
5 Filing System Calls
Any filing system implemented on the Electron offers its facilities
by intercepting the standard OS filing system calls. The tape and
*ROM filing system code is contained within the operating
system ROM. Other filing system software may be implemented
in service type paged ROMs. The currently selected filing system
must place pointers to relevent routines in the vectors provided for
this purpose in page two of memory.

The description of the filing system calls given in this chapter
covers a general filing system. The actual implementation will
differ slightly between filing systems depending on the suitability
of certain calls to their filing system medium.

The filing system calls are:

name call address indirection vector

OSFILE &FFDD &212
OSARGS &FFDA &214
OSBGET &FFD7 &216
OSBPUT &FFD4 &218
OSGBPB &FFD1 &21A
OSFIND &FFCE &21C
OSFSC n/a &21E

Each of these calls should respond in an appropriate and relevant
manner as described in the sections below. Even though the nature
of certain filing system’s hardware implementation may appear to
vary widely, the user is presented with a standard filing system
interface wherever possible. Software can be written which
functions identically using a number of different filing systems.
Where both X and Y are used to point to a parameter block. X
holds the low byte and Y holds the high byte of the address.

94

5.2 OSFILE Read/write entire file or its attributes

Call address &FFDD Indirected through &212

This routine is used to manipulate an entire file. The precise
function perfomed by this routine depends on the value in the
accumulator. This call can be used to load a file into memory, save
a file from memory, delete a file and re-write the file’s attributes
(e.g. load address, execution address, name etc.). Any information
required by the routine to perform its task should be placed in
memory. The address of this information should then be passed to
the routine in the X and Y registers.

Entry parameters:
A contains a value indicating what action is required
X+Y contain the address of a parameter block

The format of the information placed in the parameter block
addressed by X and Y is as follows:

&00 - &01 Address of file name

&02 - &05 Load address of file

&06 - &09 Execution address of file

&0A - &0D Start address of data (write operations) or
Length of file (read operations)

&0E - &11 End address of data (read/write operations) or
File attributes (write attributes operation)

The file name should be stored in another part of memory (not
sideways ROMs) and be terminated by a carriage return character
(&0D) or a space (&20). The least significant byte of the address
should be stored in the first of the two bytes. All other parameters
are stored in the same order, least significant byte stored first.

95

The file attributes when required should be provided in the last
four bytes of the parameter block. The least significant 8 bits (i.e.
the first byte) have the following meanings:

Bit Meaning if set

0 not readable by you
1 not writable by you
2 not executable by you
3 not deletable by you
4 not readable by others
5 not writable by others
6 not executable by others
7 not deletable by others

The term you here means the originator of the call and the term
others means other users of a network filing system.

The action.codes passed to OSFILE in the accumulator have the
following effects:

A=0

Save a section of memory as a named file using the information
supplied in the parameter block.

A=1

Re-write the catalogue information of an existing file using the
information provided in the parameter block. i.e. load and
execution addresses.

A=2

Re-write the load address (only) of an existing file identified by
the name passed in the parameter block.

A=3

Re-write the execution address (only) of an existing file
identified by the name passed in the parameter block.

96

A=4

Re-write the file attributes (only) of an existing file identified by
the name passed in the parameter block.

A=5

Read the named file’s catalogue entry and return the file type in
the accumulator. These are as follows:

0 returned in A Nothing found
1 returned in A File found
2 returned in A Directory found

A=6

Delete the named file.

A=7

Create a file with a catalogue entry representing the parameter
block information but instead of transfering any data pad with null
characters.

A=&FF

Load the named file into memory. If the first byte of the execution
address field of the parameter block is zero then load to the load
address given in the parameter block. If the first byte of the
execution address is non-zero then use the file’s own load address.

During this call if an error occurs a BRK instruction will be
executed which may be trapped if required. During this call
interrupts may be enabled but the interrupt status is preserved.

On exit:
A contains the file type
X and Y are preserved
C, N, V and Z are undefined
Information may be written to the parameter block
addressed by X+Y.

97

5.2 OSARGS Read/wr ite open file’s attr ibutes
Return current filing system

Call address &FFDA Indirected through &214

This routine is used to manipulate files which are being used for
random access. Files used in this way have to be opened using the
OSFIND call. When data is being written to or read from the file
OSBPUT, OSBGET and OSGBPB can be used but this call
should be used to move the sequential pointer used by these calls
when data is not transferred. This call is the only way of moving
the sequential pointer backwards through a file. OSARGS may
also be used to force an update of files onto the medium in use i.e.
ensuring that the latest copy of the memory buffer is saved. A
number of other functions are performed by this call as detailed
below.

Entry parameters:
A contains a value determining the call’s actions
X contains a zero page address of a parameter block
Y contains the file handle (see OSFIND) or zero

The parameter block in zero page should be in the user’s
allocation of zero page. A block of four bytes is required, this will
contain the value of the sequential file pointer for read operations
or should be set up with a value prior to the call for a write
operation. It should be noted that because filing systems should
not be languages and so are not copied across to a second
processor this parameter block will always exist in the I/O
processor even when a Tube is active. If called from the second
processor, the parameter block will be copied across into the I/O
processor before the filing system is called.

Interrupts may be enabled during a call but the interrupt status
will be preserved.

If Y=0 and A=0 then return the current filing system in A.

value returned filing system
0 no current filing system
1 1200 baud cassette

98

2 300 baud cassette
3 ROM filing system
4 Disc filing system
5 Econet filing system
6 Telesoftware filing system
7 IEEE filing system
8 ADFS
9 Reserved
10 Acacia RAM filing system

If Y=0 and A=1 then return the address in the I/O processor of the
rest of the command line will be returned in the two least
significant bytes of the zero page parameter block. This enables
software to access the parameters passed with ‘ * ‘ commands.

If Y=0 and A=&FF then update all files onto the filing system
medium; this ensures that the medium has the latest copy of the
buffers.

If Y is non-zero then the value in Y is assumed to be a file handle
(see OSFIND). The value passed in A determines the action on the
open file specified by Y

A=0

Read sequential file pointer (written to the zero page parameter
block). This pointer is the same as that used by BASIC called
PTR#.

A=1

Write sequential file pointer.

A=2

Read length of sequential file. This value is the same as that
returned by EXT# in BASIC.

99

A=3

Write length of sequential file. This call is not implemented in all
filing systems but where implemented may be used either to
truncate a file or to extend it (in which case it will be padded with
zeroes).

A= &FF

Update this file onto the filing system medium.

On exit:
A is preserved except on a call with A=0 and Y=0
X and Y are preserved

C, N, V and Z are undefined

5.3 OSBGET Get a single byte from an open file

Call address &FFD7 Indirected through &216

This routine returns the value of a byte read from a file opened for
random access. The file should have been previously opened
using OSFIND, The file handle required by this call will have
been provided from this OSFIND call.

Entry parameters:
Y contains file handle

A byte is read from that point in the file determined by the
sequential file pointer. During each call of OSB GET the
sequential file pointer is incremented by one. Thus successive
OSBGET calls can be used to read bytes from the file
sequentially. This pointer may be read or written using the
OSARGS call thus enabling the use of random access.

Interrupts may be enabled during a call but the interrupt status
will be preserved.

100

A is returned containing the value of the byte read

On exit:
X and Y are preserved
C=1 if the end of file was reached i.e. invalid call, in
which case A=&FE.

N, V and Z are undefined

5.4 OSBPUT Write a single byte to an open file

Call address &FFD4 Indirected through &218

This call is the complement to the OSBGET call described above.
A file handle should be provided from a prior OSFIND call and
the sequential file pointer is used to locate the point in the file
where the byte is written.

Entry parameters:
A contains the byte to be written to the file.
Y contains the file handle.

During the call a byte will be written to the file and the sequential
pointer will be incremented. If the sequential file pointer reaches
the end of the file the file will be extended to accommodate any
new data written where possible.

Interrupts may be enabled during a call but the interrupt status
will be preserved over a call.

On exit:
A, X and Y are preserved

C, N, V and Z are undefined

101

5.5 OSGBPB Read/write a group of bytes to/from an open
file

Call address &FFD1 Indirected through &21A

This routine enables the transfer of a group of bytes to or from an
open file. This routine is implemented particularly for filing
systems which have a high time overhead associated with each
data transfer e.g. the Econet.

Entry parameters:
A contains a value which determines the action performed
X+Y contain a pointer to a parameter block in memory

The parameter block should contain information in the following
format:

&00 file handle

&01 - &04 address of data for transfer

&05 - &08 number of bytes to transfer

&09 - &0C sequential file pointer to be used

The bytes in each parameter should be placed least significant
byte first.

The address should include a high order address (see OSBYTE
&82) to indicate if the data is in an i/o processor or a second
processor.

The sequential file pointer passed in the parameter block will only
replace the old value of this pointer when appropriate.

The action codes passed to the routine will have the following
effects:

102

A=1

Write a group of bytes to the open file. The sequential pointer
given will indicate the point in the file where these bytes are put
and this pointer will be incremented by the number of bytes
written.

A=2

Write a group of bytes to the open file without using the
sequential file pointer value given in the parameter block. The
existing value of the pointer will mark the point in the file where
these bytes are put and the pointer will then be incremented by the
number of bytes written.

A=3

Read a group of bytes from an open file. The sequential pointer
given in the parameter block will indicate where the bytes should
be read from within the file. The pointer will then be incremented
by the number of bytes read.

A=4

Read a group of bytes from an open file disregarding the
sequential file pointer value given in the parameter block. The
existing pointer value will be used and subsequently incremented
by the number of bytes read.

A=5

Return the title associated with the currently active medium and
return boot/startup attribute, This information is written to the
address pointed at by the X andY registers. The format of the data
is:

&00 n, the length of the title string

&01 - n + 1 the title string, ASCII characters

n+2 value indicating boot/start up options

The start up information is filing system dependent.

103

A=6

Return the currently selected directory and device identity. Two
items of data are written to the parameter block. The format of the
data is:

&00 n, the length of the directory name

&01 - n+1 directory name, ASCII string

n + 2 m, the length of the device identity

n + 3 - n + m + 3 the device identity

A=7

Read the currently selected library, and device, The data format is
the same as that used for A=6.

A=8

This call is used to read file names from the current directory. The
parameter block should be set up so that the number of file names
to transfer is placed in the ‘No. of bytes to transfer’ field, For the
first call the ‘sequential file pointer’ field should be set to zero.
The sequential file pointer is incremented each time this call is
made so that it points to the next file name for transfer.

The data is transferred to the specified address in the form of a list
of file names. Each file name takes the form of an ASCII string
preceded by a single byte value indicating the length of the string.
The number of filenames in this list is determined by the value
passed in the parameter block unless the end of the directory is
reached.

This call also returns a cycle number in the ‘file handle’ field of
the parameter block. This cycle number represents the number of
times the current catalogue has been written to.

104

Exit conditions:
A, X and Y are preserved
N, V and Z are undefined
C=1 if the transfer could not be completed

In the event of a transfer not being completed the parameter block
contains the following information:

(a) the number of bytes or names not transferred in the ‘number of
bytes to transfer’ field

(b) the ‘address’ field contains the next location of memory due
for transfer

(c) the ‘sequential pointer’ field contains the sequential file
pointer value indicating the next byte in the file due for transfer

5.6 OSFIND Open or close file for random access

Call address &FFCE Indirected through &21C

This call is used to allocate a file handle for subsequent use by
OSARGS, OSBGET, OSBPUT and OSGBPB. This call should
also be used to close a file when no further access is required. In
this instance the file handle is released for re-allocation and the
file medium is updated from the buffers in memory.

The file handle is a single byte value which uniquely identifies an
open file. This provides a less cumbersome method of addressing
the file in question than using the filename each time. The number
of files which can be open at any one time is filing system
dependent. The actual range of handle values allocated by each
filing system is different. The ranges which have been allocated
by Acorn are listed under OSFSC with A=&07.

105

Entry parameters

(a) To open a file

The accumulator contains a code indicating the type of access for
which the file should be opened:

A=&40 input only
A=&80 output only (i.e. will attempt to delete file first)
A=&C0 input and output

X and Y contain the address of a file name string (low byte, high
byte). The filename string should be terminated by a carriage
return character (&0D).

The accumulator will be returned containing the file handle
which has been allocated or zero if the file could not be opened.
Note that if the filename is syntactically bad, or involves a non-
existent directory, a BRK ‘Not found’ error may occur.

(b) To close a file

A=0 Y contains the handle of the file to be closed or Y=0 to
close all currently open files.

On exit:
A returns file handle on opening otherwise preserved
X and Y are preserved

C, N, V and Z are preserved
Interrupts may be enabled during call, status preserved

5.7 OSFSC Miscellaneous filing system control

No OS call address Indirected through &21E

This vector contains an entry point into the current filing system
which may be used to invoke a number of miscellaneous filing
system functions. Because there is no direct call address this call
can only be made from within an I/O processor and is not

106

available for code running on a second processor. However many
of the facilities are indirectly available via other OS calls which
subsequently make calls through this vector.

Entry parameters:

The accumulator contains an action code determining which
control function is performed.

A=0 *OPT command

The operating system makes this call in response to ‘*OPT’ being
submitted to the command line interpreter or in response to
OSBYTE &8B. X andY contain the parameters passed with the
‘*OPT’ command.

A=1 Check for end of file (EOF)

This call is made by the operating system in response to OSBYTE
&7F. The call is entered with a file handle value in the X register.
The X register should be returned containing the value &FF if an
EOF condition exists, otherwise it should be returned containing
zero.

A=2 ‘*/’ command

The filing system should attempt to *RUN the file whose name
follows the ‘/’ character. The operating system command line
interpreter will make this call in response to a command begining
‘*/’. The X andY registers contain the address of the file name
string (not including the ‘*/’ characters).

A=3 Unrecognised *command

The operating system issues this call when an unrecognised
command has been submitted to the command line interpreter.
This call is made after the ‘unrecognised *command’ paged ROM
service call has been made (see paged ROMs section 10.1). The
command name string is addressed by the X and Y registers.

107

Filing systems will respond to this call by attempting to *RUN the
file having the command name. The idea behind this is to
enablethe implementation of command like utilities which are
stored on the filing system media. However in the case of a filing
system being unable to execute the file without delay the filing
system should respond to this call with a ‘Bad Command’
message instead.

A=4 *RUN attempted

The operating system passes on the file name given with a *RUN
command to the current filing system using this call. The X and Y
registers contain the address of the file name string, The filing
system should then load and execute the code in this file.

A=5 *CAT attempted

This call is made by the operating system in response to a *CAT
command. The X and Y registers contain the address of the rest of
the command string where any parameters required by the routine
may be found.

A=6 New filing system selected

This call is issued when the current filing system is being
changed. The deselected filing system should respond by closing
any *SPOOL or *EXEC files using OSBYTE &77 and prepare
itself for the handover.

A=7 Return handle range

This call may be made to determine the range of values allocated
as file handles by the currently selected filing system. Below is a
list of the handle ranges that have been allocated by Acorn.

filing sysem handle range, inclusive

Tape filing system 1 (&01) 2 (&02)
*ROM filing system 3 (&03) 3 (&03)
Teletext filing system 14 (&0E) 15 (&0F)
Disc filing system 17 (&12) 21 (&15)
Network filing system 32 (&20) 39 (&29)

108

Winchester DFS 48 (&30) 57 (&39)
reserved values 64 (&40) 71 (&49)
Acacia RAM filing system 96 (&60) 101 (&65)
IEEE filing system 240 (&F0) 255 (&FF)

The X register is returned with the lowest value which may be
allocated as a file handle and the Y register returned with the
highest value used.

A=8 OS *command about to be processed

The operating system makes this call prior to executing a
*command. Acorn DFS uses this call to implement the
‘*ENABLE’ protection mechanism. This call may also be used by
filing systems to output extra messages e.g. ‘Compaction
recommended’ when free space has become highly fragmented on
a disc.

On exit:
Registers returned as described above
Otherwise registers undefined
Status flags undefined
Interrupts may be enabled, status preserved

109

