
29 Assembly Language

Introduct ion
The computer’ s ‘ brain’ has i ts own language, and that l anguage is not
BASIC. Every time you run a BASIC program, each l ine has to be
transl ated before thi s brain (the computer’ s central processor unit) can
understand i t al l . This translati on is accompl ished by a device cal led an
interpreter, which resides in the computer’ s memory. The action of thi s
device need not concern you, but i t is i tsel f a program wri tten in machine-
code, and machine-code i s the computer’ s own language.

There are 33 di f ferent i nstructions in machine code, which is about hal f
the number of BASIC instructions avai lable on the Electron. Each of
these instructions acts upon one or more of the registers inside the 6502
microprocessor (6502 is the type-number of thi s processor - i t has no
signi f icance). A register is just l ike a byte of memory. The 6502 contains
six registers, f ive of them being 1 byte long, and the last being 2 bytes
long. These registers are not a part of the computer’ s memory map (f rom
location & 0000 to & FFFF(; they l ive an enti rely separate existence in the
heart of the microprocessor. But the machine-code instructions which
control these registers are stored in the computer’ s memory, in the
posi tion on the memory map label led ‘ operating system’ . These
instructions don’ t look much l ike intel l igible commands, for they are
simply binary numbers - 1010100100001010 for example. I t is very
di f f icul t to program using such low-level instructions; even in
hexadecimal they hardl y look any better: A9 0A. This is the reason for
using Assembly Language.

Assembly Language uses a three-letter mnemonic to represent each
machine-code instruction. Each mnemonic is a contraction of the action-
in-words of that instruction.

Take the instruction given above. One of the registers in the
microprocessor is cal led the accumulator (al l the registers wi l l be
described in detai l in a moment).

A9 means ‘ load the accumulator’ .

The mnemonic for this is LDA, thereby giving you a rough guide to its
function, LoaD Accumulator.

The other part of the instruction, 0A, is 10 in decimal. So A9 A0 means
‘put 10 in the accumulator’, and this is written in Assembly Language as:

LDA #10

(The hash (#) tells the computer that it is the 10 which is to be put into
the accumulator, and not the contents of memory location 10. This will be
explained in a moment.)

So, each of the 55 machine-code instructions is assigned a three-letter
assembly mnemonic, which enables you the programmer to understand
the function of each without having to look it up on a chart.

The Electron has another program in its memory, called an assembler,
and this converts the Assembly Language directly into machine-code.
During this assembly process, the computer can help you by giving error
messages and a listing of the machine-code in hex. (If you were
programming the 6502 direct in machine-code there would be no error
messages at all - and just try finding a mistake among a few hundred
machine code instructions!)

The assembler loads the machine-code into memory, and it can then by
run, either as a CALL or USR from BASIC, or by using *RUN.

Registers in the 6502
The 6502 microprocessor has six registers as follows:

Accumulator
The accumulator is the main working register of the processor. Most of
the 55 Assembly Language instructions operate on the accumulator,
which gained its name from the way that results of arithmetic operations
are ‘accumulated’. It is an 8-bit register, meaning that it can store and
operate upon eight binary digits (one byte). Each bit is designated a
number, from 0 for the least significant (rightmost) to 7 for the most
significant (leftmost).

Assembly Language 204

Common operations involving the accumulator are:

- Loading it from memory (the locations &0000 to &FFFF).
- Storing its contents in memory.
- Addition or subtraction.
- Logical functions (AND, OR or EOR).
- Shifting its contents left or right.

Index registers X and Y
The two index registers are each 8-bits long, and are used for the
following:

- To be added to the address used by an instruction. This is called
indexing.

- As general purpose registers for various counting or short term
memory duties.

- In addition to the above, both the accumulator and the two index
registers are used by the Electron to pass parameters to operating
system subroutine calls. This will be explained later.

Program counter
The program counter is the only 16-bit register, and it holds the memory
address of the next instruction to be executed.

Operations involving the program counter are:

- Jump and branch instructions which alter the contents of the PC
and thereby divert the flow of the program. (Much like GOTO in
BASIC.)

Stack pointer
The stack pointer is an 8-bit register, with a ninth bit on the most
significant end which is always set to 1. It is an address pointer which
gives the location in memory of a special kind of data-structure used by
computers called the stack. It can point to addresses between &0100 and
&01FF. The stack is explained later, but in essence it is a section of
memory which has not only a position, but also an order. Thus, data
which is pushed on to the stack in one order, can only be pulled off it in
the reverse order. This sort of memory is called last in first out (LIFO). I t
is used for storing data in which the order is important, e.g. execution
addresses of nested subroutines.

205 Assembly Language

Flags register
The flags register is different from all the others in that it operates as
seven single-bit registers: N, V, B, D, I, Z, C. Each bit signals a condition
in the processor, and certain instructions act upon these conditions
(whether that condition is present, true; or is not present, false).

Each bit acts as follows:

Bit N is set to 1 when the last operation produced a negative result. A
negative result is signified by the most significant bit of a register being 1
(the sign bit). In the case of the accumulator, a result inside it of, for
example, 10010100 would set bit N of the flags register to 1. If the last
operation did not produce a negative result then bit N is reset to 0.

Bit V is set to 1 when the last operation overflowed into the sign bit. As
stated above, the sign bit is bit 7 in the case of the accumulator, so bit V is
set to 1 when there is a carry from bit 6 to bit 7. This is important to
know when using twos complement arithmetic, for it means that an error
has occurred which must be corrected.

Bit B is set to 1 when the BRK command is used (break). (This command
has much the same effect on a machine-code program that ESCAPE has
on a BASIC program.)

Bit D, when set to 1, causes the processor to operate in BCD mode (binary
coded decimal). When reset to 0, the processor works as normal in binary.
BCD is beyond the scope of this book, and need not concern you.

Bit I is the interrupt mask. When it is set to 1, no interrupts are accepted.
Interrupts are also beyond the scope of this book.

Bit Z is set to 1 when the last operation produced a zero result.

Bit C is the carry register. It is set to 1 by a carry from the most
significant bit of one of the registers, usually the accumulator.

These flags are used by the branch instructions, which direct the flow of
the program according to the conditions. For example, BEQ means
‘branch if equal to zero’. The program will branch if the Z bit is set to 1. If
not it will not branch.

Assembly Language 206

Addressing modes
Take a single instruction - you have seen LDA before. Its function is
always to ‘load the accumulator’, but it may load it in different ways and
from different places according to which addressing mode is used.

LDA #10

means ‘load the accumulator with 10’. You know that already. However,

LDA 10

means ‘load the accumulator with the contents of memory location 10.

This is an example of two different addressing modes. The first is
immediate addressing. The instruction uses the data immediately,
without looking for it in memory. The second is zero-page addressing. The
instruction uses the contents of the address specified. It is called zero-
page because the computer’s memory is divided up into 256 pages each of
256 bytes. Any address which has its two most significant hex digits are
zero is said to be in the zero-page of memory. The zero-page extends from
locations &0000 to &00FF.

LDA may also be used with a full 16-bit address:

LDA &30A7

will ‘load the accumulator with the contents of memory location &30A7’.
This addressing mode is called absolute. It can access any location in the
computer’s memory. Notice that the assembler treats numbers as
decimal, unless they are preceded by &.

Immediate, zero-page and absolute are not the only addressing modes,
although they are the most simple to understand.

LDA &1D77,X

is an indexed addressing mode.

The address used by the instruction is &1D77 plus the contents of index
register X. So the accumulator is not loaded from &1D77 but from
&1D77+X. Note that the contents of index register X are added to the
address, and not to its contents.

207 Assembly Language

The index register used can equally well be Y:

LDA &2500,Y

(Note: When using machine-code there are several subdivisions of the
above indexed addressing mode, but using the assembler takes care of all
those for you. However, the assembled machine-code (in hex) will not
always be the same for the same indexed instruction.)

Another still more complicated addressing mode is indirect addressing:

LDA (&1B,X)

The address given after the assembler mnemonic, in this case &1B, must
be a location in the zero-page of memory (or an error will result). This
location is then added to the contents of the X register, to give another
location in the zero-page. The contents of this new location, and the
contents of the location above it, together supply the full 16-bit address of
the location from which the accumulator is loaded. So, if &1B+X contains
&AA, and &1B+X+1 contains &BB, then the accumulator will be loaded
with the contents of memory location &AABB.

The above operation is called pre-indexed indirect addressing; the
indexing is the addition of the X register, and the direction is the use of
the two consecutive locations at the intermediate address as an address
pointer to the actual location used. It is called pre-indexed indirect
because the indexing is done before the indirection. All pre-indexed
indirections must use index register X.

Post-indexed indirect addressing is written in Assembly Language as
follows:

LDA (&27),Y

In this addressing mode, the indirection occurs first. The address given
after the assembler mnemonic, in this case &27, must again be a location
in the zero-page of memory. The contents of this location and the contents
of the location above it together give a 16-bit address. To this 16-bit
address is added the contents of index register Y, and this final address is
the location from which the accumulator is loaded. All post-indexed
instructions must use index register Y.

Assembly Language 208

The above examples show the complete range of addressing modes which
can be used with the instruction LDA. However, there are three more
important addressing modes which are used with certain other
instructions.

All of the branch instructions use a relative addressing mode. BEQ was
mentioned in the description of the flags register; it means ‘branch if
equal to zero’. A branch is an instruction which has an offset:

ZZZ data
BEQ Label
AAA data
BBB data

.Label CCC data
DDD data

In this fragment of program, the triple-letters can be assembler
instructions. When a program is running, the program counter is
incremented one step at a time to point at the next location which is to be
executed. In this example, when BEQ Label is being executed the program
counter will point to the line containing the instruction marked AAA. If
the result of checking the Z flag is that the previous operation did not
produce a negative result then execution will continue at the line
containing AAA. If the previous operation did give a zero result then the
program counter is incremented until it points at the line marked Label.
This program illustrates the use of labels in assembler. They can take any
name you choose (subject to the same limitations as a BASIC variable
name), and are signified by the fact that they must always start with a
full stop.

Branch instructions may branch to labels either forwards or backwards,
but not too far. The actual distances are 128 bytes backwards or 127 bytes
forwards; but remember that these are measured from the next
instruction following the branch, and that each instruction may be either
1, 2 or 3 bytes long. The assembler will soon tell you if you have an
address or label out of range.

The next addressing mode is accumulator addressing, which is used by
only four instructions in the 6502 set. These are ASL, LSR, ROL and ROR
and their action is explained in the reference section. In essence, they
shift the bits of a memory location of the accumulator to the left or right.

209 Assembly Language

ASL &760

means shift the contents of memory location &760 one bit to the left. In
order to apply this instruction to the accumulator, the accumulator’s own
addressing mode is used:

ASL A

means shift the contents of the accumulator one bit to the left. Look up
the four instructions in the reference section for more information.

The final addressing mode which you need to know about is the simplest.
Certain instructions, such as BRK (break) do not need any data or memory
reference at all. These are called implied instructions and they carry out
a simple task, usually on one of the registers; for example CLC meaning
‘clear the carry flag’.

Addressing mode Examples

Immediate LDA #68 LDA #number
Zero-page LDA &9B LDA address
Absolute LDA &8E17 LDA address
Indexed LDA &A06C,Y LDA Table,X
Pre-indexed indirect LDA (&72,X) LDA (pointer,X)
Post-indexed indirect LDA (&00),Y LDA (zero),Y
Relative BEQ Repeat BNE Loop
Implied CLC BRK
Accumulator LSR A ROL A

The examples on the right show the assembler mnemonics used not with
specific addresses, but with BASIC variables. You will find out that this is
a good way of writing assembler subroutines which are to be called from
within BASIC programs by CALL or USR.

One final point about addressing modes. The JMP (jump) instruction is
the only one which allows straight indirect addressing(non-indexed). JMP
is very similar to BASIC’s GOTO. It can take a full 16-bit address and
place this value in the program counter - hence the program jumps to a
new execution address. It is usually used with a label, just like branch,
but without the restriction on distance. In absolute mode it would look
like this:

Assembly Language 210

JMP Label

If you wish to use it in indirect mode then simply enclose the address in
brackets:

JMP(&21A7)

It will then use the contents of the two consecutive locations at &21A7 as
an address pointer to the location to which it will jump.

JMP &21A7
-
-
-

&21A7 &32
&76
-
-

&3276 continue execution.

Entering assembly mnemonics
This section tells you how to write Assembly Language subroutines, and
how to call them from BASIC. You may find it worthwhile, now that you
know about the 6502 processor’s make-up, to read all of the assembly
mnemonic definitions. You will then be able to understand much more
clearly the capability of the processor, and what the short programs in
this section are doing.

Sections of Assembly Language are entered as part of a BASIC program,
separated from the BASIC part by the square brackets [and]. The
general structure of a program containing an assembler routine is:

10 REM BASIC Program
100 [
110 \ Start of assembler mnemonics
200]
210 REM BASIC program continues

211 Assembly Language

Notice that remarks in the Assembly Language section are signalled by a
backslash \. The assembler then knows to ignore them.

Before the routine can be assembled, the computer must be told where it
is to be put in computer memory. So the first line of the BASIC part must
allocate some memory for this purpose, so there are two ways in which
you can do this.

On entering the assembler routine, you assign to the resident integer
variable P%, the value you choose to be the address of the first instruction
of the assembled machine code. P% is the ‘pseudo program counter’, used
by the assembler, to calculate addressed for branch and jump instructions
and as the pointer for the assembled codes. (When O% is not being used).

The two methods for doing this are:

(i) By direct assignment: P% = &2000 for example. The problem with
direct assignment is that you have to ensure that the memory location
chosen is available for use.

The second method gets round this problem.

(ii) By using BASIC DIM instruction. This takes the form DIM P% 100.
Note the use of spaces, and no commas or brackets, to distinguish it from
an array dimension, DIM P% 100 allocates 101 bytes of memory for the
machine-code, which will be stored along with all the BASIC variables
above LOMEM. The number used with the DIM instruction must be large
enough so that sufficient space is reserved to hold all the code, but not so
large as to overlap other items in the memory.

An even better way in which to use DIM is: DIM Q% 100 followed by
P%=Q%. DIM is a convenient way of reserving space for machine code
routines. No check is made to prevent the assembled code from
overrunning the space reserved for it.

Assembly
To get the computer to assemble the routine into machine-code, you
simply RUN the program. To complete the assembly, the program has to
be RUN twice. The reason for this will become clear in a moment. The
assembler pseudo-operator OPT controls the listing and error output
generated on assembly. This operator must be placed in the assembler
routine, usually at the start, and is followed by a number from 0 to 3
which causes the following outputs:

Assembly Language 212

OPT0 No errors printed, no listing given.
OPT1 No errors, but a listing is given.
OPT2 Errors are printed, but no listing.
OPT3 Both errors and a listing are given.

The listing given is of the machine-code, in hexadecimal. The errors are
printed as messages on the screen.

Here’s an Assembly Language routine:

10 DIM Q% 100
20 P% = Q%
30 [OPT 3
40 LDA &70
50 CMP #0
60 BEQ Zero
70 STA &72
80 .Zero RTS
90]

When you RUN this program, the computer will print a listing, and then
the message:

No such variable at line 60

Routines which have forward references to labels (Zero is referred to on
line 60 when the assembler has not yet come across it) will always
generate an error. The answer to this is to inhibit errors the first time
through by using OPT0, and then to RUN a second time to generate the
complete code. This is called two-pass assembly.

The way to do this is to enclose the routine in a FOR . . . NEXT loop as
follows:

10 DIM Q% 100
20 FOR I = 0 TO 3 STEP 3
30 P% = Q%
40 [OPT I
50 LDA &70
60 CMP #0
70 BEQ Zero

213 Assembly Language

80 STA &72
90 .Zero RTS
100]
110 NEXT

On the first time through the loop, I=0 and so there will be no listing and
no error reported. This run allows the computer to identify the forward
referenced label. The second time through the loop, I=3 and hence a list of
compiled code is produced, along with any programming errors. Note tha t
the assignment statement P% = Q% is enclosed within the loop so that it
is reset before each pass.

On running the program, you will see a listing of the assembled machine-
code alongside the Assembly Language mnemonics:

>RUN
0E75 OPT I
0E75 A5 70 LDA &70
0E77 C9 00 CMP #0
0E79 F0 02 BEQ Zero
0E7B 85 72 STA &72
0E7D 60 .Zero RTS

This means that the mnemonics have been successfully assembled, and
the corresponding machine-code has been loaded into addresses &0E75 to
&0E7D. &A5 is stored in location &0E75, &70 in location &0E76, &C9 in
location &0E77, and so on to 60 which is stored in location &0E7D. This
is nine bytes of machine-code in all.

This routine has not yet been executed. To do that, a CALL from BASIC is
required:

CALL Q% RETURN

Nothing is printed on the screen when you do this, and that’s because the
program is trivial; it merely loads a byte from memory location &70 into
the accumulator, and if it isn’t zero it is stored in memory location &72.
There are some points to note about the structure of the Assembly
Language routine:

Assembly Language 214

- When a label is assigned to a line, as at line 90, it must be preceded
by a full stop. When the label is called by an instruction, as at line
70, there must be no full stop.

- Most Assembly Language routines end with RTS (return from
subroutine) which transfers control back to the BASIC interpreter.

- The above routine uses two locations in the zero page of memory.
Only locations &70 to &8F in the zero page may be used by your own
programs; all the remainder is taken up by the Operating System’s
variables, and BASIC’s workspace.

Execution by USR
USR is similar to a BASIC FN (function); it gives a single value.

The format is:

R% = USR(Z)

where Z may be a label pointing to the first assembler mnemonic, or the
address of the first instruction in machine-code. A label is easier to use
since it requires no knowledge of where the machine-code is placed in
memory. When R% = USR(Z) is executed, the least significant byte of each
of the BASIC integer variables A%, X% and Y% is placed into the
accumulator, X register, and Y register respectively. The least significant
bit of C% is placed in the carry flag (bit C of the flags register). A%, X%,
Y% and C% can therefore be used to initialise the 6502 registers before
entry into the assembler routine. Control then passes to the subroutine
pointed to by Z. On returning to BASIC (after RTS), the four bytes
comprising R% will each contain the contents of one of the 6502 registers,
as follows:

R% = PYXA

So R% contains the flags, Y register, X register, and accumulator in tha t
order.

Any or each of these registers may be extracted from R% by setting up a
mask using AND. To get the accumulator, the least significant byte is
required:

Acc = R% AND &FF

Similarly for X, Y:

215 Assembly Language

X = (R% AND &FF00) DIV &100
Y = (R% AND &FF0000) DIV &10000

To get the flags:

10 DIM BLOCK 3
20 !BLOCK = USR(Z)

Then (Acc = BLOCK?0, X = BLOCK?1, Y = BLOCK?2), the flags = BLOCK?3.

Here is a program which uses USR. The Assembly Language routine adds
the numbers held in X% and A%, and gives the result in the accumulator:

10 DIM Q% 100
20 FOR I = 0 TO 3 STEP 3
30 P% = Q%
40 [OPT I
50 .Start STA &80
60 TXA
70 CLC
80 CLD
90 ADC &80
100 RTS
110]
120 NEXT
130 INPUT "First number "A%
140 INPUT "Second number "X%
150 Registers%=USR(Start)
160 Sum% = Registers% AND &FF
170 PRINT "Sum of two numbers is ";Sum%

When RUN, you will see the following:

>RUN
0F0A 8580 OPT I
0F0A 8580 .Start STA &80
0F0C 8A TXA
0F0D 18 CLC
0F0E D8 CLD
0F0F 6580 ADC &80
0F11 60 RTS
First number 11

Assembly Language 216

Second number 12
Sum of two number is 23

The numbers 11 and 12 are entered by the user, and are stored in the
integer variables A% and X%. The USR call tells the computer to s tar t
executing the assembly routine from the label Start. Before this happens,
the least significant byte of A% is placed in the accumulator, and the least
significant byte of X% into the X register. The machine-code
corresponding to the assembler mnemonics is now executed in sequence:

STA &80 stores the contents of the accumulator in memory location &80.

TXA transfer the contents of the X register to the accumulator.

CLC clears the carry flag prior to addition. If this is not done then a
spurious carry may be added to give an incorrect result.

CLD clears the D flag so that the 6502 is working in binary mode.

ADC &80 adds the contents of the accumulator to the contents of memory
location &80, plus the contents of the carry flag; and places the result in
the accumulator.

RTS returns control to BASIC.

Back in the BASIC section, Registers% now contains the four 6502
registers’ contents. The result is in the accumulator, so the least
significant byte of Registers% is placed into Sum%, which is then printed
to give the answer. Note that this routine performs only a single-byte
addition, so any result given in Sum% will be MOD 256.

Execution by CALL
CALL is similar to a BASIC PROC (procedure).

Here is another addition routine:

 10 DIM Q% 100
 20 FOR I=0 TO 3 STEP 3
 30 P%=Q%
 40 [OPT I
 50 .Start CLC
 60 CLD
 70 LDA &80
 80 ADC &81

217 Assembly Language

 90 STA &82
100 RTS
110]
120 NEXT
130 INPUT "First number "number1%
140 INPUT "Second number "number2%
150 ?&80 = number1%
160 ?&81 = number2%
170 CALL Start
180 Sum% = ?&82
190 PRINT "Sum of two numbers is ";Sum%

This program illustrates the use of the indirection operator ?. Indirection
operators are very useful when calling assembly routines.

Here is a list to refresh your memory:

?&80 = J% Will put the least significant byte of J% in
location &80.

!&80 = &12345678 Will put &78 in location &80, &56 in location
&81, &34 in location &82, and &12 in location
&83.

$V% = "FAULT" Will put the string "FAULT" plus a carriage
return (|M) in locations starting at V%. V%
must not be in zero page.

S% = ?&80 Will read the contents of location &80 (1 byte)
into S%.

R% = !&87 Will read 4 bytes from locations &87 to &8A
into R%; &8B being the most significant, &87
the least significant.

R$ = $&2000 Will read a string starting at &2000 into R$.

The addition program shown above has exactly the same effect as the
previous example. In this instance though, the two numbers are stored
into memory in the BASIC part of the program, and are added and the
result stored in the Assembly Language part.

CALL may also be used with parameters, similar to PROC. This takes the
form:

CALL Start,integer%,decimal,string%,?byte

The parameters are separated by commas. Start is a label, but could
equally well be a specific address, &2000 for example. The above CALL

Assembly Language 218

shows that any kind of variable may be passed as a parameter: integer,
real, string, and single-byte. When a CALL is made, the parameters are
assigned to a parameter block, which starts at memory location &600.
The format of this parameter block is:

Address Contents

&600 Number of parameters
&601 1st parameter address (low)
&602 1st parameter address (high)
&603 1st parameter type
&604 2nd parameter address (low)
&605 2nd parameter address (high)
&606 2nd parameter type

There may be any number of parameters, and this number is given in the
first byte of the parameter block. Following this, each parameter’s
address and type is given.

The type is designated by a number:

0 A single byte (e.g. ?location)
4 A 4-byte variable (e.g. Z% or !address)
5 A 5-byte variable (e.g. number)

128 A defined string (e.g. "YES PLEASE") which must end
with &D (RETURN)

129 A string variable (e.g. name$)

The way that the parameter block is laid out, it would seem that the best
way to access the individual parameters is to use indirect addressing.
Unfortunately, the 6502 only allows the zero-page to be used for indirect
address pointers, so here is a routine which transfers the addresses from
the parameter block into free locations in the zero-page:

LDA &600 \ Check the number of parameters.
BEQ End \ If zero then finish.
STA &70 \ If not then store this number.
LDX #0 \ Clear the X register.
LDY #0 \ and the Y register.

.Loop LDA &601, Y \ Take high address of parameter
STA &71,X \ and store it in zero-page.
INX \ Increment X register.

219 Assembly Language

INY \ and Y register.
LDA &601,Y \ Take two address of parameter
STA &71,X \ and store it in zero-page.
INX \ Increment X register
INY \ and Y register
INY \ twice.
DEC &70 \ Decrement number of parameters.
BNE Loop \ If still not zero then repeat.

.End RTS \ Return to BASIC.

This routine stores the address of each parameter in zero-page memory
starting at location &71. 15 parameter addresses may be stored in this
way before the total user zero-page memory is filled. This routine is very
useful if the number of parameters passed to a particular Assembly
Language subroutine is not always the same, for it will only relocate the
addresses of those parameters which exist.

Here this routine is incorporated into another addition program:

10 DIM Q% 100
20 FOR I = 0 TO 3 STEP 3
30 P%=Q%
40 [OPT I
50 .Start CLC
60 CLD
70 LDA &600
80 BEQ End
90 STA &70
100 LDX #0
110 LDY #0
120 .Loop1 LDA &601,Y
130 STA &71,X
140 INX
150 INY
160 LDA &601,Y
170 STA &71,X
180 INX
190 INY
200 INY
210 DEC &70
220 BNE Loop1

Assembly Language 220

230 .End LDX #0
240 STX &2000
250 LDY &600
260 BEQ Finish
270 .Loop2 LDA (&71,X)
280 ADC &2000
290 STA &2000
300 INX
310 INX
320 DEY
330 BNE Loop2
340 .Finish RTS
350]
360 NEXT
370 INPUT"First number "one%
380 INPUT"Second number "two%
390 INPUT"Third number "three%
400 CALL Start,one%
410 Sum%=?&2000
420 PRINT Sum%
430 CALL Start,one%,two%,three%
440 Sum%=?&2000
450 PRINT Sum%
460 CALL Start,one%,two%,three%
470 Sum%=?&2000
480 PRINT Sum%

The parameter block transfer routine ends at line 240, where the addition
routine begins. Notice that the whole routine is CALLed with varying
numbers of parameters, just to prove that it works. The result of adding
the parameters is given in location &2000. However, as with the previous
programs, the result is MOD 256.

Quadruple precis ion addit ion
Integer variables are stored in four consecutive bytes of memory. Groups
of four bytes can be accessed using !, and can be added together. This is
achieved a byte at a time, starting with the least significant, and storing
each successive result:

10 DIM Q% 100

221 Assembly Language

20 FOR I = 0 TO 3 STEP 3
30 P% = Q%
40 [OPT I
50 .Start CLC \ Clear carry for ADC instruction
60 CLD
70 LDX #0 \ Clear X register
80 LDY #4 \ Set Y register to 4 as a counter
90 .Loop LDA &70,X \ Put byte from one% in accumulator
100 ADC &74,X \ Add byte from two%
110 STA &78,X \ Store the result
120 INX \ Increment X register
130 DEY \ Decrement Y register
140 BNE Loop \ If not zero then repeat
150 RTS
160]
170 NEXT
180 INPUT"First number "one%
190 INPUT"Second number "two%
200 !&70 = one%
210 !&74 = two%
220 CALL Start
230 sum% = !&78
240 PRINT"Sum of two numbers is ";sum%

This program will work with positive or negative integers.

Multiplication
The 6502 does not have a multiply instruction. Multiplication is achieved
by adding and shifting, just like ordinary decimal long-multiplication. As
a simple example, take the multiplication of two 4-bit numbers. Such a
multiplication can give an 8-bit result:

(i) Test the rightmost bit of the multiplier. If it is zero then add 0000 to
the most significant end of the result. If it is 1 then add the number to be
multiplied to the most significant end of the result.

(ii) Shift the result one bit position to the right. Repeat (i) for the next bit
of the multiplier.

Applying the above to 1101*1001, the rightmost bit of the multiplier
(1001) is 1. Therefore 1101 is added to the most significant end of the

Assembly Language 222

result:

1101

Shift the result right one bit position:

01101

The next bit of the multiplier is zero, so 0000 is added to the result, and it
is again shifted right.

001101

The next bit is again zero:

0001101

The final bit is 1, so 1101 is added to the result, and the final shift is
performed:

01110101

Notice that for 4-bit multiplication, four shifts are required, 8-bit
multiplication will require eight shifts, 16-bit multiplication 16 shifts, and
so on.

To put the above routine into practice on the 6502, the shift and rotate
instructions are used. Here is a program to multiply two 8-bit numbers:

10 DIM Q% 100
20 FOR I=0 TO 3 STEP 3
30 P%=Q%
40 [OPT I
50 .Start CLD
60 LDA #0
70 STA &72 \ Clear 16-bits
80 STA &73 \ for the result.
90 LDY #8 \ Set Y to 8 as a counter.
100 .Loop LSR &71 \ Shift multiplier right one bit.
110 BBC Noadd \ Test this bit. Branch is zero.
120 CLC \ Clear carry prior to addition.

223 Assembly Language

130 LDA &70 \ Load accumulator with number to be
\ multiplied.

140 ADC &73 \ Add most significant byte of result.
150 STA &73 \ Shift result right, with carry from addition.
160 .Noadd ROR &73 \ Decrement counter.
170 ROR &72 \ Repeat if not zero.
180 DEY
190 BNE Loop
200 RTS
210]
220 NEXT
230 INPUT"First number "one%
240 INPUT"Second number "two%
250 ?&70=one%
260 ?&71=two%
270 CALL Start
280 Product%=?&72 + 256*?&73
290 PRINT "Product of two numbers is ";Product%

This routine is not the most efficient way of multiplying two bytes
together, but it illustrates the method clearly:

Lines 60, 70 and 80 clear the two bytes in memory which will be used for
the result of the multiplication. These locations are &72 (result low byte)
and &73 (result high byte).

Lines 250 and 260 store the numbers to be multiplied in locations &70
and &71. It doesn’t matter which of these is chosen to be the multiplier;
the example uses the number in &71.

Line 90 sets the Y register to 8 as a counter. Because this is an 8-bit
multiplication, eight shifts are required.

Line 100 shifts the multiplier right one bit position. The rightmost bit
falls into the carry where it can be tested.

Line 110 carries out the test. If the C bit is zero then the program
branches to NoAdd; if it is 1 then the addition of the number in &70 to the
result high byte (&73) takes place.

Lines 120 to 150 accomplish this addition, by clearing the carry bit,
loading the accumulator from &70, adding the result high byte, and then
storing back in the result high byte.

Line 160, labelled NoAdd, rotates the result high byte right one byte

Assembly Language 224

position. The carry from the addition in line 140 is entered from the left,
and the rightmost bit falls into the carry.

Line 170 rotates the result low byte right one bit position. The leftmost
bit from the high byte, now in the carry, enters the low byte from the left.

Line 190 decrements the counter, and repeats the above process until the
counter is zero.

The program will give the result of multiplying two positive integers, each
between 0 and 255. You can see how many instructions it takes just to do
this, and can imagine the complexity of a BASIC statement when it is
interpreted into machine-code.

A shorter routine to multiply two bytes uses the accumulator as the result
high byte, and the multiplier as the result low-byte. As each bit of the
multiplier is shifted into the carry to be tested, the leftmost bit of the
multiplier location becomes vacant, so allowing the result to be shifted in.

.Start CLD
LDA #0 \Clear result high byte
LDY #8 \Set shift counter.

.Loop ROR &71 \Shift multiplier right one bit.
BCC Noadd \Test this bit. Branch if zero.
CLC \Clear carry prior to addition.
ADC &70 \Ask number to be multiplied.

.Noadd ROR A \Shift result right, with carry from addition
DEY \Decrement counter.
BNE Loop \Repeat if not zero.
ROR &71 \Final shift of result
STA &72 \Store result high byte.
RTS

Before using this routine, the two bytes to be multiplied are placed in
locations &70 and &71. The result appears in &71 (low byte) and &72
(high byte).

To multiply two 4-byte numbers together, the additions and shifts must
act on each byte in turn, and the total number of shifts must be 32.

.Start CLD
LDX #8 \ Clear
LDA #0 \ eight

.Clear STA &77,X \ bytes

225 Assembly Language

DEX \ for
BNE Clear \ result.
LDY #32 \ Set shift counter.

.Loop LSR &77 \ Shift four bytes
ROR &76 \ of multiplier
ROR &75 \ right
ROR &74 \ one bit.
BCC Noadd \ Test this bit. Branch if zero.
CLC \ Clear carry prior to addition.
LDA &70 \ Add
ADC &7C \ 4-byte
STA &7C \ multiplier
LDA &71 \ to
ADC &7D \ 4-byte
STA &7D \ result
LDA &72 \ and
ADC &7E \ store.
STA &7E \ "
LDA &73 \ "
ADC &7F \ "
STA &7F \ "

.Noadd LDY #8 \ Shift

.Shift ROR &77,X \ eight bytes
DEX \ of result
BNE Shift \ right
DEY \ one bit.
BNE Loop \ Repeat if not zero
RTS

Before using this routine, the two numbers to be multiplied must be
placed in !&70 and !&74. The result appears in the four bytes from &78
(least significant) to &7B (most significant), and is accessed as !&78. This
routine will work with both positive and negative integers.

Divis ion
Division is accomplished as the reverse of multiplication. 8-bit
multiplication gave a 16-bit result, so, for division, a 16-bit numerator
and 8-bit denominator will give an 8-bit result. The numerator is stored
in two bytes of memory. It is shifted left one bit position and the

Assembly Language 226

numerator high byte is then loaded into the accumulator. If the shift
produced a carry then a 1 is shifted left into the result, the denominator
is subtracted from the accumulator, and the accumulator contents are
then stored in the numerator high byte. If the shift did not produce a
carry then the denominator is subtracted from the accumulator in any
case. If this subtraction produces a carry then a 1 is shifted left into the
result and the accumulator contents are stored in the numerator high
byte. If no carry, then 0 is shifted left into the result.

This whole process is repeated eight times. The division program is as
follows:

10 DIM Q% 100
20 FOR I = 0 TO 3 STEP 3
30 P% = Q%
40 [OPT I
50 .Start CLD
60 LDY #8 \ Set shift counter.
70 .Loop ASL &72 \ Shift numerator
80 ROL &73 \ left one bit.
90 LDA &73 \ Load accumulator high byte.
100 BCC Label \ Test carry produced by shift.
110 SBC &71 \ Subtract denominator and
120 STA &73 \ store in numerator high byte.
130 SEC \ Set carry prior to shifting into result
140 JMP Shift \ Go to Shift.
150 .Label SEC \ Set carry prior to subtraction.
160 SBC &71 \ Subtract denominator
170 BCC Shift \ and test carry.
180 STA &73 \ Store in numerator high byte.
190 .Shift ROL &70 \ Shift either 0 or 1 into result.
200 DEY \ Decrement counter.
210 BNE Loop \ Repeat if not zero.
220 RTS
230]
240 NEXT
250 INPUT "Numerator "numerator%
260 INPUT "Denominator "denominator%
270 P%=&71
280 [OPT 3
290 EQUB denominator% \Store denominator at location &71.
300 EQUW numerator% \Store numerator at locations &72 and &73.

227 Assembly Language

310 RTS
320]
330 CALL Start
340 PRINT "Quotient is ";?&70
350 PRINT "Remainder is ";?&73

In this routine, the denominator is stored at location &71, and the
numerator in two bytes &72 and &73. The result appears in &70, and any
remainder is left in &73. Remember, this is a 16-bit by 8-bit division, so
the denominator may not be greater than 255 and the numerator not
greater than 65025 (2552) to give a valid result (the result must be 255 or
less).

The short routine from lines 280 to 320 is used to store the data in
memory, and contains some instructions which you have not yet seen or
used. EQUB and EQUW are in the same class of instruction as OPT, in tha t
they are used in the Assembly Language part of the program but are not
assembly instructions. They are used simply to store data at the
location(s) at which they appear when assembled into machine-code. You
will see this clearly when you RUN the above program. After you have
typed in the numerator and denominator you will see a listing of the
machine-code from &0071 to &0074.

There are in fact four EQU instructions:

EQUB stores a byte of data.
EQUW stores a word of data (2 bytes).
EQUD stores a double-word of data (4 bytes).
EQUS stores the ASCII representation of a string.

EQUS is illustrated in the next section on error handling in Assembly
Language.

Notice in the program example above how putting P% equal to &71
enables the denominator to be stored in &71 using EQUB, and the
numerator to be stored in &72 and &73 using EQUW. EQUD may be used to
store the contents of a full BASIC integer variable. (You may use EQUB
instead of ?, and EQUD instead of !.)

Error trapping in assembler
The assembler will tell you of any mistakes which you make in typing in
programs (syntax errors), and some errors associated with BASIC
variables during assembly, but there is no such thing as a run-time error

Assembly Language 228

in machine-code: you just have to fathom it out line by line. However, it is
possible for you to trap errors generated while a machine-code program is
running by using the BRK instruction. As an example, take the division
program described in the previous section. Everyone knows that it is not
possible to divide by zero, but the program does not know this. If you try
to do so it unwittingly gives the answer 255.

It is simple to test the denominator before the division is started, and
then to branch to an error routine. The whole program is not repeated
here, but the following lines may be added:

53 LDA &71
56 BEQ Error

222 .Error BRK
224 EQUB 18
226 EQUS "Division by zero"
228 BRK

If you now run the program with a zero denominator, it will stop and
print the message:

Division by zero at line 330

You can also type:

PRINT ERR RETURN

upon which it will give the correct error number, 18.

Any error message must take the following form:

BRK
EQUB errornumber (ERR)
EQUS "message"
BRK

Operating system calls from assembler
All the operating system calls available from BASIC, and many more, are
available from a machine-code program. These routines are always
accessed using a JSR to some address in the Operating System, and
usually involve the passing of one or more parameters via the
accumulator (for 1), X and Y (for 2 or 3), or a parameter block in memory

229 Assembly Language

(for more than 3).

Here is a table showing all the Operating System calls available.

Rout ine Vector Summary of function
Name Address Name Address

UPTV 222 User print routine
EVNTV 220 Event interrupt
FSCV 21E File system control

entry
OSFIND FFCE FINDV 21C Open or close a file
OSBPUT FFD4 BPUTV 218 Save a single byte to

file from A
OSBGET FFD7 BGERV 216 Load a single byte to A

from file
OSARGS FFDA ARGSV 214 Load or save data

about a file
OSFILE FFDD FILEV 212 Load or save a

complete file
OSRDCH FFE0 RDCHV 210 Read character (from

keyboard) to A
OSASCI FFE3 - - Write a character (to

screen) from A plus LF
if (A)=&0D

OSNEWL FFE7 - - Write LF, CR (&0A,
&0D) to screen

OSWRCH FFEE WRCHV 20E Write character (to
screen) from A

OSWORD FFF1 WORDV 20C Perform miscellaneous
OS operation using
control block to pass
parameters

OSBYTE FFF4 BYTEV 20A Perform miscellaneous
OS operation using
registers to pass
parameters

OSCLI FFF7 CLIV 208 Interpret the
command line given

Assembly Language 230

When you use one of these routines, you must use a JSR to the
corresponding address shown in the second column. For example,
OSWRCH is called from assembler by typing:

JSR &FFEE

The routine stored at &FFEE uses the OSWRCH vector address, shown
in the fourth column, as an indirect pointer to the actual location of the
OSWRCH routine.

The reason for this is twofold:

(i) The actual address of the OSWRCH routine may be altered by the
manufacturer without affecting the Operating System subroutine call in
any way. JSR &FFEE will always give an OSWRCH call even though the
address held in locations &20E and &20F may not be the same on every
machine.

(ii) The user can alter the address held in the zero-page vector location
and trap any call of that particular Operating System routine, indirecting
such a call to the user’s own routine anywhere in memory.

Use of Operating System calls

OSWRCH entry: &FFEE vector: &20E
This call writes the character whose ASCII code is in the accumulator to
the screen.

Here is an example which will print the character L on the screen:

10 P% = &70
20 [OPT 3
30 .Start LDA #76 \ Load accumulator with ASCII code for L
40 JSR &FFEE \ Jump to OSWRCH
50 RTS
60]
70 CALL Start

OSWRCH is also used with ASCII control codes (from 0 to 31). If you
change line 30 to:

30 .Start LDA #7

231 Assembly Language

then the program will output ASCII character 7, which is a ‘beep’.

Some BASIC instructions have ASCII values in the control code range,
and these can therefore be used with OSWRCH. For example, PLOT has
an ASCII value of 25, TAB an ASCII value of 31.

The following program uses TAB to print the character L half way across
the screen:

10 P% = &70
20 [OPT 2
30 .Start LDA #31
40 JSR &FFEE
50 LDA #19
60 JSR &FFEE
70 LDA #VPOS
80 JSR &FFEE
90 LDA #76
100 JSR &FFEE
110 RTS
120]
130 CALL Start

Each parameter is passed in turn to OSWRCH via the accumulator. The
BASIC statement equivalent to the above program is:

PRINT TAB(19);"L";

(Note that this program will not work with OPT 3 because VPOS is
affected.)

The BASIC instruction PLOT takes three parameters, PLOT A,X,Y.
However, X may be 0 to 1279 and Y may be 0 to 1023, so each must be
represented by two bytes. That means that an OSWRCH call with the
accumulator set to 25 must be followed by five more OSWRCH calls to
pass the parameters. The following program will plot a line on the screen:

10 MODE 4
20 P% = &70
30 [OPT 3
40 .Start LDA #25
50 JSR &FFEE

Assembly Language 232

60 LDA #5
70 JSR &FFEE
80 LDA #88
90 JSR &FFEE
100 LDA #2
110 JSR &FFEE
120 LDA #44
130 JSR &FFEE
140 LDA #1
150 JSR &FFEE
160 RTS
170]
180 CALL Start

This program is equivalent to

PLOT5,600,300

Lines 100 and 80 give X (2*256 + 88) and lines 140 and 120 give Y (1*256
+ 44).

You’ll see from the listing that the above routine, when assembled,
occupies memory from &70 to &8E. Remember that user programs must
use zero-page locations only between &70 and &8F, so this is almost the
largest size routine that may be stored in the zero-page.

OSASCI entry: &FFE3
Writes the character whose code is in the accumulator to the screen using
OSWRCH. However, if the accumulator contains &D then OSNEWL is
called instead. The actual code at location &FFF3 is:

.OSASCI CMP #&D
BNE OSWRCH

.OSNEWL LDA #&A
JSR OSWRCH
LDA #&D

.OSWRCH JMP(WRCHV)

OSNEWL entry: &FFE7
This call issues a line feed/carriage return to the screen, as shown above.

233 Assembly Language

After using OSWRCH, OSASCI or OSNEWL, the contents of the
accumulator X and Y registers are unchanged. Flags C, N, V and Z are
undefined, and D = 0.

OSRDCH entry: &FFE0 vector: &210
This call reads a character code from the keyboard into the accumulator.

After using OSRDCH, the contents of the X and Y registers are
unchanged. Flags N, V and Z are undefined, and D=0. Flag C tells
whether the read has been successful (C=0). If C=1 then an error has
occurred and the error number is given in the accumulator. If C=1 and
A=&1B then an escape condition has been detected and you must
acknowledge this by performing an OSBYTE call with A=&7E or *FX126.

OSCLI entry: &FFF7 vector: &208
This call is used by the BASIC OSCLI instruction. From assembler it
consists of a JSR to &FFF7, the command line string being placed in
memory at a location given by the contents of the X register (address low
byte) and Y register (address high byte). The command line string must
be terminated by &D RETURN .

The following BASIC program illustrates this:

10 DIM address 20
20 keynumber=4
30 $address = "KEY" + STR$ keynumber + "LIST |M"
40 X%=address MOD 256
50 Y%=address DIV 256
60 CALL &FFF7

This will have the same effect as

*KEY 4 "LIST|M"

Note: The string indirection operator $ automatically puts a RETURN
code (&D) after the string. EQUS however does not, and it must be
inserted afterwards using EQUB &D or something like EQUS "FRED" +
CHR$13.

Assembly Language 234

OSFIND entry: &FFCE vector: &21C
Opens a file from cassette or disc for reading or writing. The contents of
the accumulator determine the operation performed:

A = 0 close a file or files (CLOSE#).
A = &40 opens a file for input (OPENIN).
A = &80 opens a file for output (OPENOUT)
A = &C0 opens a file for input or output (OPENUP).

When OPENIN, OPENUP or OPENOUT is used, X and Y must contain the
address of the filename. After the subroutine call, the accumulator will
contain the channel number allocated to that file by the Operating
System.

If CLOSE# is used then Y must contain the channel number of the file to be
closed. If Y is 0 then all files will be closed.

OSBPUT entry: &FFD4 vector: &218
Writes the byte contained in the accumulator to the cassette or disc file
(same as BPUT#). Y must contain the file channel number. After using
OSBPUT, the contents of the accumulator, X and Y registers are
unchanged.

OSBGET entry: &FFD7 vector: &216
Reads a byte from the cassette or disc file into the accumulator (same as
BGET#). Y must contain the file channel number. After using OSBGET, the
contents of the X and Y registers are unchanged. Flags N, V and Z are
undefined, and D=0. Flag C tells whether the read has been successful
(C=0). If C=1 then an error has occurred and the error number is given in
the accumulator. If C=1 and A=&FE then the end of file has been
reached.

OSFILE entry &FFDD vector: &212
Allows a whole file to be loaded or saved. The contents of the accumulator
indicate the function to be performed. X and Y point to an 18 byte control
block anywhere in memory, the structure of which is as follows:

OSFILE control block

00 Address of file name, which must be terminated LSB
01 by &0D MSB

235 Assembly Language

02 Load address of file LSB
03
04
05 MSB

06 Execution address of file LSB
07
08
09 MSB

0A Start address of data for write operations, LSB
0B or length of file for read operations
0C
0D MSB

0E End address of data, that is byte after LSB
0F last byte to be written or file attributes
10
11 MSB

The table below indicates the function performed by OSFILE for each
value of A.

A=0 Save a section of memory as a named file. The file’s
catalogue information is also written.

A=1 Write the catalogue information for the named file.

A=2 Write the load address (only) for the named file.

A=3 Write the execution address (only) for the named file.

A=4 Write the attributes (only) for the named file.

A=5 Read the named file’s catalogue information. Place the file
type in A.

A=6 Delete the named file.

A=&FF Load the named file and read the named file’s catalogue
information.

Note: Values 1 to 6 are not available on a cassette filing system.

OSBYTE entry: &FFF4 vector: &20A
This is a family of Operating System calls which includes all the *FX calls
available from BASIC. (These are not repeated here.) The call number is
passed in the accumulator and parameters are passed in X or Y or both.

Assembly Language 236

All OSBYTE calls are available from BASIC via a USR call, or by using a
*FX call.

Here is a list of functions as given by each accumulator value (A):

A = 127 (EOF#) *FX127

Gives the end of file status of a previously opened file. X must contain the
file channel number. Afterwards, X will be zero if the end of file has not
been reached, non-zero if the end of file has been reached.

A = 129 (INKEY) *FX129

Either waits for a character from the keyboard buffer until a time limit
expires (INKEY positive) or tests if a key is depressed (INKEY negative). All
the discussion about auto-repeat and buffer flushing applies to this call.

For INKEY positive, Y must contain the most significant byte of the delay,
and X the least significant (in hundredths of a second).

Afterwards, if Y=0 then a character has been detected and its code
appears in X. Y=&1B indicates that ESCAPE was pressed and must be
acknowledged with *FX126. Y=&FF indicates that no key was pressed in
the allocated time.

For INKEY negative, Y must contain the requisite key-code in twos
complement. Afterwards Y will be either TRUE (&FF) or FALSE (zero)
depending on whether the key was pressed.

A = 131 (OSHWM) *FX131

Gives the address of the first free location in memory above that required
for the Operating System. Usually equal to &E00. The address is given in
X (low byte) and Y (high byte). For example, after *FX20,6.

A = 132 *FX132

Gives the lowest memory address used by the screen display in X (low
byte) and Y (high byte).

A = 133 Low mode address *FX133

Gives the lowest address in memory used by a particular mode. Does not
change mode but merely investigates the consequences of doing so. The

237 Assembly Language

mode to be investigated must be in X. Afterwards, the address is
contained in X (low byte) and Y (high byte).

A = 134 Read position of text cursor *FX134

Gives in X the X coordinate of the text cursor, and in Y the Y co-ordinate
(same as POS and VPOS).

A = 135 Read character at position of text cursor *FX135

Gives in X the ASCII code of the character at the current text cursor
position, and in Y the current mode number. X is 0 if the character is not
recognisable.

Here is a BASIC function which can be used to read the character at any
position X,Y on the screen:

1000 DEF FNreadcharacter(column%,row%)
1100 LOCAL A%,currentX%,currentY%,character%
1200 currentX% = POS:currentY% = VPOS
1300 VDU31,column%,row%
1400 A% = 135
1500 character% = (USR(&FFF4) AND &FF00) DIV &100
1700 VDU31,currentX%,currentY%
1800 = CHR$ character%

To give the character at position X,Y this function would be called by
passing X and Y as the two parameters:

PRINT FNreadcharacter(X,Y)

A = 137 Motor control *FX137

Similar to *MOTOR. X=0 will turn off the cassette motor, X=1 will turn it
on.

A = 139 (*OPT) *FX138

Exactly the same as *OPT. The parameters are passed in X and Y.

Assembly Language 238

A = 145 Get character from keyboard buffer *FX145

Reads a character code from a buffer into the Y register. X=buffer number
(0 to 9 inclusive). C=0 indicates a successful read, C=1 indicates that the
buffer is empty.

A=218 Cancel VDU queue *FX218

Many VDU codes expect a sequence of bytes (as shown earlier with PLOT
and TAB). This call signals the VDU software to throw away the bytes it
has received so far. Before use, X and Y must contain zero.

OSWORD entry: &FFF1 vector: &20C
This is a family of operating system calls which uses a parameter block
somewhere in memory to supply data to the routine and to receive results
from it. The exact location of the parameter block must be specified in X
(low byte) and Y (high byte). The accumulator contents determine the
action of the OSWORD call.

A = 0 Read a line from keyboard to memory.

Accepts characters from the keyboard and places them at a specified
location in memory. During input the DELETE key (ASCII 127) deletes
the last character entered, and CTRL U (ASCII 21) deletes the entire
line. The routine ends if RETURN is entered (ASCII 13) or the ESCAPE
key is pressed.

The control block contains five bytes:

YX (low byte) Address at which
YX+1 (high byte) line is to be stored
YX+2 Maximum length of line
YX+3 Minimum acceptable ASCII value
YX+4 Maximum acceptable ASCII value

Characters will only be entered if they are in the range specified by YX+3
and YX+4.

Afterwards, C=0 indicates that the line was terminated by a RETURN . C
not equal to zero indicates that the line was terminated by an ESCAPE . Y
is set to the length of the line, excluding the carriage return if C=0.

239 Assembly Language

A = 1 Read clock

Reads the internal elapsed-time clock into the five bytes pointed to by X
and Y. The clock is incremented every hundredth of a second, and is used
by the BASIC variable TIME.

A = 2 Write clock

Sets the internal elapsed-time clock to the value given in the five bytes
pointed to by X and Y. Location YX is the least significant byte of the
clock, YX+4 is the most significant.

A = 3 Read interval timer

In addition to the clock there is an interval timer which is also
incremented every hundredth of a second. The interval is stored in five
bytes pointed to by X and Y. See OSWORD with A = 1.

A = 4 Write interval timer

X and Y point to five bytes which contain the new value to which the clock
is to be set. The interval timer may cause an event when it reaches zero.
Thus setting the timer to &FFFFFFFFFD would cause an event after
three hundredths of a second.

A = 7 SOUND

Equivalent to the BASIC SOUND statement. The eight bytes pointed to by
X and Y contain the four two-byte parameters (in fact only the least
significant byte of each need be used).

YX Q (channel, 0 to 3)
YX+1 zero
YX+2 A (envelope, -15 to 4)
YX+3 zero, or &FF if -1 or some other negative value
YX+4 P (pitch, 0 to 255)
YX+5 zero
YX+6 D (duration, 1 to 255)
YX+7 zero

A=8 ENVELOPE

Equivalent to the BASIC ENVELOPE statement, X and Y point to 14 bytes
of data which are the 14 parameters used by ENVELOPE.

Assembly Language 240

A=9 POINT

Equivalent to BASIC POINT function. The parameter block pointed to by X
and Y must be set up as fol lows:

YX X (low byte) coordinate
YX+1 X (high byte) coordinate
YX+2 Y (low byte) coordinate
YX+3 Y (high byte) coordinate

Af terwards, YX+4 wi l l contain the logical colour value of that parti cul ar
graphics coordinate. I f the coordinate is off the screen then YX4 contains
& FF.

A = 10 Read character def ini tion

Characters are displayed on the screen as an 8 × 8 matri x of dots. The
pattern of dots for each character, including user-def ined characters, is
stored as eight bytes. This cal l enables the eight bytes to be read into a
block of memory starti ng at the address given in X and Y, plus 1. The
ASCII code of the character must be the f i rst entry on the parameter
block when the routine is cal led.

Af terwards, the parameter block contains data as shown below:

YX Character code
YX+1 Top tow of displayed character
YX+2 Second row of displayed character
.
.
.
YX+8 Bottom row of displayed character
Here is a program to i l l ustrate thi s OSWORD cal l , and the method of
cal l ing OSWORDs in general . I t takes each of the characters in turn,
reads the matri x def ini tion, and then reverses thi s def ini tion by shi f ting
the bi ts in each byte, and then redef ining each character using VDU 23.
The resul t makes your program interesting to read, to say the least!

10MODE 6
20 DIM Q% 100
30 FOR I=0 TO 3 STEP 3
40 P%=Q%
50 [OPT I
60 .Character LDA &601 \ Take low address of parameter
70 STA &70 \ and store it in zero-page.

241 Assembly Language

80 LDA &602 \ Take high address of parameter
90 STA &71 \ and store it in zero-page.
100 LDY #0 \ Clear Y register.
110 LDA (&70),Y \ Get parameter (ASCII code)
120 STA &70 \ and store it in zero-page.
130 LDX #&70 \ Set X to OSWORD parameter block address low

\ byte.
140 LDA #10 \ Set OSWORD function.
150 JSR &FFF1 \ Jump to OSWORD.
160 LDX #0 \ Clear X register.
170 .Reverse LDY #8 \ Set Y to 8 as shift counter.
180 .Loop ASL &71,X \ Shift each byte into the byte
190 ROR &70,X \ below, thereby reversing it.
200 DEY \ Decrement Y.
210 BNE Loop \ Repeat if not zero.
220 INX \ Increment X.
230 CPX #8 \ Compare with 8.
240 BNE Reverse \ Repeat if not equal.
250 RTS
260]
270 NEXT
280 *FX20,6
290 FOR I% = 33 TO 126
300 PRINT CHR$ I%
310 CALL Character,I%
320 VDU23,I%,?&77,?&76,?&75,?&74,?&73,?&72,?&71,?&70
330 NEXT

This program illustrates a number of the features demonstrated in this
part of the book. It calls the machine-code routine Character with a
parameter, and lines 60 to 120 transfer the parameter to location &70,
which is a safe place at which to store any OSWORD data.

Line 130 sets X to the low byte of the address of the OSWORD parameter
block (it is not necessary to set Y because Y is already zero).

Lines 140 and 150 carry out the OSWORD call.

Lines 160 to 240 reverse each of the bytes of the character definition.

Line 280 explodes the character memory allocation to its maximum
allowing all the characters to e redefined, and line 320 carries out this
redefinition.

Assembly Language 242

It should be noted that if this program were more than &300 bytes long,
it would get overwritten by the soft characters.

A=11 Read colour assigned to logical value

Gives the actual colour value assigned to the logical colour value
contained in the location pointed to by X and Y. Afterwards, location YX
will contain the logical value, and location YX+1 contain the actual value.
In fact YX+1 to YX+4 contain the four-byte physical colour - you must
reserve space for five bytes.

Events
Events are conditions which occur within the computer and which can be
trapped by the user so as to provide useful information. For example, it is
possible to detect when ESCAPE has been pressed.

To be able to act upon an event, that event must first be enabled by
*FX14:

*FX14,0 enables output buffer empty event.
*FX14,1 enables input buffer full event.
*FX14,2 enables character entering keyboard buffer event.
*FX14,4 enables start of vertical synchronisation of screen display event.
*FX14,5 enables the interval timer crossing zero event.
*FX14,6 enables ESCAPE pressed event.

The Operating System detects all the above events when they occur, but
ignores them if they have not been enabled with the appropriate *FX14
call. If an event occurs which has been enabled then program execution
indirects via &220 and places an event code (shown below) in the
accumulator. The contents of X and Y may also depend upon the event.

The event codes are as follows:

A=0 Output buffer empty. (X contains buffer identity.)
A=1 Input buffer full. (X contains buffer identity. Y contains the

ASCII code of character that could not be stored in buffer.)
A=2 Key pressed.
A=4 Vertical synchronisation of screen display.
A=5 Interval timer crossing zero.
A=6 ESCAPE detected.

243 Assembly Language

Any address may be stored in the two bytes &220 and &221 to which the
program will transfer execution on detection of an enabled event. You
may write your own code at this address in order to process the event, but
it must be terminated by RTS, and should not take too long (one
millisecond maximum).

Each of the events may be disabled by a corresponding *FX13. For
example. *FX13,1 will disable the input buffer full event.

Assembly Language mnemonics
This section describes, in alphabetical order, all the 6502 assembler
mnemonics.

The following abbreviations are used:

A accumulator
X index register X
Y index register Y
F flags register
PC program counter
PCH program counter (high byte)
PCL program counter (low byte)
SP stack pointer
M memory address
← ‘becomes’ (assignment)
→ ‘affects’ (flags)
() contents of
& hexadecimal
(A4)
(M7) etc. specified bit position in register or memory
(X0)
N
V
B
D status flags
I
Z
C

Because this section has been written for use with the Electron’s
assembler, the addressing modes quoted are simplified as compared with
those that are specified for use with general machine-code programming
of the 6502.

Assembly Language 244

ADC Add with carry

Action A ← (A) + Data + C

Description Add the contents of memory location or immediate
data to the accumulator, plus the carry bit. Result is
placed in the accumulator.

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

Flags affected NVZC

Comments To add without the carry, bit C must be cleared
beforehand by using CLC.

AND Logical AND

Action A ← (A) AND Data

Description AND the contents of memory location or immediate
data with the accumulator. Result is placed in the
accumulator.

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected NZ

Comments See BASIC AND for truth table.

ASL Arithmetic shift left

Action C ← A or M ← 0

245 Assembly Language

Description Shift the contents of the accumulator or memory
location left one bit position. Bit 7 falls into the carry
(bit C), zero is entered from the right. Result remains
in either the accumulator or the memory location.

Addressing modes Zero-page
Absolute
Indexed (X only)
Accumulator

Flags affected NZC

Comments ASL A acts on the accumulator.

BCC Branch if carry clear

Description Go to specified label or address if C=0.

Action If bit C is zero, execution continues at the specified
label or address. If bit C is 1 then execution continues
at the next instruction.

Addressing modes Relative

Flags affected None

Comments Specified label or address must be in range.

BCS Branch if carry set

Action Go to specified label or address if C=1

Description
If bit C is 1, execution continues at the specified label
or address. If bit C is zero then execution continues a t
the next instruction.

Addressing modes Relative

Flags affected None

Comments Specified label or address must be in range.

Assembly Language 246

BEQ Branch if equal to zero

Action Go to specified label or address if Z = 1.

Description If bit Z is 1, execution continues at the specified label
or address. If bit Z is zero then execution continues a t
the next instruction.

Addressing modes Relative

Flags affected None

Comments Specified label or address must be in range.

BIT Compare memory bits with accumulator

Action (A)
(M)

Description The accumulator is compared with the contents of a
memory location. If the two are the same then bit Z is
set to 1; if not then bit Z is cleared. Bits 6 and 7 of the
data from memory are loaded into bits X and N
respectively. The contents of the accumulator remain
unchanged.

Addressing modes Absolute
Zero-page

Flags affected NVZ

BMI Branch if minus

Action Go to specified label or address if N=1

Description If bit N is 1, execution continues at the specified label
or address. If bit N is zero then execution continues a t
the next instruction.

Addressing modes Relative

247 Assembly Language

→ F

Flags affected None

Comments Specified label or address must be in range.

BNE Branch if not equal to zero

Action Go to specified label or address if Z=0

Description If bit Z is zero, execution continues at the specified
label or address. If bit Z is 1 then execution continues
at the next instruction.

Addressing modes Relative

Flags affected None

Comments Specified label or address must be range.

BPL Branch if plus

Action Go to specified label or address if N=0

Description If bit N is zero, execution continues at the specified
label or address. If bit N is 1 then execution continues
at the next instruction.

Addressing modes Relative

Flags affectedNone

Comments Specified label or address must be in range.

BRK Break

Action STACK ← (PC) + 2
STACK ← (F)
PCL ← (&FFFE)
PCH ← (&FFFF)

Assembly Language 248

Description This is a software interrupt. The contents of the
program counter plus 2 are pushed on the stack,
followed by the contents of the flags register. The
program counter is then loaded with the contents of
locations &FFFE (low byte) and &FFFF (high byte).
Bit B is set to 1.

Addressing modes Implied

Flags affected B

Comments Used mainly for error trapping and debugging.

BVC Branch if overflow clear

Action Go to specified label or address if V=0

Description If bit V is zero, execution continues at the specified
label or address. If bit V is 1 then execution continues
at the next instruction.

Addressing modes Relative

Flags affected None

Comments Specified label or address must be in range.

BVS Branch if overflow set

Action Go to specified label or address if V=1

Description If bit V is 1, execution continues at the specified label
or address. If bit V is zero then execution continues a t
the nexT instruction.

Addressing modes Relative

Flags affected None

Comments Specified label or address must be in range.

249 Assembly Language

CLC Clear carry

Action C ← 0

Description Bit C is cleared.

Addressing modes Implied.

Flags affected C

Comments Often required before ADC.

CLD Clear decimal flag

Action D ← 0

Description Bit D is cleared, which means that the processor is in
binary mode.

Addressing modes Implied

Flags affected D

Comments Should be used at the beginning of all routines which
do not use binary coded decimal.

CLI Clear interrupt mask

Action I ← 0

Description Bit I is cleared, which enables interrupts.

Addressing modes Implied

Flags affected I

Comments An interrupt is triggered when an external device,
such as a printer, requires attention.

Assembly Language 250

CLV Clear overflow flag

Action V ← 0

Description Bit V is cleared.

Addressing modes Implied.

Flags affected V

CMP Compare with accumulator

Action (A) − Data → F

Description Contents of memory location or immediate data are
subtracted from the accumulator. If the result is zero
then bit Z is set; if not zero it is cleared. If the result
is negative then bit N is set; if positive it is cleared.
Bit C is set if the accumulator contents are greater
than or equal to the data. The contents of the
accumulator remain unchanged; only the flags
register is affected.

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected NZC

CPX Compare with X register

Action (X)-Data → F

Description Contents of memory location or immediate data are
subtracted from the X register. If the result is zero
then bit Z is set; if zero it is cleared. If the result is
negative then bit N is set; if positive it is cleared. Bit
C is set if the X register contents are greater than or

251 Assembly Language

equal to the data. The contents of the X register
remain unchanged; only the flags register is affected.

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected NZC

CPY Compare with Y register

Action (Y) − Data ← F

Description Contents of memory location or immediate data are
subtracted from the Y register. If the result is zero
then bit Z is set; if not zero it is cleared. If the result
is negative then bit N is set; if positive it is cleared.
Bit C is set if the Y register contents are greater than
or equal to the data. The contents of the Y register
remain unchanged; only the flags register is affected.

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected NZC

DEC Decrement memory

Action (M) ← (M)-1

Description The contents of the specified memory are
decremented by 1.

Assembly Language 252

Addressing modes Zero-page
Absolute
Indexed (X only)

Flags affected NZ

DEX Decrement X register

Action X ← (X)-1

Description The contents of the X register are decremented by 1.

Addressing modes Implied

Flags affected NZ

Comments Enables X to be used as a counter.

DEY Decrement Y register

Action Y ← (Y) - 1

Description The contents of the Y register are decremented by 1.

Addressing modes Implied

Flags affected NZ

Comments Enables Y to be used as a counter

EOR Logical exclusive-OR

Action (A) ← (A) EOR Data

Description Exclusive-OR the contents of memory location or
immediate data with the accumulator. Result is
placed in the accumulator.

253 Assembly Language

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected NZ

Comments See BASIC EOR for truth table.

INC Increment memory

Action M ← (M) + 1

Description The contents of the specified memory location are
incremented by 1.

Addressing modes Zero-page
Absolute
Indexed (X only)

Flags affected NZ

INX Increment X register

Action X ← (X)+1

Description The contents of the X register are incremented by 1.

Addressing modes Implied

Flags affected NZ

Comments Enables X to be used as a counter.

INY Increment Y register

Action Y ← (Y)+1

Assembly Language 254

Description The contents of the Y register are incremented by 1.

Addressing modes Implied

Flags affected NZ

Comments Enables Y to be used as a counter.

JMP Unconditional jump

Action PC ← address

Description Execution continues at the specified label or address.

Addressing modes Absolute
Indirect

Flags affected None

Comments There is no restriction on length of jump; label or
address may be anywhere in memory. This is the only
instruction which may use straight indirect
addressing.

JSR Jump to subroutine

Action STACK ← (PC)+2
PC ← address

Description The contents of the program counter plus 2 are
pushed on the stack (this is the address of the
instruction following JSR). Execution continues at the
specified label or address.

Addressing modes Absolute

Flags affected None

Comments The subroutine to which control is transferred must
be terminated by an RTS instruction. JSR is used

255 Assembly Language

whenever you wish to make an Operating System call
from assembler.

LDA Load accumulator

Action A ← Data

Description Load the accumulator with contents of memory
location or immediate data.

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected NZ

LDX Load X register

Action X ← Data

Description Load the X register with contents of memory location
or immediate data.

Addressing modes Immediate
Zero-page
Absolute
Indexed (Y only)

Flags affected NZ

LDY Load Y register

Action Y ← Data

Description Load the Y register with the contents of memory
location or immediate data.

Assembly Language 256

Addressing modes Immediate
Zero-page
Absolute
Indexed (X only)

Flags affected NZ

LSR Logical shift right

Action 0 → A or M → C

Description Shift the contents of the accumulator or memory
location right one bit position. Bit 0 falls into the
carry (bit C), zero is entered from the left. Result
remains in either the accumulator or memory
location.

Addressing modes Zero-page
Absolute
Indexed (X only)
Accumulator

Flags affected NZC

Comments LSR A acts on the accumulator.

NOP No operation

Action None

Description Does nothing for two clock cycles.

Comments Used for timing a program, or to fill in gaps caused by
deleted instructions.

ORA Logical OR

Action A ← (A) OR Data

257 Assembly Language

Description OR the contents of memory location or immediate
data with the accumulator. Result is placed in the
accumulator.

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected NZ

Comments See BASIC OR for truth table.

PHA Push accumulator on to stack

Action STACK ← (A)
SP ← (SP) - 1

Description The contents of the accumulator are pushed on to the
stack. The stack pointer is decremented. The
accumulator contents remain unchanged.

Addressing modes Implied

Flags affected None

P H P Push flags register on to stack

Action STACK ← (F)
SP ← (SP)-1

Description The contents of the flags register are pushed on to the
stack. The stack pointer is decremented. The flags
register contents remain unchanged.

Addressing modes Implied

Flags affected None

Assembly Language 258

PLA Pull data from stack into accumulator

Action A ← (STACK)
SP ← (SP)+1

Description Pull the top byte of the stack into the accumulator.
Increment the stack pointer.

Addressing modes Implied

Flags affected NZ

PLP Pull data from stack into flags register

Action F ← (STACK)
SP ← (SP) + 1

Description Pull the top byte of the stack into the flags register.
Increment the stack pointer.

Addressing modes Implied.

Flags affected NVBDIZC

ROL Rotate left

Action

A or M

C

Description Rotate the contents of the accumulator or memory
location left one position. The carry (bit C) is entered
from the right, bit 7 falls into the carry.

Addressing modes Zero-page
Absolute
Indexed (X only)
Accumulator

Flags affected NZC

Comments ROL A acts on the accumulator. This is a 9-bit
rotation.

259 Assembly Language

ROR Rotate right

Action

A or M

C

Description Rotate the contents of the accumulator or memory
location right one bit position. The carry (bit C) is
entered from the left, bit 0 falls into the carry.

Addressing modes Zero-page
Absolute
Indexed (X only)
Accumulator

Flags affected NZC

Comments ROR A acts on the accumulator. This is a 9-bit
rotation.

RTI Return from interrupt

Action F ← (STACK)
SP ← (SP) + 1

PCL ← (STACK)
SP ← (SP) + 1

PCH ← (STACK)
SP ← (SP) + 1

Description Restore the contents of the accumulator or memory
location right one bit position. The carry (bit C) is
entered from the left, bit 0 falls into the carry.

Addressing modes Implied

Flags affected NVBDIZC

Comments Used to return to the execution of a program, after an
interrupt has been dealt with.

Assembly Language 260

RTS Return from subroutine

Action PCL ← (STACK)
SP ← (SP)+1

PCH ← (STACK)
SP ← (SP)+1
PC ← (PC)+1

Description Restore the contents of the program counter, which
were previously stored on the stack, and increment
the program counter by 1. Increment the stack
pointer.

Addressing modes Implied

Flags affected None

Comments Continues execution from position after sub-routine
call. Used by the Electron’s assembler to return to
BASIC.

SBC Subtract with carry

Action A ← (A) ← Data ← C
(C is NOT C, which is the borrow.)

Description Subtract the contents of memory location or
immediate data from the accumulator, with borrow.
Result is placed in the accumulator.

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected NVZC

Comment To subtract without the borrow, bit C must be set
beforehand by using SEC.

261 Assembly Language

SEC Set carry

Action C ← 1

Description Bit C is set.

Addressing modes Implied.

Flags affected C

Comments Often required before SBC.

SED Set decimal flag

Action D ← 1

Description Bit D is set, which means that the processor is in
decimal mode (BCD).

Addressing modes Implied

Flags affected D

SEI Set interrupt mask

Action I ← 1

Description Bit I is set, which disables interrupts.

Addressing modes Implied

Flags affected I

STA Store accumulator in memory

Action M ← (A)

Description Store contents of the accumulator at the specified
memory location. The accumulator contents remain
unchanged.

Assembly Language 262

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected None

STX Store X register in memory

Action M ← (A)

Description Store contents of X register at the specified memory
location. The X register contents remain unchanged.

Addressing modes Immediate
Zero-page
Absolute
Indexed
Indirect/Indexed

Flags affected None

STY Store Y register in memory

Action M ← (Y)

Description Store contents of Y register at the specified memory
location. The Y register contents remain unchanged.

Addressing modes Zero-page
Absolute
Indexed (zero-page X only)

Flags affected None

263 Assembly Language

TAX Transfer accumulator to X

Action X ← (A)

Description Copy the contents of accumulator into X register. The
accumulator contents remain unchanged.

Addressing modes Implied

Flags affected NZ

TAY Transfer accumulator to Y

Action Y ← (A)

Description Copy the contents of accumulator into Y register. The
accumulator contents remain unchanged.

Addressing modes Implied

Flags affected NZ

TSX Transfer stack pointer to X

Action X ← (SP)

Description Copy the contents of the stack pointer into X register.
The stack pointer contents remain unchanged.

Addressing modes Implied

Flags affected NZ

TXA Transfer X register to accumulator

Action A ← (X)

Assembly Language 264

Description Copy the contents of the X register into the
accumulator. The X register contents remain
unchanged.

Addressing modes Implied

Flags affected NZ

TXS Transfer X register to stack pointer

Action S ← (X)

Description Copy the contents of the X register into the stack
pointer. The X register contents remain unchanged.

Addressing modes Implied

Flags affected NZ

TYA Transfer Y register to accumulator

Action A ← (Y)

Description Copy the contents of the Y register into the
accumulator. The Y register contents remain
unchanged.

Addressing modes Implied

Flags affected NZ

265 Assembly Language

