
15 PRINT formatting
and INPUT
PRINT formatting
You are already familiar with the PRINT statement; and how it is used to
put characters on the screen. In this chapter you will find out how to use
PRINT to position the output on the screen.

Press BREAK and then try the following program.

1 0 X = 6
2 0 PRI NT X; X; X
3 0 PRI NT X, X, X
4 0 PRI NT X' X' X
> RUN
 6 6 6
 6 6 6
 6
 6
 6

From this you can see that

(i) Items in the PRINT instruction separated by semicolons are printed one
after the other, with no spaces.

(ii) Items separated by commas are tabulated into columns. These
columns are ten characters wide and are called fields.

(iii) Items separated by apostrophes are printed on a new line. Now try
the following program:

1 0 A$ = " J "
2 0 PRI NT A$; A$; A$; A$; A$
3 0 PRI NT A$, A$, A$
4 0 PRI NT A$ ' A$ ' A$
> RUN

JJJ
J J J
J
J
J

This is the same program as before, but using a string variable. Notice
that the character is not printed in the same place as the number. Here is
another program to demonstrate this:

10 X = 6
20 A$ = "J"
30 PRINT X, XX,X'A$,A$,A$
>RUN
 6 6 6
J J J

Field No 1 Field No 2 Field No 3

Each field of ten characters width is shown above. As you can see,
numbers are printed out to the right of each field, characters to the left.
This is done so that numbers line up in the units column, or the least
significant decimal.

The width of these fields can be altered, as can the number of decimal
places to which real numbers are printed. The Electron normally gives
each field a width of ten characters. The number of fields across the
screen depends upon which mode you are using. There are three different
character sizes that are available, and these give either eight fields, four
fields, or two fields, each of width ten.

80 character modes
(MODES 0 and 3)

40 character modes
(MODES 2 and 5)

20 character modes
(MODES 1,4,6)

60 PRINT formatting and INPUT

If you now type

PRINT 6,9,7/3,57

you will see that the 9 and the decimal equivalent of 7 /3 have ran into
each other:

 6 92.33333333 57

To prevent this happening the field width and/or the number of decimal
places can be altered using the integer variable @%.

If you type

@% = & 2040A

and then

PRINT 6,9,7/3,57

you can see the effect of reducing the number of decimal places to 4.

 6.0000 9.0000 2.3333 57.0000

The assignment of the variable @% is made up of a number of parts:

& indicates that a hexadecimal number follows. Hexadecimal numbers
are explained in chapter 6.

After the & sign, the first number of @% indicates the format of the print
field. 2 means that the computer will print a fixed number of decimal
places.

The next two figures indicate the number of decimal places which are
required, in this case 04.

The final two figures give the field width, in this case 0A which is 10 in
decimal.

So,

@% = &20105

will give each number printed to one decimal place, with a field width of
five.

PRINT formatting and INPUT 61

Some more points:

(i) The format, the f i rst f igure af ter the & symbol , can take three values:

0 is the normal conf iguration - the format which the computer uses when
i t is f i rst swi tched on.

1 gives numbers in exponent form, that is an integer fol lowed by a power
of ten. So 0.0006 would be pri nted 6E-4. (‘Six times ten to the power of
minus four’ .)

2, as just shown, gives numbers to a f ixed number of decimal places.

(ii) When the computer is f i rst swi tched on, @% = & 0090A. This gives
nine signi f icant f igures and a f ield width of ten.

(i i i) The computer wi l l not pri nt more than ten signi f icant f igures. The ten
signi f icant f igure format is obtained by setti ng @% to, for example,
& 00A0C. This wi l l give ten signi f icant f igures and a f ield width of 12.
A l ternatively, typing @% = 12 wi l l give the same resul t, because the
number of signi f icant f igures is assumed to be ten i f i t i s not speci f ied.

Y on can make the pri nt i nstruction convert decimal numbers or variables
into hexadecimal by using the ˜ character.

PRINT ~10

wil l give A (decimal 10 in hex).

PRINT ~LENGTH

wi l l print out the contents of the variable LENGTH in hex.

The posi tion on the screen at which PRINT pri nts is control lable by the
TAB i nstruction.

PRINT TAB(16); "J"

wi l l print the character J 16 spaces across the screen.

As is usual wi th functions, the number in the brackets may be a variable,
or any ari thmetic expression.

62 PRINT formatti ng and INPUT

TAB can also be used with two parameters (numbers in the brackets). If
you imagine the screen to have coordinates, the number of columns going
across the top, and the number of rows down the side, then

PRINT TAB(16,22); "J"

will print the character J 16 spaces across the screen and 22 spaces down.

These text coordinates vary depending upon which mode you are using.

0,0

0,0

0,0

19,0

0,31

MODES
2 and 5

MODES

Mode

1 and 4

0,31

39,0

0,24

39,0

6

0,31

79,00,0

0,25

0,0 79,0

Mode
3

MODE
0

PRINT formatting and INPUT 63

TAB instructions have the effect of moving the cursor around the screen.

PRINT TAB(0,0)

will always move the cursor to the top left of the screen in any mode.

If at any time you wish to turn the cursor off, you can do so by typing

VDU 23,1,0;0;0;0;

It will still exist of course, but it will not be printed on the screen.

VDU 23,1,1;0;0;0;

will return the cursor to the screen once more.

INPUT
So far, the only form of input that you' ve made to the computer is the
typing of commands and programs. Often you will need to give the
computer information while the program is running.

10 PRINT "GIVE ME A NUMBER AND I'LL DOUBLE
IT";
20 INPUT X
30 PRINT "DOUBLE ";X;" IS ";X*2
>RUN
GIVE ME A NUMBER AND I'LL DOUBLE IT
?16
DOUBLE 16 IS 32

When you mn this program, line 20 prints a question mark on the screen.
This question mark invites you to type in some data. When you press
RETURN the number that you typed is put in X. If you don' t type a
 number, or you type letters or symbols instead, X becomes zero.

INPUT may also be used with string and integer variables.

10 PRINT "WHAT IS YOUR NAME"
20 INPUT A$
30 PRINT "NICE TO MEET YOU, ";A$

64 PRINT formatting and INPUT

>RUN
WHAT IS YOUR NAME
?DOBBIN
NICE TO MEET YOU, DOBBIN

Line 10 of the above two programs have been used to print a message on
the screen. This message can be incorporated into the INPUT instruction.

10 INPUT "WHAT IS YOUR NAME ",A$
20 PRINT "ARE YOU SURE ABOUT THAT, " A$;"?"
>RUN
WHAT IS YOUR NAME ?EINSTEIN
ARE YOU SURE ABOUT THAT, EINSTEIN?

Notice the comma in line 10 of this program. It tells the computer to print
a question mark when it wants input from the keyboard. If you leave out
the comma, the question mark will not be printed. A semi-colon may be
used, and has exactly the same effect as the comma.

When the program is running, the INPUT instruction requires you to press
RETURN when on wish to send what you have typed to the computer. Up
until RETURN is pressed you can delete all or part of what you have typed
using CTRL U or the DELETE key.

When you are inputting a string, the computer will ignore any leading
spaces, and anything after a comma, unless you put the whole string
inside quotation marks.

10 INPUT A$
20 PRINT A$
>RUN
?BUS, CAR
BUS
>RUN
?"BUS, CAR"
BUS, CAR

PRINT formatting and INPUT 65

Alternatively, you can use INPUT LINE, and inverted commas will not be
needed.

10 INPUT LINE A$
20 PRINT A$
>RUN
?FISH, AND CHIPS
FISH, AND CHIPS

Several inputs can be requested at one time.

10 INPUT A,B,C$
20 PRINT A,B,C$
>RUN
?20.3, -16, INCHES
 20.3 -16INCHES

This time you must use commas to separate each piece of data which you
type.

Another way of entering data is to use GET$. This reads the key which you
press.

10 PRINT "PRESS A KEY"
20 A$ = GET$
30 PRINT "THE KEY YOU PRESSED WAS "; A$

The program waits at line 20 until you press a key. As soon as you do, the
character which that key represents is placed in A$.

A similar instruction to GETS is INKEY$.

10 PRINT "PRESS A KEY IN THE NEXT SECOND"
20 A$ = INKEY$100
30 IF A$ = "" THEN PRINT "YOU WERE TOO SLOW"
ELSE PRINT "THE KEY YOU PRESSED WAS ";A$

Using this program, line 20 waits one second for you to press a key. If no
key is pressed in that time then the program moves on. The INKEY$
instruction has a number after it which is hundredths of a second. The
larger the number, the longer the computer will wait for you to press a
key. If you don' t press a key in time, INKEY$ will give the value -1.

66 PRINT formatting and INPUT

Line 30 of this program shows an IF statement IF statements are
discussed in detail in chapter 16.

There are two more input instructions, GET and INKEY. These are exactly
the same in operation as GET$ and INKEY$, but their effect is to give the
ASCII code of the key which you press. GET and INKEY give a number, and
must therefore be assigned to number variables.

10 X = GET
20 Y = INKEY500

If you use either INKEY or INKEY$ with its time delay set to 0, the
computer will not wait for you to press a key, but will merely glance a t
the keyboard to see if any key has already been pressed. This is useful
when you come to write games, as the rest of the program is not held up
waiting for a key to be pressed.

It is important to know that INKEY, INKEY$, GET and GET$ will notice not
just the key you happen to be pressing at the time, but also any key you
have pressed since the last time the computer asked for input. Every time
you press a key it is placed in the keyboard buffer (a buffer is a short term
memory), and it is this buffer which GET and the others actually look at.

However, if you want to ignore any keys previously pressed, and just look
at the keyboard directly, there' s a version of INKEY to do this. This is done
by giving INKEY a negative number, each key having a corresponding
value which you can use. For example, INKEY(-70) only operates when the
J key is pressed. This use of INKEY is discussed in more detail in chapter
25, including a table of all the key codes.

PRINT formatting and INPUT 67

