
20 Graphics

Introduct ion
This chapter deals wi th the VDU sof tware − anything to do wi th how
things are put on to the screen (ie the television or moni tor). What ‘modes’
are and why they are there is covered f i rst, fol lowed by a section on
wri ting text and then detai l s on the graphics routines. Lastly the palette
is covered. All the individual VDU commands are l i sted for reference in the
next chapter.

Modes − what are they and why?
The screen displays things in any one of seven modes, label led f rom MODE
0 up to MODE 6. To change mode is easy − j ust type MODE fol lowed by the
mode number you want. For example

MODE 2 RETURN

changes the display to mode 2. As wi th al l VDU commands, i t can be used
as a l ine in a program, and as i t is a good idea to make sure your program
starts of f in the right mode, have i ts f i rst l ine looking something l i ke this:

10 MODE 1

Changing mode changes four things:
− The number of characters you can get on the screen.
− The number of pixels (dots) the graphics can display (and hence the

resolution of the graphies).
− The number of colours avai lable at any one time on the screen.
− The amount of memory lef t for programs.

A table giving detai ls of these is l isted below.

No of No of No of Memory
Mode characters graphics pixels colours used

0 80 × 32 640 × 256 2 20K
1 40 × 32 320 × 256 4 20K
2 20 × 32 160 × 256 16 20K
3 80 × 25 (text only) 2 16K
4 40 × 32 320 × 256 2 10K
5 20 × 32 160 × 256 4 10K
6 40 × 25 (text only) 2 8K

If you don’ t understand the ‘ memory used’ column then don’ t worry −
basical ly the more detai l and colours avai lable in the mode, the more
memory the screen uses and the less there is avai lable for programs. The
word ‘ colour’ is used rather loosely to include the f lashing colour ef fects.

Try the di f ferent modes out to see the di f ferences. Modes 3 and 6 are for
text only − no graphics can be done in these modes (nothing wi l l actual l y
go wrong − i t just won’ t appear).

Why have modes? Di f ferent programs have di f ferent requi rements − some
just need simple text output and mode 6 then leaves f ree as much
memory as possible for the program. Others, such as games, need lots of
colours and graphics detai l . The modes avai lable give a good range across
thi s spectrum.

Writing text
The COLOUR command and text windows
When a letter is wri tten to the screen i t has foreground and background
colours − the colours of the ink and the paper. When the machine is
turned on, i t is always whi te foreground on black background. Colours (or
more strictly logical colours − see the section on the palette) are label led
from 8 upwards. To take a def ini te mode for simpl ici ty, mode I has four
colours label led f rom 8 to 3. Try the fol lowing:

MODE 1 RETURN

This puts you in mode I wi th whi te text on black background.

90 Graphics

COLOUR 1 RETURN

This sets the foreground colour to number 1 (red). Text after this
command is red on black.

COLOUR 130 RETURN

This sets the background colour to number 2 (yellow). Text after this is
now red on yellow, and clearing the screen with CLS makes the entire
screen yellow. Why 130? Because to change the background instead of the
foreground colour you must add 128 to the colour number. Thus, to get
background colour 2 (above), add 128 to give 136.

Changing mode resets the colours to white on black. As said before, any
VDU commands (including COLOUR, GCOL, MOVE, DRAW etc) can be either
typed straight (as a ‘direct command’) or used as part of a BASIC
program.

Addresses on the text screen
Each letter position has its own address in the usual columns and rows
format. The column numbering is from left to right starting from column

�
and the rows, as for all VDUs, are labelled from the top (row 8)

downwards. How many rows and columns there are depends on the mode
− the drawing below shows the labelling for mode 6.

The text screen for mode 6

0
0

X

Y

24

39

Graphics 91

The cursor may be positioned to any part of the screen with the TAB(X,Y)
command, thus the following program prints out a diagonal line of As.

10 MODE 1
20 FOR I%=0 TO 20
30 REM The next line positions the text cur
sor to the position col.=I%+5 row=I%
40 REM and prints the letter A at this pos
ition
50 PRINT TAB(I%+5,I%);"A"
60 NEXT I%
70 END

Text windows
Normally, the text may appear anywhere on the screen. However a text
window may be set, which allows the text to appear only inside the
window. To do this, the VDU 28 command is used as follows:

VDU 28 ,a,b,c,d

where a,b is the bottom left and c,d the top right position inside the
window (see the drawing below).

a

c
b

Text
window

d
0

31

19

Nothing outside the text window is affected by text commands, such as
screen clearing, scrolling, cursor positioning etc. Note that the TAB(X.Y)
measures from the position of the top left of the current window. Try the
following program

92 Graphics

10 MODE 1
20 REM Set up a text window only 6 characte
rs square
30 VDU 28,5,10,10,5
40 REM Change the background colour to
colour 1 (red)
50 COLOUR 129
60 REM Now clear the text screen to red to
see where it is
70 CLS
80 REM Demonstrate scrolling
90 FOR I%=1 TO 20 : PRINT I% : NEXT I%
100 REM lastly, show position of character
(2,2) relative to text window
110 PRINT TAB(2,2);"*"
120 END

Both text and graphics windows are removed by VDU 26.

Defining your own characters
Each character is an 8 by 8 matrix of dots (pixels). All the normal letters,
numbers and punctuation marks are defined, but it is possible to define
your own. 256 bytes of RAM are set aside fob the definitions of characters
whose codes are from 224 to 255. Character definitions are entered thus:

VDU 23 ,CODE,L1,L2,L3,L4,L5,L6,L7,L8

where CODE is the code of the character to be defined (it is then printed
using either VDU CODE or PRINT CHR$(CODE);) and

L1 is the bit pattern of the top row
L2 is the bit pattern of the second row from top, and so on until . . .
L8 is the bit pattern of the bottom row.

What is a bit pattern? Each dot in any one row is given a number, and the
bit pattern is the sum of the numbers corresponding to those bits in
foreground. These numbers, labelling the bits from left to fight, are 128
(for the leftmost pixel), 64, 32, 16, 8, 4, 2, 1 (for the rightmost pixel).
Specific examples are easiest to understand.

Graphics 93

The space character obviously has no foreground, thus all the bit pat terns
are zero, so to assign the space character to the code of 224, the command

VDU 23,224,0,0,0,0,0,0,0,0

would be used. To define a large X, the top line has the left and rightmost
pixels set only, thus L1 = 128+1=129. The next line has the second from
left and the second from fight pixels set, thus L2=64+2=66. Similarly,
L3=32+4=36 and L4=16+8=24. The fifth through to eighth rows are the
mirror image of the first four, so to define the character 225 as an X, type
the following fine:

VDU 23,225,129,66,36,24,24,36,66,129 RETURN

To display the character, type VDU 225 RETURN

All the characters from 32 to 255 may be defined, but to define those
outside the codes 224-255 it is necessary to allocate more memory for the
fount. This is called ‘exploding the fount’ and is done via FX call number
20.

Here is another example of defining a character. The alien in the
BUGZAP program on the Introductory Cassette was made up on the
matrix in the drawing below.

a
b
c
d
e
f
g
h

12
8

64 32 16 8 4 2 1

16 + 8 = 24
32 + 16 + 8 + 4 = 60

64 + 32 + 16 + 8 + 4 + 2 = 126
128 + 64 + 16 + 8 + 2 + 1 = 219
64 + 32 + 16 + 8 + 4 + 2 = 126

32 + 4 = 36
64 + 2 = 66

128 + 1 = 129

If you use the code 224 for the new character definition, here is the VDU
statement which defines the complete character:

VDU 23,224,24,60,126,219,126,36,66,129 RETURN

By changing L7 and L8, the ‘upright’ alien shown in the drawing below
can be defined. The code for this character must be a different one from
the one above (eg 225), otherwise you will lose the original alien.

94 Graphics

a
b
c
d
e
f
g
h

12
8

64 32 16 8 4 2 1

Have a go at defining the new character, then check the result by
displaying it on the screen with

VDU 225 RETURN

The program below shows how you can produce an animated alien by
using both these characters

10 VDU 23,224,24,60,126,219,126,36,66,129
20 VDU 23,225,24,60,126,219,126,36,36,36
30 MODE 2
40 VDU 23,1,0;0;0;0;
50 REPEAT
60 PRINT TAB(10,16);CHR$(224)
70 NOW% = TIME : REPEAT UNTIL TIME = NOW%+25
80 PRINT TAB(10,16); CHR$(225)
90 NOW% = TIME : REPEAT UNTIL TIME = NOW%+25
120 UNTIL FALSE

Line 40 gets rid of the flashing cursor, which would otherwise be a
distraction. You can retrieve it by typing

VDU 23,1,1;0;0;0 RETURN

Graphics
Introduct ion

The graphics instructions are pretty extensive in the Electron, and they
all have certain things in common. The easiest commands to understand
are the MOVE and DRAW commands, and these will be used for illustration
in the following section. The ideas presented here are true for all graphics
commands (including CLG).

Graphics 95

REMEMBER: when you press BREAK , the computer is in mode 6. This is
not a graphics mode and nothing will happen when you try to plot things.
Always remember to go into a graphics mode to try these things out.
Mode 1 is a good one to start with. Similarly, programs should always
have a MODE command in them, as described at the beginning of this
chapter.

The graphics coordinate system
Firstly, we must describe the coordinate system, that is to say how
positions of points are labelled. This is similar to the text coordinate
system but there are three differences

Firstly the system has the point (0,0) in the bottom left hand comer, and
row numbers are labelled upwards.

Secondly, the top fight hand point on the screen is (1279,1023), the same
in all modes (see the drawing below). This is so that drawing a line from,
say (100,100) to (400,400) always draws a line in the same place, even
though the pixel size varies with the mode.

Lastly, points off the screen are well defined, that is to say, drawing a line
from, say (-300,-400) to (300,400) is perfectly legal, and what appears is
what you would expect − that portion of the line that is in the area viewed
by the screen.

The graphics screen

1023

0
0 1279

Y

X

The graphics cursor is an invisible point on the screen, and is where you
are about to draw from. Move it about the screen with the MOVE
command, and drawing is easiest with the DRAW command. Thus

96 Graphics

MOVE 100,100 RETURN
DRAW 400,400 RETURN

moves the cursor to (100,100) and draws a white line to (400,400). Try lots
of lines in different modes to get the feel of the coordinate system.

The GCOL command
Just as the foreground and background colours of text were defined using
the COLOUR command, so the corresponding colours in graphics are
defined using the GCOL command. Try the following:

MODE 1 RETURN
GCOL 0,1 RETURN
DRAW 300,300 RETURN

This draws a line in colour 1 (red) from (0,0) − where the graphics cursor
is when the mode is changed − to (300,300). However, you will notice tha t
the GCOL command has two numbers after it. The second is just like the
COLOUR command’s number, that is the foreground colour number, or, if
128 is added to it, the background colour number. CLG is the graphics
equivalent of CLS and clears the graphics area to the current graphics
background colour. Thus

GCOL 0,129 RETURN
CLG RETURN

sets the graphics background colour to 1 and clears the graphics screen to
this colour (red). Note that the CLG command is much slower than the CLS
command.

The first number in the GCOL command is unusual. It tells the computer
what to do with the graphics point. The following values are defined:

0 − write the point to the screen (what one would normally expect).
1 − OR the point to be plotted with what is on the screen.
2 − AND the point to .be plotted with what is on the screen.
3 − EOR the point to be plotted with what is on the screen.
4 − INVERT what is on the screen, regardless of what colour is to be

plotted.
5 − leave what is on the screen alone.

Graphics 97

Other values do stripey things which may change wi th di f ferent releases
of the sof tware.

What is meant by OR, AND, EOR and INVERT? Each pixel has a colour
— in mode 1 wi th four colours, thi s is f rom 0 to 3, or 00, 01, 10 and 11 in
binary. What appears on the screen is the resul t of a logical operation
between the pixel you want to plot and what is al ready on the screen. The
OR and the AND are the same as for the BASIC conymands. EOR means
‘ exclusive OR’, which is the same as OR unless both bi ts are one, in which
case the resul t is zero. Again, al l thi s is most easi ly explained by specif ic
examples. The fol lowing assumes that you are in mode 1.

Assume there is a red screen (from GC0L0, 129 :CLG, above). Setti ng GCOL
1,2 sets the foreground colour to 2 (10 in binary), and the colour ‘mode’ to
OR. Drawing a l ine then takes the red pixel on the screen (red colour 1 =
01 in binary), and ORs i t wi th the yel low pixels you are plotting. The pixel
colour that appears is the 01 ORed wi th 10, which is 11, colour 3, which is
whi te. (Try i t).

Given thi s whi te l ine on a red background, set the colour wi th GCOL 2,2,
which has foreground colour 2 and colour mode AND. Plotting a l ine then
takes what is on the screen and ANDs i t wi th the yel low pixel , colour 2 or
10 in binary. Therefore when the l ine is plotting on the red background,
01 (red) is ANDed wi th 10 (yellow), then resul t being 00 (black). I f i t
crosses the whi te l ine 0 the whi te pixels (11) are ANDed wi th the yel low
pixels (10) to give 10 (yel low).

Setti ng GCOL 3,131 sets the background colour to 3 (whi te) and the colour
mode to EOR. Doing a CLG then EORs i ts pixel wi th 11 − that is to say 00
goes to 11, 01 to 10, 10 to 01 and 11 to 00. The screen is thus inverted i n
colour, and repeating the command restores i t to i ts original state.

If thi s does not seem too clear, playing around wi th i t for a l i ttle should
help. I t has two main purposes − setti ng the EOR mode al lows erasure of
a l ine by plotting i t again. In four colour modes, two i ndependent two
colour pictures may be drawn and selectively displayed using the palette.

98 Graphics

The PLOT command
MOVE and DRAW are two special cases of the more general PLOT
command, which is as follows.

PLOT K%,X%,Y%

where K% is the plot mode (ie what you are actually going to do); X% and
Y% are the coordinates of the point to which you are plotting.

K% takes the following values:

0 Draw a line, relative (that is X% and Y% are displacements
from the current graphics cursor position), with no change
on the screen.

1 As 0, but draw in foreground colour.
2 As 0, but invert what is on the screen (colour mode 4

forced).
3 As 0, but draw in background colour.
4 to 7 As 0 to 3 but plot absolute (plot to the point X%,Y%).
8 to 15 As 0 to 7, but plot the last point twice. This is so that when

plotting in inverted modes, the line is continuous.
16 to 31 As 8 to 15 but with a dotted line.
32 to 63 Reserved for the graphics extension ROM.
64 to 71 As 0 to 7, but plot the specified point only.
72 to 79 Fill sideways on background colour (see below).
80 to 87 Plot triangles (see below).
88 to 95 Fill right on non-background colour (see below).
96 to 255 Reserved for graphics extension ROM.

Advanced graphics
Triangle plott ing
This plots a solid triangle using as vertices the point specified, the
graphics cursor and the previous graphics cursor. This can be used to fill
many different shapes.

Sideways f i l l ing on background colour
This plots the line sideways from the specified point, left and right, until
either the edge of the window is reached or the line meets a pixel of
nonbackground colour. The graphics cursor is set to one of the end points,
and the previous graphics cursor (used in triangle plotting) to the other.

Graphics 99

The values of these may be found out via OSWORD call number 13
(decimal). If the point specified is outside the graphics window, or is not
on background colour, then the Y coordinates of the returned points are
different.

Fill ing right
Filling fight until background colour plots fight from the specified point
as far as either the edge of the graphics window or a pixel of background
colour is found. The endpoints (note that it does not go left) are
retrievable via OSWORD 13 in the same way. The endpoint is actually the
first pixel of background colour found, thus if the specified point is
background colour, the endpoint returned is the same as the specified
one.

These two routines together enable a fast routine to be constructed to fill
any enclosed shape.

The VDU command
The VDU command writes a series of bytes to the screen in a similar way
to the PRINT command. Thus the following two commands are exactly the
same:

VDU 12,65,66,67

PRINT CHR$(12); CHR$(65); CHR$(66); CHR$(67
);

(Note the semicolon at the end of the PRINT statement − the VDU
command does not send a carriage return unless you explicitly tell it to).
Most numbers that you need to write to the VDU are single bytes
(characters, for example). However, the graphics coordinates are all
double byte quantities and are sent lower byte first, higher byte second.
The VDU command enables this to be done easily. If a number in the VDU
command is followed by a semicolon, that number is interpreted as a
double byte quantity. If you are unsure of bytes and double bytes, the
quick rule is that if you are doing a graphics operation using the VDU
command, you must always follow a graphics coordinate with a semicolon.
Thfs only applies to the VDU command.

There are two more graphics commands, both of which are done via the
VDU command.

100 Graphics

Graphics windows
Just as text may have a text window defined, outside of which no text
command has effect, so a graphics window may be similarly defined. This
is done with

VDU 24,L%;B%;R%;T%;

where L%,B% and R%,T% are the coordinates of the lower left and upper
right pixels inside the window. Setting a window thus prevents any
plotting outside it. Also, because CLG is just another plot command,
defining a graphics window and doing a CLG is a quick way of plotting
rectangles.

Graphics
window

c
a

b

d

0

1023

12790

The graphics origin
So far it has been said that the point (0,0) is at the bottom left hand
comer of the screen. This point (called the origin) may be specified to five
elsewhere with the origin command.

VDU 29, X%; Y%;

sets the position of the origin on the screen for future graphics commands.
Thus to set the origin in the middle of the screen, use VDU 29,640;512;. I t
does not move the physical position of what is on the screen, the graphics
windows or the graphics cursor.

Graphics 101

Plott ing characters
If VDU 5 is entered, the text and graphics cursors are said to be joined,
that is text appears at the graphics cursor which then moves as the text is
written. This is mainly used for labelling graphs. The graphics cursor
points to the top right pixel of the 8 by 8 character cell to be written, and
is moved 8 pixels along by writing letters. This is seen in the following
program.

1 0 MODE 1
2 0 VDU 5
3 0 REM Al l t h e t e x t n o w a p p e a r i n g i s ' p l o t t
e d '
4 0 DRAW 5 0 0 , 5 0 0
5 0 PRI NT " He l l o mu mmy " ;
6 0 REM t h e l a s t p r i n t s t a t e me n t mo v e d t h e g
r a p h i c s c u r s o r
7 0 REM a s c a n b e s e e n b y t h e n e x t p l o t s t
a t e me n t .
8 0 DRAW 0 , 0
9 0 END

VDU4 restores the text cursor.

The palette
Colours defined through the COLOUR and GCOL commands are more
properly referred to as logical colours. When a mode is changed, these
logical colours appear as certain physical colours, thus in mode 1, colour 1
is red and colour 2 is yellow. The palette allows this to be changed, thus
colour 1 may be made to be blue and colour 2 flashing black on white. To
be exact, we must distinguish between two types of colour:

The logical colour is what is output by the COLOUR commands. The
maximum logical colour is limited by the number of colours available in
the mode.

The physical colour is what appears on the screen. The physical colours
and their numbers are fisted below.

102 Graphics

Physical number Display colour
0 Black
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6 Cyan
7 White
8 Flashing black/white
9 Flashing red/cyan

10 Flashing green/magenta
11 Flashing yellow/blue
12 Flashing blue/yellow
13 Flashing magenta/green
14 Flashing cyan/red
15 Flashing white/black

Each logical colour has a physical colour assigned to it, which may be
changed by reprogramming the palette. This is done as follows:

VDU 19,L%,P%,0,0,0

where L% is the logical colour and P% is the physical colour. So in mode
1, to change all the pixels with logical colour 3 (usually white) to blue
(logical colour 4), the command VDU 19,3,4,0,0,0 is used. Thus while the
very detailed mode 0 is a two colour mode, the colours themselves may be
anything available from the palette, such as green on red. Note also tha t
the palette reprogramming is very fast as it does not involve a lot of the
screen memory being reprogrammed.

Graphics 103

