
Appendix B
Error messages
When the computer is unable to continue executing a program or a
command it will tell you by printing a message on the screen. As shown in
the section on error trapping, these error messages can be suppressed
provided you have write an alternative routine for the computer to
following using ON ERROR . . .

As well as an error message, the computer sets two variables each time
an error occurs:

ERR gives the error number.

ERL gives the lines number at which the error was noticed.

The error messages are listed here in alphabetical order, alongside their
error numbers:

Accuracy lost 23

If you try to calculate trigonometric functions with very large angles you
will lose a lot of accuracy in reducing the angle to within the range of plus
or minus PI radians. When this happens the computer will print the
above message, for example:

PRINT COS(111111111)

Arguments 31

This indicates that there are too many or too few arguments for a given
function of procedure.

Array 14

This indicates that the computer expects an array, but cannot find it.

Bad call 30

Incorrect PROC or FN call.

Bad command 254

Wrongly typed OS command, for example:

*FX20,A

Bad DIM 10

Arrays and memory must be dimensioned wi th a posi tive number of
elements. For example, these wi l l produce errors:

DIM array(-10)
DIM P%-2

Bad hex 28

Hex numbers may only consists of 0 to 9 and A to F.

Bad key 251

Error in * KEY command, including running out of space for key stri ng,
and attempting to re-def ine a key whi le i t i s in use.

Bad MODE 25

You cannot change mode inside a PROC or FN. Nor can you change to a
mode which would make HIMEM l ess than LOMEM.

Bad program

There are a number of occasions when the computer checks a program to
see where i t starts and ends in memory. The above error means that the
computer could not follow the program successful ly and that i t is
therefore aborted. This error is untrappable, which means that you
cannot f ind out at which l ine i t occurred, nor can you retrieve any part of
the program! I t is caused by part of the program becoming over-wri tten
ei ther by a mode change or by another program's BASIC variables.

Block? 218

This is an error generated by the cassette f i l ing system. I t means that the
computer found a non-consecutive block number. Rewind the tape a l i ttl e
way and try again.

Byte 2

Caused in assembly by trying to load a register in immediate mode wi th a
value greater than 255, for example:

270 Appendix B

LDY #266

Can' t mat ch FOR 33

The control variable associated with NEXT is different from tha t
associated with FOR.

Channel 222

This error is generated by the cassette filing system when you try to use a
file channel number which has not been opened.

Dat a? 216

This is an error generated by the cassette filing system which means tha t
the computer has missed some data from a block. Rewind the tape a little
and try again.

DI M space 11

There is not enough memory for the array to be dimensioned.

Di vi si on by zer o 18

You cannot divide by zero.

$r ange 8

Strings may not be placed in the zero-page of memory using the
indirection operator $. This is illegal:

$&70 = "error"

Eof 233

This error is given by the cassette filing system if the end of file is
reached.

Escape 17

The ESCAPE key has been pressed.

Exp r ange 24

You cannot exponentiate a number greater than 88. The following is

Appendix B 271

i l legal :

A = EXP 90

Failed at . . . (Line number)

Caused by renumbering a program wi th a GOTO or GOSUB to a non-
existent l i ne number.

15 X = 12
34 GOTO200
48 END

wi l l give the error message:

Failed at line 20

File? 219

This error is generated by the cassette f i l ing system and means that the
computer was given an unexpected f i le name.

FOR variable 34

The control variable in a FOR . . . NEXT loop must be numeric, for
example:

FOR I$ = 0 TO 20

is i l legal .

Header? 217

This error is generated by the cassette f i l ing system and i t means that the
computer cannot read the f i le's header (which contains the name, block
number, etc). Rewind the tape a l i ttl e way and try again.

Index 3

This error occurs during assembly if you use an incorrect index mode, for
example:

272 Appendix B

LDA(&70,Y)

LINE space

The computer has run out of memory for you to type any extra l ines into a
program.

Log range 22

You cannot f ind the log of a negative or zero number.

Missing , 5

This means that the computer expected to f ind a comma in the l ine, but
didn't do so, for example:

C$=LEFT$(Z$)

Missing " 9

This means that the computer expected to f ind a quote, for example:

CHAIN "MARSLANDER

Missing) 27

This means that the computer expected to f ind a closing bracket, for
example:

PRINT TAB(6,16

Missing # 45

This means that the computer expected to f ind a hash, for example:

?I% = BGET file

Mistake 4

This means that the computer could not understand the instruction, for
example:

10 PRIT

Appendix B 273

-ve root 21

You cannot find the square root of a negative number. This may also
occur with ASN and ACS.

No GOSUB 38

The computer encounters RETURN without having passed a GOSUB.

No FN 7

The computer encounters the end of a function definition without having
passed the DEF FN, for example:

= X

No FOR 32

The computers encounters NEXT without having passed the FOR.

No PROC 13

The computer encounters ENDPROC without having passed the DEF PROC.

No REPEAT 43

The computer encounters UNTIL without having passed the REPEAT.

No room 0

When a program is running, the computer uses the area of memory
between LOMEM and HIMEM to store the BASIC variables. If there is
insufficient room to store any more of these variables then the above error
is given. This most commonly occurs with programs which use arrays in
conjunction with a large screen mode (0, 1, 2 or 3)..

No such FN/PROC 29

The computer encounters an FN or a PROC for which it can find no
definition.

No such l ine 41

Electron BASIC does not allow you to GOTO or GOSUB a line number which
does not exist.

274 Appendix B

No such variable 26

All variables must be declared, either globally by assigning them a value
or locally by using LOCAL. If the computer encounters an un-declared
variable it gives the above error. This error is also given in assembler
when the computer encounters a forward reference to a label.

No TO 36

TO is omitted from the FOR . . . NEXT loop:

FOR I=0

Not LOCAL 12

Local variables may be declared only within an FN or a PROC.

ON range

The control variable for ON GOTO or ON GOSUB is either less than 1 or is
greater than the number of entries in the list of line numbers. For
example, the following will not work if destination = 3.

ON destination 60,120

because there are only two destinations. This error may be accounted for
by using ELSE.

ON destination GOSUB 70,90 ELSE . . .

ON syntax 39

The word ON must be followed either by ERROR, or by a numeric variable
and GOTO or GOSUB. The following will give an error:

ON direction PRINT

Out of DATA 42

The computer encounters a READ instruction for which it cannot find an
entry in the DATA list. RESTORE can be used to move the data pointer back
to the start of a DATA list.

Appendix B 275

Out of range 1

Branch instructions in assembler can access not farther than 127 bytes
forwards or 128 bytes backwards. To branch outside these limits you
must use JMP or JSR.

Silly 0

Given by the automatic line numbering system AUTO or the line
renumbering system RENUMBER if you attempt to use a step size of less
than 1 or more than 255.

String too long 19

The maximum length of a string is 255 characters.

Subscript 15

An array subscript is out of range, either less than 0 or greater than the
value declared in DIM.

Syntax 220

Bad syntax in the cassette filing system.

Syntax error 16

A statement is incorrectly terminated. For example:

LIST. 50

Too big 20

The computer calculates a number which is too big or too small to be
represented.

Too many FORs 35

FOR . . . NEXT loops may be nested to a depth of 10, and the control
variables must all be different.

Too many GOSUBs 37

GOSUB . . . RETURN loops may be nested to a depth of 26.

276 Appendix B

Too many REPEATs 44

REPEAT . . . UNTIL loops may be nested to a depth of 20.

Type mismatch 6

You cannot assign a string to a numeric variable or a number to a string
variable.

Appendix B 277

