
11 Variables and
express ions
What is a variable?
A variable is a piece of memory which is given a name, l ike Fred or
Number or X or Y or vi rtual l y anything you want, and thi s memory is set
aside for storing information. I t is rather l ike a box where you and the
computer can put useful i tems of information unti l they are needed at a
later stage. All the computer has to be told is what the box is cal led, and
what kind of information i t can expect to f ind inside. Not only that, but
the contents of a box can be changed at any time; so the computer can go
to the box to store information, retrieve i t, use i t, change i t, then put i t
back inside again as many times as you instruct the computer to do so.

There are three types of ‘boxes’ or variables which the computer can use,
and these are used to store three types of information. Brief l y, these are:

− A ‘ real ’ variable, which can store numbers or f ractions, eg 123.654.
− An ‘ integer’ variable, which can store only whole numbers, eg 123.
− A ‘ string’ variable, which can store ‘ strings’ of characters such as

words.

Each type is distinguished by the last character of the variable name. A
name by i tsel f , l ike BERT, signi f ies a real variable, BERT% an integer
variable and BERT$ a string variable.

Real variables
Press BREAK and type the fol lowing program (the l ine numbers are
show, but you wi l l not need to type them i f you are using AUTO).

>10 PRINT 3+2,3-2,3*2,3/2
>20 A=3
>30 B=2
>40 PRINT A+B,A-B,A*B,A/B

I f you run this program you wi l l see the numbers

5 1 6 1.5
5 1 6 1.5

are pri nted on the screen. The f i rst row shows the resul ts of the
calculations performed by the PRINT i nstruction. The second row again
shows the resul ts, except that thi s was arri ved at by l ines 20 to 40 which
use real variables.

L ine 20 tel ls the computer that there is a variable in the program cal led
A, and sets the current value to 3.

L ine 30 tel ls the computer that there is another variable cal led B, and i ts
current value is 2. Now that the computer is aware of these two variables,
you can tel l i t to use them in calculations. Thus in l ine 40, the computer
looks for the number stored in each variable, performs the necessary
calculations, and the PRINT i nstruction pri nts the resul ts on the screen
just l ike i t did for l ine 10.

Operators and expressions

Things l ike 3 + 2, A*B, (FRED − 4)*B are cal led expressions. In general ,
an expression is a sequence of numbers and variables together wi th
mathemati cal symbols l ike +, * , /. These symbols, which are cal led the
‘ ari thmetic operators’, have thei r normal mathemati cal meaning, except
that in BASIC, * is used for ‘ multiply’ and / for ‘ divide’.

Here is a l ist of the ari thmeti c symbols or ‘ operators’ used in Electron
BASIC:

+ Addi tion
− subtracti on
* mul tipl i cation
/ division
ˆ raise to the power
. decimal point

For a description of operator precedence, see chapter 12.

Variables and expressions 45

Rules for variable names
The rules for variable names are:

- There must be no spaces in the name.
- The name must start with a letter
- There must be no punctuation marks in the name and no arithmetic

operators. Underline characters may be used.
- The name must not begin with a BASIC keyword (such as LIST or

RUN).

All the following names are acceptable:

X = 6.6

SMALL = -30

small = -60

Xy = 4*3

height6 = 5/11

William1 = 1066

space_rocket_speed = 25.000

Note that capital and small letters are regarded as different by Electron
BASIC, so that SMALL and small are two different variables. Underlines
take the place of spaces, which are not allowed.

The following are not acceptable:

6teen = 16 (begins with a number)

TOTAL = 77 (begins with TO)

see-seaw = 16 (contains a minus sign)

LOW LINE = 3.3333 (contains a space)

How! = 1 (contains punctuation mark)

46 Variables and expressions

A variable does not have to be specified in terms of numbers; it may be
specified in terms of other variables, or a mixture of variables and
numbers. A statement of the form ‘variable = expression’ is called an
assignment statement: it assigns the value of the expression to the
variable. For example:

X = Y

Monday = Tomorrow

AGE = HEIGHT - 100

TALL = TALL + 1

The last assignment of this group is very common. It has the effect of
increasing the value of the variable TALL by 1. It is read as ‘Add 1 to the
number contained in TALL, and store it in TALL again’.

Integer variables
The variables described so far in this chapter are called real variables.
This means that they can represent both whole numbers (integers) and
decimal fractions. There are variables called integer variables which can
be used on the Electron, and these are used for storing only whole
numbers. They are signified by the % symbol after the variable name. For
example,

SCORE% = 20

Hour% = 3600

Z% = -747

A% to Z%
The 26 integer variables A% to Z% are called resident integer variables,
because they are not cleared when the program is RUN, or when NEW or
BREAK is used. This means that values can be passed from one program
to another. They also have special uses when you come to look a t
Assembly Language programming (see chapter 29).

Variables and expressions 47

Real versus integer variables
The reasons for using integer variables are:

- They occupy slightly less memory than do real variables.
- They are absolutely accurate provided you do not let them get out of

range. Real variables are only accurate to nine figures.
- They are much quicker for the computer to process and carry out

arithmetic functions.

However:

- Decimal fractions can only be stored in real variables.
- Much larger and much smaller numbers can be stored in real

variables. Real numbers can have values up to approximately
170,000,000,000,000,000,000,000,000,000,000,000,000 or 1.7 x 1038

(though they are only accurate to the first nine numbers or nine
significant figures).

The range and accuracy of real and integer variables are shown in the
following table:

Integer Real
Example 64 1.732
Typical variables A% A
Maximum size 2,147,483,647 1.7 xx 1038

Accuracy absolute 9 sig figs
Stored in 32 bits 40 bits

DIV and MOD
There are two special arithmetic operators which give integer results.
These are called DIV and MOD.

DIV is an integer division function. It gives the whole number part of a
division, for example 9 DIV 2 is 4, 10.5 DIV 3 is 3.

When decimal numbers are used, such as in the second example above,
the computer truncates the number (meaning that it ignores the decimal
part) before it carries out the division: 8.1 DIV 2.9 is 4.

MOD stands for modulo, and is used to give the remainder after an
integer division. For example: 9 MOD 2 is 1, 17 MOD 7 is 3.

48 Variables and expressions

Once again, decimal numbers are truncated before the division takes
place. For example: 16.1 MOD 3.8 is 1.

The TIME integer variable
There is also a special integer variable, resident in the computer, which is
called TIME. TIME is an elapsed-time clock: it ticks away in hundredths
of a second. Every 1/100 of a second its value is increased by 1, and it is
used for timing programs.

10 T%=TIME
20 PRINT TIME -T%

will print the time taken to execute one line of program, in hundredths of
a second.

TIME may be assigned a starting value, or it can be zeroed, just as any
other variable:

TIME=0

TIME runs continually for as long as the computer remains switched on.
You will understand better how to use it when you look at some of the
programs later in the book.

String variables
You have seen that a variable is a name which can be assigned a value
either directly or by an assignment statement. The computer will store
this value in its memory as a binary number - a series of zeroes and ones.
Characters are also stored in the computer as binary numbers, and each
character has a code. This code is called ASCII, standing for ‘American
Standard Code for Information Interchange’. If you look at Appendix F,
you will see a table of ASCII codes showing all the letters, symbols, and
numbers each with their corresponding ASCII code number.

When you use the PRINT instruction to put a message on the screen, as
for example:

PRINT "ASCII"

Variables and expressions 49

the quotation marks each side of the message tell the computer that what
is in between them is a string of characters and not a variable. So each of
the characters in the message ‘ASCII’ is stored as a binary number,
corresponding to 65, 83, 67, 73, 73 in decimal, as you can see from the
ASCII chart in Appendix F.

There are special variables, called string variables, which hold characters
as opposed to numbers. String variables are signified by a $ sign after the
variable name. So we can say:

A$="ACORN"
fish$ = "TWO COD"
Birthday$ = "Monday 23rd August"

It is very important for you to understand how this last assignment is
stored. Notice that the string contains a number, 23. Because of the
quotation marks this number is not stored as 23 in binary, but as the
ASCII code for 2 followed by the ASCII code for 3. This knowledge is very
useful when you come to manipulate strings using their code values.

For example:

PRINT "23"

and

PRINT 23

both have the same effect.

But

PRINT "23*6"

and

PRINT 23 * 6

show the different ways in which numbers and strings are stored. As you
can see from the ASCII table in Appendix F, every number has its own
ASCII code.

You can use the computer to find out the ASCII code of a character.

50 Variables and expressions

PRINT ASC "Q"

will give the ASCII value of Q which is 81.

The opposite function is given by

PRINT CHR$ 81

which converts the ASCII code 81 into its corresponding character which
is Q.

Even a space has an ASCII code.

PRINT ASC " "

gives 32.

And nothing at all (an empty string):

PRINT ASC ""

gives −1. This is not an ASCII value, but is conveniently different from all
the others as to be easily distinguishable.

The instruction

PRINT CHR$ 81

has an equivalent which is easier to type:

VDU 81

is identical, so

VDU 81

gives the letter Q.

Commands operating on strings
LEN
String variables may be up to 255 characters long, and there is an
instruction LEN, which gives the length of a string − the number of
characters it contains.

Variables and expressions 51

PRI NT L EN “ ABCDEF”

will print 6 on the screen.

Similarly,

A$ = “ S O S”
PRI NT L EN A$

will print 5 (because a space is a character).

Linking strings
Two or more strings may be linked together by using the ‘+’ operator,
which apart from its arithmetic use, can simply link strings. The
following program is an example of this.

1 0 AS = " I ‘ M"
2 0 B$ = " L EARNI NG"
3 0 C$ = " BASI C"
4 B D£ = A$ + B$ + CS
5 0 PRI NT D$
> RUN
I ’ ML EARNI NGBASI C

LEFT$, RIGHT$, MID$
Not surprisingly, if the computer can link strings it can also disassemble
a string to make smaller ones, using LEFT$, RIGHT$, and MIDS.

1 0 A$ = " I NEQUI TABL E”
2 0 B$ = L EFT$ (A$, 2)
3 0 CS = RI GHT$ (A$, 5)
4 0 D$ = MI D$ (A$, 3 , 4)
5 0 PRI NT B$
6 0 PRI NT CS
7 0 PRI NT D$
> RUN
I N
TABL E
EQUI

52 Variables and expressions

Notice how the three functions LEFT$, RIGHT$, and MID$ are used:

LEFT$ (A$,2) copies the first two characters of string A$. In the
program, these two characters are copied into B$.

RIGHTS (A$,5) copies the last five characters of string A$.

MID$ (A$,3,4) copies four characters from string A$, beginning at the
third character from the left.

VAL, EVAL, STR$
There are three more string operating functions which convert to or from
numbers: VAL, EVAL, and STR$.

10 X$ = "57/7 * SIN.6"
20 PRINT VAL X$
30 PRINT EVAL X$

When you run this program, VAL X$ gives the number with which the
string X$ begins, in this case 57. If the string does not begin with a
number then VAL returns the value 0.

EVAL X$ evaluates the string as if it were a numeric function, giving in
this case 4.5978W3. EVAL will also evaluate variables in strings,
provided these variables have been assigned earlier in the program.

Sometimes you need to turn a number into a string, and this is done by
using the instruction STR$.

10 A=45 : B= 38
20 A$ = STR$ (A)
30 B$ = STR$ (B)
40 PRINT A + B
50 PRINT A$ + B$

INSTR
Another useful string function is INSTR (standing for IN STRING) which
will compare two strings and tell you whether one of these strings is
contained within the other, and at what position.

For example

10 A$ = "INEQUITABLE"
20 B$ = "I"

Variables and expressions 53

30 Z = INSTR (A$,B$,2)
40 PRINT Z

This program shows that INSTR returns the posi tion at which B$ is the
same as A$. We can start the INSTR comparison at any point along the
stri ng.

This program starts the comparison at the second character of stri ng A$,
and therefore indicates the second ‘I’ at posi tion 6. I f INSTR is used and
there is no simi lari ty between the strings, a 9 is given.

STRING$
The last stri ng function, STRING$, is used when you want to make a long
stri ng which consists of repeated uni ts. For example, if you wish to use a
stri ng to pri nt a border made up f rom *−*−*−*− etc then i t is easier to use
the STRING$ function than to type al l the characters.

10 A$ = "*-"
20 B$ =STRING$(2@,A$)
30 PRINT B$
>RUN
*-

The string B$ is made up f rom 20 copies of the string A$.

Comparison table of variables
Final ly, here is the complete comparison table for integer, real , and stri ng
variables:

Integer Real String
Example 810 1.141 “WORDS”
Typical variable A% A A$
Maximum size 2,147,483,647 1.7 × 1038 255 characters
Accuracy absolute 9 sig f igs —
Stored in 32 bi ts 40 bi ts ASCI I values

54 Variables and expressions

