
23 A ddr ess poi nt er s,
i ndi r ect i on oper at or s
T he El ect r on’ s memor y
The computer’ s memory consists of 65536 locations (0 to 65535), each
containing 1 byte (8 binary digi ts). Hal f of the computer’ s memory can be
wri tten to or read f rom (cal led RAM); the other hal f can only be read f rom
(cal led ROM).

Each location in memory has a unique address (l ike the address of your
house) which is a four digi t hexadecimal number. Location 0 in memory is
& 0000 and location 65535 is & FFFF. The & sign means that the numbers
which follow are in hexadecimal . The easiest way to look at the
computer’ s memory is on a memory map. Overleaf is a simpl i f ied memory
map for the Electron, showing on the right the address of each location.

Looking at the memory map, see how i t is divided into the two types,
RAM and ROM. All the programming which went into making the
machine work is stored in the upper hal f of the memory, f rom & 8000 to
& FFFF. Your BASIC programs are stored, unless the computer is told
otherwise, starti ng at location & 0E00. This posi tion where the program
starts is assigned to a resident variable cal led PAGE. PAGE is an address
pointer; i t tel ls the computer at which address to start executing a
program when you tel l i t to RUN. The location at which the BASIC
program f inishes is also assigned to a variable, cal led TOP. I f you type:

PRINT TOP-PAGE RETURN

the computer tel ls you how many bytes of memory your program f i l l s.

Note that f uture expansions of the Electron, eg a disc f i l ing system, wi l l
move PAGE up.

The next address pointer is LOMEM. This tel ls the computer where i t can
store the variables which are used by your program, and is usual l y the
same value as TOP.

Memory map

Operating system ROM

Memory mapped input/output

Decimal

Operating system ROM

4 page ROMs eg BASIC

RAM used for
high resolution graphics

BASIC stack

Dynamic variable storage

User’s BASIC program area

Reserved for operating
system use

Hex

&FFFF

&FF00

&FFC0

&C000

&8000

Moveable boundary

&4000

Moveable

&2000

&E00

&0000

65535

65280

61512

49152

32768

16384

8192

3584

0

HIMEM

LOMEM

TOP

PAGE

32K RAM
to &7FFF

The last address pointer is HIMEM. HIMEM shows the position of the
bottom of the screen memory, so any program or variables must be kept
below this value.

128 Address pointers, indirection operators

Programs are normally loaded at &0E00, but they can be put higher up
the memory by altering the value of PAGE. For example, if you make PAGE
= &1000, and then you LOAD a program from tape, it will be situated a t
address &1000. When you do this, TOP and LOMEM are moved to their
new position above the program. Another way in which to re-situate a
program is to use *LOAD.

* L OAD “ p r o g r a m n a me ” 1 0 0 0 RETURN

LOAD the program from tape into the memory at location &1000. This
instruction does not alter PAGE, and if you want to run the program you
must make PAGE = &1000.

Any section of memory can also be saved by using *SAVE.

* SAVE “ f i l e n a me ” SSSS FFFF EEEE RETURN

SSSS is the hex address from which you wish to start saving.

FFFF is the hex address plus 1 at which you wish to fmish.

EEEE is the hex address at which execution should commence.

Indirect ion operators
Individual memory locations can be accessed from BASIC by using three
indirection operators:

Symbol Purpose Number of bytes
affected

? Byte indirection operator 1
! Double-word indirection operator 4
$ String indirection operator 1 to 256

To illustrate this, set a variable to an address in memory, for example:

A = &1 0 0 0 RETURN

?A will give the contents of location A, so the contents of location &1000
can be set by typing

? A = 1 0 0 RETURN

Address pointers, indirection operators 129

(Of course, because a location is a single byte, i t cannot be set to a
f ractional number, or any integer above 255 decimal , which is & FF. I f
thi s is done, the least signi f icant byte is stored in the memory location
specif ied.)

To check the contents of & 1000, type

PRINT ?A RETURN

BASIC integer variables, such as age%, are stored in four consecutive
bytes of memory, and four bytes can be accessed using ! .

!A = 70965 RETURN

Strings can be placed di rect in memory, each character’s ASCII code
being stored in 1 byte of memory.

$A = “STRING”

The $ indi rection operator appends a carriage return to the end of the
string, so the above command would give 6 bytes of ASCII code for the
word ‘STRING’, plus a byte containing & D which is the ASCII code for
RETURN .

Notice that the indi rection operator is $A, and not A$ which is a BASIC
stri ng variable. The stri ng in memory can, however, be assigned to a
BASIC variable:

name$ = $A RETURN

Another way of using ? i s wi th both a variable and a number.

A?6 gives the contents of location A+6, in this case location & 1006.

To look at the contents of a group of memory locations, wri te a smal l
program:

10 FOR I = 0 TO 15
20 PRINT “CONTENTS OF ”;A+I;“ ARE ”;A?I
30 NEXT

The indi rection operators described above are used and explained more
thoroughly in the chapter on Assembly Language.

130 Address pointers, indi rection operators

