The
Advanced

User
Guide

for the Acorn Electron

Adrian C. Dickens BA,
Churchill College,
Cambridge University

Mark A. Holmes BA,
Fitzwilliam College,
Cambridge University

ACORNSE&FT

Published by Adder Publishing, Cambridge

ADDER

The “Acorn Electron Advanced User Guide” is published by Adder Publishing for
Acornsoft Limited.

Acornsoft Limited, Betjeman House, 104 Hills Road, Cambridge, CR2 1LQ,
England. Telephone (0223) 316039
ISBN 0907876 17 X

Copyrighte 1984 Adder Publishing

Adder Publishing, PO Box 148, Cambridge, CB1 2EQ
ISBN 0947929 03 7

First published September 1984

The Authors would like to thank Nigel Dickens, Tim Dobson, Steve Furber,
Tim Gleeson, David Johnson-Davies, Dr John Horton, Zahid Najam, Mark
Plumbley, John Thackeray, Ken Vail, Geoff Vincent, Adrian Warner,
Leycester Whewell, Albert Williams and everyone else who helped in the
production of this book.

All rights reserved. This book is copyright. No part of this book may be copied
or stored by any means whatsoever whether mechanical, photographic or
electronic, except for private or study use as defined in the Copyright Act. All
enquiries should be addressed to the publishers. While every precaution has
been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of information contained herein.

The Authors gratefully acknowledge Acorn Computers Limited for their kind
permission to reproduce the complete Electron circuit diagram. The Authors
would like to point out that Acorn Computers reserve the right to make
improvements in the specification of its products. Therefore the circuit
diagram and other contents of this book may not be in complete agreement
with the product supplied.

Please note that within this text the terms Tube, Econet and Electron are
registered tradenames of Acorn Computers Limited. All references in this
book to the BBC Microcomputer refer to the computer produced for the British
Broadcasting Corporation by Acorn Computers Limited.

This book was prepared using the Acornsoft VIEW wordprocessor on the
BBC

Microcomputer and then computer typeset by Parker Typesetting Service,
Leicester.

Printed in Great Britain by The Burlington Press Ltd. Foxton, Cambridge.
Book production by Adder Publishing.

Contents

I ntroduction
1 The Acorn design philosophy

Operating system routines and vector s

Operating system calls
OSBYTE calls

OS WORD calls

Filing system calls
Operating system vectors
Interrupts

~NOoOUITR~WN

Paged ROM firmware

8 Paged ROM formats

9 Language ROMs

10 Service ROMs

11 *ROM filing system ROMs
Memory usage

12 Memory allocation and useage

16
87
94
110
135

143
148
152
172

183

Hardware

13 Anintroduction to hardware
14 Insidethe Electron
15 OQutside the Electron

Appendices

VDU code summary
PLOT routine functions
Screen MODE layouts
OS calls and vectors
Plus 1 ROM connector
Complete circuit diagram

mmooO®>

Bibliography
Glossary

| ndex

192
197
207

219
221
223
230
232
234

236

237

243

| ntroduction

The Advanced User Guide for the Electron has been designed to
be an invaluable reference guide for users of the Electron
computer. The original Electron User Guide providesa
description of BASIC on the Electron and reaches the point at
which programming in Assembly Language is introduced, along
with avery brief introduction to the available system calls. The
Advanced User Guide takes over at this point by providing a
thorough, well indexed and cross referenced description of al the
available facilities and how to use them. Thiswill allow the
serious programmer to make the most of his’her machine, whilst
keeping within the Acorn Guidelines to ensure compatibility with
other machines in the Acorn BBC Micro series.

It isinevitable that a machine like the Electron should be partially
overpowered by it'®ig brother the BBC Micro. However, many

of the facilities which are provided on the larger machine can
also be added on to an Electron. A whole new series of operating
system calls have been provided to take account of this, and are
described within these pages.

What may not at first sight be so apparent is that in many ways
the Electron has more expansion potential than a BBC Micro!
This is becausall of the 6502 bus lines are available to
expansion modules via the expansion connector. A full
description of this connector, including interfacing details for
paged ROMs and other devices have therefore been included.

The authors have tried to provide a book which will be found by
the side of all enthusiastic Electron programmers. All material is
in an easily accessible referenced format. Where appropriate,
examples are presented and discussed. In particular, there is a
large section concerned with the use of paged ROMSs. It is
intended that this should help programmers to build up the
necessary skills for producing their own exciting software in
ROMs.

All of the information contained in this book has been checked
on an Electron fitted with Electron OS1.00 and BASIC 2. Where
appropriate, an Electron Plus 1 expansion module was also used.

1 TheAcorn Design
Philosphy

A glance through the back pages of any microcomputer magazine

will reveal a large number of machines ‘For Sale’. This is a
reflection of the speed at which the industry moves; the all-new
whizz-bang machine can become yesterday’'s micro in as little as
a year. The manufacturer has to tread a careful path; on the one
hand he is committed to improving his products, but on the other
he must not render his existing range obsolete.

The Acorn design philosophy has been to produce a system right
from the start which would allow for growth in both the software
and hardware. All users should be aware of this if they wish their
own software and hardware to be compatible with the complete
range of available systems, from a humble Electron right up to a
machine with Econet, second processor, hard disks etc. Ensuring
compatibility is not hard, it simply requires a little self-discipline

in your approach.

Therulesas such are simple. If your software needs to access
anything outside its own domain (that is the memory and other
resources it has been provided with) then use the officially
supported operating system routines. The second is to make no
assumptions about the environment your program will run under.
This includes the amount of memory available, the processor and
any other software / hardware components which might be there.
Run-time enquiries have been built into the system to allow you
to discover these facilities.

Programs which run in RAM, say a simple Basic program, may
discover that there is not enough memory available for them. A
test for this should be made at the start of the program, since they
should not be allowed to crash and should never use any memory
outside their allocation. Programs placed in ROM should not
make assumptions about their eventual run-time environment
either. They may find themselves copied over the Tube and
running in RAM on another processor!

One of the most common situations on the BBC microcomputer

where incompatability arises, is where software is designed for
use on non-Econet machines and then used on such machines.
This ultimately denies the software producer a sale and denies the
Econet machine owner use of a particular program. Thisisa
situation which can be avoided by intelligent software design and
reasonabl e product testing. The Electron contains fewer pitfallsin
this respect, but where software is destined for awider
distribution, the programmer should think about different
machine configurations and potential problems.

2 OPERATING
SYSTEM CALLS

The list below contains all the Acorn supported operating system
routines and their vectors which exist in the Electron OS 1.0. See
the User Guide for agenera description of these calls.

2.1 OSWRCH Write character routine
Call address & FFEE Indirected through & 20E

This routine outputs the character in the accumulator to the
currently selected output stream(s).

On exit:
A, X andY are preserved.
C, N, V and Z are undefined.

The interrupt statusis preserved (though interrupts may be
enabled during a call).

2.2 Non-vectored OSWRCH

Call address & FFCB

Thiscall isnormally made by OSWRCH. This call has no vector
and so cannot be intercepted. Its use is not recommended for this
reason.

2.3 OSRDCH Read character routine

Call address & FFEO Indirected through & 210

This routine reads a character from the currently selected input
stream and returns it in the accumulator.

On exit:
C=0indicates that avalid character has been read. C= 1 indicates
that a character has not been read due to an error.

If an error should occur acknowledgement of the error condition
should be made using OSBYTE & 7E.

XandY are preserved.
N, V and Z are undefined.

The interrupt statusis preserved (though interrupts may be
enabled during a call).

2.4 Non-vectored OSRDCH

Call address & FFC8

This cal isnormally made by OSRDCH, it is not available for
interception and its use is not recommended by Acorn.

2.5 OSNEWL Writeanewlineroutine
Call address & FFE7 Not indirected

Thisroutine writes aline feed (& A/10) and a carriage return
(& D/13) to the current output stream(s) using OSWRCH.

On exit:
A=&0D (13)
XandY are preserved.
C, N, V and Z are undefined.

Interrupt statusis preserved (though it may be enabled
during acal).

2.6 OSASCI Write character routine,
OSNEWL called if A=& 0D (13).

Call address & FFE3 Not indirected

Thisisawrite character routine performing the same action as
OSWRCH but which outputs aline feed and a carriage return in
response to a carriage return character.

On exit:
A, X andY are preseved.
C, N, V and Z are undefined.

Interrupt statusis preserved (though interrupts may be
enabled during acall).

2.7 GSINIT General string input
initialise routine.

Call address & FFC2

The origina intention was that this routine together with
GSREAD would provide a standard string input facility for the
use of filing system paged ROMs. It is now felt that this routine
isunsuitable for that purpose and accordingly its useis not
recommended.

Thisroutine initialises a string for input prior to reading using
GSREAD.

Entry parameters:
String address stored in & F2 and & F3 plus offset in Y
C=0, if first space, CR or second” terminates input
C=1, if first space does not terminate input

On exit:
Y contains the offset of the first non-blank character from
the address contained in &F2 and &F3.

A contains the first non-blank character of string

Z flag is set if the string is a null string

2.8 GSREAD Read character from
string input routine.

Call address &FFC5

This routine is used to read characters from an input string after a
GSINIT call. Control codes and non-ASCII values may be
introduced into the input string by using an escape character, |".
The escape character followed by a letter gives a character value
equal to the ASCII value minus 64 (&40). The escape character
followed by a ‘1’ character gives a value of 128 plus the value of
the next character in the string. An escape character followed by
itself gives the escape character.

Entry parameters:
&F2, &F3and Y set by GSLNLT

C=0 String terminated by first space, carriage return or
second quotation mark.

C=1 String terminated by carriage return or second
quotation mark.

On exit:
A contains the character read from the string.
Y contains the index for the next character to be read.
C=1if theend of string is reached.
X is preserved.

2.9 OSRDRM Read byte from paged
ROM routine.

Call address & FFB9

Entry parameters:
ROM number stored in'Y.

Address stored in & F6 and & F7.

This cal returns a byte read from a paged ROM.

On exit:
A contains the value of the byte read.

This routine was included for the implementation of ROM filing
system software in paged ROM and is not recommended for
genera use.

2.10 OSEVEN Generate an event
routine.

Call address & FFBF

The user event may be generated using this routine. Software
replacing OS routines should generate the appropriate events by
making this call.

Entry parameter:
The event number should be placed in Y.

On exit:
C=0if and only if the event was enabled.

2.11 OSCLI PassstringtotheCLI.
Cadll address & FFF7 Indirected through & 208

Thisroutine isimplemented on the BBC micro, the Electron and
the Tube operating system.

This call provides the machine code user with a convenient
method of performing any of the * commands that the system
provides from Basic. The command required is placed in a string
as normal text and this call is made.

If the string passed to the CLI is not terminated by a carriage
return within 255 bytes this routine has undefined effects.

The following commands are recogni sed:

* Sring escape character rest of command ignored
, treated asa CAT command

*/ treated as a*RUN command

*BASIC select BASIC as current language

*CAT Issue catalogue request to filing system

*CODE passed to user vector (see chapter 6)
*EXEC select text file asinput stream

*EX issue OSBY TE call (no registers returned)
*HELP issue paged ROM service call 9, see chapter 10
*KEY take rest of line as text for soft key

*LINE passed to user vector (see chapter 6)

*LOAD Issue load request to filing system

*MOTOR open/close cassette motor relay

*OPT Issue option request to filing system
*ROM select *ROM filing system
*RUN Issue load and execute request to filing system

*SAVE issue save request to filing system
*SPOOL includetext filein output stream
*TAPE select tape filing system

*TV ignored by the Electron

These commands may be abreviated by taking the first few letters
and terminating with a *." character. Parameters may be passed in
the text following the command.

Otherunrecognised commands are first offered to paged ROMs
(see section 10.1) and are then offered to the currently selected
filing system via the filing system control vector (see chapter

Entry parameters:
X and Y contain the address of a line of text (X=low-byte,
Y=high-byte) terminated by a CR character.

On exit:
A, X,Y, C, N,V and Z are undefined. Interrupt status is
preserved but interrupts may be enabled during a call.

3OSBYTE CALLS

OSBY TE calls are a powerful and flexible way of invoking many
of the available operating system facilities.

OSBY TE calls are specified by the contents of the accumulator
(A register) in the 6502. This means that up to 256 different calls
can be made.

The command line interpreter (see section 2.11) performs
OSBYTE callsin response to * FX commands. This enables the
user to make OSBY TE calls from the keyboard or within BASIC
programs. It should be noted however that no results are returned
by a*FX call and so it isinappropriate to use certain OSBY TEs
in thisway.

OSBYTE Miscellaneous OS functions specified by the
contents of the accumulator.

Call address & FFF4 Indirected through & 20A

On entry:
A selectsan OSBY TE routine.
X contains an OSBY TE parameter.
Y contains an OSBY TE parameter.

All calls are made to the OSBY TE subroutine at address & FFF4.
Thisisthen indirected through the vector at & 20A (which means
that user programs can intercept the OSBY TE calls before they
get to the operating system if so desired). The selected function is
determined by the accumulator contents. Two parameters can be
passed to and from OSBY TE routines by putting the values to be
passed inthe X and Y registers respectively.

Example
Using OSBY TE 4 to disable cursor editing.
From BASIC thiswould be typed as:

*FX 4,1
From assembly language it could be performed as:

LDA #4 \Load accumulator with 4
LDX #1 \Select cursor disabled option
JSR &FFF4 \Make OSBYTE call

If an OSBY TE is not recognised by the Electron, it will be

offered to any fitted paged ROMs (see chapters 8 to 11). The
OSBY TE will then usually be claimed by the relevant expansion
module’s ROM. When OSBYTE is called directly, if none of the
paged ROMs claim it then the call returns with the overflow flag
set. If the OSBYTE itself was initiated by a *FX command then
the *FX handler will generate the ‘Bad command’ error.

When OSBYTE calls are used in a second processor only a
limited amount of information is returned. For low numbered
OSBYTE calls (0 to 127) only the X register is returned and for
high numbered OSBYTE calls only the X and Y registers, and
the carry flag are returned.

All the OSBYTE calls recognised by the operating system are
described on the following pages. The description for each call
includes details of the entry parameters required and the state of
the registers on exit. All OSBYTE calls may be made using the
*FX command, but it is not always appropriate to do so (i.e.
those calls returning values in the X and Y registers). Where it is
appropriate to use a *FX command this has been indicated.
Preceding the full OSBYTE descriptions is a complete summary
of the OSBYTE calls in a list.

OSBYTE/*FX Call

dec. hex. function

©Coo~NoOOUIT~WNEO

TMUOWD>OONOADWNRO

Summary

Print operating system version.

Set the User flag.

Select input stream.

Select output stream.

Enable/disable cursor editing.

Select printer destination.

Set character ignored by printer.

Set R$423 baud rate for receiving data.
Set RS423 baud rate for data transmission.
Set flashing colour mark state duration.
Set flashing colour space state duration.
Set keyboard auto-repeat delay interval.
Set keyboard auto-repeat rate.

Disable events.

Enable events.

Flush selected buffer class.

Select ADC channels to be sampled.
Force an ADC conversion.

Reset soft keys.

Wait for vertical sync.

Explode soft character RAM allocation.
Flush specific buffer.

Increment paged ROM polling semaphore
Decrement paged ROM polling semaphore
Change sound system.

OSBYTE/*FX calls 25 (&19) to 114 (&72) are not used by OS

1.00.

115
116
117
118
119
120

73
74
75
76
77
78

Blank/restore palette.

Reset internal sound system.

Read VDU status.

Read keyboard status.

Close any SPOOL or EXEC files.
Write to two-key-roll-over locations.

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

79
7A
7B
7C
7D
7E
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
%4
95
96
97
98
99
9A
9B
9C
9D

Perform keyboard scan.

Perform keyboard scan from 16 (& 10).
Inform OS, printer driver going dormant.
Clear ESCAPE condition.

Set ESCAPE condition.

Acknowledge detection of ESCAPE condition.
Check for EOF on an open file.

Read ADC channel or get buffer status.
Read key with time limit or key depression.
Read machine high order address.

Read top of OS RAM address (OSHWM).
Read bottom of display RAM address (HIMEM).
Read bottom of display address for a given MODE.
Read text cursor position (POS and VPOS).
Read character at cursor position.

Perform * CODE.

Perform *MOTOR.

Insert value into buffer.

Perform * OPT.

Perform * TAPE.

Perform *ROM.

Enter language ROM.

Issue paged ROM service request.

Perform * TV (not implemented).

Get character from buffer.

Read from FRED. 1 MHz bus.

Write to FRED, 1 MHz bus.

Read from JIM, 1 MHz bus.

Writeto JIM, 1 MHz bus.

Read from SHEILA, 1 MHz bus.

Writeto SHEILA, 1 MHz bus.

Examine buffer status.

Insert character into input buffer.

Reset video flash cycle.

Reserved.

Read/write 6850 control register and copy.
‘Fast Tube B PUT.

9E Read from speech processor.
9F Write to speech processor.
A0 Read VDU variable value.

OSBYTE/*FX calls 161 (&A1) to 165 (&A5) are not used by OS 1.00
and are reserved for future expansion.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bi
B2
B3
B4
BS
B6
B7
B8
B9

BA
BB

BC
BD
BE
BF
CcO
Cl
C2
C3
C4
CS
C6
C7
C8
Co
CA

Read start address of OS variables (low byte).

Read start address of OS variables (high byte).
Read address of ROM pointer table (low byte).
Read address of ROM pointer table (high byte).
Read address of ROM information table (low byte).
Read address of ROM information table (high byte).
Read address of key translation table (low byte).
Read address of key trandation table (high byte).
Read start address of OS VDU variables (low byte).
Read start address of OS VDU variables (high byte).
Read/write filing system timeout counter.
Read/write input source.

Undefined

Read/write primary OSHWM.

Read/write current OSHWM.

Read/write R$423 mode.

Read character definition explosion state.
Read/write cassette/ROM filing system switch.
Undefined.

Read/write timer paged ROM service call
semaphore.

Read/write ROM number active at last BRK (error).
Read/write number of ROM socket containing
BASIC.

Read current ADC channel.

Read/write maximum ADC channel number.

Read ADC conversion type.

Read/write RS423 use flag.

Read R$423 control flag.

Read/write flash counter.

Read/write space period count.

Read/write mark period count.

Read/write keyboard auto-repeat delay.

Read/write keyboard auto-repeat period.
Read/write * EXEC file handle.

Read/write * SPOOL file handle.

Read/write ESCAPE, BREAK effect.

Read/write Econet keyboard disable.

Read/write keyboard status byte.

203
204

CB
CC

20S CD

206
207
208
209
210
211
212
213
214
21S
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

CE
CF
DO
DI
D2
D3
D4
DS
D6
D7
D8
D9
DA
DB
DC
DD
DE
DE
EO
El
E2
E3
E4
ES
E6
E7
ES
E9
EA
EB
EC
ED
EE
EF
FO
FI
F2
F3
F4

Read/write the ULA interrupt mask.

Read/write Firm key pointer.

Read/write length of current firm key string.
Read/write Econet OS call interception status.
Read/write Econet OSRDCH interception status.
Read/write Econet OSWRCH interception status.
Read/write speech suppression status.

Read/write sound suppression status.

Read/write BELL channel.

Read/write BELL (CTRL G) sound information.
Read/write BELL frequency.

Read/write BELL duration.

Read/write startup message and !BOOT options.
Read/write length of soft key string.

Read/write number of lines printed since last page.
Read/write number of itemsin VDU queue.
Read/write External sound flag.

Read/write ESCAPE character value.

Read/write i/p buffer code interpretation status.
Read/write i/p buffer code interpretation status.
Read/write i/p buffer code interpretation status.
Read/write i/p buffer code interpretation status.
Read/write function key status.

Read/write firm key status.

Read/write firm key status.
Read/write CTRL+SHIFT+function key status.
Read/write ESCAPE key status.

Read/write flags determining ESCAPE effects.
Reserved.

Sound semaphore.

Soft key pointer.

Read flag indicating Tube presence.

Read flag indicating speech processor presence.
Read/write write character destination status.
Read/write cursor editing status.

Read/write OS workspace bytes.

Read/write OS workspace bytes.

Read country code.

Read/write user flag location.

Read RAM copy of &FEO7.

Read timer switch state.

Read/write soft key consistency flag.

245 FS Read/write printer destination flag.
246 F6 Read/write character ignored by printer.
247 F7 Read/writefirst byte of BREAK intercept code.
248 F8 Read/write second byte of BREAK intercept code.
249 F9 Read/writethird byte of BREAK intercept code.
2S0FA Read/write OS workspace locations.
2S1FB Read/write OS workspace locations.
252 FC Read/write current language ROM number.
253 FD Read/writelast BREAK type.
2HAFE Read/write available RAM.
2SSFF Read/write start up options.

OSBYTE &00 (0)

Identify OS version
See OSBY TE & 81 for more information regarding OS

identification.
Entry parameters:
X=0 Execute BRK with a message giving the OS
version
X<>0 RTSwith OS version returned in X
On exit:

X=0, 05 1.00 or Electron 05 1.00
X=1, OS 1.20 or American OS
A and Y are preserved
Cisundefined

OSBYTE &01 (1)

Set the user flag

Entry parameters:
The user flag is replaced by X

On exit:
X=old value

This call uses OSBY TE with A=& F1 (241). ThisOSBY TE cdll
isleft free for user applications and is not used by the operating
system. The user flag has a default valueis 0.

OSBYTE &02 (2)

Select input stream

In the Electron any call with X<>0 will result in an unknown
OSBYTE service cal being made to the paged ROMs unless a
previous such call was recognised and thus changed the input
source.

Entry parameters:
X determines input device(s)

*FX 2,0 X=0 keyboard selected, RS423 disabled
*FX 2,1 X=1 R$423 selected and enabled
*FX 2,2 X=2 keyboard selected, RS423 enabled

Default: *FX 2,0

On exit:
X=0if previous input was from the keyboard X= 1 if
previous input was from RS423

A ispreserved
Y and C are undefined

OSBYTE &03 (3)

Select output stream

If R423 output is selected in the Electron, paged ROM service
calls are issued. In the absence of a suitable response this output
is sunk (thrown away). The same applies to printer output if
selected.

Bit 3 should not be used to enable the printer as this may conflict
with the Econet protocol of claiming the printer.

Entry parameters:
X determines output device(s)

Bit o/p selected if bit is set

0 Enables R423 driver
1 Disables VDU driver
2 Disables printer driver
3 Enables printer, independent of CTRL B or C
4 Disables spooled output
5 Not used
6 Disables printer driver unless the character is
preceded by aVVDU 1 (or equivalent)
7 Not used
*FX 3,0 selects the default output options which are :
RS423 disabled
VDU enabled

Printer enabled (if selected by VDU 2)
Spooled output enabled (if selected by * SPOOL)

On exit:
A ispreserved
X contains the old output stream status
Y and C are undefined

OSBYTE &04 (4)

Enable/disable cursor editing

Entry parameters:
X determines the status of the editing keys
*FX 4,0 X=0 Enable cursor editing (default setting)
*EX 4,1 X=1 Disable cursor editing and make them return
normal ASCII values like the other keys.

The cursor control keyswill return the
following codes :

COPY &87 (139)

LEFT &88 (136)

RIGHT &89 (137)

DOWN &8A (138)

UP &8B (139)

*FX 4,2 X=2 Disable cursor editing and make the keys act

as soft keys with the following soft key

associations :
COPY 11
LEFT 12
RIGHT 13
DOWN 14
UP 15

On exit:
A ispreserved
X contains the previous status of the editing keys
Y and C are undefined

OSBYTE &05 (5)

Select printer destination

Entry parameters:
X determines print destination

*FX' 50 X=0 Printer sink (printer output ignored)

*EX 51 X=1 Pardle output

*EX 52 X=2 R$423 output (sink if RS423 enabled)
*FX 53 X=3 User printer routine (see section 6.5)
*FX 54 X=4 Net printer (see section 6.5)

*FX 5,5t0 *FX5,255 User printer routine (see section 6.5)

Default setting: *FX 5,0

On Exit:
A ispreserved
X contains the previous * FX 5 setting
Y and C are undefined
Interrupts are enabled by this call
Thiscall isnot reset to default by a soft break

OSBYTE & 06 (6)

Set character ignored by printer

Entry parameters:
X contains the character value to be ignored

*FX 6,10 X=10 This prevents LINE FEED characters being
sent to the printer, unless preceded by VDU
1 (thisisthe default setting)

On exit:
A ispreserved
X contains the previous * FX 6 setting
Y and C are undefined

Thisis not reset by soft BREAK.

OSBYTE & 07 (7)

Set R423 baud rate for receiving data

This routine is not implemented on the unexpanded Electron. If
this OSBY TE is used on the electron an unknown OSBYTE
service call is made to the paged ROMs.

This call isreserved for future expansion.

OSBYTE &08 (8)

Set RS423 baud rate for data transmission

This routine is not implemented on the unexpanded Electron. If
this OSBY TE is used on the electron an unknown OSBYTE
service call is made to the paged ROMs.

This cal isreserved for future expansion.

OSBYTE &09 (9)

Set duration of the mark state of flashing colours
(Duration of first named colour)

Entry parameters:
X determines duration

*FX 9,0 X=0 Sets mark duration to infinity
Forces mark state if spaceisset to O
*FX 9,n X=n Sets mark duration to n VSYNC periods
(n=25 is the default setting)

On exit:
A ispreserved
X contains the old mark duration
Y and C are undefined

OSBYTE &0A (10)

Set duration of the space state of flashing colours
(Duration of second named colour)

Entry parameters:
X determines duration

*FX 10,0 X=0 Sets space duration to infinity Forces space
state if mark issetto O

*FX 10,n X=n Sets space duration to n VSY NC periods
(n=25 isthe default setting)

On exit:
A ispreserved
X contains the old space duration
Y and C are undefined

OSBYTE & 0B (11)

Set keyboard auto-repeat delay

Entry parameters:
X determines delay before repeating starts

*FX 11,0 X=0 Disables auto-repeat facility
*FX 11,n X=n Sets delay ton centiseconds (n=S0 isthe
default setting)

After call,
A ispreserved
X contains the old delay setting
Y and C are undefined

OSBYTE &0C (12)

Set keyboard auto-repeat period

Entry parameters:
X determines auto-repeat periodic interval

*FX 12,0 X=0 Resets delay and repeat to default vals
*EX 12,n X=n Sets repeat interval to n centiseconds (n=8 is
the default value)

On exit:
A ispreserved
X containsthe old *FX 12 setting
Y and C are undefined

OSBYTE & 0D (13)

Disable events

Entry parameters : X contains the event code, Y=0
*FX 13,0 X=0 Disable output buffer empty event

*FX 13,1 X=1 Disableinput buffer full event

*FX 13,2 X=2 Disable character entering buffer event
*FX 13,3 X=3 Disable ADC conversion complete event
*FX 13,4 X=4 Disablestart of vertical sync event

*FX 135 X=5 Disableinterval timer crossing O event
*FX 13,6 X=6 Disable ESCAPE pressed event

*FX 13,7 X=7 Disable R#423 RX error event

*FX 13,8 X=8 Disable network error event

*FX 13,9 X=9 Disableuser event

See section 6.4 for information on event handling.

On exit:
A ispreserved
X contains the old enable state (0= disabled)
Y and C are undefined

OSBYTE & OE (14)

Enable events

Entry parameters:

X contains the event code, Y=0

*FX 14,0
*FX 14,1
*FX 14,2
*FX 14,3
*FX 14,4
*FX 14,S
*FX 14,6
*FX 14,7
*FX 14,8
*FX 14,9

After cal,

XXX XXX XX XX
©CoOoNONPAWNRO

Enable output buffer empty event
Enable input buffer full event

Enable character entering buffer event
Enable ADC conversion complete event
Enable start of vertical sync event
Enable interval timer crossing O event
Enable ESCAPE pressed event

Enable R$423 RX error event

Enable network error event

Enable user event

A ispreserved
X contains the old enable state (>0= enabl ed)
Cisundefined

See section 6.4 for information on event handling.

OSBYTE &OF (15)
Flush sdlected buffer class

Entry parameters:

X vaue selects class of buffer

X=0 All buffers flushed
X=1 Input buffer flushed only
See OSBYTE call &16/*FX 21

On exit,

Buffer contents are discarded
A ispreserved
X, Y and C are undefined

OSBYTE &10 (16)

Select ADC channelswhich areto be sampled
Thisroutine is not implemented on the unexpanded Electron but

is passed on to paged ROMs as an unknown OSBYTE paged
ROM service call.

OSBYTE & 11 (17)

Forcean ADC conversion
Thisroutine is not implemented on the unexpanded Electron but

is passed on to paged ROMs as an unknown OSBYTE paged
ROM service call.

OSBYTE &12 (18)

Reset soft keys

This call clearsthe soft key buffer so the character strings are no
longer available.

No parameters

On exit:
A andY are preserved
X and C are undefined

OSBYTE & 13 (19)

Wait for vertical sync
No parameters

This call forces the machine to wait until the start of the next
frame of the display. This occurs SO times per second on the UK
Electron. Its main use isto help produce flicker free animation on
the screen. The flickering effect is often due to changes being
made on the screen halfway through a screen refresh. Using this
OSBY TE call graphics manipulation can be made to coincide
with the flyback between screen refreshes.

N.B. User trapping of IROIl may stop this call from working.

On exit:
A ispreserved
X, Y and C are undefined

OSBYTE & 14 (20)

Explode soft character RAM allocation
Entry parameters : X value explodes/implodes memory allocation

In the default state 32 characters may be user defined using the
VDU 23 statement from BASIC (or the OSWRCH call in
machine code). These characters use memory from & COO to

& CFF. Printing ASCII codesin the range 128 (& 80) to 159
(&9F) will cause these user defined characters to be printed up
(these characters will aso be printed out for charactersin the
range & AO—&BF, & CO—&DF, &EO—&FF), In this state the
character definitions are said toilbgpl oded.

If the character definitions asgploded then ASCII characters

128 (&80) to 1S9 (&9F) can be defined as before using VDU 23
and memory at &CO00. Exploding the character set definitions
enables the user to uniquely define characters 32 (&20) to 255

(&FF) in steps of 32 extra characters at atime. The operating

system must allocate memory for thiswhich it does using

memory starting at the ‘operating system high-water mark’
(OSHWM). This is the value to which the BASIC variable PAGE
is usually set and so if a totally exploded character set is to be
used in BASIC then PAGE must be reset to OSHWM+&600 (i.e.
PAGE=PAGE+&600).

ASCII characters 32 (&20) to 128 (&7F) are defined by memory
within the operating system ROM when the character definitions
are imploded.

See OSBYTE &83 (131) for details about reading OSHWM from
machine code.

The memory allocation for ASCII codes in the expanded state is
as follows : —
ASCII code Memory allocation
*FX 20,0 X=0 &80 — &8F &COO to &CFF (imploded)
*FX 20,1 X=1 &AO0— &BFOSHWM to OSHWM+&FF
(+above)
FX 20,2 X=2 &CO— &DF OSHWM=&100 to
OSHWM+&1FF (+above)
*FX 20,3 X=3 &EO0— &FF OSHWM+&200 to
OSHWM+&2FF (+above)
*FX 20,4 X=4 &20— &3F OSHWM+&300 to
OSHWM+&3FF (+above)
*FX 20,5 X=S &40 — &F OSHWM+&400 to
OSHWM+&4FF (+above)
*FX 20,6 X=6 &60— &7F OSHWM+&500 to
OSHWM+&5FF (+above)

The explosion state can be determined using OSBYTE &B6.

Before the OSHWM is changed during a font explosion a service
call is made to the paged ROMs warning them of the impending
change.

On exit:
A ispreserved
X contains the new OSHWM (high byte)
Y and C are undefined

OSBYTE &15 (21)

Flush specific buffer

While the unexpanded Electron only has a single sound channel the
operating system has been designed to enable the implementation
of an external sound system. Each time any of the sound buffers are
flushed a paged ROM service cal isissued with A=&17, In the
unexpanded Electron there is a single effective buffer which may be
addressed as any of the four channels. Thus flushing any of the four
buffers will extinguish any sound being produced at that time.

See section 10.1 for more information regarding the Electron sound
paged ROM sevice calls.

Entry parameters:
X determines the buffer to be cleared

*FX 21,0 X=0 Keyboard buffer emptied

*FX 21,1 X=1 R$423input buffer emptied
*EX 21,2 X=2 R$423 output buffer emptied

*FX 21,3 X=3 Printer buffer emptied

*FX 21,4 X=4 Sound channel 0 buffer emptied
*EX 215 X=S Soundchanne 1 buffer emptied
*FX 21,6 X=6 Sound channel 2 buffer emptied
*FX 21,7 X=7 Sound channel 3 buffer emptied
*FX 21,8 X=8 Speech buffer emptied

See also OSBY TEs & OF (*FX1S) and &80 (128).

On exit:
A and X are preserved
Y and C are undefined

OSBYTE & 16 (22)

Increment paged ROM polling semaphore

This call increments the semaphore which when non-zero makes
the operating system issue a paged ROM service call with
A=&15 at centi-second intervals.

See paged ROM service call &15, chapter 10.

Entry parameters:
None

On exit:
A and X are preserved
Y and C are undefined

Semaphore isincremented once per call.

OSBYTE & 17 (23)

Decrement paged ROM polling semaphore
This call decrements the semaphore which when non-zero makes
the operating system issue a paged ROM service call with
A=&15 at centi-second intervals.
See paged ROM service call &15, chapter 10.
Entry parameters:
None
On exit:
A and X are preserved
Y and C are undefined

Semaphore is decremented once per call.

OSBYTE & 18 (24)

Select external sound system

This call is used to select a sound system which isimplemented
by an external hardware/software sound system.

Entry parameters:
X contains an undefined parameter

On exit:

A ispreserved
All other registers are undefined

OSBYTE & 73 (115)

Blank/restore palette

This call isused to temporarily turn al coloursin the palette
black. It should be useful for NMI users who want to generate
NMIs with ahigh resolution screen display. Thiswill ensure that
there is no snow seen on the screen.

Entry parameters:

X=0 Restores the palette
X<>0 Set palette to all black if in high res. mode
On exit:

All registers undefined

OSBYTE & 74 (116)

Reset internal sound system
This call can be used to reset the internal sound system.

Entry parameters:
X contains an undefined parameter

On exit:
All registers are undefined

OSBYTE & 75 (117)

Read VDU status
No entry parameters

On exit the X register contains the VDU status. Information is
conveyed in the following bits :

BitO Printer output enabled by aVDU 2
Bit 1 Scrolling disabled e.g. during cursor editing
Bit 2 Paged scrolling selected
Bit 3 Software scrolling selected i.e. text window
Bit 4 reserved
Bit5 Printing at graphics cursor enabled by VDU 5
Bit 6 Set when input and output cursors are separated (i.e.
cursor editing mode).
Bit 7 Set if VDU isdisabled by aVDU 21
On exit:
A and Y are preserved
Cisundefined
OSBYTE & 76 (118)

Reflect keyboard statusin keyboard LEDs

This routine is hardware dependent and is implemented
differently on the BBC microcomputer and the Electron. This call
should not be used on either machine.

OSBYTE & 77 (119)
Close any SPOOL or EXEC files

This call closes any open files being used as * SPOOL ed output
or *EXECed input to be closed. This call isfirst offered to paged
ROMsviaaservice call with A=&10. If the call is claimed then
the operating system takes no further action. If the call is not
claimed by a paged ROM the operating system closes any EXEC
or SPOOL filesitself. Thiscall should be made by filing systems
if they are deselected.

On exit:
A ispreserved
X, Y and C are undefined

OSBYTE & 78 (120)

Write current keys pressed infor mation

This call should only be made by filing systems which have
recognised a key pressed with BREAK and areinitialising
accordingly (see paged ROM service call with A=& 03, section
10.1). Thiscall should be used to write the old key pressed value
to prevent its entry into the keyboard buffer.

The operating system operates a two key roll-over for keyboard
input (recognising a second key press even when thefirst key is
still pressed). There are two zero page locations which contain
the values of the two key-presses which may be recognised at any
onetime. If no keys are pressed, location & EC contains 0 and
location & ED contains O. If one key is pressed, location & EC
contains the internal key number+ 128 (see table below for
internal key numbers) and location & ED contains 0. If a second
key is pressed while the original key is held down, location & EC
contains the internal key number+ 128 of the most recent key
pressed and location & ED contains the internal key number+ 128
of thefirst key pressed.

Internal Key Numbers

hex. dec.key hex. dec. key

&00 O SHIFT &40 64 CAPSLOCK
&01 1 CTRL &41 65 A

&02 2 bitO &42 66 X

&03 3 hiti &43 67 F

&04 4 bit2 &44 68 Y

&05 5 hit3 &45 69 J

&06 6 hit4 &46 70 K

&07 7 biths &47 71 @

&08 8 hitb &48 72

&09 9 hit7 &49 73 RETURN
&0 16 O &50 80 SHIFT LOCK
&11 17 3 &51 81 5

&12 18 4 &52 82 C

&13 19 5 &53 83 G

&14 20 f4 &54 84 H

&15 21 8 &55 85 N

&16 22 {7 &56 86 L

&17 23 — &57 87 ;

&18 24 1 &58 88

&19 25 leftcursor &59 89 DELETE
&20 32 fO &60 96 TAB
&21 33 W &61 97 Z

&22 34 E &62 98 SPACE
&23 35 T &63 99 V

&24 36 7 &64 100 B

&25 37 9 &65 101 M

&26 38 | &66 102 ,

&27 39 O &67 103 .

&28 40 &68 104 /

&29 41 down cursor &69 |10S COPY
&30 48 1 &70 112 ESCAPE
&31 49 2 &71 113 fi

&32 50 D &72 114 f2

&33 51 R &73 115 f3

&34 52 6 &74 116 f4

&35 S3 U &75 117 f6

&36 54 0 &76 118 f8

&37 SS P &77 119 f9

&38 56 | &78 120 \

&39 57 wupcursor &79 121 right cursor

Bits 0 to 7 refer to the the start up option byte. See OSBY TE
& FF for further information about this byte.

To convert these internal key numbersto the INKEY numbers
they should be EOR (Exclusive ORed) with & FF (255).

Entry parameters :
X and Y contain values to be written

Valuein X is stored as the old key information.
VaueinY isstored in the new key information.

See also OSBY TE callswith A=& AC and A=& AD.

On exit:
A, X andY are preserved
C isundefined

OSBYTE & 79 (121)

Keyboard scan

The keyboard is scanned in ascending numerical order. This call
returns information about the first pressed key encountered
during the scan. Other keys may also be pressed and a further call
or callswill be needed to compl ete the entire keyboard scan.

Entry parameters:
X determines the key to be detected and also determines
the range of keys to be scanned.

Key numbers refer to internal key numbersin the table above
(see OSBYTE &78).

To scan aparticular key:
X=key number EOR &80
on exit X<0if thekey is pressed

To scan the matrix starting from a particular key number:

X=key number
On exit X=key number of any key pressed or & FF if no
key pressed
On exit:
A ispreserved

X contains key value (see above)
Y and C are undefined

OSBYTE & 7A (122)

Keyboard scan from 16 decimal

No entry parameters

Internal key number (see table above) of the key pressed is
returned in X.

Thiscal isdirectly equivalent to an OSBY TE call with A=& 79
and X=16.

On exit:
A ispreserved
X contains key number or zero if none pressed
Y and C are undefined

OSBYTE & 7B (123)

Inform operating system of printer driver going dor mant

Entry parameters:
X should contain the value 3 (printer buffer i.d.)

ThisOSBY TE call should be made by user printer drivers when
they go dormant. The operating system will need to wake up the
printer driver if more characters are placed in the printer buffer
(see section 6.5).

On exit:
A and X are preserved

Y ispreserved
C isundefined

OSBYTE & 7C (124)

Clear ESCAPE condition
No entry parameters

This call clears any ESCAPE condition without any further
action.

See OSBYTE & 7E also.

On exit:
A, X andY arepreserved
C isundefined

OSBYTE & 7D (125)

Set Escape condition
No entry parameters

This call partially simulates the ESCAPE key being pressed. The
Tubeisinformed (if active). An ESCAPE event is not generated.

On exit:

A, X andY arepreserved
Cisundefined

OSBYTE & 7E (126)

Clear ESCAPE condition with side effects

No entry parameters

This call attemptsto clear the ESCAPE condition. All active
buffers will be flushed, any open EXEC files closed, the VDU
paging counter will be reset and the VDU queue will be reset.

See OSBYTE & E6 (230) also.

On exit:
X=&FF if the ESCAPE condition cleared
X=0 if no ESCAPE condition found

A ispreserved
Y and C are undefined

OSBYTE & 7F (127)

Check for end-of-file on an opened file
Entry parameters:
X contains file handle

On exit:
X<>0 If end-of-file has been reached
X=0 If end-of-file has not been reached

A and Y arepreserved (Y not passed across Tube)
Cisundefined

OSBYTE & 80 (128)

Read ADC channel (ADVAL) or get buffer status

On the Electron this call will generate an unknown OSBYTE
paged ROM service call when passed a positive value in the X
register. If this service call is not claimed then the valuesin page
2 of memory allocated to storing ADC information are returned.

Otherwise this call isimplemented identically on the BBC
microcomputer and the Electron. Information about those buffers
not used on the unexpanded Electron will be meaningless; these
buffers have been implemented for expansion capability.

Entry parameters:

X determines action and buffer or channel number
If X=0 on entry:
Y returns channel number (range 1 to 4) showing which channel
was last used for ADC conversion, Note that OSBY TE calls with
A=&10 (16) and A=& 11 (17) set thisvalue toO. A value of O

indicates that no conversion has been completed. Bits 0 and 1 of
X indicate the status of the two ‘fire buttons’.

If X=1t0 4 on entry:

X and Y contain the 16 bit value (X-low, Y-high) read from
channel specified by X.

If X<0and Y=&FF on entry:

If X contains a negative value (in 2's complement notation) then
this call will return information about various buffers.

X=255 (&FF) keyboard buffer
X=254 (&FE) RS423 input buffer
X=253 (&FD) RS423 output buffer
X=252 (&FC) printer buffer

X=251 (&FB) sound channel 0
X=250 (&FA) sound channel 1
X=249 (&F9) sound channel 2
X=248 (&F8) sound channel 3
X=249 (&F7) speech buffer

For input buffers X contains the number of characters in the
buffer and for output buffers the number of spaces remaining.

On exit:
A is preserved
C is undefined

OSBYTE & 81 (129)

Read key with timelimit (INKEY)

This call is functionally equivalent to the BASIC statement
INKEY, It can be used to get a character from the keyboard
within a time limit, scan the keyboard for a particular key press
or return information about the OS type.

(a) Read key with time limit

Entry parameters:
X and'Y specify time limit in centiseconds

If atime limit of n centisecondsis required,
X=n AND &FF (LSB)
Y=nDIV &100 (MSB)
Maximum time limit is & 7FFF centiseconds (5.5 minutes aprox.)
On exit:
If key press detected, X=ASCII key value, Y=0 & C=0
If key press not detected by timeout then Y=&FF & C=1
If Escapeis pressed then Y=&1B (27) and C=1
(b) Scan keyboard for key press

Entry parameters:
X=negative INKEY value for key to be scanned
Y=&FF

On exit:
X =Y = &FF, C=1if the key being scanned is pressed. X
=Y =0, C=0if key is not pressed.

(c) Returninformation about OS type

Entry parameters:
X=0
Y=&FF

On exit:
X=0 BBCOSO.1
X=1 Electron 05 1.00
X=&FF BBC 05 1.00 or 05 1.20
X=&FE USBBC 0S1.20

OSBYTE & 82 (130)

Read machine high order address
No entry parameters

This call yields the high order address required for the most
significant 16 bits of the 32 bit addresses used for filing systems.
The high order address is different in a second processor to that
in ani/o processor. The Tube operating system intercepts this call
to return the second processor high order address.

On exit:
X and Y contain the address (X-high, Y-low)

A ispreserved
C isundefined

OSBYTE &83(131)

Return current OSHWM

The OSHWM (operating system high water mark) represents the
top of memory used by the operating system. Thisvalueis set
after the paged ROMs have claimed workspace and any font
explosion carried out. On a second processor this value represents
the OSHWM on the i/0 processor.

The OSHWM indicates the start of user memory and so this call
ismade by BASIC to initialise the value of PAGE.

No entry parameters

On exit:
X and 'Y contain the OSHWM address (X= low-byte, Y =
high-byte)

A ispreserved
C isundefined

OSBYTE & 84 (132)

Return HIMEM

HIMEM is an address indicating the top of the available user
RAM. Thisisusualy the bottom of screen memory address. On a
second processor thiswill be the bottom address of any code
copied across from the I/O processor and executed.

No entry parameters

On exit:
X andY contain the HIMEM address (X-low,Y -high)

A ispreserved
C isundefined

OSBYTE & 85 (133)
Read bottom of display RAM address for a specified mode

This call may be used to investigate the consequences of an
intended MODE change. This enables languages to determine
whether the selection of anew MODE should be allowed.

Entry parameters:
X determines mode number

On exit:
X andY contain the address (X-low byte,Y -high byte)

A ispreserved
C isundefined

OSBYTE & 86 (134)

Read text cursor position (POS and VPOYS)

When in cursor editing mode this call returns the position of the
input cursor not the output cursor.

No entry parameters

On exit:
X contains horizontal position of the cursor (POS)
Y contains vertical position of the cursor (VPOS)

A ispreserved
C isundefined

OSBYTE & 87 (135)

Read character at text cursor position and screen MODE
No entry parameters
On exit:
X contains character value (0 if character not recogni sed)
Y contains graphics MODE number

A ispreserved
C isundefined

OSBYTE & 88 (136)

Execute code indirected via USERV (* CODE equivalent)
This call JSRsto the address contained in the user vector
(USERV &200). The X and Y registers are passed on to the user
routine.

See * CODE, section 6.1.

OSBYTE & 89 (137)

Switch cassetterelay (*MOTOR equivalent)

Entry parameters:
X=0relay off
X=1relay on

The cassette filing system calls this routine with Y =0 for write
operations and Y = 1 for read operations. This enables the
implementation of adual cassette system with additional
hardware and software

On exit:
A ispreserved
X,Y and C are undefined

OSBYTE & 8A (138)

Insert valueinto buffer

Entry parameters:
X identifies the buffer (See OSBY TE & 15)
Y contains the to be value inserted into buffer

On exit:
C=0if vaue successfully inserted
C=1if value not inserted e.g. if buffer full
A ispreserved

OSBYTE & 8B (139)

Select file options (*OPT equivalent)

Entry parameters:
X contains file option number Y contains the option value
required

On exit:
A ispreserved
Cisundefined

OSBYTE & 8C (140)

Select tapefiling system (* TAPE equivalent)
No entry parameters
On exit:

A ispreserved
C isundefined

OSBYTE & 8D (141)

Select ROM filing system (*ROM equivalent)
No entry parameters
On exit:

A is.preserved
X,Y and C are undefined

OSBYTE & 8E (142)

Enter language ROM

Entry parameters:
X determines which paged ROM is entered

The language ROM is entered viaits entry point with A= 1.
Locations & FD and & FE in zero page are set to point to the
copyright message in the ROM.

Thereisno exit from thiscall.

OSBYTE & 8F (143)

I ssue paged ROM service call
See Service ROMs section 10.1
Entry parameters:
X=reason code
Y =parameter passed with service call
On exit:
Y may contain return argument (if appropriate) X=0 if a
paged ROM claimed the service call

A ispreserved
C isundefined

OSBYTE & 90 (144)

Alter display parameters (* TV equivalent)

On the Electron this call is not implemented and returns with
registers preserved.

OSBYTE & 91 (145)

Get character from buffer
Entry parameters:

X contains buffer number (see OSBYTE & 1S)

On exit:
Y contains the extracted character.
If the buffer was empty then C= 1 otherwise C=0.

A ispreserved

OSBYTEs&92to & 97 (146 to 151)

Read or Writeto mapped 1/0

Entry parameters:

X contains offset within page

Y contains byte to be written (for write cals)

OSBYTE cdll Memory addressed Name

read write
&92 (146) &93(147) &FCOOto &FCFF FRED
&94(148) &95(149) &FDOOto &FDFF JM
&96 (150) &97(151) &FEOOto &FEFF SHEILA

Refer to the hardware section for details about these 1 MHz
buses.

On exit:
Read operations return with the value read in
the Y register

A ispreserved
C isundefined

OSBYTE & 98 (152)

Examine Buffer status
Entry parameters. X contains buffer number

On exit:
Y =character value read from buffer if buffer not empty

Y ispreserved if buffer empty
C=1if buffer empty otherwise C=0

A and X are preserved

OSBYTE & 99 (153)

Insert character into input buffer, checking for ESCAPE
Entry parameters:
X contains buffer number (0 or 1 only) Y contains the
character value

X=0 keyboard buffer

X=1 RS$423 input
If the character is an ESCAPE character and ESCAPES are not
protected (using OSBY TE & C8/*FX 200 or OSBYTE
& E5/*FX229) then an ESCAPE event is generated instead of the
keyboard event.
On exit:

A ispreserved
X, Y and C are undefined

OSBYTE & 9A (154)

Reset flash cycle

This call resets the flash cycle to the beginning of the mark state
(i.e. to the first named colour of the pair) by manipulating the
ULA registers.

There are no entry parameters.

On exit:
All registers are undefined

OSBYTE & 9B (155)

Writeto video ULA paletteregister and OS copy (BBC micro)

On the Electron this call isignored by immediately executing an
RTS instruction.

OSBYTE &9C (156)

Read/update 6850 control register and OS copy (BBC micro)
On the Electron this call causes the operating system to issue an

unknown OSBYTE paged ROM service call but makes no further
actions.

OSBYTE & 9D (157)

Fast Tube BPUT

The byte to be output is channeled through the standard BPUT
routine.

Entry parameters:
X =byte to be output
Y -file handle

On exit:
A ispreserved
X, Y and C are undefined

OSBYTE & 9E (158)

Read from speech processor
On the Electron this call causes the operating system to issue an

unknown OSBYTE paged ROM service call but makes no further
actions.

OSBYTE & 9F (159)

Writeto speech processor

On the Electron this call causes the operating system to issue an
unknown OSBYTE paged ROM service call but makes no further
actions.

OSBYTE &AO (160)

Read VDU variable value

This call isimplemented on the Electron but is officially
undefined and may change in future issues of the operating
system software.

Entry parameters:
X contains the number of the variable to be read

On exit:
X=low byte of variable
Y =high byte of variable

A ispreserved
C isundefined

OSBYTEs & A6 (166) and & A7 (167)

Read start address of OS variables
<NEW VALUE>=(<OLD VALUE> ANDY) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin'Y.

This cal returns the start address of the memory used by the
operating system to storeitsinternal variables.

On exit:
X=low byte
Y =high byte

A ispreserved
Cisundefined

OSBYTEs& A8 (168) and & A9 (169)

Read address of ROM pointer table

This cal isimplemented on the BBC microcomputer and the
Electron. When used across the Tube the address returned refers
to the 1/0 processor's memory.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This table of extended vectors consists of 3 byte vectors in the
form Location (2 bytes), ROM no. (1 byte). See Paged ROM
section 10.3 for a complete description of extended vectors.

On exit:
X=low byte
Y=high byte
A is preserved
C is undefined

OSBYTEsS&AA (170) and & AB (171)

Read address of ROM information table
<NEW VALUE>=(<OLD VALUE> ANDY) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call returns the origin of a 16 byte table, containing one byte
per paged ROM. This byte contains the ROM type byte contained
in location & 8006 of the ROM or contains 0O if a valid ROM is

not present.

On exit:
X=low byte
Y=high byte
A is preserved
C is undefined

OSBYTES&AC (172) and & AD (173)

Read address of keyboard trandation table

This cal isimplemented on the BBC microcomputer and the
Electron. However it should be noted that this call is hardware
specific due to the different keyboard matrix layout on different
machines, When used across the Tube the address returned refers
to the 1/0O processor’'s memory.

Use of this call is not recommended.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

On exit:
X=low byte
Y=high byte

OSBYTEsS&AE (174) and & AF (175)

Read VDU variablesorigin
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call returns with the address of the table of internal VDU
variables.

On exit:
X=low byte
Y=high byte

OSBYTE &BO (176)

Read/write CFS timeout counter
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

This counter is decremented once every vertical sync pulse (50
times per second) which isaso used for OSBYTE & 13/*FX 19.
The timeout counter is used to time interblock gaps and |eader
tones.

OSBYTE &B1 (177)

Read input source flags
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

This location should contain O for keyboard input and 1 for
R>423 input (i.e. contains buffer no.) and isused for OSBY TE
&2. OSBYTE &2 should be used to change the input source as
writing the flag with this call does not enable the relevant
interrupts.

OSBYTE &B2 (178)

This call is undefined on the Electron.

OSBYTE & B3 (179)

Read/write primary OSHWM (for imploded font)

This call should not be used as it has been re-allocated on other
productsin the Acorn-BBC range.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

This location contains the OSHWM page value for an imploded
font (even when character definition RAM explosion has been
selected) but after paged ROM workspace alocation has been
made.

See OSBYTE &B4 and OSBYTE & 14.

OSBYTE & B4 (180)

Read OSHWM (similar to OSBYTE & 83)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

This call returns the page number of OSHWM in X.

This location is updated by any character definition RAM
explosion which may have been selected and returns with the
high byte of the OSHWM address (the low byte always being 0).

See OSBYTE &14.

OSBYTE & B5 (181)

Read/write RS423 mode

On the unexpanded Electron this call will have no effect unlessa
suitable hardware and software expansion has been performed to
implement R5423.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

Flag=0 ESCAPES are recognised soft keys are expanded
character entering input buffer event generated
cursor editing performed

Flag=1 All characters enter input buffer

(default) character entering buffer event not generated

OSBYTE & B6 (182)

Read character definition explosion state

Use of this call is not recommended as this OS BY TE has been
reallocated on other productsin the Acorn BBC range.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This location contains the state of font explosion as set by
OSBY TE call with A=&14/*FX 20.

OSBYTE &B7 (183)

Read cassette/ROM filing system flag
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This location contains O for * TAPE selection and 2 for *ROM
selection. Other values are meaningless, and should not be used.

OSBYTE & B8 (184)

This call is undefined on the Electron.

OSBYTE & B9 (185)

Read/writetimer paged ROM service call semaphore

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

This location contains a semaphore. If the contents of this
location are non-zero the operating system will generate a paged
ROM service call with areason code of &15. This semaphore
should only be read using this call. See OSBYTEs & 16 and & 17
for information about setting semaphore and service ROMs
chapter 10 for information about the paged ROM service call.

OSBYTE & BA (186)

Read ROM number activeat last BRK (error)
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This location contains the ROM number of the paged ROM that
wasin use a the last BRK.

OSBYTE & BB (187)

Read number of ROM socket containing BASIC
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin'Y.

BASIC isrecognised by the fact that it is alanguage ROM which
does not possess a service entry. This ROM is then selected by
the *BASIC command. If no BASIC ROM is present then this
location contains & FF.

OSBYTE &BC (188)

Read current ADC chann€

This call is not implemented in the unexpanded Electron.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

This location contains the number of the ADC channel currently
being converted. This call should not be used to force ADC
conversions, use OSBYTE & 11/*FX 17.

OSBYTE &BD (189)

Read maximum ADC channel number.

This call is not implemented in the unexpanded Electron.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

The maximum channel number to be used for ADC conversions
intherange 0 to 4. Set by OSBYTE & 16/*FX 10.

OSBYTE & BE (190)

Read ADC conversion type, 12 or 8 bits.

This call is not implemented in the unexpanded Electron.
<NEW VALUE>=(<OLD VALUE> ANDY) EOR X

Theold valueisreturned in X. The contents of the next location
arereturnedinY.

Set to & 00, default (12 bit)

Set to &08, 8 bit conversion

Set to &0C, 12 bit conversion

OSBYTE &BF (191)
Read/write RS423 use flag.

Thislocation is reserved for expansion software on the Electron.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin'Y.

OSBYTE &CO0 (192)

Read R$423 controal flag

Thislocation is reserved for expansion software on the Electron.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

OSBYTE &C1(193)

Read/write flash counter.
<NEW VALUE>=(<OLD VALUE> ANDY) EOR X

Theold valueisreturned in X. The contents of the next location
arereturnedin Y.

This location contains the number of 1/50th sec. units until the
next change of colour for flashing colours.

OSBYTE & C2 (194)

Read/write space period count.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

Similar to OSBYTE &O0A.

OSBYTE & C3 (195)

Read/write mark period count.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

Similar to OSBYTE &09.

OSBYTE & C4 (196)

Read/write keyboard auto-repeat delay.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin’Y.

Thiscal isused by OSBYTE &0B.

OSBYTE & C5 (197)

Read/write keyboard auto-repeat period (rate).
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

Thiscall isused by OSBYTE &0C.

OSBYTE & C6 (198)

Read *EXEC file handle.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

This call should be used only to read this location as writing to it

may have undefined effects. This location contains zero if no file
handle has been allocated by the operating system.

OSBYTE &C7 (199)

Read *SPOOL file handle.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This call should be used to read this location only. This location
contains the file handle of the current SPOOL file or zero if not
currently spooling.

OSBYTE & C8 (200)

Read/write ESCAPE, BREAK effect

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin'Y.

bit0-0 Normal ESCAPE action

bit0-1 ESCAPE disabled unless caused by
OSBYTE &7D/125

bitsl to7-0 Normal BREAK action

bitslto7-1 Memory cleared on BREAK

e.g. A value 000000Ix (binary) will cause memory to be cleared
on BREAK.

OSBYTE &C9 (201)

Read/write keyboard disable.
This call should only be made by the Econet filing system.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'yY.

If this location contains O then the keyboard is scanned normally
otherwise lock keyboard (all keysignored except BREAK).

Thiscall isused by the*REMOTE Econet facility.

OSBYTE & CA (202)

Read/write keyboard status byte.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

bit 4=0 if CAPS LOCK active
bit5=1 ifFn active

bit 6=1 if SHIFT active

bit 7=1 if CTRL active

All bits except the CAPS LOCK hit will only change transiently
and are subsequently unlikely to be of use.

See also OSBY TE with A=&76 (118).

OSBYTE &CB (203)

Read/writethe ULA Interrupt Mask

See chapter 7 for adescription of the interrupt handling routine.

OSBYTE & CC (204)

Read/write Firm Key Pointer
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin'Y.

The value contained in thislocation is a pointer into the currently
expanding firm key. For more information about the firm keys
see language ROM s section 9.2.

OSBYTE &CD (205)

Read/write Length of current Firm key string.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin'Y.

This location contains the length of the string currently being

expanded from a Firm key. For more information about Firm
keys see language ROM s section 9.2.

OSBYTE & CE (206)

Read/write Econet OS call interception status.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

If bit 7 of thislocation is set then al OSBY TE and OS WORD
calls (except those sent to paged ROMss) are indirected through
the Econet vector (& 224) to the Econet. Bits 0 to 6 are ignored.

OSBYTE & CF (207)

Read/write Econet read character inter ception status.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

If bit 7 of thislocation is set then input is pulled from the Econet
Vector.

OSBYTE &DO (208)

Read/write Econet write character inter ception status.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

If bit 7 of thislocation is set then output is directed to the Econet.

Output may go through the normal write character on return from
the Econet code.

OSBYTE & D1 (209)

Read/write speech suppression status.

Thislocation is not used in the unexpanded Electron and is
reserved for future expansion.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

OSBYTE & D2 (210)

Read/write sound suppression status.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

Setting X to zero allows sound to be generated. Setting X non-
zero will prevent any further sound being produced.

The old valueis returned in X. The contents of the next location
arereturnedin’Y.

OSBYTE &D3 (211)

Read/write BELL (CTRL G) channdl.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This location contains the channel number to be used for the
BELL sound. Default valueis 3.

OSBYTE & D4 (212)

Read/write BELL (CTRL G) SOUND information.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This location contains a byte which determines either the
amplitude or the ENVELOPE number to be used by the BELL
sound. If an ENVELOPE is specified then the value should be set
to (ENVELOPE no.-1)*8. Similarly an amplitude in the range 15
to O must be translated by subtracting 1 and multiplying by 8.

The least significant three bits of this location contain the H and 5
parameters of the SOUND command (see User Guide).

Note that the internal sound system on the Electron will not allow
the amplitude of the sound to be varied.

Default value 144 (& 90) on the Electron.

OSBYTE & D5 (213)

Read/writebell (CTRL G) frequency.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This value contains the pitch parameter (as used by SOUND
command third parameter) used for the BELL sound.

Default value 101 (&65) on the Electron.

OSBYTE & D6 (214)

Read/write bell (CTRL G) duration.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This value contains the duration parameter (as for SOUND
command) used for the BELL sound.

Default value 6 on the Electron.

OSBYTE & D7 (215)

Read/write start up message suppression and 'BOOT option
status.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

bit 0 If clear then ignore OS startup message. If set then print up
OS startup message as normal.

bit 7 If set thenif an error occursin a!BOOT filein *ROM,
carry on but if an error is encountered from adisc 'BOOT
file because no language has been initialised the machine
locks up.
If clear then the opposite will occur, i.e. locks up if thereis
an error in *ROM.

This can only be over-ridden by a paged ROM on initialisation or
by intercepting BREAK, see OSBY TE calls & F7 to & F9.

OSBYTE & D8 (216)

Read/write length of soft key string.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This location contains the number of characters yet to be read
from the soft key buffer of the current soft key. To clear inpui
buffer use * FX 15/0SBY TE & OF.

OSBYTE & D9 (217)

Read/write number of linessincelast halt in page mode.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This location contains the number of lines printed since the last
page halt. This value is used by the operating system to decide
wether to halt scrolling when paged mode has been selected. This
location is set to zero during OSWORD call &00 to prevent a
scrolling halt occurrng during input.

OSBYTE & DA (218)

Read/write number of itemsin the VDU queue.
<NEW VALUE>=(<OLD VALUE> ANDY) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This contains the 2's complement negative number of bytes still
required for the execution of a VDU command.

Writing O to this location can be a useful way of abandoning a

VDU queue, otherwise writing to this location is not
recommended.

OSBYTE & DB (219)

Read/write External sound flag
<NEW VALUE>=(<OLD VALUE> ANDY) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains a flag indicating that an external sound
system has been selected using OSBYTE &18.

OSBYTE &DC (220)

Read/write Escape character.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

Thislocation contains the ASCII character (and key) which will
generate an ESCAPE condition or event.

e.g. *FX 220,32 will make the SPACE bar the ESCAPE key.
Default value & 1B (27).

OSBYTEs&DD (221) to & EO (224)

Read/write /P buffer codeinter pretation status.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

These locations determine the effect of the character values & CO
(192) to & FF (255) when placed in the input buffer. See
OSBYTEs &E1 (225) to & E4 (228) for details about the different
effects which may be selected. Note that these values cannot be
inserted into the input buffer from the keyboard. R$423 input or a
user keyboard handling routine may place these valuesinto the
input buffer.

OSBYTE &DD affectsinterpretation of values & CO to & BF
OSBY TE &DE affects interpretation of values & DO to & CF

OSBY TE &DF affects interpretation of values & EO to & EF
OSBYTE & EO affects interpretation of values & FO to & FF

Default values &01 ,&DO,& EO and & FO (respectively)

OSBYTE &E1 (225)

Read/write function key status (soft keys/codes/null). Input
buffer characters &80 to & 8F.

OSBYTE &E2 (226)

Read/write firm key status (soft key or code).
Input buffer characters & 90 to & 9F.

OSBYTE &E3 (227)

Read/write firm key status (soft key or code).
Input buffer characters & AO to & AF.

OSBYTE & E4 (228)

Read/write CTRL+SHIFT+function key Status (soft key or
code).

Input buffer characters & BO to & BF.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

These locations determine the action taken by the operating
system when afunction key is pressed.

value O totally ignore key.

vauel expand as normal soft key.

value 2to &FF add n (base) to soft key number to provide
ASCII’ code.

The default settings are:-

fn keys aone &01 expand using soft key strings
fn keys+ SHIFT &01 expand using firm key strings
fn keys+CTRL &01 expand using firm key strings

fn keys+SHIFT+CTRL &00 key hasno effect

When the BREAK Kkey is pressed a character of value & CA is
entered into the input buffer. The effect of this character may be
set independently of the other soft keys using OSBYTE &DD
(221). One of the other effects of pressing the BREAK key isto
reset this OSBY TE call and so the usefulness of thisfacility is
limited.

OSBYTE &E5 (229)

Read/write status of ESCAPE key (escape action or ASCI|
code).

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

If this location contains O then the ESCAPE key has its normal
action. Otherwise treat currently selected ESCAPE key as an
ASCII code.

OSBYTE & E6 (230)

Read/write flags deter mining ESCAPE effects.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
arereturnedin'Y.

If this location contains O then when an ESCAPE is
acknowledged (using OSBY TE & 7E/*FX 126) then :

EXEC fileisclosed (if open)

Purge al buffers (including input buffer)
Reset paging counter (lines since last halt)
Reset VDU queue

Any current soft key expansion is cleared

If this location contains any value other than 0 then ESCAPE
causes none of these.

OSBYTE &E7 (231)
Read/write IRQ bit mask for the user 6522 (BBC micro)
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
arereturnedin Y.

This location is reserved for future Acorn expansion on the
Electron.

OSBYTE &ES8 (232)

Read/write sound semaphore

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

This location contains the sound semaphore.

OSBYTE & E9 (233)

Read/write soft key pointer
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

This location contains the soft key pointer.

OSBYTE & EA (234)

Read flag indicating Tube presence.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This location contains 0 if a Tube system is not present and & FF
if Tube chips and software are installed.

No other values are meaningful or valid.

OSBYTE & EB (235)

Read flag indicating speech processor presence.

Thislocation is used differently on the BBC micro and the
Electron.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin'Y.

Thislocation is reserved for future Acorn expansion on the
Electron.

OSBYTE & EC (236)

Read/writewrite character destination status.
<NEW VALUE>=(<OLD VALUE> AND Y) BOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

Thiscall isused by OSBYTE & 3/*FX 3.

OSBYTE &ED (237)

Read/write cursor editing status.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin'Y.

Thiscall isused by OSBY TE &4/*FX 4.

OSBYTEs & EE (238) and & EF (239)

Read/write OS wor kspace bytes.

These locations are reserved for future Acorn expansion on the
Electron.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin'Y.

OSBYTE & F0 (240)

Read country code
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

This location contains a value indicating the country for which
this version of the operating system has been written.

country code country
0 United Kingdom
1 United States
OSBYTE & F1 (241)

Read/write User flag location.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

This call is not used by the operating system and is unlikely to be
used by later issues either. Thislocation is reserved as a user flag
for use with *FX 1.

Default value O.

OSBYTE & F2 (242)
Read RAM copy of location & FEO7
<NEW VALUE>=(<OLD VALUE> AND Y) BOR X

Thislocation contains a RAM copy of the last value written to
the ULA at address & FEO?7.

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

OSBYTE & F3 (243)

Read timer switch state.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

The operating system maintains two internal clocks which are
updated alternately, As the operating system alternates between
the two clocks it toggles this location between values of 5 and 10.
These values represent offsets within the OS workspace where
the clock values are stored. This OS workspace location should
not be interfered with.

OSBYTE & F4 (244)

Read/write soft key consistency flag.

<NEW VALUE>=(<OLD VALUE> ANDY) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

If this location contains O then the soft key buffer isina
consistent state. A value other than O indicates that the soft key
buffer isin an inconsistent state (the operating system does this
during soft key string entries and deletions). If the soft keys arein
an inconsistent state during a soft break then the soft key buffer is
cleared (otherwise it is preserved).

OSBYTE & F5 (245)

Read/write printer destination flag.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

Thiscall isused by OSBYTE &5/*FX 5. Using this call does not
check for the printer previously selected being inactive or inform
the user printer routine. See section 6.1.

OSBYTE & F6 (246)

Read/write character ignored by printer.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

Thiscall isused by OSBY TE & 6/*FX 6.

OSBYTEs & F7 (247), & F8 (248) and
& F9 (249)

Read/write BREAK intercept code.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

The contents of these locations must be a IMP instruction for
BREAKSs to beintercepted (the operating system identifies the
presence of an intercept by testing the first location contents
equal to &4C _IMP). This code is entered twice during each
break. On thefirst occasion C=0 and is performed before the
reset message is printed or the Tube initialised. The second cal is
made with C= 1 after the reset message has been printed and the
Tube initialised.

OSBYTEs & FA (250) and & FB (251)

Read/write OS workspace locations.

These locations are reserved for future Acorn expansions on the
Electron.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

OSBYTE &FC (252)

Read/write current language ROM number.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

Thislocation is set after use of OSBY TE &8E/*FX 126. This
ROM isentered following a soft BREAK or aBRK (error).

OSBYTE &FD (253)

Read hard/soft BREAK.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturned in' Y

This location contains a value indicating the type of the last
BREAK performed.

value 0 _soft BREAK
value 1 _power up reset
value 2 _hard BREAK

OSBYTE & FE (254)

Read/write available RAM (BBC micro)
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueisreturned in X. The contents of the next location
arereturnedin Y.

Thislocation is reserved for future Acorn expansion.

Default value 0 in the unexpanded Electron.

OSBYTE & FF (255)

Read/write start up options.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old valueis returned in X. The contents of the next location
arereturnedin'Y.

On the Electron the default value of thislocation is & FF (255)
and this OSBY TE isthe only way of resetting the start up
options.

bitsOto2 screen MODE selected following reset. (MODE
number - 3 bit value)

bit 3 if clear reverse action of SHIFT+BREAK.

bits4to7 not used (reserved for future applications)

4 OSWORD CALLS

The OS WORD routines are very similar in concept to the
OSBY TE routines. The mgjor difference arisesin the way of
passing parameters. Instead of being passed inthe X and Y
registers, they are placed in a parameter block, The address of
this parameter block is sent to the routinein the X (for the low
byte) and Y (for the high byte) registers.

OSWORD OS call specified by contents of A taking
parametersin a parameter block.

Call address & FFF1 Indirected through & 20C

On entry,
A selects an OSWORD routine.
X contains low byte of the parameter block address.
Y contains high byte of the parameter block address.

OSWORDs which are called with accumulator valuesin the
range & EO (224) to & FF (255) are passed to the USERV

(&200). The routine indirected through the USERYV is entered
with the register contents unchanged from the originad OSWORD
call.

Other unrecognised OSWORD calls are offered to the paged
ROMs (see service ROMs section 10.1, reason code 8).

OSWORD summary

Read line from currently selected input into memory.
Read system clock.

Write system clock.

Read interval timer.

Write interval timer.

Read byte of 1/0 processor memory.

Write byte of 1/0 processor memory.

Perform a SOUND command.

Define an ENVELOPE.

PR E RN
oO~NOOTRAWNEFLO

Read pixel value.

Read character definition.

Read palette value for agiven logical colour.

Write palette value for agiven logical colour.

Read previous and current graphics cursor positions.

ThLLn
o R0 o o ©
oOw>

OSWORD call with A=&0 Read linefrom input

This routine takes a specified number of characters from the
currently selected input stream. Input is terminated following a
RETURN or an ESCAPE. DELETE (& 7F/127) deletes the
previous character and CTRL U (&15/21) deletes the entire line.
If characters are presented after the maximum line length has
been reached the characters are ignored and a BEL (ASCII 7)
character is output.

The parameter block

XY+0 Buffer address for input LSB
1 MSB
2 Maximum line length
3 Minimum acceptable ASCII value
4 Maximum acceptable ASCII value

Only characters greater or equal to XY +3 and less than or equal
to XY +4 will be accepted.

On exit:
C=0if acarriage return terminated input.
C=1if an ESCAPE condition terminated inpuit.
Y contains line length, excluding carriage return if used.

OSWORD call withA-& 1 Read system clock

This routine may be used to read the system clock (used for the
TIME function in BASIC). Thefive byte clock value iswritten to
the address contained in the X and Y registers. Thisclock is
incremented every hundredth of a second and is set to O by ahard
BREAK.

OSWORD call with A=& 2 Write System Clock

This routine may be used to set the system clock to afive byte
value contained in memory at the address contained in the X and
Y registers.

OSWORD call with A=& 3 Read interval timer

This routine may be used to read the interval timer (Used for
events, see section 6.4). The five byte clock value is written to
the address contained inthe X and Y registers.

OSWORD call with A=& 4 Writeinterval timer

This routine may be used to set the interval timer to afive byte
value contained in memory at the addressinthe X and Y
registers.

OSWORD call with A=&5 Read 1/O processor memory

A byte of 1/0O processor memory may be read across the Tube
using this call. A 32 bit address should be contained in memory
at the address contained inthe X and Y registers.

XY+ O LSB of addressto be read
1
2
3 MSB of addressto be read
4
If the I/O processor uses 16 bit memory addressing only least
significant two bytes need to be specified.
On exit:
The byte read will be contained in location XY +4.

OSWORD call with A=& 6 Write /O processor memory

This call permits 1/0O processor memory to be written across the
Tube. A 32-hit addressis contained in the parameter block
addressed by the X and Y registers and the byte to be written
should be placed in XY +4. For compatibility with future products
it isrecommended that XY +2 and XY +3 be set to zero.

OSWORD call with A=&7 SOUND command

This routine takes an 8 byte parameter block addressed by the X
and Y registers. The 8 bytes of the parameter block may be
considered as the four parameters used for the SOUND command
in BASIC.

e.g. To perform a SOUND 1,-15,200,20

XY+0 Channel LSB 1 &01
1 MSB &00
2 Amplitude LSB -15 &F1
3 MSB &FF
4 Pitch LSB 200 &C8
5 MSB &00
6 Duration LSB 20 &14
7 MSB &00

This call has exactly the same effect as the SOUND command.

OSWORD call with A=&8 Definean ENVEL OPE

The ENVELOPE parameter block should contain 14 bytes of
datawhich correspond to the 14 parameters described in the
ENVELOPE command. This call should be entered with the
parameter block address contained inthe X and Y registers.

OSWORD call with A=&9 Read pixel value

This routine returns the status of a screen pixel at agiven pair of
X andY co-ordinates. A four byte parameter block is required
and the result is contained in afifth byte.

XY+0 LSB of the X co-ordinate
1 MSB of the X co-ordinate
2 LSB of theY co-ordinate
3 MSB of the Y co-ordinate
On exit:

XY +4 contains the logical colour at the point or & FF if
the point specified was outside the window.

OSWORD call with A=& A Read character definition

The 8 bytes which define the 8 by 8 matrix of each character
which can be displayed on the screen may be read using this call.
The ASCII value of the character definition to be read should be
placed in memory at the address stored in the X and Y registers.
After the call the 8 byte definition is contained in the following 8
bytes.

XY+ 0 Character required
1 Top row of character definition
2 Second row of character definition

é Bottom row of character definition

OSWORD call with A=&b Read palette

The physical colour associated with each logical colour may be
read using this routine. On entry the logical colour is placed in
the location at XY and the call returns with 4 bytes stored in the
following four locations corresponding to a VDU 19 statement.

e.g. Assuming that aVDU 19,2,3,0,0,0 had previously been
issued then OSWORD &B with 1 at XY would yield

XY+ 0 2 logical colour
1 3 physical colour
2 0 padding for future expansion
3 0
4 0

OSWORD call with A=&C Write palette

This call performs the same task asa VDU 19 command (which
can be used from machine code using OSWRCH). The advantage
of using this OSWORD call rather than the conventional VDU
route is that there is a significant saving in time. Another
advantage is that OS WORD calls can be used in interrupt
routines while VDU routines cannot. This call worksin the same
way as OS WORD & B (see above); a parameter block should be
set up with the logical colour being defined at XY/, the physical
colour being assigned to it in XY+1 and XY +2to XY +4
containing padding Os.

OSWORD call with A=&D Read last two graphics cursor

positions

The operating sytem keeps arecord of the last two graphics
cursor, positions in order to perform triangle filling if requested.
These cursor postions may be read using thiscall. X and Y
should provide the address of 8 bytes of memory into which the

data may be written.

XY+ O previous X co-ordinate, low byte
1 high byte
2 previous Y co-ordinate low byte
3 high byte
4 current X co-ordinate, low byte
5 high byte
6 current Y co-ordinate, low byte
7 high byte

5 Filing System Calls

Any filing system implemented on the Electron offersits
facilities by intercepting the standard OS filing system calls. The
tape and

*ROM filing system code is contained within the operating
system ROM. Other filing system software may be implemented
in service type paged ROMs. The currently selected filing system
must place pointersto relevent routines in the vectors provided
for this purpose in page two of memory.

The description of the filing system calls given in this chapter
covers agenera filing system. The actual implementation will
differ dlightly between filing systems depending on the suitability
of certain callsto their filing system medium.

Thefiling system calls are:

name call address indirection vector
OSFILE &FFDD & 212
OSARGS & FFDA &214
OSBGET &FFD7 &216
OSBPUT & FFD4 & 218
OSGBPB &FFD1 &21A
OSFIND & FFCE &21C
OSFSC n/a &21E

Each of these calls should respond in an appropriate and relevant
manner as described in the sections below. Even though the

nature of certain filing system’s hardware implementation may
appear to vary widely, the user is presented with a standard filing
system interface wherever possible. Software can be written
which functions identically using a number of different filing
systems. Where both X and Y are used to point to a parameter
block. X holds the low byte and Y holds the high byte of the
address.

520SFILE Read/writeentirefileor itsattributes
Call address & FFDD Indirected through & 212

This routine is used to manipulate an entire file. The precise

function perfomed by this routine depends on the value in the
accumulator. This call can be used to load afile into memory,

save afile from memory, delete afile and re-write the file’'s

attributes (e.g. load address, execution address, name etc.). Any
information required by the routine to perform its task should be
placed in memory. The address of this information should then be
passed to the routine in the X and Y registers.

Entry parameters:
A contains a value indicating what action is required
X+Y contain the address of a parameter block

The format of the information placed in the parameter block
addressed by X and Y is as follows:

&00 - &01 Address of file name
&02 - &05 Load address of file
&06 - &09 Execution address of file

&0A - &0D Start address of data (write operations) or
Length of file (read operations)

&OE - &11 End address of data (read/write operations) or
File attributes (write attributes operation)

The file name should be stored in another part of memory (not
sideways ROMs) and be terminated by a carriage return character
(&0D) or a space (&20). The least significant byte of the address
should be stored in the first of the two bytes. All other parameters
are stored in the same order, least significant byte stored first.

The file attributes when required should be provided in the | ast
four bytes of the parameter block. The least significant 8 bits (i.e.
the first byte) have the following meanings:

Bit Meaningif set

not readable by you
not writable by you
not executable by you
not deletable by you
not readable by others
not writable by others
not executable by others
not deletable by others

~N~No ok~ wWNEO

The term you here means the originator of the call and the term others
means other users of a network filing system.

The action.codes passed to OSFILE in the accumulator have the
following effects:

A=0

Save a section of memory as a named file using the information
supplied in the parameter block.

A=1

Re-write the catalogue information of an existing file using the
information provided in the parameter block. i.e. load and execution
addresses.

A=2

Re-write the load address (only) of an existing file identified by the
name passed in the parameter block.

A=3

Re-write the execution address (only) of an existing file
identified by the name passed in the parameter block.

A=4

Re-write the file attributes (only) of an existing file identified by the
name passed in the parameter block.

A=5

Read the named file’s catalogue entry and return the file type in the
accumulator. These are as follows:

0 returned in A Nothing found
1returnedin A File found
2 returned in A Directory found

A=6

Delete the named file.

A=7

Create a file with a catalogue entry representing the parameter block
information but instead of transfering any data pad with null characters.

A=&FF

Load the named file into memory. If the first byte of the execution
address field of the parameter block is zero then load to the load
address given in the parameter block. If the first byte of the execution
address is non-zero then use the file’'s own load address.

During this call if an error occurs a BRK instruction will be executed
which may be trapped if required. During this call interrupts may be
enabled but the interrupt status is preserved.

On exit:
A contains the file type
Xand Y are preserved
C, N, V and Z are undefined
Information may be written to the parameter block
addressed by X+Y.

5.2 OSARGS Read/write open file’s attributes
Return current filing system

Call address & FFDA Indirected through & 214

Thisroutine is used to manipulate files which are being used for
random access. Files used in this way have to be opened using
the OSFIND call. When datais being written to or read from the
file OSBPUT, OSBGET and OSGBPB can be used but this call
should be used to move the sequential pointer used by these calls
when datais not transferred. This call is the only way of moving
the sequential pointer backwards through afile. OSARGS may
also be used to force an update of files onto the medium in use
i.e. ensuring that the latest copy of the memory buffer is saved. A
number of other functions are performed by this call as detailed
below.

Entry parameters:
A contains a value determining the call’s actions
X contains a zero page address of a parameter block
Y contains the file handle (see OSFIND) or zero

The parameter block in zero page should be in the user’s
allocation of zero page. A block of four bytes is required, this

will contain the value of the sequential file pointer for read
operations or should be set up with a value prior to the call for a
write operation. It should be noted that because filing systems
should not be languages and so are not copied across to a second
processor this parameter block will always exist in the 1/O
processor even when a Tube is active. If called from the second
processor, the parameter block will be copied across into the I/O
processor before the filing system is called.

Interrupts may be enabled during a call but the interrupt status
will be preserved.

If Y=0 and A=0 then return the current filing system in A.
value returned filing system

0 no current filing system

1 1200 baud cassette

300 baud cassette

ROM filing system

Disc filing system

Econet filing system
Telesoftware filing system
|EEE filing system

ADFS

Reserved

10 AcaciaRAM filing system

OCO~NOUITRWN

If Y=0 and A= 1 then return the address in the I/O processor of
the rest of the command line will be returned in the two least
significant bytes of the zero page parameter block. This enables
software to access the parameters passed with - commands.

If Y=0 and A=& FF then update all files onto the filing system
medium; this ensures that the medium has the latest copy of the
buffers.

If Y isnon-zero then the valuein Y is assumed to be afile handle
(see OSFIND). The value passed in A determines the action on
the open file specified by Y

A=0

Read sequentia file pointer (written to the zero page parameter

block). This pointer is the same as that used by BASIC called
PTR#.

A=1
Write sequential file pointer.
A=2

Read length of sequentia file. Thisvalue is the same as that
returned by EXT#in BASIC.

A=3

Write length of sequential file. Thiscal isnot implemented in all
filing systems but where implemented may be used either to
truncate afile or to extend it (in which case it will be padded with
Zeroes).

A-&FF
Update this file onto the filing system medium.

On exit:
A ispreserved except on acall with A=0 and Y=0
X andY are preserved

C, N, V and Z are undefined

5.3 OSBGET Get a single byte from an open file
Call address & FFD7 Indirected through & 216

This routine returns the value of a byte read from afile opened
for random access. The file should have been previously opened
using OSFIND, The file handle required by this call will have
been provided from this OSFIND call.

Entry parameters:
Y contains file handle

A byteisread from that point in the file determined by the
sequentia file pointer. During each call of OSB GET the
sequential file pointer isincremented by one. Thus successive
OSBGET calls can be used to read bytes from the file
sequentially. This pointer may be read or written using the
OSARGS call thus enabling the use of random access.

Interrupts may be enabled during a call but the interrupt status
will be preserved.

On exit:
X andY are preserved
C=1if theend of filewasreached i.e. invalid call .in
which case A=& FE.

N, V and Z are undefined

5.4 OSBPUT Writeasingle byteto an open file
Call address & FFD4 Indirected through & 218

This call is the complement to the OSBGET call described above.
A file handle should be provided from a prior OSFIND call and
the sequential file pointer is used to locate the point in the file
where the byte is written.

Entry parameters:
A contains the byte to be written to thefile.
Y containsthe file handle.

During the call a byte will be written to the file and the sequential
pointer will be incremented. If the sequential file pointer reaches
the end of the file the file will be extended to accommodate any
new data written where possible.

Interrupts may be enabled during acall but the interrupt status
will be preserved over acall.

On exit:
A, X andY arepreserved

C, N, V and Z are undefined

5.5 0SGBPB Read/writeagroup of bytesto/from an open file
Call address & FFD1 Indirected through & 21A

This routine enables the transfer of a group of bytesto or from an
open file. Thisroutine isimplemented particularly for filing
systems which have a high time overhead associated with each
datatransfer e.g. the Econet.

Entry parameters:
A contains a value which determines the action

performed
X+Y contain a pointer to a parameter block in memory

The parameter block should contain information in the following
format:

&00 file handle

&01.&04 address of datafor transfer
&05.&08 number of bytes to transfer

&09 .&0C sequential file pointer to be used

The bytes in each parameter should be placed least significant
byte first.

The address should include a high order address (see OSBY TE
&82) to indicate if the dataisin an i/o processor or a second
Processor.

The sequential file pointer passed in the parameter block will
only replace the old value of this pointer when appropriate.

The action codes passed to the routine will have the following
effects:

A=1

Write agroup of bytesto the open file. The sequential pointer
given will indicate the point in the file where these bytes are put
and this pointer will be incremented by the number of bytes
written.

A=2

Write agroup of bytesto the open file without using the
sequential file pointer value given in the parameter block. The
existing value of the pointer will mark the point in the file where
these bytes are put and the pointer will then be incremented by
the number of bytes written.

A=3

Read a group of bytes from an open file. The sequential pointer
given in the parameter block will indicate where the bytes should
be read from within the file. The pointer will then be incremented
by the number of bytes read.

A=4

Read a group of bytes from an open file disregarding the
sequential file pointer value given in the parameter block. The
existing pointer value will be used and subsequently incremented
by the number of bytes read.

A=5

Return the title associated with the currently active medium and
return boot/startup attribute, Thisinformation iswritten to the
address pointed at by the X andY registers. The format of the
datais:

&00 n, the length of thetitle string
&01 . n+1 thetitle string, ASCII characters
n+2 value indicating boot/start up options

The start up information is filing system dependent.

A=6

Return the currently selected directory and device identity. Two
items of data are written to the parameter block. The format of
the datais:

&00 n, the length of the directory name
&01.n+1 directory name, ASCII string
n+2 m, the length of the device identity

n+3-n+m+3 the device identity
A=7

Read the currently selected library, and device, The data format is
the same as that used for A=6.

A=8

This call is used to read file names from the current directory.
The parameter block should be set up so that the number of file
names to transfer is placed in the ‘No. of bytes to transfer’ field,
For the first call the ‘sequential file pointer’ field should be set to
zero. The sequential file pointer is incremented each time this call
is made so that it points to the next file name for transfer.

The data is transferred to the specified address in the form of a
list of file names. Each file name takes the form of an ASCII
string preceded by a single byte value indicating the length of the
string. The number of filenames in this list is determined by the
value passed in the parameter block unless the end of the
directory is reached.

This call also returns a cycle number in the ‘file handle’ field of
the parameter block. This cycle number represents the number of
times the current catalogue has been written to.

Exit conditions:
A, X andY arepreserved
N, V and Z are undefined
C=1if thetransfer could not be completed

In the event of atransfer not being completed the parameter
block contains the following information:

(a) the number of bytes or names not transferred in the ‘number
of bytes to transfer’ field

(b) the ‘address’ field contains the next location of memory due
for transfer

(c)the ‘'sequential pointer’ field contains the sequential file
pointer value indicating the next byte in the file due for transfer

5.6 OSFIND Open or closefilefor random access
Call address &FFCE Indirected through &21C

This call is used to allocate a file handle for subsequent use by
OSARGS, OSBGET, OSBPUT and OSGBPB. This call should
also be used to close a file when no further access is required. In
this instance the file handle is released for re-allocation and the
file medium is updated from the buffers in memory.

The file handle is a single byte value which uniquely identifies an
open file. This provides a less cumbersome method of addressing
the file in question than using the filename each time. The

number of files which can be open at any one time is filing

system dependent. The actual range of handle values allocated by
each filing system is different. The ranges which have been
allocated by Acorn are listed under OSFSC with A=&07.

Entry parameters
(@) To open afile

The accumulator contains a code indicating the type of access for
which the file should be opened:

A=&40 input only
A=&80 output only (i.e. will attempt to delete file first)
A=&CO input and output

X andY contain the address of afile name string (low byte, high
byte). The filename string should be terminated by a carriage
return character (&0D).

The accumulator will be returned containing the file handle
which has been alocated or zero if the file could not be opened.
Note that if the filename is syntactically bad, or involves a non-
existent directory, a BRK ‘Not found’ error may occur.

(b) To close a file

A=0 Y contains the handle of the file to be closed or Y=0
to close all currently open files.

On exit:
A returns file handle on opening otherwise preserved
Xand Y are preserved

C, N, V and Z are preserved

Interrupts may be enabled during call, status preserved
570SFSC Miscellaneousfiling system contr ol
No OS call address Indirected through &21E
This vector contains an entry point into the current filing system
which may be used to invoke a number of miscellaneous filing

system functions. Because there is no direct call address this call
can only be made from within an I/O processor and is not

available for code running on a second processor. However many
of the facilities are indirectly available via other OS calls which
subsequently make calls through this vector.

Entry parameters:

The accumulator contains an action code determining which
control function is performed.

A=0*OPT command

The operating system makes this call in response to *OPT’ being
submitted to the command line interpreter or in response to
OSBYTE &8B. X andY contain the parameters passed with the
“*OPT’ command.

A= 1 Check for end of file (EOF)

This call is made by the operating system in response to
OSBYTE &7F. The call is entered with afile handle value in the
X register. The X register should be returned containing the value
&FFifanECF condition exists, otherwise it
should be returned containing zer o.

A=2 “*/" command

Thefiling system should attempt to *RUN the file whose name
followsthe 7’ character. The operating system command line
interpreter will make this call in response to a command begining
*/'. The X andY registers contain the address of the file name
string (not including the “*/" characters).

A=3 Unrecognised * command

The operating system issues this call when an unrecognised

command has been submitted to the command line interpreter.

This call is made after the ‘unrecognised *command’ paged

ROM service call has been made (see paged ROMs section 10.1).
The command name string is addressed by the X and Y registers.

Filing systems will respond to this call by attempting to * RUN
the file having the command name. The idea behind thisisto
enabl e the implementation of command like utilities which are
stored on the filing system media. However in the case of afiling
system being unable to execute the file without delay the filing
system should respond to this call with a ‘Bad Command’
message instead.

A=4 *RUN attempted

The operating system passes on the file name given with a *\RUN
command to the current filing system using this call. The X and

Y registers contain the address of the file name string, The filing
system should then load and execute the code in this file.

A=5 *CAT attempted

This call is made by the operating system in response to a *CAT
command. The X and Y registers contain the address of the rest
of the command string where any parameters required by the
routine may be found.

A=6 New filing system selected

This call is issued when the current filing system is being
changed. The deselected filing system should respond by closing
any

*SPOOL or *EXEC files using OSBYTE &77 and prepare itself
for the handover.

A=7 Return handle range
This call may be made to determine the range of values allocated

as file handles by the currently selected filing system. Below is a
list of the handle ranges that have been allocated by Acorn.

filing sysem handle range, inclusive
Tape filing system 1 (&01) 2 (&02)
*ROM filing system 3 (&03) 3 (&03)
Teletext filing system 14 (&0E) 15 (&O0F)
Disc filing system 17 (&12) 21 (&15)

Network filing system 32 (&20) 39 (&29)

Winchester DFS 48 (&30) 57 (&39)

reserved values 64 (&40) 71 (&49)
AcaciaRAM filing system 96 (&60) 101 (&65)
|EEE filing system 240 (&FO) 255 (&FF)

The X register is returned with the lowest value which may be
allocated as afile handle and the Y register returned with the
highest value used.

A=8 OS * command about to be processed

The operating system makes this call prior to executing a

*command. Acorn DFS uses this call to implement the

“*ENABLE’ protection mechanism. This call may also be used
by filing systems to output extra messages e.g. ‘Compaction
recommended’ when free space has become highly fragmented
on a disc.

On exit:
Registers returned as described above
Otherwise registers undefined
Status flags undefined
Interrupts may be enabled, status preserved

6 Operating System
Vectors

Many of the operating system routines are indirected through
addresses stored in RAM. This enables other software to intercept
these calls as they are made.

During areset the operating system stores the addresses of its
internal routines for such things as reading and writing characters
in locations in page two. The official entry point of these routines
point to instructions like IMP (vector). If another piece of
software replaces the address stored in the vector then each
subsequent call is passed to the intercepting software.

Consider the following example:

This program assembles a routine which intercepts ‘$* and ‘£’
characters passed to the OSWRCH routine and exchanges them.

10 DI M code% 100

20 WRCHV=&20E

30 FOR opt %0 TO 3 STEP3
40 PY%code%

50 [

60 OPT opt %

70 .init LDA WRCHV \ A=l o byte of vector

80 STA ret _vec \ make a copy

90 LDA WRCHV+1 \ A=hi byte of vector

100 STA ret _vec+1 \ make a copy

110 LDX #intrcpt AND &F \ X=lo byte of new routine
120 LDY #intrcpt DV &00 \ Y=hi byte of new routine
130 SEI \ disable interrupts

140 STX VRCHV \ store new routine address
150 STY WRCHV+1 \ in WRCH Vector

160 CLI \ enable interrupts

170 RTS \ finished initialisation
180 .intrcpt CMP #ASC"E” \ trying to printa £ ?
190 BEQ pound \ if so branch
200 CMP #ASC"$” \trying to printa $?
210 BEQ dolLlar \ if so branch

220 JMP (ret_vec) \ neither goto old routine

230 . pound LDA #ASC"$” \ replace £ with $

240 JMP (ret_vec) \ goto old routine

250 .dollar LDA #ASC"E” \ replace $ with £
260 JMP (ret_vec) \ goto old routine

270 .ret_vec EQUW 0O \ space for return vector

280]

290 NEXT

300 CALL init

This program, although not very long, illustrates afew points
regarding the way in which vectors should be intercepted.

One of the most important aspects concerning the interception of
calls through vectors is to make sure that the call is passed on to
the previous owner of the vector. There are occasions when a
routine is intended to be the sole replacement of a vector but asa
ruleit is good programming practice to copy the old vector
contents to a returning vector. By returning viathe old vector
contents any number of intercepting routines can be daisy
chained into the operating system call.

While the initialising routine is changing the vector contents to
point at the new routine it iswise to disable interrupts, It would
obviously be quite catastrophic if the OSWRCH routine were to
be called when the vector was only half changed. An interrupt
handling routine is unlikely to use the WRCHYV but thereis no
reason why it should not.

The intention in this section has been to make programmers
aware of the problems which may occur when intercepting these
vectors. They have been implemented so that they may be used to
insert extra code into some of the operating system routines and
individuals should not be afraid of using them to this end.
However, careful thought is required; take full account of the
ramifications of atering the operating systems usual response to
calls. If in doubt try out a routine. Play about with trivial
examples such as the one given above. There is nothing to be lost
and much to be

learnt.

Osand filing system callsindirection
Vectors

The vector addresses associated with those operating system calls
which are indirected are given in the detailed description of each
cal in chapter 2. The entry conditions with which the routine
whose address is contai nedwithin these vectors will be
unchanged from theinitial OS call.

Other page 2 vectors

The other vectors reserved for containing the addresses of other
operating system and miscellaneous routines are described below.
These are:

Name addr. description

USERV &200 The user vector

BRKYV &202 TheBRK vector

IRO1V &204 Primary interrupt vector

IRO2V &206 Unrecognised IRO vector

FSCV &21E File system control entry

EVNTV &220 Event vector

UPTV &222 User print routine

NETV & 224 Econet vector

VDUV &226 Unrecognised VDU commands
KEYV &228 Keyboard vector

INSV &22A Insert into buffer vector

REMV &22C Remove from buffer vector

CNPV &22E Count/purge buffer vector

IND1V &230 unused/reserved for future expansion
IND2V &232 unused/reserved for future expansion
IND3V & 234 unused/reserved for future expansion

6.1 The User Vector & 200

The user vector is called by the operating system in three
circumstances.

(8) When * CODE is passed to the command line interpreter

The * CODE command takes two parameters which are placed in
the X and Y registers. The user vector isthen called with an
accumulator value of zero. OSBY TE & 88 may also be used to
generate a* CODE command.

(b) When *LINE is passed to the command line interpreter

The-LINE command takes aline of text as a parameter. The user
vector is entered with the X and Y registers containing the
address of thistext and A= 1.

(c) When an OSWORD call &EO to & FF has been made The
user vector is entered with the register values they were when the
original OS WORD call was made.

The default address stored in this vector points to a routine which
generates an error with the message ‘Bad command’ and error
number &FE.

This vector is fully implemented on the BBC microcomputer and
the Electron. On a Tube machine only the vector on the 1/O
processor is offered these calls.

Listed below is a program which assembles a routine to intercept
calls made to the user vector. It may be noticed that this routine
does not offer the calls back to the original vector routine, this is
because the default routine generates an error. There should only
be one user vector handling routine active at any one time.

OREM User vector handling routine

10Dl M code% &100
200SASCI =&FFE3
30USERV=&200
40FOR opt %0 TO 3 STEP 3
50 P%code%
60 [
70 OPT opt%

80 .init LDX #userrt AND &F \ X=lo byte of routine addr.
90 LDY #userrt DIV &00 \ Y=hi byte of routine addr.
100 SEI \ disable interrupts
110 STX USERV \ set up vector with addr.
120 STY USERV+1
130 CLI \ enable interrupts
140 RTS \ and return
150 .userrt CWP #1 \ conpare contents of A withl
160 BCC code \ A<l then nust be *CODE
170 BNE osword \ nowif A<>1 nust be OSWORD
180 STX &70 \' *LINE routine
190 STY &71 \ store text address in pageO
200 LDY #&FF \ set Y as |oop counter
210 .l oop I NY \ begi nining of loop Y=Y+1
220 LDA (&70),Y \ load first byte of string
230 JSR OSASCI \ print it
240 CWP #&D \ was character a cr?
250 BNE | oop \ if not get the next char.
260 RTS \if it was return
290 .code TXA \ A=X
300 JSR prnt bt \ print value of X
310 JSR space \ print a space
320 TYA \ A=Y
330 JSR prnt bt \ print value of Y
340 JWMP new_In \ print newine and return
350 . osword PHA \ save contents of A
360 LDX #&FF \ set X as |oop counter
370 .loopl INX \ begi nning of |oop, X=X+1
380 LDA string, X \ load character fromstring
390 JSR OSASCI \ print it
400 CMP #ASC"&" \ & char. is end of string
410 BNE loopi \ loop if not end of string
420 PLA \ reload the value of A
430 JSR prntbt \ print it out in hex

440 JMP new_In \ print cr and return

450 .space LDA #&20 \ A=space character

460 JMP COSASC \ print space and return

470 .new_|In LDA #&D \ A=carriage return character
480 JMP OSASC \ print cr and return

490 .string EQUS “OSWORD &* \ string for OSWORD routine

499 *** This routine prints hex number given in A

500 .prntbt PHA \ save copy of accumulator

510 LSRA

520 LSRA

530 LSRA

540 LSR A \ shift nibble hi to lo

550 JSR nibble \ print hi nibble hex digit

560 PLA \ reload accumulator

570 .nibble AND #&0F \ mask out high nibble

580 CMP #&0A \ digit or letter?

590 BCC number \ A<10 print number

600 ADC #&06 \ otherwise add 7 (C=1)
610 .number ADC #&30 \ add &30 to convert to ASCII
620 JMP OSASCI \ print character and return
630]

640 NEXT

650 CALL init

Once assembled this routine will respond to * CODE by printing
out the parameters passed with the command. A *LINE

command will result in the parameter string being repeated on the
screen and an OS WORD in the region & EO to & FF will print
out the number of the call.

e.g.

>*CODE 1, 2

01 02

>* LI NE SOVE TEXT
SOVE TEXT

>A%&EQ CALL &FFF1
CSWORD &EO

>

6.2 The BRK Vector & 202

When a BRK instruction (op code value 0) is executed an
interrupt is generated. The operating system stores the address of
the byte following the BRK instruction in &FD and & FE, offers
the BRK to paged ROMs with service call &06, stores the ROM
number of the currently active paged ROM for recovery using
OSBYTE &BA (ROM active at last BRK), restores registers,
selects the current language ROM and then passes the call to the
BRKV code.

The BRK instruction is normally used on Acorn machines to
represent an error condition and the BRK vector routineis an
error handling routine. In BASIC this error handling routine starts
off by putting its house in order and then prints out an error

message.

In addition to the use of BRKsfor the generation of errorsit is
often useful in machine code programming to include BRKs
(break-points) as a debugging aid.

If aBRK instruction is executed on the Electron, the BRK vector
is entered with the following conditions:

(@ The A, X and Y registers are unchanged from when the BRK
instruction was executed.

(b) An RTI instruction will return execution to the address two
bytes after the BRK instruction (i.e. jumps over the byte
following the BRK). The RTL instruction also restores the status
register value from the stack.

(c) The address of the byte following the BRK instruction is
stored in zero page locations & FD and & FE, This address can
then be used for indexed addressing.

Error handling BRK routines should not return to the code which
executed the BRK but should reset the stack (usinga TXS
instruction) and JMP into a suitable reset entry point. In fact the
convention used by Acorn isto follow the BRK instruction by:

asingle byte error number
an error message
a zero byte to terminate the message

and the BRK routine prints out the error name. The BRK
handling routine should normally be implemented by the current
language. Service paged ROMs should copy a BRK instruction
followed by the error number and message down into RAM when
wishing to generate an error. This has to be done because
otherwise the current language ROM s paged in and the BRK
handling routine tries to print out the error message from the
wrong ROM. The bottom of page 1 is often used and is quite safe
as long as the BRK handling routine resets the stack pointer.

The use of BRKSs as break-points in machine code programming
can be of great use to the machine code programmer. The
example below shows how a BRK handling routine may be used
to print out the register values. This routine could be further
enhanced by printing out the value of the byte following the BRK
instruction which would then give the programmer 256
individually identifiable break-points.

10 REM Primtive BRK handling routine
20 DI M code% &100

30 OSASCI =&FFE3

40 OSRDCH=&FFEO

50 BRKV=&202

60 FOR opt %0 TO 3 STEP 3

70 P%code%

80 [

90 OPT opt%
100 .init LDX #brkrt AND &FF \ load registers with address
110 LDY #brkrt DV &100

120 SEI \ disable interrupts

130 STX BRKV \ set up BRK vector

140 STY BRKV+1

150 CLI \ enable interrupts and return
160 RTS

170 .brkrt PHA \ save A CX and Y not used)
180 STA byte \ store A in workspace

190 LDA #ASC"A \ register id

200 JSR prntrg \ print register value

210 STX byte \ store X in workspace

220 LDA #ASC"X" \ register id

230 JSR prntrg
240 STY byte
250 LDA #ASC"Y”
260 JSR prntrg

270 JSR new_In
280 JSR OSRDCH
290 PLA

300 RTI

310 .prntrg ISR OSASCI

320 LDA #ASC™"
330 JSR OSASCI
340 JSR space

350 LDA #ASC"&”
360 JSR OSASCI
370 LDA byte

380 JSR prntbt

390 JSR space

400 JSR space

410 RTS

420 .space LDA #&20
430 JMP OSASCI

440 .new_In LDA #&D
450 JMP OSASCI
460 .prntbt PHA
470 LSR A
480 LSR A

490 LSR A

500LSR A

510 JSR nibbLe

520 PLA

530 .nibble AND #&OF
540 CMP #&0A

550 BCC number

560 ADC #&06

570 .number ADC #&30
580 JMP OSASCI

590 .byte EQUBO
600 .test BRK

610 EQUB 0
620 DEX
630 BNE test
640 RTS

650]

660 NEXT

670 CALL init

680 A%=1:X%=8:Y%=&FF:CALL test

\ print register value
\ store Y in workspace
\ register id
\ print register value
\ print carriage return
\ wait for key press
\ restore A
\ return

\ print register id

\ print colon
\ print space

\ print ampersand
\ get register value
\ print hex number

\ print two spaces

\ print space

\ print carriage return
\ for comments refer to
\ previous example

\ workspace byte

\ cause an error
\ RTI returns to next byte
\ Loop X times

\ if X=0 Loop again

6.3 Theinterrupt vectors, IRQ1V & 204 and 'RQ2V & 206

The interrupt system on the Electron is described in chapter 7.
The function of the two interrupt vectors are described there.

6.4 The event vector, EVNTV & 220

This vector is called by the operating system during its interrupt
routine to provide users with an easy to use interrupt, A number

of ‘events’ may cause the event handling routine to be called via
this vector but unlike an interrupt the reason

for the call is passed tothe routine. The value in the
accumulator indicates the type of event:

event no. cause of event

output buffer becomes empty
input buffer becomes full
character entering input buffer
ADC conversion complete
start of VSYNC

interval timer crossing zero
ESCAPE condition detected
RS423 error detected

Econet event

user event

©oo~NOUA~AWNEFLO

To avoid unecessary and time consuming calls to the event vector
two OSBYTE calls are used to enable and disable these event
calls being made. These are &D (13) for disabling and &E (14)

for enabling events.

The event handling routine should not enable interrupts and not
last for more than about 2 milliseconds. So that event handling
routines may be daisy chained they should preserve registers and
return using the old vector contents.

Output buffer empty 0

This event enters the event handling routine with the buffer
number (see OSBY TE & 15/*FX21) in X. It is generated when a
buffer becomes empty (i.e. just after the last character is
removed).

Input buffer full 1

This event enters the event handling routine with the buffer
number (see OSBY TE &151*FX 21) in X. It is generated when
the operating system fails to enter a character into a buffer
because it isfull. Y contains the character value which could not
be inserted.

Character entering input buffer 2

This event is normally generated by a key press and the ASCII
value of thekey isplaced in Y, It is generated independently of
the input stream selected.

ADC conversion complete 3

When an ADC conversion is completed on achannel thisevent is
generated. The event handling routine is entered with the channel
number on which the converson wasmadein Y. Thisevent is
generated by the Plus 1 expansion software.

Start of vertical sync 4

Thisevent is generated 50 times per second coincident with
vertical sync. One use of this event isto time the changeto a
video ULA register so that the change to the screen occurs during
fly back and not while the screen is being refreshed. This avoids
flickering on the screen.

Interval timer crossing zero 5

This event uses the interval timer (see OSWORD calls &3 and
&4, in chapter 4). Thistimer isab byte value incremented 100
times per second. The event is generated when the timer reaches
zero.

ESCAPE condition detected 6

When the ESCAPE key is pressed or an ESCAPE is received
from the R$423 (if RS423 ESCAPESs are enabled) thisevent is
generated.

RS423 error event 7

This event should be generated by software servicing expansion
R$423 hardware.

Network error event 8

This event is generated when a network event is detected. If the
net expansion is not present then this could be used for user
events.

User event 9

This event number has been set aside for the user event, Thisis
most usefully generated from a user interrupt handling routine to
enable other user software to trap an interrupt easily (e.g. an
event generated from an interrupt driven utility in paged ROM).
An event may be generated using OSEVEN, see section 2.10

6.5 User print vector, UPTV & 222

A user print routine can be implemented by intercepting this
vector, Whenever a change in printer type is made using
OSBYTE &05 the print vector iscalled. A user print routine
should respond when printer type 3is called.

The operating system will activate the user printer routine and
there after call it regularly at intervals of 10 milliseconds.
Characters will be placed in the printer buffer and it is up to the
user printer routine to remove characters and send them to the
printer hardware. When the printer routine finds that the buffer is
empty it should then declare itself inactive. The operating system
will then re-activate the routine when characters start entering the
buffer again.

The user printer driver should preserve al registers and return via
the old UPTV value.

On entry:
X contains the buffer number to be used
Y contains the printer number (i.e. the *FX 5 value)

N. B. The routine should only respond if it recognises the printer
number asitsown.

The accumulator contains areason code for the cal:
A=0

When the printer driver is active the operating system makes this
call every 10 ins. The printer driver should examine its hardware
and if it isready for another character should remove a character
from the assigned buffer and send it to the printer. A call to the
REMYV vector should be made to obtain the character (see section
6.9.2) or use OSBY TE & 91, When the printer driver has emptied
the printer buffer it should then declare itself inactive by making
an OSBYTE call &7B. Thiswill allow the user to select anew
printer driver using OSBY TE &5, will stop further calls with
A=0 and thereafter when the printer buffer is used again will
cause a call with A=1 to be made (see below).

A=1

When aprinter driver isinactive this call ismadeto tell the
routine that the printer buffer isno longer empty and the printer
driver should now become active. If the printer driver is able to
become active it should remove a character from the assigned

buffer and if the buffer is still not empty it should return with the
carry flag clear to indicate that it is now active. Having thus
signalled itself as active the printer driver will receive the 10 ms
callswith A=0.

A=2

When the VDU driversreceive aVDU2 this call is made.
Characters may be printed even when this control character has
not been received if certain * FX 3 options are selected.

A=3

This call is made when aVDU3 isreceived.

A=5

The selection of anew printer driver will cause this call to be

made to the printer vector. Any OSBY TE &5 call causesthis call
to be made.

6.6 Econet vector, NETV & 224

The Econet vector allows the Network filing system to intercept a wide range
of operating system functions. This vector is called with areason code in the
accumulator. The conditions under which this vector is called are:

A=0,1,2,3and 5

These codes are used to control the net printer. These calls are
made under identical circumstances as for the user print vector
described above. The net printer is assigned the printer number 4.

A=4

OSWRCH cal made. Thiscal isindirected through the net
vector after OSBY TE &DO has been used. The Y register
contains the value originally passed in the accumulator. If, on
exit, the carry flag is set then the output call is not performed.

A=6

OSRDCH call made. This call isindirected through the net vector
after OSBY TE & CF has been used. The ASCII value for akey
read should be returned in the accumulator.

A=7

OSBY TE call made. Thisindirection is performed after

OSBY TE & CE has been used. The OSBY TE parameters are
stored in locations & EF, & FO and & F1. If the overflow flag is
set on return from this call then the OSBY TE call is not
performed.

A=8
OSWORD call made. Circumstances as for call with A=7.
A=&0D

After completion of aline of input using OS WORD &01 this

cal ismade. Thisisimplemented so that the Network filing

system doesn’t takeover the RDCH routine in the middle of line
input.

6.7 VDU extension vector, VDUV & 226

This vector is called when the VDU drivers are presented with an
unknown command or a known command in a non-graphics
MODE.

A VDU 23,n command with a value of n in the range 2 to 31 will
cause a call to be made to this vector with the carry flag set. The
accumulator will contain the value n.

An unrecognised PLOT command or the use of a PLOT
command in a non-graphics MODE will result in this call being
made with the carry flag clear. The accumulator will contain the
PLOT number used.

This vector is used whenever the keyboard is being looked at.
There are four different calls made through this vector on the
Electron.

(@) Test SHIFT and CTRL keys On entry: C=0, V=0

Should exit with the N (negative) flag set if the CTRL key is
pressed and with the V (overflow) flag set if the SHIFT key is
pressed.

(b) Scan keyboard asfor OSBYTE & 79

On entry: C= 1, V=0 other parameters identical to OSBYTE
&79

Should exit with the appropriate register values (see OSBYTE
details) but with A=X.

(c) Timer interrupt service with keys active
Onentry: C=1, V=1

This entry is actually used for the bulk of al keyboard
processing. After an interrupt the actual keyboard scan is carried

out during this call. On the Electron which doesn’t use an
interrupt driven

keyboard, intercepting this call to the KEYV routine and
returning it speeds up the machine enormously.

(d) Timer interrupt service with no keys active

On entry: C=0, V=1

6.9 The buffer maintenance vectors

This vector and the two following vectors enable the user to
intercept or use the operating system buffer maintenance
routines.

The operating system uses buffers for keyboard input, RS423
input and output, the printer, the sound system (4 buffers) and the
speech system. These buffers contain data which should be
processed by the various routines. Even though the servicing
routine may not be able to respond to the request immediately the
calling routine returns (unless the buffer isfull) and is able to get
on with its foreground task. While a buffer contains a queue of
data for processing, the interrupt routine (the background task)
seesto it that the relevant routines service this data.

In thisway the user is able to type ahead when the machineis
unable to respond immediately and may initiate sounds which
then continue while he issues further commands.

Buffers operate on afirst in first out (FIFO) basis for obvious
reasons.

The Acorn BBC range of machines use the following numbers as
buffer IDs:
title
keyboard buffer
R423 input buffer
R$423 output buffer
printer buffer
SOUND channel 0 buffer
SOUND channel 1 buffer
SOUND channel 2 buffer
SOUND channel 3 buffer
speech buffer

-
c
3
o
Q

coNO O~ WNEO

On the BBC microcomputer and the Electron memory is reserved
for each of these buffers even though the software/hardware
using the buffer may not be present. The buffer maintenance calls
still service these buffers but the contents will

not be processed by the relevant service routine. The expansion
software/hardware will use the appropriate buffer when installed.
Thus when the speech expansion isfitted on aBBC
microcomputer the speech buffer is used and on an Electron with
aPlus 1 the printer buffer is used.

The following OSBY TE calls may also be of interest when
considering the buffer facilities:

Description OSBYTE number
flush selected buffer class &O0F (15)

flush particular buffer &15 (21)

get buffer status &80 (128)

insert value into buffer & 8A (138)

get character from buffer &91 (145)
examine buffer status &98 (152)

insert value into i/p buffer &99 (153)

6.9.1 Insert value into buffer vector, INSV & 22A

This vector contains the address of aroutine which inserts avalue
into a selected buffer.

Entry parameters:
A=valueto beinserted

X=buffer id

On exit:
A and X are preserved
Y isundefined

Cflagissetif insertion failed (i.e.buffer full)
6.9.2 Remove value from buffer vector, REMV & 22C

This vector contains the address of a routine which removes a
value from the selected buffer. This routine may also be used to
examine the next character to be removed from a buffer without
actualy removing it.

Entry parameters:
X=buffer ID
V=1 (overflow flag set) if only examination requested

On exit:
A contains next byte to be removed (examination call)
(A undefined for removal call)
X ispreserved
Y contains the value of the byte removed from the buffer
(Y undefined for examination call)
C flag is set if buffer empty when call made

6.9.3 Count/purge buffer vector, CNPV & 22E

This vector contains the address of a routine which may be used
to clear the contents of a buffer or to return information about the
free space or contents of a buffer.

Entry parameters:
X=buffer ID
V=1 (overflow flag set) to purge buffer
V=0 (overflow flag clear) for count operation
C= 1 count operation returns amount of free space
C=0 count operation returns length of buffer contents

On exit:
X and Y contain value of count (low byte, high byte)
X and Y are preserved for a purge operation
A isundefined
V and C are preserved

6.9.4 Using the buffer vectors

It should be noted that none of the buffer maintenance routines
check for valid buffer IDs. Using a buffer ID outside the assigned
range will have undefined effects unless specifically intercepted.

None of these vectors are implemented on second processors and
so none of the buffer maintenance calls are sent across the Tube.
Calls using the buffer vectors should always be made by code

resident in the 1/O processor. It should be noted that considerable
manipulation of the buffers may be carried out using OS routines such
as OSBY TE, OSWRCH, OSWORD etc. which may affect buffer
contents either directly or indirectly. Routines intercepting these
vectors must always be resident on the I/O processor, ideally in service
type paged ROMs.

The program below illustrates how the buffer vectors can be
intercepted to implement a much larger printer buffer. The standard
printer buffer islessthan &100 byteslong and since printers as arule
tend to be quite sluggish peripherals this buffer rapidly fills up. A
buffer is required which will hold areasonable sized listing, or a
document before filling up and refusing to accept further input. Having
placed the item for printing in an enlarged buffer the user may return to
word processing or programming leaving the operating system to get
on with the printing.

The routine used below creates a buffer of variable size as defined by

the variable ‘size’. The usefulness of this program is limited. For the
reasons given above it will only work when run on a non-Tube mahine.
It will only work as long as its code is not corrupted; this means that
renumbering the program after it has been runangish the machine

as BASIC tramples all over the area originally reserved for the
assembled code. Similarly another language ROM is unlikely to allow
the routine to run in peace. If this routine becomes corrupted the
machine is totally disabled because each time a key is pressed this
routine is called. Experimenting with this example will provide
valuable experience in the use of critical operating system routines.
One note of warning however, be sure to save a copy of the program
before trying to run it; it is quite possible for the program to corrupt
itself or evercrash the machine irrevocably so that a power on reset is
required (that is, the machine will have to be turned off, then on again).

This program consists of three main routines which intercept the buffer
maintenance calls for the printer buffer. Calls for any of the other
buffers are carefully handed on to the original routines pointed to by
the contents of the buffer vectors. An area of RAM is reserved for use
as a buffer by using a DIM statement. Four bytes of zero page memory
are used to house two 16 bit pointers.

One pointer is used as an index for the insertion of valuesinto the
buffer and the other pointer is used as an index for the removal of
bytes. When a pointer reaches the end of the buffer it is pointed
to the beginning again, In this way the two pointers cycle through
the buffer space. A full buffer is detected by incrementing the
input pointer and comparing it to the output pointer. If the two
pointers are equal the buffer isfull, the character cannot be
inserted; the input pointer is restored. If
after the renoval of a character the output pointer
becomes equal to the input pointer then the buffer is now empty.
By using this system the full size of the buffer is always available
to contain data.

10 REM user printer buffer routine
20 MODE7

30 si ze=&2000

40 DI M buffer size

50 DI M code% &400

60 | NSV~&22A

70 RW=&22C

80 CNPV=&22E

90 ptrbl k=&80: ! ptrbl k=buffer+buffer*&10000
100 i p_ptr=ptrbl k: op_ptr=ptrbl k+2
110 FOR 1 =0 TO 3 STEP 3

120 P%code%

130 [

140 OPT |

150 .init LDA | NSV \ make copi es of old vector
160 STA reti \ contents to pass on calls
170 LDA | NSV+1

180 STA retl +1

190 LDA RW

200 STA ret2

210 LDA RW+1

220 STA ret 2+1

230 LDA CNPV

240 STA ret3

250 LDA CNPV+1

260 STA ret 3+1

270 LDX #ins AND &F \ store address of new
280 LDY #ins DIV &00 \ routines in vectors
290 SEI \ disable interrupts
300 STX | NSV

310 STY | NSV+1

320 LDX #rem AND &FF

330 LDY #rem DIV &100

340 STX RW

350 STY RW+1

360 LDX #cnp AND &FF

370

LDY #cnp DIV &100

restore S & A
routine

enabl e interrupts
finished

byte of RAM wor kspace
reserve space for vectors

call Cs

save A and status register
is buffer id 3 ?

if not pass to old routine
not passing on, tidy stack

A=l o byte of input pointer
store on stack
A=hi byte of input pointer

store on stack

Y=0 so ip_ptr incremented
by the inc_ptr routine
conpare the two pointers
if ptrs equal, buffer full
don't need ip_ptr copy now

\ A off stack, insrt in bufr
\ insertion success, C=0
\ finished
\ buffer was full so must
\ restore ip_ptr which was
\ stored on the stack

\ insertion failes so C=a

380 STX CNPV

390 STY CNPV+1

400 CLI \
410 RTS \
420 . wr kbt EQUB 0 \
430 .retl EQUW 0 \
440 .ret2 EQUW 0

450 .ret3 EQUW 0O

460 . w ngbfl PLP: PLA:JMP (reti) \
470 \New insert char. into buffer
480 .ins PHA: PHP \
490 CPX #3 \
500 BNE wr ngbf | \
510 PLP \
520 LDA ip_ptr \
530 PHA \
540 LDA ip_ptr+l \
550 PHA \
560 LDY #0 \
570 JSR inc_ptr \
580 JSR conpare \
590 BEQ i nsfai l \
600 PLA: PLA: PLA \
610 STA (ip_ptr),Y

620 CLC

630 RTS

640 .insfail PLA

650 STA ip_ptr+1

660 PLA

670 STA ip_ptr

680 PLA

690 SEC

700 RTS

710 .wrngbf2 PLP:JMP (ret2)
720 \New remove char. from buffer routine
730 .rem

740
750
760
770

780 .remsr

790
800
810
820
830
840
850
860

PHP

CPX #3
BNE wrngbf2
PLP
BVS examine

JSR compare
BEQ empty
LDY #2
JSR inc_ptr
LDY #0
LDA (op_ptr),Y
TAY
CLC
RTS

\

\ finished
restore 5, call OS

\ save status register
\ is bufferid 3 ?
\ if not use OS routine
\ restore status register
\ V=1, examine not remove
\ compare i/p and o/p ptrs
\ if the same, buffer empty
\ Y=2 so that increment ptr
\ routine inc’s op_ptr
\ Y=0, for next instruction
\ fetch character from bufr
\returnitinY
\ buffer not empty, C=0

\ return

870 .enpty
880

890 . exanmine LDA op_ptr

900
910
920
930
940
950
960
970
980
990

1000 . wr ngbf3 PLP: JMP (ret3)
1010 \ New count/purge buffer

1020 .cnp
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160.loop
1170
1180
1190
1200
1210

LDA op_ptr+1
JSR remnsr
STA op_ptr+1

STA op_ptr

PHP

CPX #3

BNE wr ngbf 3
PLP

PHP

BVS purge
BCC | en

LDA ip_ptr

LDA ip_ptr+1
LDX #0

STX wr kbt
LDY #0

JSRinc_ptr

JSR compare
BEQ finshdl
INX

BNE no_inc
INC wrkbt

1220.no_inc JMP loopi
1230.finshdl PLA

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370 .loop2

len

STA ip_ptr+1
PLA
STA ip_ptr
LDY wrkbt
PLP
RTS
LDA op_ptr
PHA
LDA op_ptr+1
PHA
LDX #0
STX wrkbt
LDY #2
JSR compare

\
\
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\

\

\
\
\

buffer enpty, C=a
return

exam ne only, so store a
copy of the oip pointer
on the stack to restore
ptr after fetch

fetch byte frombuffer
restore ptr from stack
(if buffer was enpty
C=1 fromfetch call)

examne requires ch, in A
fini shed
restore 5, call OS

routine

save status reg. on stack
is buffer id 3 ?

if not pass toold subr
restore status register
save again

if V=1, purge required

if C=0, anopunt in buffer
o/w free space request

store ip_ptr on stack
X=0 for use as counter

wr kbt =0 for hi counter
Y=0, so ip_ptr incrd

\ increment ip_ptr

\ does it equalop_ptr
\ if so count~free space
\ X=X+1
\ if X=0 don’t inc wrkbt
\ hi byte of count inc’'d
\ loop round again
\ restore ip_ptr off stack

\ Y=hi byte of free space
\ restore status register
\ finished
\ store op_ptr on stack

\ X=0 for use as counter
\ wrkbt=0 hi byte of count
\ Y=2 so op_ptr incremented
\ are ptrs equal ?

1380

1390

1400

1410

1420

1430 . no_i nc2
1440 . finshd2
1450

1460

1470

1480

1490

1500

1510 . purge
1520

1530

1540

1550

1560

1570

1580

1600 .inc_ptr
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750

has

BEQ #nshd2 \ if so buffer enpty
JSR inc_ptr \ increnent op_ptr
1 NX \ increnent count
BNE no_i nc2 \ if X=0 then increnent hi
I NC wr kbt \ byte of count
JMWP | oop2 \ | oop round again
PLA \ restore op_ptr off stack
STA op_ptr+1
PLA
STA op_ptr
LDY wr kbt \ Y=hi byte of length
PLP \ restore status register
RTS \ finished
LDA #buffer AND &FF\ to purge buffer reset
STA ip_ptr \ oipand i/p ptrs to
STA op_ptr \ start of buffer
LDA #buffer DV &100
STA ip_ptr+1
STA op_ptr+1
PLP \ restore status register
RTS \ return

1590 \ Increment pointer routine. Y=0 op_ptr, Y=2 ip_ptr
CLC \ C=0
LDA ptrblk,Y \' A=?(ptrbl k+Y)
ADC #1 \ A=A+1+C
STA ptrblk, Y \ ?(ptrbl k+Y)=A
LDA ptrbl k+1,Y \ A=?(ptrbl k+1+Y)
ADC #0 \ A=A+0+C
STA ptrbl k+1,Y \ ?2(ptrbl k+1+Y)=A
CWP #(buffer+size) DIV &00 \ hi byte end of bufr
BNE hone \ not end of buffer
LDA ptrblk,Y \ A=l ow byte of pointer
CWP #Cbuf fer+size) AND &F \ end of buffer ?
BNE hone
LDA #buffer AND &FF \ if the end of buffer
STA ptrblk, Y \ been reached set pointer
LDA #buffer DIV &00 \ to the beginning again
STA ptrbl k+1,Y
RTS \ return

1760 . hone

1770 \ Compare pointers, if equal Z=1 don't care otherwise
1780.compare LDA ip_ptr+1

1790 CMP op_ptr+1

1800 BNE return

1810 LDA ip_ptr

1820 CMP op_ptr

1830.return RTS \ return
1840]

1850NEXT

1860CALL init

\ compare ptr high bytes
\ if not equal return

\ compare pointr low bytes

This program requires the presence of the Plus 1 expansion to be
of any use. It could however be modified to replace any of the
operating system'’s buffers. A paged ROM version of this
program can be found in chapter 10.

6.10 Unused vectors, IND1V IND2V & IND3V & 230

These vectors are reserved by Acorn for future expansion.
Software which uses these vectors cannot be guaranteed to be
compatible with any future versions of operating system software
or other Acorn products.

6.11 The default vector table

The BBC microcomputer operating system (version 1.2 onwards)
and the Electron operating system contain a table of default
values in a block of data. This may be accessed using the
following addresses:

&FFB6 _contains the length of the datain bytes
&FFB7 _contains the low byte of the data’s address
&FFB8 _contains the high byte of the data’s address

[/ Interrupts

7.1 Anintroduction to interrupts

Aninterrupt is a hardware signal to the microprocessor. It
informs the 6502 that a hardware device, somewhere in the
Electron or on an expansion module, requiresimmediate
attention. When the microprocessor receives an interrupt, it
suspends whatever it was doing, and executes an interrupt
servicing routine. Upon completion of the servicing routine, the
6502 returns to whatever it was doing before the interrupt
occured.

A simple analogy of an interrupt is aman working hard at his
desk writing aletter (aforeground task). Suddenly the telephone
rings (an interruption). The man has to stop writing and answer
the telephone (the interrupt service routine). After completion of
the call, he has to put the telephone down, and pick up hiswriting
exactly where he left off (return from interrupt).

In an Electron, the main objective is to perform foreground tasks
such as running BASIC programs. Thisis equivaent to writing

the letter in the above example. The computer may however be
concerned with performing lots of other functionsin the

background (equivalent to the man answering the telephone). An
Electron which is running the house heating system for example
would not wish to keep on checking that the temperature in every
room is correct — this would take up too much of its processing
time. However, if the temperature gets too high or too low in any
of the rooms it must do something about it very quickly. This is
where interrupts come in. The thermostat could generate an
interrupt, causing the computer to jump quickly to the interrupt
service routine, switch a heater on or off, and return to the main
program.

There are two basic types of interrupts available on the 6502.
These are maskable interrupts (IROs) and non-maskable
interrupts (NMiIs). To distinguish between the two types, there

are two separate pins on a 6502. One of these is used to generate
IROs (maskable) and the other is used to generate NMiIs (non-
maskable).

7.1.1 Non-Maskable Interrupts

In order to generate a non-maskabl e interrupt, a piece of hardware must

pull the NMI line low. This forces the 6502 to stop whatever it was

doing, and to start executing the NMI service routine at & 0DOO.

NMLs are extremely powerful, because they cannot be turned off under
software control. If the ULA is currently accessing RAM to produce

the video display in modes 0 to 3, it is also forced to give the memory

back to the 6502. NMIs can therefore create snow on the screen — the
urgency of this signal is such that even the screen cannot take priority
over the interrupting device.

Only very high priority devices, such as the Floppy Disc or Econet
interfaces, are allowed to generate NMIs. This ensures th&5@Res

only interrupted in very urgent situations. These high priority devices
are then guaranteed to get immediate attention from the 6502. To return
to the main program from an NMI, an RTI instruction is executed. It is
always necessary to ensure that all of the 6502 registers are restored to
their original state before returning to the main program. If they are
modified , the main program will suddenly find garbage in its registers

in the middle of some important processing. It is highly probable that a
total systencrash would result from this.

7.1.2 Maskable Interrupts

Maskable interrupts are similar to non-maskable interrupts in most
respects. A hardware device can generate a maskable interrupt to which
the 6502 must normally respond. The difference is that the 6502 can
choose to ignore all maskable interrupts, if it so desires, using software
control. To disable interrupts (only the maskable ones though), an SEL
(set interrupt disable flag) instruction is executed. Interrupts can be re-
enabled at a later time using the CLI (clear interrupt disable flag)
instruction.

When an interrupt is generated, the processor knows that an interrupt
must have come from either the ULA, or an expansion module device.
Initially though, it can’t tell where the interrupt has come from. If there
was only one device that could have caused the interrupt, then there
would be no problem. However ,

since there is more than one device causing interruptsin the

Electron, each device must be interrogated. Each device is asked
whether it caused the interrupt, Thisis normally quite easy,
because all of the standard Electron devices are controlled by the
ULA register at address & FEOO. Any other devices connected to
the expansion bus would have to be interrogated seperately.

When the interrupt processing routine has discovered the source
of amaskable interrupt, it must decide upon the type of action is
required. Thisusually involves transferring some data to or from
the cassette interface, incrementing the clock, or flashing the
colours on the screen. The interrupt condition must then be
cleared by writing to & FEOS, Thisis because most devices
(except the cassette receive and transmit registers) continue to
signa an interrupt until they have been serviced. The completion
of servicing often has to be signalled by the processor writing to a
special register in the device, or, in the case of interrupts from the
ULA, to address & FEOS.

Interrupts must never affect the interrupted program. All of the
processor registers and flags must therefore be exactly the same
after return from an interrupt routine as they were before the
interrupt occured. Thus an interrupt routine must either not alter
any registers (which is difficult) or restore al register contents to
their original values before returning.

Interrupt routines are entered with interrupts disabled. An
additional interrupt will therefore not be recognised whilst the
first interrupt routine is still processing. If the interrupt service
routine is going to take an appreciable time, this could create
problems. Other more urgent interrupts may occur, and have to
wait until the previous one has finished processing. The solution
isnormally to ensure that interrupt routines are not too long.
However, if careistaken, interrupts can be re-enabled inside a
long interrupt routine, In this case, fixed memory locations must
not be used to store variables within the routine, because these
locations will be overwritten if another interrupt routine uses
them (or indeed if the same interrupt occurs again!). All variables
should therefore be stored on the stack so they can be restored at
the end of any routine.

7.2 Interruptson the Electron

Interrupts are required on the Electron to process al of the
background operating system tasks. These tasksinclude
incrementing the clock, processing envelopes, or transferring
keys pressed to the input buffer. All of these tasks must continue
whilst the user istyping in, or running his program. Using
interrupts gives the impression that there is more than one
processor; one for the user, one for updating the clock, one for
processing envelopes, etc.

Aswas mentioned in the introduction, normal (maskable)
interrupts can be disabled. Interrupts should only be disabled for
critical operations. For example, when changing the two bytes of
avector. If an interrupt occurs in the middle of the change, it
might be indirected to an erroneous address.

When interrupts are disabled, the clock stops, and all other

interrupt activities cease. Interrupts are disabled by the SEL

assembler instruction, and re-enabled with CLI. Most devices that
generate interrupts will continue to signal an interrupt until itis
serviced. The cassette read register is one exception. If it isn’t
serviced within 2ms, data from the cassette will almost certainly
be lost forever.

7.3 Using Non-Maskable Interrupts

Generally, NMIs are reserved for specialised pieces of hardware
which require very fast response from the 6502. NMiIs are not
used on a standard system. They are used on DISC and ECONET
systems. An NMI causes a jump to location &0DOO to be made.

7.4 Using Maskable Interrupts

Most of the interrupts on the Electron are maskable. This means
that a machine code program can choose to ignore the interrupts
by disabling them. Since all of the operating system features such
as scanning the keyboard, updating the clock, and running the
cassette system are run on an interrupt basis, interrupts should
never be disabled for more than about 2ms.

There are two levels of priority for maskable interrupts, defined
by two indirection vectorsin page &02. The priority of an
interrupt indicates its relative importance with respect to other
interrupts. If two devices signal an interrupt simultaneously, the
higher priority interrupt is serviced first.

7.5 Inter cepting interrupts

Maskable interrupts can be intercepted on the Electron, and re-
directed to a user specified address. This interception process
consists of changing the value of a vector.

There are two interrupt interception vectors called IRO1V and
IRO2V, Thefirst of them isindirected viathe vector stored at
&204,5 and the second via & 206,7. If either of the vectors stored
in these locations is changed to point at a user supplied routine,
that user routine will be called when there is next an interrupt.

Interrupt Request Vector 1 (IRQ Vi)
Indirects through & 204,5

Thisisthe highest priority vector through which all maskable
interrupts are indirected, Thisis nominally reserved for the
system interrupt processing routine, which copes with all of the
interrupts from the ULA. Any interrupt which cannot be dealt
with by the operating system routine (those which are generated
by a user expansion module) are passed on through the second
interrupt vector, IRO2V. Occasionally, IRO1V can be intercepted
before the operating system gets hold of it. Thiswill only be
necessary for high priority user interrupts.

Interrupt Request Vector 2 (IRQ2V)
Indirects through & 206,7

This vector is normally used to deal with any interrupts which
cannot be dealt with by the operating system. On an unexpanded
Elecctron, the vector smply points to a couple of lines of codeto
restore the A register from & FC, then return from the interrupt
service.

Several points should be born in mind when producing interrupt
service routines.

a)

b)

d)

When the vector value is changed to point at the new user
supplied routine, the previous contents of the vector should
be saved somewhere. Thiswill allow the user routine to go on
to the correct address after it has finished, Note that this
method of linking into LRO1V or IRO2V allows several
independent routines to link in seperately. Each storesthe
previous contents of the vector (which point to the next
routine).

Disable interrupts using the SEI instruction before changing
the contents of the interrupt vectors, Thisismerely a
precaution to guard against the possibility of interrupts
occuring between writing the low and high bytes of the
vector If an interrupt were to occur in the middle of this
operation, the indirection vector would be erroneous, and
would probably cause the machine to crash.

The conditions which will be in force when the user routine
Is entered are that; the original 6502 status byte and return
address are already stacked on the 6502 stack (ready for an
RTI instruction to resume normal operation). The X and Y
registers are still in their original states, but haven’'t been
saved anywhere. The original A register contents are in
location &FC.

Operating system calls should not normally be made from
within an interrupt service routine, This is because they may
not be re-entrant (eg. if any zero page locations are used).
Most OSBYTEs and some OSWORDs are ‘IRO-proof'.
Avoid *FX0, OSBYTE &81 (positive INKEY), fast Tube
BPUT, OS WORD 0, and all VDU OS WORDs except
palette write/read. Such use of OS calls will often cause the
foreground task to be disturbed and crash.

The user’s interrupt routine shouldrgeentrant. This means
that if there is a possibility of interrupts being re-enabled
during the routine (eg. because it is very long), the code can
be run again without affecting the first foreground interrupt.
This can only be done by pushing the X and Y registers plus

the contents of & FC onto the stack, and restoring them after

the call. It is aso important to ensure that no fixed memory
locations are used for storing variables, since these will be
overwritten by an interrupting routine.

The following example illustrates most of these points. When
run, it will cause the Electron to make a continuous decreasing
pitch tone.

Severa pointsin the program are worthy of note. The first is that
IRO1V is used instead of IRO2V. On an unexpanded Electron,

al interrupts are serviced by IRO1V, so the OS doesn’t bother to
pass them on to IRO2V, When the tone is running, switch the
listing to page mode (by pressing CTRL N). Then list the
program. The sound is totally messed up because the OS is
writing to the ULA as well. This illustrates one of the reasons
why theofficial operating system calls should normally be used
—to avoid clashes like that.

10 REM Interrupt utilisation exanple
20 REM Must operate in node 6

30 MCDE 6

40 REM Al Locate space for program
50 DIM M% 100

60 FOR opt% 0 TO 3 STEP 3

70 PY%Mro

80 [

90 OPT opt %

100 .init SE \ Disable interrupts
110 LDA &204 \ Save ol d I RQLV vector

120 STA ol dv

130 LDA &205

140 STA ol dv+1

150 LDA M nt MDD 256 \ Low byte of address
160 STA &204 \ IRQLV Low

170 LDA #int DIV 256 \ H gh byte of address
180 STA &205

190 CLI \ Turn interrupts on again
200 RTS \ Exit initialisation routine
205

210 \ This is the interrupt service routine

220 .int TXA \ Save X register

230 PHA

240 TYA \ Save Y register

250 PHA

260 I NC &70 \ Counter in zero page

270 LDA &70

280
290
300
310
320
330
340
350
355
360
370
380
390
400
410
420

STA &FE06
LDA #832
STA &FEO7
PLA

TAY

PLA

TAX

JWP (ol dv)

.ol dv. EQUW

]

NEXT opt %
REM Grab the interrupt
CALL init
REM BI eepi ng shoul d
END

Load into ULA counter

Set sound node

Wite to ULA control register
Restore the registers

—— — —

\ Go on to next service routine

\ Reserve space for old vector

vect or

now start

8 PAGED ROMs

The Acorn Electron and the BBC microcomputer both support
the concept of a number of ROM based programs being resident
in amachine in the same address space. Each ROM is paged in as
required and then paged out as software in another ROM is
required.

Paged ROMs work broadly in one of two ways. They act either
as languages such as BASIC and LISP or they act as utilities such
as filing systems and device drivers. Languages may also include
such things as word processors and CAD graphics packages.

At any one time only one language should be active. Thus most
Electrons will enter BASIC as the default language. The current
language has access or control over the user RAM which it in
turn may alocate to users e.g. for BASIC programs or word
processing text.

While the one language is active any other ROM offering a
service may be called upon as is appropriate, When a request for
a service is generated the operating system interrogates each
paged ROM in turn until the request is acknowledged and acted
upon. Different types of request are indicated to each ROM by
the operating system entering the service entry point of that ROM
with an accumulator value representing the reason. These calls
are caled paged ROM service calls. If the service entry point is
entered with A=7 this indicates that someone has asked the
operating system for an OSBYTE cal which the operating
system failed to recognise and so is now asking the paged ROMs
if they wish to claim it. If a service cal is recognised then the
ROM should act upon it and clear the accumulator before
returning control back to the operating system. If the ROM does
not wish to claim the call it should return control to the operating
system with the accumul ator value unchanged.

There are two sets of paged ROMs, service ROMs and language
ROMs. All language ROMs should respond to paged ROM
service calls and so should be service ROMs as well. BASIC is
an exception to this rule and the operating system recognises it by
virtue of the fact that it is a language ROM not offering a service
entry.

In order to enable the operating system to recognise ROM types
and treat them accordingly, a protocol has been drawn up for a
standard ROM format.

ROM offset size description

0 3 language entry (JMP address)

3 3 service entry (JMP address)

6 1 ROM typeflag

7 1 copyright string offset pointer
(F10+t+v)

8 1 version number (binary)

9 [t] title string

O+t 1 zero byte

10+t [V] version string

10+t+v 1 zero byte

11+t+v [c] copyright string

11+t+v+c 1 zero byte

16+t+v+c 4 2nd Processor relocation
address

16+t+v+cC.... rest of ROM, code and data

Below isafull description of each field of the paged ROM
format.

8.2 Language Entry

This should consist of athree byte IMP instruction referring to
the language entry point. This code is called upon when a
language isinitialised, When a Tube is active the language may
be copied across to the second processor and then entered, When
alanguage is copied across the tube it may be relocated to a
different address (see section 8.4 below).

If aROM is not alanguage ROM this field should contain zeros.

83 ServiceEntry

This should consist of athree byte IMP instruction referring to
the service entry point. This should point to code which responds
to paged ROM service calls acting if and when appropriate.

If aROM is not a service ROM this field may contain user code.

84 ROM Type Byte

The value of this byte gives information to the operating system
about the nature of the ROM. The setting of each bit indicates a
separate thing.

Bit No. Meaning if set

processor/language bit

ditto

ditto

ditto

Controls Electron firm key expansions
Indicates that ROM has a relocation address
Indicates that thisis alanguage ROM
Indicates that this ROM has a service entry

~N~No onh~hrWNEFLO

The first 4 bits indicate the processor type for which the codeis
intended, Thisis of importance to second processors who may
get languages copied across to them. A second processor will
look for the correct value of these bits before attempting to run
the language. The following values have been assigned:

6502 BASIC

reserved

6502 code (not BASIC)
68000 code

Z80 code

16032 (or 32016)

OOOWN O

If bit 5 is set thisindicates that the language code in this ROM
has been assembled at a different address and the ROM should be
copied across the Tube to the second processor to this address.
Service routines are not executed from the Tube copy.

If bit 6 is set thisindicates that thisis not alanguage ROM. This
does not mean that the ROM cannot have a language entry point.
If this bit is not set alanguage will not be considered for
initialisation following a hard reset. However, if the language is
entered viaaservice cal (i.e. *<name>) a soft reset will
reinitialise that language.

85 Copyright Offset Pointer

Thisis an offset value from the begining of the ROM to the zero byte
preceding the copyright string, It isimportant that this pointsto a
zero bytefollowed by ¢, ‘C’ and 9+ ASCII character values
because the operating system uses this fact to determine whether
aROM physically existsin aROM position.

8.6 Binary Version Number

This eight bit version number of the software contained in a
ROM helpsidentify software. This byte is not used by any
operating system and need not correspond to the version string.
8.7 Title String

Thisisastring which is printed out as the operating system enters
the ROM as alanguage.

88 Version String (optional)

This should be a string identifying the release number of the
software. The format of this string should be A.BB where A and
B are ASCII characters of decimal digits.

On entry to alanguage the error pointer is set to thisor if thereis
no version string the error pointer is directed to the copyright
string.

8.9 Copyright String

This string is essential for the operating system recognition of a
paged ROM (see section 8.5 above). The copyright string should
always be preceded by a zero byte and start with the characters
(C).

8.10 TheTube Reocation address

This is the address which is used when a ROM is relocated when
copying across the Tube to a second processor.

The language code should be assembled to run at that address but
the service code should be assembled to run from &8000 as it
will be executed within the ROM in the 1/O processor.

Executing Softwarein Paged ROMs

It is possible to execute machine code in a paged ROM in one of
three ways, via the language entry point after a reset, via the
service entry point when the operating system performs a service
call or via an extended vector (which is usually set up by a paged
ROM in response to a service call). The following two chapters
describe how the two types of paged ROMs may be
implemented.

9 Language ROMs

The term language ROM is something of a misnomer given most
peoples’ idea of what a language is. In the context of paged ROM
software the language is the primary paged ROM. Other paged
ROMs may perform functions transiently but control is then
returned to the current language ROM. The language ROM
receives a large allocation of zero page workspace and is
allocated pages 4 through to 7 as private workspace. In addition
to this the language has control of tiser RAM which may or

may not be used as additional workspace. BASIC, for example,
uses a variable portion of thiser RAM (from LOMEM to

HIMEM) for the storage of program variables.

Languages are most typically implemented in language ROMs as
would be expected. Thus BASIC, FORTH, LISP and BCPL are
all language ROMs but other software implemented as language
ROMs include word processors and terminal emulators.

No paged ROM software should be executed unless a service call
has been performed first with the possible exception of a
language entered following a reset. The language entered after a
hard reset will be the language ROM identified by the ROM type
byte in its header occupying the highest priority socket.

Following a soft reset the language active when the reset
occurred will be reinitialised. Any language should respond to a
*command to enable its activation when this command is issued.
This mechanism allows the user to switch between languages.
This command would be unrecognised by the operating system
which would then issue amrecognised * command paged ROM
service call to which the language ROM would respond via its
service entry point.

9.1 Languageinitialisation

A language ROM will be entered via the language entry point
with an accumulator value of &01 when the language is selected.
The language is entered with a JMP instruction and no return is
expected. The stack pointer should be reinitialised as the stack
state is undefined on entry.

The language ROM should also be able to respond to service
calls which may affect it (see below) e.g. be able to respond to
the service call which warns of a changing OSHWM due to font
explosion.

9.2 Firmkeys

On the Electron the function keys are implemented as a
combination key press requiring the use of the CAPS LK/FUNC
key with the number keys. In addition to these soft keys there are
a number of non-programmable firm keys which aso produce
text strings when pressed. The other character keys (A to Z plus
the comma, full stop and slash keys) pressed in combination with
the CAPS LOCK/FUNC key constitute the firm keys.

A language ROM indicates that it has the facility to expand these
keys by bit 4 of the ROM type byte being set (see section 8.4).

When the operating system detects that a firm key has been
pressed it calls the language viaits entry point to request the
expansion of the key. The language should then yield the firm
key string one character at atime in response to further calls.

The two calls made through the language entry point are:

A=2 This call expectsthe next key in the firm key expansion to
bereturnediny.

A=3, Y=firm key code Thiscall isaninitialising call. The
language should return the length of the firm key stringin Y.

The key values passed to the language with this call are:
&90to &A9 FUNC+A to FUNC+Z

&AA FUNC+:
&AB FUNC+;
&AC FUNC+,
&AD FUNC+=
&AE FUNC+.
&AF FUNC+/

The operating system inserts these key values into the input
buffer asthey are received.

OSBYTE & CC (204) may be used to read or write the OS copy
of itsfirm key pointer and OSBY TE & CD (205) may be used to
read or write the length of the current firm key string being
expanded.

9.3 Language ROM compatability

It is quite feasible to write alanguage ROM which will work with
the entire range of Acorn machines supporting paged ROMsin
al their configurations.

Thefirst question that a programmer should consider before
implementing software in a Language type ROM is whether it
actually needs to be alanguage ROM? Many utilities are only
required transiently and it is better to implement them as service
type ROMs. A routine in a service type ROM can then be used
from the language environment.

As has been mentioned above the language should have a service
entry point so that it may be selected by a* command and be able
to respond to changesin OSHWM, For information about service
type ROMs read the next chapter. It must be remembered
however that alanguage ROM is copied across to the second
processor when a Tube is active. Therefore, when executing, the
language must not rely on receiving service calls (i.e. the only

ones the language code should respond to are those of relevance
when on an |/O processor such as the font explosion war ning).

The service code should not share or use the language work space
(&400-& 7FF or language zero page) because the service codeis
executed in the 1/0 processor of a Tube machine where the Tube
code has the status of the current ‘language’ and the actual
language is across on the second processor. The language code
should not attempt to perform any manipulation of hardware by
direct poking because this would make it machine dependent.
The programmer may wish to implement hardware dependent
routines in the service section of the ROM. The language code
should communicate with the service code usimigiown

OSBYTE calls etc. for this purpose.

It is always easier to write ROM code to create software with
limited compatability, It is often the case that software written
originally with just one machine or configuration in mind will be
just as useful on another machine. A programmer should always
have confidence in his or her skills such that they consider the
extra effort worthwhile. The discipline in thought required to
adhere to the compatability protocols represents a professional
attitude. The Electron and other Acorn products were designed by
experts, and while ultimately human and thus fallible, have put
great consideration into making it possible to run software over a
wide a range of machines.

10 Service ROMs

Service ROMs are ROMs which contain code which is entered
viathe service entry point. Service ROM code will always be
executed in the ROM itself i.e. awaysin the I/O processor c.f.
language ROMs. The calls made by the operating system to
service ROMs are called paged ROM service calls but will
usually be referred to as just ‘service calls’.

The type of software which might be implemented in service type
ROMs are filing systems, user printer drivers, extension VDU
commands and languages; In fact just about anything. It should
be noted that extreme care should be taken to implement routines
in service ROMs correctly.

To understand how software can be incorporated into a paged
ROM, be interfaced correctly with the operating system and thus
executed at the appropriate time an understanding of paged
ROM service calls is essential.

When a hard reset occurs the operating system makes a note of
where physical ROMs exist in paged ROM sockets. Subsequently
as the machine carries out its various tasks each time something
which may be of significance to software in paged ROMs occurs
these ROMs are given an opportunity to respond.

10.1 Paged ROM servicecalls

The mechanism by which this is performed is as follows. The
operating system pages in each paged ROM in turn starting with
that ROM in the highest priority socket (paging is performed by
writing a value to a hardware latch, the hardware responds to the
value written to this location and performs the relevant switching
of the chip select signals). If the ROM has a service entry point
this code is executed. Before entering the code the accumulator is
loaded with aeason code, the X register will contain the current
ROM number (a ROM is thus able to tell which socket it is in)
and the Y register will be loaded with any further relevant
information. The paged ROM can return control to the operating
system following an RTS instruction. If the ROM has responded

and does not wish any further action to be taken, the accumulator
should be set to zero to claim the call otherwise all registers
should be unchanged.

Below isalist of the reason codes which may be presented to a
paged ROM when a service call is performed.

Reason code & 00: No operation

No operation, this service call should be ignored because a higher
priority ROM has already claimed it.

Reason code & 01: Absolutefiling system space claim

This cal ismade during areset. The operating system is
interrogating each ROM to determine how much workspace
memory would be required if that ROM was called. This
workspace is available temporarily while the filing system ROM
isactive. Pages & EOO and above are available as afixed areaon
the BBC micro and the Electron. Each paged ROM is entered
with A=& 01 , X=ROM number and Y =top of fixed area. For the
highest priority ROM on aBBC micro theY register will contain
&E. TheY register value should be increased in accordance to
the requirements of the ROM. If the Y register setting is
sufficient or greater than required then the service routine should
return the Y register unaltered.

Before using this workspace, the new filing system ROM should
deselect the old filing system with OSFSC with A=6 (indirected
through (& 20E), see section 5.7); and the workspace must be
claimed with OSBY TE & 8F, X=& 0A (see Reason Code & OA of
this section).

Reason code & 02: Relative space claim

This call is made by the operating system during areset to
determine how much private RAM workspace is required by each
ROM. The position of this private areawill start from the top of
the absol ute space claimed by the ROMs and on the relative

space claimed by higher priority ROMs. This call is made with
the Y register containing the value of the first available page.
This value should be stored in the ROM workspace table at
&DFO to & DFF (for ROMs 0 to 15 respectively) and the Y
register returned increased by the number of pages of private
workspace required.

Reason code & 03: Auto-boot call

This call isissued during areset to allow each service ROM to
initialise itself. This enables the highest priority filing system to
set up its vectors automatically rather than require explicit
selection with a*command. To alow lower priority sevicesto be
selected the service ROM should examine the keyboard and
initialise only if either no key is pressed or if its own ROM
specific key isbeing pressed (e.g. D+BREAK for Acorn DFS). If
the ROM initiaisesit should attempt to look for a boot file
(typically 'BOOT) to RUN, EXEC or LOAD if the Y register
contains zero. This call is made during areset after the start-up
messages have been printed.

Reason code & 04: Unrecognised *command

When aline of text is offered to the command line interpreter
(CLI) the operating system will pass on any unrecognised
command firstly to each of the paged ROMs and then if still
unrecognised to the currently active filing system. When the
unrecognised command is offered to the paged ROMs this
service cal is made.

Entry parameters:
A=&04
X=ROM number
Y contains an offset which if added to the contents of & F2
and & F3 point to the beginning of the text with the asterisk
and leading spaces stripped off and terminated with a
carriage return

On exit:

Registers restored
A=0if recognized

Filing systems should not intercept filing system commands
(which will be common to all filing systems) using this service
call but may intercept somefiling system utilities (e.g. *DISC,
*NET).

Reason code & 05: Unknown interrupt

An interrupt which is not recognised by the operating system or
which has been masked out by software will result in this call
being generated. A service ROM which services devices which
might cause interrupts should interrogate such devicesto
determineif they have generated this interrupt. If the interrupt
has been recognised and processed the accumul ator should be
returned with zero to prevent other ROMs being offered the
interrupt. The routine should terminate with an RTS not an RTI.

Reason code & 06: BRK has been executed

If aBRK instruction is encountered this call will be generated
before indirecting through the BRK vector (BRKVEC, &202).
BRKs are usually used to indicate that an error condition has
occurred, service ROMs are informed before the current language
is able to respond to the BRK viathe BRKVEC.

Entry parameters:
A=&06
X=ROM number
Y isundefined but should be preserved & FO contains the
value of the stack pointer & FD and & FE point to the
error number which is not necessarily in the current
ROM (OSBY TE &BA yields this ROM number)

On exit:
All registers should be preserved

Reason code & 0: Unrecognised OSBY TE call

When an OSBY TE call has been made and is not recognised by
the operating system it is offered to the paged ROMs by this
service call. The contents of the A, X and Y registers at the time
of the OSBY TE call are stored in locations & EF, & FO and & F1
respectively.

Reason code & 08: Unrecognised OSWORD call

This service call is performed in response to the user issuing an
OS WORD call not catered for in the operating system. The
contents of the A, X and Y registers at the time of the call are
stored in locations & EF, & FO and & F1 respectively.
Unrecognised OSWORD calls with accumul ator values greater
than or equal to & EO are offered to the user vector (USERV,
&200). An OS WORD call with A=7 (equivalent to the SOUND
command in BASIC) given an unrecognised channel will aso
generate this service call.

Reason code & 09: *HEL P command inter ception

When the *HELP command is passed through the CLI this
service cal is generated. The remainder of the command lineis
pointed to by the address stored in locations & F2 and & F3 plus
an offset in Y. Each ROM isrequired to respond to this call. If
the remainder of the command line is blank the ROM should
print its name and version number followed by alist of
subheadings to which the ROM will respond.

e.g. Acorn DFS (version 0.90) outputs:

DFS 0. 90
DFS
UTI LS

Indicating that this ROM respondsto *HELP DFS and *HELP
UTILS

If the rest of the command line is not blank the service routine
should compare it against its subheadings and if a match occurs
should output the information under that subheading.

e.g. Acorn DESrespondsto *HELP UTILS with:

DFS 0. 90
BU LD <fsp>
Dl sC
DUMP <f sp>
TYPE <fsp>

If thereis more than one item on aline then the ROM should deal
with them individually. All registers should be preserved across
the service routine.

Reason code & OA: Claim absolute wor kspace

This service cal originates from a paged ROM which requires
the use of the absolute workspace. When afiling system ROM is
active and requires use of this workspace it should perform an
OSBY TE call &8E with X=&0A which will generate this service
call. The previous owner of the absolute workspace is then able
to save any valuable contents of this memory in its own private
dataareain the relative workspace. The previous owner should
also update a flag within its private data area indicating that it no
longer owns the absolute workspace.

The active filing system is selected independently of the
ownership of the absolute workspace. Thus while afiling system
ROM may have ownership of this workspace the tape filing
system may be selected (the tape ES does not require any
absolute workspace). Problems may arise when the active filing
system paged ROM is called upon but does not have ownership
of the absolute workspace. The active filing system should then
issue this service call to obtain the use of the absolute workspace.
This call should only be made by afiling system starting (see also
Reason code &01).

Reason code & 0B: NM| released

This service call also originates from paged ROMs and should be
generated by performing an OSBY TE call &8F. Thiscall should
be issued when a ROM no longer requires the NMI. This releases
the zero page locations & AO to & A7 and the space for the NML
routine in page &DOO. On entry the Y register contains the filing
system number of the previous owner (see OSARGS, section 5.2)
and this should be compared to the ROM’s own identity bétasserting
control of the NMI.

Reason code & 0C: NM1 claim

This call should be generated by a paged ROM using OSBY TE

& 8F when it wishes to take posession of the NMI. The service
call should be generated passing & FF inthe Y register (i.e.
OSBYTE A=&8F, X=&0C and Y=& FF). The current owner
should relingquish control returning its filing system number in the
Y register in response to this call.

Reason code & 0D: ROM filing sytem initialise

When the ROM filing system (REY) is activated in responseto a
*ROM command this call will beissued when afileisbeing
searched for. On entry the Y register contains 15 minus the ROM
number of the next ROM to be scanned. If thisROM number is

less than the current ROM’s ID this call should be ignored.
Otherwise the active ROM number should be stored in &F5 (in
the form 15-ROM number) where the RFS active ROM number
is stored. The current ROM should indicate that the service call
has been claimed by returning zero in the accumulator and should
store a pointer to the data stored within the ROM in locations
&F6 and &F7 set aside for use by the RFS.

See chapter 11.

Reason code & OE: ROM filing system get byte

This service call may be issued after aROM containing RFS data
has been initialised with service call &0D, A ROM should
respond only if it is the active RFS ROM as indicated by the
value in location & F5 (stored in the form 15-ROM number). The
fetched byte should bereturned inthe Y register.

See chapter 1 1.

Reason code & OF: Vectors claimed

This service call should be generated by any paged ROM (using OSBY TE
& 8F) which has been initialised and then changed any operating
system vector. This call warns paged ROMs that a vector change
has occurred.

Reason code & 10: SPOOL/EXEC file closure warning

This service call should be produced by the operating system
prior to closure of any SPOOL or EXEC fileswhen thereisa
change of the current filing system. This enables any paged ROM
using such afile to respond to the possibly premature closure of
these files. SPOOL/EXEC file closure may be prevented by
returning a zero in the accumul ator otherwise all registers should
be preserved.

Reason code & 11 : Font implosion/explosion war ning

When OSBY TE & 14 is used to change the RAM allocation for
user defined charactersthis service call isissued. Thiscall is
issued to warn languages that the OSHWM has been changed and
thus the user RAM allocation has changed.

Reason code & 12: Initialisefiling system

This call enables third party software to switch between one or
more filing systems without having to issue * commands. A
program may want to switch between two filing systemsin order
to transfer files. A filing system ROM should respond to this call
if thevalueinthe Y register corresponds to its filing system
number. All filing systems should allow files to be open while
inactive and so on receiving this call should restore any such
files.

Reason code & 13: Character placed in RS423 buffer

This call is made when the Electron OS has placed a character in the RS423
buffer. Expansion software handling R$423 hardware should
respond to this call. If not claimed the operating system purges
the R$423 buffer.

Reason code & 14: Character placed in printer buffer

This call is made when the Electron OS has placed a character in
the printer buffer. Expansion software controlling printer
hardware should respond to this call.

Reason code & 15: 100 Hz poll

The Electron operating system will provide a 100 Hz polling call
for the use of paged ROMs. A paged ROM requiring this call
should increment the polling semaphore using OSBY TE & 16
(22) on initialisation and decrement it using OSBY TE & 17 (23)
when it no longer requires polling. The operating system will
issue this service call when the semaphore is non-zero. The
semaphore itself may be read using OSBY TE &B9 (185). This
facility isimplemented mainly so that hardware devices may be
supported as a background task without being interrupt driven.
Thiswould be suitable for hardware not requiring particularly
urgent servicing.

TheY register contains the semaphore value, and should be
decremented by the service routineif it is being polled. If a
service routine finds it has decremented the Y register to zero, it
should claim the call (set A to 0) to improve machine speed
(there are no more ROMs which require polling).

Reason code & 16: A BEL request has been made

When the external sound flag (OSBYTE & DB/219) is set this
call isissued by the OSin response to an ASCII BEL code being
output (VDU 7). Thisisto enable the external sound system to

respond appropriately.

Reason code & 17: SOUND buffer purged

This call is made when an external sound system is flagged on
the

Electron and an attempt has been made to purge any of the
SOUND buffers.

Reason code & FE: Post initialisation Tube system call

The operating system makes this call during areset after the
OSHWM has been set. The Tube service ROM responds to this
by exploding the user defined character RAM allocation.

Reason code & FF: Tube system main initialisation

This cal isissued only if the Tube hardware has been detected.
This call is made prior to message generation and filing system
initialisation.

The fact that these calls are shared by all the service ROMs can
lead to wide spread consequencesif a service call is misused by
one of the ROMs. The programmer should consider the
consequences of his ROM claiming calls (or not claiming calls)
when present.

10.2 Service ROM example

The program below isa ROM based version of the enlarged
printer buffer program originally described in chapter 6, and will
only be of use to machines with the Plus 1 expansion. It is short
by paged ROM standards but the assembler program is not a
short example.

This program should only be taken as an illustration of the use of
some of the service calls described above : it does not conform to
paged service ROM standards, as it uses Econet zero page

workspace. This may be of little consequence to the vast mgjority

of Electrons, but properly implemented service ROMs should

never assume that they won't be used with any particular system
configuration.

10 REM AssenblLer program printer buffer ROM

20 DI M code% &400
30 | NSV=&22A: nl =&2A/ 2
40 RW=&22C. nR=&?C/ ?
50 OCNPV=&22E: nC=&2FE/ ?
60 ptrbl k=&90
70 ip_ptr=ptrbLk+2
80 op_ptr=ptrbLk+4
90 ol d_bfr=&880
100 begi n=ol d_bfr
110 end=ol d_bfr+2
120 wr kbt =ol d_bfr +4
130 size=ol d_bfr+5
140 vec_cpy=ol d_bfr+6
150 |ine=&F2
160 OSASCl =&FFE3
170 OSBYTE=&FFF4
180 FOR 1=4 TO 7 STEP 3
190 P%-&8000: O%code%

200 [

210 OPT 1

220 .ronstrt EQUB O \ null language entry point
230 EQUB 0

240 EQUB 0

250 JMP service \ service entry point

260 EQUB &8? \ ROM type byte, service ROM
270 EQUB (copyr —romstrt)\ offset to copyright

string

280 EQUB 0 \ null byte

290 .title EQUB &A \ title string

300 EQUS “BUFFER”

310 EQUB &0 \ null byte

320 EQUS “1.00” \ version string

330 EQUB &D \ carriage return

340 .copyr EQUB 0 \ terminator byte

350 EQUS “(C)1984 Mark HoLmes"\ copyright message
360 EQUB 0 \ terminator byte

370 \ End of ROM header, start of code
380 .name EQUS “REFFUB” \ command name

390 \ Service handling code, A=reason code, X=ROM id &
Y=data

400 .service CMP #4 \ is reason unknown command?
410 BEQ command \ if so goto ‘command’

420 CMP #9 \ is reason *HELP

430 BEQ help \ if so goto ‘help’

440 CMP #2 \ is reason private wrkspace
450 BEQ wkspcim \ if so goto ‘wkspclm’

460 CMP #3 \ is reason autoboot call

470 BNE nothoot \'if NOT goto ‘notboot’

480 JMP autorun \ BEQ autorun, out of range
490 .notboot RTS \ other reason, pass on

500 \ Unknown command, is it *BUFFER ?
510 \(command Line address in &F?,&F3 (line) + offset Y)

520 .command TYA:PHA:TXA:PHA

save registers
530 LDX #6 \ X=length of name
540 .loopl LDA (Line),Y \ A=next Letter of command
550 CMP name—1,X \ compare with my name
560 BNE notme \ not equal, goto ‘notme’
570 INY \ for next letter of command
580 DEX \ for next Letter of name
590 BNE loopi \ if X<>0 round again
600 BEQ parmch \ 6 Letters matched, do jump
610 .notme PLA:TAX:PLA:TAY \no match, restore registrs
620 LDA #4 \ restore reason code
630 RTS \ pass on call
640 *HELP response (parameters as for call above)
650 .helLp TYA:PHA:TXA:PHA \save registers
660 LDX #0 \ use X as index counter
670 .loop2 LDA title,X \ A=next Letter from title $
680 BNE overl \ if A<>0 jump next instrctn
690 LDA #&20 \ replace 0 by space char.

700 .overl JSR OSASCI \ write character

710 I NX \ increnment index counter

720 CPX #(copyr —titLe) \ end of title ?
730 BNE Loop2 \ if not get another char.
740 PLA:TAX:PLA:TAY \ restore registers
750 LDA #9 \ restore A

760 RTS \ pass on *HELP call

770 \ Oportunity to claim private workspace
780 \ (Y=Ist page free, call inc’s Y by no. pages claimed)

790 .wkspclm TYA \ copy page no.to A

800 STA &DFO,X \ table for ROMs’ workspace
810 PHA \ save page no. on stack
820 LDA #&FD

830 LDX #0

840 LDY #&FF \ OSBYTE call to read last
850 JSR OSBYTE \ BREAK type

860 CPX#0 \ X=0 after soft reset

870 BEQ softrst \ soft brk, dont reset size

880 LDA #8 \ 8 pages for printer buffr
890 STA size \ location for buffer size

900 .softrst CLC \ clear carry, for add

910 PLA \ original Y on stack

920 ADC size \ A=A+7?size

930 TAY \Y=A

940 LDX &F4 \ X=ROMid

950 LDA #2 \ restore A (reason code)
960 RTS \ pass on workspace call

970 *BUFFER command issued, reset buffer size

980 .parmch LDA (line),Y \ get char. from cmnd line
990 CMP #&D \ car.ret.? end of line ?
1000 BNE ok_init \ if not, cont. line input
1010 LDA #1 \ no parameters so set
1020 JMP default \ default buffer size
1030 .ok_init INY \ increment index counter
1040 CMP #&20 \ was char. a space?
1050 BEQ parmch \ if so get next character
1060 SEC \ set carry for subrtact
1070 SBC #&30 \ A=A—ASC"0"
1080 CMP #0 \ was character zero
1090 BEQ deinit \ if so, switch off
1100 BMI rngerr \ char.<0, out of range
1110 CMP #6 \ compare char. to 6
1120 BPL rngerr \ A>=6, out of range
1130 .defauLt CLC \ clear carry for ASL
1140 ASL A:ASL A:ASL A\ A=A*8
1150 STA size \ store for buffer size
1160 .prntmes LDA #&87 \ Use OSBYTE &87 to read

1170 JSR OSBYTE \ current screen MODE

1180 TYA \ ARY
1190 TAX \ X=A
1200 LDY #&F8 \ Use OSBYTE &FF to wite
1210 LDA #&FF \ MCDE sel ected on reset
1220 JSR OSBYTE \ (i.e. MODE preserved)
1230 TAX \ X=&FF
1240 .1 oop6 I NX \ increnent index counter
1250 LDA nessage, X \ A=next byte of nmessage
1260 JSR OSASC \ print character
1270 CWP #&D \ was it carriage return
1280 BNE | oop6 \ if not get next character
1290 PLA: TAX: PLA: TAY \ restore registers
1300 LDA #0 \ claimcall, O reason code
1310 RTS \ return
1320 .nessage EQUB &A \ nessage string
1330 EQUS “Press BREAK to change buffer size”
1340 EQUB &D
1350 .rngerr LDX #&FF \ set index counter
1360 .loop7 INX \ increment index counter
1370 LDA errdata,X \ A=character from string
1380 STA &100,X \ copy to bottom of stack
1390 CMP #&FF \ was byte terminator
1400 BNE loop7 \ if not Loop again
1410 JMP &100 \ goto &I00 CBRK)
1420 .errdata EQUB 0 \ BRK opcode
1430 EQUB 0 \ error number 0
1440 EQUS “Invalid buffer size” \error
message
1450 EQUB 0 \ message string end
1460 EQUB &FF \ terminator byte
1470 \ Routine for deselecting buffer ROM routines
1480 .deinit LDA #3 \'VDUS3, just in case
1490 JSR OSASCI
1500 SEI \ disable interrupts
1510 LDY #0
1520 STY size \ size=0
1530 .loop8 LDA vec_cpy,Y \ Load old vector contents
1540 STAINSV,Y \ store in vector
1550 INY \ increment index counter
1560 CPY #6 \ copied 6 bytes yet
1570 BNE loop8 \ if not Loop again
1580 CLI \ enable interrupts
1590 JMPprntmes \ print message + return
1600 \ Initialise buffer routines automaticalLy

1610
1620
1630
1640

.autorun TYA:PHA:TXA:PHA \ preserve registers

LDA size \ A=buffer size in pages
BEQ no_init \ A=0, don't initialise
LDA #&84 \ HIMEM OSBYTE number

1650
1660
1670
1680
1690
1700
1710
1720
1730 .no_init
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

.room

.init

. Loop3

CSBYTE
end
#&83
OSBYTE
end
room
no_room
init

: TAX: PLA: TAY

#3

#&A8

#0

#&FF

CSBYTE
ptrbLk

ptrbl k+
#3*nl

#ins AND &FF

(ptrblk),Y

#ins DIV & 00
CptrbLk), Y

&F4
CptrbLk), Y

#rem AND &FF
(ptrbLk),Y

#rem DIV & 00
(ptrblk),Y

&F4
(ptrbLk),Y

#cnp AND &FF
CptrbLk),Y

#cnp DIV & 00
(ptrbLk),Y

&F4
(ptrblk),Y

#0
I NSV, Y
vec_cpy, Y

#6

e o o o o e e e e e e e e e e e e e e e e — — e e e e e —

— o — — —

make cal

store page address
OSHWM CSBYTE nunber
make cal

is OSHWM > H MEM

if so continue

no room sO cause error
call initialise routine
restore registers
restore A

return

OSBYTE to read address of
extended vector table

set up zero page Locations
for indirect indexed adr
of fset into table ClNSV)
address of new routine

di sable interrupts

copy address to vector
Y=Y+1

hi gh byte of address
copy to extended vector
Y=Y+1

A=ROM d

conpl ete extended vector
Y=Y+1

REMWV new routine address
lo byte to extended vector
YY+1

H byte of new routine

pl ace in extended vector
Y=Y+

A=ROM d

conpl ete REW 3 byte vect
Y=Y+1

repeat, store address of
new CNPV routine in the
extended vector together
wi th ROM nunber

X=ROM d

Y=0

Aol d vector contents
copy to workspace
YY+1

copied 6 bytes yet ?

2160
2170
2180
2190
2200
2210

page, —1

2220
2230
vect's)
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2430
2440
2450
2460
2470
2480
2490
2500
2510
BREAK"”
2520
2530

2540

2550
2560
2570
2580
2590
2600
2610

2620

2630
2640

BNE Loop3 \ if not |oop again
LDA &DFO, X \ Awor kspace addr. hi byte
STA begi n+1 \ store in zero page
CLC \ clear carry for add
ADC si ze \ add begi n+si ze
STA end+1: DEC end+1 \ store in zero

LDY #&10 \ lo byte of begin

STY begin \ (room for return

LDY #&FF \'lo byte of end

STY end \ store in zero page

JSR rstptrs \ reset ip+op ptrs

LDA #nl*3 \ for the extended vector

STA INSV \ system the vectors must

LDA #nR*3 \ now point to &FFOO +

STA RMV \ vector number*3

LDA #nC*3

STA CNPV

LDA #&FF

STA INSV+1

STA RMV+1

STA CNPV+1

CLI \ enable interrupts

RTS \ return

CLI \ clear interrupts
LDA nrmerr,X \ fetch next byte of data

STA &100,X \ store at bottom of stack

INX \ increment index counter

CMP #&FF \ reached terminator ?

BNE Loop9 \ if not loop again

JMP &100 \ execute BRK (not in ROM)

EQUB 0 \ BRK instruction opcode

EQUB 0 \ error number 0

EQUS “Not enough room for print buffer, Press

EQUB 0 \ string terminator

EQUB &FF \ data end

\ Purge buffer by setting i/p + o/p ptrs to buffer start

LDA begin \ lo byte bufr start address
STA ip_ptr \ store input pointer
STA op_ptr \ store output pointer
LDA begin+1 \ hi byte of buffer start
STA ip_ptr+1 \ store input pointer
STA op_ptr+1 \ store output pointer
RTS \ return

PLA:PLP:JMP (vec_cpy)\ old INSV routine

\ New insert char. into buffer routine
PHP:PHA \ save 5 and A on stack

2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860

2870

2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120

#3
wr ngbf |
PLA: PLP: PHA

ip_ptr
i p_ptr+1

LDY
JSR inc_ptr
JSR conpare
BEQ i nsfai l
PLA: PLA: PLA

STA (ip_ptr),Y

CLC

RTS

.insfaiL PLA

STA ip_ptr+1

PLA

STA ip_ptr

PLA

SEC

RTS

#0

is buffer id 3 ?
if not pass to old routine
not passing on, tidy stack
Al o byte of input pointer
store on stack
Ahi byte of input pointer
store on stack
YO so ip_ptr incremented
by the inc_ptr routine
conpare the two pointers
if ptrs equal, buffer full
\ don't need ip_ptr copy now

\ A off stack, insrt in bufr

\ insertion success, C=0

\ finished
\ buffer was full so must
\ restore ip_ptr which was

\ stored on the stack

\
\
\
\
\
\
\
\
\
\
\

\ insertion failes so C=1
\ finished

wrngbf2 PLP:JMP (vec_cpy+2) \ old REMV routine

\ New remove char. from buffer routine

PHP
CPX #3
BNE wrngbf?
PLP
BVS examine
JSR compare
BEQ empty
LDY #2
JSRinc_ptr
LDY #0
LDA (op_ptr),Y
TAY
CLC
RTS
SEC
RTS
.examine LDA opptr
PHA
LDA op_ptr+1
PHA
JSR remsr
PLA
STA op_ptr+1
PLA

rem

remsr

.empty

\ save status register
\'is bufferid 3 ?
\ if not use OS routine
\ restore status register
\ V1, examine not remove
\ compare i/p and o/p ptrs
\ if the same, buffer empty
\ Y2 so that increment ptr
\ routine inc’s op_ptr
\ YO, for next instruction
\ fetch character from bufr
\returnitinY
\ buffer not empty, C=0
\ return
\ buffer empty, C=1
\ return
\ examine only, so store a
\ copy of the o/p pointer
\ on the stack to restore
\ ptr after fetch
\ fetch byte from buffer
\ restore ptr from stack
\ (if buffer was empty
\ C1 from fetch call)

3130 STA op_ptr
3140 TYA \ examine requires ch, in A
3150 RTS \ finished
3160 .wngbhf3 PLP:JMP (vec_cpy+4) \ old CNPV routine
3170 \ New count/purge buffer routine
3180 .cnp PHP \ save status reg. on stack
3190 CPX #3 \ is buffer id 3 ?
3200 BNE wr ngbf 3 \ if not pass to old subr
3210 PLP \ restore status register
3220 PHP \ save again
3230 BVS purge \ if V1, purge required
3240 BCC Len \ if CO anount in buffer
3250 LDA ip_ptr \ o/w free space request
3260 PHA
3270 LDA ip_ptr+1 \ store ipptr on stack
3280 PHA
3290 LDX #0 \ X=0 for use as counter
3300 STX wr kbt \ wkbtO for hi counter
3310 LDY #0 \ YO, so ip_ptr incr'd
3320 .loopl JSR inc_ptr \ increment ipptr
3330 JSR compare \ does it equal op_ptr
3340 BEQ finshdl \ if so countfree space
3350 INX \ XX+1
3360 BNE noinc \ if X=0 don’t inc wrkbt
3370 INC wrkbt \ hi byte of count inc’'d
3380 .no_inc JMP Loopi \ Loop round again
3390 .finshdl PLA \ restore ip_ptr off
stack
3400 STA ip_ptr+1
3410 PLA
3420 STA ip_ptr
3430 LDY wrkbt \ Yhi byte of free space
3440 PLP \ restore status register
3450 RTS \ finished
3460 .Len LDA opptr \ store op_ptr on stack
3470 PHA
3480 LDA op_ptr+1
3490 PHA
3500 LDX #0 \ X=0 for use as counter
3510 STX wrkbt \ wrkbtO hi byte of count
3520 LDY #2 \'Y? so op_ptr incremented
3530 .loop2 JSR compare \ are ptrs equal ?
3540 BEQ finshd2 \ if so buffer empty
3550 JSRinc_ptr \ increment op_ptr
3560 INX \ increment count
3570 BNE no_inc2 \ if X=0 then increment hi
3580 INC wrkbt \ byte of count
3590 .no_inc2 JMP Loop? \ loop round again
3600 .finshd2 PLA \ restore op_ptr off stack

3610
3620
3630
3640
3650
3660
3670
3680
3690

3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870

3880
3890
3900
3910
3920
3930
3940
3950

3960

3970

STA op_ptr+1
PLA
STA op_ptr
LDY wr kbt
PLP
RTS

. purge JSR rstptrs
PLP
RTS

— e e —

\ Increnent pointer routine.
.inc_ptr CLC \
LDA ip_ptr,Y
ADC 111
STA ip_ptr,Y
LDA ip_ptr+l1,Y

Yhi byte of length
restore status register
finished

reset i/p & o/p pointers
restore status register
return

YO op_ptr, Y? ipptr

clear carry for add

ADC =0
STA ip_ptr+l,Y \ pointerpointer+1
CWP end+1 \ hi byte reached buffr end?
BNE hone \ if not finish
LDA ip_ptr,Y
CWP end \ Lo byte reached end ?
BNE hone \ if not finish
LDA begin \ reached end of buffer
STA ip_ptr,Y \ so reset pointer to
LDA begi n+1 \ start address of buffer
STA ip_ptr+l,Y
. hone RTS \ return
\ Compare pointers, if equal Z1 don't care otherwise
.compare LDA ip_ptr+l
CMP opptr+1 \ compare ptr high bytes
BNE return \ if not equal return
LDA ipptr
CMP op_ptr \ compare pointr low bytes
return RTS \ return
]
NEXT

OSCL1"™*S.BRM “+STR$code%+" “+STR$'0%

When this program is run, the ROM image blown into an
EPROM and then inserted in an Electron with a Plus 1 expansion
an enlarged printer buffer of 2k is automatically initialised.

Typing *BUFFERN’ with n from 1 tb selects a buffer size of
n*2K at the next BREAK. *BUFFERQO’ deselects the enlarged
buffer and re-initialises the normal OS routines. *BUFFER’ (no
parameters) reselects the default buffer size (2K).

10.3 Extended Vectors

In the example above the operating system buffer maintenance
vectors had to be set to point to routines held within the service
ROM. The operating system supports a system of extended
vectors to enable each of the OS vectors to point to routines held
in paged ROMs.

Each OS vector is identified by a number which may be
calculated by subtracting &200 (the vector space base address)
from the vector address and dividing by two (each vector is two

bytes).

The operating system vector should be pointed to a routine at
&FFO0O0 plus the vector number multiplied by 3. This routine will
use a three byte vector stored in the extended vector space (this
address returned by OSBYTE &A8) with an offset of the buffer
number multiplied by 3. This vector should contain the address of
the routine in the paged ROM followed by its ROM number.

The procedure for a paged ROM to intercept a vector is:

(@) Determine buffer number n

(b) Establish extended vector space, V using OSBYTE &A8
(c) Store new routine’s address in (V+3*n)

(d) Store ROM number following address

(e) Make copy of OS vectors contents if required for return
() Store address (&FF00+3*n) in OS vector (&200+2*n)

It is usually a good idea to disable interrupts during this change-
over so that an interrupt routine is not able to use the vector in the
middle of the change.

11 Serially accessed
ROMsand the*ROM
filing system

The Electron has been designed to use software contained in
ROM cartridge packs. The ROM packs which plug into the Plus
1 expansion may contain up to two paged ROMs, The ROM pack
paged ROMs may contain up to about 16K of data and/or
programs which is paged into memory as required. On the BBC
microcomputer the facility also extendsto phrase ROMs
(PHROMYS) associated with the speech upgrade. When the
programs or data stored in these ROM packs are required it may
be loaded into user RAM in the same way as programs or data
may be loaded off tape or disc.

These ROM packs are intended to provide areliable and rapidly
accessible medium for the distribution of programs. The market
for such a product being amongst owners of tape based machines
who would otherwise have to rely upon the much slower and
inherently less reliable medium.

The advantage to the software producer is that there is no
requirement for a special version of the program to be written. A
system is required for the formatting of the program for inclusion
inaROM pack but no modification of the program itself is
required.

The*ROM filing system is a subset of the tape filing system.
Paged ROMs are interrogated to determine whether they contain
information intended for thisfiling system and are then serialy
accessed by the *ROM filing system.

Paged ROMs containing information intended for access viathe
*ROM filing system are no different from other paged ROMs.
They are service type ROMs and as such have sevice entry
points. They are distinguishable as *ROM filing system ROMs
only by their response to paged ROM service callsissued by the
*ROM filing system code. When the user selects the *ROM
filing system

any further requests for filesresult in the *ROM filing system
section of the operating system scanning the paged ROM s for
thesefiles. A paged ROM containing files intended for the

*ROM filing system should respond to one of two paged ROM
service calls.

The two service calls and the responses expected from ROMs
containing * ROM data are described in detail below. One call
expects the ROM to prepareto yield any data it has and the
second call is used to extract this data, one byte at atime. The
data should be formatted in a similar way to the data stored on
tape but is modified in such away as to minimise the storage
overheads involved in using such aformat. The reason for
adopting this format is to minimise the requirements for extra
code in the operating system while utilising the exhaustive error
checking aready in existence. Accompanying these advantages
there is a concurrent reduction in response time performance but
thisis of little importance to the users of tape based machines
who are still able to appreciate a substantial improvement on their
system’s existing performance.

11.1 Converting filesto *ROM format

In order to produce a ROM containing files which will be
recognised by the *ROM filing system it is necessary to fulfill

two criteria, The first requirement is for some header code which
will recognise the *ROM filing system paged ROM service calls
and respond accordingly. The second requirement is that the data
which makes up the files is formatted in the manner in which the
*ROM filing system expects to find it.

11.2 The header code

As has been stated above a paged ROM which is to be recognised
by the *ROM filing system is a perfectly standard paged ROM
which responds to the apporpriated service calls. As a result of
this requirement the first part of each *ROM filing system ROM
consists of a standard format paged ROM header followed by a
small amount of code which responds to the necessary service
calls. By convention *ROM paged ROMs do not respond to the

*HELP sevice call but should these ROMs anounce their
presence in thisway it would obviously leave less space for
programs and data.

The two paged ROM service calls which should elicit a response
from *ROM paged ROMs are described in the next two

paragraphs.
11.3 Paged ROM service call with A=& D

This call isthe *ROM filing system initialise call. When the
filing system is active and wishes to scan the next ROM this call
isissued.

Theinitialise service call is made with the ROM number of the
next ROM to be scanned inthe Y register. Having received this
service call afiling system ROM should only respond if its own
ROM ID (stored in location & F4) is greater than or equal to the
ROM number passed inthe Y register.

Having decided to claim this service call the ROM should place
itsown ROM number in location & F5 which marks it asthe
currently active *ROM filing system ROM. It should then write
the address of the start of the data it containsin locations & F6
and &F7. This provides a zero page pointer which is used by the
filing system code to extract bytes of data serialy from the ROM.

Having performed these two operations the service routine should
return with the accumulator containing zero to indicate that the
call has been claimed, In the case of the paged ROM ID being
less than the ROM number inthe Y register the service routine
should exit with &D in the accumulator and the operating system
will then offer the call to the next ROM.

The actual mode in which the *ROM filing system ROM
numbers are represented differs from the way in which the paged
ROM IDs are usually represented (i.e. as stored in & F4, a number
0 to 15). Thefiling system ROM numbers are represented by a
value which is 15 minus the physical paged ROM number. One
way of converting numbers from one form to another is, given
the number to be converted in the accumulator,

EOR #&FF
AND #&F

which returns the inverted number in the accumulator. These
instructions will always convert a number into the other
representation.

11.4 Paged ROM service call with A=& E

Having obtained a response from a paged ROM to service call
&D the *ROM filing system will use this service call to read
bytes from the data contained in the ROM.

There isadifference in how the service routine can be
implemented on the BBC Microcomputer OS 1.00 and later OS
versions (including the Electron). The actual response required
from the service call is essentially the same however.

When called by OS 1.00 a paged ROM should only respond to
thiscall if itsown ROM ID isthe same as the current * ROM
filing system ROM number. A comparison of the contents of
memory location & F4 (current paged ROM) should be made with
the inverted contents of & F5 (current *ROM) If these are not the
same the call should be returned unclaimed.

The service routine for OS 1.00 should return the byte of data
pointed to by the pointer in & F6 and &F7 inthe Y register (e.g.
LDA (&F6),Y:TAY) and increment this pointer so that it is ready
for the next call.

Later operating system versions contain a routine (OSRDRM)
which given the paged ROM ID of the current *ROM filing
system ROM inthe Y register will read a byte from this paged
ROM using the pointer at & F6+&F7. Thus this paged ROM
service call may be serviced by the highest priority *ROM filing
system ROM and the operating system does not have to scan all
the ROM s before getting aresponse. This leads to a significant
improvement in performance of the *ROM filing system.

The service routines are able to determine which operating
system has called them by the value of the Y register passed with
this service call. On operating systems supporting the OSRDRM
call the Y register contains a negative value while other versions
of the operating system make this call with a positive valuein the
Y register.

The example given at the end of this section shows how the
service routine at the head of a*ROM filing system ROM detects
the operating system type and responds appropriately. This
example will function on both types of operating system but will
take advantage of OSRDRM routine if available. *ROM filing
system ROMs designed for use on the earlier operating systems
will still work with later versions.

11.5 *ROM data for mat

The format in which data should be stored in *ROM filing

system ROMs s very similar to the tape dataformat. The datais
divided into blocks which may be up to 255 bytes long. Each

block of datais preceded by a header which contains information
about the block. Both the block of dataitself and the header are
followed by a 16 bit cyclic redundancy check (CRC) value, The

filing system calculates its own values for these CRCs during the
loading process and compares them. If the filing sysem’s value
differs from the stored value then the filing system flags an error
and rejects the data. (A routine for calculating CRCs is included
in the example at the end of this section.)

The *ROM filing system data format is as follows:

offset description length
Block Header
0 &2A, a synchronisation byte 1
1 afile name (ito 10 chars.) n
1+n & 00, afile name terminator 1
2+n load address (low byte first) 4
6+n execution address 4
10+n block number (low byte first) 2
12+n block length (in, in bytes) 2
14+n block flag (see below) 1
15+n address of next file 2
17+n header CRC(1ton+16incl.) 2
Block Data
19+n data m
19+n+m datablockCRC 2

(next blocks)

z & 2B end of ROM marker 1

The block flag:

bit0 Protection bit (file only alowed to be *RUN)
bit6 Setif block contains no data
bit7 Setif thisisthelast block of thefile

For the *ROM filing system the headers for all but the first and

last blocks may be replaced by a single byte header of value & 23
(‘#) with no CRC. This is implemented to reduce the memory
overheads inherent with the tape style data format.

By convention the first filein a*ROM filing system ROM
should be atitlefile. Thisis afile of zero length which servesto
identify the ROM. The name of this file will appear on catalogue
listings of the ROM. The file name of thistitle file should consist
of aname and a version number preceded and followed by an
asterisk e.g.”*Mon00*' or* GAMESO5*".

11.6 An example of a*ROM filing system ROM

The program below iswritten in BASIC 2 to assemble a ROM

image which can be ‘blown’ into an EPROM and placed in a
BBC microcomputer paged ROM socket or into a ROM cartridge
slot on the Electron Plus 1 expansion.

Included in the program below is a routine for calculating CRC
values (FNdo_crc). The actual CRC values required for this
ROM image are included in the comments so that the actual
values may be inserted directly if someone wanted to reduce the
typing load when trying out this example.

10 REM ****kkkkkkhhkkkhkhhhkkhkhkkkkkkkkkkkx

20 REM * *
30 REM* *ROM filing system ROM exanple *
40 REM * *

50 REM ****kkkkkkhhkkkkkhhhkxhkhhkkkkkkkkkkx

60 REM Assenbl e CRC calLculLating routine
70 DI M M2% &100: PROCassm
80 REM Set up constants required for ROM assenbLy

90 ser ROME&F5S
100 ROM d=&F4
110 ROVptr=&F6
120 OSRDRM=&FFB9
130 version0

140 REM Reserve space for ROMinmage and prepare to assenble

150 DI M code% &4000
160 FORI4 TO 7 STEP3
170 P%&8000: O%code%
180 [

190 OPT 1

200 .ROMstart EQUB O

210 EQUB 0

220 EQUB 0

230 JMP service

240 EQUB &82

250

260 EQUB version

270 EQUS “Serial Rom”

280 EQUB 0

290 EQUS “0”

300 .copyr EQUB 0

310

320 EQUB 0

330 .service CMP #&D

340 BEQ initsp

350 CMP #&E

360 BEQ rdbyte

370 RTS
380 \ Routine for paged ROM service call &D

390 .initsp PHA

400 JSR invsno

410 CMP ROMid

420 BCC exit
call

430 LDA #data AND 255

440 STA ROMptr
location

450 LDA #data DIV &100
address

460 STA ROMptr+1
location

470 LDA ROMid

480 JSR invert

490 STA serROM

500 .claim PLA
accumulator/stack

510 LDA #0

520 RTS

530 .exit PLA

540 RTS
550 \ Routine for paged ROM service call &E

560 .rdbyte PHA

570 TYA

580 BMI 0sl20

590 \ this part for OS with no OSRDRM

600 JSR invsno

610 CMP ROMid

620 BNE exit

630 LDY #0

\ null I anguage entry

\ service entry point
\ ROMtype, service ROM

EQUB copyr —RoMstart \ offset to copyrights

\ binary version number
\ ROM titLe string

\ ROM version string

EQUS “(C) 1982 Acorn Computers” \ copyright$

\ end of paged ROM header
\ service routine
\ initialise call?

\ read byte call?
\ not my call

\ save accumulator
\ invert *ROM number
\ compare with ROM id
\ if *ROM > me, not my

\ low byte of data address
\ store in pointer

\ high byte of data
\ store in pointer

\ get my paged ROM number
\invert it
\ make me current *ROM
\ restore

\ service call claimed
\ finished
\ call not claimed restore
\ accumulator and return

\ save accumulator
\copy Yto A
\if Y —ye OS has OSRDRM

\ invert *ROM number
\'is it my paged ROM no.
\ if not do not claim call
\'Y=0

640 LDA (ROWptr),Y \ load Awith byte

650 TAY \ copy Ato Y

660 .claim I NC ROWpt r \ increnent ptr |ow byte
670 BNE cl ai m \ no overflow

680 I NC ROWptr +1 \ increnent ptr high byte
690 JWP claim \ claimcall and return

700 \ this part for OS with OSRDRM

710 .o0s120 JSR i nvsno \ A=current *ROM nunber

720 \ not necessarily ne

730 TAY \ copy Ato Y

740 JSR OSRDRM \ OSwill select ROM

750 TAY \ byte returned in A

760 JWP cl aim \ incremmt ptr & claim
cal |

770 \ Subroutine for inverting *ROM nunbers

780 .invsno LDA ser ROM \' A=* ROM nunber

790 .invert EOR #&FF \ invert bits

800 AND #&F \ mask out unwanted bits

810 RTS \ finished

820 \ End of header code/begi nning of data

830 .data EQUB &2A \ synchroni sation byte

840 .hdstrt EQUS “*EXAMPLE*" \ *ROM title

850 EQUB 0 \ name terminator

860 EQUD 0 \ Load address0

870 EQUD 0 \ execution address=0

880 EQUW 0 \ block number0

890 EQUW 0 \ block length=0

900 EQUB &CO \ block flag

910 EQUD eof \ pointer to next file

920 .hdcrc EQUW FNdocrcChdstrt,hdcrc) \ CRC C&246F)
930 .eof
940 \ No data block for this file

950 EQUB &2A \ synchronisation byte
960 filel EQUS “TEXT” \ file title
970EQUB 0
980 EQUD 0 \ null load address
990 EQUD 0 \ null execution address
1000 EQUW 0 \ first block
1010 EQUW dat2—datl \ length of data
1020 EQUB &80 \ first & last block
1030 EQUD eofl \ pointer to end of file

1040 .hdcrcl EQUW FNdo_crc(filel,hdcrcl) \ CRC (&E893)
1050 .datl EQUS “REM This is a very short text file.”

1060
1070
1080
1090
1100
1110
1120
1130
1140

1150
1160
1170
1180
1190
1200
1210
1220

1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530

EQUB &D \ The file contents
.dat 2 EQUW FNdocrc(datl,dat2) \ Bl ock CRC (&655D)
. eof |
EQUB &2B \ end of ROM narker
. eor
]
NEXT
PRINT1" *S.ROM “;,~code%;" “;~0%
END
REM Define function which calculates CRC

REM Requires start and end of block up to 255 bytes
DEF FNdocrc(start,end)

?&82=(start-&8000+code%) AND &FF
?&83=(start-&8000+code%.) DIV &100
?&84=end—start

CALL crc

=(1&80) AND &FFFF

REM Define procedure which assembles CRC routine
DEF PROCassm
startaddr=&82

Locrc&81

Hicrc&80

len&84

FORI=0 TO 3 STEP3

P%MC%

[
OPT I

.crc LDA #0
STA Hi_crc
STA Lo_crc
TAY

Jabell LDA Hi_crc
EOR (startaddr),Y
STA Hicrc
LDX #8

label2 LDA HLcrc
ROL A
BCC label3
LDA Hicrc
EOR #8
STA Hi_crc
LDA Lo_crc
EOR #&10
STA Locrc

label3 ROL Locrc
ROL HLcrc
DEX
BNE label2

1540 I NY

1550 CPY Len
1560 BNE Label |
1570 RTS

1580]

1590 NEXT

1600 CALL crc: ENDPROC

When the resultant ROM isinstalled in the machine the following
dialogue may ensue.

>* ROM
>* CAT

* EXAMPLE*
TEXT

>* EXEC TEXT _
>REM This is a very short text file.

12 Memory allocation and
usage

Two fundamental points have been stressed in various parts of
this book.

Thefirst isthat programs should only use memory allocated for
their general use or memory designated for specific functions
when requiring or performing that function.

The second point is that software should not make assumptions
about its environment, The amount of user RAM available
depends on the screen MODE selected and the amount of
workspace RAM claimed by paged ROMs.

The Electron microcomputer's memory map:
& FFFF Operating system ROM

&FFOO
& FEFF Memory mapped 1/0

&FCOO
& FBFF Operating system ROM

& C000
& BFFF Paged ROM space

& 8000
& 7TFFF Screen memory

HIMEM
OSHWM Paged ROM workspace/exploded font

&EOO

&DFF NMI routine and paged ROM information
(WARNING, not for user programs)

&DO00

&CFF Operating system private workspace

&A00

&9FF Sound system workspace/OS workspace

& 800

&7FF Current language private workspace

&400

&3FF Operating system private workspace

& 236

&235 OScal indirection vectors

&200

&1FF 6502 stack

&100

&FF Zero page

Zero page

Zexro page locations are very valuable due to the necessity of their
use with certain types of indexed addressing. In absolute terms
there are no allocations to the user as such. However the current
language should re-allocate some of its zero page to the user if
appropriate. Should the user be executing machine code
independently of any language the language’s zero page
allocation is totally available.

&00 Current language

&8F

&90 Econet zero page

&9F

&AO0 Current NMI owner

&A7

&A8 Utility workspace

&AF

&B0 Filing system transient zero page
&BF

&CO0 Filing system exclusive zero page
&CF

&DO0 OS reserved workspace

&FF

Current language zero page &00to & 8F

The currently selected language has exclusive use of these
locations. BASIC re-allocates &70 to &8F for user’'s assembly
language routines.

Econet zero page &90to & 9F

These locations are allocated for the exclusive use of the Econet
filing system if fitted. If software is produced which is designed
to run only on those machines not having the Econet upgrade
then these locations may be used but only after confirming that
Econet is not present.

Current NMI| owner zero page &AOto & A7

These locations are allocated to the current owner of the NMI.
This will normally be the Disc or Econet filing systems. Paged
ROM service calls are issued to claim and release the ownership
of the NMI (see section 10.1).

Utility wor kspace zer o page & A8to & AF

Thismemory is alocated for use by the code executed viathe
command line interpreter, It is used by the operating system for

its own * commands. It may also be used by paged ROM and file
based utilities when invoked by the ‘unknown *command’
mechanism (see sections 10.1 (paged ROMshan@®SFSCV))

Filing system transient zero page &BO to & BF

These locations are allocated for use by the currently selected
filing system but they may be corrupted by other software
between filing system calls.

Filing system exclusive zer o page &COto&CF

This memory is reserved for the exclusive use of the currently
selected filing system. This memory should not be used by the
filing system’s NMI routine.

Operating sytem reserved wor kspace & DO to & FF

This region of zero page memory is exclusively reserved for
operating system use. Within this area there are a number of
locations in which the operating system stores information which
will be of use for certain routines.

&EE — 1MHz bus page number

&EF — This location contains the accumulator value passed with
the most recent OSBYTE or OS WORD call.

&FO — This location contains the X register value passed with
the most recent OSBYTE or OSWORD call.

&F1 — This location contains the Y register value passed with
the most recent OSBYTE or OSWORD call.

&F2 and &F3 — These locations contain an address which points
to the text offered to the command line interpreter.

&F4 — This location contains the ROM number of the currently
active paged ROM. (The operating system maintains this as a
RAM copy of the paged ROM selection latch.)

&F5 to &F7 — These locations are used for the *ROM filing
system (see chapter 11).

&FA to &FC — These locations are available for use by routines
which have set the interrupt flag. The operating system interrupt
routines use these locations but do not expect the contents to
remain unchanged between calls.

&FD and &FE — These locations are written to after a BRK
instruction has been executed. They contain the address of the
next byte of memory following the BRK instruction. Thus these
locations normally point to an error message (see section 6.2).
Upon selection of a language these locations are set to point at
the version string of the newly selected language ROM.

&FF — This location contains the ESCAPE flag. Bit 7 of this
location is set to mark an ESCAPE condition. This flag is cleared
when an ESCAPE is serviced.

Page 1

This page is used for the 6502 stack. The stack grows from the
last byte in this page (&1FF) down towards the bottom of the
page. Paged ROM service routines may use the bottom of this
page to store error messages.

Page 2

The operating system routines’ indirection vectors are located
from &200 to &235. The rest of this page is used as private
operating system workspace. The way in which private operating
system workspace is used may change between different software
versions and different machines in the Acorn BBC range.

This page is designated private operating system workspace and
should not be used by any other software. The BBC

microcomputer and the Electron operating systems use this page

for the VDU routines’ workspace, some miscellaneous tape filing
system workspace and for the keyboard buffer.

Pages4, 5,6 and 7

These four pages are allocated for the exclusive use of the
currently selected language. Should a user be executing code
independently of a language this memory may be used by that
code. The user’s code should not re-enter a language without
ensuring that the language has had an opportunity to reset its
workspace.

Page 8

This page is allocated for the sound system and for buffers:

&800 to &83F general sound workspace

&840 to &84F sound channel 0 buffer

&850 to &85F sound channel 1 buffer

&860 to &86F sound channel 2 buffer

&870 to &87F sound channel 3 buffer

&880 to &8BF printer buffer

&8CO0 to &8FF envelope storage area (env.no’s 1—4)

On the Electron this area is available for the implementation of
external sound and the printer buffer area is used by the Plus 1
expansion software. Locations in this page should only be used
by system software performing the appropriate task e.g. user
printer routines, sound expansion routines.

Page 9

This page is used as workspace for the sound system and the
serial system (tape and RS423). Theoretically clashes of use
could occur but in practice problems very rarely arise. The
operating system

uses this area for RS423 and tape output buffers but the areais
also alocated for speech and sound use. Thus externally
implemented systems performing these functions may utilise this
memory according to the allocation below.

&900 to &9BF envelope storage area (env.no’s 5—16)
&9CO0 to &9FF speech buffer

Pages& Ato& C

These pages are reserved for exclusive use of the operating
system as private workspace. The nature of the operating system
use cannot be relied upon between different software versions
and between different machines in the Acorn BBC range.

Page& D

This page is allocated in the following way:
&DOO0 to &D5F NMI routine
&D60 to &D9E reserved
&D9F to &DEF paged ROM extended vectors
&DFO to &DFF paged ROM workspace table

The NML routine is the code which is executed when a non-
maskable interrupt is generated. This is entered at &DOO and
should service the interrupt.

The paged ROM extended vectors provide an entry into paged
ROM code regardless of which ROM is active as the call is
made.

See section 10.3 for a description of extended vectors.

The paged ROM workspace table contains a single byte page
address indicating the start of each ROM’s private workspace
(see section 10.3 for further details).

WARNING

Many games programmers have used page &D. These games will
not work when a Plus 1 isfitted because it uses this space. DO
NOT continually disconnect and re-connect the Plus 1 because
thiswill damage both the Plus 1 and the Electron, A suitable
program which disables the Plus 1 can be obtained from Acorn
Computers Limited.

Page & EOO tothe OSHWM

This memory is available for paged ROM workspace and for
character definitions as part of a user defined font.

Each ROM isinterrogated during areset to determine its
workspace requirements (see paged ROM service calls, section
10.1). This workspace extends from & EOO in page sized units
until all the paged ROMs have made their claims.

The Acorn BBC range of machines alow the user to define the
character patternsthat are printed on the screen. The number of
user defined characters which may be used depends on the
explosion state of the font (see OSBYTE & 14). On the Electron
and BBC microcomputer the memory required when exploding
the font is alocated above the paged ROM workspace.

The user (or language) memory starts from the top of this
workspace memory and the start address of this memory is called
the operating system high water mark (OSHWM).

OSHWM toHIMEM

Thisiswhere a user might expect his program to live.
Theoretically this memory has no fixed start address and no fixed
end address which taken to extremes means that it may
theoretically have no size. In practice, on the BBC
microcomputer and the Electron, the region from & 2800 to

& 3000 can be assumed to be within the OSHWM/HIMEM
bounds.

The language environment may also place constraints on the
amount of RAM available for a user’s program and/or data.

No RAM should be accessed above HIMEM. This includes the
screen memory and, on a second processor, the memory in which
the language is stored.

Screen memory

This memory is not guaranteed to exist at any given place on Acorn BBC

range machines, For example when a Tube is active a program

may find itself on the second processor and thus any attempts to
access what was the screen memory will have no effects on the
screen image.

For more information about programming practices read chapter
1 on the Acorn design philosophy and programming rules.

Paged ROM memory: & 8000 to & BFFF

This region in the memory map of non-Tube machines or I/O
processors contains the currently ‘paged’ paged ROM. When the
current filing system is in paged ROM and a filing system
function used then the appropriate paged ROM is selected.

Operating system ROM memory: & COOO to & FFFF

The contents of the OS ROM are undefined except for the OS
call entry points described in chapter x and the default vector
table described in section 6.11.

Memory mapped 10: & FCOO to & FEFF

Hardware devices are addressed via these memory locations.
Once again extreme care should be taken to address them in the
correct manner using OSBYTEs &92 to &97 for reading and
writing these addresses. See chapter X for more information
about the memory mapped 1/0.

(The OS ROM contains a list of credits in this region made
inaccessible by the switch to memory mapped I/0.)

13 An Introduction to
Hardware

BASIC isavery useful programming tool. It allows usersto take
advantage of the Electron’s facilities without bothering about the
details of how it is performed in hardware. Commands are
provided to deal with output to the screen, input from the
keyboard and cassette, plus all of the other hardware. The same
applies to machine code to a large extent through the use of
OSBYTES, OSWORDS and other operating system

commands.

However, a much more detailed understanding of the hardware
and how it can be controlled from machine code programs is very
useful and allows certain features to be implemented which
would have been impossible in BASIC.

The hardware section of this book satisfies the requirements of
two types of people. Those who wish to use the hardware features
already present on the computer, and those who wish to add their
own hardware to the computer. All of the standard hardware
features available on the Electron are therefore outlined in detail
from a programmer’s point of view. Wherever possible, it is

better to use operating system routes for controlling the hardware.
These are very powerful and will be referred to whenever
relevant. In certain specialised cases, it is necessary to directly
access hardware, but even in such cases, OSBYTES &92-&97
should be used. This will ensure that the software will still

operate on machines fitted with a Tube processor. For those who
wish to add their own hardware, full details on connecting

circuits to the Electron’s expansion port are provided.

The hardware on the Electron consists of a large quantity of
integrated circuits , resistors , capacitors , transistors and various
other electronic components. All of these are shown on the full
circuit diagram in Appendix F. In order to help those who are not
familiar with the general layout of a computer circuit and the
devices attached to it, the rest of this introduction is devoted to
analysing the hardware as a series of discrete blocks
interconnected by a series of system buses.

Refer to figure 13.1 whilst reading the following outline of the
hardware. There are two mgjor blocks inside the Electron.

Thefirst is the uncommitted logic array (usually referred to as the
ULA), Thisisavery large chip which does most of the boring

system tasks. It's life is devoted to copying data from the video
memory to the video circuit, driving the cassette, producing
sounds, keeping an eye on the keyboard plus other minor tasks.

The other major component is the computing centre of the
system, called the 6502A central processing unit (CPU). This is
the chip which executes all of the programs including BASIC. It
is connected to the ULA, ROM and expansion bus. For clarity on
the diagram, the connecting buses are all compressed into one
which is represented by the double lines terminated with arrows
at each major block.

A busis simply a number of electrical links connected in parallel

to several devices. Normally one of these devices is talking to
another device on the bus. The communication protocols which
enable this transfer of data to take place are set up by the control,
address and data buses. In the case of the address bus, there are
16 separate lines which alld&d®536 (216) different combinations

of I's and 0’s. The maximum amount of directly addressable
memory on a 6502 is therefo86536 bytes. The data bus

consists of 8 lines, one for each bit of a byte. Any number
between 0 and &FF (255) can be transferred across the data bus.
Communication between the ULA, peripherals on the expansion
bus, memory and the CPU occurs over the data bus. The CPU can
either send out a byte or receive a byte. The data bus is therefore
called abidirectional bus because data flows in any one of two
directions. The 6502 address bus is unidirectional because
addresses can be provided but not received. The ULA sits back
looking at the addresses from the 6502.

In order to control the direction of data flow on the data bus, a
read or write signal is provided by the control bus. Hardware
connected to the system can thereby determine whether it is being
sent data or is meant to send data back to the CPU. The other
major control bus functions are those of providing a clock,
interrupts and resets. The clock signal keeps all of the chips

AlddNsS
43IMOd

Wvd

S3LA8NCE

vin

al

Nndd
V2059

4p

1

SNA NOISNVdX3

N
—————————— 3ov4uaiNi N 3113ssvo
3113SSVD
A Lnoun
> “oaaiA HOLINOW
HNO102
AN
aydvogAI
03aIA
%2019
HN 9L
HOLVINAOW
WoH Rt 4HN
oisva
+
SOW
31NV
HINVIdS

Figure 13.1 .The system block diagram

running together at the same rate. The RESET line alows al
hardware to be initialised to some predefined state after areset.
Aninterrupt isasignal sent from a peripheral to the 6502
requesting the 6502 to look at that peripheral. Two forms of
interrupt are provided. One of these is the interrupt request (IRO)
which the 6502 can ignore under software control. The other in
the non-maskabl e interrupt (NM1) which can never be ignored.
Refer to chapter 7 on interrupts for more information.

When power isfirst applied to the system, areset is generated by
the ULA to ensure that all devices start up in their reset states.
The 6502 then starts to get instructions from the ROM. These
instructions tell the 6502 what it should do next. A variety of
different instructions exist on the 6502. The basic functions
available are reading or writing data to memory or an inpuit!
output device and performing arithmetic and logical operations
on the data. Once the MOS (machine operating system) program
is entered, this piece of software gains full control of the system.

On an unexpanded Electron, the computer will continue
operating under the MOS until it is switched off. Programs are
entered into the memory from the keyboard or cassette port, then
run. There is some scope for clever programming techniques
using the standard hardware - they all involve some tampering
with the various registersin the ULA, However, alot more
facilities can be provided by adding extra hardware onto the back
of the Electron.

Since the Electron isthe little brother of the BBC Micro, two
forms of expansion are provided for. The first of these coversthe
addition of hardware which is supplied as standard on aBBC
Micro. Within this category are included items like a printer port,
analogue to digital converter (for joysticks) and paged ROMs.
The second category includes items which would have to be
added onto aBBC Micro. Products like the second processors
and units which plug onto the One Megahertz Bus are in this
category.

SHEILA and the ULA

On the BBC Micro, al of the resident hardware is mapped into
page & FE of memory. This pageis called Sheila. The Electron
also has al of itsinternal hardware memory mapped into Sheila,
but with one mgjor difference to the BBC Micro. All memory
mapped functions are contained within the ULA. These can be
summarised as:

SHEILA Address Description

&FEXO Interrupt status and control register
&FEX?2 Video display start address (low byte)
&FEX3 Video display start address (high byte)

&FEX4 Cassette data register

&FEX5 Paged ROM control and interrupt control
&FEX6 Counter plus cassette control

& FEX7 Controls screen, sound, cassette and CAPS LED

&FEX8-XF Padllette registers

Note that the ULA appearsin every 16 byte block of page & FE.
Writing to & FEO?2 is therefore exactly the same as writing to
&FEA2 or & FE32 etc.

14 Inside the Electron

The only hardware inside the Electron which can be accessed
directly by the 6502 isthe MOS ROM and the ULA, The RAM is
read viathe ULA, and all internal control functions are
performed by the ULA.

As has aready been mentioned in chapter 13, the ULA is
addressed in page & FE (called Sheila). Therest of this chapter
explains exactly what all of the registers within the ULA will do,
and how they can be of use. Note that there are two ways of
communicating with Sheila. OSBY TEs 150 and 151 will read
and write to Sheilarespectively. Alternatively, the memory
mapped addresses can be POKEd directly from programs.

THE ULA AND ITSREGISTERS
SHEILA &FEQO - Interrupt status and control

7le[s]al3]2[1]0]

— MASTER IRQ

POWER ON RESET

DISPLAY END INTERRUPT (AT BOTTOM OF
DISPLAYED SCREEN)

REAL TIME CLOCK (50Hz!

TRANSMIT DATA EMPTY

IRECEIVE DATA FULL

HIGH TONE DETECT

NOT USED

Figure 14.1 — IRQ status and control register

This register is concerned with the interrupts on the Electron.
Interrupts are generated by pieces of hardware which require the
6502 to look at them urgently. A detailed discussion of interrupts
can be found in chapter 7.

By writing a ‘1’ into the corresponding bits of this register,
particular interrupts can be enabled. Writing ‘0’ into a particular
bit will disable the related interrupt. Enabled interrupts can get
the 6502 to look at them if they generate a suitable signal.
Disabled devices will not be looked at evethey generate an
interrupt.

Note that after an interrupt has occured, it will be necessary to
clear the source of the interrupt, This can be done by writing to
address &FEO5.

SHEILA &FEOQO2 and & FEO3 - Screen start address control

X\X\S\\43\21\0 7065 [x[x|x|x]x]
Vo Vo
A U W W
Vo Vo
YR YN Yy vy

o Jaaguaalidaniaid] ao] ag a7l ad x [x [x [x [x [x |

Figure 14.2 — The screen start address registers

These two registers together form the screen start address. This is
the address in memory which will be mapped to the top lefthand
corner of the displayed screen. Whenever a line is to be scrolled
up or down, this register is incremented or decremented by the
number of bytes in a line. As well as allowing vertical scrolling, a
limited amount of horizontal scrolling is also possible. The start
address can be changed in increments of 64 bytes of memory. In
mode 0, 8 bytes are used per character. This means that a scroll in
the minimum increment will move the whole screen 8 characters
(64/8) left or right.

The following example demonstrates this feature. Once it has
been typed in, the cursor keys can be used to move a block of text
about over the mode 0 screen. Note that the actual screen start
address has to be shifted right by one bit before it is POKEd into
the ULA registers.

10 REM HARDWARE SCROLL EXAMPLE | N MODE 0

20 MODE 0

30 OSBYTE=&FFF4

40 START=&3000

50 PRINT'THIS TEXT CAN SCROLL IN ANY DIRECTION USING
CURSOR— KEYS”

60 REM SET KEYS AUTO REPEAT RATE

70 *FX12,3

80 REM SET CURSOR KEYS TO GIVE 136 efc.

90 *FX4,1

100 REPEAT

110 A=INKEY(0)

120 IF A=136 THEN PROCMOVE(64)

130 IF A=137 THEN PROCMOVE(—64)

140 IF A=138 THEN PROCMOVE(—640)

150 IF A=139 THEN PROCMOVE(640)

160 UNTIL FALSE

170 DEF PROCMOVE(offset)

180 START=START+offset

190 REM IF ABOVE SCREEN TOP, SUBTRACT SCREEN LENGTH

200 IF START>=&8000 THEN START=START—&5000

210 REM IF BELOW SCREEN BASE, ADD SCREEN LENGTH

220 IF START<=&3000 THEN START=START+&5000

230 REM CALCULATE HIGH BYTE FOR ULA

240 REM SHIFTED RIGHT BY ONE BIT

250 H% = START DIV 512

260 REM LOW BYTE SHIFTED RIGHT BY ONE BIT

270 L% = (START MOD 512) DIV 2

280 REM NOW PUT INTO ULA REGISTERS

290 REM LOW BYTE TO &FEO2

300 A%=151:X%=2:Y%=L%

310 CALL OSBYTE

320 REM HIGH BYTE TO &FEO3

330 A%=151:X%=3:Y%=H%

340 CALL OSBYTE

350 ENDPROC

SHEILA & FEO4 - Cassette data shift register

READ FROM CASSETTE

7]6]5]4[3][2]1 o}« mu,
VYY YYYVY

BYTE READ OUT IN PARALLEL

Figure 14.3a - Reading from the shift register

Datais input to the Electron from a cassette recorder, This data
shiftsinto bit O of the serial shift register, then into bit 1 and so

on until the whole 8 bits of a byte are in the ULA’s receive data
register. At this point, data can be read out and stored in memory
somewhere.

There are several points which are worth remembering when the
cassette is used. First of allhigh tone must have been recorded
on the tape before any data is read into the Electron. This allows
the circuitry to detect that data is about to be sent. The screen
mode should have been set to between 4 and 6. If it is not, bits
are sometimes lost because the 6502 cannot be interrupted whilst
high resolution graphics are being displayed. Finally, the receive
data full interrupt should be enabled. This will ensure that the
6S02 knows when a byte can be read. If the byte is not read
within about 2ms, the data will be lost forever as bit 7 falls off
the end of the register when the next bit comes in!

WRITE TO CASSETTE

BYTE WRITTEN IN PARALLEL

LYYV YYYYY
SERIALLY ¢‘7“6‘5‘4‘3‘2‘1‘0‘

Figure 14.3b - Writing to the shift register

Writing to this register causes data to be output to the cassette
(assuming that the cassette output mode has been set by writing
to & FEQ7). Bit 7 iswritten out first (so that it isthe first in when
the tape is played back). When the last bit has been written out, a
transmit data empty interrupt is generated. Thistells the 6502
that it can put the next byte to be sent into the register.

SHEILA & FEOS - Interrupt clear and paging register

HIGH
TONE

FRAME
END

‘NMI RTC

PE|P2|P1|PO|
L1]

ROM PAGING BITS

ROM PAGE ENABLE

CLEAR SCREEN INTERRUPT

ICLEAR RTC INTERRUPT

CLEAR HIGH TONE INTERRUPT

INMI CLEAR=1
GIVE 6502 PRIORITY OVER
ULA - FOR DISCS ETC.

Figure 14.4 - The clear interrupt and paging register This register
has two purposes, namely the clearing of interrupts and the
selection of paged ROMs.

Interrupt clearing

Putting a ‘1’ into any of the bits 4-7 will cause the associated
interrupt to be cleared. Interrupts should be cleared after they
have been serviced, but before returning from the interrupt
service routine.

Bits 4, 5 and 6 are associated with maskable interrupts. Bit 7 is
associated with the Non-maskable interrupt, This type of
interrupt is generated by very high priority devices like discs. An
NMI automatically gives the 6502 precedence over the ULA,
even if it is in the middle of displaying a screen. White snow may

therefore occur on the screen when discs are being accessed.

Once the 6502 has dealt with the source of interrupt, it should
clear it by writing a ‘1’ to bit 7. This gives the screen memory
back to the ULA.

Paging ROMs

The detailed mechanisms for decoding paged ROMs are covered
in the next chapter, however, a simple summary is in order here.

There is the potential within the operating system to directly
address up to 16 paged ROMs of 16K bytes each. However, four
of thedots are effectively occupied by the keyboard and the

BASIC ROM. The keyboard occupies positions 8 and 9 (both are
equivalent). To read from the keyboard, the 14 address lines AO
A13 are used. Each of these is connected to one of the columns of
the keyboard. If a particular address line is low, that line of the
keyboard is selected on a read. The row data from the keyboard is
then returned in the lower 4 bits read from the data bus. The
BASIC ROM is selected by paging ROM number 10 or 11.

In order to select any of the other ROMs, a particular sequence
must be followed, First of all, the ULA must be told that BASIC
should be dc-selected. This is done with the page enable bit. One
of the ROMs 12-15 will be selected in this way. Now that BASIC
has gone, it is (if so desired) possible to page in one of the ROMs
0 to 7. This is simply performed by setting the page enable bit to
0 and selecting the required ROM with bits 0 to 2. You should
refer to section 15.4 for a more detailed discussion.

SHEILA & FEO6 - The counter

This write only register has several different functions, depending
upon the particular mode of operation.

Reading from cassettes

(x|ojofofofo0]0]0]

Figure 14.5a - Cassette receive mode

When datais being read from a cassette, thistimer is used to

count from zero crossings. It therefore effectively determines the
cassette baud rate. All bits should be set to O (except for bit 7

which doesn’t matter). Cassette receive mode is set by bits 1 and
2 in &FEO7.

Making sounds

|S7| S6| S5 S4 SB S2 $1 5O

Figure 14.5b Sound generation mode

Sound can only be generated when the cassette is not being used.
The 8 bit integer written into this register determines the
frequency of all generated sounds. If the value is ‘5’ where ‘5’ is
between 0 and 255 in value, the generated sound frequency is
given as:

Sound frequency = 1 MHz / [26(S + 1)]
To select sound mode, bits 1 and 2 of &FEQO7 are used.

Frequencies from 244Hz up to 62.5kHz can be generated, but you
won't be able to hear the really high frequencies!

Writing to cassettes

XXX XX XXX

Figure 14.5c - Writing to cassette

The states of the bits written to this register areignored in this
mode. The counter is used to control the received data baud rate,
but cannot be changed. Bits 1 and 2 of & FEO7 should be used to
select the cassette output mode.

SHEILA & FEQ7 - Miscellaneous control

7l6[5]43]2]1]x]

D2 D1 MODE

0 0 CASSETTE INPUT
0 1 SOUND
GENERATION
CASSETTE OUTPUT
NOT USED

ROM PAGE ENABLE

1

1
101

CLEAR SCREEN INTERRUPT

ICLEAR RTC INTERRUPT

CLEAR HIGH TONE INTERRUPT

INMI CLEAR=1
GIVE 6502 PRIORITY OVER
ULA - FOR DISCS ETC.

Figure 14.6 - control register

This general purpose control register provides a selection of
different functions.

Communications mode, bit 1 and 2

Bits 1 and 2 control whether data is being written to a cassette
recorder, read from a cassette recorder, or generating sounds.
These three functions are mutually exclusive, so it is not possible
to play cheery tunes whilst waiting for along program to load.

Display mode selection, bits 3, 4 and 5

There are seven display modes available on the Electron. These
can be selected by writing a number between 0 and 6 into bits
5,4,3. Note that the other possible mode (7) is only available on
the BBC Micro.

Cassette motor control, bit 6

Setting this bit to ‘1’ will turn the cassette motor on. Setting it to
‘0’ will turn the motor off. Motor control is effected by a small
relay contact inside the Electron. It is possible to use this to
switch small battery operated equipment on and off (for example
a transistor radio).

CAPSLOCK LED contral, bit 7

Setting this bit to a ‘1’ turns on the CAPS LOCK LED on the
side of the keyboard. A ‘0’ turns it off again.

SHEILA & FEO8to & FEOF - the colour palette

These addresses in the ULA define the mapping between the
logical colours which are provided by programs andpingsical
colours which are displayed on the screen.

For example, in the two colour modegical colour 1 will
actually produce a colour defined by &FEOS8 bit 6 (blue),
&FEQOS8 bit 2 (green) and &FEQ9 bit 2 (red). The bits are
negative logic, which means that a ‘1’ in bit 6 of &FEO8 will
ensure thablueis turned off for colour 1.

The cursor and flashing colours are entirely generated in
software: This means that all of the logical to physical colour
map must be changed to cause colours to flash.

D7 D6 D5 D4 D3 D2 D1 DO
&FE08 | X | B1 | x [Bo| X | 61| x | x |

&FE09 | X | X [x 6o | x [Re]| X [RO |

Figure 14.7a— 2 colour mode palette

D7 D6 D5 D4 D3 D2 D1 DO
&FE08 | B3| B2| B1| Bo| G3] G2 x| X]

&FE09 | X | X | 61| co| R3] R2| Ri] RO

Figure 14.7b -4 colour mode palette

D7 D6 D5 D4 D3 D2 DI DO
&FE08 |BlO‘BB|B2|BO|GlO‘GS‘X|X’

Colours0,2,8,10

&FE09 |X‘X|GZ|GO|R10‘R8‘R2|RO|

D7 D6 D5 D4 D3 D2 D1 DO

& FEO8 |Bl4BlZB6BA|GlA|GlZXX}
Colours4,6,12,14
&FE09 |X‘X‘GG‘G4|R14|R12‘R6‘R4‘
D7 D6 D5 D4 D3 D2 D1 DO
& FEO8 |BlSBlSB7BS|GlS|GlSXX}
Colourss,7,13,15
&FE09 |X‘X‘G7‘GS|R15|R13‘R7‘R5‘
D7 D6 D5 D4 D3 D2 D1 DO
&FEO08

811‘89‘83 Bl|Gll|GQ‘X x‘
Coloursl,3,9,11
&FE09 |X‘X‘GB‘G1|R11|R9‘R3‘R1‘

Figure 14.7c - 16 colour mode palette

15 Outside the Electron

15.1 Introduction to expanding the Electron

This chapter isintended for those who want to add their own bits
of hardware onto the Electron. There are several reasons for
doing this. The most common oneisto allow the Electron to
access facilities provided for the BBC Micro. All of the common
interfaces such as discs, printer port, analogue to digital
converter, speech chip, paged ROMs etc. can easily be added
onto the Electron. If careis taken with the design, these products
will operate in an amost identical manner to those on the BBC
Micro. Severa interface addons can already be purchased from
Acorn.

If the only point in adding hardware onto the Electron were to
make it totally BBC Micro compatible, there would have been
little point in buying the Electron in the first place. In fact, the
Electron has more potential for expansion than a BBC Micro.
Why? Because all necessary system buses come out on the
expansion connector. This ability to access al of the buses means
that the devices which can be added onto the Electron are limited
only by the imagination (and maximum allowable loading of the
buses).

15.2 The Expansion Connector

All required signals from the Electron are present on this
connector. In order to make use of them, a basic knowledge of
interfacing to the 6502 will be required. Such a knowledge can be
acquired by reading some of the popular electronics magazines
and specialised books on interfacing. The aim in thisbook isto
explain all of the details to those who have aready read enough
about microcomputer hardware in general, and now want to know
about the Electron in particular.

Bottom Top
18V AC 2 1 18VAC
AC RETURN 4 3 AC RETURN
—5V 6 5 —5V
ov 8 7 ovv
+5vV | 10 9 +5V
16M1-1z| 12 11 | SOUND 0/P
PHIOUT | 14 13 Divide 13IN

INMI 16 15 RST

RIW | 18| |17 |IRQ

D6 20 19 D7

D4 | 22 21 D5

D2 24 23 D3

DO 26 25 D1

NC 28 27 IRDY

SLOT| 30 29 | SLOT

Al4 | 32 31 | Al5

Al2 | 34 33 | A13

AlO 36 35 | All

AO 38 37 | A9

A2 40 39 Al

Ad | 42 41 | A3
A6 | 44 43 | A
A8 | 46 45 | A7
ov 48 47 oV

+5V 50 49 +5V

Figure 15.1 _Expansion connector layout
18V AC (pins1,2)

Theselines are connected directly to the output from the Electron
mains power adaptor.

AC return (pins 3,4)

Up to 6 watts of power may be drawn from this source (provided that
none is drawn from the +SV line). Bear in mind that the AC will have
to berectified and smoothed before it can be used to drive any
computer chips.

—5V pins (5,6)

Thisisa—5 volt supply from the Electron, from
which a maximum of 20mA can be drawn. It would
often be used to power RS423 expansions.

OV (pins 7,8,47,48)

This is the signal and power ground on the Electron.
All external circuits must have their O volt lines
connected to this point.

+5V (pins 9,10,49,50)

Thisisa+5 volt power supply from the Electron. A
maximum of 500mA can be drawn from it, but note
that no power can be taken from the 18V AC line if
thisis done.

Sound o/p (pin 11)

Sound output from the Electron ULA. Thissignal

is 3 volts peak to peak fed via a 1K series residfor.
16MHz (pin 12)

This is the master 16 MHz clock from the Electron
main oscillator. It can be used for clock generation on
expansion modules, but see section 15.3.3 for a
description of clock synchronisation.

16/13 MHz (pin 13)
Thisis 16 MHz divided by 13. It is normally used for baud

rate generation, and will give approximately 1200Hz
if divided by 1024.

PHI out (pin 14)

RST (pin 15)

NMI (pin 16)

IRQ (pin 17)

Thisisanominally 2 MHz clock as connected to the
6502A. The low time is some 250ns. The high
time varies depending upon the operation being
performed. It is 250ns when reading ROMs, 750ns
or 1250ns when accessing the 1M Hz bus (depending
upon the relative phase of the 2MHz clock) and can be
up to 40us due to screen accessin modes 0 to 3. The
clock timing is covered in greater depth in section
15.3. Note that the NMI must be synchronised with
PHI out. Thisis because the NMIs give the 6502
precedence over the ULA for the RAM. Incorrect data
may be read from the RAM if the NMI is not latched
on a negative going edge of PHI out.

Active low reset signal. Thisisan OUTPUT ONLY
for reseting expansion modules on power up, or
when the BREAK key is pressed.

Non-maskable Interrupt (negative edge triggered).
This open collector (wire-OR) line is the system NMI
and can be asserted by an expansion module pulling it
low. Thereisa3K3 pull-up resistor inside the ULA.
Y ou must be very careful to avoid holding thisline
low after the interrupt has been serviced, because it
will mask other interrupts whilst asserted. For more
details about NMIs, you should refer to chapter 7.

Thisisthe active-low IRO (interrupt request). It isan
open collector (wire-OR) line, so it can be asserted by
any expansion module pulling it low. Thereisa3K3
pull-up resistor within the ULA. Note that interrupts
MUST NOT occur until the

R/W (pin 18)

software in the machine has initialised to a state at
which it can deal with them. Power up and reset
conditions should therefore disable all IROs, It is
important to ensure that not too much of the interrupt
service time is used up, otherwise some operations like
the system clock may cease to function correctly.

Thisis the system read/write line from the 6502. It tells
peripheral devices whether the 6502 is sending data to
them, or is expecting data from them.

DO-D7 (pins 19 to 26)

RDY (pin 27)

(pin 28)

(pins 29,30)

Thisisthe 8 bit wide bi-directional data bus. All datais
transferred over this bus, the direction of data transfer
being determined by the state of the read/write line.

Thisisthe active low ready line from the 6502. It can
be asserted by an expansion to slow down the
processor when it is reading slow memory. Thislineis
only operational on reads.

No connection.

Polarising key connector to ensure that boards cannot be plugged
in the wrong way round.

AO-A15 (pins 31 to 46)

Thisisthe system address bus. There are 16 linesin
this bus which allow 216 (65536) different locations to
be addressed.

15.3 Designing Cir cuits

It might at first appear to be very easy to add anything onto the
Electron Expansion Bus. There is however one fairly major problem.
The 6502A often changes speed to cope with the accessing of different
devices. Thesefall into two main categories.

15.3.1 Accessing the ROM

When the ROM is being accessed, the 6502 runs at the maximum
possible speed of 2MHz; PHI OUT islow for 250ns and then high for
2S0ns.

15.3.2 Accessing the RAM and peripherals

When RAM or peripheral devices are accessed, the timing will be
highly dependent on the display mode. Thisis because twice as much
data has to be removed from the RAM to produce the display in modes
0—3 as in modes 4—6.

Modes 4—6

The processor will normally be running at 2MHz when it first needs to access
RAM or peripheraslike the 6522. It hasto slow down to IMHz first. This
slow down either consists of aPHI OUT low time of 2SOns followed
by a high time of 7SOns, or alow of 2SOns followed by a high of
12SOns. The particular type of transition which occurs will depend
upon the relative phases of the 2MHz and 1IMHz clocks, Thisis
illustrated in figure 15.1. Both the IMHz and 2MHz clocks are
internal to the ULA, and are not available outside. They must be
generated separately (see later in this section).

Modes 0—3

In these modes, the ULA must have access to the RAM for all the displayed

part of a line (40us out of 64us in 256 lines out of 312). This doesn’t
matter provided that the CPU only wants to access peripherals and the
ROM, which it is free to do in the normal way. However, if it tries to
access RAM the the ULA will hold it's clock high for up to 40us. The
overall effect is that the

processor can be effectively disabled for up to 40us. The only way for
the processor to obtain priority over the ULA isby an NMI being
generated. Thiswill automatically cause the ULA to release the 6502
(and the RAM), but inevitably creates snow on the screen.

15.3.3 Generating the IMHz clock

Since the IMHz and 2MHz signals only exist inside the ULA, it is
necesary to regenerate them outside. Two clocks are provided on the
expansion connector. A 16MHz one and a 16/13MHz one for baud rate
generation. The former of these can be used to generate a IMHz clock,
This has to be synchronised to the processor clock if it isto be used
with peripheralslike the 6522 VIA. A simple division by 16 will not
produce a suitable clock signal. The circuit in figure 15.2awill produce
asuitable in phase signal. The timing for thisis shown in figure 15.2b.

15.3.4 Long delaysfor interrupts

It isimportant to bear in mind how long the delays might be before a
particular requested interrupt is serviced, Thisis determined by the
longest period for which interrupts can be disabled.

In modes 0—3, this delay can be up to IOins in the very worst
case. Such a long delay can cause problems with unbuffered
circuits like the cassette serialiser/deserialiser. The only solution isto
ensure that such devices are only used from modes 4—6 (even if it
means forcing a particular mode before executing a routine).

The interrupt delay is only 4ms at worst in modes 4—=6, so most actions
which require a fast response can be executed in one of these modes.
Note that NMIs can always be used as a last resort where necessary, but
are normally reserved for disc and Econet accesses.

+5\’-1
Al5 10 4
3 PR PR
— 12 9 2
RST 12 8 D Q D qp
LS04 LS74 LS74
oo LS00 11 3]
CLR CLR
?13 Tx
12
= 11
LS00
5 6
[09 -9 +5V
LD
LS04
16MHz 2 T Zo
+5V
t 4|8 cla
3]A 16 1
M ol
q 1MHz
163
OV = LS16

Figure 15.2a— A 16MHz to 1MHz synchronisation circuit

RESET

N U2 U A W

:

AN\
v}

LOAD

16MHz

Figure 15.2b — the timing applied to figure 15.2a

15.4 Sideways ROMs

Sideways ROMs can be selected in place of BASIC. Languages
like LISP, disc filing systems, utilities etc can al be plugged in.
These sideways ROMs are covered from a software point of view
in chapters 8 to 11.

From a hardware point of view, up to 16 sideways ROMs ae
allowed. However, four of these are already allocated on the
standard Electron. BASIC occupies two slots (ROMs 10 and 11 it
appears the same in each). The keyboard occupies slots 8 and

9. Theremaining 12 ROM dotsare all available for
expansion.

The ROM paging register islocated in the ULA, and can be
accessed by writing to location & FEOS (see section 14).

There are two distinct ways of accessing ROMs viathis register.
The first method accesses ROMs 12 to 15. This operation is very
simply performed by writing the required ROM number into the
low nibble of & FEO5. Hence:

D7 D6 D5D4 D3 D2 D1DO
Writeat &FEO50 O O 0 1 1 R1RO

where R1 and RO control which ROM is selected.

Suitable hardware must be included in the expansion unit to cope
with this method of selecting ROMs. Selection of one of the
ROMs 12 to 15 can be carried out by the following code. Be
careful to ensure that the write to & F4 always occurs before the
write to & FEO5, just in case an interrupt occurs in between.

LDA #ROvhunber
STA &F4
STA &FECH

The second method for accessing ROMs will allow those
numbered O to 7 to be selected. It is not possible to select these
ROMs directly, because BASIC will still be paged in. The only
way of paging BASIC and the keyboard out is to select one of the
ROMs 12 to 15 first. This access causes the internal ROMsto
page out. The correct ROM selection code can then be sent to the
lower three bits of & FEOS.

D7 D6 D5D4 D3 D2 D1DO
Writeat & FEO50 O O 0 1 R2 R1RO

where R2, R1 and RO select the required ROM.

Aswith the other ROM dlots, new hardware must be provided at
address & FEOS to select the relevant ROMSss.

Code to select a ROM numbered 0 to 7 could be:

LDA #&0OC \to deselect BASIC

STA &F4 \one of ROM 12 to 15

STA &FEO5 \must be selected

LDA #ROMnumber \Now select desired
STA &F4 \Low order ROM

STA &FEQ5

It is essential that the A register is stored to & F4 before & FEOS
in case an interrupt occurs in between.

When the machine is powered up, the sideways ROMs are polled
in order from 15 down too. The first one which isfound to be a
language ROM (see the Paged ROM firmware section for
specification) will start executing. Since BASIC isin dot 10/11, a
ROM which isrequired to power-up before BASIC must bein
one of the sockets 12 to 15.

The ROMs 12 to 15 are allocated to high priority NMI devices or
languages which are expected to power up before BASIC. The
reason for putting high priority NMI servicing ROMs in these
socketsisthat asmaller delay isrequired to page them in than for
ROMsOto 7.

The lower priority ROMs are al selected by performing two
writes to the paging register. Thefirst isto deselect BASIC, the
second is to select the required ROM.

The Acorn Plus 1 expansion unit forces the priority of ROMsto be
(from highest down):

ROMs 15to 12
ROMs7to0
BASIC

Thisimplies that any language which isfitted to the Plusl will
automatically power up ahead of BASIC. ROM allocation has been
defined by Acorn asfollows:

ROM USE

0,1 Second external socket on expansion module (SK2)

2,3 First external socket on the expansion module (SK1)
4 Disc

5,6 USER applications

7 Modem interface ROM

8,9 Keyboard

10,11 BASIC

12 Expansion modul e operating system
13 High priority slot in expansion module
14 ECONET

15 Reserved

15.5 The One Megahertz Bus

Most 6502 compatible peripherals will generally be connected onto the
1MHz regenerated bus. This allows relatively slow devicesto be
accessed. On the BBC Micro, page & FC has been allocated
especially for IMHz devices, Thispageiscalled FRED.
Generally, devices resident within FRED have relatively small memory
requirements (mainly control and data registers).

Since Electron expansion should be compatible with BBC Micro
expansion (so they can use the same expansion peripherals), the
allocation of devicesin FRED has been very well defined. The
following list includes items which would normally be resident in
Sheila on the BBC Micro, but which have to go on the IMHz bus on an
Electron.

&FCO00 to & FCOF Test hardware
&FC10to &FC13 TELETEXT
&FC14to &FC1F PRESTEL
&FC20to & FC27 |EEE 488 interface
&FC28to & FC2F ECONET
&FC30to & FC3F CAMBRIDGE RING interface
&FCA40 to & FC47 WINCHESTER DISC interface
&FC48to &FC5F Reserved for Acorn expansions
& FC60 to & FC6F 6850 ACIA
&FC70 A to D converter
&FC71 CENTRONICS parallel interface
&FCT72 Status register
BSY ADCFB2 FB1 X X X X
Where BSY -printer busy
ADC -A to D conversion end
FB1-Firebutton 1
FB2 - Fire button 2
X-=undefined
&FC73t0 &FC7F Reserved for Acorn expansions
&FC80 to & FC8F Test hardware
& FC90 to & FCOF Sound and speech
&FCAOto &FCAF Reserved for Acorn expansions
&FCBOto &FCBF 6522 VIA/Real time clock
&FCCOto &FCCF Floppy disc controller
&FCDOto & FCDF USER applications
&FCEOto & FCEF The TUBE
&FCFO to & FCFE USER applications
& FCFF Paging register for JIM

Note that page & FD in the Electron address spaceis used in

conjunction with the paging register in FRED to provide an extra 64K
of memory. This memory is accessed one page at atime. The
particular page being accessed is selected by the value in FRED’s
paging register, and is referred to asektended page number.
Accessing memory via the 1MHz bus in this way will generally be
about 20 times slower than accessing memory directly.

Appendix A — VDU Code Summary

This Appendix describes the functions performed by the whole of the
character set when printed using VDU or PRINT CHR$. Note that
several ones are labelled expansion. This means that they will only be
effective if the associated expansion modules are connected.

Dec hex CTRL + bytes function

0O 0 @ 0 Does nothing

1 1 A 1 Send character to printer (expansion)
2 2 B 0 Enable printer (expansion)

3 3 C 0 Disable printer (expansion)

4 4 D 0 Write text at text cursor

5 5 E 0 Write text at graphics cursor

6 6 F 0 Enable VDU drivers

7 7 G 0 Make a short bleep (BEL)

8 8 H 0 Move cursor back one character

9 9 1 0 Move cursor forward one character
100 A J 0 Move cursor down one line

11 B K 0 Move cursor up one line

12 C L 0 Clear text area

13 D M 0 Carriage return

14 E N 0 Pagedmodeon

15 F O 0 Paged mode off

16 10 P 0 Clear graphics area

17 11 O 1 Define text colour

18 12 R 2 Define graphics colour

19 13 5 5 Define logical colour

20 14 T 0 Restore default logical colours

21 15 U 0 Disable VDU drivers/delete current line
2 16 V 1 Select screen MODE

23 17 W 9 Re-program display character

24 18 X 8 Define graphics window

25 19 Y 5 PLOT K,X,Y

26 1A Z 0 Restore default windows

27 1B | 0 Reserved

28 1C 4 Define text window

29 1D —
30 IE

31 1F /
32—126

127 7F DEL
128—223
224—255

Define graphics origin
Home text cursor to top left of window
MovetextcursortoX,y.
Complete set of ASCII characters
Backspace and delete
Normally undefined (define using *FX20)
User defined characters

Appendix B . PLOT numbers

Move relative to last point

Draw relative to last point in current foreground colour
Draw relative to last point in logical inverse colour
Draw relative to last point in current background colour
Move absolute

Draw absolute in current foreground colour

Draw absolute in logical inverse colour

Draw absolute in current background colour

Nooh~hwWNEO

Higher PLOT numbers have other effects which are related to the
effects given by the values above.

8-15 Last point in line omitted when ‘inverted’ plotting used
16-23 Using a dotted line

24-31 Dotted line, omitting last point

32-63 Reserved for Graphics Extension ROM

64-71 Single point plotting

72-79 Horizontal line filling

80-87 Plot and fill triangle

88-95 Horizontal line blanking (right only)

96-255 Reserved for future expansions

Horizontal linefilling

These PLOT numbers start from the specified X,Y co-oridnates. The
graphics cursor is then moved left until the first non-background pixel
is encountered. The graphics cursor is then moved right until the
first non-background coloured pixel is encountered on the right
hand side. If the PLOT number is 73 or 77 then aline will be drawn
between these two points in the current foreground colour. If the PLOT
number is 72 or 76 then no line is drawn but the cursor movements are
made (these may be read using OS WORD call with A=&D/13, see
chapter 4).

Horizontal line blanking right

These PLOT numbers can be used to undraw an object on the screen. They
have an the opposite effect to those of the horizontal linefilling
functions except that the graphics cursor is moved right only.

PLOT numbers 91 and 95 will cause aline to be drawn from the
specified co-ordinates to the nearest background coloured pixel to the
right in the background colour. PLOT numbers 89 and 93 move the
graphics cursor but do not cause the line to be blanked.

Appendix C _Screen mode layouts
M ODE 0 Screen layout

Graphics 640x256

Colours 2

Text 80x32

&3000 [&3008 [&3278
&3001 [&3009 | &3279
&3002 | &300A | &327A
&3003 [&3008 | &327B
&3004 | &300C | &327C
&3005 [&300D | &327D
&3006 | &300E | &327E
&3007 | &300F | &327F
&3280

&3281

&7B06

&mwor | v

&vm80 | &wm88 | & 7FF8
&rme1|&7m89 | & 7TFF9
&7D82 | &7DSBA | & 7FFA
&rme83 |&mes | & 7FFB
&7be84 |&7mEC | & 7FFC
&rmes5 | &7mMm8D | & 7FFD
&7D86 |&7DGE | & 7FFE
&7D87 | & 7TDSF & 7TFFF

7]6]5[4[3]2]1]0] as

1BIT/PIXEL

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

MODE 1 Screen layout

Graphics 320x256

Colours 4

Text 40x32

&3000 | &3008 | &3278
&3001 | &3009 | &3279
&3002 | &300A | &327A
&3003 |&300B | &327B
&3004 | &300C | &327C
&3005 | &300D | &327D
&3006 | &300E | &327E
&3007 | &300F | &327F
&3280

&3281

& 7B06

&7BO7 | .
&7Dgo | &7D88 | & 7TFF8
&7p81 | &7D89 | & 7TFF9
&7D82 | &7DBA | & 7TFFA
&7p83 |&7m8B | & 7TFFB
&7D84 |&7DBC | & 7TFFC
&8s | &7D8D | & 7FFD
&7D8 | &7DSE | & 7TFFE
&7D87 | & 7TD8F & 7TFFF

[7]6[5[a[3[2][1]0] Zen

2BITS/PIXEL

RAREES

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

M ODE 2 Screen layout

Graphics 160x256

Colours 16
Text 20x32
&3000 | &3008 | &3278
&3001 | &3009 | &3279
&3002 | &300A | &327A
&3003 |&300B | &327B
&3004 | &300C | &327C
&3005 | &300D | &327D
&3006 | &300E | &327E
&3007 | &300F | &327F
&3280
&3281
&7B06
&mBoz |
&7bgo | &7D88 | & 7FF8
&7pbgl | &7D89 | & 7TFF9
&7bg2 | &7DBA | & 7TFFA
&7pg3 |&mmeB | & 7FFB
&7bg4 |&7DSC | &7FFC
&7msgs | &7D8D | & 7FFD
&7D86 | &7DSE | & 7TFFE
&7D87 | & 7TD8F & TFFF
(716]5[4[3[2][1]0] ZGse

A A A

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

MODE 3 Screen layout

Graphics Not available

Colours 2

Text 80x25

& 4000 &4008 | & 4278
&4001 &4009 | & 4279
&4002 | &400A | &427A
& 4003 &400B | &427B
&4004 &400C | &427C
& 4005 &400D | &427D
& 4006 &400CE | &427E
&4007 | &400F | &427F
BLANK [BLANK | BLANK
BLANK [BLANK | BLANK
&4280

&4281

& 7980

BLANK

BLANK | ¢+

&7coo |&vcos | & 7E38
&7col |&vcoo | & TE39
&7co2 | &7coa | &T7E3A
&7co3 |&vcoB | & 7E3B
&7co4 |&vcoc | &7E3C
&7cos |&7coo | &7E3D
&7co6 | &7COE | & TE3E
&7co7 | &7CcoF | &TE3F
BLANK [BLANK | BLANK
BLANK | BLANK BLANK

[7]6]5[4a]3][2]1]0] &%

1BIT/PIXEL

Note that the screen layout is only as shown after aC LS and will
change as the screen is scrolled.

M ODE 4 Screen layout

Graphics 320x256

Colours 2

Text 40x32

&5800 [&5808 | &5938
&5801 [&5809 | &5939
&5802 [&580A | &593A
&5803 [&580B | &593B
&5804 [&580C | &593C
&5805 [&580D | &593D
&5806 | &580E | &593E
&5807 [&580F | &593F
&5940

&5941

&7D86

&m8g7 |

&7ECO | &7ECE | &7FF8
&7EC1 | &7ECO | & 7FF9
&7EC2 | &7TECA | & TFFA
&7EC3 | &ECB | & 7FFB
&7EC4 | &7ECC | &7FFC
&7EC5 | &7ECD | &7FFD
&7EC6 | &7ECE | & 7FFE
&T7EC7 | & TECF & TFFF

7]6[5[4l3]2]1][0] 5Es

2BITS/PIXEL

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

M ODE 5 Screen layout

Graphics 160x256

Colours 4

Text 20x32

&5800 [&5808 [&5938
&5801 [&5809 | &5939
&5802 | &580A | &593A
&5803 |&580B | &593B
&5804 | &580C | &593C
&5805 |&580D | &593D
&5806 | &580E | &593E
&5807 | &580F | &593F
&5940

&5941

&7D86

&mog7 |

&7ECO | &7ECE | &7FF8
&7EC1 | &7ECO | & 7FF9
&7EC2 | &7TECA | & TFFA
&7EC3 | &ECB | & 7FFB
&7EC4 | &7ECC | &7FFC
&7EC5 | &7ECD | &7FFD
&7EC6 | &7ECE | & 7FFE
&T7ECT7 | & 7TECF & TFFF

[7]6[5[af[3][2]1]0] 35Sk

2BITS/PIXEL

S

Note that the screen layout is only as shown after aC LS and will
change as the screen is scrolled.

M ODE 6 Screen layout

Graphics Not available

Colours 2

Text 40x25

&6000 [&6008 [&6138

&6001 |&6009 | &6139

&6002 | &600A | &613A

&6003 |&600B | &613B

&6004 |&600C | &613C

&6005 |&600D | &613D
&6006 | &60CE | &613E

&6007 |&60OF | &613F

BLANK | BLANK | BLANK
BLANK | BLANK BLANK
& 6140 ' '

&7CC7

BLANK

BLANK | ¢+

&7F00 &y0O8 | &7F38

&7F01 &y09 | &7F39

&7F02 | &7FOA | &7F3A

&7F03 | &7FOB | &7F3B

& 7F04 &vrOC | &7F3C

&7F05 | &7FOD | &7F3D

&7F06 | &7FOE | & 7F3E

&7F07 | &7FOF | &7F3F

BLANK | BLANK | BLANK
BLANK | BLANK BLANK

[7]6]5]4]3]2]1]0] %ms

1BIT/PIXEL

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

Appendix D .Operating System Calls
and Vectors

Routine Vector Function
Addr Name Addr Name
USERV 200 The user vector
BRKYV 202 The BRK vector
IRO1V 204 Primary interrupt
vector
IRQ2V 206 Unrecognised
IRQ vector
OSCLI FFF7 CLIV Command line interpreter
OSBYTE FFF4 BYTEV 20A *EX/OSBYTE call
OSWORD FFF1 WORDV 20C OSWORD cdl
OSWRCH FFEE WRCHV 20E Write character
OSNEWL FFE7 - - Write LF,CR to screen
OSASCI FFE3 - - Write character,
OSRDCH FFEO &OD=LF,CR
OSFILE FFDD RDCHV 210 Read character
OSARGS FFDA FILEV 212 Load/savefile
OSBGET FFD7 ARGSY 214 Load/save file data
OSBPUT FFD4 BGETV 216 Get byte from file
OSGBPB FFD 1 BPUTV 218 Put bytein file
OSFIND FFCE GBPBVY 21A Multiple BPUT/BGET
EVNTV 220 Event vector
UPTV 222 User print routine
NETV 224 Econet vector
VDUV 226 Unrecognised VDU
commands
KEYV 228 Keyboard vector
INSV 22A Insert into buffer
vector
REMV 22C Remove from buffer
vector
CNPV 22E Count/purge buffer

vector

NVRDCH
NVWRCH

GSREAD
GSINIT

OSEVEN
OSRDRM

FFCB

FFC8

FFC5
FFC2
FFBF
FFBO

IND1V
IND2V
IND3V

230

Spare vector

232

234

Non-vectored read
char.

Non-vectored write
char.

Read char. from string
String input initialize
Generate an event
Read byte in paged
ROM

Appendix E _Plus1 ROM dlot

FAR NEAR

+5V' —

[e}

ROM OE —

RST — D3

RIW™ ALl

A9
D7
o6
D5

-5V D4

RESERVED

NRDY AT

NMI A6i

IRQ'] | A5

NPFC A4

NPFD'! — — A3

QA - — A2

16MHz AL

RGMSTB - AO

RESERVED DO'
(B B ey

+5V D2

SOUNDIN | D1

O 0 0O O O O O o0 O o0 o0 O o0 O o0 0 o0 O 0 O o0 o0
O O 0O 0 0O 0O 0 0O 0 0 0O 0 O 0 0 0 0 0 0 0 0 0 0

ov' ov

Figure E.1 — The Plus 1 ROM slot connector

Note that most of the standard BBC Micro 1MHz bus signals are
available from this slot. However, some of the uses are
marginally different to the BBC 1MHz bus. A full specification
for producing suitable add-ons is available from Acorn
Computers Limited.

Appendix F — Complete circuit diagram i

5y !
€20
gv. £ . 5 —
RE7 | |MOT AITTES f ¢ H
0 res [Twor FitrEo nes[wor Firren R7 iR
uvu Y e e b g‘f"'
3 baam0
KLl v
o
| N N
JT] oy
] dm
TAS
Rat
"
7
02 O——— e
3ot — 2
caps Lock O Tl [y
BREAK O-- APS LOCK
< T 1 i
5V O—wabv ’

& ov 02w 01

¢ |

i

H

g

<] e

g - e 4

3 "

n
¢ A0 OF— LU S L
Al Oor L 10 by
- ar OX TA LB
P A ol — A3
ae oI z ™
as Ol € &
a8 O 2 il E
x O 2 181 £ eor
A ON— H [0
8o : ae o2 > o
a0 ol — T h o 1 T 4
A Ot 14 2 os{2 s
Az o jar2 © osf2L T
o= ans prf —=<54p0-
23 s i 15
250 ol K €0 N
@ out maft 20
R/W| 0 w
PL3 HITACHI Rovjo - 04 !
[.
pes OVedm LKINF NE 1IN GND
- éf‘ Ay sl e s —
[aur I + o) il -l—um
ov [.y “:Nz sV 74500
o—._I—._I__. 4
[$ 2 oA 0 wd
[lour 2 mrcan R 20R R2_130R [
L t6v 33pF
-5y v —
o] unggz g 6 Inp 0d s
RETURN 45V OV (g 100pF 1Ca Ics +5Y OV -5y
4‘ US04 MSOL K504
Wwac
A
- <l BesEEEEE e
<
o
£
zz Prr) IS semaw
$9EE2223 9ITITI9CLIALEITIT ABBBAR
senf*t ‘e Vi
Ee
<%

SeToVA BT [T TIC s PLI EXPANSION CONNECTOR -
3 [HEE] T2 |uL585 R i
W apasee | "t r

501 wi7asoo 11 &?c";;‘g\.vsv?scg’ N eces sy «

x 15 CAN BE INTERCHANGED]
s o :’égg FOR TANTS (SEE P/L) Pl &) .
o S08] 2 CAPACITORS €20 & C22 MAVE DUAL LEAD 2 b

= MIRLSOL | BivcHES (SeE- Proo e
6164 22{2 HAEAY el
e 3 ALL DIODES ARE IN41S8 SP:::.
7405163 4 FIT 1C4,56 &7 OR IC20(0PTION:
741500
74574
L 70
= [CET I

234

vz vecz

CAS ouT

CAS RC

caS N|

SOUND

e

1019
A"}

71508

BLUE

CASSETTE
CONNECTOR

as
113

M3z

Lt

R4S §OR |
NLS8E 3!
-

5K3
VIDEO OUT

TANT
Ed
v
[
8LUE n
a 1
7 3
3 4
B 6
il 1c1

14

HLS08

e
UHF ouT

WMTZI-E36 PAL
UMIBZZ LAZ/INTSE

NTSC ONLY

—— ¢
LS 86 10 RS | -
\:1] 2 9:’):c'e - t
'-/715'5‘“ %1500 i
) A [; 3 RS 22
] Vs i 1
n s

10

NoT)
niseo noT ATTE

ON NTSC

Main PCB Circuit Diagram

Bibliography

Acorn User Magazine, published monthly, Addison Wesley

6502 Assembly Language Programming, L.A. Leventhal,
OSBORNE/Mc Graw Hill, Berkeley, Cdlifornia

Acorn Electron Expansion Application Note, Acorn Computers
Limited, 1984

Acorn Electron User Guide, Acorn Computers Limited, Cambridge,
1983

Beebug Magazine, published every five weeks, BEEBUG, PO Box
109, High Wycombe, Bucks.

Programming the 6502, Rodnay Zaks, Sybex, 1980

R6522 Versatile Interface Adapter Data Sheet, Rockwell International,
1981

TTL Data Book, Texas Instruments Inc., 1980

The BAS C ROM User Guide for the BBC Micro and Acorn Electron,
Mark Plumbley, Adder Publishing/ Acornsoft Limited, Cambridge,
1984

The Advanced User Guide for the BBC Microcomputer, Bray, Dickens
and Holmes, Cambridge Micro Centre, 1983

Glossary

Address Bus _aset of 16 connections, each one of which can be set to
logic O or logic 1. This allows the CPU to address & FFFF (65536)
different memory locations.

Active low _signals which are active low are said to be valid when they
are at logic level 0.

Analogueto digital converter (ADC) _thisis a chip which can accept
an analogue voltage at one of its inputs and provide a digital output of
that voltage.

Asynchronous —two devices which are operating independently of one
another are said to be operating asynchronously.

Baud Rate —used to define the speed at which a seria datalink
transfers data. One baud is equal to 1 bit of datatransferred per second.
The standard cassette baud rate of 1200 baud is therefore equal to 1200
bits per second.

Bidirectional -acommunication lineis bidirectional if data can be sent
and received over it. The data bus lines are bidirectional.

Bit of memory _this is the fundamental unit of a computer’'s memory.
It may only be in one of two possible states, usually represented by a 0
or 1.

Buffer _a software buffer is an area of memory set aside for datain the
process of being transferred from one device or piece of softwareto
another.

Byte of memory -8 bits of memory. Datais normally transferred
between devices one byte at atime over the data bus.

Chip _derived from the small piece of silicon wafer or chip which has
all of the computer logic circuits etched into it. A chip isnormally
packaged in a black plastic case with small metal leads to connect it to
the outside world.

Clock —it is necessary to provide some master timing reference to
which al datatransfers are tied. The clock providesthis
synchronisation. A 16MHz clock is applied to the ULA. From this, the
clock timing for the 6502 CPU is derived. See chapter 15 for a
discussion of the clock timing requirements.

CPU (Central processing unit) _the 6502A in the Electron, It isthis
chip which does al of the computing work associated with running
programs.

Cycle _thisisusually applied to the 6502 clock. A complete clock
cycleisthe period between a clock going high, low, then high again.
See clock.

Data bus _aset of eight connections over which all data transactions
between devices in the BBC microcomputer take place.

Field _a space allocated for some datain aregister, or in a program
listing, For example, in an Assembly language program, the first few
spaces are allocated to the line number field, the next few spaces are
alocated to the label field, and so on.

Handshaking - this type of communications protocol is used when data
is being transferred between two asynchronous devices. Two
handshaking lines are normally required. One of these is a data ready
signal from the originating device to the receiving device, When the
receiving device has accepted the data, it sends a data taken signal
back to the originating device, which then knows that it can send the
second lot of data and so on. Thistype of handshaking is used with the
RS$423 serial interface option.

High — sometimes used to designate logic ‘1’

Interrupt _thissigna is produced by peripheral devices and is always
directed to the 6502A CPU. Upon receiving an interrupt, the 6502 will
normally run a specia interrupt routine program before continuing with
the task in hand before it was interrupted.

Latch _alatch isused to retain information applied to it after the data
has been removed, It is rather like a memory location except that the
outputs from the bits within the latch are connected to some hardware.

LED (Light emitting diode) _acts like a diode by only allowing
current to passin one direction. Light is emitted whilst current is
passed.

Low _sometimes used to designate logic ‘0’.

M achine code _the programs produced by the 6502 BASI C Assembler
are machine code. A machine code program consists of a series of bytes
in memory which the 6502 can execute directly.

M nemonic _the name given to the text string which defines a
particular 6502 operation in the BASIC assembler. LDA isa
mnemonic which means load accumulator.

Opcode _the name given to the binary code of a 6502 instrucction, For
example, & AD is the opcode which means load accumul ator.

Open Collector _thisisacharacteristic of atransistor output line, It
simply means that the collector pin of the transistor is not driving a
resistor load, ieit is open.

Operand _a piece of data on which some operation is performed.
Usually the operand will be a byte in the accumulator of the 6502, or a
byte in some memory location.

Page —a page of memory in the 6502 memory map is & 100 (256) bytes
long. There are therefore 256 pages in the entire address space. 256
pages of 256 bytes each account for the 65536 bytes of addressable
memory.

Parallel _parallel datatransfers occur when datais sent along two or
more lines at once. The system data bus for example has eight lines
operating in paralel.

Peripheral —any device connected to the 6502 central processor unit,
such asthe Plus 1, Plus 3 interface etc., but not including the
memory.

Poll _most of the hardware devices on the Electron expansion modules
will generate interrupts to the 6502 CPU. If interrupts have been
enabled, the CPU has to find out which device generated the interrupt.
It does this by successively reading status bytes from each of the
hardware devices which could have caused an interrupt. This
successive reading of devicesis called polling.

RAM (Random access memory) —the main memory in the Electronis
RAM because it can be both written to and read from.

Refresh _al of the RAM in the Electron is dynamic memory.
This meansthat it has to be refreshed every few milliseconds so
that datais not lost. The refreshing function is performed by the
ULA asit accesses memory regularly for video output.

Register _the 6502 and the Electron ULA contain registers. These are
effectively one byte memory locations which do not necessarily

reside in the main memory map. All software on the 6502 makes

extensive use of the internal registers for programming. The bitsin

most peripheral registers define the operation of a particular piece of
hardware, or tell the processor something about that peripheral’s state.

Rollover _thisisafunction provided on the keyboard to cope with fast
typists. Two keys can be pressed at once. The previous key with a
finger being removed, and the next key with the finger hitting the key.
The software in the operating system ensures that rollover normally
operates correctly.

ROM (Read only memory) _as the name implies, ROM can only be
read from and cannot be modified by being written to. The MOS and
BASIC are contained in one large 32K byte ROM chip.

Serial _datatransmitted along only one line is transmitted serially.
Serial datatransmission is normally slower than parallel data
transmission, because only one bit instead of severa bits are transferred
at atime. Communication with the cassette interface is carried out
serialy.

Stack —a page of memory in the 6502 used for temporary storage of
data. Datais pushed onto a stack in sequence, then removed by pulling
the data off the stack. The last byte to be pushed is the first byte to be
pulled off again. The stack is used to store return addresses from
subroutines, Page &01 is used for the stack in the Electron.

ULA (Uncommitted logic array) —thislarge chip isresponsible for
most of the system control on the Electron. It contains alarge number
of logic gates. The connection between the gatesis defined when the
chip is manufactured.

| ndex

IBOOT status

*/
filing system call
*BASIC
*CAT
filing system call
*CODE
*EXEC
closefiles
file handle
*FX
*HELP
*KEY
*LINE
*LOAD
*MOTOR
*OPT
filing system call
*ROM
data format
example ROM
get byte call
initialise ROM call
*ROM filing system
*RUN
filing system call
*SAVE
*SPOOL
closefiles
file handle
*TAPE
*TV
1MHz bus

1MHz clock generation

6502
stack area
6502 clock speed

73

14

14

106

14

14

108
14,49,113

A

ADC

channel read

conversion complete event

conversion type

current channel

maximum channel number
Arguments (files)
Auto-boot

ROM call
Auto-repeat

delay

period

B

BASIC
paged ROM socket
BEL
channel
duration
frequency
SOUND information
Blank/restore palette
BPUT
fast tube
BREAK
effect
interception
last type
Break-points
BRK
paged ROM active
Service ROM call
vector
BRKV
Buffers
character entry event

31
120
63
98
154

28,66
29,66

count/purge
examine status
flushing

et character

Input full
Input interpretation
Insert character
insert value
mai ntenance vectors
output empty event

remove value

128

53

30,34
52
120

76
4

50,127
126

120
printer character ROM Ca”112%0

RS423 character ROM call%60

sound purged
statusp g

C

Cassette

filing system select
reading register

switch relay

timeout counter

ULA shift register

writing register
Cassette/ROM flag
Character

read definition
Character entering buffer event
Character interpretation
Circuit diagram
Clock

1MHz generation

read

write
Close SPOOL/EXEC files
CNPV
Command line interpreter
Connectors

expansion

Plus1 ROM
Count/purge buffer
Counter

CFS timeout

flash

ULA register
Country code
Cursor

editing status

enable/disable editing
graphics position
position

read character

D

Default vector table
Delaysto interrupts
Deselect filing system

E

Econet

error event

keyboard disable

OS call interception

read character interception
vector

write character interception

zero page workspace
Editing using cursor
End-of-file check
ENVELOPE

OSWORD command
Error handling
ESCAPE

character

effect

event

key status

terminating input
Escape character
ESCAPE condition

clear

Set
Event

vector
Events

disabling

enabling

generation using OSEVEN
EVNTV
Examine buffer status
Expansion connector
Explode soft character RAM
Extended vectors
External clock generation

134
213
108

119

29

30

14

119

53

207

32
171,189
213

External hardware

F

Fast tube BPUT
File options select
Files
attributes
close SPOOL/EXEC
EOF check
EXEC handle
open/close
read byte
read/write
read/write group of bytes
SPOOL handle
system calls
write byte
Filing system
deselect
handle range
initialise
*ROM
workspace claim
zero page workspace
Filing system calls
Firm keys
language call
pointer
status
string
Flag
*ROM/*TAPE
printer destination
RS423 control
RS423 use
Tube presence
user
Flashing colours
counter
mark duration
reset cycle
space duration
Flushing buffers
FRED

G

207

55
50

96,98

106
67
105

102

23,82

65
27,66
54
28,65
30,34
53,217

Get byte (OSBGET)
Get character

at cursor

from buffer

from input stream
GSINIT
GSREAD

H

Handle

filing system
Hardware

external

internal

introduction
Hardware scroll example
High-order address
HIMEM

read

1

1/0O read/write
1/0 processor
read memory
write memory
INKEY
Input buffer full event
Input character interpretation
Input line
Input source flags
Input stream
selection
Insert value into buffer
INSV
Internal hardware
Interrupts
delays
example
interception
ROM call if unknown
ULA mask
vectors
Interval timer
Interval timer event

108

207
197
192
199

190

i i 210
input pin

ULA register
IRQLV
IRQ2V

J

JM

K

Key number table
Keyboard
auto-repeat delay
auto-repeat period
disable
scan
soft key status
status byte
status LEDs
trandation table address
vector
Keys pressed information
KEYV

L

Language
exclusive workspace
zero page workspace
Language entry
Language ROMs
Linefilling
Lineinput OS WORD

M

Memory clear on BREAK
Memory useage
MODE

read

N

NETV
NMI

197
119,139
119.139

53

68
183

49

123
136

blank/restore palette
claim service ROM call
input pin

release service ROM call
routine area

zero page workspace

O

One megahertz bus

One megahertz clock generation

Operating system
calls
commands

high water mark (OSHWM)

variables

vectors

workspace

zero page workspace

Operating system call summary

OS commands
OSversion
OSARGS
OSASCI
OSBGET
OSBPUT
OSBYTE
summary
OSCLI
OSEVEN
OSFILE
OSFIND
OSFSC
OSGBPB
OSHWM
primary
read
soft character explosion
OSNEWL
OSRDCH
OSRDRM
OSWORD
summary
OSWRCH
Qutput buffer empty event
Output stream
read/write
selection

36
158
210
158
189
185

P

PAGE
Paged mode lines
Paged ROMs
active at BRK
allocation
BASIC socket
copyright string
current language number
enter language
extended vectors
firm keys
header format
info table address
issue service call
language entry
language ROMs
OS commands
paging register
pointer table address
polling semaphore
priority (Plus 1)
read byte from
selection
selection register
service entry
service ROMs
title string
Tube relocation address
type byte
version number
version string
workspace table
Paged ROM's connector (Plus 1)
Palette
blank/restore
read
ULA register
write
Pixel value
PLOT numbers
Plus1
page & Duseage
printer buffer example
ROM connector
ROM npriority
Polling
semaphore

10

service ROM call
POS
Printer

buffer example

character in buffer ROM call

destination flag

driver going dormant
ignore character

output destination selection
user vector

R

Read byte from ROM
Read character (OSRDCH)
Read character definition
Read input line
Remove value from buffer
REMV
Reset output
pin

ROM accessing
ROM connector (Plus 1)
ROM filing system

select
ROM/Cassette flag
R$423

baud rate

control flag

error event

mode

use flag

workspace

S

Screem memory
Screen
blank/restore palette
pixel value
Screen mode dependent clock
Screen mode layouts
Select input stream
Select output stream
Seriadl ROMs
Service call semaphore
Service ROM call
Service ROM calls

160
49

130
160
84

11

*HELP

156

12

*ROM get byte 159,175

*ROM initialise 158.174
absolute workspace claim 153,157
auto-boot 154
BEL request 161
BRK executed 155

character in printer buffer 160
character in RS423 buffer 160

font expl./impl. warning 159
initialise filing system 160
NMI claim 158
NMI released 158
no operation 153
poll (100Hz) 160
relative space claim 153
SOUND buffer purged 161
SPOOL/EXEC closure warning 159
Tube main initialisation 161
Tube post-initialisation 161
unknown interrupt 155
unrecognised *command 154
unrecoghised OSBYTE 156
unrecognised OS WORD 156
vectors claimed 159
Service ROM example 162
Service ROMs 152
SHEILA 53
addresses 196
Soft characters
explode RAM 32
explosion state 61
Soft keys
*KEY 15
consistency 83
cursor keys 25
length 74
pointer 80
reset 31
status 77
Sound
BEL 72
OSWORD command 90
output pin 209
semaphore 79
suppression 71
Sound system
external BEL request 161
external buffer purge 161
external flag 75
reset internal 36
select external 36
using ULA register 203
workspace 188

13

Speech

processor presence

suppression
Speech processor
Stack

memory useage
Start up options
String input

T

Timer
interval event

Timer switch state

Tube
fast BPUT
main initialisation call
post-initialisation call
presence flag
read 1/O processor memory
write |/O processor memory

U

ULA
addresses
interrupt mask
RAM copy
ULA registers
cassette shift register
counter
interrupt clear and paging
IRQ status/control
misc. control
palette
screen start address
Unrecognised * command
Unused vectors
UPTV
User
event
flag
vector
User print vector

80
71
55

187
86
12

121
83

55
161
161

80

89

90

196
69
82

200
202
201
197
204
205
198
106
134
121

121

23,82

113
121

USERV

execute code
Utility zero page workspace

V

VDU
abandon queue
extension vector
paged mode lines
gueue items
read graphics cursor positions
read paette
read status
read variable
variables origin
write palette
VDU code summary
VDUV
Vectors
BRK
buffer maintenance
default table
Econet
event
extended

113
49
186

15

interrupt
interrupt
keyboard
summary
unused
user
user print
VDU extension
Version
operating system
operating system
Vertical sync
event
wait
VPOS

W

Wait for vertical sync

Write anew line (OSNEWL)
Write character (OSASCI)
Write character (OSWRCH)

Z

Zero page useage

119
139
125
230
134
113
121
124

22
46

120
32
49

32
11
11

184

16

