
21 VDU codes

Introduct ion
The statement VDU X is equivalent to PRINT CHR$(X); and the statement
VDU X,Y,Z is equivalent to PRINT CHR$(X);CHR$(Y);CHR$(Z);

However the VDU statement finds most common use when generating
ASCII control codes and a detailed description of the effect of each control
code is given in this chapter. The control codes are interpreted by part of
the machine operating system called the VDU driver.

The VDU drivers interpret ail 32 ASCII control character codes. Many of
the ASCII control codes are followed by a number of bytes. The number of
bytes which follow depends on the function to be performed. The VDU
code table summarises all the codes and gives the number of bytes which
follow the ASCII control code.

Detai led descript ion
4 This code causes text to be written at the text cursor, ie in the normal
fashion. A MODE change selects VDU 4, normal operation.

5 This code causes text to be written where the graphics cursor is. The
position of the text cursor is unaffected. Normally the text cursor is
controlled with statements such as

PRINT TAB(5,10)

and the graphics cursor is controlled with statements like

MOVE 700,450

Once the statement VDU5 has been given only one cursor is active (the
graphics cursor). This enables text characters to be placed at any position
on the screen. There are a number of other effects: text characters
overwrite what is already on the screen so that characters can be
superimposed; text and graphics can only be written in the graphics
window and the colours used for both text and graphics are the graphics
colours. In addition the page no longer scrolls up when at the bottom of
the page. Note however that POS and VPOS still give you the position of
the text cursor.

VDU code table

MeaningD
ec

im
a

l

H
ex

C
T

R
L

A
sc

ii
a

b
b

re
v

ia
ti

o
n

B
y

te
s

ex
tr

a

0 0 @ NUL 0 Does nothing
1 1 A SOH 1 Reserved
2 2 B STX 0 Reserved
3 3 C ETX 0 Reserved
4 4 D EOT 0 Wri te text at text cursor
5 5 E ENQ 0 Wri te text at graphics cursor
6 6 F ACK 0 Enable VDU drivers
7 7 G BEL 0 Make a short beeb
8 8 H BS 0 Backspace cursor one character
9 9 I HT 0 Forwardspace cursor one character

10 A J LF 0 Move cursor down one l ine
11 B K VT 0 Move cursor up one l ine
12 C L FF 0 Clear text area
13 D M CR 0 Move cursor to start of current l ine
14 E N SO 0 Page mode on
15 F O SI 0 Page mode of f
16 10 P DLE 0 Clear graphics area
17 11 Q DC1 1 Def ine text colour
18 12 R DC2 2 Def ine graphics colour
19 13 S DC3 5 Define logical colour
20 14 T DC4 0 Restore defaul t logical colours
21 15 U NAK 0 Disable VDU drivers or delete current

l ine
22 16 V SYN 1 Select screen mode
23 17 W ETB 9 Re-program display character
24 18 X CAN 8 Def ine graphics window
25 19 Y EM 5 PLOT K,x,y
26 1A Z SUB 0 Restore defaul t windows
27 1B [ESC 0 Reserved
28 1C \ FS 5 Def ine text window
29 1D] GS 5 Def ine graphics origin
30 1E ˆ RS 0 Home text cursoer to top lef t
31 1F _ US 2 Move text cursor to xy

127 7F DEL 0 Backspace and delete

VDU codes 105

6 VDU 6 is a complementary code to VDU21. VDU21 stops any f urther
characters being pri nted on the screen and VDU6 re-enables screen output
A typical use for thi s faci l i ty would be to prevent a pass-word appeari ng
on the screen as i t i s being typed in.

7 This code,which can be entered in a program as VDU7 or di rectly f rom
the keyboard as CTRL G, causes the computer to make a short ‘ beep’ .

8 This code (VDU8 or CTRL H moves the text cursor one space to the lef t.
I f the cursor was at the start of a l ine then i t wi l l be moved to the end of
the previous l ine. I t does not delete characters − unl i ke VDU 127.

9 This code (VDU 9 or CTRL I) moves the cursor forward one character
posi tion.

10 The statement (VDU 10 or CTRL J) wi l l move the cursor down one l ine.
If the cursor is al ready on the bottom l ine then the whole display wi l l
normal ly be moved up one l ine.

11 This code (VDU11 or CTRL K) moves the text cursor up one l ine. I f the
cursor is at the top of the screen then the whole display wi l l move down a
l ine.

12 This code clears the screen − or at l east the text area of the screen. The
screen is cleared to the text background colour which is normal ly black.
The BASIC statement CLS has exactly the same effect as VDU12 or CTRL
L. This code also moves the text cursor to the top of the text window

13 This code is produced by the RETURN key. However i ts effect on the
screen display if i ssued as a VDU13 or PRINT CHR$(13); is to move the text
cursor to the lef t hand edge of the current text l ine (but wi thin the
current text window, of course).

14 This code makes the screen display wai t at the bottom of each page. I t
is mainly used when l isting long programs to prevent the l i sting going
past so fast that i t is impossible to read. The computer wi l l wai t unti l a
SHIFT key is pressed before continuing. This mode is cal led ‘ paged mode’ .
Paged mode is turned on wi th the CTRL N and of f wi th CTRL O.

15 This code causes the computer to leave paged mode. See the previous
entry (14) for more detai ls.

16 This code (VDU 16 or CTRL P) clears the graphics area of the screen to
the graphics background colour and the BASIC statement CLG has exactly
the same effect. The graphics background colour starts off as black but

106 VDU codes

may have been changed with the GCOL statement. VDU 16 does not move
the graphics cursor − it just clears the graphics area of the screen.

17 VDU 17 is used to change the text foreground and background colours.
In BASIC the statement COLOUR is used for an identical purpose. VDU17 is
followed by one number which determines the new colour. See the BASIC
keyword COLOUR for more details.

18 This code allows the definition of the graphics foreground and
background colours. It also specifies how the colour is to be placed on the
screen. The colour can be plotted directly, ANDed, ORed or Exclusive
ORed with the colour already there, or the colour there can be inverted.
In BASIC this is called GCOL.

The first byte specifies the mode of action as follows:

0 Plot the colour specified
1 OR the specified colour with that already there
2 AND the specified colour with that already there
3 Exclusive-OR the specified colour with that already there
4 Invert the colour already there

The second byte defines the logical colour to be used in future. If the byte
is greater than 127 then it defines the graphics background colour
(modulo the number of colours available). If the byte is less than 128 then
it defines the graphics foreground colour (modulo the number of colours
available).

19 This code is used to select the actual colour that is to be displayed for
each logical colour. The statements COLOUR (and GCOL) are used to select
the logical colour that is to be used for text (and graphics) in the
immediate future. However the actual colour can be re-defined with VDU
19. For example

MODE 5
COLOUR 1

will print all text in colour 1 which is red by default. However the
addition of

VDU 19,1,4,0,0,0 or VDU 19,1,4;0;

VDU codes 107

will set logical colour 1 to actual colour 4 (blue). The three zeros after the
actual colour in the VDU 19 statement are for future expansion.

In MODE 5 there are four colours (0,1,2 and 3). An attempt to set colour 4
will in fact set colour 0 so the statement

VDU 19,4,4,0,0,0 or VDU 19,4,4;0;

is equivalent to

VDU 19,0,4,0,0,0 or VDU 19,0,4;0;

We say that logical colours are reduced modulo the number of colours
available in any particular mode.

20 This code VDU20 Or CTRL T sets default text and graphic foreground
logical colours and also programs default logical to actual colour
relationships. The default values are:

Two colour modes
0 =black
1 =white

Four colour modes
0 =black
1 =red
2 =yellow
3 =white

Sixteen colour modes
0 =black
1 =red
2 =green
3 =yellow
4 =blue
5 =magenta
6 =cyan
7 =white
8 =flashing black/white
9 =flashing red/cyan

10 =flashing green/magenta
11 =flashing yellow/blue

108 VDU codes

12 =flashing blue/yellow
13 =flashing magenta/green
14 =flashing cyan/red
15 =flashing white/black

21 This code behaves in two different ways. If entered at the keyboard (as
CTRL U) it can be used to delete the whole of the current line. It is used
instead of pressing the DELETE key many times. If the code is generated
from within a program by eithev VDU21 or PRINT CHR$ (21): it has the
effect of stopping all further graphics or text output to the screen. The
VDU is said to be disabled. It can be ‘enabled’ with VDU6.

22 This VDU code is used to change MODE. It is followed by one number
which is the new mode. Thus VDU22,6 is exactly equivalent to MODE6
(except that it does not change HIMEM).

23 This code is used to re-program displayed characters. The ASCII code
assigns code numbers for each displayed letter and number. The normal
range of displayed characters includes all upper and lower ease letters,
numbers and punctuation marks as well as some special symbols. These
characters occupy ASCII codes 32 to 126 If the user wishes to define his
or her own characters or shapes then ASCII codes 224 to 255 are left
available for his purpose. In fact you can re-define any character that is
displayed. but extra memory must be set aside if this is done, and this is
explained in appendix D).

ASCII codes 0 to 31 are interpreted as VDU control codes and this
chapter is explaining the exact functuim of each. ‘Thus the full ASCII sel
consists of all the VDU control codes, all the normal printable characters
and a user defined set of characters.

For example if the user wishes to define ASCII code 240 to be a small
triangle then the following statement would have to be executed.

character to be
re-defined

VDU 23,240,1,3,7,15,31,63,127,255

re-define 8 numbers giving the contents of each row of dots that
character makes up the desired character

VDU codes 109

=1

2+1=3

4+2+1=7

8+4+2+1=15

16+8=31

=63

=255

=127

12
8

64 32 16 8 4 2 1

As explained above the user may define any ASCII code in the range 224
to 255. To display the resultant shape on the screen the user can type

PRINT CHR$ (248) or
VDU 240

In the unlikely event of the user wishing to define more than the 32
characters mentioned above (ASCII 224 to 255) it will be necessary to
allocate more RAM for the purpose.

24 This code enables the user to define the graphics window − that is, the
area of the screen inside which graphics can be drawn with the DRAW and
PLOT statements. The graphics screen is addressed with the following
coordinates.

1023

0
0 1279

Y

X

A

110 VDU codes

Thus the coordinates of A would be approximately 1000,200.

When defining a graphics window four coordinates must be given; the
left, bottom, right and top edges of the graphics area. Suppose that we
wish to confine all graphics to the area shown below.

700

300

0
0 150 1100

Graphics
area

The left hand edge of the graphics area has an X value of (about) 150. The
bottom of the area has a Y value of 300. The fight hand side has X=1100
and the top has Y=700 The full statement to set this area is

VDU 24,150;300;1100;700;

Notice that the edges must be given in the order left X, bottom Y, right X,
top Y and that when defining graphics windows the numbers must be
followed by a semi-colon.

For those who wish tv know why trailing semi-colons are used the reason
is as follows: X and Y graphic coordinates have to be sent to the VDU
software as two bytes since the values may well be greater than 255. The
semi-colon punctuation in the VDU statement sends the number as a two
byte pair with low byte first followed by the high byte.

25 This VDU code is identical to the BASIC PLOT statement. Only those
writing machine code graphics will need to use it. VDU25 is followed by
five bytes. The first gives the value of A referred to in the explanation of
PLOT in the BASIC keywords chapter. The next two bytes give the X
coordinate and the last two bytes give the Y coordinate. Refer to the entry
for VDU24 for an explanation of the semi-colon syntax used. Thus

VDU 25,4,100;500;

VDU codes 111

would move to absolute position 100,500.

The above is completely equivalent ta

VDU 25,4,100,0,244,1
X Y

26 The code VDU 26 (CTRL Z) returns both the graphics and text
windows to their initial values where they occupy the whole screen. This
code re-positions the text cursor at the tap left of the screen, the graphics
cursor at the bottom left and sets the graphics origin to the bottom left of
the screen. In this state it is possible to write text and to draw graphics
anywhere on the screen.

28 This code (VDU28) is used to set a text window. Initially it is possible to
write text anywhere on the screen but establishing a text window enables
the user to restrict all future text to a specific area of the screen. The
format of the statement is

VDU 28,leftX,bottomY,rightX,topY

where leftX sets the left hand edge of the window
bottomY sets the bottom edge
rightX sets the fight hand edge
topY sets the top edge

Y2

Y1

X2

X1

0 5 30 39

0

12

20

31

Text window

112 VDU codes

For the example shown the statement would be

VDU 28,5,20,30,12

Note that the units are character positions and the maximum values will
depend on the mode in use. The example above refers to MODE1 and
MODE4. In MODES 2 and 5 the maximum values would be 19 for X and
31 for Y since these modes have only 20 characters per line.

31

1900 X

Y

29 This code is used to move the graphics origin. The statement VDU29 is
followed by two numbers giving the X and Y coordinates of the new origin.
The graphics screen is addressed

1023

1279

Y

X0

C

Thus to move the origin to the centre of the screen the statement

VDU 29,640;512;

VDU codes 113

should be executed. Note that the X and Y values should be followed by
semi-colons. See the entry for VDU24 if you require an explanation of the
trailing semi-colons. Note also that the graphics cursor is not affected by
VDU29.

30 This code (VDU 30 or CTRL) moves the text cursor to the top left
of the text area.

31 The code VDU31 enables the text cursor to be moved to any character
position on the screen. The statement VDU31 is followed by two numbers
which give the X and Y coordinates of the desired position.

Thus to move the text cursor to the centre of the screen in MODE 7 one
would execute the statement

VDU 31,20,12

Note that the maximum values of X and Y depend on the mode selected
and that both X and Y are measured from the edges of the current text
window not the edges of the screen.

32-126 These codes generate the full set of letters and numbers in the
ASCII set.

127 This code moves the text cursor back one character and deletes the
character at that position. VDU 127 has exactly the same effect as the
DELETE key

128-223 These characters are normally undefined and will produce
random shapes.

224-255 These characters may be defined by the user using the statement
VDU23. It is thus possible to have 32 user defined shapes such as

VDU 23,224,8,28,28,107,127,107,8,28
VDU 23,225,8,28,62,127,62,28,8,0
VDU 23,226,54,127,127,127,62,28,8,0
VDU 23,227,8,28,62,127,127,127,28,62

Try typing each of the lines above, remembering to press the RETURN key
after each definition. To display any of the new definitions, type in the
appropriate VDU code. For example, to display the heart, type

114 VDU codes

VDU 226 RETURN

Character defmitions 224 to 255 are stored in a block of memory reserved
for them in the computer. If however, you need more characters, or you
want to re-define some of the keyboard characters, the best way to do this
is to tell the computer to set aside extra memory to store them. (If you
don’t, you may run into problems). The operating system call *FX20
described in Appendix D enables you to do this.

VDU codes 115

