
25 BASIC keywords

This chapter contains a description of every word in the Electron BASIC
language. These words are cal led ‘ keywords’ .

The syntax of each keyword is shown, and an explanation of the form
used is given below.

{} denote possible repeti ti on of the enclosed
symbols, zero or more times

[] enclose optional i tems

| indicates al ternati ves f rom which only one
should be chosen

<num-const> means a numeric constant such as 4.7 or 112

<num-var> means a numeric variable such as Y or width

<numeric> means ei ther a <num-const> or a <num-var>, or
a combination of these in an expression, l ike
4*X+1

<string-const> means a stri ng enclosed in quotation marks l ike
“ JONCRAWFORD”

<string-var> means a string variable, l i ke A$ or NAME$

<string> means ei ther a <string-const> or a <string-
var>, or an expression such as A$+“ ELK”

<testable condi tion> means something which is ei ther TRUE or
FALSE. Since both TRUE and FALSE have
values, i t is possible to use <numeric> i nstead
of <testable condi tion>

<statement> means any BASIC statement, l ike PRINT or
GOSUB or PROC

<variable name> means any sequence of l etters or numbers
which i s an acceptable variable name

BASIC keywords

ABS Absolute Value

Abbreviation None FUNCTION

Description This function gives the modulus; that is, it strips the
minus sign from the number variable or expression
following it.

Examples PRINT ABS(X) will give 2 if X is -2
deviation = ABS(Temp1-Temp 2)
root = SQR(ABS(Y))

Brackets are optional where sense is not affected.

Syntax <num-var> = ABS (<numeric>)

ACS Arc-cosine

Abbreviation None FUNCTION

Description This function gives the angle, between 0 and PI in
radians, whose cosine is the number variable or
expression following ACS. This expression must be
between -1 and 1 inclusive.

Examples angle = ACS(0.5)
course = ACS(-0.789)
ANGLE = ACS(AD/HY)

Brackets are optional where sense is not affected.

Syntax <num-var> = ACS (<numeric>)

ADVAL SOUND channel buffer status

Abbreviation AD. FUNCTION

134 BASIC Keywords

Description Gives number of free spaces in SOUND buffers. ADVAL
(-5) to ADVAL (-8) correspond to SOUND channels 0 to 3
respectively.

Examples X=ADVAL(-7):PRINT"Free spaces in ch. 2= "“;X
IF ADVAL(-5)<>0 THEN SOUND 2, . . .

Syntax <num-var> = ADVAL(<numeric>)

AND Logical AND

Abbreviation A. OPERATOR

Description This is a logical operator which is most commonly
used in an IF . . . THEN statement to combine two
conditions and obtain a TRUE or FALSE result.

False AND False gives False
False AND True gives False
True AND False gives False
True AND True gives True

If this result is TRUE the computer will go on to the
statement following the THEN. If the result is FALSE
the computer will go on to the statement following the
ELSE, but if the ELSE is absent it will go on to the next
line.

Examples IF X<5 AND X>0 THEN PROCmiddle
IF Z=17 AND Y<7 THEN PRINT“YES” ELSE PRINT "“NO"”

Comments AND may also be used in the conditional part of a
REPEAT . . . UNTIL loop.

Syntax <num-var> = <numeric> AND <numeric>
<num-var> = <testable condition> AND <testable
condition>

BASIC Keywords 135

ASC ASCII code

Abbreviation None FUNCTION

Description This function gives the ASCII character value of the
first character in the string which follows it. If this
string is null it gives -1.

Examples PRINT ASC("JOHN") will give 74 (see ASCII table)
IF ASC(A$) = 78 THEN NEXT.
X = ASC("m")*10

Brackets are optional where sense is not affected.

Syntax <num-var> = ASC (<string>)

ASN Arc-sine

Abbreviation None FUNCTION

Description This function gives the angle, between -PI/2 and PI/2
in radians, whose sine is the number variable or
expression following ASN. This expression must be
between -1 and 1 inclusive.

Examples PRINT ASN(OP/HY)
angle = ASN(0.5)

Syntax <num-var> = ASN (<numeric>)

ATN Arc-tangent

Abbreviation None FUNCTION

Description This function gives the angle, between -PI/2 and PI/2
in radians, whose tangent is the number variable or
expression following ATN.

Examples PRINT ATN(OP/AD)
angle = ATN (-3)

136 BASIC Keywords

Brackets are optional where sense is not affected.

Syntax <num-var> = ATN (<numeric>)

AUTO Automatic line numbering

Abbreviation AU. or FUNC A COMMAND

Description This command gets the computer to print the next
line number and a space each time you press
RETURN.

The command has two optional parameters: the first
is the starting line number, and the second is the
interval between each subsequent line number. The
default value of both of these parameters is 10.

Examples AUTO 100,5 will give line numbers 100, 105, 110, 115,
etc.
AUTO by itself will give line numbers 10, 20, 30, 40,
50, etc.

Comments The largest allowable line number is 32767, and the
largest allowable interval is 255.

You must press ESCAPE to get out of the AUTO mode.

Syntax AUTO [<num-const> [, <num-const>]]

BGET# Read a byte from file

Abbreviation B.# FUNCTION

Description Reads a single byte from a previously opened file
whose channel number follows (see chapter on file
handling).

Examples byte = BGET# channel
character = BGET# A

Syntax <num-var> = BGET# <num-var>

BASIC Keywords 137

BPUT# Store a byte to f i le

Abbreviation BP.# STATEMENT

Description Stores a single byte on a previously opened f i le whose
channel number fol lows (see chapter on f i le handl ing).

Examples BPUT# channel, number
BPUT# file, Z MOD 256

Syntax BPUT# <num-var>, <numeric>

CALL Cal l -assembled machine-code subroutine

Abbreviation CA. STATEMENT

Description Used f rom BASIC to cal l a previously assembled
machine-code subroutine. Simi lar in operation to a
PROC, being capable of passing parameters. Used in
preference to a PROC where long calculation is
involved, and speed is at a premium.

Examples 30 CALL &2000

70 fraction = &16A5
80 CALL fraction

150 CALL fraction, string$, number, integer%, ?byte

Syntax CALL <numeric> { Pì ,<num-var> | <string-var>}

CHAIN Load and run a program

Abbreviation CH. or FUNC K STATEMENT

Description An instruction which LOADs and RUNs the program
whose ti tle is in the quotes. I f the ti tle is omi tted the
next program on the tape wi l l be loaded. Can be used
in one program to load another. NB al l variables
except the resident integer variables are cleared.

138 BASIC Keywords

Examples CHAIN “PROG1”
CHAIN ""

Syntax CHAIN <string>

CHR$ Character code

Abbreviation CHR. FUNCTION

Description Gives the character whose ASCII code is the number
variable or expression following CHR$.

Examples PRINT CHR$(32)
A$ = A$ + CHR$(code%)

Brackets are optional where sense is not affected.

Syntax <string-var> = CHR$ (<numeric>)

CLEAR Clear memory

Abbreviation CL. STATEMENT

Description This instruction takes away all the variable names in
use, except the resident integer variables A% to Z%,
and @%.

Examples IF FNcrash > 30 THEN CLEAR

Syntax CLEAR

CLG Clear graphics screen

Abbreviation None STATEMENT

BASIC Keywords 139

Description Fi l ls the graphics screen wi th current graphics
background colour (which can be al tered by the GCOL
instruction). The graphics cursor is ‘ homed’ to 0,0
bottom lef t of graphics screen.

Examples IF X THEN CLG

Comments CTRL P has same ef fect.

Syntax CLG

CLOSE# Close a f i le

Abbreviation CLO.# STATEMENT

Description Tel ls the computer you have completely f inished wi th
the f i le whose channel number fol lows (see chapter on
f i le handl ing).

Examples CLOSE# (Channel)
CLOSE# file1

Comments CLOSE# 0 closes al l f i les.

Syntax CLOSE# <numeric>

CLS Clear text screen

Abbreviation None STATEMENT

Description Fi l ls text screen wi th current text background colour
(which can be al tered by the COLOUR instruction).
The text cursor is homed to 0,0 the top lef t of the text
screen.

Examples IF X THEN CLS

Comments CTRL L has same ef fect.

Syntax CLS

140 BASIC Keywords

COLOUR

Abbreviation C. or FUNC C STATEMENT

Description Used to select text screen foreground and background
colour.

Standard colours, with their logical values, in each
mode are as follows:

Foreground colour Background colour

Logical no. Actual colour Logical No. Actual colour

Modes 0, 3, 4, 6

0 Black (0) 128 Black (0)
1 White (7) 129 White (7)

Modes 1,5

0 Black (0) 128 Black (0)
1 Red (1) 120 Red (1)
2 Yellow (3) 130 Yellow (3)
3 White (7) 131 White (7)

Mode 2

0 Black (0) 128 Black (0)
1 Red (1) 129 Red (1)
2 Green (2) 130 Green (2)
3 Yellow (3) 131 Yellow (3)
4 Blue (4) 132 Blue (4)
5 Magenta (5) 133 Magenta (5)
6 Cyan (6) 134 Cyan (6)
7 White (7) 135 White (7)
8 Flashing black/white (8) 136 Flashing black/white (8)
9 Flashing red/cyan (9) 137 Flashing cyan/red (9)

10 Flashing green/magenta (10) 138 Flashing magenta/green (10)
11 Flashing yellow/blue (11) 139 Flashing yellow/blue (11)
12 Flashing blue/yellow (12) 140 Flashing blue/yellow (12)
13 Flashing magenta/green 141 Flashing magenta/green (13)
14 Flashing cyan/red (14) 142 Flashing cyan/red (14)
15 Flashing white/black (15) 143 Flashing white/black (15)

COLOUR takes one parameter, which is the logical
value of the particular colour required, as given in the
tables..

Examples COLOUR 2

COLOUR 131

BASIC Keywords 141

Comments Colours used in each mode may be changed using
VDU19;.

See chapter 20.

Syntax COLOUR <numeric>

COS Cosine

Abbreviation None FUNCTION

Description This function gives the cosine of an angle, which must
be in radians.

Examples PRINT COS(3.142)
X = COS(y)

Brackets are optional where sense is not affected.

Syntax <num-var> = COS (<numeric>)

COUNT Count characters

Abbreviation COU. FUNCTION

Description Counts the number of characters printed using
PRINT since last carriage return.

Examples 10 PRINT "“Happy Birthday "”;COUNT
20 PRINT "“Happy ”‘“Birthday ";COUNT
>RUN
Happy Birthday 15
Happy
Birthday 9

Comments Different from POS, which gives the position of the
cursor from the left hand margin.

Syntax <num-var> = COUNT

142 BASIC Keywords

DATA Data i n program

Abbreviation D. STATEMENT

Description This enables you to store information in a program
and to recal l i t using a READ i nstruction. The
information can be stri ng or numeric. (See chapter on
READ and DATA).

Examples 10 READ A,B$,century
20 DATA 3,GEORGE,18

Syntax DATA <str-const> | <num-const> | <num-var> { Pì ,
<str-const> | <num-const> | <num-var>}

DEF Def ine function or procedure

Abbreviation None STATEMENT

Description Informs the computer than an FN or PROC is about
to be def ined. (See chapters on procedures and
functions.)

Examples 10 DEF FNdouble(X) = X*2
10 DEF PROCdouble
20 X = X*2
30 ENDPROC

Syntax DEF FN| PROC <name>|(<stri ng-var> | <num-var{ Pì ,
<string-var> | <num-var>})]

DEG Degrees

Abbreviation FUNC H FUNCTION

Description Converts radians into degrees.

Examples angle = DEG(PI/6)
angle = DEG(ACS(0.78))

BASIC Keywords 143

Brackets are optional where sense is not affected.

Syntax <num-var> = DEG <numeric>

DELETE Delete program lines

Abbreviation DEL. COMMAND

Description This command will delete a section of program from
the first line number stated to the second inclusive.
Cannot be used in a program.

Examples DELETE 100,150

Comments To delete a single line, just type the line number and
press RETURN .

Syntax DELETE <num-const>, <num-const>

DIM Dimension of an array

Abbreviation None STATEMENT

Description Informs the computer of how much memory to reserve
for a named array. (See chapter on arrays.)

Examples DIM Date$(12,31)
DIM X(100)

Comments DIM is also used to allocate space for machine-code
programs.

Syntax DIM <num-var> | <str-var>
(<numeric>{, <numeric>})
DIM <num-var> <numeric>

144 BASIC Keywords

DIV Integer division

Abbreviation None OPERATOR

Description This tells the computer to divide one number into
another using integer arithmetic; this means the
result will always be a whole number.

Examples 17 DIV 2 gives 8, i.e. the number of times that 2 can be
subtracted from 17 with a positive or zero remainder.

Comments If numbers or variables are used which are not
integers, then they will be truncated before the
division is carried out.

8.1 DIV 2.9 gives 4.

Syntax <num-var> = <numeric> DIV <numeric>

DRAW Draw line on screen

Abbreviation DR. or FUNC D STATEMENT

Description Will draw a line from the previous coordinates of the
graphics cursor to the new ones given, in all graphics
modes (0, 1, 2, 4 and 5). To move the graphics cursor
use the MOVE instruction.

The screen is always 0 to 1279 on the X axis and 0 to
1024 on the Y axis, regardless of which graphics mode
you are in. The line is drawn in the current graphics
foreground colour which can be changed by using the
GCOL instruction.

Examples 10 MODE 4
20 MOVE 0,512
30 DRAW 1279,512

will draw a horizontal line half way up the screen.

See chapter 20.

Syntax DRAW <numeric> , <numeric>

BASIC Keywords 145

ELSE
Abbreviation EL. or FUNC E (See IF)

Description Used to provide an alternative course of action if the
result of an IF statement is false.

Examples IF A=0 THEN PRINT“YES” ELSE PRINT"“NO"”
IF B THEN 100 ELSE 200

Syntax IF <testable condition> THEN <statement> ELSE
<statement>

END
Abbreviation None STATEMENT

Description Can be used to halt execution of a program. Its other
use is to reset TOP after a PAGE move.

Examples PAGE = &1600:END
60 IF finished THEN END

Syntax END

ENDPROC End of procedure

Abbreviation E. STATEMENT

Description This statement must conclude a DEF PROC as it tells
the computer you have finished defining the
procedure.

Examples 100 DEF PROCname
110 REM statement
120 REM statement
130 ENDPROC

Syntax ENDPROC

146 BASIC Keywords

ENVELOPE
Abbreviation ENV. STATEMENT

Description This statement is used in conjunction with the SOUND
statement to control the pitch of a sound. The
ENVELOPE statement is followed by 14 parameters.

ENVELOPE n,s,Pi1,Pi2,Pi3,Pr1,Pr2,Pr3,126,0,0,-126,
126,126

Parameter Range Effect
n 1 to 4 Envelope number

bits 0-6 0 to 127 Length of each step in 1/
100 of a second

s bit 7 0 or 1 0 = auto-repeat the
envelope
1 = no auto-repeat

Pi1 -128 to 127 Change in pitch per step
in section 1

Pi2 -128 to 127 Change in pitch per step
in section 2

Pi3 -128 to 127 Change in pitch per step
in section 3

Pr1 0 to 255 Number of steps in section
1

Pr2 0 to 255 Number of steps in section
2

Pr3 0 to 255 Number of steps in section
3

See chapter 22.

Syntax ENVELOPE <var-num>, <var-num>, <var-num>, <var-
num>, <var-num>, <var-num>, <var-num>, <var-
num>, <var-num>, <var-num>, <var-num>, <var-
num>, <var-num>, <var-num>

BASIC Keywords 147

EOF# End of file check

Abbreviation None FUNCTION

Description This function is used to discover whether the end of
an open file has been reached. The function gives a -1
if the end has been reached and a 0 if not. EOF# must
be followed by the channel number.

Examples IF EOF# (channel) THEN PROCclose
REPEAT . . . :UNTIL EOF#(X)

Syntax <num-var> = EOF#(<var-num>)

EOR Logical exclusive-OR

Abbreviation None OPERATOR

Description This is used in an IF . . . THEN or REPEAT . . . UNTIL
loop to combine two conditions in the following way:

False EOR False gives False
False EOR True gives True
True EOR False gives True
True EOR True gives False

In other words, if the results of the two conditions
combined by an EOR are different then the result is
true.

Examples IF A=6 EOR B < 10 THEN GOSUB 420

Syntax <num-var> = <numeric> EOR <numeric>

148 BASIC Keywords

EQUB

Abbreviation None STATEMENT

Description Used to insert a byte of data into an Assembly
Language program. EQUB can only be used inside the
square brackets enclosing a piece of Assembly
Language.

Examples EQUB 13
EQUB A%

Syntax EQUB <numeric>

EQUD

Abbreviation None STATEMENT

Description Used to insert a double-word (4 bytes) of data into an
Assembly Language program. EQUD can only be used
inside the square brackets enclosing a piece of
Assembly Language.

Examples EQUD 10000000
EQUD F%

Syntax EQUD <numeric>

EQUS

Abbreviation None STATEMENT

Description Used to insert the ASCII values of a string into an
Assembly Language program. EQUS can only be used
inside the square brackets enclosing a piece of
Assembly Language.

BASIC Keywords 149

Examples EQUS "Too big"
EQUS L$

Comments Used, among other things, for printing error messages
in Assembly Language programs. Unlike the
indirection operator $, EQUS does not add a RETURN
(&D) to the end of the string.

Syntax EQUS <string>

EQUW

Abbreviation None STATEMENT

Description Used to insert a word of data (2 bytes) into an
Assembly Language program. EQUW can only be used
inside the square brackets enclosing a piece of
Assembly Language.

Examples EQUW &FFE0
EQUW Z%

Syntax EQUW <numeric>

ERL Error line number

Abbreviation None FUNCTION

Description A function which gives the line number in which the
last error occurred.

Examples X = ERL
REPORT:PRINT " at line ";ERL

Syntax <num-var> = ERL

150 BASIC Keywords

ERR Error

Abbreviation None FUNCTION

Description A function which gives the numeric code for the last
error which occurred. This is useful for error
trapping.

Examples IF ERR=17 THEN CLOSE#(channel)

Syntax <num-var> = ERR

EVAL Evaluate

Abbreviation EV. FUNCTION

Description Mainly used to enable you to type an expression, such
as a mathematical equation, into the computer while
a program is running. The equation is entered as a
string, e.g. A$ = "COS(X/20)", and EVAL(A$) will work it
out.

Examples A$ = "COS(X/20)"
Y = EVAL(A$)

Syntax <num-var> = EVAL (<string>)
<str-var> = EVAL (<string>)

EXP Exponent

Abbreviation None FUNCTION

Description This mathematical function calculates the
exponential e (2.7183 ...) raised to any specified
power.

Examples Y = EXP(X)
i.e. Y = e to the power of X

Syntax <num-var> = EXP (<numeric>)

EXT# Reserved for future use.

BASIC Keywords 151

FALSE

Abbreviation FA. CONSTANT

Description This is a condi tion which the computer understands
to be the number 0. I f the computer decides a certain
condi tion is false i t wi l l represent i t as 0, and wi l l act
accordingly.

Examples REPEAT . . . : UNTIL FALSE
IF A=FALSE THEN . . .

Comments PRINT 1 = 2

gives 0, because 1 is not equal to 2, and so 1=2 is
FALSE.

Syntax <num-var> = FALSE

FN User-def inable function

Abbreviation None Pref ix

Description FN is a pref ix that identi f ies a function, both in a DEF
statement and in a function cal l .

Examples 10 INPUT A
20 answer=FNsquare(A)
30 PRINT answer
40 END
50 DEF FNsquare(number)=number*number

DEF FNe = 2.7182818

Syntax DEF FN <name> [(<num-var>|<str-var>{ Pì , <num-
var>|<str-var>})]

152 BASIC Keywords

FOR

Abbreviation F. STATEMENT

Description FOR is used to initiate the control variable of the FOR .
. . NEXT loop and will always take the following
format:

FOR number or TO STEP
=

(numeric variable) numeric variable) (n or nv) (n or nv)

control variable start parameter finish increment
parameter

If the STEP is omitted it is assumed to be 1.

When executing a FOR . . . NEXT loop the computer
sets the control variable to the start parameter.

Each time NEXT is encountered the computer
increments the control variable and loops back to the
instruction just after FOR. This is repeated until the
control variable is greater than the finish parameter.
NB the increment can be negative.

Syntax FOR <num-var> = <numeric> TO <numeric>
[STEP <numeric>]

GCOL Graphics colour

Abbreviation GC. STATEMENT

Description Used to select graphics screen foreground and
background colour, and to control effect of mixing
colours. Takes two parameters, the second being the
logical value of the colour required, the first the way
in which two colours mix.

Action of first parameters is as follows:

0 Plot the colour specified
1 OR the colour specified with those already on the
screen

BASIC Keywords 153

2 AND the colour speci f ied wi th those al ready on the
screen
3 EOR the colour speci f ied wi th those al ready on the
screen
4 Plot the logical inverse of the colour speci f ied

This mixing is carried out on a bi t by bi t basis. For 1,
2 and 3, each binary digi t in the plotted colour’ s
logical value is ORed, ANDed, or EORed wi th i ts
respective digi t in the screen colour’ s logical value, to
produce the logical colour which is to be plotted on the
part of the screen.

Inversion 4, only involves the plotted colour, al l i ts
binary digi ts being inverted. In bi t by bi t logic, 0 is
false and 1 is true.

The truth tables for OR, AND and EOR are as
follows:

0 OR 0 gives 0
0 OR 1 gives 1
1 OR 0 gives 1
1 OR 1 gives 1

0 AND 1 gives 0
0 AND 0 gives 0
1 AND 0 gives 0
1 AND 1 gives 1

0 EOR 0 gives 0
0 EOR 1 gives 1
1 EOR 0 gives 1
1 EOR 1 gives 0

Examples GCOL 2,1
GCOL RND(5)-1, RND(8)-1
GCOL mix%, 129

Comments Colours used in each mode may be changed using
VDU19;

See chapter 20.

Syntax GCOL <numeric>,<numeric>

154 BASIC Keywords

GET Get code from keyboard

Abbreviation None FUNCTION

Description This instruction causes the computer to read a
character from the keyboard buffer. If there is none,
the computer will wait for a key to be pressed. It then
gives the ASCII code for that key (see ASCII table)
before continuing.

Examples Key = GET

Comments

The keyboard buffer may be flushed by *FX15.

Syntax <num-var> = GET

GET$ Get character from keyboard

Abbreviation GE. FUNCTION

Description This instruction is the same as GET, but gives a string
containing the character before continuing.

Examples Key$ = GET$

Syntax <string-var> = GET$

GOSUB Go to a subroutine

Abbreviation GOS. STATEMENT

Description This instruction tells the computer to go to a
subroutine and start executing instructions form the
specified line number until the instruction RETURN,
when the computer must return to the instruction
immediately after the GOSUB call. No more than 26
nested subroutines are allowed.

BASIC Keywords 155

Examples GOSUB 1000
ON A GOSUB 10, 20 30

Comments It is possible to use an expression, and brackets must
then be used:

GOSUB (10*A)

but this will not work if the program is
RENUMBERed.

Syntax GOSUB <numeric>

GOTO Go to a line number

Abbreviation G. or FUNC G STATEMENT

Description This instruction tells the computer to jump to the
specified line number and start executing instructions
there.

Examples GOTO 100
ON A GOTO 10, 20, 30

Comments It is possible to use an expression:

GOTO (10*A)

but this will not work if the program is RENUMBERed.

Syntax GOTO <numeric>

HIMEM

Abbreviation H. VARIABLE

Description Address pointer containing the address of the lowest
location in memory used by screen display. Its value
may change depending upon which mode you are

156 BASIC Keywords

using. No BASIC instructions or variables are stored
above this point. HIMEM can be altered by the user, to
preserve space for machine-code programs between
BASIC and the screen. HIMEM contains the highest
memory location that BASIC may use. This may be
changed after a MODE statement.

Examples PRINT HIMEM
HIMEM = &4000

Syntax <num-var> = HIMEM

IF Conditional IF

Abbreviation None STATEMENT

Description A word forming part of the IF. . . THEN . . . ELSE
statement. If must always be followed by a testable
condition, and the result of this test (TRUE or FALSE)
will control the subsequent action by the computer.

Examples IF A<5 THEN . . .
IF IQ>140 THEN PRINT"GENIUS"

Comments IF A THEN 110
means
IF A<>0 THEN GOTO 110

Syntax IF <testable condition> THEN <statement>
IF <testable condition> THEN <statement>
[ELSE <statement> | <line number>]

INKEY

Abbreviation None FUNCTION

Description (i) This instruction will wait a specified length of time
for a key to be pressed before continuing. If a key is
pressed, its ASCII code is given but if no key is
pressed a -1 is given. The number in brackets is the
time delay measured in 1/100 sec, and can have any

BASIC Keywords 157

value between 0 and 32767.

Examples key = INKEY(100)

Comments In that thi s instruction and GET, GET$ and INKEY$ wil l
actual l y test the keyboard buf fer. This means that an
INKEY i nstruction wi l l respond to any previously
pressed key whose code has gone into thi s buf fer
(memory), even if you are not pressing i t at thi s
moment.

To get over thi s problem, the keyboard buf fer can be
f lushed using a *FX15,1 i nstruction just before using
INKEY. Also, the autorepeat can be turned off by using
*FX11,0.

Description (i i) In addi tion to the above, the INKEY i nstruction can be
used to test for a single key di rectly. Using a negati ve
number in the brackets, one for each key according to
the table shown below, INKEY gives -1 if the key is
pressed, 0 if i t is not. INKEY used in thi s way does not
read the buf fer — i t reads the key i tsel f . See the table
which fol lows.

Examples IF INKEY(-99) THEN . . .

wi l l be TRUE when the space-bar is pressed.

Brackets are optional where sense is not af fected.

158 BASIC Keywords

Key Number Key Number
A -66 1 -49
B -101 2 -50
C -83 3 -18
D -51 4 -19
E -35 5 -20
F -68 6 -53
G -84 7 -37
H -85 8 -22
I -38 9 -39
J -70 0 -40
K -71 - -24
L -87 ; -88
M -102 : -73
N -86 , -103
O -55 . -104
P -56 / -105
Q -17 SPACE BAR -99
R -52 ESCAPE -113
S -82 CAPS LK -65
T -36 CTRL -2
U -54 SHIFT -1
V -100 DELETE -90
W -34 COPY -106
X -67 RETURN -74
Y -69 ↑ -58
Z -98 ↓ -42

← -26
→ -122

Syntax <num-var> = INKEY (<numeric>)

BASIC Keywords 159

INKEY$

Abbreviation INK. FUNCTION

Description This instruction halts the program, print a ? on the
screen, and waits for some information to be entered
followed by RETURN .

Examples Key$ = INKEY$(100)

Brackets are optional where sense is not affected.

Syntax <string-var> = INKEY (<numeric>)

INPUT

Abbreviation I. or FUNC I STATEMENT

Description This instruction halts the program, prints a ? on the
screen, and waits for some information to be entered
followed by RETURN .

INPUT must be followed by a variable.

Examples INPUT X
INPUT name$, number

Syntax Too complex for a simple description.

INPUT# Input from file

Abbreviation I.# STATEMENT

Description INPUT# is like INPUT, but instead of receiving
information from the keyboard the computer takes it
from a previously opened file. Must be followed by
channel number (see chapter on file handling).

160 BASIC Keywords

Examples INPUT# channel, make$, price
INPUT# C,B,A,Z$

Syntax INPUT# <num-var>, <num-var> | <string-var> { Pì ,
<num-vat> | <stri ng-var>}

INSTR I n stri ng

Abbreviation INS. Includes (FUNCTION

Description This function wi l l give the posi tion of one stri ng
wi thin another, the lef tmost character posi tion being
1. The search normal ly starts f rom the beginning of
the stri ng but an optional thi rd parameter provides
the faci l i ty to start the search f rom any specif ic
character posi tion. The number given by INSTR is the
posi tion of the second stri ng wi thin the f i rst. A search
for a nul l stri ng (“”) wi l l always give 1. I f the search
fai ls (the two stri ngs are not the same at any posi tion)
then 0 is given.

Examples position = INSTR(first$, second$, start)
PRINT INSTR("MONOTONOUS","ON")

wi l l print 2, whereas

PRINT INSTR("MONOTONOUS","ON",3)

wi l l print 6

Syntax <num-var> = INSTR(<string>,<string> [,<numeric>])

INT I nteger part

Abbreviation None FUNCTION

Description This function returns the next whole number below
the value of the number variable or expression i n
brackets. In other words the number i s truncated.

BASIC Keywords 161

Examples INT (1.7) is 1
INT (-1.7) is -2
x=INT(Y)

Brackets are optional where sense is not affected.

Syntax <num-var> = INT <numeric>

LEFT$ Left string

Abbreviation LE. Includes (Left string

Description A function which gives the specified number of
leftmost characters in a string.

Examples PRINT LEFT$("ELECTRON",5)

will give ELECT

A$ = LEFT$(B$,C)

Syntax <string-var> = LEFT$(<string>,<numeric>)

LEN Length of string

Abbreviation None FUNCTION

Description A function which gives the number of characters
(including spaces) in the specified string.

Examples PRINT LEN("Donald Duck")

will be 11

Length=LEN(A$)

Brackets are optional where sense is not affected.

Syntax <num-var> = LEN (<string>)

162 BASIC Keywords

LET

Abbreviation None STATEMENT

Description This is an optional keyword which is used to assign a
value to a variable.

Examples LET X=10 has the same effect as X=10
LET A$="JOHN" has the same effect as A$="JOHN"

Comments May not be used with LOMEM, HIMEM, PAGE and TIME.

Syntax LET <var> = <expression>

LIST

Abbreviation L. or FUNC L COMMAND

Description This command instructs the computer to list the
current program on the screen. It has two optional
parameters which control the first and last lines to be
listed.

Examples LIST 100,200 will list from 100 to 200
LIST ,200 will list up to 200
LIST 100, will list from 100

Comments Since LIST is a command it cannot be used in a
program or in a multi-statement line.

If you press CTRL N beforehand, LIST will list your
program a screen-full at a time. When you want to see
the next screen-full, press SHIFT . This paged mode
can be cancelled using CTRL O.

Syntax LIST [<num-const>[,]<num-const>]

BASIC Keywords 163

LISTO List option

Abbreviation None COMMAND

Description This command must be followed by a number which
controls the way in which a program is LISTed, as
follows:

0 List just as stored in computer’s memory
1 Inserts a space after each line number
2 Indent FOR . . . NEXT loops
4 Indent REPEAT . . . UNTIL loops

Any combination of the above may be obtained by
adding the required values.

Examples LISTO5 will insert a space after the line number and
indent REPEAT . . . UNTIL loops.

Comments Since LISTO is a command it cannot be used in a
program or in a multi-statement line.

Syntax LISTO <num-const>

LN Natural logarithm

Abbreviation None FUNCTION

Description A mathematical function to calculate the natural
logarithm of the given number variable or expression.

Examples X = LN(Y)

Brackets are optional where sense is not affected.

Syntax <num-var> = LN <numeric>

164 BASIC Keywords

LOAD Load program f rom f i le

Abbreviation LO. or FUNC , COMMAND

Description A command which i nstructs the computer to LOAD the
named program from the f i le. I f the name is omi tted
then the next program is loaded.

When the computer pri nts ‘ Loading’ on the screen, the
old program has been deleted and al l variables
cleared except the resident integer variables.

Examples LOAD "BUGZAP!"
LOAD "" loads the next program (f rom tape only)

Comments During LOADing, the computer pri nts up the number
of pages of memory being used.

Syntax LOAD <string>

LOCAL Variable declaration

Abbreviation LOC. or FUNC Q STATEMENT

Description Informs the computer that the named variables are
LOCAL to the PROC or FN i n which they are declared.

LOCAL variables are total ly i ndependent of variables
wi th the same name outside the PROC or FN.

Examples LOCAL I
LOCAL price%

Syntax LOCAL <stri ng-var>|<num-var>{ Pì ,<str i ng-var>|
<num-var>}

BASIC Keywords 165

LOG Common logarithm

Abbreviation None FUNCTION

Description A mathematical function to calculate the common
logarithm of the given number variable or expression.

Examples Y = LOG(X)
rate = LOG(cone)

Syntax <num-var> = LOG <numeric>

LOMEM

Abbreviation LOM. VARIABLE

Description Address pointer containing the address above which
all the BASIC program’s variables are stored. It is
usually set to be the same as TOP, but can be altered
by the user at the start of a program.

Examples PRINT LOMEM
0 LOMEM = &FA2

Comments If LOMEM is changed during program execution the
computer will lose all its BASIC variables

Syntax LOMEM = <numeric>
<num-var> = LOMEM

MID$ Middle string

Abbreviation M. Includes (FUNCTION

Description This function gives a subsection of a string; the
position of the first character of the substring and the
number of characters being specified. If the length is

166 BASIC Keywords

omitted, the whole string to the right of the s tar t
position is given.

Examples PRINT MID$(Main$, start, length)

PRINT MID$("MICROCOMPUTER",6,7)
will be COMPUTE

PRINT MID$("MICROCOMPUTER",6)
will be COMPUTER

X$=MID$(A$,S,L)

Syntax <string-var> = MID$(<string>, <numeric>
[,<numeric>])

MOD Modulo

Abbreviation None OPERATOR

Description This function gives the remainder when an integer
division is carried out.

Examples 5 MOD 2 is 1
55 MOD 5 is 0
-10 MOD 4 is -2
numerator% MOD denominator%

Comments If this function is used with decimal numbers or
variables, these values are truncated before the
division takes place.

4.1 MOD 3.9 is 1.

Syntax <num-var> = <numeric> MOD <numeric>

BASIC Keywords 167

MODE Graphics mode

Abbreviation MO. or FUNC M STATEMENT

Description Here is a l ist of the seven modes and thei r
characteri sti cs:

 Mode Graphics Colours Text
 0 640 × 256 2 80 × 32
 1 320 × 256 4 40 × 32
 2 160 × 256 16 20 × 32
 3 Text only 2 80 × 25
 4 320 × 256 2 40 × 32
 5 160 × 256 4 20 × 32
 6 Text only 2 40 × 25

This instruction tel ls the computer to change screen
mode. Changing mode clears the screen and must not
be used wi thin a PROC or FN. MODE resets the value of
HIMEM.

Examples MODE 0
MODE x
10 MODE mode

Comments Text coordinates change f rom mode to mode, but
graphics coordinates are scaled to be the same in al l
graphics modes: 0 to 1279, 0 to 1023.

Syntax MODE <numeric>

MOVE Move graphics cursor

Abbreviation MOV. STATEMENT

Description This instruction moves the graphics cursor to any
posi tion, on or of f the screen.

Examples MOVE 640,52
10 MOVE X,Y

168 BASIC Keywords

Comments The graphics origin may be moved to any position on
or off the screen by using the instruction

VDU 29,X;Y;

where X,Y are the coordinates you wish to become 0,0.

See chapter 20.

Syntax MOVE <numeric>, <numeric>

NEW New program

Abbreviation None COMMAND

Description This command deletes a program from the computer’s
memory by adjusting certain internal pointers. A
program can be retrieved by typing OLD which resets
the internal pointers, provided no new program lines
have been entered and no new variables have been
created. Since it is a command it cannot be used in a
program or multi-statement line.

Examples NEW

Syntax NEW

NEXT

Abbreviation N. or FUNC N STATEMENT
Description This is used to step the control variable in a FOR . . .

NEXT loop. The control variable after the NEXT is
optional (see FOR).

Examples NEXT X%
NEXT loop
NEXT

Syntax NEXT [<num-var>] {, <num-var>}

BASIC Keywords 169

NOT Logical NOT

Abbreviation None FUNCTION

Description Normally used in conjunction with a testable
condition to reverse the logic of the result, i.e. TRUE
becomes FALSE and FALSE becomes TRUE.

Examples IF NOT(A=5) THEN money = 70

Comments TRUE and FALSE are represented as -1 and 0
respectively.

NOT 0 is -1, NOT -1 is 0.

Beware of trying to use NOT with other values for
TRUE. NOT1 is -2, which still acts as TRUE.

Syntax <num-var> = NOT <numeric>
<testable condition> = NOT (<testable condition>)

OLD Old program

Abbreviation O. or FUNC O (includes RETURN) COMMAND

Description This command is used to recover a program which has
recently been deleted by NEW, or by pressing the
 BREAK key, or CTRL BREAK .

Examples OLD

Syntax OLD

170 BASIC Keywords

ON

Abbreviation None STATEMENT

Description This instruction can be used in conjunction wi th
GOTO, GOSUB and ERROR.

Fi rstl y GOTO and GOSUB.

ON X GOTO 100, 300, 350, 470

I f X=1 then the program wi l l go to 100. I f X=2 then i t
wi l l go to 300. I f X=3 then i t wi l l go to 350 and so on.

ON X GOSUB 475, 205, 310

I f X=1 then the program wi l l ‘gosub’ 475. I f X=2 then
it wi l l ‘ gosub’ 205 and so on.

An ELSE can be included at the end to trap out of
range values wi thout causing an error.

ON X GOTO 70, 190, 310 ELSE ENDPROC

Secondly ERROR

ON ERROR GOTO 1000
ON ERROR RUN
ON ERROR PROCerror

This instruction is used for error trapping. This
enables the program to deal wi th errors, rather than
letting the computer hal t the program and pri nt up
an error message.

Comments Errors may be accepted once again by typing

ON ERROR OFF

when the computer wi l l hal t and pri nt messages as
usual .

BASIC Keywords 171

Syntax ON <num-var> GOTO <numeric>,{ Pì ,<numeric>}
or
ON <num-var> GOSUB <numeric>{ Pì ,<numeric>}
or
ON ERROR <statement>
or
ON ERROR OFF

OPENIN Open input f i le

Abbreviation OP. FUNCTION

Description This function opens a f i le f rom the current f i l ing
system, e.g. cassette to the computer and returns the
channel number al located by the computer’s f i le
system. If the f i le does not exist then a 0 (FALSE) is
returned. The f i le is opened for i nput only. See
chapter on f i le handl ing.

Examples file = OPENIN "“SCREENLOAD"
X = OPENIN A$

Syntax <num-var> = OPENIN (<string>)

OPENOUT

Abbreviation OPENO. FUNCTION

Description This function opens a f i le f rom the computer to the
current f i l ing system, e.g. cassette and returns the
channel number al located by the computer’s f i le
system. If the f i le does not exist then one wi l l be
created. I f a f i le of the same name al ready exists then
one wi l l be deleted and a new one created. The f i le is
opened for output only.

Examples file = OPENOUT "SCREEND"
X = OPENOUT A$

Syntax <num-var> = OPENOUT (<string>)

172 BASIC Keywords

OPENUP Open file for update

Abbreviation None FUNCTION

Description This function opens a file from the current filing
system, e.g. cassette to the computer, in the same way
as OPENIN. The file is opened for input and output.

Examples edit = OPENUP "“Accounts"
Z = OPENUP name$

Syntax <num-var> = OPENUP (<string>)

OPT Assembly option

Abbreviation None STATEMENT

Description Used to select whether error messages are reported,
or listings are given during assembly of a machine-
code subroutine. OPT can only be used inside the
square brackets enclosing a piece of Assembly
Language.

It may take eight different values of parameter.

OPT 0 Report no errors, list no machine-code.
OPT 1 Report no errors, list the machine-code.
OPT 2 Report any errors, list no machine-code.
OPT 3 Report any errors, list the machine-code.

OPT 4 to OPT 7 are the same as OPTs 0 to 3 except tha t
the machine-code is generated at the origin O%
instead of the program counter P%.

Examples 50 OPT 2
100 FOR I=0 TO 3 STEP 3
110 [OPT I
120
130]
140 NEXT

BASIC Keywords 173

Comments The second example above is commonly used in two-
pass assembly, which will always give errors on the
first pass.

Syntax OPT <numeric>

OR Logical OR

Abbreviation None OPERATOR

Description This is a logical operator which combines two testable
conditions in the following way:

False OR False gives False
False OR True gives True
True OR False gives True
True OR True gives True

Examples IF A=5 OR A=10 THEN ...
IF Altitude OR B% THEN ...
IF X<2 OR NOT(Y=4) THEN ...

Syntax <num-var> = <numeric> OR <numeric>

OSCLI Operating System Command Line Interpreter

Abbreviation OS. STATEMENT

Description Used to pass BASIC variables as parameters to
Operating System calls, such as *FX or *KEY. Must be
used with a string, the variables being converted
using STR$. The complete string must be the same as
would be used normally, but without the asterisk.

Examples OSCLI"FX"+STR$ action+","+STR$ parameter
OSCLI"KEY"+STR$ keynumber+keystring$

174 BASIC Keywords

PAGE

Abbreviation PA. VARIABLE

Description Address pointer containing the address above which
the BASIC program is stored. It is usually set to
&E00 on cassette only machine, but can be altered by
the user to locate more than one BASIC program in
memory.

Examples PRINT PAGE
PAGE = &1600

Comments The two least significant hex digits of PAGE are
always zero - it points to the base of a page of
memory, which always contains 256 bytes.

Syntax PAGE = <numeric>
<num-var> = PAGE

PI

Abbreviation None CONSTANT

Description PI has the value 3.1459265 and can be used just like a
number.

Examples circumference = 2*PI*radius
area = PI*radiusˆ2

Syntax <num-var> = PI

BASIC Keywords 175

PLOT Plot graphics

Abbreviation PL. or FUNC P STATEMENT

Description The PLOT i nstruction is used to draw single points,
l ines, dotted l ines and triangles.

PLOT takes the form:
PLOT A,X,Y

which wi l l plot at or to the point X,Y in the manner
determined by the value of the f i rst parameter A .

The ef fect of the value of the f i rst parameter is:

0 Move relative to last point.

1 Draw l ine relati ve in the current graphics
foreground colour.

2 Draw l ine relative in the logical inverse colour.

3 Draw l ine relati ve in the current graphics
background colour.

4 Move to absolute posi tion.

5 Draw l ine absolute in the current graphics
foreground colour.

6 Draw l ine absolute in logical inverse colour.

7 Draw l ine absolute in current graphics background
colour.

High values of A have other effects which are rel ated
to the ef fects given by the values 0 to 7

8-15 As 0-7 but wi th the last point in the l ine omi tted
in ‘ inverting actions’ — eg using GCOL4.

16-23 As 0-7 but wi th a dotted l ine.

24-31 As 0-7 but wi th a dotted l ine and wi thout the
last point on the l ine.

32-63 Are reserved for the Graphics Extension ROM.

64-71 As 0-7 but only a single point is plotted.

176 BASIC Keywords

72-79 Line fill.

80-87 As 0-7 but plot and fill a triangle. When filling
solid triangles with colour the computer fills the
triangle between the coordinates given and the last
two points visited.

88-95 Line fill.

See chapter 20.

Syntax PLOT <numeric>, <numeric>, <numeric>

POINT Point at graphics screen colour position

Abbreviation PO. FUNCTION

Description This function gives the logical colour at the specified
point on the screen. If this point is off the screen then
a -1 is given.

Examples colour = POINT(X,Y)

Comments This function is used in the MARSLANDER program
to test whether the capsule has touched down, and
whether it is on a flat surface.

Syntax <num-var> = POINT (<numeric>, <numeric>)

POS Position of text cursor

Abbreviation None FUNCTION

Description This function tells how far across the text screen the
text cursor is. The value to the right is determined by
the mode, and by the size of text window.

Examples X = POS

Syntax <num-var> = POS

BASIC Keywords 177

PRINT Print on screen

Abbreviation P. or FUNC / STATEMENT

Description This instruction is used for all character output to the
screen.

Examples PRINT "Anywhere"
PRINT A,B,length,moon$,BILL%
PRINT HEIGHT*DEPTH;CHR$127; 99;

PRINT CHR$X; is almost the same in operation and
effect as VDUX, and the two are interchangeable.

Comments PRINT is also used to issue control-codes to the
computer during program execution.

PRINT CHR$9 will move the text cursor forward one
square, for example.

Syntax PRINT {["][,|;]<string>|<numeric>}["][;]

PRINT# Print on file

Abbreviation P.# STATEMENT

Description PRINT# is like PRINT but instead of printing
information to the screen it prints it on to a
previously opened file. Must be followed by channel
number (see chapter on file handling).

Examples PRINT# channel,make$,prices
PRINT# C,B,A,Z$

Syntax PRINT# <num-var>{["][,<numeric>|<string>}

178 BASIC Keywords

PROC Procedure

Abbreviation FUNC X Pref ix

Description This pref ix is used when def ining a named procedure
(see DEF) and to cal l thi s named procedure f rom
anywhere in the program.

Examples PROCrotate
IF . . . THEN PROCfire
DEF PROCfire
PROCvolume(radius,height)

Comments PROC must be fol lowed by a name wi thout any spaces.
Parameters may be passed in brackets.

Syntax DEF PROC <variable-name> [(stri ng-var> |
<num-var> { ["] [,<string-var> | <num-var>}]

PTR# Reserved for future use.

RAD Radians

Abbreviation FUNC J FUNCTION

Description This function gives an angle in radi ans which is
equivalent to the speci f ied angle in degrees. There are
2*PI radians in a ci rcle of 360°.

Examples X = RAD(X)
angle = RAD(angle)
answer = SIN(RAD(angle))

Brackets are optional where sense is not af fected.

Syntax <num-var> = RAD <numeric>

BASIC Keywords 179

READ Read data into variable(s)

Abbreviation None STATEMENT

Description This instruction tells the computer to copy
information from a DATA statement into the variables
which follow the READ instruction. The types of
variables must match; numbers must be copied into
numeric variables and strings into string variables.
See DATA and chapter on READ and DATA.

Examples READ name$,Tel,credit

Syntax READ <num-var>|<string-var> {,<num-var>| <string-
var>}

REM Remark

Abbreviation None STATEMENT

Description This instruction tells the computer to ignore the rest
of the program line, thus enabling the programmer to
insert comments in the listing without affecting the
program.

Examples 10 REM Marslander
1035 REM Move Alien

Syntax REM <anything>

RENUMBER Renumber program line

Abbreviation REN. or FUNC 8 COMMAND

Description This command has two optional parameters which
control the way in which a program is to be
renumbered. The value of the first parameter is the
starting line number. The second is the increment for

180 BASIC Keywords

each subsequent line number. If either or both
parameters are omitted they will default to 10.

Examples If a program looks like this

10 xxx
15 xxx
17 xxx
30 xxx
32 xxx

RENUMBER 100,5 will change it to

100 xxx
105 xxx
110 xxx
115 xxx
120 xxx

Comments This command also renumbers all GOTOs, GOSUBs and
any other cross references, except calculated ones like
GOTO (8*W) and GOSUB (100+Z).

Syntax RENUMBER [<num-const> [,<num-const>]]

REPEAT

Abbreviation REP. or FUNC Y STATEMENT

Description This instruction initiates a REPEAT . . . UNTIL loop
which tells the computer to REPEAT a set of
instructions UNTIL a testable condition becomes true.

REPEAT . . . UNTIL loops may be nested up to a depth
of 20.

Examples NOW = TIME:REPEAT UNTIL TIME - NOW >= 500

Syntax REPEAT

BASIC Keywords 181

REPORT

Abbreviation REPO. STATEMENT

Description This instruction will print up on the screen what the
last error was, in words.

Examples REPORT: PRINT " at line ";ERL

Syntax REPORT

RESTORE

Abbreviation RES. or FUNC W STATEMENT

Description This instruction restores the ‘DATA pointer’ to the
beginning of a specified line. The DATA pointer points
to the next piece of information to be read by a READ
instruction. If no line is specified the DATA pointer is
restored to the beginning of the first DATA instruction
in the program.

Examples RESTORE
RESTORE 2500

Syntax RESTORE <numeric>

RETURN Return from subroutine

Abbreviation R. STATEMENT

Description This instruction informs the computer that it has
reached the end of a subroutine and that it must now
RETURN to the instruction immediately after the
GOSUB at which the subroutine was called. A
subroutine must not be exited other than by using
RETURN.

182 BASIC Keywords

Examples RETURN
IF A=0 THEN RETURN

Comments Not to be confused with the RETURN key.

Syntax RETURN

RIGHT$ Right string

Abbreviation RI. Includes (FUNCTION

Description A function which gives the specified number or right-
most characters in a string.

Examples PRINT RIGHT$("FLAVOUR", 3) will give OUR.

Syntax <string-var> = RIGHT$(<string>,<numeric>)

RND Random number generator

Abbreviation None FUNCTION

Description This function, which may be followed by a number in
brackets, returns a random number.

RND by itself generates a random whole number
between -2147483648 and 2147483647

RND(-X) gives the value -X and resets the random
number generator to a number based on X.

RND(0) repeats the last random number given by
RND(1).

RND(1) generates a random number between 0 and
0.999999.

RND(X) generates a random whole number between
(and possibly including) 1 and X.

The brackets are compulsory and must immediately
follow the word RND with no intervening space.

BASIC Keywords 183

Examples X = RND(10)

Syntax <num-var> = RND [(<numeric>)]

RUN

Abbreviation FUNC R (includes RETURN) STATEMENT

Description This instruction makes the computer initiate
execution of the numbered program lines in its
memory. It also clears all variables except the
resident integer variables.

Examples RUN
IF velocity > 100 THEN RUN

Comments A program can be RUN without clearing the variables
by using the command GOTO, followed by the first line
number.

Syntax RUN

SAVE

Abbreviation SA. or FUNC . STATEMENT

Description This transfers the program from the computer’s
current program area (between the system variables
PAGE and TOP) on to cassette, and in future
expansions, disc as well. When used with tape, SAVE
must be followed by a name of up to 10 characters,
inside quotation marks.

Examples SAVE "BUGZAP!"

Syntax SAVE <string>

184 BASIC Keywords

SGN Sign

Abbreviation None FUNCTION

Description This function tells you whether the specified number,
variable or expression is positive, zero or negative.

The function gives:

-1 for a negative number
0 for a zero
+1 for a positive number

Examples X = SGN(Y)

Brackets are optional where sense is not affected.

Syntax <num-var> = SGN (<numeric>)

SIN Sine
Abbreviation None FUNCTION

Description This function gives the sine of an angle, which must
be in radians.

Examples PRINT SIN(3.142)
X = SIN(y)

Brackets are optional where sense is not affected.

Syntax <num-var> = SIN(<numeric>)

SOUND

Abbreviation SO. STATEMENT

Description Makes the computer generate a sound on the internal
loudspeaker.

BASIC Keywords 185

The format is:

SOUND Q, A, P, D

Q is the channel number, 0 to 3.

A is the envelope number, 0 to 4. If A is 0 then tha t
sound channel is turned off. If A is negative (-1 for
example) then a pure tone is produced.

P is the pitch, 0 to 255.

D is the duration, 1 to 255 in twentieths of a second.

See chapter 22.

Syntax SOUND <numeric>, <numeric>, <numeric>, <numeric>

SPC Space

Abbreviation None (See PRINT, INPUT)

Description This statement is used in conjunction with PRINT or
INPUT to give the specified number of spaces. This
number may not be greater than 255.

Examples PRINT "Name";SPC(10);"Tel.";SPC(10);"CREDIT"
INPUT "Amount" SPC(3) A

Brackets are optional where sense is not affected.

Syntax PRINT SPC (<numeric>)
INPUT SPC (<numeric>)

SQR Square root

Abbreviation None FUNCTION

Description This function gives the square root of a positive
number.

186 BASIC Keywords

Examples X = SQR(Y)
ans = SQR(ABS(NUMBER))

Brackets are optional where sense is not affected.

Syntax <num-var> = SQR (<numeric>)

STEP

Abbreviation S. or FUNC S (See FOR)

Description This is part of the FOR . . . TO . . . STEP . . . NEXT
statement. The number following STEP is the amount
by which the control variable is incremented in each
loop, and can be positive or negative, integer or real.

Examples FOR X=0 TO 50 STEP 5
FOR I=10 TO 0 STEP -1
FOR J=7 TO 11.3 STEP Z*.7

Syntax FOR <num-var> = <numeric> TO <numeric>
[STEP <numeric>]

STOP

Abbreviation None STATEMENT

Description This instruction has the same effect as END but it
prints the message STOP, and the line number, on the
screen.

Examples IF P > Temp THEN STOP

Syntax STOP

BASIC Keywords 187

STR$ String

Abbreviation STR. FUNCTION

Description This function converts any number or expression in
the brackets into a string. STR$ has an opposite effect
to that of VAL.

Examples A$ = STR$(X)
B$ = STR$(-1.23)

Brackets are optional where sense is not affected.

Syntax <string-var> = STR$ (<numeric>)

STRING$

Abbreviation STRI. Includes (FUNCTION

Description This instruction produces a long string consisting of a
specified number of copies of a shorter string.

Examples Line$ = STRING$(40,"-")

Syntax <string-var> = STRING$ (<numeric>,<string>)

TAB

Abbreviation None (See PRINT, INPUT)

Description Used with either PRINT or INPUT to set the position of
the text cursor on the screen.

TAB(X) will move the cursor forward to position X on
the current line. X can be between - and 19, 0 and 39,
or 0 and 79 depending upon which mode is in use.

188 BASIC Keywords

TAB(X,Y) will move the cursor directly to position X,Y.
The text cursor has its origin 0,0 at the top left. If a
text window is in use, then TAB will treat the top left
corner of that as 0,0.

Examples PRINTTAB(6,11); "HELLO"
INPUT "How much" TAB(10), cost

Comments The brackets are compulsory, and there must be no
space between TAB and (.

Syntax PRINT TAB(<numeric>, [,<numeric>])
INPUT TAB(<numeric>, [,<numeric>])

TAN

Abbreviation T. FUNCTION

Description This function gives the tangent of an angle, which
must be in radians.

Examples PRINT TAN(PI/2)
ratio = TAN(.6)

Brackets are optional where sense is not affected.

Syntax <num-var> = TAN<numeric>

THEN

Abbreviation TH. or FUNC T (See IF)

Description Provides the course of action if the result of an IF
statement is true.

It is an optional keyword, but the program is neater
and easier to follow when it is left in.

BASIC Keywords 189

Examples IF A = B THEN PROCab

Comments THEN is not optional when assigning certain resident
variables such as TIME, and when GOTO is omitted.

Syntax IF <testable condition> THEN <statement> [ELSE
<statement>]

TIME

Abbreviation TI. VARIABLE

Description An integer variable which is incremented every
hundredth of a second. It serves as an elapsed time
clock, and can be set to any initial value by the user.

Examples TIME =0
T% = TIME
PRINT T%

Syntax TIME = <numeric>
<num-var> = TIME

TO

Abbreviation None (See FOR)

Description Used in the FOR . . . NEXT loop to set the limiting
value of the control variable.

Examples FOR I = 0 TO 11

Syntax FOR <num-var> = <numeric> TO <numeric> [STEP
<numeric}]

190 BASIC Keywords

TOP

Abbreviation None VARIABLE

Description Address pointer containing the address of the first
free memory location after the top of the BASIC
program. TOP-PAGE will give the length of your BASIC
program in bytes.

Examples PRINT TOP-PAGE

Syntax <num-var> = TOP

TRACE

Abbreviation TR. STATEMENT

Description Debugging device which prints BASIC line numbers
in order or execution. Is turned on by TRACE ON, and
off by TRACE OFF. TRACE X will only give line numbers
below X.

Syntax TRACE ON OFF <numeric>

TRUE

Abbreviation None CONSTANT

Description This is a condition which the computer understands
to be the number -1. If the computer decides a certain
condition is true, it will represent it as -1, and will act
accordingly.

Examples IF A=TRUE THEN . . .
Test = TRUE

BASIC Keywords 191

Comments In practice, any number other than 0 is taken by the
computer to be TRUE. Care is needed though. NOT(-1)
is 0. NOT(1) is -2. This is because the NOT function
simply inverts the binary digits, and does not consider
them true or false at all.

Syntax <num-var> = TRUE

UNTIL

Abbreviation U. or FUNC U (See REPEAT)

Description Conditional part of REPEAT . . . UNTIL loop. The loop is
executed until the conditional statement after UNTIL
goes true.

Examples REPEAT
xxx
xxx
UNTIL X=7

REPEAT These are REPEAT
xxx the same xxx
xxx and will xxx
UNTIL 0 loop forever UNTIL FALSE

Syntax UNTIL <testable condition>

USR

Abbreviation None FUNCTION

Description Used from BASIC to call a previously assembled
machine-code function. Similar in operation to an FN,
but is not able to pass parameters. Used in preference
to an FN where long calculation is involved, and speed
is at a premium.

192 BASIC Keywords

Examples X = USR(&1750)

20 address = &30A9
30 PRINT USR(address)

Comments See chapter on assembler.

Syntax <num-var> = USR (<numeric>)

VAL

Abbreviation None FUNCTION

Description Gives the numeric part of a string as a number. The
string must start with +, -, or a number, otherwise 0
is given.

Examples number = VAL(-762*12)

will put number equal to -762.

Syntax <num-var> = VAL(<string>)

VDU

Abbreviation V. or FUNC V STATEMENT

Description VDU has almost the same function as PRINT CHR$. I t
can be used to give any character or control code from
the ASCII table in Appendix F.

Examples VDU5 Link text and graphics cursors.
VDU8 Move text cursor back one square.
VDU23 Re-define character.

Comments Sends code directly to the VDU drivers. Is quicker to
type than PRINT CHR$.

PRINT TAB(X,Y) is equivalent to
VDU 31,X,Y

BASIC Keywords 193

Syntax VDU <numeric> {, | ; <numeric>} [;]

VPOS

Abbreviation VP. FUNCTION

Description Gives the distance of the text cursor from the top of
the screen or text window.

Examples Y = VPOS
PRINT VPOS

Syntax <num-var> = VPOS

WIDTH

Abbreviation W. STATEMENT

Description Sets the width used by the computer to print on the
screen. This is normally unlimited, and the computer
runs on to the next line at the right boundary of the
screen or text window.

Examples WIDTH 10 will cause the text to be printed in a column
10 characters wide.

Syntax WIDTH <numeric>

194 BASIC Keywords

