1050 PLP \ restore status register
1060 PHP \ save again
1070 BVS purge \ if V=1, purge required
1080 BCC len \ if C=0, amount in buffer
1090 LDA ip_ptr \ o/w free space request
1100 PHA
1110 LDA ip_ptr+1 \ store ip_ptr on stack
1120 PHA
1130 LDX #0 \ X=0 for use as counter
1140 STX wrkbt \ wrkbt=0 for hi counter
1150 LDY #0 \ Y=0, so ip_ptr incr'd
1160 .loop1 JSR inc_ptr \ increment ip_ptr
1170 JSR compare \ does it equalop_ptr
1180 BEQ finshdl \ if so count~free space
1190 INX \ X=X+1
1200 BNE no_inc \ if X=0 don't inc wrkbt
1210 INC wrkbt \ hi byte of count inc'd
1220 .no_inc JMP loop1 \ loop round again
1230 .finshdl PLA \ restore ip_ptr off stack
1240 STA ip_ptr+1
1250 PLA
1260 STA ip_ptr
1270 LDY wrkbt \ Y=hi byte of free space
1280 PLP \ restore status register
1290 RTS \ finished
1300 .len LDA op_ptr \ store op_ptr on stack
1310 PHA
1320 LDA op_ptr+1
1330 PHA
1340 LDX #0 \ X=0 for use as counter
1350 STX wrkbt \ wrkbt=0 hi byte of count
1360 LDY #2 \ Y=2 so op_ptr incremented
1370 .loop2 JSR compare \ are ptrs equal ?

132

1380 BEQ finshd2 \ if so buffer empty
1390 JSR inc_ptr \ increment op_ptr
1400 INX \ increment count
1410 BNE no_inc2 \ if X=0 then increment hi
1420 INC wrkbt \ byte of count
1430 .no_inc2 JMP loop2 \ loop round again
1440 .finshd2 PLA \ restore op_ptr off stack
1450 STA op_ptr+1
1460 PLA
1470 STA op_ptr
1480 LDY wrkbt \ Y=hi byte of length
1490 PLP \ restore status register
1500 RTS \ finished
1510 .purge LDA #buffer AND &FF \ to purge buffer reset
1520 STA ip_ptr \ oip and i/p ptrs to
1530 STA op_ptr \ start of buffer
1540 LDA #buffer DIV &100
1550 STA ip_ptr+1
1560 STA op_ptr+1
1570 PLP \ restore status register
1580 RTS \ return
1590 \ Increment pointer routine. Y=0 op_ptr, Y=2 ip_ptr
1600 .inc_ptr CLC \ C=0
1610 LDA ptrblk,Y \ A=?(ptrblk+Y)
1620 ADC #1 \ A=A+1+C
1630 STA ptrblk,Y \ ?(ptrblk+Y)=A
1640 LDA ptrblk+1,Y \ A=?(ptrblk+1+Y)
1650 ADC #0 \ A=A+0+C
1660 STA ptrblk+1,Y \ ?(ptrblk+1+Y)=A
1670 CMP #(buffer+size) DIV &100 \ hi byte end of bufr
1680 BNE home \ not end of buffer
1690 LDA ptrblk,Y \ A=low byte of pointer
1700 CMP #(buffer+size) AND &FF \ end of buffer ?
1710 BNE home
1720 LDA #buffer AND &FF \ if the end of buffer has
1730 STA ptrblk,Y \ been reached set pointer
1740 LDA #buffer DIV &100 \ to the beginning again
1750 STA ptrblk+1,Y
1760 .home RTS \ return
1770 \ Compare pointers, if equal Z=1 don't care otherwise
1780 .compare LDA ip_ptr+1
1790 CMP op_ptr+1 \ compare ptr high bytes
1800 BNE return \ if not equal return
1810 LDA ip_ptr
1820 CMP op_ptr \ compare pointr low bytes
1830 .return RTS \ return
1840]
1850 NEXT
1860 CALL init

133

This program requires the presence of the Plus 1 expansion to be
of any use. It could however be modified to replace any of the
operating system' s buffers. A paged ROM version of this program
can be found in chapter 10.

6.10 Unused vectors, IND1V IND2V & IND3V &230

These vectors are reserved by Acorn for future expansion.
Software which uses these vectors cannot be guaranteed to be
compatible with any future versions of operating system software
or other Acorn products.

6.11 The default vector table

The BBC microcomputer operating system (version 1.2 onwards)
and the Electron operating system contain a table of default values
in a block of data. This may be accessed using the following
addresses:

&FFB6 − contains the length of the data in bytes
&FFB7 − contains the low byte of the data’s address
&FFB8 − contains the high byte of the data’s address

134

