
16 Conditional and loop
instruct ions
Programs and parts of programs can be made to execute over and over
again either continuously, or a specified number of times. The
instructions you put in your program to make this happen are called
LOOP instructions.

The FOR . . . NEXT loop
The most common type of loop is FOR . . . NEXT, which uses a variable to
count the number of repetitions required.

10 FOR N = 1 TO 6
20 PRINT N
30 NEXT N
>RUN
 1
 2
 3
 4
 5
 6

In this program, N is printed at each pass through the loop. N is called
the control variable.

You can start the control variable at any number you choose, and you
may alter the amount by which it changes on each pass, the step size.

10 FOR N = 7 TO 11 STEP 1.6
20 FOR J = 20 TO 10 STEP -5
30 PRINT N,J
40 NEXT J
50 NEXT N
>RUN
 7 20
 7 15
 7 10
 8.6 20
 8.6 15

 8.6 10
 10.2 20
 10.2 15
 10.2 10

This program shows that you can use decimal step sizes, or negative step
sizes. You may start the control variable at any value; and you may use
FOR . . . NEXT loops within each other. This is called nesting, and you can
nest as many loops as you wish.

Type

LISTO 2

followed by [RETURN] , and then LIST the program again.

10 FOR N = 7 TO 11 STEP 1.6
20 FOR J = 20 TO 10 STEP -5
30 PRINT N,J
40 NEXT J
50 NEXT N

Each loop is shown indented from the previous one.

LISTO is a list option instruction and can take any number from 0 to 7.

LlSTO0 is the normal setting − it lists exactly what the computer has
stored in memory.

LISTO1 lists the program with an extra space after each line number.

LISTO2 lists the program with indents on FOR . . . NEXT loops.

LlSTO4 lists the program with indents on REPEAT . . . UNTIL loops.

These effects may be obtained in any combination by adding the numbers
together, so LlSTO3 would give extra spaces after line numbers and
indented F0R . . . NEXT loops.

Here are some further points on the use of FOR . . . NEXT loops.

(i) You do not need to specify the control variable to which NEXT refers.
The following program will work exactly the same as the one above.

Conditional and loop instructions 69

10 FOR N = 7 TO 11 STEP 1.6
20 FOR J = 20 TO 10 STEP -5
30 PRINT N,J
40 NEXT
50 NEXT

The computer assumes that NEXT applies to the loop it is in at the present
moment.

If you do put the variable names after NEXT, but get them mixed up, then
this is what happens.

10 FOR N = 7 TO 11 STEP 1.6
20 FOR J = 20 TO 10 STEP -5
30 PRINT N,J
40 NEXT N
50 NEXT J
>RUN
 7 20
 8.6 20
 10.2 20

No FOR at Line 58

The computer starts to execute the N loop before the J loop, and when it
reaches line 58 it cannot find the FOR to go with NEXT J. Loops must be
nested one within another; they must not cross.

(ii) The number of FORs, and the number of NEXTs must be the same. The
following program does not give an error, but it is left hanging in midair.

10 FOR N = 7 TO 11 STEP 1.6
20 FOR J = 20 TO 10 STEP -5
30 PRINT N,J
40 NEXT
 7 20
 7 15
 7 10

 70 Conditional and loop instructions

If you do this, you will run into trouble.

(iii) You must never jump out of a FOR . . . NEXT loop using GOTO. As in
(ii) above this will often not result in an error, but the program will be
impossible to follow.

(iv) The stop condition for a loop is that, for a positive step size, the
control variable is greater than the terminating value; for a negative step
size, the control variable is less than the terminating value. However, all
loops will be executed at least once.

10 FOR NUMBER = 6 TO 0
20 PRINT NUMBER
30 NEXT
>RUN
 6

When the loop has been completed, the control variable moves on an extra
step, so the above program will end up with NUMBER equal to 7. Here is a
program to show this:

10 FOR Size = 100 TO 103 STEP 1.5
20 PRINT "INSIDE LOOP, Size = ";Size
30 NEXT
40 PRINT "OUTSIDE LOOP, Size = ";Size
INSIDE LOOP, Size = 100
INSIDE LOOP, Size = 101.5
INSIDE LOOP, Size = 103
OUTSIDE LOOP, Size = 104.5

(v) FOR . . . NEXT loops are used when you wish to go around a loop a fixed
number of times. There may be as many lines as you like between the FOR
and its corresponding NEXT, and control variables need not be directly
assigned with numbers. They can be assigned with any arithmetic
expression, containing variables or other functions.

10 MODE 5
20 FOR angle = 0 TO 2*PI STEP .1
30 PLOT 69,649 + 440*SIN(angle), 512 + 400*
COS(angle)
40NEXT

Conditional and loop instructions 71

The REPEAT . . . UNTIL loop
Another very useful lwp is REPEAT . . . UNTIL, which wai ts unti l a
condi tion is ful f i f led before coming out of the loop.

1 0 I NPUT' " Th i s p r o g r a m t u r n s d e c i ma l s i n t o
f r a c t i o n s " ' " Gi v e me a d e c i ma l : " d e c i ma l
2 0 n u me r a t o r % = 1 : d e n o mi n a t o r % = 1
3 0 PRI NT " Pr o g r a m r u n n i n g "
4 0 REPEAT
5 0 f r a c t i o n = n u me r a t o r %/ d e n o mi n a t o r %
6 0 I F f r a c t i o n > d e c i ma l THEN d e n o mi n a t o r % =
d e n o mi n a t o r %+ 1
7 0 I F f r a c t i o n < d e c i ma l THEN n u me r a t o r % = n u
me r a t o r %+ 1
8 0 UNTI L f r a c t i o n = d e c i ma l
9 0 PRI NT; d e c i ma l ; " i s e q u a l t o " ; n u me r a t o
r %; " / " d e n o mi n a t o r %' " Pr o g r a m e n d "

This program asks you to i nput a decimal . I t then pri nts out the
f ractional equivalent. (Don't i nput too compl icated a decimal or the
program wi l l run for hours.) L ines 50 and 60 are repeated unti l the
condi tion at l ine 80 is ful f i l led. In thi s example, the condi tion is that
f raction = decimal .

L ine 80 is cal led a condi tional statement, and the resul t of a condi tional
statement may ei ther be TRUE or FALSE. I n the example shown above, the
statement becomes TRUE when f raction is equal to decimal , so the
program loop is repeated only whi l st the condi tional statement is FALSE.
Of course, the computer doesn't understand TRUE and FALSE, so i t assigns
numeric values to these condi tions:

0 for FALSE, −1 for TRUE.

There are a number of logical operators which can be used in condi tional
statements:

A = B True when A is equal to B
A < B True when A is less than B
A > B True when A i s greater than B
A <= B True when A is less than or equal to B
A >= B True when A is greater than or equal to B

 72 Condi tional and loop instructions

A <> B True when A is not equal to B
NOT A True when A is false
TRUE True always
FALSE False always
A AND B True if both A and B are true
A OR B True if either A or B is true, or if both are true
A EOR B True if either A or B is tme, but false if both are true

There is more about logic operations in the next section on the IF
statement.

REPEAT . . . UNTIL is easily followed and understood by other people who
read your programs, and should be used in preference to GOTO.

IF . . . THEN . . . ELSE
The IF statement enables the computer to make a choice about something.

10 REPEAT
20 A$ = GET$
30 IF A$="Y" THEN PRINT "YES"; ELSE PRINT
 A$;
40 UNTIL FALSE

This program turns the Y key into a YES-button. Line 30 contains a
conditional statement. If the condition is tme then the computer obeys
whatever comes after THEN. If the statement is false then the computer
carries out whatever comes after ELSE.

IF statements can carry out more than one instruction, if these
instructions are placed on the same line and are separated by colons:

10 REPEAT
20 A$ = GET$
30 IF A$="Y" THEN FOR I = 1 TO 6 : PRINT
"YES";: NEXT ELSE PRINT A$;
40 UNTIL FALSE

and now you will get six YESs when you type Y.

These multi-statement lines are not restricted to the IF statement. Any
line in a program may carry out more than one instruction if each is
separated by a colon. However, it is generally better to use a procedure

Conditional and loop instructions 73

rather than fill an IF statement full of colons. Procedures we explained in
chapter 17.

IF statements may ask for a complex condition, using the logical operators
AND, OR, and EOR.

10 REPEAT
20 A$ = GET$
30 B$ = GET$
40 IF A$ = "Y" AND B$ = "Y" THEN PRINT "YES
"; ELSE PRINT A$;B$
50 UNTIL FALSE

This program will only print YES if you type two Ys in succession.

The ELSE part of the statement is optional, and may be omitted.

Alternatively you can extend the IF statement by chaining it:

10 REPEAT
20 A$ = GET$
30 IF A$ = "Y" THEN PRINT "YES" ELSE IF A$
= "N" THEN PRINT "NO" ELSE PRINT "MAYBE"
40 UNTIL FALSE

This program demonstrates the use of one IF statement after another . . .

Using the IF statement you can now find out some more about how the
computer deals with TRUE and FALSE.

10 X=8>6
20 Y=6>8
30 PRINT X,Y
>RUN
 -1 0

Because 8 is greater than 6, 8 > 6 is TRUE, so X is −1. 6 > 8 is FALSE so Y is
0.

10 REPEAT
20 INPUT X

 74 Conditional and loop instructions

30 IF X THEN PRINT;X; " IS TRUE" ELSE PRINT
;X; " IS FALSE"
40 UNTIL 0

This program al lows you to enter numbers, and to see whether the
computer treats them as TRUE or FALSE. You wi l l see that only 0 is treated
as FALSE, al l other values being TRUE.

The above program can be rewri tten:

10 REPEAT
20 INPUT X
30 IF X THEN PRINT ;X;" IS TRUE" ELSE PRINT
;X;" IS FALSE"
40 UNTIL FALSE

which has exactly the same ef fect.

Another important use of IF is wi th stri ngs and stri ng variables. For
example, you might f ind this in the middle of a program

100 REM The answer should be 560
110 INPUT "SO WHAT'S THE ANSWER THEN?"'X
120 IF X = 560 THEN A$ = "YES" ELSE A$ = "N
O"
130 IF A$ = "YES" THEN PRINT A$;" WELL DONE
" ELSE PRINT A$;" TRY AGAIN"

This wi l l test to see what stri ng A$ contains, and wi l l pri nt one of two
messages accordingly.

Less than and greater than can also be used:

10 A$ = "HELLO"
20 IF A$ < "GOODBYE" THEN...

This wi l l be tme, because the IF statement compares the ASCII values of
the f i rst character in each string. I f the f i rst two characters are the same,
then £he next two characters are compared, and so on. So ‘MELON’ is less
than ‘MELTED’ . This is very useful for putti ng stri ngs into alphabeti cal
order, but i t does not work if the stri ngs are a mixture of upper and lower
case letters.

Condi tional and loop instructions 75

The following operators may be used with strings:

= the same as
<> not equal to
< less than
> greater than
<= less than, or equal to
>= greater than, or equal to

 76 Conditional and loop instructions

