
17 Procedures

Using procedures al lows you to spl i t up vi rtual l y any program you are
going to wri te into a main program, fol lowed by a number of ‘mini-
programs’ (procedures), which can be cal led f rom the main program by a
single statement.

A procedure is simply a col lection of numbered BASIC statements which
you wri te in order to perform a parti cular task. This col lection of
statements looks just l ike part of an ordinary program, but the
di f ferences are that the f i rst f ine contains the name of the procedure
(which is decided by you), and the last l ine contains a BASIC word to
signi fy the end of the procedure. When the computer encounters the end,
i t then returns to the main program and carri es on.

The rules for using procedures are very simple. A procedure is cal led f rom
the main program by the BASIC word PROC fol lowed immediately by the
procedure’ s name. The name can be anything you l ike, but there must be
no spaces in i t. For example:

PROCnewline
PROCwait_a_second
PROCDRAWPICTURE

Note the underl i ne character in the second example which helps ‘ space
out’ the name.

A procedure name should ref lect the function of the procedure to which i t
appl ies. I f you merely name your procedures PROCA, PROCB, PROCC, for
example, then no one wi l l understand what they do wi thout having to
work through each one. So if you have a procedure which converts feet
into metres, then cal l i t PR0Cfeet_to_metres. I t is best to use lower case
names for procedures so that they distinguish themselves f rom the PROC.

To def ine a procedure, you simply type a l ine number, fol lowed by DEF,
fol lowed by the procedure name. I t is a good idea to start def ining your
procedures at a fai rl y high l ine number, say 1000.

1000 DEF PROCwait_a_second
1100 NOW = TIME
1200 REPEAT UNTIL TIME-NOW>=100
1300 ENDPROC

This procedure will do as its name suggests.

ALL PROCEDURE DEFINITIONS MUST END WITH ENDPROC.

When you want the computer to carry out the instructions in the
procedure, you have to call it by name:

70 PROCwait_a_second

or

120 IF INKEY$10 = "W" THEN PROCwait_a_secon
d

You may have as many procedures in your program as you like, and
usually the more the better.

THERE MUST ALWAYS BE AN END INSTRUCTION BETWEEN THE
END OF THE MAIN PROGRAM AND THE PROCEDURE
DEFINITION.

For example

10 REM Sample program
20 FOR X = 0 TO 29
30 PRINT TAB(10,10);"COUNTING..."X" Seconds
"
40 PROCwait_a_second
50 NEXT
60 PRINT TAB(10,10);"Half a minute up!
 "
70 END
1000 DEF PROCwait_a_second
1100 NOW = TIME
1200 REPEAT UNTIL TIME-NOW>=100
1300 ENDPROC

There is a program on the Introductory Cassette to illustrate the use of
procedures, and also give you some fun. Load this program which is called

78 Procedures

‘BUGZAP’ into your Electron first. See chapter 4 for instructions on how
to load a program.

When you LIST a long program obviously you cannot see all of the lines on
the screen at the samee time. Using LIST with specified line numbers is
one way around this, but another is to put the computer into paged mode.
This is done by pressing CTRL N (No RETURN is required.) If you now
use LIST, the program will be listed until the screen is full. When you
want to look at the next part just press SHIFT and another screen full
will appear. If you want to change a line number, you must press ESCAPE
. To get the computer out of paged mode, type CTRL O.

Look at just one procedure from this program:

5 2 0 DEF PROCi n f o
5 3 0 CL S
5 4 0 PRI NT' ' ' ' ' " We l c o me t o t h e g a me o f Bu g z a p
! " ' ' '
5 5 0 PRI NT" Th e o b j e c t o f t h e g a me i s t o u s e y
o u r "
5 6 0 PRI NT" l a s e r g u n t o z a p t h e d e s c e n d i n g b u
g "
5 7 0 PRI NT" b e f o r e i t l a n d s o r b o mb s y o u . "
5 8 0 PRI NT' " Yo u r s c o r e i n c r e a s e s e v e r y t i me y
o u "
5 9 0 PRI NT" z a p t h e b u g , wi t h mo r e p o i n t s b e i n
g "
6 0 0 PRI NT" g i v e n t h e l o we r t h e b u g i s ; i t wi l
l b e "
6 1 0 PRI NT" d i s p l a y e d wh e n y o u a r e k i l l e d . "
6 2 0 PRI NT' " Th e c o n t r o l s a r e : " '
6 3 0 PRI NT" Z = l e f t "
6 4 0 PRI NT" X = r i g h t "
6 5 0 PRI NT" SPACE = f i r e "
6 6 0 PRI NT' ' " Pr e s s i n g t h e ESCAPE k e y wi l l t a k
e y o u "
6 7 0 PRI NT" t o t h e e n d o f t h e p r o g r a m. "
6 8 0 PRI NTTAB(5 , 3 1) " Pr e s s SPACE t o s t a r t t h e
g a me " ;
6 9 0 REPEAT UNTI L GET$ = " "
7 0 0 ENDPROC

Procedures 79

This procedure is called from fine 90 of the main program.

90PROCinfo

Line 520 is the start of the definition

Line 530 clears the screen.

Lines 540 to 680 print the introduction and instructions about the
BUGZAP game which you see when you run the program.

Line 690 is an example of putting two separate BASIC statements after
one line number by separating them with a colon. The purpose of line 698
is to wait until the space bar is pressed: GET$ = "". When the space bar is
pressed, line 700 is executed.

Line 700 signifies the end of the procedure, and the computer goes back to
the main program to the line immediately after the procedure call
(90PR0Cinfo), which is fine 100.

Here is one of the procedures from the ‘MARSLANDER’ program also on
the Introductory Cassette.

860DEF PROCrocket(direction%)
870REM If there is any fuel then fire rocke
t-motor and make sound
880IF fuel% THEN fuel%=fuel%-1 ELSE ENDPROC
890IF fuel%=29 THEN SOUND 1,-10,60,10 ELSE
SOUND 0,-1,5,2
900ON direction% GOTO 910,920,930,940
910VY%=VY%- 5:ENDPROC
920VX%=VX%+10:ENDPROC
930VY%=VY%+15:ENDPROC
940VX%=VX%-10:ENDPROC

This procedure alters the speed of the spacecraft according to the
direction in which it is pointing, which is given by the variable
direction%.

This procedure is called from fine 250.

250IF INKEY(-99) THEN PROCrocket%(Z%)

Z% is an integer variable which is used by the program to give the
attitude of the spaceship.

80 Procedures

When the computer reaches line 250 it tests to see if the space bar is
pressed. If it is, the computer then places the contents of Z% into
direction%.

The variable Z%, and hence the parameter direction%, can be anything
from 1 to 4, where 1 indicates the capsule pointing up, 2 to the fight, 3
down, and 4 to the left. These positions are represented by characters 224
to 227 which are user-definable.

Line 880 checks to see whether there is any fuel left. The variable fuel%
will be FALSE when it is zero and the procedure will end.

If it is TRUE one unit of fuel is deducted by decrementing its contents by
1. Line 890 makes either a ‘beep’ (fuel is low), or a rocket motor sound
(fuel is not low).

SOUND is explained in chapter 22.

Line 900 uses ON . . . GOTO, to act according to the direction of the
spacecraft The parameter direction% now contains the value given to it
by Z%. If the spacecraft is pointing up, direction% is 1 and execution
continues at line 910.

Line 910 decreases the vertical speed of the capsule. (VY% is the vertical
speed measured positive in a downward direction; VX% is the horizontal
speed measured positive in a left-to-right direction.) If the capsule is
pointing to the left fine 960 passes execution to fine 920 which increases
the horizontal speed of the capsule.

Lines 930 and 940 increase the vertical speed and decrease the horizontal
speed respectively. After any one of these lines (910 to 940) has been
executed, the procedure ends.

Using parameters in procedures
Using the above example, Z% and direction% are termed parameters. The
idea behind using parameters is that they are more efficient than global
variables. A global variable is one which is accessible throughout the
whole program, and may be altered or re-assigned at any line number.

Once a global variable such as Z% has been passed to the procedure as a
parameter, the variable which takes its place, direction%, is only known
to that procedure. Outside PROCspaceship you can ask the computer to

252 PRINT direction%

Procedures 81

and it will give an error because the variable direction% does not exist in
that part of the program. Global variables which are passed to the
procedure are called the actual parameters, and the variables within the
procedure are called formal parameters.

A procedure may be defined with only one parameter, or it may be defined
with lots of parameters. But a procedure must always be called with the
correct number of parameters. PR0Cspaceship, starting at line 750, has
three parameters.

So you could not call PR0Cspaceship(X%,Y).

Parameters may be integer, real, or string. If a string variable is used as
a formal parameter then it must have either a string or a string variable
passed to it. Real and integer parameters may be passed to one another
and interchanged freely, but remember that the fraction part of a real
variable will be lost when assigned to an integer variable.

The idea of a variable being defined only within a certain section of a
program is commonplace in a lot of computer languages, but unusual in
BASIC. Electron BASIC allows you to declare any variable as local to a
procedure or function (functions are discussed in chapter 19). A local
variable may even have the same name as a global variable in the same
program, but will lead a separate existence.

For example:

1 0 FOR I = 1 TO 3
2 0 PROCl o c a l (I)
3 0 PRI NT “ OUT OF PROCEDURE I = ” ; I
4 0 NEXT I
5 0 END
6 0 DEF PROCl o c a l (J)
7 0 L OCAL I
8 0 I = J
9 0 I = I * 1 0
1 0 0 PRI NT “ I N PROCEDURE I = ” ; I
1 1 0 ENDPROC
> RUN
I N PROCEDURE I = 1 0
OUT OF PROCEDURE I = 1
I N PROCEDURE I = 2 0
OUT OF PROCEDURE I = 2

82 Procedures

IN PROCEDURE I = 30
OUT OF PROCEDURE I = 3

Notice line 50 which says END. Because procedures are usually defined a t
the end of a program. you sometimes need to stop the execution after all
the calls have been made. The program will terminate when the computer
reaches the instruction END.

There is still another way to use procedures, and that is recursively. A
recursive procedure is one which calls itself from within its own definition

10 answer = 1
20 INPUT X
30 PROCfactorial(X)
40 PRINT answer
50 END
60 DEF PROCfactorial(N)
70 answer = answer*N
80 IF N>1 THEN PROCfactorial(N-1)
90 ENDPROC

This is a recursive procedure to find the factorial of a number. Check
through the logic of it in your head to see that it works. Recursive
procedures are very useful in certain circumstances, but they consume
memory very quickly.

Procedures 83

