

The Advanced

Reference Manual
For The BBC Master 128 Microcomputer

Published by Watford Electronics

Published in the United Kingdom by
Watford Electronics

Jessa House

250 Lower High Street

Watford

WD1 2AN

England

Telephone 0923 37774

Telex 8956095

Fax 01 950 8989

ISBN 0 948663 05 7
Copyright 1988 Watford Electronics

All rights reserved, This book is copyright, No part of this book can be copied or

stored by any means whatsoever whether mechanical, photographical or electronic
except for private study use as defined in the Copyright Act. All enquiries should be

addressed to the publishers.

While every precaution has been taken in the preparation of this book, the publisher

assumes no responsibility for errors or ommisions. Neither is any liability assumed

for damages resulting from the information contained herein.

Please note that within this text. the terms :-

Tube and Econet are registered trade marks of Acorn Computers Limited
View and Viewsheet are registered trade marks of Acornsoft Limited

DOS Plus, Concurrent DOS and C/PM are the registered trademark of Digital
Research Inc.

All references in this book to the BBC Microcomputer refer to the computer

produced for the British Broadcasting Corporation by Acorn Computers Limited.

This book was computer typeset by Ian Bishop Laggett,

Ideal Software Consultants, 11 Hathaway Close Luton, Bedfordshire ,

Acknowledgements

Thanks to David Beil, Roger Cullis, Dave Futcher Adrian Bishop Laggett and all
those people who made the publication of this manual possible.

CONTENTS

1. Master Series architecture

Introduction

core Machine

Internal I/O

External I/O

Internal Input/Output

Slow peripherals

Sound Generator

Real time clock with RAM

Configuration Status

Clock

1MHz Internal I/O

System VIA
2MHz Internal I/O

External Input/Output
1MHz External I/O

Analogue Port
Light Pen

2MHz External I/O

External Second Processor

2. Circuit description 19
Detailed Circuit Operation

3. Memory organisation 27
Memory Map

Random-Access Memory
ROMSEL

Overlaid RAM in ROM area
DRAM timing

4. Slow data bus 32

Memory Locations

Slow Data Control Port

Keyboard

Sound Generator

Real time clock/CMOS RAM

CMOS RAM Allocation

Real Time Alarm Functions

RTCRAM Access Restrictions

12
12

12
13

13

14

14

14

14

15

15
15

15
16

17
17

17
17

17

17

24

27

28

30

30
31

32

32

33

33
33

33
34

35

5. Keyboard controller
Keyboard Operation

KBDENC connections

Keyboard Matrix

Timing diagrams

Free running mode

Column scan mode

Row scan mode

6. Screen display 42

Screen Output 42
High Resolution Modes

Teletext
Hardware Scroll

Video Output
Video Processor

Control Registers
Miscellaneous Functions Control Register

Palette Control Register

Cathode Ray Tube Controller

CRTC Multiplexer

Internal Timing

Hardware Scroll

Refresh Control

Multiplexing
VDU driver

7. User Port

Timers
User Port Data Register

User Port Data Direction Register

Timer 1 Low Order Counter/Latch (R/W)

Timer 1 High Order Counter (R/W)

Timer | - Low Order Latch (R/W)

Timer 1 High Order Latch (R/W)

T2 Low Order Counter/Latch (R/W)

T2 High Order Counter (R/W)

Shift Register

Auxiliary Control Register (R/W)
Peripheral Control Register

Independent Mode
Interrupt Flag Register

Interrupt Enable Register
Example of motor control

37
37

38
40

40

40

41

41

42
43
43
44
44
45
45
46
46
48
49
49
49
49
49

52

52

53

53

53

53
54

54

54

54

54

56
57

57

58

59
59

8. Serial Processor 61

UART

SERPROC

Buffer Components

Control Register Settings

9. Peripheral bus controller

63
Internal Timing

Buffer Control

Timer
I/O Definition

AC Parametric Test Information Timing Specifications
SA data latching point

SL data latching point
C Bus Drive Waveforms

B Bus Drive Waveforms
E bus drive waveforms

10. IMHz Bus
Signal definitions

Hardware requirements for 1MHz expansion bus peripherals

Derivation of valid Page signals

Address space allocation

Page FC
Page FD

Timing requirements

11. Machine Operating System
Address space map

Page 0

Pages &1 to &D

Pages &E to &7F

Pages &80 to &BF

Pages &CO to &DF and page & FF

Page &FC

Page &FD

The Second 32k of RAM.

VDU Workspace
VDU workspace allocations

Extending the MOS
Time-independent Functions

Vectors in co-processors
Vectors In Sideways ROM/RAM

MOS Function Vector Table

Entry pointed vectors

Vectors without MOS entry points

EVENTV

61

61

61

62

63

63

63
64

65
66

66
67

68
69

70
70

72

73

73

73
74

75

77
77

77

78

80

80
82

82

82

82

83
84

84
84

85
85

86
87

87

87

BRK instruction 88

BRK instruction in single processor systems 89

BRK instruction in co-processor systems 90

USERV 90

KEYV 90

VDUV 91

UPTV 92

FSCV 93

INSV 94

REMV 94

CNPV 94
NETV 95

INDirect Vectors 95
Time dependent functions 96

EVENTV 96

12. Dual processor systems 98
Second processor architecture 98

The Tube 99

Tube Architecture 100

Tube Protocols 101

Operating System Usage 102

Filing System Usage 103

PARASITE Protocols 105

Vectors 105
Hardware Dependency 106

Host Hardware 106
Parasite Hardware 106

Non-interrupt protocols 106

OSWRCH 106

OSRDCH 106

OSCLI 106
OSBYTE 107

OSWORD 107

OSBPUT 108

OSBGET 109
OSFIND 109

OSARGS 109
OSFILE 109
OSGBPB 110

Interrupt driven operations 110
Start-up protocol 113

Register Addresses 113
Tube protocols 113

Host Protocols 113

Check for presence of the Tube 114

Claiming the Tube 114
Initiating data transfer 115

Transferring data 116

Releasing the Tube 116

Register Locations 116

Tube/filing system interface 117

LOAD/SAVE addresses 117

Use of the Non Maskable Interrupt 118

Claiming NMI workspace 118

Hardware access to the NMI 119

13. Z80 Second processor 120

Operating system calls
120

Faults and events 121
6502 Faults 121

Z80 Faults 121
Events 121

Escape processing 122

Interrupt handling 122

NMI Nonmaskable interrupt 122

INT Interrupt request 122

Z80 Monitor 122

Z80 OSWORD call 123

1/O Processor Memory Usage 124
Screen Control 125

BBC Microcomputer Control Codes 125
Terminal Emulator Control Codes 125

GSX Functions 126
Character I/O under CP/M 126

Device assignments 126

The IOBYTE facility 127

Device characteristics 129

The System Patch Area. 130

14. 80186 coprocessor 131

Operating System Calls 131

OSFIND 132

OSGBPB 132
OSBPUT 132

OSBGET 132

OSARGS 133

OSFILE 133

OSRDCH 133

OSASCI 133
OSNEWL 133

OSWRCH 134

OSWORD 134

OSBYTE 134

OSCLI 134

Error Handling by the 80186 Monitor 135

Error Handling by stand-alone languages or applications 135

80186 Error Messages 136

Escape Processing 138

80186 Monitor 138

80186 OSWORD call 142

15. Disc filing systems 145
DFS 145

ADFS 146
CP/M Disc Format 147

16. ANFS 148

Local buffering 148
Operating System Commands 149

*HELP 149

*CDIR 149

*PLIP 149

*FS 150

*] AM 150

*LCAT 150

*LEX 150
*PASS 150

*WIPE 151
Extra Utils star commands incorporated in the ROM 151

*POLLPS 151
*PROT 151

*UNPROT 152

*PS 152

*WDUMP 152

*CONFIGURE commands. 152

*STATUS commands 153

Extra *OPT commands 153

Printing 154

Extra interfaces 154

Enhancements to the filing system interface 154
Write only files 154

OSFILE 155

OSARGS 155

Error messages 155
User Root Directory Reference Point 156

Compatibility with DFS based software 157

Additional library functionality 157

Time and Date
1/0 processor address space

Automatic Bootstrapping

Re-tries

File server / Bridge net number translation

Detection of wrong versions and ANFS

Entry of hexadecimal numbers

Events on reception

17. Terminal emulator

OSBYTE 96,x

Terminal File Transfer

18. Editor

Buffer Transfer
From the language to Editor

From EDITOR to the language

19. VIEW and VIEWSheet format
Reserved Characters and File Format

VIEW formatting characters

Memory Format

Number Registers

VIEWSHEET data representation

APPENDICES

Appendix | Differences between Model B+ and Model B
Appendix 2 Differences between Master 128 and Model B/B+

Appendix 3 Differences between Compact and Master 128
Appendix 4 - Differences between ANFS and NFS

Appendix 5 Changes introduced in Basic 4

Appendix 6 - PCB selection links and test points

Appendix 7 Cartridge interface

Appendix 8 65C12 Instruction set

INDEX

157
157

157

158

158

158

159

159

160

160
160

161

161
161

161

162
162

162

163

164

164

165
171

190
200

203

205

210

215

283

Page left blank intentionally.

10

INTRODUCTION
This book is intended for peripheral hardware designers and software writers and

expands the information given in Reference Manuals Parts | and 2

It contains software and hardware reference material, with application guidelines

which anyone who is attempting a major project for the first time will find

particularly

useful. The remaining chapters contain information on the Acorn-designed semi

custom chips and a number of detailed appendices highlight the differences

between the Master 128 and other Acorn models including the Compactl and the

Electron.

It has been assumed that the reader has a good understanding of basic electronics
and computer terminology.

11

1 THE MASTER SERIES
ARCHITECTURE

Introduction

The Master Series is based on and extends the architecture of the Acorn BBC

Model B microcomputer The heart of the computer is a comprehensive machine

operating system (MOS) which controls and organises the communications

between a central processing unit (CPU) and applications software, peripheral

devices. such as video displays and printers and filing systems which act as

sources and stores for data. Language interpreters and compilers may be provided
to convert high level languages into a format usable by the MOS. Alternatively, the

applications may be in object code which runs directly on the CPU

The simplest version of the computer (the Master 128) has a single processor which
performs all of these executive functions In other computers of the series,

responsibility is split between a base processor which handles input/output (I/O)
operations and a language processor which performs the calculations and other

data operations associated with the applications’ tasks. In general, the language

processor will be selected for its suitability for a particular application and will be

different from the base processor.

Core Machine

All input/output (I/O) computing is performed by a 65C12 CPU with its principal

ancillary components.

128 Kbyte of dynamic random access memory (DRAM)
Special expansion options allow a further expansion of 64 Kbyte.

Dedicated hardware can be used to expand this almost indefinitely.

262 Kbyte of read-only memory (ROM)

Special expansion options allow a further expansion of approximately

half a megabyte of ROM. Plug in cartridges are available which accept

up to 256 Kbyte of ROM

12

Internal I/O

Internal versatile interface adapter (VIA)

This services a 93-contact keyboard with two key rollover, a three channel

sound generator with additional noise channel and a battery-backed real-time

clock with fifty bytes of RAM.

External versatile interface adapter (VIA)
This services the parallel printer port and the user port

Co-processors
These consist of an additional CPU with associated memory. They depend

entirely on the main processor for all I/O operations.

External /O

Video display
A 6845 CRT controller formats the output for RGB, composite video and

PAL/NTSC connectors.

Analogue to Digital Converter
A four channel A-D converter provides ten bit binary conversions in 5ms.

The

absolute accuracy will depend on the conditions of use

Tape interface
Facilities to both save and retrieve data from audio cassettes

Disc Interface
Facilities to both save and retrieve data from standard Shugart connected

media. Filing systems data encoded in FM or MFM format.

Network Interface
Connection to ECONET is provided by a 68B54 advanced data link

controller

This is fitted on a daughter board and may be an optional extra (standard on

the ET machine)

IMHz Bus
Standard BBC computer | MHz bus.

External Second Processor
An external second processor may be connected Selection of either internal

co-processor or external second processor is performed by software Only
one second or co processor can be active at a time

Centronics Printer
Port Connection for a standard parallel printer

User Port
The user port is an eight-bit bi-directional bus with two extra

handshaking/serial lines. These are unbuffered.

RS423
A serial RS423 port This is an enhanced version of the RS232C

specification

13

Audio Output
The output from the sound generator is amplified to a speaker and provided

at

a phono-style connector. Sound transfer to and from the modem

Modem
Connection for a modem with both dial pulse and dual tone multi frequency

dialling.

Internal Input/Output

Slow peripherals

These are subsystems which are provided with data from port A of the system VIA
This data is stable until next programmed by the CPU

Sound Generator

The sound generator is an SN7694A device, which generates three sound channels

plus one pseudo random noise channel The full description of it is found in the

manufacturers data sheet. It receives a reference clock of 4MHz from central

timing. The output can be connected by screened cable to the optional modem

This output is mixed on the modem board to generate dialling tones for DTIMF

exchanges where the modem hardware does not provide such tones itself

Real time clock with RAM

A 146818 RTC and RAM chip is provided with battery backed supply The chip

operation is described in the manufacturers data sheet. There are three AA size
batteries which normally keep the RAM backed-up for at least a year (depending on

how much the machine is NOT used)

The keyboard mounted battery is charged whilst the computer is running from the
mains supply An over charge prevention circuit is provided with the following

action:-

a) Upon switch on, charging current of about 30mA is applied

b) After approximately 15 minutes the charging current falls to 1 mA.

c) “Trickle”. charging continues at 1 mA for as long as mains power is

applied.

The minimum charge burst is designed to provide battery back-up over a weekend

after just a few minutes operation. A 10mf capacitor is connected across the clock
chip supply connections to prevent loss of data in the event of accidental battery

disconnection

14

Configuration Status

Fifty bytes of CMOS RAM are available within the chip Twenty of these are used

by the operating and filing systems for initial configuration of the hardware. Of the
remainder ten are reserved for future use by ACORN, ten are for ‘third party’ use

and the remainder are for the user

Clock

The clock operates from a 32 768KHz crystal oscillator A trimming capacitor is
provided as is a test point with the buffered clock output. Year month. day hour

minute and second information is provided with automatic leap year (but not
automatic leap century) correction. An alarm is also included within the chip, but

there is no operating system support for this facility. An optional nIRQ connection
can be made to the CPU from the clock chip, enabling the alarm to change program

flow.

Operation of the clock chip in this manner involves direct manipulation of the chip

control signals and should only be attempted by competent programmers. Acorn

Computers are not responsible for incorrect programming by the user/software

supplier.

If power is removed during an access to this chip, the chip select will become

invalid, with the possibility of write accesses being corrupted. This is avoided by
inverting the chip select with a transistor whose collector resistor is connected to the

battery backed supply. As power fails to the main circuitry the transistor base
current reduces and the transistor switches off deselecting the chip.

1IMHz Internal /O

Various devices operate at a 1MHz bus rate. Only one internal I/O component

works at this speed - the system VIA.

System VIA

A 6522 allows several sources to create maskable interrupts. The sources are:-

a) CRTC vertical synchronisation
b) A D converter; end of conversion signal.

c) CRTC light pen strobe.
d) Keyboard key detect

It also provides the slow data bus

Port B on this device generates and reads a number of internal hardware strobes

15

These are:-

Port B Data Strobe Active Level

Port B Data Strobe Active Level
D7 DO

DXXXXXXX Clock Address H

XDXXXXKX Clock chip enable H

XXDXXXXX ‘Fire’ button 1 Input

XXXDXXXX ‘Fire’ button 2 Input

XXXXD 000 Sound chip select L
XXXXD 00 1 Clock R/W L

XXXXD 010 Clock Data Q

XXXXD 01 1 Keyboard enable Q

XXXXD 100 CO Screen control L
XXXXD 101 Cl signals H

XXXXD 110 Caps Lock indicator L
XXXXD 111 Shift Lock indicator L

Note: Q is the value of D after the port write operation is completed

2MHz Internal I/O

Only one internal I/O component operates at this clock rate, the internal second

processor TUBE. Its data bus is connected directly to the CPU data bus. The
second processor interface will only be specified as a hardware data transfer

definition. In this way, the actual second processor used will not be constrained by
this specification.

The interface is a parallel port providing the following data access signals:-

1) DO to D7 A bi-directional bus to TTL levels.

li) AO to A2 A uni-directional bus to CMOS levels.

The following control and timing signals are provided:-

HostCPU phi2 CMOS levels

System Reset TTL levels

HostCPU nIRQ This must be an ‘open collector’ node with
an active low TTL level

8MHz timing reference TTL levels
TUBE chip select CMOS levels

Read/Write TTL levels

16

External Input/Output

1MHz External I/O

Analogue Port

This 15-way D-type connector provides access to an NEC mPD7002 four-channel,
ten-bit analogue-to-digital converter. The sampled input is compared to a 1.8V

reference derived from three small signal diodes in series.

A tracked link may be cut to deselect this reference. The user may then solder ina

two-pin precision reference in the holes provided or supply an external reference.

Any user supplied reference should have a maximum voltage of 2.5V .

An input voltage on any one of the four channels will be digitised when the AID

control register is so instructed. Conversions are in the range 0 to 1.8V .

The voltage reference is made available at the connector . Provision is made on the

board for an additional high stability reference, if required. A link will have to be

made for the additional reference to be used . Conversions take place in 5ms and

the “end of conversion” pulse causes an IRQ to be generated by the system VIA.

Two “fire buttons” are provided for with the connections IO and I1 . These are

connected to the system VIA and cause interrupts (as IRQ) to be generated.

Light Pen

A light pen may be connected to the signal LPSTB. This also causes the system
VIA to generate an IRQ (if enabled). It also causes the 6845 CRTC to latch the

address of the currently selected video data byte. This may not be the same as the

displayed byte and some software correction may be necessary. Factors such as

phosphor characteristics, light pen response and the angle at which the pen is

used, may all affect the correction needed.

2MHz External I/O

Two peripheral devices operate at 2MHz. These are the external second processor

connection and the ECONET connection.

External Second Processor

This interface has a buffered data bus via the Peripheral Bus Controller (PBC). The

EXbus on this component provides for good data set up and hold times . Together

with a limited degree of line matching, this ensures reliable high speed data transfer.

17

with unspecified cable lengths. A maximum cable length of one metre is suggested
to prevent noise problems.

The interface operates at 2MHz. This means that if a 1 MHz bus peripheral is also

connected, then the address and data buses on this connector will appear to

perform both | and 2MHz cycles.

The connections are:-

DO to D7 Data Bus CMOS levels

AO to A7 Address Bus TTL levels
IRQ Interrupt Request Open collector

TTL levels
nTUBE Parasite chip select TTL levels

Supply +5V
Ground OV

18

2 CIRCUIT DESCRIPTION

This chapter should be read in conjunction with the circuit diagram at the rear of this
manual.

The microprocessor used in the Master 128 is a 65SC12 running at either one or

two megahertz clock rate. Most processing is done at 2MHz, including accesses to

the Random Access Memory and Read-Only Memory. The processor slows down

to [MHz when addressing slow devices such as the 1MHz Extension Bus, the

Analogue to Digital converter and the Versatile Interface. A 16MHz crystal

oscillator

provides clock signals for the microprocessor in conjunction with divider circuitry

on
the video processor (VIDPROC) uncommitted logic array chip (IC42) which

produces 8, 4, 2 and 1 MHz signals.

Random Access Memory on the microcomputer is provided by four 4464 dynamic
memory devices (ICs 17,18,23,26). Row-address and column address strobe

signals for these RAMs are generated from the 8, 4 and 2MHz clock signals. These
RAMs are cycled constantly at 4MHz. Two devices may have control of the RAM

address lines, one is the 65SC12 microprocessor and the other is the 6845 cathode

ray tube controller chip (IC22).

The CRTC generates the raster scan signals for the video display, together with the

address for each memory-mapped byte of information in the RAMs which is

required to refresh the display. An MSI CRTC multiplexer (IC31) switches control

of the RAM address lines between the microprocessor and the CRTC.

The 65SC12 microprocessor is particularly suitable for this kind of application,
because it runs from a constant clock, d2, and so its requirements for memory

access are predictable. Every 250ns, control of the RAM address lines is switched
between the microprocessor and the CRTC. Thus, in a one microsecond period,

the microprocessor has two RAM accesses and the CRTC has two RAM accesses.
Because the CRTC generates a sequence of addresses in order to refresh the

display, the row address lines of the RAMs are constantly cycled. Careful design of

the addressing methods in each screen mode ensures that the dynamic RAMs are

also refreshed by the sequential CRTC accesses.

Using this technique, two bytes of information are available per microsecond for

refreshing the raster scanned video display. With each horizontal line having a

period of 64ms, a 40ms active display area is usual. Thus, 640 bits of information
per horizontal line are produced from the memory-mapped display. The video

processor VIDPROC (IC42) is a custom uncommitted logic array developed by
Acorn. At the end of each CRTC 250ns access period, it latches the byte from the

19

RAM and, according to the display mode in operation, serialises the byte into a one-
bit stream of eight bits or a two-bit stream of four bits etc. In this way, display

modes varying from 640 pixels in 2 colours to 160 pixels in eight colours, which

may

be flashing, can be produced.

The video processor also contains a high speed block of static random access

memory called a palette. This memory can be programmed to define the

relationship between the logical colour produced by the RAM and the physical

colour which will appear on the display. Thus, in a 640 pixel mode, the two colours

to appear on the display need not be black and white, they may be, say, red and
blue. The information in the RAM is unchanged by the palette. it is its interpretation

into physical colours which changes.

Modes 0-6 in the microcomputer use software-generated characters, that is to say,
the character font to be produced on the screen is held in the memory mapped

display area of the RAM and graphics or characters may be held. This method of
producing characters is expensive in memory, involving a minimum of eight

kilobytes for the display memory.

Display Mode 7 is a Teletext mode implemented by an SAA5050 (IC32) Teletext

character generator. IC15 latches the information coming from the RAM prior to the

SAA5050. When using this mode, only 1 K of RAM is devoted to the display

memory and the characters are held within it as ASCII bytes. The SAA5050 then

translates these bytes into a standard Teletext/Prestel format display.

The red, green and blue logic signals produced by the video processor are buffered
by MSI CH ROMA chip (1C40) and fed out together with a composite sync signal

to

the RGB connector. This output is suitable for feeding straight to the gun drives of

RGB monitors. The red, green and blue lines are summed by binary weighted

resistors to feed Q13 which produces a 1v composite video signal suitable for

feeding to monochrome monitors, on which the different colours will appear as

different shades of grey.

A modulator provides a UHF TV signal on channel 36, suitable for feeding to the

aerial input of a domestic television receiver. Colour is derived from a PAL (phase

alternating line) encoder circuit which modulates the colour information on to the

colour subcarrier frequency. Q10 is a 17.73MHz oscillator circuit which is divided
by a ring counter (IC46) giving an output at the colour subcarrier frequency of

4.43361875MHz which is fed to IC40. This selects different phases of the 'U' and

'V’ signals according to whether a red, green, blue, cyan, magenta, yellow or white

colour is to be produced. These signals produce the colour subcarrier signal which
is added to the monochrome output from Q8 by the buffer Q9. A reference colour

burst is provided at the beginning of each line for the receiving television to interpret

the colour information.

20

The PAL signal may be added to the | v video connector by the insertion of a 470pF
capacitor between the emitter of Q9 and the base of Q7.

Resistors R132-4 adjust the luminance balance of the colours.

Memory provision comprises four 4464 dynamic RAM chips (IC16, 17, 23, 26)

which give 128 kilobytes of storage and a one megabit ROM (IC24) mapped as

eight 16K blocks,

INPUT/output is under the control of an MST I/O controller IC15. This is connected

directly to the control lines of the executive chips responsible for peripheral access.

One 6522 VIA device (IC9) is devoted to internal system operation. Port B drives
an addressable latch which is used to provide read and write strobe signals for the

speech interface, the keyboard and the sound generator chip. Also coming from
this latch (IC 32) are control lines CO and C1 which indicate the amount of RAM

devoted to the display memory to be 16K, 8K, 10K or 20K. Pins 6 and 7 of the
addressable latch drive the caps lock and shift lock LEDs on the keyboard.

The rest of Port B on the internal system VIA is used to input the two ‘fire button’

signals from the analogue to digital converter interface and to control a real-time

clock/CMOS RAM chip. Each time the system VIA is written to, any changes on

Port B which should affect the addressable latch are strobed into the latch by a flip

flop which is triggered from the | MHz clock signal. Port A of the system VIA

(IC9)
is a Slow data bus which connects to the keyboard, the RTC/CMOS RAM chip and

the sound generator. Port B is the unbuffered User Port.

IC18 is a four channel sound generator chip which may be programmed to give
varying frequency and varying attenuation on each channel. An extra analogue

input from the 1 MHz extension bus is added to the sound generator signal and then

filtered by a quad operational amplifier C17). IC19 provides audio power

amplification to drive a speaker,

Two forms of serial interface are provided, one is an audio cassette at either 300 or

1200 baud and the other is RS423, over a whole range of baud rates. (RS423 is

electrically compatible with RS232C in most applications.)

A 6850 asynchronous communications interface adaptor (IC4) is used to buffer and
serialise or deserialise the data. A second ULA (SERPROC) is used in the serial

interface, (IC7). Contained within this ULA is a programmable baud rate generator,
a cassette data/clock separator and switching to select either RS423 or cassette

operations. IC42 divides the main board 16MHz clock by 13 and this signal is
divided further within the serial interface ULA to produce the 1200 Hz cassette

signal.

21

Automatic motor control of an audio cassette recorder is achieved by a small relay
driven by a transistor from the serial interface ULA. The signal out of the cassette is

buffered and the incoming signal is suitably filtered and shaped by a three stage

amplifier. This is a quad operational amplifier (IC35). The RS423 data in and out

signals and request-to-send and clear-to-send signals are interfaced by ICs 74 and

75 which translate between TTL and standard RS$423/232 signal levels. This is one

of the few sections of circuitry on the Microcomputer which requires an additional -

5v supply to be present.

A four-channel analogue to digital converter facility is provided by a mPD7002

IC73.
This device connects straight to the microcomputer's data bus and it is a dual slope

converter with its voltage reference being provided by the three diodes, D6, D7 and
D8.

Connection is made to the ECONET by a five way DIN connector mounted on the

main circuit board. The interface electronics including the 68B54 , line drivers,

receivers and chatter disconnect components are mounted on a separate circuit

board. This board has two connectors: -

a) A 5-way connector which has a one-to-one connection with the DIN

connector.

b) A15-way connector provides the CPU data bus together with address,

timing reference, chip select and interrupt signals. The main PCB has

two further address connections for future expansion.

A 6854 Advanced Data Link Controller circuit handles the Econet protocol. Data to
be transmitted onto the network is fed from the ADLC to the line driver circuit

which
produces a differential signal drive to the Econet cables. Received data is detected

and converted to a logic signal by one half of IC94 which is a dual compare circuit

type LM319. The received data is then fed back to the data link controller circuit.

An Econet installation has a external master clock station which controls the timing

for the network. This clock signal is transmitted around the network as a second

differential line signal and it is used to clock the data in and out of the data link

controller circuits. The network clock is also detected using one half of the LM319

comparator IC4 and the detected clock is then fed to both receive clock and

transmit clock inputs on the 6854. In the presence of a network clock, the
monostable circuit, IC2 is permanently triggered and this provides a data carrier

detect signal for the data link controller chip. Once the network clock is removed,
the monostable immediately drops out and the data carrier is no longer detected.

Econet is a broadcast network system on which a number of stations may attempt

to transmit their data over the network at any given time. In this case, a collision

can occur. the transmitting station detects the collision and backs off before

attempting to try again to transmit over the network. Collision arbitration software is

22

included in the Econet system. Collisions on the network data lines result in the
differential signal on the two data wires being reduced and this condition is detected

by IC95 which is another dual comparator circuit.

When there is a good differential data signal on the network one output of IC95 or

the other will be low, in which case the output of IC91 Pin 6 will be high, indicating

no collision. When there are no collisions on the network, and the network clock is

detected by the clock monostable, the data link controller is clear to send data over

the network.

When there is a collision on the network both outputs of IC91 will go high and the
clear to send condition will cease. Note that when the computer is not connected to

the network a collision-like situation results, in which case again the data link
controller will not get a clear to send condition.

Each Econet system requires termination at the two extreme ends of the network

with network terminator boxes. It also requires an external network clock box. The
network clock generates a 6MHz signal which is divided by two to produce 3MHz

and other clock rates down to 75KHz. The setting of this clock signal depends on

the length of the network, with the longer networks requiring a slower clock.

Up to 255 stations may be connected to each Econet with each station being

identified by a unique station identification number. This station ID is programmed

into the battery-backed CMOS RAM. The data link controller circuit produces

interrupts which are fed to the central processor NMI line. These interrupts are
enabled every time the station ID is read. Once in the data link controller interrupt

service routine the DTR output of the ADLC goes low in order to remove the
interrupt.

IC78 is a WD1770 or WD1772 floppy disc drive controller circuit which is used to

interface to one or two single or double sided 5 or 8 inch floppy disc drives. Logic

signals from the controller to the disc drive are buffered by IC1 . The incoming

signal from the disc drive is first conditioned by monostable IC87 producing a pulse

train with each pulse of fixed width. These pulses are then fed to the data

separation circuits ICs 81 and 82. This is a digital monostable. IC86 divides the

8MHz clock signal down to 31.25 KHz. ICs 83, 84 and 85 are then used to detect

index pulses coming in from the drive which show that the drive is ready for a read

or write operation.

IC69 is a versatile interface adaptor. Port A is used to provide a centronics

standard parallel printer interface, with the octal buffer IC70 being used to buffer the
data lines. Port B is left uncommitted and is free for use by the user for input or

output purposes.

23

The address and data lines AO-A7 and DO-D7, together with some page select lines
are available as the 1 MHz extension bus to which various peripheral devices, such

as Teletext interface, may be connected. All accesses to this bus will be at 1 MHz

processor speed. The octal buffer DXXXXXXX and the octal transceiver

DXXXXXXX are used to

interface these signals to the internal data address bus.

Selected address and data lines are available on the Tube connector which is used

to connect second language processors into the system.

Keyboard

Ninety-three keys are provided, ninety-two of which are in a modified 8x13 matrix.
A keyboard encoder, KBDENC (IC16) is used to scan the keyboard. During idle

(free run) mode, pressing any key will cause an IRQ to be generated via the system
6522. A connection is provided from IC16 to a 6522 'CA’ type connection. Hence

the interrupts thus generated are controlled by the 6522 control register. Depression
of either of the shift keys, or the control key does not generate an interrupt.

The power supply unit produces 5 volts at around 2 amps and -5 volts at around

50mA for use on the main circuit board. Auxiliary power for accessories is available

on an external connector.

DETAILED CIRCUIT OPERATION

In this section, certain parts of the circuit will be described.

Pins 4 , 5, 6, and 7 of the video processor (IC6) produce | , 2, 4 and 8MHz clocks in

phase. A D-type flip flop (half of IC34) divides the 2M Hz clock signal in order to
produce the system 1 MHz clock. A 2MHz signal of suitable phase is produced at

the output of another D-type (half of IC30) and this is further clocked through the

second D-type (half of IC30), and via an OR gate producing the normal 2MHz clock

input to the microprocessor. Requests for a 1 MHz processor cycle from the address

decoding are fed via an inverter (1/6th of IC33) to the D-type (half of IC30) which

remembers that a 1 MHz cycle has been requested.

At the appropriate time, as governed by the 2M Hz clock, one of the 2MHz clock

cycles is marked off by the D-type (half of IC34) and when this happens the D-type

that remembered that a request had been made is cleared.

A 6MHz clock signal is required for the Teletext character generator (IC32). This
signal is produced by knocking a reset flip flop (two quarters of IC40) backwards

and forwards from 8MHz and 4MHz clock signals. The resulting flip flop output is
then itself inverted according to the state of the 2M Hz clock signal by an exclusive

OR gate (of IC38). Glitches on this output are removed by R119 and C48 to

24

produce the 6MHz clock signal at Pin B of IC37.

The dynamic RAMs are constantly cycled by a row address strobe signal which is

produced by a D-type connected to the 8 and 4MHz clock signals (half of 1C44).

This RAS signal then drives all of the dynamic RAMs via R106. The dynamic

RAMs

are divided into two banks of 16 kilobytes, that is two banks of 8 RAMs. These

banks are input- or output-enabled by virtue of having their column address strobe

available. In Model A computers with only one bank of RAM only CAS 1 is used.

32-kilobyte computers have a second bank of RAMs selected by a 74L551 circuit

(IC28) which controls the 745139 (half of IC45) producing the CAS signals. The

other half of 74S139 (half of IC45) is used to select between the processor and

CRT address lines.

The video processor uncommitted logic array takes data bytes from the RAM at the
rate of sixteen bits per microsecond and then serialises them according to the

display mode required. The bit streams for serialisation are then fed through a
block of high speed palette RAM which relates the logical colour from the serialiser

to the physical colour to be produced on the display. The palette drive is 16x4 bits

with the four bits representing red, green and blue drives, together with a flash bit.

The data bus input to the video processor is also used to access the mode control

register when the device is chip selected. In the Teletext display mode, RGB

information is fed straight into the video processor from the SAA5050 for the cursor

control to be added.

VDU throughput is much enhanced by the use of hardware scroll. A register in the

CRTC is used to store the start of screen address in the screen memory. Thus, in
order to scroll the screen, it is only necessary to increment this register by the

number of characters per line and then write to the memory address where the last
screen data was and where the new screen line data now needs to go.

The number of address lines from the CRTC used to address the screen memory

has to be sufficient to cater for the biggest screen, which is 20 kilobytes, therefore,

sufficient addresses to satisfy 32 kilobytes of screen memory are used. By the

hardware scrolling technique the picture rolls around in 32 kilobytes. For example,

with a scroll of eight kilobytes in a 20kilobyte screen, the original start of screen for

the 20 kilobyte mode was &3000. After the eight kilobyte scroll, the current start of

screen address is &5000 with the end of the screen as viewed by the CRTC at

&5000 plus 20 kilobytes, that is & A000.

The address & A000 is not physically in the RAM and it is therefore necessary to
modify this address in order to move it to the original start of the screen. This is

done by adding 12 kilobytes to get the required physical address. I n this way, the
physical memory addresses are kept within the required range. For the different

screen modes we need to add different numbers as their start of screen addresses

are different.

25

The following table shows this:-

Modes | Screen Size | Start of Screen Address | Number to be added

0,1,2 20K &3000 12K

3 16K &4000 16K

4,5 10K &5000 (or &1800) 22K

6 8K &6000 (or &2000) 24K

The number to be added to the start screen address in order to keep the hardware

scrolling within the correct physical memory address range is defined by the control
lines CO and C1 from 74LS5259 (1C32). This number is then computed with the

result being added to the higher CRTC refresh address lines by the CTRC
multiplexer (IC31).

26

3 MEMORY ORGANISATION

Operation of the RAM and ROM is controlled by the Memory Controller integrated
circuit. The principal function of this device is to control the memory paging.

Memory Map

The 65C12 can directly address 64K locations. As over 1/2 Mbyte may be resident,

a paging scheme is implemented.

&FFFF

ROM
&FFOO }

T/O or ROM } Memory Mapped I/0

&FEOO }
ROM

ROM/RAM (Region b)

ROM/Sideways RAM

ROM/RAM

ROM/RAM (Region a)

RAM
&0000

Machine Memory Map

&E000

&C000

&9000

 &8000

&3000

The current memory map is dictated by the contents of the two latches. ROM
SELect and ACCess CONtrol located at &FE30 and &FE34 respectively. The

contents of these two latches are:-

d7 d6 d5 d4 d3 d2 dl do

(&FE30) | RAM 0 0 0 PM3 | PM2 | PMI | PMO

(&FE34) IRR | TST | IFJ | ITU Y x E D

The contents of ROMSEL dictate the selection of memory which resides from

&8000 to & BFFF.

27

The contents of ACCON principally dictate the activity of two regions of memory.
(a) &3000 to &7FFF

(b) &CO000 to &DFFF

Random-Access Memory

RAM is functionally split up into two regions. The main region supports the
language workspaces, buffers etc. and provides the bit-mapped screen. The

second region provides four 16K “Sideways” RAM segments. These are link-
selected into ROM locations 4,5,6 and 7. They may be deselected, reinstating the

ROM sockets in blocks of 32 Kbytes.

Within the main 64 Kbyte region, the lower 32K is used within the &0000 to

&7FFF

region of the CPU memory map. The 64K of DRAM is distributed as follows:-

Bits in ACCON

+ &FFFF &7FFF +

With

EorX

active

&BO00 &3000

&DFFF

he

Ram Y active CPU

Address &9000 &C000 ADDRESS

&888F +

RAM

active

&8000 &8000

q &0000 &0000 q

Summary of RAM memory map

The upper 32K is split up into three, self-contiguous regions. The largest portion of

this is a 20Kbyte region designated LYNNE. This can be overlayed on the region (a)

of main memory.

When bit D in ACCCON is set, the CRT controller will display the contents of

LYNNE. When bit D is cleared, the region (a) of main memory will be displayed.

28

When bit E in ACCCON is set, if the address range is &3000 to &7FFF the CPU
will

read/write Lynne according to the flow shown below

7

N

Wait until end

of CPU clock cycle

4
Was the last No

cycle an opcode

fetch (sync=1)

From &C000 to

&DFFF in RAM
Read/Write Lynne Access main

NV Yes Memory

Is this cycle an Yes \

opcode fetch? 7

Y

 No

This system allows for the screen bit map to be removed from the main CPU

memory map of which it occupies a significant proportion. It will, however, only

work if the screen is being accessed by opcodes from a known region - i.e. the

MOS VDU drivers.

A mechanism is also provided to permit ‘illegal’ screen access. Bit X in ACCCON ,

when set, causes all accesses to region (a) to be re-directed to LYNNE. This

occurs irrespective of the opcode address, hence considerable care must be

exercised in its use. When cleared the memory map returns to its usual format.

In the same way that the BASIC variable HIMEM will always have the value &8000
when LYNNE is used, it is desirable for the variable PAGE to have the value &E00,

irrespective of the current filing system. This is achieved by providing a filing

system workspace. Bit Y in ACCCON when set, causes 8Kbyte of RAM, referred to

as HAZEL, to be overlayed on the MOS VDU drivers, i.e. from & C000 to &DFFF.

When this bit has been set, no calls may be made to the MOS for VDU operation.

The code which performs this paging operation is responsible for resetting the Y bit,

as no hardware is provided for this purpose.

The remaining bits in ACCCON are used to control various peripheral systems.

ITU, when set, enables the CPU to access the internal second processor

rather than the external one.

IRR is InterRupt Request. When set, this bit causes an open drain output to
pull the CPU NIRQ pin down to Vss.

29

ROMSEL

The contents of ROMSEL determine the paging of memory in the 16K region
&8000

to &BFFF. One of sixteen 16Kbyte ROM memory segments may be selected. One
additional 4Kbyte RAM segment may be selected from &8000 to &&8FFF.

Eight of the segments are assumed to be in four 32Kbyte ROMs where the least

significant bit of ROMSEL selects between the upper and lower segments. Seven

of the segments exist together with a ROM which is active from &C000 to &FFFF

within a 128Kbyte ROM. This ROM is connected via a separate data bus. The four

32Kbyte devices and one 16Kbyte device are connected in a matrixing scheme.

Segments 8 7,6 5,4 Chip Selects

Oo oO | or RAM enabling

Output Oo
Enable

 Cartridge O

ROMs

Chip Select
O oO

Segments 3,2 1,0

In this way, fewer connections to the controller logic are required to select a given

ROM, although the power dissipation will be increased if all the ROMs in one
column are inserted. A chip select will be driven low if an access to one of the

segments (4 to 8) is required. If a cartridge ROM is required, then the Cartridge
ROM chip select will be driven high. All chip selects are a decode of the CPU

address most significant nibble. An output enable is turned active low during the

CPU d2 period depending on which segment is required. The segment to be

selected is determined by the binary number held within the least significant nibble

of ROMSEL.

Overlaid RAM in ROM area

When the bit RAM is set in ROMSEL, accesses to the region &8000 to &8FFF are
redirected from the currently selected ROM to a region of RAM referred to as

ANDY. It is the responsibility of the code which set RAM to clear it after accessing
ANDY. This is necessary to ensure correct operation of software in ROM.

A further 64 Kbyte of RAM is available as four pages of 16 Kbyte from &8000 to

&BFFF. The ROM slots 4,5,6 and 7 are not active when this RAM is link-selected

to be active.

30

2MHz / a LL

|

lake — ons

| |!

~ Ons ate ||
lly >I = 60ns

appress ‘XX Wwny Mwy’ \ Wi)

rt il
>! je_ sok buffers switched off

VDU CPU

DRAM timing

RAS is generated from 4M and 8M by the D-type IC28 pin 9. CAS for the main
DRAMs is generated from 2M, inverted by a NAND in IC34 to give phi2 IN, gated

with DRAMEN which enables the main RAM, and finally gated with 4M through
another NAND in IC34.

31

4 SLOW DATA BUS

Several internal components need to work with access cycles slower than the

CPU's normal 1 or 2 MHz rates. These are:
1) Keyboard

2) Sound Generator

3) Real Time Clock/RAM

Direct access of these devices is not recommended, as their operation may be

subtly related to other functions, or be time-critical, or could cause malfunction if

not

performed correctly. The same functions may be provided by completely different
hardware in earlier or subsequent products. For those who need direct access,

rather than using the MOS, it is advisable to disable. interrupts whilst accessing any
of these devices because the MOS may change some of the settings whilst

servicing an interrupt from another source.

Memory Locations

All these devices are accessed through the System VIA located at &FE40-9. The

Slow Data Bus is connected to the 8-bit A port at &FE41 . This is referred to as

PA[0:7]. The B port at &FE40 is the control bus.

Slow Data Control Port (&FE40)

Writing the following values will have the indicated effect:
PA[7] DXXX XXXX - RTC/RAM Address strobe : Active high

PA[6] XDXX XXXX - RTC/RAM Chip select : Active low

PA[7] XXXX D111 - Shift lock : Active low

PA[7] XXXX D110 -Capslock: : Active low

PA[0:3] XXXX D101 - Hardware Scroll 1 (HST)

PA[0:3] XXXX D100 - Hardware Scroll 0 (HSO)

PA[0:3] XXXX DO11 - Keyboard Enable (KBEN)

PA[0:3] XXXX DO10 - RTC/RAM Data Strobe : Active high

PA[0:3] XXXX DOO1 - RTC/RAM Read Write : High for Read

PA[0:3] XXXX DOOO - Sound Generator write : Active low

D is set high or low as needed.
The hardware scroll bits HS[0:1] are used in VDU control.

32

Keyboard

The keyboard is accessed as a matrix of 8 rows by 13 columns. To access any
particular key, it is necessary to assert KBEN and set the column and row

addresses of that key on port A thus:
PA[3:0] (outputs) are the column address

PA[6:4] (outputs) are the row address

PA[7] (input) is the key output - active low if pressed.

An interrupt will be caused by CA? via R13[0] (bit 0 of &FE4D) whenever a key is

pressed.

Sound Generator

Within the MASTER 128, the sound generator chip is write-only. The write strobe
must be asserted low for the data PA[0:7] to be written into it. Data must be stable

during the 8ms in which the write strobe must be low.

Real-time clock/CMOS RAM

Fifty bytes of battery-backed CMOS RAM are available within the real-time clock

chip. Twenty bytes are used to store the system configuration, ten are reserved for

future use by Acorn, ten are reserved for used by third-party manufacturers and ten

are available for used by the user. Extreme care should be taken in the direct

control of this device to ensure integrity of the computer's configuration status. The

MOS should be used for the normal reading/writing of the RAM. FX calls 162 and

163 (OSBYTES &A2,&A3) are used to access the RAM. OSWORDs &14 and &15

should be used to read/write the time.

CMOS RAM Allocation

Address (offset) Function

0 Station Number

1 File server station number

2 File server bridge number

3 Printer server station number

4 Printer server bridge number

5 Default filing system/language

6-7 ROM frugal bits (set/cleared by *INSERT/*UNPLUG)

8 EDIT start-up settings

9 reserved for telecommunications applications
10 VDU Mode and *TV settings

33

11 ADFS start-up options and floppy drive parameters
12 Keyboard auto-repeat delay

13 Keyboard auto-repeat rate

14 Printer ignore character

15 Default printer type, serial baud rate, ignore status

and TUBE select

16 Default serial data format, auto boot option ,

internal/external TUBE use, BELL amplitude

17 ANFS configuration control (on hard reset)

bit 0 : Claim two static pages at &0E00

bit 1 : Findlib bootstrap option
bit 2 : Reserved

bit 3 : User/Application
bit 4 : User/Application

bit 5 : Reserved for ANFS protection
mechanisms

bit 6 : Display version messages
18-19

20-29 Reserved for future use by Acorn

30-45 For ROMs 0-15 (one per ROM)

46-49 Available for user applications

Note that the station number cannot be written to, and has to be accessed by code

similar to that listed in the RTC alarm section.

Real Time Alarm Functions

The MOS does not provide control of the device's alarm facilities as these are only
available on a daily basis, i.e. the alarm cannot be programmed to operate on a

specific date. The alarm operates by generating an interrupt when the real time

counters are equal to the alarm time registers.

The connection of the clock chip to the system interrupt line is via a shorting bar on

Link4. This would have to be fitted by the user. For the user willing to reserve

some of the other battery-backed RAM for the target date, the following routine

should be used to access the alarm and control registers. It is similar to those

within the MOS and obeys the rules for reliable operation. It is in the style of BBC

BASIC assembler.

pbq=&FE40 :REM Port B
paq&FE41 :REM Port A

ddraq=& FE43 :REM Port B data direction register
> REM “1” = Output

: REM “0” = Input

34

EQUB &02 :EQUB pbq
EQUB &82:EQUB pbq

EQUB &FF:EQUB ddraq

EQUB &0E :EQUB paq

EQUB &C2:EQUB pbq

EQUB &42:EQUB pbq

EQUB &41:EQUB pbq

EQUB &FF:EQUB ddraq

EQUB &4A: EQUB pbq

EQUB &00:EQUB paq

EQUB &42:EQUB pbq
EQUB &02:EQUB pbq

EQUB &00:EQUB ddraq

DS active

Address strobe inactive

Outputs

slow bus address (see note 1)

chip select active

Latch address

Select write mode

Outputs

Data strobe active

Write the data (see note 2)

Data strobe inactive

Chip select inactive

Inputs again

Note | This address should be made variable as it will be
necessary to access one of a number of registers.

Note 2 Separate sequences may be necessary for read and
write operations, depending on personal preferences.

RTC RAM Access Restrictions

The real-time clock section of the chip is updated from the real-time counters once

every second. It is important that the user program does not try to access them at

the same time as this will give erroneous results. There are three ways that the
chip gives notice that it is in the process of updating the registers. These are

documented in the manufacturers data sheet. Where possible it is recommended
that an alternative approach be used which ensures user access. This is to set the

SET (bit 7) flag in Register &B (the control register). It prevents the chip from

updating the registers but does not affect the “counted” time. When the SET bit is
reset, the registers will be reset to the current time approximately within the next

second. Avoidance of this critical region, or the overriding of it, must be done

whenever the real time or alarm registers are written.

The code should be assembled to operate in sideways RAM (~e. in the region

&8000

to & BFFF). The program is essentially in two parts:

a) To set the alarm time, an OSCLI command which will not conflict with any other
inthe machine, e.g. “*SETALARM hh:mm:ss” should be devised. This involves

recognising Service Call &04 (Offer Command). The program should interpret
the given time string as appropriate and load it into the alarm registers then re-

enable the counter-register transfers and finally enable the alarm interrupt by
setting the AI E (bit 5) flag in Register &B.

35

b) To respond to the alarm, the code should respond to Service Call &05
(Unknown Interrupt). The alarm flag - AF (bit 5) in Register &C should be

examined to ascertain whether the alarm has occurred or not. If so, the

appropriate action should be taken and the call should be claimed, otherwise

the call should not be claimed. The interrupt will be cleared by reading register

&C.

36

5 KEYBOARD CONTROLLER

Keyboard Operation

During free run mode, the keyboard column lines are continually scanned by

incrementing a counter, decoding its outputs and pulling low a column line. Any key

depressed will cause the interrupt to be generated. A signal, KeyBoard ENable is

generated to stop free running mode. The counter contents are then loaded by

CPU operation to determine on which row the key was pressed. The rows are then

individually selected to determine which key was pressed. KBDENC is supplied

with data from the slow data bus:-

PAO to PA6 (slow bus connections):- PAO to PA3 are the column select inputs
and PA4 to PA6 are the row select inputs. PA7 is a three-state connection which is

driven active low when a row/column combination describes a depressed key.

PA7 (row data bit output):- This 3-state output provides the ROW data signal to
the host system. It is enabled by the nKBEN signal and its output is high if the row

address set up on PA4-PA6 points to a row which is at logic low.

RO to R7:- The keyboard row input connections are normally held high by internal

pull-up resistors. If a key is depressed it will cause the appropriate row connection

to be pulled low when its column is selected.

C0 to C14:- These open collector column driving outputs are sequentially taken
active low in auto scan mode at a rate of 1 MHz. In polled mode (nNKBEN active

low), the slow bus inputs PAO to PA3 determine which output will be low. The
selected column output is a direct decode of these inputs.

CA2:- Connected to the system VIA, this output will cause the VIA to generate an

n IRQ. The line will be active low when an active Key is detected.

nKBEN:- Generated by the system VIA, this line is taken active low to enable the

row and column addresses to be determined by the Operating System.

MIHz1:- Timing reference for the positive edge triggered counter and the reset

generator circuit.

SWTI (switch input):- A transition from 5v to Ov or Ov to 5v on this input will

cause an active low pulse of 200ms to be generated on pin22 (RSTO).

37

RSTO (reset output):- This open-drain output is triggered by a transition on the
Switch Input pin SWTI and provides a logic low output pulse of at least 200mS. For

example if SWTI is taken from Ov to 5v via a mechanical switch, the output will

immediately fall to Ov, hold low for 200mS after switch bounce and then rise to 5V

again.

VCCI VCC2 (positive supply):- These pins must both be connected to the positive

pole of a suitable power supply.

GNDI, GND2 (ground):- These pins must both be connected to the power supply

GND or RETURN line.

1 RO VCCI 40
2 R6 MHZI1 39

3 R7 NKBEN 38
4 R2 PA4 37

5 Rl PAS 36
6 Cll PA6 35

7 C10 PAO 34

8 C12 PAI 33

9 CO PA2 32

10 GND2 PA3 31

11 C2 vCC2 30

12 C9 PA7 29

13 C4 CA2 28
14 C5 R5 27

15 C6 R4 26

16 C8 R3 25

17 C7 C13 24
18 C3 C14 23

19 Cl RSTO 22

20 GND1 SWT1 21

KBDENC connections

The keyboard encoder scans the keyboard matrix, interrupting the CPU when a key

is pressed. The MOS then puts the device in manual mode and scans the columns

until it finds one where a key has been pressed. It then scans the rows until it finds

one where a key has been pressed. It then goes on to check other columns and

rows to find out if any other keys have been pressed. This continues at 10ms
intervals (under the control of the system timer) until no keys are pressed, at which

point the MOS switches the device back to automatic scanning. The operation of
this circuit can be split into three modes.

38

Mode 1 - Free run

This is the state assumed during normal operating periods with no key pressed.

The keyboard is constantly scanned, with no intervention from the CPU, until a key

is pressed. A four-bit counter, clocked by a 1 MHz signal drives a four-to-fifteen

line

decoder. This causes a logic low to ripple through CO to C14. Should any key be

pressed, the column in question will be connected to the relevant row, which will

pull one of the inputs to the 7NAND gate low. As the other six inputs are all pulled

high, the NAND output will go high and thus generate an interrupt signal on pin

CA?.

Mode 2 - Column detection

The interrupt signal is registered in the host system which then takes a closer look
at the keyboard. The Operating System keyboard scan routine is entered and

individual addresses may be set up on PAO to PA3. These are synchronously
loaded into the counter while nKBEN is low, thus causing each keyboard column to

be individually scanned. The interrupt CA2 may be examined after each counter

load to see if the correct column has been reached. If this is so then the column

address is held on the counter and stored for future reference, if not then the next

address is loaded into the counter.

Mode 3 - Row detection

Having discovered and held the column address, the host may now set up

addresses on PA4 to PA6. These are fed to an eight-way data selector and cause
one of the eight rows to become available on the W output in an inverted state .

Should the correct row be found, W will go high and the current address will be
stored.

39

Keyboard Matrix

The keys are physically arranged as a QWERTY type keyboard with ten function
keys, four cursor control keys and a nineteen-key numeric keypad.

co {Ci | C2 | C3 | C4 | C5 {Co | C7 {C8 | C9 | C10} C11 | C12

RO | ESC | fl f2 f3 f5 f6 f8 f9 A @ 4 5 2

Ri [T48]Z [sp Tv [B [mM], > [ov |? 0 1 3
epy

R2 (SF 1s [ce |G [H [N [L]4; [C1 Joel [# [* J,
LOCK

R3 [ora [x [F Jy [sy [kK [@ [*: [ret [7 | del
R4 | !1 “2 |D R &6|U O P)[@ + ret

R5 |f0 |W |[E T ‘7 JI)9 {0 / @ |8 9
R6 | Q #3 [$4 | %5 | f4 (8 | f7 =- @ 6 7

R7_ | SF | CTL

INKEY NUMBERS

key Inkey Number key Inkey Number

f0 -33 4 -19

fl -114 5 -20

f2 -115 6 -53

f3 -116 7 -37

f4 -21 8 -22
f5 -117 9 -39

f6 -118 ; -103
f7 -32 _ -24

£8 -119 . -104

£9 -120 / -105

40

key INKEY number key INKEY number

A -66 [-57
B -101 \ -121

Cc -83] -89
D -51 A -25

E -35 - -41

F -68 : -73

G -84 ; -88
H -85 @ -72

J -70 ESCAPE -113

K -71 TAB -97
L -87 CAPS LOCK -65

M -102 SHIFT LOCK -81
N -86 CTRL -2

O -55 SHIFT -1
P -56 SPACE -99

Q -17 DELETE -90
R -52 RETURN -74

S -82 COPY -106

T -36 t -58
U -54 > -26

Vv -100 < -122

Ww -34 L -42
x -67 keypad 0 -107

Y -69 keypad 1 -108

Z -98 keypad 2 -125

0 -40 keypad 3 -109

1 -49 keypad 4 -123

2 -50 keypad 5 -124

3 -18 keypad 6 -27

keypad / -75 keypad 7 -28
keypad £ -91 keypad 8 -43

keypad * -92 keypad 9 -44
keypad , -93 keypad + -59

keypad RETURN -61 keypad - -60
keypad DELETE -76

4l

6 SCREEN DISPLAY

Screen Output

Three chips are primarily responsible for providing the screen output:-

a) Acorn VIDPROC ULA chip

b) 6845 cathode ray tube controller

c) Acorn CHROMA MSI video matrixing chip

The video processor takes a byte-wide data stream from memory, serialises it

according to the screen mode in use, passes it through a palette to provide logical
to physical colour transformation and on to the RGB outputs. From here the video

data is buffered for connection to an RGB monitor and mixed for use with the
composite video and colour television outputs.

High Resolution Modes

The 6845 generates a linear memory address sequence which increments every

0.5ms or | ms, depending on the video bandwidth selected and video data format.

The amount of memory reserved for screen use is also varied. The available

options are

Video Data Formats

“Mode” Format Reserved Memory

Pixels/Byte Bytes
0 8 20K

1 20K
2 2 20K

3 8 16K

4 8 10K

5 4 10K

6 8 8K

7 Teletext 1K

128 8 20K |]

129 4 20K |]

130 2 20K | Reserved

131 8 20K | in
132 8 20K | LYNNE

133 4 20K |]
134 8 20K |]

135 Teletext 20K |

42

All modes except 7 and 135 display a bit-mapped image of the reserved memory.
The 6845 may be re-programmed to display any arbitrary section of memory. If this

is done, however, the hardware scrolling will not work correctly, as it assumes that

the screen memory is in its usual location. The screen always ends at &7FFF and

starts 1 ,8,1 0 or 20K below, depending on the selected mode. The selection of video

bandwidth and data format is performed by programming the VIDPROC. The

cursor size and position is also controllable by VIDPROC. Special measures have

been taken to ensure correct cursor operation in the Teletext modes.

Teletext

The Teletext modes do not generate a bit mapped display, but a character cell one.

The character/graphics ROM within a SAA5050 device generates RGB signals

according to the desired character/graphics information within the reserved memory

space. Each byte of memory is therefore just a definition of the character/graphics

symbol required.

Other SAA505X devices may be used when different languages are required. Only

1 Kbyte of memory is needed for either of the Teletext modes, although 20K is

reserved for it in mode 135. The MOS uses the spare 19K to speed up inter-filing

system file transfers but the user may use this memory if no such transfers are to

be done. VIDPROC has to be re-programmed to use the SAA5050 RGB outputs.

The 6845 is still used to generate the cursor. As a delay of 2.75 ms will occur

between reading a character from RAM and outputting the appropriate RGB

signals, the 6845 has to be programmed accordingly. The “start” of screen signal is

given a | .5-byte time offset and the SAA5050 has a further one-byte time offset to
restore the correct cursor/data phase.

VIDPROC has further adjustment which allows for the cursor to be adjusted to pixel

accuracy.

Hardware Scroll

Scrolling may be achieved in any mode by re-programming the 6845 start of screen
address to an integral number of video lines further down the memory map than the

nominal start of screen. This causes the linear address generator to attempt to

display an end of screen, which is out of the reserved video area. To overcome this
effect, hardware scrolling is provided with a variable address wrap-around. When

the address generator would otherwise attempt to access out-of-screen RAM, its
addresses are modified to point to the gap between the original start of screen and

scrolled start of screen. When this is done, only the end of screen needs to be
written over in RAM. (if this is not done, the entire screen appears to “roll-over’).

The amount of modification to be used is controlled by two nodes; CO and C1.

43

Video Output

Three outputs are provided for displaying video data. These are:

a) PAL/NTSC encoded, UHF carrier. On channel 36 with 1.5mV into 75 ohm.

b) Composite video. This is a |v peak-to-peak signal.

c) Digital Red-Green-Blue (RGB) - these are approximately 75 ohm outputs.

For use with NTSC, the modulator has to be changed from UM1233/E36 to a VHF

equivalent. Provision is made for selection of either one of two channels with VHF.

A Molex type link has to be inserted for this.

DATA BUS IN

Serialiser

\
Palette Display

(64 bit RAM) M Enable

Control Register

4

Write

cs

Write
 AO Timing

6845 . Clock | || I RGB. in

Multiplexer
Select

 L
t

16MHz —» Clock Generator

bee: Cursor

Cursor Control .
| | | | Cursor Width }q— Display

Tnvert.

8MH 2MHz
~ 4MHz IMHz

R.G.B out

Block Diagram of the Video Processor

Control Registers

There are two control registers. The first contains miscellaneous control functions,

the other dictates the contents of the palette.

Miscellaneous functions control register (write only)

bit # | function parameters

0 select flash 0 - first colour

colour 1 - second colour

1 teletext/high | 0 - pallette output

res 1 - teletext output

2-3 | bits/pixel 00 - 10 chars/line 16 colours

Q1 - 20 chars/line 20 colours

10 - 40 chars/line 4 colours

11 - 80 chars/line 2 colours

4 6845 clock 0 - 1 MHz (Modes 4-7)

rate 1 - 2 MHz (Modes 0-3)

5-6 | cursor width | 00 - | byte

Q1 - not used

10 - 2 bytes (Modes 1, 5 and 7)

11 - 4 bytes (Mode 2)

7 main cursor QO - small

width 1 - large

Notes

bit 0 is re-programmed by the MOS at intervals to cause physical flashing

colour to alternate between its standard values and the (binary) logical
complement.

bit 1 dictates whether the RGB signal supplied to the external buffers comes

from the palette output or the Teletext character generator.

bits 5-6 The cursor is “on” for a number of byte-times, depending on the screen

mode.

45

Palette Control Register (write only)

bits 0-3 - physical colour

bits 4-7 - logical colour

These are programmed together so that a certain physical colour is associated with

a particular logical colour.

In two colour modes, bit 7 dictates the colour

- Eight locations must be programmed.

In four colour modes, bits 7 and 5 dictate the colour

- Four locations must be programmed for each logical colour.

In eight colour modes, Bits 7 to 4 dictate the colour
- One location must be programmed for each logical colour

The principle is that the remaining locations must be set to the same value as the

selected logical colour. If bits 7 and 5 ina four colour mode were “0, 1 “ and
physical

colour “0,1,1,1” was to be written to this location, then “0,1,1,1” must be written to

all logical colour locations obtained with the four combinations of bits 6 and 4 while

7 and 5 are held as “0,1”.

The Cathode Ray Tube Controller

The Cathode Ray Tube Controller (CRTC) is the heart of the microcomputer’s video

display circuitry. Its primary function is to display all video data in the memory on a
raster scan display device i.e. a television or a monitor.

The CRTC chip used in the Master Series of microcomputers has sixteen registers,

which can all be accessed by the command VDU 23,0. The manufacturer’s data
sheet gives the exact effect of the registers, and only the default values for each

screen mode and the two control bits HSO and HS1 in the slow bus control latch are

listed here. The bits HSO and HS1 affect the scrolling function by extending the

maximum address in the display memory map, as seen by the CRTC. Note all the

numbers are in Hexadecimal.

46

CRTC chip registers

6845 0(128) | 10.29) | 2(130) | 3(131) | 4(132) | 5133) | 61134) | 7(135) | Note

Registers

RO TF TF TF TF 3F 3F 3F 3F

RI 50 50 50 50 28 28 28 28

R2 62 62 62 62 31 31 31 33

R3 (H sync) | 08 08 08 08 04 04 04 04

R3 (V sync) | 02 02 02 02 02 02 02 02
R4 26 26 26 1E 26 26 1E 1E

R5 00 00 00 02 00 00 02 02 (1)

R6 20 20 20 19 20 20 19 19

R7 22 22 22 1B 22 22 1B 1B

R8 (interlace) | O1 01 01 01 01 01 01 01 (2)

R8 (Disp del) | 00 00 00 00 00 00 00 OL

R8 (Curs del) | 00 00 00 00 00 00 00 02

R9 07 07 07 09 07 07 09 12

RLO 67 67 67 67 67 67 67 72

R11 08 08 08 09 08 08 09 13

R12-13 3000 3000 3000 4000 5800 5800 6000 7000 (3)

R14-15 XX XX XX XX XX XX XX XX (4)
R16,R17 —‘|_---------_ | -------- Light Pen Position Register} -------- | --------

Ss

HSO0,HS1 1,1 1,1 1,1 0,0 0,1 0,1 1,0 N/A

Screen end TFFF TFFF TFFF TETF | 7FFF TFFF 7F3F TFE7

address

Light pen 0606 0606 0606 0806 OB04 OBO04 0Cc04 2808 (5)

offset

Light pen 1 2 4 1 1 2 1 1 (5)

cell mod.

Bytes per** | 280 140 AO 280 140 AO 140 28 (6)
text line

Text lines 20 20 20 19 20 20 19 19

per screen

VIDPROC 9C D8 F4 9C 88 C4 88 4B (7)

ctrl register

Notes

1) These only apply if the screen position has not been modified by *CONFIGURE,
Or a subsequent *TV command.

2) These only apply if the interlace has been turned on by *CONFIGURE, or a

subsequent *TV command.

3) These values are only valid before hardware scrolling has been used.

4) On reset, these registers are set to the screen start address, but the actual position

will depend on how much screen output has been generated by languages, filing

systems etc.

47

5) Light pens can be connected either to the Analogue Port at the rear of the

machine, or to either of the Cartridge Sockets just behind the keyboard. A “low”
pulse on any of these connections to the light pen strobe will cause the current

scan position to be latched in the light pen position registers, R16 and R17. The

accuracy of the measurement will depend on the sensitivity of the light pen. The

figures given should be subtracted from the R16,R17 contents to yield the actual

screen position, assuming ideal optical conditions. The adjustment arises out of

the different screen start addresses. The final X,y co-ordinates are:

X = ((R16,17 - Offset) DIV (characters per line))/Light Pen Cell Modifier

Y = (R16,17 - Offset) MOD (characters per line)

These offsets are only valid before hardware scrolling has been used. For this

reason it is often advisable to restrict light pen use to text or graphics using
graphics mode. The Light Pen Cell Modifiers are necessary as the 6845 is

clocked at different clock speeds in different modes, so in a given time, the 6845

“sees” a different number of character cells from the one the viewer sees. The
modifiers allow this to be taken into account.

6) Each character cell is eight bytes deep as the 6845 imposes this format on the

memory map; so each entry in this line of the table is the number of character

positions multiplied by eight. This figure can be used to establish the start and

end address of any scan row, given the screen's start address.

7) The VIDeo PROCessor (VIDPROC) control register's least significant bit is

changed in all modes except Mode 7 to cause the colours to flash.

CRTC Multiplexer

The CRTC Multiplexer converts the CRTC’s eighteen-bit address into two eight-bit

addresses for the row and column parts of the DRAM's video cycle. It also provides

the hardware scroll logic to keep the addressed memory within the screen's

20Kbyte boundaries.

48

Internal Timing

The device uses a slightly delayed version of the DRAMs' nRAS strobe to select
between the row and column parts of the address.

Hardware Scroll

The hardware scroll address modification as described in the section on 6845

register values (MOS chapter) is performed by logic within this device. Some of the

CRTC address lines are used in a non-standard way. The MA13 line is used as a

“Bit-Mapped or Teletext” mode indicator and is used to modify the address scan
accordingly.

Refresh Control

In the bit-mapped modes, the memory is scanned often enough to render explicit

refresh unnecessary. In the Teletext modes, the addresses of non-displayed
locations (as accessed in the 24ms per line when the display is inactive) are

modified to produce sequential scanning and hence maintain the refresh.

Multiplexing

The address is output, one half at a time for each of the Row and Column

addresses. One of four eight bit fields may be selected:

1) Bit mapped display - low order address
2) Bit mapped display - high order address

3) Teletext display - low order address
4) Teletext display - high order address

The VDU driver

The VDU Driver is extensively covered in Part | of the Reference Manual.

However , by programming in machine code, the hardware may be accessed

directly to give additional display modes, such as a 640*512 MODE. This is a two-

colour mode which uses both the main and shadow screen memories to store

alternate half-frames of an interlaced synchronisation and video picture. The

method used is as follows:

49

. Select MODE 0

. Program the CRTC for interlaced sync. and video.

. Set the EVNTV vector to point to your code.

. Enable the vertical synchronisation event.

. Use OSBYTE 70 (X=1) (*FX 112, 1) to select the half-frame to be drawn.

. Draw the half-frame.

. Use OSBYTE 70 (X=2) (*FX 112,2) to select the second half-frame.

. Draw the second half-frame.

. Use OSBYTE 71 (X=1 ,X=2) (*FX 113,1 and *FX 1 13,2) to select alternate

screens on alternate vertical synchronisation events.

O
m
A
I
N
M
N
P
W
N
E

The program will alternate the half-frames correctly but should provide the facility

to

reverse the display sequence as the hardware may present the two half-frames in

the incorrect phase.

The display may be distorted if any software disables the vertical synchronisation
event.

50

OSBYTE &75 (1 17) is used to read the VDU status byte, and puts its current value
into the X register. The bits in the result have the following meanings.

VDU status - bit 0

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bit 7

printer output enabled

scrolling disabled

paged software scrolling enabled

text window is currently defined

this is set up by VDU 28 and cleared by VDU 26

shadow screen selected

printing at graphics cursor enabled

cursor editing mode enabled
VDU is disabled via VDU 21.

51

7 THE USER PORT

The User Port provides the following facilities:

Eight-bit bi-directional data port with optional handshaking
Programmable pulse generator

Programmable frequency generator

Pulse counter

Synchronous/asynchronous SI PO/PISO shift register

It appears as a set of memory-mapped locations and is accessed using OSBYTEs

&96,&97 (150,151). As the parallel printer port is controlled by the same 6522

versatile interface adapter (VIA) chip, care should be taken to avoid conflicts
between the two applications. The 6522 registers that control the User Port are

described here, bit-by-bit. DO is the least significant bit, D7 is the most significant
bit. The User 6522 VIA has a base address of & FE60

Timers

Two sixteen-bit counter/timers are provided. They are designated T1 and T2. Each

consists of a sixteen-bit decrementing counter, one or two eight-bit latches and

some control logic. The latches are used to store the values that will be loaded into

their respective counters when a particular event occurs. The modes of operation

are determined by the Auxiliary Control Register.

User VIA Address Mapping

Offset Function

User Port Data Register

User Port Data Direction Register
T1 - Low Order Counter/Latch (R/W)

T1 - High Order Counter (R/W)

T1 - Low Order Latch (R/W)

T1 - High Order Latch (R/W)

T2 - Low Order Counter/Latch (R/W)

T2 - High Order Counter (R/W)

10 Shift Register

12 Peripheral Control Register

13 Interrupt Flag Register

14 Interrupt Enable Register

C
O
m
A
A
I
N
M
N
B
R
Y
 OS

52

User Port Data Register

User Port access. Bit PBO on the User Port corresponds to the data bit DO whilst
PB7 corresponds to D7. Control lines CB1 and CB2 can be programmed to behave

as handshake lines. CB1 acts as Data Acknowledge. CB2 acts as Data Ready.
For example, if the following connections are made between two Master Series

computers (A and B)

Computer A Computer B
PB[0:7] to PB[0:7]

CB1 to CB2

CB2 to CB1

Ground to Ground

when the interrupts are enabled, writing a byte to the User Port in A will cause an
interrupt to be generated in B. When B reads the data from its User Port, A will be

interrupted to indicate that the data has been taken. The data traffic will also work
in the other direction.

The manufacturer's data sheet should be consulted for detailed timing information.

User Port Data Direction Register

Each bit in this register acts as a flag for the corresponding User Port bit. If set it

will be an output, if clear an input.

Timer 1 Low Order Counter/Latch (R/W)

Read - the T1 low order counter is read and the T1 interrupt flag (in the Interrupt
Flag Register) is cleared.

Write - the data written into this latch is transferred to the T1 low order counter after

either the T1 high order counter is written to, or the T2 counter underflows through

zero in the free-run mode.

Timer 1 High Order Counter (R/W)

Read - the T1 high order counter is read, but the T1 interrupt status is not affected.

Write - the data written into the latch is stored and transferred into the T2 High
Order counter at the next system 1 MHz high transition. T1 low order latch is

transferred to T1 low order counter at the same time. This action effectively starts
the counter and the T1 interrupt flag is cleared accordingly.

53

Timer 1 - Low Order Latch (R/W)

Read - the value in the T1 low order latch is read. T1 interrupt status is not affected.
Write - equivalent to writing to Offset 4.

Timer 1 High Order Latch (R/W)

Read - the last value written is read back.

Write - the value written is stored, but is only transferred to the T1 high order

counter when T1 underflows in free-run mode.

T2 Low Order Counter/Latch (R/W)

Read - T2 low order counter is read and the T2 interrupt is cleared.

Write - the data written is stored in the T2 low order latch.

T2 High Order Counter (R/W)

Read - T2 high order counter is read.

Write - the data is written directly into the T2 high order counter. This causes the

value in the T2 low order latch to be transferred into the T2 low order counter and

the T2 interrupt is cleared.

Shift Register

A multi-function register controlled by the Auxiliary Control Register at Offset 11 .

It
is a left-shift, circulating register, i.e. data is shifted in from bit 0 towards bit 7 and

when shifting out, has bit 7 connected to the input of bit 0. It has eight modes of
operation which are in no way related to the screen modes.

Mode 0 - Static Shift Register.

Read - the value shifted into the shift register is read.

Write - the shift register will contain the value written.

Shift - the data on CB2 will be shifted in on CB1 positive transitions.

Interrupts - the shift register interrupt is disabled.

Mode 1 - Data Shifted in by T2.

Read - the value shifted into the shift register is read. Shifting will start.
Write - the shift register will contain the value written. Shifting will start.

54

Shift - data is shifted in on CB2
a) after a read/write operation with the SR interrupt clear,

b) after T2 times out following a read/write with SR interrupt SET. Shifting

will occur for eight T2 time-outs.

Interrupts - the SR interrupt will occur after eight T2 time-outs.

Note: In this mode CB1 is clocked with the T2 time-out. This is to provide a clock

for the external device providing the data. Data is shifted in on the CB1 negative

edge, but is sampled (latched) on the CB1 positive edge. For this reason, the

external device should be clocked on the CB1 negative edge. Shifting stops after

the eighth shift.

Mode 2 - Data Shifted in by the system 1 MHz clock.

This is similar to Mode 1 except that CB1 clock is the system 1 MHz clock, divided
by two.

Mode 3 - Data Shifted in by externally provided CB1 clock.

This mode is used when data is provided by an asynchronous source from which a

clock is derived.

Read - the value shifted into the shift register is read.

Write - the shift register will contain the value written.

Shift - data is shifted in on CB2 at the system 1 MHz pulse after the CB1 positive

transition.
Interrupts - the shift register interrupt is set after 8 data bits have been shifted in. It

is reset at the next read/write of the shift register.

Note. Due to the shift-in timing, it is recommended that the incoming data rate
should not exceed 250kHz, thereby allowing for the asynchronism between the

transmitting and receiving units. The actual data rate is more likely to be limited by

the speed with which the “register full” interrupt is serviced; the shift register keeps

shifting whether or not it is serviced, so data may be lost if the user's program does

not respond in time.

Modes 4 and 5 - Data Shifted out by T2.

Read - the current shift register value is read. Shifting will start.

Write - the shift register will contain the value written. Shifting will start.
Shift - data is shifted out on CB2

a) after a read/write operation with the SR interrupt clear.
b) after T2 times-out following a read/write with S R interrupt set. I n Mode 4,

shifting occurs at every T2 time-out. In Mode 5, shifting will occur for eight
T2 time-outs and then stop until the interrupt is serviced and new data is

loaded.

Interrupts - the SR interrupt will occur after eight T2 time-outs.

55

Note: In this mode CB1 is clocked with the T2 time-out. This is to provide a clock
for the external device sampling the data. Data is shifted on the CB1 positive edge,

but should be sampled by the external device on the CB1 negative edge. For this

reason, the external device should be clocked on the CBI negative edge. Shifting

stops after the eighth shift in Mode 5 but is continuous in Mode 4.

Mode 6 - Data Shifted out by the system 1 MHz clock.

This is the shift out equivalent of Mode 2.

Mode 7 - Data Shifted out by externally provided CB1 clock.

This is the shift out equivalent of Mode 3. The same restrictions to data rate apply.

Auxiliary Control Register (R/W)

Controls the shift register mode, Timer 1 . Timer 2 and the Port A B latching. It is
divided into three fields

(1) Port Latching

Bit 0 enables/disables latching of the Printer port. This bit must be

maintained at all times.

Bit 1 enables/disables latching of the User Port. A logic 1 will enable

latching. CB1 acts as a strobe to latch the data.

(2) Shift Register Control

Bits 4,3,2 Function

000 Mode 0

001 Mode 1

010 Mode 2

011 Mode 3

100 Mode 4

101 Mode 5

110 Mode 6

111 Mode 7

(3) Timer 2 Control

Bit 5 0 - interrupt when T2 decremented to zero

1 - decrement T2 with each pulse input to PB6. Interrupt when T2=0,
then re-load and continue counting, so generating an interrupt stream.

T2 high order counter must be written after every T2 interrupt to enable
the next interrupt

56

(3) Timer 1 Control

Bits 6,7 Operation

00 After loading T1 , it will generate a single interrupt after

decrementing to zero.

01 After loading T1 , it will generate a stream of interrupts; one

whenever it counts down to zero.

10 As 00 but output a single pulse on PB7 as well as the

interrupt.

11 As 01 but generate a stream of output pulses as well as the

interrupts,

Note: When Timer 1 mode 1 1 is selected, PB7 will change polarity every time T1

counts down to zero. This means that it will output a waveform of frequency.
PB7 frequency = 1/(<T1 latches>*2)

Peripheral Control Register.

The most significant nibble dictates the function of the CB1 , CB2 control lines,

whilst the least significant nibble controls CAl , CA2. The latter should not be

touched as it may interfere with correct parallel printer operation. Whenever writing

to this register, ensure that the least significant nibble is preserved.

CB1 Interrupt Control

Bit 4 0 - generate an interrupt on a CB1 negative edge.
1 - generate an interrupt on a CB1 positive edge.

CB2 Control

Bits 5,6,7 Operation

000 CB2 will generate an interrupt on its negative edge

001 CB2 as above, independent mode

010 CB2 will generate an interrupt on its positive edge

011 CB2 as above, independent mode

100 CB2 provides the “Data Ready” handshake output.

101 CB2 provides a single high-going pulse.

110 CB2 goes to a0

111 CB2 goes toa l

Independent Mode

Whilst reading the User Port Data Register would normally clear the interrupt

request that transitions on CB2 have created, in the “independent modes” these
interrupts have to be cleared by directly clearing the appropriate bits in the Interrupt

Flag Register.

Note that the bits 0, 1 ,2,3 perform a similar function for CA1 and CA2.

57

Interrupt Flag Register

The CPU has to be able to determine which function of the User Port is generating
an interrupt. This register has a bit representing each of the functions that can do

this. Even if an interrupt source has been disabled using the Interrupt Enable
Register, it can still set its appropriate flag in this register. A set bit indicates that

the function is trying to generate an interrupt.

Register bit set when... cleared when...
0 CA2 active edge occurs Printer port is accessed

1 CAI active edge occurs Printer port is accessed

2 Shift Register completes Shift Register is accessed

8 shifts

3 CB2 active edge occurs User Port Data is accessed

4 CB1 active edge occurs User Port Data is accessed

5 T2 times-out Read T2 low order OR

Write T2 high order
6 T1 times-out Read T1 low order OR

Write T1 high order

7 Any interrupt is set All interrupts are clear

Note that bit 7 is designed to enable fast interrupt control. It is only necessary to

test bit 7 to find out if any of the functions are generating an interrupt request. The

CPU's BIT operation will cause its negative status bit to be set if bit 7 is set in this
register.

Interrupt Enable Register

For each bit in the Interrupt Flag Register to cause an interrupt, the corresponding

bit in the this register must be set.

Register bit Enables the interrupt from
0 CA2

1 CAI

2 Shift Register

3 CB2

4 CB1

5 Timer 2

6 Timer 1

7 Global

If the Global bit is clear, then every set bit in the register disables the corresponding

interrupt request. If it is set then every set bit in the register enables the

corresponding interrupt request.

When this register is read, Bit 7 will be set and other bits will be as written.

58

Example of motor control

For example, to control a three axis machine which uses stepper motors, Timer 1
frequency generator output may be used to provide stepping pulses to motor phase

sequence generators. Other PB lines can provide forward/backward control and
move/hold controls. This means that all three motors can be rotating at once. The

Timer 2 pulse counter can be used to count the number of pulses that have been
applied to the motors. Every time a T2 interrupt is generated, those motors which

are enabled will have their positions (as stored in memory) updated by the CPU.

Limit switches on each axis can be connected to over-ride the 6522 outputs and

logically ORed to generate an interrupt so that if any motor tries to go “off the end”
the CPU will detect this and so prevent the occurrence of any damage. The PB

lines can then be used as inputs to determine which motor has gone to its end stop.

Method

Assign the User Port pins :

a) CB1 will be the global alarm (overrun) input.

b) PA7 is the frequency generator output.

c) PA6 is the pulse counter.

d) PAS is the Z axis enable/fault indicator.

e) PA4 is the Z axis direction control/fault indicator.

f) PA3 is the Y axis enable/fault indicator.

g) PA2 is the Y axis direction control/fault indicator.

h) PAI is the X axis enable/fault indicator.

1) PAO is the X axis direction control/fault indicator.

To run the motors:

PA7 must be a frequency output

PA6 must be a counter input

PA[0:5] must be outputs

Thus.

Location Contents Comments
7 0

&FE6A 00000000 CB1 negative interrupt

&FE6B 11100000 Set up the timer controls
&FE6E 1000 looo Enable the T2 interrupt

&FE62 10111111 Enable the outputs
&FE60 xxpppppp___ Operate the motors

o is the old contents p is the desired action

59

Timer 1 should be programmed with the value for the required operating frequency.

To find out which motor has overrun:

PA[0:5] should be inputs

PA7 should be switched off whilst the overrun is checked.

Thus:

Location Contents Comments

7 0

&FE6B 00100000 Switch off Timer 1

&FE62 10000000 Inputs to read the switches.
&FE60 XXDDDDDD Read the switches.

o is the old contents p is the desired action

Operation can now be returned to “Running Mode”.

60

8 THE SERIAL PROCESSOR

The serial processor (SERPROC) is used in conjunction with the 6850 UART to
provide the RS423 and cassette tape interfaces. It contains a baud rate generator,

channel multiplexer and tone generator.

UART

The device responsible for providing most of the serial port functions is a 6850

UART. This has all the receive/transmit and data formatting/error checking that is

necessary for both systems. It is fully described in the March 1983 edition of the

Hitachi Microcomputer Databook.

SERPROC

The ACORN proprietary part, SERPROC is effectively a multiplexer and baud rate

generator for the 6850. It also generates the phase-continuous transmission
circuitry for use with the cassette interface.

Buffer Components

The RS423 transmit data and CTS lines are buffered by an AM26LS30 or

equivalent. This provides a single ended transmission with slew rate limited output.

RS423 receive data and RTS is buffered by a mA9637AC or equivalent. Both
buffers are connected with single-ended input configurations.

Cassette data output from the SERPROC is buffered by a single, non-inverting

operational amplifier with a simple single pole filter, a.c. coupling capacitor and
current limiting output resistor.

61

Control Register Settings
Bit# Function Parameters

0-2 Transmit Baud Rate 000: 19200

100: 9600

010: 4800

110: 2400

O11: 1200

101: 300

O11: 150

3-5 Receive Baud Rate 000: 19200

100: 9600

010: 4800

110: 2400

O11: 1200

101: 300

O11: 150

111: 75

6 Channel Select 0 : Select Tape

1 : Select RS423

7 Cassette Motor Relay 0 : Contacts open

1 : Contacts

Note. The Transmit and Receive baud rates both assume that the 6850 has its

clock divider set to divide by 64.

Receive baud rate not used in cassette mode, but Bit 3 may control inversion of the
Transmit data (VTI version of SERPROC)

62

9 THE PERIPHERAL BUS CONTROLLER

The peripheral bus controller buffers data between the 65C12 CPU con the “CD”
bus) and the internal peripherals on the “BD” bus, the external “1 MHz Bus” and the

external “Tube” interfaces (both on the “ED” bus). It also contains a timer to
generate a long delay after power-up.

Internal Timing

All the necessary timing is synthesised from the system 8MHz and | MHz signals.

Buffer Control

The selected buffer path is determined by the RDY and FIT signals, as described

for the I/O Controller, together with the system R/W signal.

Timer

The timer is an eight-bit counter with an external oscillator, which is also used as

the timer’s output. The oscillator output is used to charge/discharge a timing

capacitor. The use of a charge time constant which is 1% of the discharge time

constant causes the output (CHRG) to be low most of the time. When the input

(TICK) crosses the threshold during an oscillation, the counter is incremented.

When the terminal count is reached, the output is fixed high. The counter can only
be reset by switching the power off. This timer was originally designed to support

the boost charge of nickel-cadmium batteries for the Real Time Clock.

63

1V/O Definition

Pin Name No VO ‘Input Buffer Type Output Buffer Type
TICK 4 I CMOS SCHMITT

NFIT 5 I CMOS

R/W 6 I CMOS

RDY 11 I CMOS

NPRST 1 I TTL -

DEN 2 I TTL -

M1 29 I TTL -

M8 31 I TTL -

CHRG 3 Q - standard

BRNW 7 0 - standard

EMIE 8 0 - standard

ER/W 9 0 - standard

ED7 12 VO TTL standard + tristate

ED6 13 VO TTL standard + tristate

ED5 14 VO TTL standard + tristate

ED4 15 VO TTL standard + tristate

ED3 16 VO TTL standard + tristate

ED2 17 VO TTL standard + tristate

ED1 18 VO TTL standard + tristate

EDO 19 VO TTL standard + tristate

CD7 28 VO TTL standard + tristate

CD6 27 VO TTL standard + tristate

CD5 26 VO TTL standard + tristate

CD4 25 VO TTL standard + tristate

CD3 24 VO TTL standard + tristate

CD2 23 VO TTL standard + tristate

CD1 22 VO TTL standard + tristate

CDO 21 VO TTL standard + tristate

BD7 40 VO TTL standard + tristate

BD6 39 VO TTL standard + tristate

BD5 38 VO TTL standard + tristate

BD4 37 VO TTL standard + tristate

BD3 36 VO TTL standard + tristate

BD2 35 VO TTL standard + tristate

BD1 34 VO TTL standard + tristate

VCC 30 Vcc connection (low inductance)

GNDI1 10 Primary GND connection (low inductance)

GND2 32 Secondary GND connection (low inductance)

GND 3 20 Secondary GND connection

64

AC Parametric Test Information - Timing Specifications

Timing Point to point Parametric-Specification Time(ns) Output Load

Symbol measured at Vec=Min Tamb=Max Min Max VFace Value

Tjl M1 (LH/HL) jitter wrt M8 (HL) -30 +4

Tdl EMI1E (LH/HL) from M8 (HL) 0 60 TIL A

Td2 ER/W (LH/HL) from RNW (LH/HL) 0 80 TIL A
Td3 ER/W (LH/HL) from M8 (HL) 070 TIL A

Td4 BR/W (LH/HL) from R/W (LH/HL) 0.50 TIL B

Td5 CD7..0 stable data from NFIT (HL) 085 TIL Cc

Te2 BD7..0 (ZH/ZL) from M8 (LH) 0.90 TIL B

Tz2 BD7. . 0 (HZ/LZ) from M8 (HL) 072 Z B

Td6 B Bus, SAto SL data, from M8 (HL) 075 TIL B

Td7 B Bus, SLto SA data, from M8 (LH) 090 TIL B

Te3 ED7..0 (ZH/ZL) from NFIT (HL) 0.90 TIL A

Tz3 ED7. .0 (HZ/LZ) from M8 (HL) 0105 Z A

Tz4 ED7..0 (HZ/LZ) from NFIT (LH) 0105 Z A

Td8 CD7. . 0 (LH/HL) from BD7..0 (LH/HL) 070 TIL C

Td9 CD7. . 0 (LH/HL) from ED7..0(LH/HL) 070 TIL C

Load circuit component values Load Value C(pf) R(ohms)

For details of load circuit A 150 1000

see AC measurement definition B 100 1000

Cc 170 1000

R/W (latched)

ROW

MBL
Td3 +1 le Td3 ol le

ER/W OO

R/W (transparent)

Td4 +] Je Td4 +] |e
BR/W TTT

Td2 oy fe Td2 >I |<

65

SA data latching point.

The video data for the SA5050 Teletext Display device is time division multiplexed
with the internal 1 MHz peripheral data (as distinct from the external 1 MHz Bus).

This data is latched at the point X in the timing illustrated below.

x

ML ———_ -

EMIE___ [~—ti(‘(COt;~*

M8 ~LJ-~ LS LSE LPL LS EFT LL

Tsl >| |-

ipo) SAX
Thi | |.

SL data latching point

Data for 1 MHz internal peripherals is latched at the point Y on the timing diagram

below.
Y

Mi j

EMIE |

Ms Sf LJ LS LI LS Li Ls LJ Li

66

C Bus Drive Waveforms

The peripheral bus controller drives the CPU data bus (the C Bus) on the following

occasions: a) Reading from internal peripherals
b) Reading from the external 1MHz Bus

c) Reading from the external Tube
Because these events may or may not be in phase with the CPU cycle, the PBC

withholds the data until the correct time.

1 a
EMIE” } } } . . . £L_H<jJ | _

ms JLIPU LULU ULL LL LLL Le

Reading from the 1MHz Bus or an internal 1MHz peripheral. EM1E is in phase.

Case 1

NFIT | l |

Td5 >| *

| |+ Tzl
Tel >| [+

CD7..0 — |

output { E >

CASE 2 | |

Reading from the 1MHz bus or an internal 1 MHz peripheral. EM1E is early.

ER/W

RDY LCL]

NFITT Of

Note:- NFIT = 0 for E only | | Tel -| |+

Tzl | | > | |+ Tz1
CD7..0
output E/B Sroseseeten E/B ~ socnstnesanesnnetnesannsene

67

B Bus Drive Waveforms

The B Bus contains both the internal | MHz peripheral data and the SAA5050 video
data. This bus is used by the Modem connector, so it IS important to observe the

timing constraints.

a a
EMIE J

M JLIULIUUU UU LULU LU L$

Case 1

No internal peripheral access

 ER/W

Case 2

An internal 1Mhz access is interleaved with the SAA5050 video data.

ERY —| T
We

rs |
Vv

Te2 +] \~ >| fr Td7 +| I | | 2
+Tz

BD7..0
output ene < SA \ SL » SA }

68

E Bus Drive Waveforms

The E Bus operates at either 1MHz or 2MHz under the control of the CPU READY
line, which it samples. This signal is driven by the 1/O controller with a logic low to

slow the CPU down to 1 MHz when a slow access is made. The PBC extends its
bus cycle time in much the same way as the CPU. In this way the 1MHz Bus and

Tube connectors can be driven by the same buffer. It is important that 1 MHz Bus
peripherals using any significant length of ribbon cable (greater than 30cm) use 2k

pull up/down resistors to minimise line reflections to the Tube.

MET

a a ee

Case | - Writing to the tube.

BRNW
NFIT

out Cs. > output sence nena e eee cece eeneeeneneeeeen ee aen ee mee renee eeenee senna eaeseneneeeneeeemneemeneeaneed SL jae eneeeeene ee eee eran een renee enema eneneeeeeneemeeceneereneeeeee

Case 2 Writing to the 1MHz Bus
Both of the two possible timing relationships are shown. The data has a nominal

250ns data setup time before the rising edge and a minimum hold time of 125ns
after the falling edge of EM1E (measured at the PBC). The address set up is also

shown. This is generated by a latch clocked at 4MHz and so presents a minimum

address set up time of 250ns and a minimum address hold time of 250ns.

ER/W C— [—

RY TR2T=NQN"N

NFIT a ee

Te3 —y | Tz3 > *

ED7..0
output ened SEN

Address ___X. X

69

18 THE 1MHz BUS
This chapter describes the signals available on the 1 MHz Bus, the circuitry required

to utilise them, and the way in which they are connected to the Acorn Expansion
Box. The expansion memory map is also defined. When interfacing designs to the

1 MHz Bus, it is vital to ensure compatibility with Acorn standards, to prevent
problems when using several pieces of equipment on the bus simultaneously.

The standards cover both hardware and software protocols. It is as important for

the software to follow these guidelines as it is for the hardware, otherwise

simultaneous operations of several peripherals may not be possible. The standards

described allow up to 64K of paged address space to be accessed as well as 255

bytes of direct access ports.

Signal definitions

The following lines are available on the 1 MHz Expansion Connector.

A0-A7 The low eight address lines from the 6502, buffered by a
74LS244 (IC 71) permanently enabled.

DO- D7 A bi-directional data bus connected to the CPU through

IC 72, a 74LS245 buffer. The direction of data is

determined by the system Read-not-write (R/W) line. The

buffer is only enabled if nPGFC or n PGFD is low (see

below).

Analogue in An input to the BBC Microcomputer audio circuitry. Input

impedance is 9K. A signal of 3volts RMS will produce a
saturated signal at the loudspeaker (full volume), though

signals this large will cause distortion if the on-board sound
or speech is used at the same time.

nRST Not Reset. This is an OUTPUT ONLY for the system reset

line (active low). It may be used to initialise peripherals on

power-up and when the “BREAK” key is pressed.

nPGFC & nPGFD “Not page FC” and “Not page FD”. Page select signals
decoded from the top eight address bits of the system data

bus. These signals are active low. Pages FC and FD (ce.
&FCO00 to &PCFF and &FDO00 to &FDFF) are the only

pages available for general expansion. However, the

70

paging register described in Section 5 allows a much
larger address space to be accessed.

nIRQ Not Interrupt Request (active low). The system IRQ line

which is open collector (i.e. “wired-or”) and may be
asserted by devices attached to the extension bus. The

pull-up resistor on this line is 3K3. 1 RQ is level triggered

and it is absolutely essential for correct operation of the

machine that interrupts do not occur until the software is

capable of dealing with them. Interrupts on the 1MHz bus

should therefore be disabled on power-up and reset
conditions. Significant use of interrupt service time may

affect other machine functions. In particular, masking
interrupts for more than 1 OmS will affect the real time

clock.

nNMI Not Non-Maskable Interrupt (active low). The system NMI
line which is open collector (i.e.”wired-on’) and may be

asserted by devices attached to the extension bus. The

pull-up resistor on this line is also 3K3. It should be

remembered that NMI is negative-edge triggered and that

both the disc and net chips on the main board use this line.

Caution must be exercised to avoid masking other

interrupts by holding the line low. Use of NMI facilities on

the BBC machine requires an advanced knowledge of
6502 programming techniques and the Operating System

Protocols.

1 MHZE A system clock timing signal which is a 1 MHz 507% duty-
cycle square wave. During access to 1 MHz peripherals

and to the extension bus the processor clock (normally

2MH~z) is stretched so that the trailing edges of IMHzE and

processor clock are coincident.

R/W The system Read-Not-Write signal which is derived from

the CPU R/W signal through two 74LS04 inverters.

OV System OV, i.e. GND wires, dispersed so as to interleave

with asynchronous groups of signals in a flat ribbon cable.

71

Hardware requirements for

1 MHz expansion bus peripherals

No power may be drawn from the BBC Microcomputer. Each peripheral should

have its own integral power supply, although a separate power unit may be used.

Not more than one low-power Schottky TTL load may be presented to any bus line

by each peripheral.

A | MHz Bus feed-through connector should be provided. Connection to the BBC
Microcomputer should be via 600mm of 34-way ribbon cable terminated with a 34-

way IDC socket, and fitted with strain relief. Please note that copying the Teletext
Adapter's layout is not possible, because this has been given the special status of

the last box in the chain.

Optional bus termination should be provided on all bus lines except NRST , NNMI
and NIRQ. The recommended termination is a 2K2 resistor to +5 V and a 2K2

resistor to ground for each line.

Further requirements for equipment to be

approved by Acorn Computers

Address space within page &FC must be allocated by the Research and

Development Department of Acorn Computers Ltd.

The dimensions of any peripheral and its associated integral power supplies should
allow it to be fitted into the BBC Microcomputer Expansion Box.

When housed in the Expansion Box, the equipment should meet BS415 Class 1

specifications for electrical safety.

Further details of the requirements and procedures for gaining approval should be

obtained from Acorn. The information included here is for guidance only and is not

intended to be a full specification for approval.

72

Derivation of valid Page signals

1MHz peripherals are clocked by a 1 MHz 50070 duty cycle square wave (chosen to
allow chips such as the 6522 to use their timing elements reliably). The Master

Series 65C12 normally operates with a 2MHz clock, but with a slow-down circuit
which has the effect of stretching the “clock high’ period immediately following the

detection of a valid 1 MHz peripheral address.

There are two problems as a result of this. First, addresses will change and may

momentarily become 1MHz addresses while the 2MHz CPU clock is low, but while

the 1 MHZE signal is high. This could give rise to a spurious pulse on the chip

select. Second, if the CPU deliberately addresses a 1 MHz peripheral during the

time that 1 MHZE is high, the device will be addressed immediately, and then again
when | MHZE is next high: this is because the CPU clock will be held “high” by the

stretching circuit until the next coincident falling edge of the 1 MHz and 2MHz
clocks. This double access is not usually a problem except when reading from or

writing to a location twice has some additional effect: an example of this is an
interrupt flag which is cleared by reading it.

These effects mean that the 1 MHzE Bus cannot be used as a conventional

“address valid” signal. However, addresses will always be valid on the rising edge
of | MHZE. If the chip select lines are latched by 1 MHZE, the clean signal CNGFC

(or CNPGFD) will be generated.

Address space allocation

Page FC

Page FC is reserved for peripherals with small memory requirements. Only one

peripheral will be allocated to each group of addresses. Further allocations must be

agreed with the R & D department of Acorn Computers Ltd.

Initial allocations are:

FCO00 to FCOF Test Hardware

FC10 to FC13 Teletext

FC14 to FCI F Prestel
FC20 to FC27 IEEE 488 Interface

FC28 to FC2F Acorn Expansion: spare
FC30 to FC3F Cambridge Ring Interface

FC40 to FC47 Winchester Disc Interface
FC48 to FC7F Acorn Expansion : spare

FC80 to FC8F Test Hardware

73

FC90 to FCBF Acorn Expansion: spare
FCCO to FCFE User Applications

FCFF Paging Register

Page FD

Page FD is used in conjunction with the paging register to provide a 64K address

space, accessed one page at a time. Each BBC Expansion Box will have a paging

register on the back plane, thus data will be latched simultaneously On every

Expansion Box. Data latched into the paging register will provide the top eight

address bits to the Eurocard back plane. These top address bits are referred to as
the 'Extended Page Number’. Any peripheral designed to locate in page FD without

using an expansion back plane must latch and decode the paging address
information.

To make this facility as easy to use as possible, nPGFD (a hazard-free version of

the signal available from PL12) will be connected to the back plane pin 24b, 'Not
Valid Memory Address’ , and also OR-ed with the top four extended page address

lines as a link selectable option to pin 31a 'BLKO’. (the other option on this pin will

be n PGFC).

Extended pages &00 to &7F are reserved for Acorn use, pages &80 to &FF may be

freely used by special applications. The paging register will be reset to &00 on

power-up and BREAK.

Since the paging register is a write-only latch, location &OOEE in the zero page of

the BBC machine address map has been allocated as a RAM image of the register.
Note that this location will remain in the I/O processor's memory map if a second

processor is fitted.

The importance of this image is that it allows interrupt routines to change the paging

register and restore it again afterwards.

It is vital to change location &OOQEE BEFORE changing the paging register itself. If

you don't, then an interrupt may occur before you change the RAM image and this

will restore the paging register to the old value of &EE.

A suitable sequence is

LDA # new value
STA &EE

STA &FCFF

User routines should save the contents of &EE before changing the paging register
and restore both &EE and &FCFF to this value before returning from the interrupt.

74

 IMHKE —\, fT

tas =| — tah —,4|] J

Address and

R/W lines

tcc —» — tha [-

NPGFC, NPGFD

tdsw _| « tdhw —4| I-

Data (WR)

tdsr — tdhr

Data (RD)

Timing requirements

Parameter Symbol Min. Max.
Address Set-up time tas 300 =: 1000

(& R/W Set-up time)

Address Hold Time tah 30

(& R/W Hold Time)

NPGFC & NPGFD Set-up Time tcs 250 ~=1000
NPGFC & NPGFD Hold Time tch 30

Write Data Set-up Time t dsw 150
Write Data Hold Time t dhw 50

Read Data Set-up Time t dsr 200
Read Data Hold Time t dhr 30

Note: The above timings are based on only one peripheral attached to the

Expansion Bus. Heavy loading may slow the rise and fall times of 1 MHZE with

possible adverse effects on timings.

75

R-S flip-flop with gated input which allows ‘clean select’ to be set low only if 1
MHZE is low. An alternative circuit using transparent flip-flops is shown on the

circuit diagram for the Expansion Box back plane (Drawing 107,000,)

76

11 THE MACHINE

OPERATING SYSTEM

This section explains how to extend the MOS facilities of the microcomputer, such

as the VDU driver and the TUBE interface. It includes a full address map (which

has indicators showing where the MASTER 128 and the MASTER Econet Terminal

differ from the earlier BBC machines), the vector allocations (which are given in

full)

and details on the use of vectors with interrupts and the Tube.

It may be helpful to refer to the chapter on the MOS in Part | of the Reference
Manual for additional information.

Address spacemap

The address space map, which shows the address allocations and the areas of

memory used by the computer, indicates to a programmer which areas of the

memory are available for him to use. However , it does not show individual

input/output allocations as they have already been documented in Part 1 of the

Reference Manual.

Although this section explains how to use areas of memory which are normally
reserved for specific purposes, Acorn does not condone the practice, as it may lead

to software incompatibility when used on a machine other than the one on which it
was written or if the configuration of the machine is changed.

PageO

&0000-&008F. current language workspace - some languages e.g. BASIC, allow

other programs to use areas of free memory,

&0090-&009F. ECONET private workspace - not available for any other use.

&00A0-&00A7. Non-Maskable Interrupts (NMI) workspace - may be used only

after NMI has been claimed. The source of the NMI has a filing

system number allocated to it (rather than a ROM number) and it

must be able to service the calls &OB and &0C (which indicates

that it is either in the “sideways” region &8000 to &BFFF, or that it
can intercept OSBYTE &8F). NMIs should not change any

locations unless they are specifically allowed to or unless it is
their own workspace.

TI

&00A8-&00AF MOS scratch space. It is not necessary for this space to be
preserved between MOS system calls and therefore may be used

by other programs during this time. However, it is not

recommended for general use because the integrity of the space

will not be preserved across MOS calls.

&00B0-S00BF filing system scratch space - like the MOS scratch space it is not

preserved between system calls. During this time other programs

may use it although this practice is not recommended because

they will not be preserved across filing system calls. “Hidden”
filing system calls e.g. those produced by OSWRCH if the
command *SPOOL has been used also use this space.

&00C0-&00CEF current filing system workspace - under no circumstances must

this area be used because it may be corrupted at any time

&00D0-&00FF MOS workspace - not available for use by other programs. The
VDU driver is fully explained in section E of Part 1 of the

Reference Manual,

In previous BBC microcomputers this area contained various

pointers and flags for 1/O operations. This is not the case with the

Master Series.

Pages 1 to &D

&0100-&01FF processor stack and error messages buffer. The stack follows

normal 6502 practice and works as a LIFO buffer at the top of the
page. Error messages are stored temporarily at the bottom of the

page.

&0200-&0235: vector addresses. For more details of this area please refer to

the section on Extending the MOS.

&0236-&028F. main MOS variables - not recommended for any other purpose.

&0290-&02FF . MOS workspace - not available for other purposes.

&0300-&037F. VDU variables. It is only possible to us this area for graphics

routines, more details on the use of these are available in

sections D, E and F of the Reference Manual Part 1 . In earlier

BBC microcomputers some of the variables had different
functions, details of which are given in the Appendices.

78

&0380-&03DF Cassette Filing System workspace - available only if the CFS is
not used.

&03E0-&03FF keyboard input buffer - available only if the keyboard buffer has

been replaced.

&0400-&07FF
. language workspace - may be used if the current language

allows (e.g. BASIC). It is also used for the relocation of the host

communications routines with second processors.

&0800-&087F sound workspace - its use is not recommended as this may

cause the generation of spurious sounds.

&0880-&08BF printer buffer - may be used for other purposes if printing is not
required.

&08C0-&08FF workspace for the sound envelopes | to 4 - available for other

purposes if the envelopes are not used.

&0900-&09BF RS423 output buffer, cassette output buffer for access to the first

part of sequential files or workspace for sound envelopes 5 to 16

- otherwise available for other purposes.

&09C0-&09FF Speech buffer or cassette output buffer for access to the second
part of sequential files - available to users if not required for these

purposes.

&0A00-&0AFF RS423 input buffer or the cassette input buffer for access to
sequential files - available for other uses if not required for these

purposes.

&0B00-&0CFF. ECONET workspace - may not be used for any other purpose if

at any time the computer will be connected to an ECONET

system. In previous BBC microcomputers this area was used for

the soft key buffer and the upper 32 characters of the exploded

font. This means that previous routines for writing a soft key

definition directly into the memory can no longer be used.

Correct operation on the Master Series and on the earlier BBC
machines can be achieved by using the OSCLI interlace.

&0D00-&0D5F. NMI routine workspace. In order to make use of this area for

other uses NMIs must be claimed (paged ROM service call
&0C) . The same restrictions apply to the use of this area as to

&00A0-&00A7 which is described above. On earlier BBC

microcomputers this region extended to &0D9E.

79

&0D60-&0D7F ECONET workspace - it may be used for other purposes if the
machine is not going to be connected to an ECONET system.

&0D80-&0D91 : available for user programs.

&0D92-&0D9E: Reserved for a Trackerball or Mouse. It is necessary for these

devices to have immediate access to non-paged memory in order

to service the interrupts from their reference phase signals. This

area has been reserved for fast updating of their counters.

&0D9IF-&ODEF extended vector address set, more details of which can be found

in the section on extending the MOS.

&ODF0-&0DFF paged ROM workspace. Usually one byte for each ROM is used

for the high byte of the private workspace address. Some ROMs,
such as the DNFS also use it to indicate that they are not active

by resetting bit 7. The reason for the inactivity may be, for
example, that essential hardware is not present or that a

particular filing system is dormant.

Pages &E to &7F

The allocation of this area of the memory is variable. Some of the pages at the

lower addresses may be used by the paged ROMs or by programs that raise the

Operating System High Water Mark (OSHWM). Some pages at the higher

addresses may be allocated to the screen, if it is not in shadow mode. The

remaining memory is allocated to user memory, i.e. language workspace.

In the Master Series soft character definitions are held in RAM at &8000, whereas

earlier BBC microcomputers stored them in RAM above &0EO00, raising OSHWM.

Pages &80 to &BF

At any one time, one of sixteen images resides in the memory pages &80 to &BF.

These images may be in ROM, RAM, or EPROM and include parts of the operating

system, the sideways MOS ROM (ROM &F and the top 1.5k of the ROM &E).

The MOS makes the paged ROM code in the address range &8000 to &8FFF

unavailable during graphics and soft-key calls by setting the high bit of the ROM

select latch high. This swaps in 4k from a further 32k of RAM. Paged ROMS which

need to use of this area can do so by calling routines given in the VDU drivers
specification section of Part | of the Reference Manual. Note great care must be

taken when laying out these ROMS to avoid attempts to execute ROM code within
the overlaid area.

80

Sideways ROM numbers 0,1,2 and 3 are allocated to the cartridges and a further

“vertical” paging mechanism may be used with these. When using the “vertical”
paging mechanism some 1 Mbit and 512kbit EPROMS are arranged as sixteen and

eight pages of 16k bits respectively. When these devices are plugged into the

cartridge slots they will appear as a 16k byte image, but any one of the remaining

seven (for the 1 Mbit) or three (for the 512kbit) images may be obtained by writing

to the EPROM with the vertical page number. This a major departure from standard

EPROMS and allows 512k bytes to be fitted into four EPROMS and yet only use

16k of the computer's address space. This is illustrated below.

To insert the paged EPROM into the memory map of the computer the value of the
EPROM is written to address &FE30. The required vertical image is then selected

by writing to any location in the range &8000 to & BFFF. Note this selection is
maintained even if through a hard break (e.g. CTRL-BREAK). The next access to

these sideways EPROMS will be from the new image. On power-up the special
EPROMS default to vertical page 0. To use this facility include a standard ROM

header line for each vertical page. An example of a typical paged EPROM is the
27513, which is four pages of 16k bytes.

81

Pages &CO to &DF and page & FF

The main MOS ROM resides in the areas &CO to &DF and &FF However, in the

standard configuration pages &CO to &DF of the MOS are not directly readable,

because the filing system RAM is switched into this area. This part of the MOS
contains the graphics routines and is enabled when needed. Another feature which

should be noted is that access by instructions in the area &CO to &DF to data in the
locations &3000 to &7FFF are automatically mapped into either the main memory

or

the “shadow” screen memory depending on the current screen mode. The state of
the memory map is determined by the ROM select latch at &FE30 and the memory

access latch at &PE34. If these registers have been changed, then the memory

map may not behave as described above.

Page&FC

Page &FC is mapped to either the external 1 MHz Bus or the cartridges via the

signal INFC (INternal FC). The cartridges will be accessed when bit IFJ is set in the
register at &FE34. This page is intended to be used for memory mapped hardware.

Page & FD

This page is also mapped to the external 1 MHz Bus or the cartridges by the signal

INFD. This page will access the cartridges when the IF] bit of the register &FE34 is

set. The page &FD is intended to be used for accessing the remote memory. Note

that location &FCFF is reserved as a paging register to allow up to 64k bytes to be

accessed through this page.

The Second 32k of RAM.

The second 32k of RAM does not occupy one contiguous block of addresses, but is

allocated as follows:-

&3000-&7FFF shadow screen memory - any part of it not required by the current

screen mode is available for user programs. Access is gained by

manipulating the memory map latch. However, note that the

command *MOVE will use this area if one of the non-shadow

modes or a shadow mode occupying less than 20k bytes, is

being used.

&8000-&83FF soft-key expansion buffer - not available for any other purpose.

82

&8400-&88FF VDU workspace which can only be used for VDU routines that
require large amounts of workspace, e.g. flood filling. Care must

be taken to avoid conflicts between different routines of this sort.

Commercial software should avoid using these areas.

&8900-&8FFF character definitions.

&C000-&DBFF paged ROM workspace. The ROMS use service calls to claim

the area. This is a similar procedure to the one used to claim

space above &E00. Static workspace in this area or above &E00

should only be used by filing systems although any ROM may
have private workspace.

&DC00-&DCFF MOS CLI buffer - this area is corrupted by all * commands, and

its use for other programs is therefore not recommended.

&DD00-&DEFF transient utility workspace and it is available for user written
* commands and the *MOVE command.

&DF00-&DFFF. MOS workspace only. It may not be used for any other

programs.

VDU Workspace

&00D0-&00D9: non-transient VDU variables and should not be used by any other

program.

&00DA-&00E1 : VDU scratch space and not available for other purposes.

&0300-&037F VDU workspace. There are two forms of graphics co-ordinate,

internal and external. The external graphics co-ordinate is the

one used by the BASIC PLOT command. The internal graphics

co-ordinate is derived from the external by taking into account the

graphics origin and scaling so that it is measured in pixels, both

horizontally and vertically. Graphics co-ordinates are stored in

four bytes, with the low byte of the X co-ordinate first.

&8400-&87FF VDU workspace in the shadow RAM used as scratch space for
flood filling. If the flood fill is active, one of the values

0, 1 ,2,3,4,5,6,7,8,9 or A will appear in the location &8601.

Therefore any routines that need to use this space must have

one or more values allocated to them by Acorn Services and
Training Department. If a routine in the set changes any byte in

the VDU workspace, it must leave one of its values in the location

83

&8601. If the workspace is assumed to contain any valid data, it
must check that location &8601 contains a suitable value. If

location &8601 does not contain a valid value then the routine

must take the appropriate action.

VDU workspace allocations

&0000-&000F scratch space e.g. flood fill.

&001 0-&000F not allocated.

&8800-&882F non-transient VDU variables.

&8830-&88BF VDU scratch space.

&88C0-&88FF reserved for future use by non-transient VDU variables.

&8900-&8FFF current character definitions.

Earlier BBC Microcomputers and the Acorn Electron

&00D0-&00D9 VDU variables. These are not transient and should only be
altered in keeping with their function.

&00DA-&00DF VDU scratch space - it does not need to be preserved between

VDU calls, and is not preserved across them.

&00E0-&00E1 non-transient VDU variables.

&0300-&0327 non-transient VDU variables.

&0328-&0349 With the exception of &338, which when in teletext mode is a

non-transient variable, this area is a VDU scratch space.
&034A-&037F non-transient variables.

Extending the MOS

There are occasions when the standard MOS facilities do not meet the

requirements of a particular application e.g. when additional hardware has been
included in the system. For such situations it is possible to extend or in some cases

replace most of the MOS functions with user defined ones. It is possible to make
extensions to both the time-dependent and the time-independent functions. It is

recommended that users become familiar with the time-independent functions
before changing the time-dependent functions which are more complex.

Time-Independent Functions

Time-independent functions may be invoked at any time. The main MOS functions

are entered by calling a subroutine (JSR) at the appropriate entry point. (For

example, OSWORD is entered at & FFF .) The actual entry point for the start of the
function is stored in a vector table. The routine is accessed by an indirect Jump

(JMP) command located at the entry point. In the previous example of OSWORD,

34

the vector address is &20C and the MOS code at the OSWORD entry point is JMP
(&20C). The vectors are stored as a lookup table in RAM at addresses &200-235.

The table is initialised on RESET and by substituting vectors which point to user-

supplied code it is possible to change the MOS functions.

Vectors in co-processors

Most of the MOS calls are available in the operating system of a co-processor.

However, it should be borne in mind that although re-directing a vector in the co-

processor will only affect the co-processor, re-directing a vector in the host will

affect both the co-processor and the host. For example, intercepting the OSWRCH

command with WRCHV in the host in order to change all lower case characters to

upper case will change all the output from the host and the co-processor. However,

if the intercept takes place in the co-processor then only the output from the current

application will be changed, anything from the filing systems which operate only in

the host will remain unchanged.

Vectors In Sideways ROM/RAM

Extended vectors may be used to point to sideways memory rather than a location
in non-paged memory. This allows the user to specify the ROM (or RAM) slot

number as well as the target address. The procedure is shown below.

a) Using OSBYTE 168 , read the start of the extended vector

space (<evs start>).

b) Starting at (<evs start> + 3*<vector>), place the following data into

memory.

(<entry point in ROM (least significant byte>).
< entry point in ROM (most significant byte)>.

< ROM slot number >.
c) the relevant vector is then changed to.

&FFOO + (<vector>-&0200)*3/2

The vector's location (<vector>) is selected from the table shown below. The

number (<vector>-&0200)/2 is called the vector number.

85

MOS Function Vector Table

Function Entry Point
Main MOS Functions

OSBYTE &FFF4

OSWORD &FFF1

OSCLI &FFF7

OSRDCH &FFEO

OSWRCH &FFEE

OSEVEN Via Vector

Error (BRK) vector

User vector

Input control

keyboard operation

Output Control
unknown plot codes

user print vector

Buffer control
buffer insert vector

buffer remove vector

buffer control

Filing system functions
OSFIND &FFCE

OSGPBP &FFD1
OSGBPUT &FFD4

OSBGET &FFD7
OSARGS &FFDA

OSFILE &FFDD
Filing system control

ECONET vector

Spare (indirect) vectors

Interrupt request vectors

high priority devices

low priority devices

Notes

Vector Name

BYTEV
WORDV

CLIV
RDCHV

WRCHV

EVENTV

BRKV

USERV

KEYV

VDUV

UPTV

INSV

REMV

CNPV

FINDV

GPBPV
BPUTV

BGETV
ARGSV

FILEV
FSCV

NETV

INDLV

IND2V

IND3V

IRQIV
IRQ2V

Vector Location

&20A
&20C

&208
&210

&20E

&220

&202

&200

&228

&226

&222

&22A

&22C

&22E

&21C

&21A
&218

&216
&214

&212
&21E

&224

&230

&232

&234

&204

&206

1) OSRDSC, OSWRSC, OSNEWL, OSASCI, GSINIT and GSREAD are not

vectored because they have very specific functions, details of which are in the
Reference Manuals Parts 1 and 2.

36

2) It is only possible to access functions without entry points by using vectors. User
code must call the function indirectly by JMP (<location>), rather than directly by
JMP <location>,

3) OSEVEN has been included in this section because although it is often used as a

means of simulating real-time events its use is not restricted to this.

4) USERV has been included in the MOS sub-section because it is used to pass the

unknown OSWORDS &EO to &FF the user.

5) The time-dependent functions use the RQ vectors and are included here for

completeness.

Entry pointed vectors

The entry pointed vectors are used for most of the MOS routines. Part 1 of the

Reference Manual fully describes the entry and exit conditions.

Vectors without MOS entry points

These are mainly user defined which means that MOS entry points cannot be
defined.

EVENTV

System events may be simulated by using OSEVEN. OSEVEN is called with X

being the event to which the routine is to be passed. A and Y are then transposed

and X is preserved The user's routine must preserve all the registers when passed

on through EVENTV.

On entry Y corresponds to the event. The following table lists the values for Y and

their corresponding events. The values for X and Y are event specific.

Event 0 - output buffer empty
X - buffer number Y-unused.

0 keyboard
1 RS423 input

2 RS423 output

3 printer

4 sound channel 0

5 sound channel 1

6 sound channel 2

7 sound channel 3

8 speech

87

Event | - input buffer full
X - buffer number(as event 0) Y - overflow character

Event 2 - character entering buffer

X-unused Y - most-recent character

Event 3 - ADC conversion complete

X-unused Y - ADC channel measured

Event 4 - start of vertical sync. (retrace)

X-unused Y-unused

indicates a retrace has started

Event 5 - interval timer crossing zero

X - unused Y-unused
system VIA interval decremented to zero

Event 6 - ESCAPE has been pressed

X-unused Y - unused

Escape condition will not be generated or transmitted to parasite

Event 7 - RS423 error

X - 6850 status Y - char received shifted right

Event 8 - network event
X-Isb Y - msb of remotely requested procedure

Event9 - user event

conditions are user-defined

Event &FE - network receive

This event is enabled by *FX52,150 ctrl blck # and disabled by *FX52,100. It is

not affected by *FX13 and *FX 14.

Note an escape condition will not be transmitted to the parasite when the ESCAPE

key is pressed if an escape condition has not been generated by changing bits 6

and 7 in location &OOFF.

BRK instruction

The instruction BRK is the software equivalent of the 65C12 processor to a

hardware Interrupt ReQuest (IRQ). BRK fetches the next instruction from the

address stored in & FFFE and &FFFF, which is the address of the I RQ routine in the

MOS. The I RQ routine sets up the stack as described below and then via BRKV

performs a JMP.

38

The BBC microcomputers use this mechanism to indicate an unrecoverable
software fault and use the vector to implement error routines. For example,

languages use the vector to point to their error handlers. The user routines pointed

to by the BRKV command should exit via the old contents of the vector because the

stack will have been modified.

The command ReTurn from Interrupt (RTD should not be used as it may cause the

program to jump into the stack where the error message might be.

On entry A, X, and Y will remain set up as they were before the BRK command.

An RTI instruction will be set to return the stack pointer to the location two bytes

after the BRK command. RTI should only be used if special user code has been
sent after the BRK instruction as opposed to the error structure described next.

The locations &00FD and &OOFE are a pointer, placed by the MOS, to the location

after the BRK.

The current stack pointer will be contained in location &00FO.

The slot number of the ROM that was active when the BRK instruction was issued

can be read by OSBYTE &6A.

The following structure should be placed after the BRK.

BRK
<pointer> <error number>

< first byte of error message>
oe

74

74

< last byte of error message >

&00

The null is a recognised means of ending a message. The handler should interpret

it accordingly.

BRK instruction in single processor systems

The Entry Structure is set up as shown above, but Service Call 6 (BRK) is

performed before the vector indirection is performed so that the filing systems, or
any other service ROM, can take the appropriate action.

89

BRK instruction in co-processor systems

If the BRK is executed in the host, the above structure is set up in the co-processor
but terminated with an | RQ. This causes the Tube Operating System (TOS) to

make a copy of the BRK and error string in its own memory. The BRK is then
executed; it is treated as if the BRK had originated in the co-processor. If the BRK

is originally executed in the co-processor, the error pointer is calculated as normal,
interrupts are re-enabled and BRKV is used. Service Call 6 is not issued.

USERV

The USERV instructions cause program flow to be directed via USERV. This may

be used for user-defined OSWORD calls. Entry to routines via the *CODE and

*LINE commands is simplified by using the USERV vector.

Entry

condition

A=0 *CODE has been entered.

A=1 *LINE has been entered. For further information, refer to the

Reference Manual part 1 .
A=224-255 the indicated Unknown OSWORD has been called.

On Exit: A, X and Y should be the same as on entry and the user routine should

end with an RTS instruction.

KEYV

The instruction KEYV is used to read the keyboard and it is this instruction that
informs the MOS just how much work to do on the keyboard. The required

operation is indicated by the status bits C (carry) and V (overflow). Normally these
are set and serviced by the MOS. However, by redirecting this vector the user can

invoke, supplement, or replace the normal MOS keyboard scanning, for example, to
add an alternative keyboard. The vector can also be used to al low keyboard

scanning when the interrupts have been switched off. On entry.
If C=0 and V=0 then the SHIFT and CTRL keys will be read, returning N=1 if

CTRL is pressed and V=1 if SHIFT is pressed.

If C=1 and V=0 the keyboard is scanned as described by OSBYTE 121.

If C=0 and V=1! the key-pressed interrupt is serviced. This causes OSBYTE &78 to

be performed which reads the character corresponding to the pressed key into

memory.

If C=1 and V=1 normal keyboard scanning will take place unless OSBYTE &C9 has

been used to disable it. This entry is made once every 10ms until all key
depressions have been removed. This processing includes SHIFT , SHIFT LOCK,

CAPS LOCK and CTRL.

90

VDUV

A number of VDU control sequences are “unknown” to the MOS , this means that
the MOS has no internal routines to which they correspond and therefore it passes

control via VDUV to another code that may be able to deal with it. Those listed
below are not the only unknown VD U codes but are merely those not previously

assigned to other purposes. The Reference Manual Part 1 has a full list of the
assignments.

VDU 23, <28 to 31 >. This is used to provide up to 8 further parameters all of which

must be supplied, even if they are zero.

VDU 25, <240 to 255>. These are the unknown graphics plot commands. If a VDU

25 command is made in a non-graphics area VDUV will be used.

VDU 25, <28 to 31>. Currently these are undefined.

Allunknown VDU calls are indicated by the C (carry) flag.

On Entry.
C=0: Unknown PLOT (VDU 25) command. The parameters are stored in VDU

variables 31 to 35 and can be read by OSBYTE &AO.

VDU variable Contents
31 command number
32 co-ordinate X least significant byte

33 co-ordinate X most significant byte
34 co-ordinate Y least significant byte

35 co-ordinate Y most significant byte

The co-ordinates will already be scaled into internal pixel co-ordinates.

C=1 : User defined ASCII command. A= the command number, the remaining eight

variables are in VDU variables 27 to 35.

In non-graphics modes the parameters will be stored as in C=0 given above. The

co-ordinates will not be scaled to internal co-ordinates in text modes because they

have no meaning.

On Exit:

If the code is unknown to you the program flow should be returned via the OLD

contents of VDUV , otherwise use an RTS to terminate the code.

91

UPTV

The User Print Vector (UPTV) is provided for user printer routines. There are two
ways of enabling this vector, by using *FX5,3 or by default using the CONFIGURE

PRINT 3. U PTV is re-directed to point to user printer control routines. This facility
is especially useful if the printer has special features which cannot be accessed by

the standard printer drivers. Printers often have their more powerful features
invoked by sending an <ESCAPE> character followed by a number of characters

which specify the parameters to be used. The substitute printer driver can translate

the special characters into the required command sequences. The following figure

shows the flow of data under these circumstances.

Is character a special

highlight character?

yyes

Look-up code/codes

to substitute with

highlight codes

ho

Send Character

straight to printer

Send code to printer

and loop back for

nextuntil no more
+ Y

Return to routine

 more

Printer data flow

UPTV can be called when another printer driver is active, as shown below. If this is

the case control should be returned via the old contents of UPTV rather than

terminating with RTS.

In the following cases, when U PTV is used, it is the responsibility of the printer

driver to manipulate the computer's parallel printer port directly or to output serial

data via the RS423 stream. The A-register notifies the printer of the required

operation and on exit the carry flag is used to indicate a result.

92

Entry

condition

A=0 the driver is entered this way once every 10ms, unless it has indicated that it

is dormant, which is described below. The driver should ensure that the

ACKnowledge line of the printer is active (high) and read a character from the

buffer using OSBYTE &91 . After any necessary translation the character is

sent to the printer.

On Exit the driver should declare itself dormant if the buffer is empty by using

OSBYTE &7B followed by an RTS. This enables the printer driver to be

changed if necessary and prevents the MOS from wasting time by sending
10ms calls to an empty buffer.

A=1 the driver has previously been dormant and one or more characters had been
placed in the buffer. The reading and printing of the characters is as for A=0.

On exit, the carry flag signals the buffer state to the MOS (C=1 shows that the
buffer is empty).

A=2 ASCII code 2 (Ctrl-B) has been sent to the driver. Except in shared systems
where it is used to claim a remote printer, the driver should be made to ignore

this code.

A=3 ASCII code 3 (Ctrl-C) has been sent to the driver.

A=4 not used.

A=5 the printer type has been redefined using OSBYTE 5. The new printer driver

number is in X.

FSCV

The vector FSCV provides access to a number of miscellaneous filing system

functions. The required function is indicated by a reason code in the accumulator.
Unless indicated, the registers are not defined and interrupts may be enabled

during the call.

Entry

Condition

A=0 A *OPT command has been issued with X and Y as parameters.

A=1 check for End Of File (EOF) - file handle in X-register.

If on exit EOF is true X=&FF, otherwise X=0.

A=2 * /<FILENAME> command has been issued. The filing system should try to
*RUN the file named after the / symbol.

A=3 attempt to *RUN specified file. X and Y contain the Isb and msb respectively
of the address of the ASCII string containing the name of the file. This call is

originates when a * command has been rejected by all ROMS. If the file

cannot be *RUN, the message “BAD COMMAND?” will be issued rather than
“FILE NOT FOUND”.

93

A=4 X and Y point to the name of a file to be *RUN.
A=5 X and Y point to a string containing the parameters of a *CAT command that

has just been issued.

A=6 another filing system is being invoked so *SPOOL ana *EXEC files should be

closed and other open files should be ensured.

A=7 the filing system is being interrogated to supply its range of file handles.

On Exit X= the lowest handle, y= the highest.

A=8 an OSCLI command has been issued. This call permits filing systems to

ensure the integrity of their media.

A=9 a *EX command has been issued and the information is sent to the output

stream.
A=10 *INFO command has been issued The information is sent to the output

stream.

A=11 *RUN a file via LIBFS.

INSV

The INSV Vector can be used to invoke a custom routine to insert characters into a

specified buffer or to provide a much larger buffer.

On entry A=<character> and X=<buffer number>.

On exit C=1 if the buffer is full. (The MOS will abort or retry in response to this.)

REMV

The REMV vector may be used to invoke a routine to remove a character from the

buffer or simply to examine the character.

On entry X= the buffer number, V=0 to remove the next character from the buffer or

V=1 simply to examine the next character.
On exit C=1 if the buffer was empty, X is preserved, Y is the character to be

removed, or A=the character that was examined.

CNPV

The CNPV vector points to a routine to count the number of characters in a buffer or

to flush that buffer.

On entry X= the buffer number. To count the characters set V and C to 0 and to

count the spaces set V to 0 and C to 1. To flush the buffer set V to 1 .

On exit the values of V and C are preserved. If a count has been made, X= count

least significant byte and y=count most significant byte.

94

NETV

The NETV vector usually points to the routine which initialises the Advanced
Network Filing System (ANFS) and thus permits the use of utilities like * VIEW and

*REMOTE. The NETV facility can be used by user code for this purpose or to
restrict the ECONET access to a particular part of the system by filtering out

unwanted commands. On entry the function to be performed is contained in A.

Entry

condition

A=0-3,5 printer commands, same as for UPTV. The number for the ECONET

printer driver is 4.

A=4 OSWRCH has been called.

On exit the character will be output if C=0, otherwise C=1.

A=6 OSRDCH has been called.

On exit the network should put the character into A.

A=7 OSBYTE has been called. The values of A, X, and Y are stored at

&O0EF to &00F1! .

If on exit the call is passed to OSWORD then V=0 , otherwise V=1.

A=8 a line has been read by OSWORD 0. ANFS can now take over

OSRDCH.

INDirect Vectors

There are three indirect vectors available, these are IND1V , IND2V and IND3V.

The indirect vectors are used to access sideways ROMS and the Terminal Emulator

uses IND1V and IND2V.

Note on the entry points for these vectors

These routines are not provided with entry points, but the MOS versions of them
terminate with an RTS. They should be called by.

JSR <callroutine>
66

.callroutine JP (<vector>)

This performs a Jump to Subroutine and then an indirect Jump.

95

Time-dependent functions

In the previous section on time-independent functions some functions which might
have been expected to be time-dependent were described. This was because

software routines may be used to simulate tasks which are normally dictated by
external events, a technique which is frequently used to develop real time software.

Real time events usually occur at a high frequency compared with the time taken to
run the service software and also they may occur fairly quickly in relation to other

events.

Real time events are initiated by hardware, either internal or external, which passes

an interrupt request (IRQ) to the CPU. An IRQ is generated by pulling the IRQ pin

of the CPU low. As all devices are connected to this pin, the MOS has to

interrogate them to determine which device was the source of the interrupt. When

the source device has been identified the MOS will service it and perform a

vectored subroutine call via EVENTV to pass on the information.

If the CPU cannot determine the source of the interrupt it offers it to each of the

sideways ROMS or RAMS. In this way hardware which uses interrupts (for

example, on the | MHz bus) may be accommodated. Whichever page the controller

software is in, it will ultimately be notified of the interrupt.

The time this takes may result in data being lost. In order to alleviate this problem

the computer can be set up to give the user the chance of identifying an interrupt
before it is passed round the computer, or back to the MOS.

EVENTV

The entry parameters for EVENTV are detailed in the previous section. If any extra

hardware has been added to the computer, it will generate an interrupt to cause the
MOS to pass control via EVENTV with A=9, if it has not been able to determine the

source of the interrupt itself. Note this only happens if the USER Event has been
enabled with OSBYTE &E,9.

In order to process the IRQs quickly, it may be necessary to process them before

they are passed round the sideways ROMS, or in some cases before the MOS

services them. Two vectors IRQ1V and IRQ2V are provided for this purpose.

Function vector name_ location
To access the highest IRQ1V &204

priority devices.
To pass the event IRQ2V &206

round paged ROMS

96

All the user interrupt routines should be as short as possible, the recommended
maximum is 0.5ms. This is particularly important when using IRQ1V because this

services the interrupt before the MOS. As an example consider the operation of

RS423 at 19,200 baud, which corresponds to one byte being transmitted every

416ms. As all interrupts would have to pass through user code pointed to by

IRQ1V before the MOS could deal with them, a 2ms service routine would occupy

the time for 4.8 bytes. This would lower the average speed to about 4000 baud.

When the MOS is selected by IRQ1 V (which is usually the case), it examines

devices in the following order.

1 , The 6850 ACIA which controls the RS423 interface and the cassette data.

2. The System Versatile Interface Adapter (VIA) which controls the vertical
synchronisation, the interrupts, the light pen (if included in the system) , the

AID converter , the system timer , the sound system, the keyboard and the real
time clock.

3. The User VIA which controls the User Port and the Parallel Printer Port.

Note the manufacturers data sheets for these devices should be consulted for

details of the interrupt status registers of these devices.

97

12 DUAL PROCESSOR

SYSTEMS

Second processor architecture

To enhance the computing power of the BBC microcomputer, Acorn has adopted a

two-processor architecture. The base, or host, processor performs most of the I/O

routines, such as communicating with the keyboard and filing systems, whilst the

language, or parasite, processor provides the raw computing power to perform

applications.

The host processor is a 6502 in the Model B and a 65C12 in the B+ and Master
Series. Acorn language processors range from the 8-bit 65C02 and Z80, through

the 16/32-bit 80186 to the 32-bit 32016 and Acorn RISC Machine. Third-party
manufacturers supply Z80, 6809 and 68000 systems. (The ARM second processor

architecture is slightly different from that of the other language processors as it is
provided with its own peripheral controller chips and communicates directly with

the
video and audio outputs. However, filing and other I/O operations still take place

through the host.)

Each processor runs independently of the other and is provided with its own clock

and memory chips. The two systems communicate with one another over a 2MHz

asynchronous bus, known as the Tube, which is controlled at each end by a custom

interface.

Since the language processor does not need to control complex peripherals

directly, it can manage with only a rudimentary operating system. This MOS is
required simply to initialise the system on RESET and to implement calls such as

OSBYTE and OSWORD. The base processor then performs the required
operations and returns the result to the language processor.

Not all the MOS calls are fully implemented. For example, filing system control is

carried out by the base processor, so FSCV is not required and, in the Master

Turbo for example, points to a “Bad” error routine. the default setting of EVNTV
and the user-set vectors point to an RTS opcode. Whilst the operation is being

carried out, the language processor can continue executing its application.

Operating system calls are implemented by transferring the call and its parameters

to the base processor, which performs the desired operation and sends a response
back via the Tube. To speed matters up, only the minimum required number of

98

parameters is transferred. For instance, with OSBYTE calls 0-&7F , the y-
parameter is omitted. For those calls in which the carry status is a significant part of

the result, it is transferred across the Tube by performing a shift operation in the

source processor and a complementary shift operation to prime the carry flag in the

destination processor.

Data transfers are achieved by generating interrupts in the second processor.

Different routines are provided for different operations, the appropriate one being

selected by resetting the NMI vector (which is feasible, since after RESET all

READ

operations are directed to RAM) .

Usually the language processor is provided with a clear block of contiguous
read/write memory. Its boot operating system is in ROM which is mapped into the

top of the processor's address range. On RESET the MOS is copied from ROM
into RAM and awaits initialisation via the Tube. Processors such as the 80186,

which run industry standard operating systems, have a ROM-based startup but load
the remainder in from disc.

When functioning as an I/O processor, the base processor installs Tube

communications routines in the regions of low memory which are normally

allocated

to the active language. (addresses &0016-&005C in Page 0 and Pages 4-7).

These communications routines have language and service entry points similar to

those of paged ROMs and also a data entry point which is used once the Tube has
been initialised.

If the second processor is added externally it is referred to as a “Second Processor”

and one added internally as a “Co-Processor’. Except where indicated, references
to a co-processor apply equally to a second processor.

The Tube

The Tube provides the means for the language and I/O processors to communicate

with each other. The Tube comprises a pair of proprietary chips coupled to the

respective processors and communicating with one another over a 2MHz

asynchronous bus.

The Tube chip is a semi-custom integrated circuit designed to overcome the

problems of interlacing between processors running at different instruction and bus
cycle rates. The language processors have different clock rates from that of the

base processor and may also have incompatible instruction sets, which prevents
the possibility of direct (synchronous) coupling between them. The Tube chip is

therefore provided with the buffers and latches necessary to implement

asynchronous coupling.

99

The Tube has two one-byte wide ports. One port is for the host and the other for
the parasite. The ports provide access for the host and the parasite to a number of

registers.

The Tube chip is located on the language processor circuit board and is connected

to the host by a byte wide bus.

The Tube protocols allow the language processor to have full access to the filing

system, the VDU Driver, the RS423 or any other 1/O devices connected to the

microcomputer.

The protocol is a set of software rules for passing data across the Tube chip. The

Tube protocols are partly held in the MOS and partly in the language processor.

Data is referred to as being passed “across the Tube”.

100

Tube Protocols

The protocols are sequences of read/write operations to the Tube chip that have to
be performed in order to pass data between the host and parasite. Some

sequences enable an application in the parasite to control the host, request data
and transmit it to the outside world and are usually initiated by firmware routines in

the parasite. These in turn will have been called by the applications program
running in the language processor RAM.

Other sequences are used to pass events, errors and effect low-level block

transfers; these are initiated by the host. There are sixteen different sequences,

each designed for a specific task. Note that there are two calls which are only

designed for use in the host to ensure compatibility with previous BBC

Microcomputers. Three others are not intended to work “across the Tube” and are

only mentioned here for completeness. The full list of sequence names and their

purpose follows:

OSBYTE Execute a MOS routine requiring up to a three byte argument.

OSWORD Execute a MOS routine requiring a parameter block.

OSCLI Interpret a *<text> command.

OSRDCH Read a character from the input stream (e.g. RS423, keyboard).

OSRDSC Read from the screen. (not available to language processors)

OSWRCH Write a character to the output stream (e.g. RS423, screen).

OSNEWL Write LF followed by CR to the output stream.
OSASCI Write a character to the output stream, or LF followed by CR if the

character is CR.
OSWRSC Write to the screen. (not available to language processors)

OSFIND Open or close a file for byte access.
OSFILE Load or save a file.

OSARGS Load or save data about a file (e.g. sequential pointer, extent).

OSGBPB Load or save part of a file.

OSBPUT Save a byte to a file.

OSBGET Load a byte from a file.

OSEVEN Generate an event. (not available to language processors)

GSINIT Initialise GSREAD string. (not available to language processors)

GSREAD Read a byte from a string. (not available to language processors)

The names are for reference only. The form of parameter(s) used by each
sequence is listed in the Reference Manual, Part 1. Whatever microprocessor is

used in the parasite, a given sequence with given parameters will always work in
the same way.

101

In this text, “H=>P” indicates the passage of data from the host to the parasite and

“PH” shows the passage of data from the parasite to the host.

Each protocol consists of read/write accesses to the Tube registers, conditional
branching based on the register contents, and the copying of the contents into

memory. The Tube chip appears, to both the host and the parasite, as a collection
of memory or 1/O mapped registers. There are four independent bi-directional

communication paths, each of which consists of a one byte control register and a

one byte data register (which may have a one-byte buffering). The roles of the

respective registers are described below.

Operating System Usage

Registers RISTATUS,RIDATA; R2STATUS and R2DATA are mainly for MOS

data and command transfer under polled or parasite IRQ operation.

Register 1 status (RISTATUS)

The status of RI DATA is indicated by this byte.

BIT 7 6

DAI | NF! [P|] V{M]J]1{Q

oN

& wo

N — OQ

When set to logic | :

DAI - Data Available in data register 1
NFI1 - Data register 1 is Not Full

P - Set parasite reset active low
V - Enable two byte FIFO operation of R3DATA

M - Enable parasite NMI from R3DATA
J - Enable parasite IRQ from R4DATA

1 - Enable parasite IRQ from R1 DATA

Q - Enable host IRQ from R4DATA (Not Used)

Register 1 data (R1 DATA)

H=P

A | -byte buffer is used by events in the host to generate IRQs to the parasite.

Writing to this register will cause the parasite IRQ to be active low. It is also used to

pass on the ESCAPE condition.

102

P>H
This is a 24-byte FIFO buffer and carries the parameters for OSWRCH. Note that

OSWRCH only uses a 1 O-byte parameter block, so a language processor can enter
a full plot command without having to wait for the host to remove each byte in turn.

Although the Tube chip circuitry is designed to be able to interrupt the host if the
parasite writes to this register, this facility is not used on the host, which will

normally poll RISTATUS until the data becomes available.

Register 2 status (RZSTATUS)

The status of R2DATA is indicated by this read only byte.

BIT 7 6 3 {| 4 {3],2]14 0

DA2 | NF2 {| 1 [1 1yi]tiyil

When set to logic | :
DA2- Data Available in data register 2

NF2- Data register 2 is Not Full

Register 2 data (R2DATA)

Register 2 initiates MOS calls which may take a long time or must not interrupt host

tasks.

H=P

The host returns data as appropriate.

P>H

The parasite requests the task and then passes data as appropriate.

Filing System Usage

Registers R3STATUS,R3DATA, R4STATUS and R4DATA are mainly used by

filing systems for fast transfer under NM Is - may be used for high speed protocols

by
“claiming” the Tube (see section on the Host Protocols).

Register 3 status (R3STATUS)

The status of R3DATA is indicated by this read only byte.

BIT 7 6 3 {| 4 {3],2]14 0

DA3 | NF3 {[1 [1 1yi]tiyil

103

When set to logic | :
DA3 - Data Available in R3DATA/Parasite NMI generated

NF3- Data register 3 is Not Full

Register 3 data CR3DATA)

H=>P; P>H

This is used for the fast data transfers. Note that the host can program it to operate

in a two byte mode.

R3DATA and R3STATUS are used for the block transfers as a background task.

For higher performance applications this register may interface to a DMA controller.

Register 4 status CR4STATUS)

The status of R4DATA is indicated by this read only byte.

BIT 7 6 3/4 {3),2]14 0

DA4 | NF4 {| 1 {1 1} i]; iyil

When set to logic | :

DA4 - Data Available in R4DATA/Parasite I RQ generated

NF4 - Data register 4 is Not Full

Register 4 data (R4DATA)

H=P

Writing to RADAT A sets the parasite I RQ. Reading R4DAT A clears the I RQ.

The Host interrupts the second processor by writing a byte describing the required
action into R4ADATA. The two machines then co-operate in passing data across

register 4 until the job is done.

The register set is also used to initiate the passing of an error string from Host to

Parasite. The Host interrupts the Parasite by writing an error code into RADATA,

the two machines then co-operate in passing the error string across RZDATA.

P>H

R4DATA is used as a control channel to request block transfers through R3DATA.

104

PARASITE Protocols

From the point of view of the language processor, the Tube protocols are presented
in the following generalised form:

<PROTOCOL NAME>

Wait until ready then...
[Wait until [CONDITION 1] TRUE]

[Wait until [CONDITION 2] TRUE]

[Wait until [CONDITION n] TRUE]

THEN

[Perform Task 1]

[Perform Task 2]

[Perform Task m]

ELSE

[Perform Task a]

[Perform Task b]

[Perform Task z]

THEN

[Wait until [CONDITION A] TRUE]

[Wait until [CONDITION B] TRUE]

[Wait until [CONDITION Z] TRUE]

RETURN FROM PROTOCOL

Vectors

aX

Vv

a

>
<

Synchronising Phase

Execution Phase

Completion Phase

Each Acorn-supplied second processor has a simple operating system which .
contains all of the routines necessary to implement the Tube communications

protocols. This operating system is ROM-based and is copied across into RAM

when the second processor is reset.

105

As the Master 128 65C12 and the Master Turbo 65C 102 co-processor are opcode
compatible, the entry points and vectors for a given OS call are the same in each.

This also applies to the 6502 second processor.

Hardware Dependency

Host Hardware :

Hardware dependent calls should not be redirected, as user code in the language

processor cannot access the hardware (unless the user has set up a program in the

host to intercept, say, a standard OSFILE call and turn it into a user-defined

OSWORD).

Note that with the exception of the “1 MHz Bus”, Cartridge Bus and User Port,

Acorn does not support direct user control of hardware.

Parasite Hardware:

The only hardware available to a program in the parasite is the CPU, memory and

Tube. Redirecting, say, a VDU operation is of limited use. The exception to this is

if the user is running the program in a specially constructed (external) second

processor which has perhaps its own ultra-high resolution graphics circuitry, or a

signal processing system to which the host does not have access.

Non-Interrupt protocols

OSWRCH

Wait until R1 DATA not full, write character into RI DATA

OSRDCH
Wait until R2DATA not full, write RDCHNO (=&00) to REDATA

Wait for data in R2DATA, top bit of RADATA is 65C12 C-flag (validity bit)
Wait for data in R2DATA, R2DATA is 65C12 A register (character read).

OSCLI
Wait until R2DATA not full, write CLINO (=&02) to RZDATA

FOR all characters in the command string (including terminating <cr>)
DO [Wait until RZDATA not full, write character to RZ2DATA]

Wait for data in R2DATA and read it
IF this byte=&80 then code has been loaded into the language processor

store as a result of the command and it should be entered at the address
given by the last R4 protocol type 4 address. This means that another

protocol has been invoked by this one and has already finished.

106

OSBYTE
IF osbyteno < &80 THEN

Wait until R2DATA not full, write OSB YTNO(=&04) to R2DATA

Wait until R2DATA not full, write parameter for 65C12-X to RRDATA

Wait until R2DATA not full, write osbyte number to R2DATA
Wait for data in R2DATA, read R2DATA which is 65C12-X register

ELSEIF osbyteno = &82 THEN

result is machine high order address

ELSEIF osbyteno = &83 THEN

result is low memory value

ELSEIF osbyteno = &84 THEN

result is high memory value

ELSE
Wait until R2DATA not full, write BYTENO (=&06) to REDATA

Wait until R2DATA not full, write parameter for 65C12-X to RRDATA

Wait until R2DATA not full, write parameter for 65C12-Y to RADATA

Wait until R2DATA not full, write osbyteno to RIDATA

IF osbyteno=&9D THEN RETURN from protocol (no reply)

(Note: this is why OSBYTE &9D is faster than OSBPUT)

Wait for data in R2DATA, bit 7 of byte read is from 65C12-C
Wait for data in R2DATA, byte read is 65C12-Y

Wait for data in R2DATA, byte read is 65C12-X

OSWORD
IF oswordno = &00 THEN [(Note: Doing readline)

Wait until R2DATA not full, write RDLNNO (=&0A) to R2DATA

Wait until R2DATA not full, write upper bound char to R2DATA

Wait until R2DATA not full, write lower bound char to R2DATA

Wait until R2DATA not full, write length allowed to R2DATA

Wait until R2EDATA not full, write &07 to RIDATA

Wait until RZEDATA not full, write &00 to REDATA

Wait for data in R2DATA $ response

IF response > &7F
THEN [;escape was pressed on input RETURN from protocol]

Read a <cr> terminated string from R2DATA]
ELSE [Wait until R2DATA not full, write WORDNO (=&08) to REDATA

Wait until R2DATA not full, write oswordno to R2EDATA

Wait until R2DATA not full, write number of params to send to RRDATA

Write parameter block to RZDATA, last byte first

Wait until R2DATA not full, write number of parameters to receive to

R2DATA

Read bytes back from R2DATA into parameter block, last byte first]

107

The number of parameters to send/receive is determined by.
IF oswordno < &14

THEN [Determine the number of parameters from following table:]

OSWORD number Parameters to send Parameters to receive

1 (&1)

2 (&2)

3 (&3)
4 (&4)

5 (&5)

6 (&6)
7 (&7)

8 (&8)
9 (&9)

10(&A)
11 (&B)

12 (&C)
13 (&D)

14 (&E) 16

15 (&F) 16

16 (&10) 16

17(&11) 13

18(&12) 0 128

19(&13) 8 8

20 (&14) 128 128

C
U
R
R

R
E

C
U
N
M
N
O
M
N
O
S

B
O
o
O
m
o
m
o
o
v
o
o
e
n
o
n
o
d
n

e
R
e

e
e

W
O
N

DN

ELSE IF osword no < &80

THEN Number of parameters to send=16
Number of parameters to receive=16 |

ELSE[Number of parameters determined in call specific manner (e.g. by

embedding in transfer block)

Wait until R2DATA not full, write parameters to send to RRDATA

Wait until R2DATA not full, write parameters to receive to REDATA

Wait until R2DATA not full

THEN [Write parameter block via R2DATA

Read parameter block via R2DATA]

OSBPUT
Wait until R2DATA not full, write BPUTNO (=&10) to R2DATA

Wait until RZEDATA not full, Y to RZEDATA (file handle)

Wait until R2DATA not full, A to RZEDATA (byte to write)

Wait for data from R2DATA, discard it

108

OSBGET
Wait until R2DATA not full, write BGETNO (=&0E) to REDATA

Wait until R2DATA not full, write file handle to RABDATA

Wait for data in R2DATA, top bit of byte is 65C12-C (validity bit)

Wait for data in R2DATA, read R2DATA which is byte read from file.

OSFIND
Wait until R2DATA not full, write FINDNO(=&12) to R2DATA

Wait until R2DATA not full, write type of open to RRDATA

IF type=0

THEN [Wait until R2DATA not full, write file handle to R2DATA

Wait for data in R2DATA, Read result |

ELSE [Wait until R2DATA not full, write file name string to R2DATA

(including terminating <cr>)

Wait for data in R2DATA, read handle from R2DATA |

OSARGS
Wait until R2DATA not full, write ARGSNO (=&0C) to R2DATA

Wait until R2DATA not full, write file handle to RABDATA

Waiting for R2DATA not full, [write 4 bytes osarg-data to R2DATA (most

significant byte first)

Wait until R2DATA not full, write operation code to R2DATA

Wait for data in R2DATA, read fs type from RZEDATA

Waiting for RZEDATA , read 4 bytes osarg-data from R2DATA (msb first)]

Note: osarg-data is the file sequential pointer or length depending on the type of

OSARGS call.

OSFILE
Wait until R2DATA not full, write FILENO (=&14) to R2DATA

Waiting for R2EDATA not full, [write 16-byte OSFILE control block to RZ2DATA]

(last byte of block is written first)

Waiting for R2EDATA not full, write filename to RZEDATA including <cr>

Wait until R2DATA not full, write type of transfer to RZ2DATA (Any transfer is

completed under interrupt using R3, R4)

Wait for data in R2DATA, read REDATA AND &7F = Filing system type

Waiting for data in R2DATA, [read back 16-byte control block from R2DATA]

(last byte of block is read first)

Note: The 16-byte control block has the format:
OQ Load address * The contents of these

4 Execution address fields depend on the call
8 Data start address or Length* type e.g. catalogue

12 End address or attributes information, file addresses.

See the Reference Manual,

Part 1.

109

OSGBPB
Wait until R2DATA not full, write GBPBNO (=&16) to R2DATA

Wait until R2DATA not full, [write 13-byte OSGBPB control block to

R2DATA] (last byte of block is written first)

Wait until R2DATA not full, write type of transfer to R2EDATA
Waiting for data in R2DATA, [read back 13-byte control block from R2DATA

(last byte of block is read first)

Wait for data in RZ2DATA, read R2DATA bit 7 is 65C12-C bit

Waiting for data in R2DATA, read 65C12-A from R2DATA

Interrupt driven operations

In addition to these parasite-initiated activities the parasite is also required to

respond to interrupts from registers 1 , 3 and 4.

To determine the source of an interrupt it is important to follow the following order.

a) Check for register 4 interrupt
b) Check for register 1 interrupt

Register 1 interrupts

Register 1 interrupts occur only in the host-to-parasite direction. The interrupt

service sequence is:

Read type byte from RIDATA

IF type < 0

THEN [. Escape flag update

Replace the escape flag with bit 6 or type
RETURN from servicing interrupt

ELSE Event signal
Interrupt-R1 DATA-read 65C12 Y-event parameter

Interrupt-R1 DATA-read 65C12 X-event parameter
Interrupt-R1 DATA-read 65C12 A-event parameter

; Host machine will now continue processing
; any other actions to service event can be taken]

Where Interrupt-R1 -read is:

UNTIL data-ready-in-R1
DO IF data-ready-in-R4 THEN CALL R4-interrupt-service]

RETURN read RIDATA

110

Register 4 Interrupts

Read Type byte from R4DAT A

IF TYPE <0

THEN ; HOST machine is reporting an error

Wait for data in R2DATA, read and discard it

Wait for data in R2DATA, Read error number from R2DATA

Read a zero byte terminated string from R2DATA]

Else[;.Type is a command to initialise for Register 3 block transfer

Wait for data in register 4, read claimer's identity from R4DATA (See Note 4)

CASE Type OF

0 - Single byte transfer Parasite to Host.
Read 4-byte base address for transfer from R4DAT A msb first.

Set NMI routine for this transfer type.
Wait for & remove synchronising byte from R4DATA]

1 - Single byte transfer Host to Parasite.
Read 4-byte base address for transfer from R4DAT A msb first.

Set NMI routine for this transfer type.

Wait for & remove synchronising byte from R4DAT A

2 - Double byte transfer Parasite to Host.

Read 4-byte base address for transfer from R4DATA msb first.

Set NMI routine for this transfer type.

Wait for and remove synchronising byte from R4DAT A

3 - double byte transfer Host to Parasite.
Read 4-byte base address for transfer from R4DAT A msb first.

Set NMI routine for this transfer type.
Wait for & remove synchronising byte from R4ADATA

4 - No transfer (Pass address Host to Parasite only).

Read 4-byte address from R4DAT A msb first.

Wait for data in R4DATA, discard it.

5 - No transfer (Filing system release)

6 - 256-byte transfer Parasite to Host without interrupt.

Read 4-byte base address for transfer from R4DAT A msb first.

Wait for data in Register 4, discard it.

Transfer 256 bytes to Host via R3DATA.

Write a byte into R4DAT A .To stop unwanted interrupts on Host

7 - 256-byte transfer Host to Parasite without interrupt.

Read 4-byte base address for transfer from R4DAT A msb first.
Wait for data in Register 4 , discard it. Transfer 256 bytes from Host via

R3DATA.

] RETURN ; From the interrupt

111

Notes:

1) Synchronising Bytes for types 0-3. As soon as the synchronising byte is

removed, Register 3 transfer requests (NMIs) will start to occur. The data in a

synchronising byte has no meaning; it is merely a handshake signal. When the

interrupt occurs | or 2 bytes are transferred (depending on the current mode).

2) Filing System releases NMI ownership. A release (type 5) is a guarantee that no

more Register 3 NMIs will occur for the current transfer.

3) Interrupt Service Time. The interrupts are caused by some external peripheral

(e.g. discs or the ECONET) which cannot be slowed down, so the transfers must

take place within the following times:

Type Maximum allowed Time for Maximum permissible service time

NMI service routine from sync byte to first transfer NMI

0 24 ms per byte 24 ms

1 24 ms per byte 24ms

2 26 ms per pair of bytes 24ms

3 26 ms per pair of bytes 24ms

6 10 ms per byte 19 ms

7 10 ms per byte 19 ms

4) Filing System claimer identities

When a filing system claims the R3/R4 resource in the Host its identity is passed to
the second processor as part of the R4 startup protocol. The identity codes, which

are six-bit numbers, are not related to filing system or ROM slot numbers. They are

arbitrary assignments made by ACORN.

Filing System Claim identity used

Tape

DFS

NFS (Low Level)

NFS (Filing System)
ADFS

TFS (Telesoft Filing System)
Reserved for Acorn Use

VFS (Video filing system)
SRM (SRAM Utilities)

Z80 (For CP/M usage) CO
MA

N
A
M
N
B
W
N
r
 ©

The Identity “&F” has been used by an independent manufacturer.

112

Startup protocol

The startup sequence for a language processor (e.g. when power is switched on,
or Reset is pressed) is:

Use the OSWRCH mechanism to write out a startup message.
Send a zero byte to Host via R1 DATA to terminate it.

Wait for datain R2DATA. _ ; during this wait a load may occur from the Host
; using R4/R3 block transfer protocols

IF byte=&80 THEN execute from the address given in the R4 type 4 transfer.

Notes:

1) The host operates the Tube by polling the registers, i.e. not by interrupts.

2) In all the transactions which may generate errors it is important to realise that if

the error is reported by the BBC machine under interrupt (i.e. it was generated by a

65C12 BRK sequence), the protocol which generated the error is abandoned.

Register Addresses

The Tube can be put anywhere in the parasite memory map that is convenient to
the language processor designer. In the 65C102 Co-processor and 6502 Second

Processor, for example.

Register Address in Parasite memory map

RISTATUS &FEF8

R1 DATA &FEF9

R2STATUS &FEFA

R2DATA &FEFB
R3STATUS &FEFC

R3DATA &FEFD
R4STATUS &FEFE

R4DATA &FEFF

Tube protocols

Host Protocols

The host protocols obtain or distribute data which the parasite has requested or

transmitted. Normally it is the MOS which responds, as the majority of OSBYTE

and OSWORD calls are concerned with accessing hardware or flow control
parameters stored in RAM. However, when data has to be passed quickly or in

bulk, this is usually done by filing systems working under NMIs. The user has

113

access to the same facilities as filing systems (via Register sets 3 and 4) and can
load a program into the host which may take advantage of these.

The procedure has five phases:

1) Check that the Tube is present

2) Claim the Tube

3) Initiate the data transfer

4) Transfer data

5) Release the Tube

Check for presence of the Tube

As a file intended for a parasite may be loaded into the host when the Tube is not

present, it is a good practice to check for the presence of the Tube by calling
OSBYTE 234 (&EA) with X=0, Y=255. On return, X=0 if the Tube is not present,

otherwise X=255.

Claiming the Tube

For the user to gain control of the Tube permission is requested by calling the MOS

Tube entry point at 60406 with a unique “reason code” in the 65C12 accumulator.
The reason code is a six-bit number logically ORed with &CO, thus setting the top

two bits. For example, (in BBC BASIC assembler) :

reason% LDA #(&CO OR <unique identifier>)

The Accumulator now holds the reason code

The <unique identifiers> already in use are listed above. For third party software

writers, they are allocated by Acorn Customers Services to prevent clashes with
other proprietary software.

When the call returns, the CPU carry bit will indicate if the call was successful or

not:

C=1 : The call was successful

C=0 . The call failed

If the call failed, this is because some other program had control of the Tube. The

call should be repeated until successful:

reason% JSR &0406 ;Call Tube code

BCC reason% Try to claim the Tube
;try again if failed

RTS

Registers (A, X, Y as appropriate) should be saved as they may be corrupted on
return.

114

Initiating data transfer

Once the Tube has been successfully claimed, a control block must be set up in the
host indicating the address of the first byte in the target area in the parasite. This in

its turn is pointed at by loading the CPU's X and Y registers with the high byte and
low byte respectively of the control block's address:

n+3 Target address high byte

n+2 Target address high byte-1

n+1 Target address low byte +1 A

n Target address low byte (Y*&100 + X)

When the control block is set up, the same entry point (&0406) is used to initiate

data transfer. Once again a reason code in the accumulator is used, this time to

indicate what action is required:

Reason code Description Delay(a) Delay(b)

0 Multiple byte transfer P=>H 24ms 24ms/byte

1 Multiple byte transfer HP 0 24ms/byte
These transfer any number of bytes. Terminate by releasing the Tube or starting

another protocol.

2 Multiple pairs of bytes P>H 26ms 26ms/pair

3 Multiple pairs of bytes H>P 0 26ms/pair

These transfer an even number of bytes and are faster than the above two

protocols as they use R3DATA in its two byte mode. Terminate by releasing the

Tube or starting another protocol.

4 Execute

Execution starts at the address pointed to by the control block (see below). This
option has an implied release of the Tube and does not return to the user's

program.

5 Reserved
This option is used in handling MOS calls which are passed across the Tube.

6 256-byte transfer, P=>H 19ms 1

7 256-transfer, HP 0 10ms/byte

These will transfer exactly 256 bytes. Only after completion can the Tube be
released or another protocol started.

Note that the reason codes and functions are the same as the parasite side

R4DATA transfers.

115

Transferring data

After the instruction has been passed to the system, the user program can start the
transfer after the delay specified above. In the P-H direction the delay (a) allows

the parasite CPU to service the initiating NMI and “prepare itself” before the data

starts. In the H=P direction this will already have been done as it would have been
the parasite which issued the call asking the host to fetch the data.

Once transfer has started, the delay (b) must be allowed between bytes (or pairs of

bytes as indicated above) to allow sufficient time for the parasite R3DATA NMI

code to complete. In the ps-H direction, the host must service each byte (or pair)

within the indicated time.

Releasing the Tube

When the transfer is complete, the Tube must be released so that another program

can use it. The procedure is to call the MOS Tube entry point, again with a reason
code in the accumulator , this time using:

release % LDA #(&80 OR <unique identifier>)

JSR &0406
RTS

Once again, CPU registers must be saved as appropriate.

Register Locations

The Tube registers have the following locations in host memory map:

Register Location
RISTATUS &FEEO

RIDATA &FEE1

R2STATUS &FEE2

R2DATA &FEE3

R3STATUS &FEE4

R3DATA &FEE5

R4STATUS &FEE6

R4DATA &FEE7

In practice, R3DATA is the register of prime interest as this is the data channel for

the transfers described above, that is:

A H>P transfer : LDA data-source

STA R3DATA

116

A P>H transfer: LDA R3DATA

STA safe-place

Tube/filing system interface

Part 1 of the Reference Manual describes in some detail the format of the filing
system interface (OSFILE, OSARGS etc.). The following information is intended to

assist in the writing of filing systems which must be compatible with the Tube.

LOAD/SAVE addresses

It is necessary to indicate to a filing system whether a file’s target address is in the

host or the parasite address space. This is done by treating the address as a four-
byte (32-bit) number where the two most significant bytes indicate the relevant side

of the Tube:

&FFFF<O to &FFFE> indicates the host memory
WARNING ~— When the Tube is active, its

communications code is in

&FFFFO400 to &FFFFO7FF

&FFFFFFFF indicates that the named program is to be EXECed

&FFFE<3000 to 7FFF> indicates the “shadow” screen memory in the host

This does not apply to CFS, TFS and RFS.

&JKLM<0 to FFFF> indicates the parasite memory

This means that parasites can have memory from &00000000 to &BFFFFFFF. For
a program in the parasite to set up a utility program (say, an interrupt handler), it

should do either of the following:

Using OSWORD

1) Transfer a small routine to disable interrupts, then modify the
interrupt vector and re-enable interrupts.

Using *RUN
1) Issue a *RUN <utility name> FFFF<host target address>.

In this case, the utility will be loaded and JuMPed into at the entry point stored

on the filing media (e.g. disc). The utility should then :-

2) Modify the relevant vector itself to point to the “real” entry point and
then do an RTS to cause the parasite protocol to be terminated.

117

Use of the Non-Maskable Interrupt

To avoid slowing the computer down with polling loops, programs which have to
interface at high speed with the real world use interrupts. The MOS provides and

maintains a flexible and powerful 1 RQ-based “event” structure. Any program, be it
in RAM, sideways ROM or sideways RAM can couple to this structure by purpose-

designed OSBYTE calls and vector redirection.

The penalty for this flexibility is the time it takes to let all interested parties know

that

an IRQ has happened. Usually this is not important. However, where a filing

system is reading floppy discs, for example, there is insufficient time to call a

routine

in the MOS and then let it tell all the other systems until it eventually reaches the

filing system. For this reason the Non-Maskable Interrupt (NMJ) is used for critical

data transfers.

To ensure that the NMI is serviced quickly enough, the MOS exercises no control

over it. Not even a vector is used as its redirection would take 2ms. To distribute

this valuable resource, the MOS maintains an arbitration system to ensure that only

ohe program at a time is trying to use the NMI.

Claiming NMI workspace
(&0D00 to &ODSF and &00A0 to &00A7)

Even if an IRQ and NMI are made to the CPU at exactly the same time, the NMI

will

take priority. The CPU will JMP via an address stored at a fixed location in ROM to
the start of a region in RAM which is reserved for use as NMI Workspace. When

the computer is reset, this location is loaded with an RTI so that spurious interrupts

will not cause the computer to “crash”. For a program to make use of NMIs, it must

put a short routine into memory from &0DO00. This should:
a) Do the minimum to ensure integrity of the previous routine (i.e. saving

registers on the stack).
b) Service the interrupt as efficiently as possible.

c) Return

It is important that programs do not try to use the NMI workspace before the MOS
has given permission for this. Otherwise it could interfere with another program

(such as a filing system) which was already using NMIs.

The NMI workspace and hence NMIs are claimed as follows:
a) Issue a service request to claim the NMI (OSBYTE 143 (&8F); X=&0C).

b) When the service request comes round, any NMI owner should “switch off”
its NMI usage. NMIs will be allocated to another program. This call must not

be claimed, but passed on to the next sideways program. On return, the Y

register should be saved as it will contain the identity of the previous owner.

This call should only be issued if the current owner is the Network software or

118

none at all. If it is issued whilst ADFS (or DFS) is active, data or even

directories may be lost.

When the NMIs are no longer needed, they should be released thus:

a) Issue a service request to release the NMI (OSBYTE 143 , X=&0B,

Y=<previous owner>)

NMIs should be released by synchronous systems (such as the disc interfaces)

when a given task is complete. It will then be claimed by an asynchronous system

(such as the Network) until such time as it is needed again by a synchronous one.

Hardware access to the NMI

The following interfaces have a connection to the NMI signal:

1) Disc interface

2) Econet adapter

3) 1 MHz Bus

4) The Cartridges

5) The Modem Cavity

The disc and net interfaces are not directly connected to the CPU NMI-pin for the

following reasons:

The Disc Interface
The WD1770 series disc controllers have two interrupting outputs. One
indicates that a new byte has to be read from/written to the disc; the other

indicates that the last command has been completed. Both of these signals
have active high totem pole outputs whilst the system uses an open collector,

active low system. The two interrupts are logically open collector NORed in
the 1/0 controller.

Note that some machines are fitted with the WD1772 in place of the WD1770.

The Network Adapter

This uses a 68B54 Advanced Data Link Controller and will generate an

interrupt for every data byte assembled from the ECONET. As net traffic

may be generated by other users, it is desirable to prevent the 68B54

from generating NMIs when the ANFS is not the NMI owner. As the

68B54 does not have an interrupt mask, logic, again in the I/O

controller, performs this function.

Suggestions of uses for NMls other than the disc and net interlaces are .
Infra-red data transfer cartridge, for example, fibre optic

Compact Disc filing systems (CD- ROMs)
Video Disc filing systems, for example, BBC Domesday Project

High speed modems

119

13 THE Z80 SECOND
PROCESSOR

Operating system calls

The operating system calls of the host processor can be accessed from the Z80 in a
similar manner to the BBC Microcomputer itself. Operating system calls can be

made via a jump table starting at address FFCEh. The entry point for each routine

corresponds with the equivalent address on the 6502, e.g. the WRCH routine is

entered at FFEEh. All operating system calls (apart from OSARGS - see below)

take parameters in Z80 registers A, H and L corresponding to A, Y and X on the

6502. For all calls that use the carry flag on the 6502 this still applies on the Z80.

For example:

LD A,4ih ;Character to be written in A

CALL OQFFEEh ;Call OSWRCH to write character

and

LD Aj5 5*FX 5,2 => A set to5

LD L,2 3L set to 2

CALL OFFF4h ;Call OSBYTE routine equivalent to *FX 5,2

Interception of any operating system call can be achieved by simply changing the
address field of the relevant jump to point to the required user routine.

The new memory map is shown below

Address (Hex) Purpose
FFFE I NT vector reserved for the Z80 operating system

FFFC Event vector

FFFA BRK vector

FFF7 OSCLI- H,L point to command line

FFF4 OSBYTE - A= OSBYTE number H,L are parameters

FFF1 OSWORD - A = OSWORD number H,L point to control

block
FFEE OSWRCH - A = character

FFE7 OSNEWL - Write linefeed, carriage return to screen
FFE3 OSASCI - Write character in A to screen plus line feed if

A= 0Dh

120

FFEO OSRDCH - A = character

FFDD OSFILE - A = Operation type H , L point to control block

FFDA OSARGS - A = Operation type E = Handle H,L point to

control block

FFD7 OSBGET - A = Byte H = File handle

FFD4 OSBPUT - A = Byte H = File handle

FFD1 OSGBPB - A = Operation type H,L point to control block

FFCE OSFIND - A = Operation type H_, L point to filename

(AO) H = file handle (A=0)

FFC8 TERM - A=0 Switch off terminal mode (default), A=1

Switch on terminal mode, A=FFh Test terminal mode

FF82 Fault pointer
FF80 Escape flag - top bit set if escape condition exists

Faults and events

6502 Faults

When a fault is generated by the 6502 host processor the Z80 is interrupted and the

fault number and string are passed across the Tube and placed in an fault buffer.

The pointer at FF82h is then set to point to the fault number and the Z80 operating

system indirects through the BRK vector at FFFAh.

780 Faults

Faults can also be generated on the Z80 using the RST 38h instruction. All Z80-
generated faults should adhere to the following convention:

RST 38h Value FFh

Fault number

Fault string

Terminator Value 00h

Events

When an event is detected by the 6502 operating system the event parameters A,
Y and X are passed across the Tube to Z80 registers A, H and L respectively. The

Z80 operating system then indirects through the event vector at FFFCh which is
initialised to point to a Z80 RET instruction.

121

Escape processing

When the escape code is detected from the keyboard the top bit of the escape flag
at FF80h is set. An escape condition should be detected by testing this bit and

acknowledged by OSBYTE call 7Eh. The escape flag should be reset or set using
OSBYTE calls 7Ch or 7Dh.

Interrupt handling

NMI Non-maskable interrupt

This interrupt is reserved for use by the Z80 operating system and cannot be

intercepted by the user.

INT Interrupt request

When an INT is detected the Z80 operating system indirects through location

FFFEh. All unrecognised interrupts are passed to a user INT routine at FFBOh in
the jump table. The address field at FFB1 h should be changed to point to the

required user INT routine. This routine must preserve all registers and return using
instructions:

El enable interrupts

RETI return from maskable interrupt routine

Z80 Monitor

After turning on the Z80 and pressing BREAK the following display appears -

Acorn TUBE Z80 64K n.nn

Acorn DFS

BASIC

*

where n.nn is the version number of the Z80 ROM. The * prompt indicates that the

Z80 Monitor is running and at this stage all the standard * commands can be

entered i.e. “HELP, *FX4 etc. The Z80 Monitor will also recognise the following

additional commands which allow memory to be examined, changed and small
machine code programs to be entered directly and tested.

122

CPM

D <start address> <end address>

GO <address>

S <start address>

In these commands <address> refers to a hexadecimal address which can entered

as | to 4 digits i.e. 3F can be entered as 3F , 03F or 003F. If more than 4 hex digits

are entered the most significant digits will be truncated i.e. 12345 will be treated as

2345. If no address is specified the most recently specified address will be used

instead. For all commands any leading spaces or asterisks and trailing spaces will

be ignored.

CPM - allows the CP/M system to be loaded without resetting any previously
entered * commands which would occur if CP/M was loaded using CTRL BREAK.

Le. typing *KEYO D IRAM
*KEY1 STAT * .*AM

*KEY2 ERA
*CPM

would allow the function keys to be defined before starting up CP/M (These key

definitions would have been reset if CTRL BREAK had been used to load CP/M).

D (Dump) - gives a memory dump with character interpretation between the two

specified addresses. At least one space is expected between the start and end

addresses but no space is necessary before the first address. A dump can be
terminated at any time by pressing ESCAPE.

GO - causes a jump to the specified address

S Get) - allows memory to be entered and altered from the specified start address.

No space is needed between the command and the address. The displayed

memory location can be altered by entering valid hex digits which are shifted in

from

the right. The command can be terminated by entering any non hex character.

To alter more than one location the U P and DOWN cursor keys can be used to

increment or decrement the memory location.

Z80 OSWORD call

The Z80 provides an additional OSWORD call with A = OFPh, to read or write
blocks of I/O processor memory. On entry HL point to the following control block:-

123

HL+0

HL+1

HL+2

HL +3

HL +4

HL +5

HL+6

HL+7

HL+8

HL+9

HL+A

HL+B

HL+C

Number of OSWORD parameters sent to I/O processor - ODh

Number of OSWORD parameters read from I/O processor - 01h

LSB of I/O processor address

MSB of I/O processor address

LSB of Z80 processor address

MSB of Z80 processor address
LSB of number of bytes to read/write

MSB of number of bytes to read/write
Operation type - 0 to write to I/O processor

1 to read from I/O processor

The first two bytes are used by the Z80 operating system and must not be changed.
If the I/O processor uses sixteen-bit addresses only the first two least significant

bytes need to be specified.

For example, to read I/O processor screen memory (mode Q) into Z80 memory at

08000h

LD A,OFFh ;OSWORD call OFFh

LD HL,BLOCK ;Set up HL to point to control block
CALL OFFFIh

BLOCK:DEFB

DEFB
DEFW

DEFW

DEFW

DEFW

DEFW

DEFB

ODh

Olh
03000h _—_;start of screen memory in I/O processor

0 ;set high word to zero

O08000h ;start of transfer address in Z80

0
05000h ;size of screen memory(20K)

1 sread operation

I/O Processor Memory Usage

The following areas of I/O processor memory are reserved and should not be

corrupted by any user programs

2500h - 25FFh Reserved for use by Z80 OS
2600h - 2FFFh Reserved for use by CP/M

0070h -0078h Reserved for use by Z80 OS

124

Screen Control

There are three techniques that a CP/M application program can use to control the
BBC Microcomputer's screen :

BBC Microcomputer Control Codes

Terminal Emulator Control Codes

GSX Functions

BBC Microcomputer Control Codes

All of the functions of the BBC Microcomputer normally accessed via the VDU

command can be accessed through CP/M by sending an appropriate control code.

These are explained in chapter 34 of the BBC Microcomputer User Guide and are
summarised on page 378. For example, sending the sequence (as hexadecimal

bytes) 1 F 10 04 would position the cursor to cell x=16, y=4.

Terminal Emulator Control Codes

To allow existing CP/M applications to use basic terminal functions in a simple way,

a terminal interface has been defined. This is by default disabled, but can be

enabled, disabled or tested by assembler programs as follows:

To enable terminal mode

LD A, l

CALL OFFC8H

To disable terminal mode

LD A,O

CALL OFFC8H

To test terminal mode

LD A,OQFFH

CALL FFC8H

In all cases, the state of the terminal mode prior to the call is returned in A:

A= 0 terminal mode was disabled

A= | terminal mode was enabled

125

An extra program is provided on the utilities disc: TERM.COM. This turns terminal
mode on or off from the CCP.

TERM ON to enable terminal mode

TERM OFF to disable terminal mode

when the terminal mode is enabled, the following control codes and escape

sequences can be used to control the screen. All numbers are hexadecimal.

07 Bleep

08 Move left one character
09 Move right one character

0A Move down one line
OB Move up one line

0c Clear screen

0D Carriage return

IB3DYYXX Position cursor to (XX-20, YY-20)

IB3E?...200 Send sequence of bytes X...X to the screen, where each

byte X sent = ?-20

IB3F Clear to end of screen

1B40 Clear to end of line

IE Home cursor

Notes:

To send escape (1 B) to the screen with the terminal emulator enabled, the

sequence | B 3E 3B 00 should be sent.

The clear to end of line and clear to end of screen functions are intended for

80-column screens of full dimensions, and will work in screen modes 0 and 3 only.
They will reset the text window to the full screen.

GSX Functions

Refer to Digital Research Programmers’ Manual

Character I/O under CP/M

Device assignments

The object of this implementation is to allow the user to redirect 1/O either with the
IOBYTE as ona normal CP/M system, or with OSBYTE calls as on a normal BBC

machine. The following logical devices are present on a CP/M system.

126

CON: the user console
LST: the printer

RDR: the paper tape reader

PUN: the paper tape punch

These logical devices can be assigned to the following physical devices:

UCI: the user defined console device

CRT: the screen and keyboard

TTY: the RS423 serial lines

LPT: the printer
BAT: batch mode (input from RDR: and output to LST:)

PTR: paper tape reader - reassigned as the keyboard
PTP: paper tape punch - reassigned as the screen

CP/M also has the following physical devices which are all defined as null devices

in this implementation:

URI:

UR2:

UPI:

UP2:

ULI:

Null devices discard any output and return End-Of-File (1 Ah) on input.

The default setting of IOBYTE has the following assignments:

CON: is UCI:
LST: is LPT:

RDR: is TTY:

PUN: is TTY:

The IOBYTE facility

The CP/M operating system allows the user to redirect the input and output of its

logical devices to particular physical devices. As an example the CP/M system

could be used with a remote terminal by assigning the physical device TTY. (the
RS423 serial port) to the logical device CON : (the system console).

The use of the IOBYTE to reassign the physical devices is covered in the Digital

Research CP/M Operating System Manual.

Care has been taken however to allow the user familiar with the BBC Micro to use

OSBYTE calls to redirect input and output as required. This has been done by

127

providing the physical device UC1 : which uses the normal BBC micro 1/O streams.
These can be altered as required. The default setting of the IOBYTE assigns the

UCI : device to CON: so the system console behaves like a normal BBC micro.

The CP/M logical devices are as follows:-

CON: is the principal interactive console that communicates with the operator

and is accessed through CP/M calls to the Console.

LST: is the principal listing device, usually a printer.

PUN: is the tape punching device - the name is a leftover from the days when

computers used paper tape.
RDR: is the tape reading device. As with PUN : above it is inherited from the

early versions of CP/M.

The Acorn CP/M system implements the following physical devices which are used
in conjunction with the above logical devices:

UCI: is the normal BBC micro I/O channel. This allows the user familiar with

the BBC to redirect I/O without using the CP/M IOBYTE. It also

supports the terminal emulation facility described elsewhere.

CRT: provides direct access to the BBC screen and keyboard. Unlike the

UCI: device, input and output cannot by redirected by OSBYTE calls.

Input always comes from the keyboard and output always goes to the

screen. It does not support the terminal emulation facility.

TTY: is the RS423 serial port. The default baud rate is 9600. It can be used
for both input and output. Please note that the user should not disable

the RS423 input if using the TTY. input device. The default setting is
input enabled.

LPT: is the standard BBC micro printer device. This is a Centronics with no
printer ignore character as a default but can be changed using OSBYTE

calls. If a printer is not present then attempts to send characters to the

printer will cause a message ‘Printer off line’ to appear. The user may

then connect a printer and carry on. Alternatively if a printer is not

available after a short time the message ‘SPACE starts Printer Sink’

appears and the user can press the SPACE bar to throw away the

printer output. The printer sink is detailed in the BBC Micro Users

Guide. Characters sent to the printer will continue to be ignored until

the user selects another printer type with a *FX5 call. UC1 . is the same

as the LPT. device except no messages appear if the printer isn’t
connected. The system will simply stop.

NUL: is a device which throws away all output and returns | Ah on input,
indicating End of File. This is present to prevent the system hanging if

an unimplemented physical device is selected.

UR1:,UR2:,

UP1:, UP2: are all equivalent to the NUL: device.

128

The default value for the IOBYTE in the Acorn CP/M system is 83h. This assigns
UCI : to CON:, LPT. to LST. TTY. to RDR:, and TTY: to PUN:. It can be changed

by applications programs or by the STAT command.

Device characteristics

The physical devices have the following characteristics:

UC1: the user-defined console device.

Default console device. It is also the fastest of the console devices since it uses the

standard BBC input and output streams. These streams can be altered by using

OSBYTE calls in the normal BBC manner, so the machine's 1/O can be treated as

that of a normal BBC machine, using the STAR command to avoid using the

IOBYTE facility.

CRT: the screen and keyboard.

Input is taken from the keyboard and output is sent to the screen. The

characteristics of this device cannot be changed with OSBYTE calls.

TTY: the RS423 serial lines.

The RS423 serial lines can be accessed using this device. The default baud rate

setting for the TTY. is 9600 baud and may be changed by the appropriate OSB YTE
call. No events are generated by ESCAPE characters, and non-ASCII codes

cannot be programmed on the function keys. The normal BBC handshaking using
CTS/RTS is implemented. The cassette driver should not be enabled nor the

RS432 input disabled while using this device. Although a serial printer can be
driven by this device, it bypasses the normal printer functions, such as setting an

ignore character or handshaking . It is therefore better to use the LPT. device and

set it to a serial printer with the appropriate OSBYTE call.

LPT: the printer.

Standard BBC printer driver. It can be changed to suit the particular printer in use.

The default setting is the parallel printer, ignoring line feeds. It is recommended

that when connecting a serial printer the IOBYTE be left unchanged and the LPT.

device altered with the appropriate OSBYTE call. The alternative is to use the
IOBYTE to select the TTY. driver but this does not carry out any of the standard

printer functions.

BAT: batch mode (input from RDR: and output to LST:).

This device takes its input from the logical device RDR: This can in turn be

assigned to any of the relevant physical devices. The output goes to the logical

device LST. which can in turn be reassigned to the relevant physical device.

129

PTR: paper tape reader - reassigned as the keyboard.

In the absence of a paper tape reader this device is the keyboard.

PTP: paper tape punch - reassigned as the screen.

In the absence of a paper tape punch this device is the screen.

The System Patch Area

To allow temporary patches to be made to the Acorn CP/M system an area has

been reserved in the BIOS. It starts immediately after the STARTUP entry point in

the CP/M BIOS jump table and is 60h bytes long. This is EA33h to EA92h inclusive

in the current Acorn CP/M system.

Patching should only be attempted by those familiar with the CP/M system.

There are two main types of patch. The first is to add special initialisation code.

The instruction at EA33h is a RET. This location is called at cold start which allows

a special subroutine to be inserted in place of the ROM. This could for example

select a serial printer as default. The other use is to patch in temporary additions to

the system. Certain applications programs do so. Please note that patches of this

sort may be overwritten by other programs. As a result they can only form

temporary additions to the system and they should ‘tidy up’ on termination. i.e. any
changes made to other parts of the operating system should be reversed after the

patch has done its job.

130

14 THE 80186 SECOND
PROCESSOR

Operating System Calls

The operating system calls of the Master 128 may be accessed from the 80186 co-
processor by using the 80186 software interrupts. 256 software interrupts are

supported and each one has a corresponding four-byte vector in the first kilobyte of

memory. Interrupts 040h - 04Ch are reserved for the thirteen MOS calls supported

on the co-processor. All operating system calls take parameters in 80186 registers

al,bh,bl corresponding to 6502 registers A,Y and X (except OSARGS - see below).

Address Interrupt Routine Function

0100h 040h OSFIND Open or close a file

0104h 041h OSGBPB Read/Write part of a file

0108h 042h OSBPUT Write single byte to file
010Ch 043h OSBGET Read single byte from file

0110h 044h OSARGS Read/Write file data

0114h 045h OSFILE Read/Write a complete file

0118h 046h OSRDCH Read character from keyboard

011Ch 047h OSASCI Write character (plus LF)

0120h 048h OSNEWL Write CR,LF to screen

0124h 049h OSWRCH Write character to screen
0128h 04Ah OSWORD Various using control block

012Ch 04Bh OSBYTE Various using registers
0130h 04Ch OSCLI interpret command line

MOS calls OSRDSC, OSWRSC, OSEVEN, GSINIT and GSREAD are not

supported by the 80186 but OSWORD with al=-OFAh provides the functions of

OSRDSC and OSWRSC.

131

OSFIND

Opens a file for reading or writing
Entry parameters al operation type

ds:bx point to filename terminated by CR
(al <> 0)

ah file handle (al - 0)

Exit parameters al file handle

(0 = file could not be opened)

Flag status undefined

Preserved registers ds, bx

OSGBPB

Read/write block of bytes from/to specified open file
Entry parameters al operation type

ds:bx point to control block
Exit parameters al=0 operation attempted

al unchanged = not supported in this fs
Flag status cf clear = transfer completed ok

cf set = end of file reached before

transfer completed

Preserved registers ds, bx

OSBPUT

Write single byte to specified open file
Entry parameters al byte to write to file

bh file handle
Exit parameters none

Flag status undefined

Preserved registers all

OSBGET

Read single byte from specified open file
Entry parameters bh file handle
Exit parameters al byte read from file

Flags status cf set if attempt made to read past end
of file

Preserved registers bx

132

OSARGS

Read/write file attributes

Entry parameters al operation type
ah file handle

ds:bx points to 4-byte attribute block
Exit parameters al filing system number

bx points to 4-byte attribute block

Flags status undefined

Preserved registers ds, bx

OSFILE

Read/Write complete file or catalogue information
Entry parameters al operation type

ds:bx point to control block
Exit parameters al or (bx) dependent on operation

Flags status undefined
Preserved registers all

OSRDCH

Read a character from currently selected input stream.

Entry parameters none
Exit parameters al character

Flags status cf clear = valid character read
set = error condition , type in al

Preserved registers ah, bx

OSASCI

IF character <> CR do OSWRCH ELSE do OSNEWL
Entry parameters al character
Exit parameters none

Flags status undefined

Preserved registers ah,bx

OSNEWL

Write LF CR to currently selected output stream.

Entry parameters none
Exit parameters none

Flags status undefined
Preserved registers bx

133

OSWRCH

Write character to currently selected output stream
Entry parameters al character to write
Exit parameters none

Flags status undefined
Preserved registers bx

OSWORD

Various functions using control block

Entry parameters al OSWORD type
ds:bx points to control block

Exit parameters (bx) parameters returned in control block are
call dependent

Flags status undefined
Preserved registers all

OSBYTE

Various functions using registers
Entry parameters al OSBYTEtype

bl OSBYTE parameter

bh OSBYTE parameter (only if al > O7Fh)
Exit parameters bl return parameter

bh return parameter (only if al > 07Fh)
Flags status cf status call dependent

Preserved registers al

OSCLI

Send command to Command Line Interpreter

Entry parameters ds:bx point to command line
Exit parameters none

Flags status undefined

Preserved registers all

134

Error Handling by the 80186 Monitor

When an error is generated by the 65C12 host processor the error number and

string are passed across the TUBE to the 80186 under interrupt. The error number
and string are then placed in an error buffer on the 80186 and a pointer is initialised

to point to the error number. The error string is terminated by a null byte (OOh). The
80186 TUBE code then jumps to the error handler, prints out the error and returns

control to the 80186 monitor (see below).

The locations of the error handler vector and error pointer are given below.

0000:05F4h error pointer - offset

0000:05F6h error pointer - segment

0000:05F8h error handler vector - offset

0000:05FAh error handler vector - segment

Error Handling by stand-alone languages or

applications

The error handling provided by the 80186 monitor is not suitable for stand-alone

languages (i.e. languages using only MOS functions and host filing systems - not

DOS+ or Concurrent DOS) as control is returned to the monitor by the default error

handler. When the language is started up it should initialise the error handler vector

to point to its own error handler which can handle the error in an appropriate way

and return control to a suitable point within the language.

An example is now given to illustrate a typical error handler. This assumes that the
language is running at 0000:8000h. The example is written in Digital Research

RAS M86 assembler format.

cseg 0

org 08000h

osnewl equ 048h

oswrch equ 049h

error pointer offset equ .05F4h

error pointer segment equ .05F6h

error handler vec offset equ .O5F8h

error handler vec seqment equ .05 FAh

135

sinitialise error handler vector to point to my error handler

sub ax,ax

mov ds,ax ;set ds=0 to access system data

mov ax,offset my error handler

mov — error handler vec offset,ax

mov ax,seg my error handler

mov error handler vec segment,ax

my error handler:
;set up ds:si to point to error

Ids si,dword ptr error pointer offset
int osnewl snew line

ine si ;skip error number
cld ;set forward direction

my error loop:
lodsb sget error string from buffer

int oswrch sand write it out

test alal send of string ?

joz myerror loop ;no - get next character

jmp my command loop; yes - jump to command loop

80186 Error Messages

Errors can also be generated by the 80186 using interrupt 04Fh and following it with
the error number and error string terminated with a null byte. The error pointer will

be initialised as for 65C12 errors and the error handler given by the error handler
vector will be used.

The following example illustrates the use of 80186 errors. In this a test is being

made for the presence of a file before attempting to load it. The file name is

assumed to be in the current data segment.

; some interrupt numbers

error equ O04Ph _ ;the error interrupt number

osfind equ 040h

136

;osfind parameters

open for input equ 040h

serror numbers

not found errorequ O06Dh

; some misc equates

cr equ 13

cseg

look for file:
mov al,open for input

mov bx, offset my file name

int osfind

or alal ;al=O implies file not found

jnz load the file

;file not present - give error message

int error

db not found error, cannot find file, O

snote no return after writing out error

sfile loaded here if present

load the file:

dseg

my file name :
db , d.myfile’ , cr

137

Escape Processing

When an escape condition is detected by the 65C12 the top bit of the escape flag at
0000:05F2h on the 80186 is set under interrupt. An escape condition should be

tested for by checking this escape flag. If an escape condition exists the escape
must be acknowledged using OSBYTE with al=07Eh and optionally an 80186 error

message can be generated. The escape flag should not be set or reset directly as
the change will not be reflected on the host processor side. OSBYTE calls with

al = 07Ch or 07Dh should be used to clear or set the escape condition respectively.

80186 Monitor

After enabling the co-processor and pressing BREAK the following display should

appear.

Acorn TUBE 80186 512K

Acorn ADFS

BASIC

*

The * prompt indicates that the 80186 monitor has been entered and is waiting for

commands to send to the Command Line Interpreter on the 80186 or the 65C12.

In addition to the standard MOS and filing system commands the 80186 recognises

the following monitor commands:

name function
D memory dump in hex and ASCII

DOS boot dos from hard disc if present else boot from floppy
F fill memory with byte or word constant

GO jump to specified address
MON enter Monitor

S set memory with hex or ASCII

SR search memory for specified text string
TFER transfer blocks of memory between 80186 and 65C12

Where <offset> is used below it refers to a hexadecimal offset address which can
be entered as | to 4 digits - leading zeros can be omitted i.e. 7A can be entered

as 7A , 07A or 007A. If more than 4 hex digits are entered the most significant

digits will be truncated i.e. 12345 will be treated as 2345. Where <segment> is

138

used it refers to a 80186 segment address which can also be entered as | to 4 hex
digits but must be followed immediately by a colon (:) to indicate that it is a segment

value. In all relevant commands below if no segment address is specified the most

recently specified value is used or 0 if no previous value has been specified. For all

commands any leading spaces or asterisks or trailing spaces will be ignored. Items

enclosed in <> brackets indicate parameters that the command uses, items also

enclosed in (Q) brackets indicate optional parameters that do not have to be

specified. All commands can be entered in upper or lower case (or both).

D - memory dump

Syntax - *D (<segment>:) (<start offset>) (<end offset>)

Gives a memory dump between the specified addresses in hex and ASCII showing

the addresses in segment:offset form. Characters outside the ASCII range 20h -

7Eh are shown as a full stop. All the parameters in the above commands are

optional. If the segment address is omitted the last value will be used. If the start

and end offsets are omitted the last end address + 01 Oh is used as the start
address and the last end address + O80h is used as the end address. If the end

address is omitted the start address + O80h is used. The dump operation can be

terminated at any time by pressing ESCAPE.

DOS-boot DOS

Syntax - aficionados
Allows DOS to be booted without CTRL BREAK i.e. from stand-alone languages or

applications. DOS will be booted from the hard disc if present (and correctly

initialised for use with DOS) else it will be booted from floppy.

F - fill memory with constant

Syntax - *F (<segment>:) <start offset> <end offset> <fill byte/word>

Fills memory with a constant value between the specified addresses. The constant
used can be specified as a byte or word value. The end offset specified is the end

address + 1 used by the fill command ie.

*f 1000 1010 55

will fill bytes 1 000h - 100Fh inclusive with the value 55h

*f 1000 1010 1234

will fill bytes 1 000h - 100Fh inclusive with the word 1234h with the Isb written

first.

An end offset of 0 can be used to specify a fill operation to the last address in the

specified segment

139

GO - jump to address

Syntax - *GO c<segment>:) <offset>
Transfers control to the specified address. Should be used with care as jumping to

an address which does not contain any executable code could have undesirable
consequences!

MON - enter 80186 monitor

Syntax - *MON
Allows the monitor to be re-entered from stand-alone languages or applications

without pressing BREAK.

S - set memory contents

Syntax - *S c<segment>:) <start offset>

Allows memory contents to be examined and altered if required. A line of sixteen
bytes of memory is displayed in hexadecimal and ASCII formats, initially with the

cursor under the least significant digit of the first byte specified. Cursor movement
and data entry is controlled using the following keys:

LEFT move cursor left, if at far left display previous 16 bytes

RIGHT move cursor right, if at far right display next 16 bytes

UP display previous 16 bytes

DOWN display next 16 bytes
SHIFT LEFT move cursor to far left of current field

SHIFT RIGHT move cursor to far right of current field

COPY toggle between hex field and ASCII field

The display consists of two 16-byte fields - a hexadecimal display and an ASCII

display. The COPY key is used to switch between the two. While the cursor is in
the hex field, data is entered in hex digits, each digit being shifted in from the right.

To advance to the next field the normal cursor keys are used. SHIFTed cursor keys
are used to move to the far left or right of the current field. If the cursor is in the

ASCII field, data is entered as ASCTI bytes. The cursor is automatically advanced

to the next field to allow text to be typed in directly. When text is entered at the far

right of the field the next 16 bytes are automatically displayed to allow typing to

continue over 16-byte boundaries.

The *S command is terminated by pressing ESCAPE

140

SR - search memory for string

Syntax - *SR c<segment>:) <start offset> <end offset> <“string”>
Search memory for specified text string reporting all occurrences in segment: offset

form. The address given is of the first byte of the matching string. The search

string must be enclosed in double quotes (“) and can be up to 72 characters in

length. (Maximum length for complete command line is 80 characters), The end
offset specified is the end address + 1 of the search area so to allow the search to

continue right up to the end of a segment. An end address of 0 can be specified 1.e.

*sr 4000 0 “eric”

will search from 04000h up to OFFFFh inclusive. The condition for a string to be

found is that it must be completely contained within the search area, i.e. if string

“eric” lives at O3FFDh then

*sr 0 4000 “eric”

will not report it but if the string “eric” lives at O3FFCh then the above search will
find it. Any 8-bit character string can be sought using escape sequences to allow

control codes and characters above 07Fh to be specified. (N.B. these are

compatible with the MOS escape sequences). The ii character is used to denote

an escape sequence. The following table shows how all the characters are

specified.

String hex byte

“i@”" 0

“fia” or “iA” 1

to to

“fiz” or “iiZ” 1A

“ii [* 1B
to to

“ii IF
“ss 20

to to

wo TE

except for following two special cases
seesesse 22

“ii i 7C
“Hi?” 7F

“ti!<char>* 80-FF

141

where <char> is any of above 7 bit chars

Any escape arguments not recognised are reduced to the argument alone ie. “iil”

is reduced to “1” etc

and any surplus redundant “ii!” operators are ignored

Le. iiliiii@” is reduced to “iilii@”

Any string not terminated by a “ character or containing an odd number of *
characters will be reported as bad strings i.e.

String Error

“abc No terminating “
“ ab”” Single quote character in string

“ab?” As above

A Bad String error will also be generated if no argument is supplied for the escape

character ii or if a null string or equivalent is specified i.e.

String Error
“all” No escape argument

as Null string

“ii!” Reduced to null string hence as above

The search operation can be terminated at any time by pressing ESCAPE.

TFER - *transfer blocks of memory between 80186 and 65C12

Syntax - *TFER <I/O addr> (<segment>:) <offset> <length> <r/w>
Allows fast block transfer of memory between 80186 and 65C12. The direction of

transfer is specified by the final parameter which must be r or w. r indicates a read
from 65C 12 memory to 80186 memory, w indicates a write to 65C12 memory from

80186 memory. The transfer is implemented using OSWORD OFAh (described

below) and is optimised to use fast transfer types 6 and 7 (10ms/byte) where

possible. If the transfer length is not a multiple of 256 bytes any remaining bytes

are transferred using types 0 and | (24ms/byte).

80186 OSWORD call

The 80186 ROM implements an additional OSWORD call with al= OFAh to allow
efficient transfer of blocks of data between the 80186 and the host 65C12

processor. The OSWORD call is used by setting up the following control block
which must be pointed to by ds:bx.

142

bx + 0 Number of parameters sent to I/O processor (ODh or OEh)
bx + | Number of parameters read from I/O processor (01 h) .

bx + 2 LSB of I/O processor address

bx+3.

bx+4.

bx + 5 MSB of I/O processor address

bx + 6 LSB of 80186 offset address

bx + 7 MSB of 80186 offset address

bx+8 LSB of 80186 segment address

bx + 9 MSB of 80186 segment address

bx + A LSB of length of transfer
bx + B MSB of length of transfer

bx + C Operation type
bx + D 65C12 ,memory access control

The operation type specifies the type of transfer used as follows:

0 write to 65C12 (24 ms/byte)

1 read from 65C12 (24 ms/byte)

2 write to 65C12 (26 ms/pair of bytes)

3 read from 65C12 (26 ms/pair of bytes)

6 write to 65C12 (1 0 ms/byte 256 transfer)

7 read from 65C12 (1 0 ms/byte 256 transfer)

The memory access control byte allows access to the paged ROMs, paged RAM

and shadow RAM in the host machine and is laid out as follows:

BIT 7 6 5 4 3 2 1 0

x sm_ | m/s c pr3_ | pr2_ | pri | pro

where the bits have the following functions:

x unused

sm if 3000h <= I/O address < 8000h, sm=1 = use screen memory

regardless of state of *shadow

(NB - this overrides bit 5 if a conflict arises)

m/s 0 = use main screen memory if screen address specified

1 = use shadow screen memory if screen address specified

c if 8000h <= I/O address < COOOh 0 = use specified ROM number
1 = use currently selected ROM

pr3-pr0 paged ROM number 0-15

The memory access byte is only used if the first byte of the control block IS set to
OEh - it is ignored otherwise. Use of the memory access byte allows paged ROM

software to be copied and therefore access may be restricted to system use. This ,

143

however, would prevent access to the shadow RAM which is not used by the
system and cannot be legally accessed by other means.

The following example of the call assumes that the control block has been set up

correctly and is located in the first 64K segment.

A contiguous 36-Kbyte area of memory is being used as a buffer for data written

from 20001000 in the 80186. The host buffer starts at 3000h and extends to

BFFFh. 3000h - 7FFFh is specified as shadow screen memory and 8000h - BFFFh

is specified as paged RAM in socket #5,

osword equ 04Ah

transfer osword equ OFAh

sub ax,ax spoint ds:bx at control

sblock

mov ds,ax

mov _ bx, offset transfer block

mov al,transfer osword sset up osword type

int osword ;do the call

transfer block db OEh

db Olh

dw 03000h,0 sbase address in 65C12

dw 01000h,02000h sbase address in 80186

dw 09000h slength = 36k
db 6 ;fast 256 byte transfer

db Q25h suse shadow, paged ram

144

15 DISC FILING SYSTEMS

Introduction

The Reference Manual, Part 1 gives much detailed information on the two disc filing

systems within the system ROM. Extra information is provided here for those

wishing to use their own filing systems, or needing a specification of ANFS.

The track format is described by detailing the data to be written to format a disc :

DFS

Description Value to be written Number of bytes
Post index gap

(Gap 1) FF

The bracketed field is repeated 16 times

Sector ID field 00

F5

FE

00 to 27 (40 track)

OR

00 to 4F (80 track)

00 (on side 0)

OR

Q1 (on side 1)

OO0to OF

Ol
F7

Sector] D/Data gap 4E

(Gap 2)
00
F5

Data field FB/F8

Post data Gap 3 FF

Runout (Gap 4) FF

40

6
3
1

1

Se
e
e
e

0

4

3

1

256

1

1

Comments

Pll lock-up
(Note 1) 1

(Note 2) 1

track ID

head ID

sector number

(Note 3)

Pll lock-up

(Note 1)

(Note 4)

Data

(Note 3)

0
Until next index hole

The first sector on every track is offset by 7 from the previous sector.

145

DFS supports both 40- and 80-track drives. It manages the sides of a disc
separately. The WD1770 FDC is operated in its single density mode (FM) using ten

256-byte sectors per track with a data transfer rate of [byte every 32ms.

ADFS

Description Value to be written Number of bytes Comments

Post index gap

(Gap 1) 4E 60

The bracketed field is repeated 16 times

Sector ID field 00 12 Pll lock-up

F5 3 (Note 1) 1

FE 1 (Note 2) 1

00 to 27 (40 track)

OR 1 track ID

00 to 4F (80 track)

00 (on side 0)

OR 1 head ID

Q1 (on side 1)

00 to OF 1 sector number

01 1

F7 1 (Note 3)

Sector ID/Data gap 4E 22

(Gap 2)
00 12 Pll lock-up
F5 3 (Note 1)

Data field FB 1 (Note 4)

5A 256 Data

F7 1 (Note 3)

Post data Gap 3 4E 43

Runout (Gap4) 4E Until next index hole

The first sector on every track is offset by 7 from the previous sector.

ADFS supports both 40- and 80-track drives. It manages both sides of a disc as a

single volume. The WD1770 FDC is operated in its double density mode (MFM)

using sixteen 256-byte sectors per track with a data transfer rate of 1 byte every
32ms.

Notes:

1) This causes three synchronisation bytes to be recorded.
2) This causes an ID data marker to be recorded.

3) This causes 2 CRC bytes to be recorded.

4) This causes a data marker to be recorded.

146

CP/M Disc Format

Acorn CP/M uses the following double-sided disc format:-

80 tracks / surface

10 sectors / track

256 bytes / sector

A double sided disc is regarded by CP/M as a single logical disc with 160 tracks

numbered from 0 to 159. In order to obtain the best disc performance the following

logical to physical track mapping is performed.

Logical CP/M Physical
track

0-79 0 - 79 (top surface)

80- 159. 79 - 0 (bottom surface)

The first 3 tracks on the top surface are reserved for the CP/M system.

The CP/M directory starts at track 3 sector 0 and uses 4Kbytes to allow up to 128

directory entries per disc. This leaves 388 Kbytes per disc available for user

programs and data.

Acorn CP/M uses deblocking to allow the physical disc sector size to be larger than
the logical CP/M record size of 128 bytes. Although a 256-byte sector size is used

the effective sector size is 512 bytes as all disc operations read or write 2 sectors at
a time using an appropriate sector skew. The following table defines the logical

record to physical sector relationship:

Logical Logical disc Physical disc Logical Logical disc Physical disc

CP/M sector sector CP/M sector sector

record (512 bytes) (256 bytes) record (512 bytes) (256 bytes)

(128 bytes) (128 bytes)

0 0 0 10 2 9

1 0 0 11 2 9

2 0 1 12 3 2

3 0 1 13 3 2

4 1 4 14 3 3
5 1 4 15 3 3

6 1 5 16 4 6
7 1 5 17 4 6

8 2 8 18 4 7
9 2 8 19 4 7

147

16 ADVANCED NETWORK

FILING SYSTEM

This chapter covers the specification for the Master 128 and Econet Terminal

implementations of AN FS. The specification includes differences between AN FS,

for Master microcomputers and earlier BBC Model B machines. The computer is

type five for machine peek operations.

Local buffering

ANFS will buffer data from all open files in RAM. This buffer is in the I/O

processor

in both single processor and second processor installations. This means that of all

OSBGET and OSBPUT calls, only a small proportion (20/0) will actually need to

communicate over the network with the file server. The buffering code uses 256-

byte buffers on a “dynamic” basis. There may be more than one buffer allocated
per file channel. Up to sixteen channels may be active, which means that higher

performance file servers can be implemented without any changes to the ANFS.

The limit of sixteen also permits the user to maintain valid context and open files on

more than one file server at once. Older file servers and the original NFS for use on

earlier BBC Microcomputers can accommodate only eight channels.

When opening files, buffers are allocated dynamically. The number of buffers
allocated is variable. If there were sixteen buffers and only a single file were

opened, the first sixteen pages of the file would be read sequentially into the
buffers. If these pages are then referenced, they are instantly available. When the

seventeenth page is requested, the page that was referred to least recently is
overwritten. This causes ANFS and the buffers to function as a cache. If two files

are open then the buffers are shared according to the amount each file is used. If

one file is used twice as much as the other then it is allocated about twice as many

buffers.

The number of buffers is set to five initially. If there is space available then up to

sixteen buffers can be allocated and this is very likely in most circumstances. The

algorithm for marking buffers “Least Recently Used” (LRU) is as follows.

a) If the buffer has nothing in it then it will become LRU
b) If there are no empty buffers then the buffer adjacent to the buffer being

accessed will be LRU if it is full. (This prevents the “leading edge” of a file being
overwritten).

148

c) If multiple files are open and if one file I .s being heavily used, then it may have
extra buffers allocated to it.

The translation of user handles to file server handles is more complex than in NFS,

so the OSWORD call to set the context handles works in a slightly different way. If

the user handle is not open or is not a directory then no change will occur to the

handle being written. When this happens, rather than issuing a channel error, the

reason code in the OSWORD block will be changed to zero to indicate failure. An

OSARGS call is available to return the file server handle (and number) for a given

user handle.

Operating System Commands

*HELP

The *HELP command shows the current version number and the station number
identical to that displayed after BREAK. There are now two sub-categories, “Net”

for those commands which are part of the network filing system, and “Utils” for
filing

system independent utilities and commands.

There is a facility for large help texts (provided by users) to be accessed by the

*HELP command. If the first argument given to the *HELP command is the word

“on” then the remainder of the line will be used as a series of filenames. These

filenames will be used to access Help texts stored on the file server. An example

would be:
>*HELP on users and stations

This would attempt to *type the files “users” , “stations” , and “and” on the screen.

Obviously there should not be a file called “and” , but the files “stations” and
“users”

could contain useful information relevant to the user's own installation. Provision of

these help texts would be made by the network manager.

*CDIR <dir> (<number>)

Where the <number> is quoted in entries , a directory big enough to hold that many

entries will be created. The <number> may range from | to 245. Any number

outside this range will give an error. If the optional parameter is not given then the

default of 19 will be used. This creates a directory of length &200.

*FLIP

The FLIP command will simply exchange the currently selected directory (CSD)
and

the currently selected library (CSL). This is a way of selecting the library as your

149

CSD and it is particularly useful when files which must be LOADed (via the
OSFILE

mechanism) are to be made public, and software must be able to access them

easily. It is unwise to use the *DIR or *LIB commands in the “Flipped” state. the
user should FLIP back first.

*FS (<stn. id.>)

The FS command will change the file server number. This allows a user to be

logged on to two or more file servers at one time and to change between them. Any

open files will be ensured to the current file server before the number is changed. If

no argument is given, i.e. just *FS [RETURN] is typed, then the current file server

number will be reported.

*T AM (<stn.id.>) <user id.> ((:IRETURN])<password>)

This command is essentially unchanged from NFS but now accepts [DELETE] and

CTRL-U during the “invisible” part and will delete either the last character typed or
the entire “invisible” part respectively. It is possible for this command to display the

warning message “Data Lost” if data which had been written to a file was still
buffered and was not able to be written to the file server. This could be caused by

the file server having been restarted.

*LCAT (<dir>)

Catalogue the current library. This can also take an optional argument for a path

from the currently selected library, e.g. *LCAT fonts [RETURN] will catalogue a
directory called “fonts” in the currently selected library (CSL). This is useful

because a command such as *FONTS . italics is looked up in the currently selected
library.

*LEX (<dir>)

Examine the current library. This can take an optional argument, see *LCAT.

*PASS (:[RETURN])<old password> <new password>.

This accepts a“. , , inthe middle of the command like “*I AM “ , so that passwords

may be hidden. It should be noted that although the “.” may appear anywhere in
the line it would be most useful to have it before both the old and new passwords.

Whilst the “invisible” part is being typed CTRL-U deletes the entire invisible part
and

[DELETE] deletes the last character.

150

*WIPE (<dir>)

*WIPE will offer each unlocked file or directory in the specified directory for
deletion with a (Y/N/?) prompt. If’,?,, is typed the full object information will be

printed followed by (Y/N). If is typed then the file or directory will be deleted. If
anything else is typed the object will not be deleted.

Extra Utils star commands incorporated in

the ROM

These commands may be issued when the ANFS is not the current filing system.

*POLLPS (<stn.id.>(,<ps type>))

The POLLPS command shows the currently selected printer server number and the

currently selected printer type, for example,
>*POLLPS

Printer server is 235 “PRINT”

235 is ready

Following the printer server number will be a list of all the printers on the network

and the current status of each. The possible status conditions are :

“ready” which means the printer is ready for use or has timed out the current user

“busy” which means the station shown is currently using that printer

“jammed” which means that the printer server has characters in its buffer but has
been unable to send characters out to its printer for some period of time. This

would usually be caused by the printer being off-line or unable to accept characters
for some reason.

It should be noted that *POLLPS does not alter the printer server number, the state

of FX5, or the state of FX6.

If the command is followed by a station number then only the status of that station

will be shown. No status will be shown if the station is not operating as a printer

server. The command can also have a textual argument e.g. “DAISY”, “LINE” ,

“DRAFT”, or “LASER”. If this textual argument is supplied then only printers of

that

type will have their status listed. This allows users to examine only the status of

printers in which they are interested.

*PROT (<prot type>).

With no argument supplied this will protect against all operations. If any arguments

are given then only those types of operations will be protected against. Note that

this can have multiple arguments, e.g. *PROT PEEK POKE [RETURN].

151

*UNPROT (<prot type>) .

With no argument supplied this will unprotect all operations. If any arguments are
given then only those types of operations will be unprotected. Note that this can

have multiple arguments e.g. *UNPROT POKE JSR [RETURN].

*PS (<stn.id.> <ps type>).

The command *PS followed by a number behaves in the same way as the loaded

transient command PS in NFS (and File servers), that is it sets the printer server

station number to the one supplied. If a textual argument is given then the printer

server will be set to the number of the first printer of that type to be found “ready”.
If no printer is found to be ready then the printer server number will remain

unchanged. If no argument at all is supplied then the printer server number will be

set to the first “ready” printer. When a textual argument is supplied it will become

the currently selected printer type, and this type will be used when *PS issued with
no argument.

Note the power-up default type is “PRINT” to which all printer servers respond. The

command *POLLPS with no argument also uses this currently selected type. If
printing is taking place when the PS command is issued then the error message

“Printer busy” will be issued and the printer server number will not change. Again it
should be noted that this command does not affect the states of FX5 and FX6.

*WDUMP <filename> (<offset> (<address>))

This dumps the file in hex and ASCII in a format suitable for screen widths of 80
characters. The optional offset parameter is the number of bytes (in hex) to skip

before starting to dump. The address parameter is the address (in hex) of the first
byte in the file to be displayed. The default value for this is the file's load address.

*CONFIGURE commands.

The following commands are used as arguments to the *CONFIGURE command:

FS <stn. id.>

This sets the file server station number stored in CMOS RAM. This station number

is used as the default at a hard BREAK.

PS <stn. id.>

This sets the printer server station number stored in CMOS RAM. This station

number is used as the default at a hard BREAK.

152

SPACE / NOSPACE

This feature is enabled by “SPACE” and disabled by “NOSPACE”. Its purpose is to
provide compatibility for those users who have networks consisting of BBC

machines and Master Series machines. This is achieved by ensuring that “PAGE”
in the I/O processor is at least &1000. This is required for transparent use of some

network commands, e.g.. * VIEW , *NOTIPY , etc.

*STATUS commands

The following commands are used as arguments to the *STATUS command:

FS

This displays the file server station number as stored in CMOS RAM. This station

number is used as the default at a hard BREAK.

PS

This will display the printer server station number as stored in CMOS RAM. This
station number is used as the default at a hard BREAK.

SPACE

This will display the state of this feature, either “No Space” or “Space”.

Extra “OPT commands

The setting of *OPTS5 controls a level of bootstrapping only available on Master
Series. This bootstrap is the *RUNning of a file called “FindLib”. If this utility is

run
it can be used to select a Master Series compatible library.

To enable operation with old software which has used the network workspace, there

is a switch which controls the location of network private space. Normally this

space is in pages &B and &C in the I/O processor. By setting *OPT6,1 then this

space will be “claimed “ in the normal way. Note that this will increase the value of
PAGE by &200. Setting *OPT6 O will restore this claiming area to its correct

location of &B and &C.

Both these commands are stored in CMOS RAM and must only be issued when
ANFS is the current filing system.

153

Printing

After a *FX5,4 has been issued, a VDU2 or CTRL-B will cause the status of the

current printer server to be examined. If this status is “jammed” or “busy” then an

error (BRK) will be generated to that effect and the VDU2 will be cancelled. If any
type of error occurs during transmission or reception from the printer server then an

error will be generated but the VDU2 will not be cancelled. For more information
see the section on errors. Issuing a VDU3 whilst not printing will have no effect.

Issuing a VDU3 whilst printing will send to the printer any data which is in the local

printer buffer. This will work even if there is no data to send. This is most useful

since this act of transmitting to the printer server will reset its timeout. If the

[BREAK] key is pressed whilst printing is taking place then all characters in the

printer buffer will be sent and the printing will be terminated: a VDU3 will be

simulated.

Extra interfaces

An OSWORD call is available for reading and writing the default printer server
type.

This <type> is a six character ASCII string. If <type> is shorter than six characters,
it is padded to six with spaces. Other extensions will permit the reading of the

handle associated with the last error, if there was one. There are extensions to

read how many characters are in the network printer buffer, to determine the local

network number, and to translate external station addresses to local ones.

Enhancements to the filing system interface

Write only files

File servers support the notion of files which are write only with public access.

These files have access strings such as “WR/W” or “LWR/W” to support simple

“mail” schemes with some privacy . Write only files should be opened for update

and will give an error if an attempt is made to read data (either with OSBGET or
OSGBPB). It should be noted that there is no buffering of write only files.

Note that this function requires file servers of the following version numbers or

above:

“Level 2 Version 1.05” or “Version IV.05”.

154

OSFILE

The interface is “create”, and behaves as “save” except that no data is transferred.
This means that large files can be created without the necessity of transferring large

amounts of data. This is useful where the creation of a file of &10000 bytes would
otherwise have required a “save”, e.g. *SAVE FILENAME 0 10000 [RETURN].

This would “crash” the computer because the process of saving would read some

“read sensitive” locations. These include data transfer registers of some 1/O devices,
e.g., Tube, ADLC , and FDC. Direct access to this function is provided by the MOS

command *CREATE. Note that this function requires file servers of the following

version numbers or above:

“Level 2 Version 1.02” or “Version IV.03”.

OSARGS

All calls to “ensure” files save the relevant buffers of an open file to the file server,

and then close the file. OSARGS with A=0 returns the same filing system number
as NFS 3.40 and NFS 3.60.

A new function, expressed in BASIC as EXT# is implemented. This can either

increase or decrease the length of a file. Note that this function requires file servers

of the following version numbers or above:

“Level 2 Version 1.02” or “Version IV.03”.

The amount of disc space allocated to a file can now be read. This value is greater

than or equal to the current extent. An interface has also been provided for Z80-

based software (CP/M) : the file server handle for a particular file. Users are

advised NOT to use this handle since its use could result in lost data.

Error messages

Both the “Not listening” and “No reply” error messages have the station

number added to them to become. “Station nnn not listening” and “No
reply from station nnn” . The “Channel” error is followed by the channel

that was found to be in error , e.g. “Channel 99”. If any sort of error occurs during

a “random access” operation (OSBGET, OSBPUT, OSARGS, OSFILE, and

OSGBPB) then information regarding the channel that had the error will be

appended to the error message. For example, if the file server was very busy a

message such as “Station 254 not listening on channel 32” might be
caused. It should be noted that the channel associated with the error may not have

been the channel on which the operation was attempted. If an OSBPUT is
attempted then a buffer may be required. If this means that the previous contents

of the buffer need to be written back to the file server then the error may occur on
the channel associated with that buffer.

155

The fatal error caused by the OSWORD call in BBC Model B computers now

produces the message “Remoted” and may have channel information added if the

error occurred during a “random access” operation.

There are eleven more errors than those produced by the BBC Model B:

“No. “ occurs when an attempt is made to *RUN a file with a load address of
&FFFFFFxx and an execute address which is not & FFFFFFFF.

The expanded printer interface now has the extra errors “Printer busy” ,

“Printer jammed”, and “Station not present” .

There is an error “Syntax” for commands which are recognised but have the
wrong syntax (missing parameters).

The ANFS maintains a checksum on its private workspace and this is checked

before any random access operation and the new error “Bad net Sum” may be
generated. If a file is opened on a particular file server then it can be accessed only

when using that file server. If an attempt is made to use the file whilst logged on to

another file server then the error “Channel nnn not on this file server”

will be issued.

The “Bad hex” and “Bad number” errors occur if a number was expected and

non-hexadecimal or numeric characters were encountered.

The errors “Bad station number” and “Bad net number” are issued from, for

instance, the *] AM command.

“Bad parameter” will be caused if a numeric argument is out of range. “Write
only” is the error from attempting to read a write only file.

“No more FCBs” will be given if an attempt is made to open more than 16 objects

at one time.

A User Root Directory (URD) reference point

Any object reference that starts with “&” is assumed to refer to a pathway from the
URD not the CSD. This is compatible with the ADFS since ADFS interprets “&” as

“$” and makes access to files in non-local parts of the user's directory structure
easier

156

Compatibility with DFS based software

If an object reference starts with “:0.”, i.e. an explicit disc reference then it is
translated to “&.0.”. This means that disc software which references specific files

can be made to work under the ANFS by creating directories “0” and “1” in the
user's root directory, but prevents the use of single character titles for discs.

Additional library functionality

To be compatible with the ADFS, ANFS adopts the convention that any file which

is

*RUN <filename>, */<filename>, or *<filename> will be treated as “EXEC

<filename> rather than *RUN <filename> if it has an exec address of & FFFFFFFF.

This means that EXEC files for commonly used sequences can be stored in the
library. There is also a “User Library” which is searched after the CSD and before

the CSL. This user library can therefore be used to override normal library
functions as well as to extend the user's personal library. The main advantage is

that users who need non-standard libraries no longer need to duplicate sections of
the main library. This “User Library” is “& Library”, so the users should create a

directory called “Library” in their root directory to take advantage of this facility.

Time and Date

The time and the date maintained by the file server have always been readable by

the user, via the OSWORD call. There now exists a second OSWORD call which

reads the same information in two new (standard) formats. One format returns the

information in BCD rather than packed binary, the other returns it as a string. Note
that *TIME will return the time and date from the computer's battery-backed clock.

OSWORD has to be re-vectored to enable ANFS to reply to this call.

I/O processor address space

The I/O processor is normally accessed using addresses between &FFFFO000 and

&FFFFFFFF. The ANFS will use addresses between &FFFFO000 and & FFFFFFFF

to refer to the user's RAM, and addresses between & FFFEQ000 and & FFFEFFFF to

refer to the memory which is the current screen. Note that if a screen is saved

using, say, & FFFE3000 to &FFFE7FFF then this will reload correctly on a BBC

microcomputer or an Electron microcomputer fitted with AN FS.

Automatic Bootstrapping

During a log-on the normal course is to establish the user's startup option and act

on it. Any action which otherwise may have taken place will be suppressed if the

157

[CONTROL] key is held depressed during the boot sequence. Note that this
suppression does not occur if the log-on is a result of a [SHIFT] [BREAK].

Re-tries

The defaults for the number of re-tries for several operations are now “user
adjustable”. The number of transmit retries is adjustable from 1 to 255. If zero is

used then transmit will try “for ever”. Since some operations are normally
in ESCapable after 255 tries, the operation becomes ESCapable. The default for

transmit is 255. The operation *I AM <user id.> and VDU2 have a prior “machine

peek” to determine the existence of the destination station. For this type of transmit
the default is ten. When waiting for a reception the receive block is checked some

number of times and if the reception has not occurred then the “No reply” error is

issued. The default number of check operations is 40. These values are accessed
via the OSWORD call.

File server / Bridge net number translation

To support the use of bridges there is a call to translate a net number given by a
remote station to one relative to the current station. This is via OSWORD. This

means that * VIEW, *REMOTE, and *NOTIFY will work for all cases in multi-net

configurations. The same OSWORD also returns the local net number. If this call

should fail for some reason the error will be indicated in the data returned to the

user.

Ifa full station number, including network number is given when using the

commands *I AM, *FS, and *PS then the network number is compared to the local

net number. If the net number given is the same as the local net number then the

network number will be treated as zero. This allows the use of global numbering.

Detection of wrong versions and ANFS

Since there is more than one version of the ANFS (e.g. for BBC Model B), a method

has been devised to prevent the incorrect version from running in any machine.

This is done by checking the version of the operating system. If the wrong

operating system is detected the ANFS ROM prints “Bad ROM nn” and then the

machine will start up in the normal way and will completely ignore the bad ROM.

It may be necessary for software to detect that the network software is ANFS rather

than NFS , if the software is intended to work on BBC Model B microcomputers. To

do this the following is recommended:

158

In BBC BASIC
DEF FNIsThisANFS

LOCAL A%, X%, y%, Value%

DIM X% 3.Y%=X% DIV 256:A%=19

X%20=15 :REM Read re-try count for ANFS, Read error

number for NFS

CALL OSWORD

Value%=X% 72 :REM This byte written by ANFS but not by NFS

X%22=X% 22. EOR 255 :REM Invert all bits

CALL OSWORD :REM If NFS is present X%?2 will remain

inverted

= (Value% = X%72)

In 6502 assembler (MASM format)

IsANFS ROUT ; Returns “EQ” for ANFS “NE” for NFS

LDXIM :LSB: Block

LDYIM :MSB: Block

LDAIM 15

STA Block

LDAIM 19

JSR OSWORD

LDA Block + 2

PHA

EORIM 255

STA Block + 2

LDAIM 19

JSR OSWORD

PLA

CMP Block + 2

RTS

Entry of hexadecimal numbers

Where a decimal number is expected, a hexadecimal number may be entered if it is

preceded by the “&” character. This is the same format as BASIC uses to enter

hexadecimal. Note that where an entry in hexadecimal is expected the “&”
character should not be used. .

Events on reception

Event number 254 is the Econet receive event. This event is enabled with

*FX52,150 and disabled with *FX52,100. When enabled an event will be generated

by the completion of a successful reception.

159

17 TERMINAL EMULATOR

The Terminal Emulator operates both as a language and a service facility. There
are two key functions which the language has to ask the service code to perform -

actuating its own buffer control and enabling XON/XOFF flow control as
appropriate. OSBYTE 96 is used for this purpose.

OSBYTE96,x
x= &40 : Turn off RFC (Receive Flow Control)

x= &41 : Turn on RFC

x= &62 : Turn off TFC (Transmit Flow Control)

x= &63 . Turn on TFC

x= &81 . Set up intercept on vectors INSV and REMV
x= &80 : Remove intercept.

Terminal File Transfer

Transferring a file either into or out of the MASTER 128 in Terminal mode is most
elegantly done with an APC (Application Program Control) sequence to trap

OSRDCH or OSWRCH and use OSGBPB to transfer the local buffer accordingly.

In many cases however, a more trivial solution will suffice for the transmission of

text files.

1) Type “*SPOOL Dump-File’[RETURN] in Terminal LOCAL mode.

2) Select Terminal LINE mode.

3) Type “* TYPE My-File” [RETURN] This will cause the file to be transmitted to
the remote computer. Only if that computer echoes it back, will it appear on

the screen.
4) Select Terminal LOCAL mode when the remote computer indicates

completion (it must print a prompt of some description on the screen on
detecting the appropriate End-Of-File delimiter).

5) Type “*SPOOL” [RETURN].

The file will now have been transferred into the other computer. It is its

responsibility to ensure that the data has been saved as appropriate. Note that

non-text files can be transmitted but the only trivial solution to this is to use

*PRINT,

rather than *T'YPE in the above sequence. This will cause control characters and

“top bit set” characters to be encoded in GSREAD format which will need to be
translated in the remote machine, which may not always be practicable. There is a
special problem with the backslash. In some files this is encoded as character &60

and is translated by the Terminal Emulator to &BB. A received character &BB is
not

converted back to &60.

160

18 THE EDITOR

Buffer Transfer

The Editor can be invoked by any language which can implement the following

protocol. This enables it to be used as a general language editor, freeing code

space for the language itself.

From the language to Editor

Editor puts text in the memory from &E00 up to &7FFF, assuming a shadow screen
mode is in use. Text before the cursor is located from &E00 upwards, and that after

the cursor, from &7FFF downwards. The language should leave its program at the
high end of this space, i.e. without any split, as the editor will, on entry, put the

cursor at the first character of the buffer. It should then call the buffer with a
command line of.

*EDIT <start pointer> <end pointer> [RETURN]

The pointers must be in page zero. <start pointer> points to the first location in the

buffer. <end pointer> points to the first location after the last character in the buffer.

All addresses must be in hexadecimal.

From EDITOR to the language

The Editor will leave a pointer to the start of text, in location &0000. Text is
terminated by a NULL (&00).

Using “Return To Language”, the language will be invoked by.

KK

Language name> @ [RETURN]

This method is dictated by BASIC which has no service entry point.

161

19 THE VIEW AND

VIEWSHEET FORMATS

The VIEW Word Processor represents text as 7-bit ASCII codes, using certain
codes for special control functions. This chapter describes the codes and the

overall structure of text both in the computer's memory and in disc files.

Reserved Characters and File Format

VIEW normally only permits the use of characters with ASCII codes &20-&7F (32-

127) as text. This allows codes &80 (128) to &FF (255) to be used for control

functions, although not all of these are used.

In the Master Compact version of VIEW , only the codes &80 to &86 are used by

VIEW , the remaining values, &87 to &FF are available for use as printable
characters. The 8-bit function key codes are recognised by the presence of a null

character provided by the MOS.

VIEW formatting characters

&09 TAB - As used in tabulation

&0B Left Margin TAB - To set the left margin

&0D CARRIAGE RETURN _ - End of line

&1A Soft space character - Inserted between words for formatting
&1C Highlight (one) - (Underscore indication)

&1D Highlight (two) - (Emboldening indication)

&80 Stored command - The first character of a stored command

&81 Ruler - The character preceding a ruler
&80 Printer highlight zero

&86 Printer highlight six

TABs are inserted into the text when the TAB key is pressed.

Left Margin Tabs are inserted into the text by VIEW when the left margin is active.

In stored files they separate text in the left margin, e.g. stored commands, from the

main body of the text. Where there is no left margin text, the line will begin with a

Left Margin Tab.

Carriage returns are at the end of each line. The maximum line length is 132
characters excluding the carriage return.

162

Soft space characters are added between words to justify a line.

Highlight codes (one) and (two) are placed in the text, corresponding to the

appropriate Highlight function key. They are translated into printer highlights when

the text is printed.

The stored command lead-in character only appears as the first character of a line

and is immediately followed by the two ASCII characters of the command.

Parameters follow the command directly. Spaces appearing on the screen between

the command and the parameters are placed there by VIEW.

Similarly , the ruler lead-in character will only appear as the first character on a

line.

The syntax for a ruler is

<Ruler lead-in character>“..”<Ruler as ASCII text><Carriage Return>

The printer highlight characters do not appear in the body of the text or in the stored

file. They are only sent to a printer for control purposes.

Memory Format

Text is stored as a contiguous block. Unlike EDIT , there is no split at the cursor.
Text starts with a <CARRIAGE RETURN? and ends with a <NULL>. The NULL

must be preceded by a <CARRIAGE RETURN? which will be the end of the last
line.

There are three pointers to locate the start, finish and validity of the text.

1) A two byte pointer at &000B indicates the Start of Text.

2) A two byte pointer at &000D points to the NULL after the text.

3) A two byte pointer at &000F points to the End of Text

&0D = -Beginning

Start of Text

Text

Memory

&O0D ~~ -End of Text

-End

163

VIEW uses a memory consistency check of the following:
1) &AA stored at &000A

2) &AA stored at (&001F)

3) &OD stored at &05CE

4) &0D stored at (&000B)-1

5) &0D,&00 stored at (&000D)

Number Registers

The number registers are stored as two bytes each. The registers are only

available and valid during printing and the printer driver can access these if

required. The location of each number register is

&798 + 2*n (where n=0 to 25 for registers A to Z).

VIEWSHEET

The data representation of VIEWSHEET is based on dynamic allocation and as
such is less straight forward to interface with. Anyone wishing to produce a product

to interface with VIEWSHEET should in the first instance contact Acorn Customer

Services.

164

APPENDIX 1

FUNCTIONAL DIFFERENCES

BETWEEN MODEL B+

AND MODEL B

Operating system New Series 2 for the 64K machine (Current version is 2.00)

Memory map

Additional 32K of RAM positioned as follows:

Shadow Screen (20K) &3000 - &7FFF (Sideways)

Paged RAM (12K) &8000 - & AFFF (Sideways)

The use of shadow screen memory for screen display releases memory in the main

memory area for program use. Modes 128 through 135 are shadow screen
equivalents of Modes 0 through 7. The 12K of Paged RAM should not be used for

applications that may need to be compatible with future Acorn products.

Shadow Screen

*SHADOW (0 or NIL parameter) selects shadow mode regardless of mode number.

*SHADOW 1 selects non-shadow mode as the default state, but Modes 128 to 135,

when selected, cause entry into a temporary Shadow state. BREAK preserves (or
sets queued) Mode/shadow option. CTRL + BREAK sets default state (non-

shadow).

OSBYTE changes

OSBYTE/FX 0 - Read/Display MOS version

(with B R K if X=0)

If x=0 & y<>0, then value returned in X is:

X=0 O05 1.00 (BBC Model A/B or Electron)

X=1 O85 1.20 (BBC Model A/B or USA Version)

X=2 052.00 (BBC Model B+)

165

To display the full MOS version number, use OSBYTE with A=0 & X=0 or use
*FXOQ;

a BRK instruction precedes the displayed value. . .

(See also OS BYTE 129 below)

OSBYTE/FX 114 (&72) - set shadow mode state

On entry, x=0 selects shadow , X=1 selects non-shadow.

On exit, X contains previous state, A is preserved, Y and C are undefined.

(This FX call is identical to *SHADOW and is implemented at the next Mode

change or soft BREAK.)

OSBYTE 117(&75)-Read VDU status

Bit 4 is now used in this call to define actual (not pending) shadow state. Bit 4 is set

for shadow state.

OSBYTE 129 (&81) - Read display MOS version

(Special case of 1 N KEY)

On entry, X=0 & Y=255. The value returned in X is:

X = 0 - BBC Model A/B version 0.1

X = 1 - Electron

X= 250 -ABC

X= 251 - BBC Model B+ version 2.00

X= 252 - Reserved

X= 253 - Reserved

X= 254 - BBC Micro USA version

X= 255 - BBC Model A/B version | .0 or 1 .2

Note that BASIC IN KEY (-256) performs the same function except that -1 is
returned for BBC Model A/B version | .0 or 1.2 not 255.

OSBYTE 132 (&84) - Read bottom of display RAM address

This returns &8000 in X and Y if Shadow is in operation (not pending).

OSBYTE 133 (&85) - Read bottom of display

RAM address for a specified mode. This returns &8000 in X and Y if shadow is in

operation (or pending). It responds similarly if a mode number >127 is in operation
(or pending).

166

OSBYTE 135 (&87) - Read character at cursor text position

This call has not changed at all and can be used to read the currently set Mode.
Note that, as before, only the lower three Mode bits are returned hence it cannot be

used to determine whether Modes 128-135 are set.

OSBYTE 239 (&EF) - Read/Write shadow mode state

Read/Write location &27F which contains shadow mode flag. This may be a

pending status.

To read, X=0, Y=255.

On exit X=0 for shadow, or X=1 for non-shadow.

To write, X=New value, Y=0.

On exit X=Previous value, and Y=contents of &260.

N.B. MOS L2 returns X=0 for its only (non-shadow) mode. An application program

must therefore find out which operating system is fitted (i.e. whether it is a 32K or
64K machine) if it is to use this call.

OSWRSC (&FFB3) - Write screen

Writes byte in A to the screen. The display location should be set up in &D6 (LSB)

and &D7(MSB).

On entry, Y contains the address offset. This offset feature may not be valid

in

future machines.

On exit, A,X and Y are preserved. C is undefined.

N.B. Sideways RAM in the range &8000-&AFFF is not written to with this call.
Shadow RAM, if selected, will be written to, regardless of screen mode selected,

down to &3000. Below &3000, main memory is written to. This call does not work
across the TUBE.

OSRDSC (&FFB9) - Read Screen/ROM

(Renamed call - was OSRDRM)

Reads byte from screen into A. The display location should be in &F6 (LSB) and

&F7 (MSB). If the address is below &8000, then the entry value of A is irrelevant

(This is the new OSRDSC use). If the address is & 8000 or above, then the ROM

number in A on entry is read (This is the original OSRDRM use).

ie. Address >&7FFF Reads ROM always.

> &2FFF but < &8000 Reads screen selected by
shadow/mode command.

< &3000 Reads main RAM.
This call does not work across the TUBE.

167

OSWORD changes

OSWORD A=&5- Read I/O Processor memory

The additional 12K of memory between &8000 and & AFFF can be accessed by

ROM ID's 128-255 (i.e. with the top bit set) and hence will not receive service calls.

This area can not contain sideways ROMs because the MOS does not switch it in

as part of the ROM handling routines. Bytes may be read from the RAM with the

top of the memory block set to &FFFEXxxx.

The 4K of memory between &B0Q00 and & BFFF is read from the RAM with the

equivalent ROM ID Modulo 16.

e.g. Select Paged ROM 135(128+7):

Reads ROM between &8000 and & AFFF

Reads ROM 7 between &BOQ00 and & BFFF

Note: This OSWORD call cannot be used to read shadow screen with memory

block set below &8000.

OSWORD A=&6 - Write I/O Processor memory

Bytes may be written to RAM between &8000 and & AFFF by setting the top of the

memory block to &FFFExxxx. User VDU Driver machine code should be placed

between & A000 and & AFFF to allow diversion to the appropriate screen (i.e.

writing
to &3000-&7FFF by machine code in &A000-&AFFF will automatically divert to

shadow display RAM if shadow is active),

Note: This OSWORD call cannot be used to write to shadow screen with memory
block set below &8000.

Hardware control locations

&FE30 - Paged ROM/RAM select

Bits 0 to 3 select appropriate ROM number.

Bit 7 set selects paged ROM.

There is a RAM copy of &FE30 at &F4.

168

Sideways ROM layout and selection

The ROM sockets are arranged as two rows of three sockets near the top left of the
PCB. ROM selection numbers are as follows:

MOS +

BASIC

8,9 10,11 14,15

(opt 0,1)

BASIC is normally at ROM numbers 14 and 15. It can be set optionally to 0 and 1.

Link setting is:

$13 North - BASIC is ROM 0 and 1

$13 South - BASIC is ROM 14 and 15
ROM numbers 12 and 13 are not decoded, As in the Model B, high ROM position

numbers have priority at reset.

For 16K ROMs, links $9,11 ,12,15,18,19 for ICs 35,44,57,62,68,71 respectively are

set West. For 32K ROMs set the appropriate link East. Priority for 32K ROM is -

same as 16K for ‘lower’ 16K, ‘top’ 16K has one priority lower.

Disk Filing System

When fitted, the Disk Filing System (DFS) is largely compatible with that used in

the
Model B. The Floppy Disk Controller chip, however, is normally a Western Digital

1770 in the Model B+ rather than the Intel 8271 fitted to the Model B. When the

1770 is used, the screen display shows “Acorn 1770 DFS”. This DFS has a few

additional commands, including Format and Verify utilities in the ROM. When
creating disk software protection routines, software writers should not make any

assumptions as to the FDC hardware fitted in the micro. Disks that have in the past
accessed the 8271 directly through memory-mapped I/O for protection will probably

not work with the 1770 DFS.

Second Processors

The 1770 DFS ROM contains the TUBE code necessary when a second processor

is fitted. If a second processor is used with a non-disc Model B+, then either a 1770
DFS ROM, or the DNFS ROM supplied with the second processor will need to be

fitted to provide the TUBE code.

169

Compatibility with Aries B32 and similar

Model B “Add-Ons”

Aries B32 and similar memory extensions typically run, by default, in an equivalent
mode to SHADOW on. A good degree of compatibility can be obtained by the use

of “Mode I xx” (i.e.Top Bit set) in an application program where the extra memory
is

required. Aries B32 (i.e. the Model B base machine) will ignore the top bit of the

Mode command, but will typically already be in a SHADOW state. The Model B+

will respond and enter the SHADOW state.

Where compatibility is required across the range of products, the use of the OS

calls which determine the memory currently available (i.e. HIMEM position), or the

memory which will be available in a certain Mode, are the preferred route. Calls to
the OS to determine if a Model B+ is the environment will, of course, not provide

the
complete story if a Model B is being used with an Aries B32 or similar extension, as

the Operating System will not know of their existence.

170

APPENDIX TWO

FUNCTIONAL DIFFERENCES

BETWEEN MASTER 128 AND

MODELS B AND B+

Operating System version

New Series 3 OS for the Master 128/512/Sc/Turbo

New Series 4 OS for the Master Econet Terminal.

Operating System changes

As version 1.2 with following extensions:

Shadow Screen - Use of MODE 128 to 135 instead of MODE 0 to 7 results in the

use of a section of memory for the screen separate from the main area of RAM.
This allows more room for user programs.

Real-time clock - the status of a Real-time clock can be called from the MOS. The

OSWORD calls &OE and &OF Read & Write the clock in BCD or text formats.

Default command line interpreter if no language present or *GO used.

Configure CMOS RAM commands - the state of the CMOS RAM can be set for

both reserved and unreserved bits. Reserved Bits include.

MODE <0-7,128-135>. Start-up mode

FS <0-255[.0-255]|> File-Server station number

PS <0-255[.0-255]> Printer-Server station number Transient

Command - Econet station ID (Must be set by
Net Manager) FS & PS status bits operational

only when ANFS fitted
LANG <ROM> Start-up language ROM number

FILE <ROM> Start-up filing system ROM number

TV [<Dec>[, <Dec>] *TV position & Interlace state

DELAY <0-255> Auto-repeat delay

REPEAT <0-255> Auto-repeat rate
PRINT <0-255> Default printer (*FX5 type)

171

IGNORE <0-255> Print ignore character. (no param=no ignore)

EXTUBE/INTUBE Tube selected (Internal/External) (Looks for

internal Tube if no external fitted)

NOTUBE/TUBE Tube ON/OFF (TUBE defaults to I/O Proc if no

co-processor fitted)

BAUD <1-8> Serial baud rate (Both ways)

DATA <0-7> Serial data format

BOOT /NOBOOT Boot status - (Reverses BRK and SHIFT + BRK

action)

SCROLL/NOSCROLL Scroll state (on/off)

FDRIVE<0-3> Floppy-Drive params (speed etc) (Use low

number for highest step rate.
0 has MFM pre-compensation.

1 is same speed but no compensation)

FLOPPY /HARD Floppy Or Winchester start-up (with HARD,

floppy is selected if no Winchester fitted)

DIR/NODIR ADEFS or FADFS as default (FADFS does not

mount disc automatically)

LOUD/QUIET Bell character volume

CAPS/NOCAPS/SHCAPS Caps lock on/off

Configuration is set using *CONFIGURE <param> or read using *STATUS

<param> or just *STATUS to read all.

Soft characters fully exploded
Improved soft-key structure with more buffer area.

New resident Operating System commands:

*APPEND functions as BUILD but appends to end of file.
*BUILD as DFS but control codes input by ii mechanism.

*CLOSE closes open files on current filing system.
*CONFIGURE to set start-up options.

*CREATE creates empty file using *SAVE params.
*DELETE as DFS delete.

*DUMP <start in file> <start address on output>.

*EX examine file in specified directory.

*EXEC take input from file rather than keyboard.

*GO to enter address in language or 1/O processor.

*GOIO to enter program at address in I/O processor.

*IGNORE as *FX6.

*INFO as *EX, but for single files or Wildcard use.

*INSERT inserts ROM number n into ROM map from reset.

*LIST list file in GSREAD format (*TYPE with line nos.)

*LIBFS define FS where LIB is from current FS.

*MOVE copies files from one place to another including between
filing systems.

*PRINT as TYPE but gets/processes vdu codes.
*REMOVE as DELETE but no error message if not found.

172

* ROMS lists ROM names, sockets, versions & U N PLUG/PLUG.

*SHADOW . with 0 or no parameter, gives shadow on next mode.

with | , drops shadow on next mode.

*SHOW displays soft-key contents.

*SHUT close open files on all filing systems.

*SRDATA reserve Sideways RAM for data use.

*SREAD copy Sideways RAM to main RAM.

*SRROM reserve Sideways RAM for direct addressing.

*SRWRITE copy main RAM to Sideways RAM.

*SPOOL direct screen output to named file.

*SPOOLON functions as SPOOL but appends to end of file.
*STATUS lists status of start-up options.

*TIME displays time from Real-time clock.
*TYPE list file with control codes displayed as AD etc.

*UNPLUG removes ROM number n from ROM map from reset.

Numeric keypad - options to set base for range of values returned and set whether
SHIFT/CTRL etc affect codes.

Cassette filing system upgraded to do OSGBPB (calls 1 & 3) in those cases

where it is to write to or read from the current pointer.

OSFSC extended for CFS to provide call 7 so that it returns legal file handle range.

CFS will perform *EX (but not *INFO).

CFS can be reselected by *FX143,18,<n> where n=1 (1200 baud), n=2 (300 baud),

n=3 (ROM filing system).

Multifiling system capability
Name of filing system can be prefixed to the file name itself.

Files may be opened and kept open across several filing systems.
Filing names currently defined include CFS (or TAPE), ROM, DFS , ADFS, NET

Extended graphics facilities:
Extended Fill commands using checkerboard pattern/stipple.

Mark-to-space ratio of dotted line.

New triangle algorithm for correct plotting under all conditions.

Parallelogram - Solid fill.

Rectangle - Solid fill.

Circle - Outline.

Circle - Solid fill.
Arc - Line fill.

Arc - Solid fill (Pie shape).

Arc - Solid fill (Chord segment).

Ellipse - Outline.
Ellipse - Solid fill.

Fill enclosing shape outline (flood-fill).

173

Enhanced speed of all fill operations.
Move/copy rectangle.

Extended horizontal line fill.

Extension text:
Improved character draw speed (especially VDU5).

Clear block of text window .

Output character with no cursor move (dead key) .

Advance left/right after drawing character.

Pending scroll to allow bottom right character to be drawn.

Cursor options held across mode changes.
Direct window scroll - left/right/up/down.

Extra 128 standard characters in ASCII range 128 to 255.

OSBYTE calls

&0 (0) Enter with X<>0, Returns X=3 for Master Compact

Entering with X=0 , (or *FXO) displays MOS version

&14 (20) parameters for *FX20 are now ignored and *FX20 resets standard

exploded font. Software writers must add parameters as required for

Model B& B+

&16 (22) Increment ROM polling semaphore. Used to request MOS polling with

service call 21 every | OmS (polling with semaphore non-zero)

&17 (23) Decrement ROM polling semaphore. Used to stop MOS polling with
service call 21 every 1 OmS

&6B (107) Switch Internal/External 1 MHz Bus

*FX107,0 - Select external bus (default)

*FX107, 1 - Select internal (cartridge) bus

&6C (108) Switch Main/Shadow, memory into main map (&3000-&7FFF)

*FX108,0 - Switch Shadow memory into main map area (immediate)

*FX108,1 - Switch Main memory into main map area (immediate)

&6D (109) Make temporary filing system permanent

&70 (112) Write to Main/Shadow memory

*FX112,0 - Write to memory specified by mode change

*FX112,1 - Write to main memory (immediate)

*FX112,2 - Write to shadow memory (immediate)

&71 (113) Display Main/Shadow memory

*FX113,0 - Display memory specified by mode change
*FX113,1 - Display main memory (immediate)

*FX113,2 - Display shadow memory (immediate)
&72 (114) Write to/Display Main/Shadow memory (*SHADOW)

*FX114,0-Use shadow memory at next mode change
*FX114,n - Use mode defined at next mode change (where n is 1-255)

174

&81 (129) Now extended to return new MOS version

Enter with X<>0 & Y=255. Returns X=3 for OS 3.00

Enter with X=0. Returns X=253 for Master Compact

&84(132) Read top of user RAM (was display RAM start)

&85(133) Read top of user RAM for a given mode (was display RAM start for a

given mode)

&A1 (161) Read CMOS RAM

Enter with A=0, X=n, where n is the RAM location number (30-49)

Returns with result in Y

Use *STATUS for locations 0-29

&A2 (162) Write CMOS RAM
Enter with A=1 , X=n, where n is new RAM location number (30-49)

*FX162 can be used. Use *CONFIGURE for locations 1-29.
Location 0 is protected

&A4 (164) Check processor type
&A5 (165) Read output cursor position

&B3 (179) Read/Write ROM polling semaphore (was Read/Write OSHWM)

A=179, X=n, y=0 reads semaphore into X and sets state to n. Setting

state directly with this call will interfere with OSBYTE 22 & 23 use.

A =1 79, X=0, y=255 reads semaphore into X

& B6 (182) Read NOIGNORE state (was Read font explosion)

&EE (238) Changes numeric pad base

*FX238,<base> with base from 0-255 will alter key characters to their

ASCII value -48+<base>

&FA (250) Read memory area used for writing to
&FB (251) Read memory area used for reading from

&FE (254) Controls effect of SHIFT on numeric pad

*FX254,0 - makes SHIFT have effect

*FX254,<1-255> - deletes effect of SHIFT

(Note This call returned RAM size in Model B & B+)

OSWORD calls

&E (14) Read CMOS clock

&F (15) Write to CMOS clock

New Service calls to Sideways ROMs

&15 (21) Polling interrupt. Made 100 times per sec. if OSBYTE 22 issued
&18 (24) Interactive HELP. Made by MOS when it executes a *HELP command,

after service call 9. MOS offers CLI text following a *HELP to a ROM

participating in the interactive help system

175

&21 (33) Offer Static Workspace in Hidden RAM. Call is made on a Reset.

Workspace starts at &C0Q00 in Hidden RAM and can only be used by a

Filing System, and only one at a time. Workspace has an upper limit of

&DBFF. Call analogous to &01 , but uses hidden RAM

&22 (34) Offer Dynamic Workspace in Hidden RAM. ROMs should ideally ignore

Call &02, which takes workspace in main memory

&23 (35) Tells ROMs location of top of Static Workspace in Hidden RAM

&24 (36) Dynamic Workspace requirements. ROMs should indicate how much

memory they will each claim through Call 34. Y contains current bottom

of dynamic allocation and should be decremented by required number

of pages
&25 (37) Inform MOS of filing system name and info

(See Reference Manual 1 for detailed information on this call)

&26 (38) Close all files. Issued at a Reset. Filing systems should select

themselves, close open files and then de-select. Used by *SHUT
&27 (39) Reset has occurred. Call made after hard reset. Mainly for Econet

Filing system so that it can claim NMIs. This call is now required since
the MOS no longer offers workspace on a soft BREAK, A Sideways

ROM should therefore re-initialise itself

&28 (40) Unknown CONFIGURE option. Used to extend range of commands. A

Sideways ROM having a claim on CMOS RAM may use this command

to update its configuration information

&29 (41) Unknown STATUS option. Used to provide extra commands. See &28.

&2A (42) ROM-based language starting up. This enables languages, such as the

TERMINAL, to remove their interception of buffering functions etc. prior
to the next language taking control

VDU commands

VDU18,m,c = Define graphics colour

m=Qto4 sameas MOS 1.2

m=5 Leave screen colour unchanged

For each of n= 1 ,2,3,4 (ecf pattern numbers).

m= 16n Overwrite the colour on the screen

m= n+ 1 OR the colour of the screen

m= 16n+2 AND the colour of the screen

m= 16n +3 EOR the colour of the screen

m= 16n+4 Invert the colour of the screen

m= 16n+5 Leave screen colour unchanged

VDU22,m = Select screen mode

m=Qto8 AsMOS 1.2

m= 128 to 135 covers shadow screen modes

176

VDU23,0,r,v,0,0,0,0,0,0 - Control 6845 CRTC directly
As MOS 1.21. writes value of v to 6845 register r

VDU23,1,n,0,0,0,0,0,0,0 - Turn cursor on/off
As MOS 1.2 (but with additions of n=2 & n=3):

n =0 Stops cursor appearing

n= | Cursor appears on screen (Default case)

n =2 Cursor is steady

n= 3 Cursor flashes at approx. 1.5 times/sec (Default)

Flash rate is doubled in cursor edit mode

VDU23,2-5,a,b,¢,d,e,f,g,h - Set ecf pattern

ecf patterns can be set to pixel groups of 8*8, 4*8 or 8*8 if mode has 2,
4 or 16 colours respectively. VDU23,2 to VDU23,5 sets patterns 1 to

4 respectively.
Integers a to h define pattern rows from top to bottom. If the integer is

derived from stuvwxyz in binary, then: For 2 colour mode, logical
colours from left to right are: s, t, u, v, W, X, y, Z

For 4 colour mode, logical colours from left to right are: sw, tx, uy, vz

For 16 colour mode, logical colours from left to right are: suwy, tvxz

VDU23,6,n,0,0,0,0,0,0,0 - Set dotted lines pattern

n= &FF line as in MOS 1.2

n= &AA line as in MOS 1.2(Default-Reset every mode change)

n = &EE Dashed line (dot-dot-dot-space repeated)
n =&E4 Dash-dotted line (dot-dot-dot-space-dot-space-space rept)

VDU23,7,m,d,z,0,0,0,0,0 - Scroll window directly
Allows text window or arbitrary rectangle to be scrolled without
cursor movement:

m= 0 Scroll text window

m= 1 Scroll entire screen

d= 0 Scroll right

d= 1 Scroll left

d= 2 Scroll down

d= 3 Scroll up

d=4 Scroll in positive X direction (defined by VDU23, 16, etc.)

d=5 Scroll in negative X direction (defined by VDU23,16, etc.)

d=6 Scroll in positive Y direction (defined by VDU23,16, etc.)
d= 7 Scroll in negative Y direction (defined by VDU23, 16, etc.)

z=0 Scroll by | character cell
z= 1 Scroll by | character cell vertically, 1 byte horizontally

(.e. 8 Pixels in 2-colour modes, 4 in 4-colour modes, 2 in 16-colour

modes, and 1 character in mode 7). This is the minimum distance that

can be scrolled to enable a hardware scroll if the full screen is scrolled.

177

VDU23,8,t1,t2,x1,y1,x2,y2,0,0 - Clear block of text window

This causes a block of the text window to be cleared to the text

background colour. The parameters indicate where the two ends of the

block (..e. string start & string finish) are, with tl ,x1 and yl relating to the

start of the block and t2,x2 and y2 to the end of the block. In each case,

it indicates a base position (ti), to which (xi,yi) is added to get the true

position. The character position at the start of the block is generally

included in the clear, but that at the end is not.

ti= 0 Base position is “top left of window”

ti= 1 Base position is “top of cursor column”

ti = 2 Base position is “off top right of window”
ti= 4 Base position is “left end of cursor line”

ti=5 Base position is cursor position

ti= 6 Base position is “off right end of cursor line”

ti= 8 Base position is “bottom left of window
ti= 9 Base position is “bottom of cursor column”

ti= 1 0 Base position is “off bottom right of window”
Other values of ti have undefined effects.

(The quotes are to indicate that all of these positions are calculated

taking the cursor movement control set by VDU23,16 into account -

e.g. after VDU23, 16,2,0,0,0,0,0,0,0, “left” above right etc.)

The results of this function are undefined if the absolute values of the

coordinates of the two ends go outside the range -128 to 127. This is

best avoided by not using values of xi and yi outside the range -128 to

47. Should the end point of the block lie before the start point, no
clearing will be done.

VDU23,9,n,0,0,0,0,0,0,0 - Set Ist flash time

Same spec as MOS 1 .2

VDU23,10,n,0,0,0,0,0,0,0 - Set 2nd flash time
Same spec as MOS 1.2

VDU23,11,0,0,0,0,0,0,0,0 - Set default ecf patterns

Mode Pattern Colour VDU23,2-5 type definition

0 1 Dark grey &CC,&00,& CC, &00, & CC, &00, & CC, &00

2 Grey &CC,&33,&CC,&33,&CC,&33,&CC,&33
3 Light grey &FF,&33,&FF,&33,&FF,&33,&FF,&33

4 Hatching &03,8&0C,&30, &C0,&03,&0C, &30,&CO
1,5 1 Red-orange &A5,&0OF, &A5,&OF,&A5, &OF,& A5,&OF

2 Orange &AS,&5SA, RAS, &5A, BAS &SA, &AS,&5A
3 Yellow-orange &FO, &5A, &FO,&5A,&FO, &5A,&FO,&5A

4 Cream &F5,&PA,&P5S,&FA,&F5,FA,&FS,&FA

178

2 1 Orange &0B,&07,&0B,&07,&0B,&07,&0B,&07

2 Pink &23,8&13,&23,8&13.&23,8&13,&23,&13

3 Yellow-green &0E,&0D, &0E,&0D,&0E,&0D, &0E,&0D

4 Cream &1F,&2F,&1F,&2F,&1F, &2F,&1F,&2F

4 1 Dark grey &AA,&00,&AA,&00,&AA,&00,&AA,&00

2 Grey &AA,&55,8&AA,&55,&AA,&55,&AA, &55

3 Light grey &FF,&55,&FF,&55,&FF,&55,&FF,&55

4 Hatching &11,8&22,&44,&88,&11,8&22,&44, &88

Mode 0 patterns are different from 4 to avoid TV effects.

VDU23,12-15,a,b,c,d,e,f,g,h - Set simple ecf pattern

This sets a simple 2*4 (or double for mode 0) pattern. Patterns 1 to 4
are set by VDU23,12 to VDU23,15 respectively. The logical colours

from left to right are :
Toprow -a,b

next row - c,d

next row - e,f

last row - g,h

Mode 0 has double pixels to avoid TV patterning.

VDU23,16,x,y,0,0,0,0,0,0 - Cursor movement control

Allows control of cursor after a character has been printed. This control

sequence replaces the current flag byte as follows:

((Current byte) AND x) EOR y

If the byte flag is abcdefgh in binary, then :

a=0 Normal
a= 1 Undefined

b=0 In VDU 5 mode, cursor movement outside a window

causes special actions i.e. Carriage returns generated

b=1 In VDU 5 mode, cursor movement outside a window does

not cause special actions

c = 0 Cursor moves in positive direction. d & h define action if

cursor moves outside a window

c = | Cursor does not move

d=OIf Y movement would go outside a window, window is

scrolled in VDU 4 mode; in VDU 5 mode it moves to

opposite edge of the window.

d= 1 As above but cursor always moves to opposite edge
efg=000 Text X direction is right, Y direction is down

efg=001 Text X direction is left, Y direction is down
efg=010 Text X direction is right, Y direction is right

efg=011 Text X direction is left, Y direction is up
efg=100 Text X direction is down, Y direction is right

efg=101 Text X direction is down, Y direction is left

efg=110 Text X direction is up, Y direction is right

efg=111 Text X direction is up, Y direction is left

179

h=0 If movement would go outside a window, cursor moves to
negative edge and one step in positive Y direction. If this

goes outside a window, d defines behaviour. This is '80'

column mode

h=1 If movement would go outside a window, a ‘pending cursor

movement’ is generated. It is released before next

character is printed (or another control code). This is '81’

column mode

VDU23,17-26,a,b,c,d,e,f,g,h - Unassigned (but reserved)

VDU23,27,a,b,c,d,e,f,g,h - Acornsoft sprites

VDU23,28-31,a,b,c,d,e,f,g,h - Unassigned (for user application programs)
Reserved for use by application programs. Results in a call to the
unknown Plot codes vector &226,&227. Call can be recognised as

follows:
C = | onentry to the vector.

A contains the VDU23 code (i.e. the first number following 23).

All of the sequence except the 23 can be found in ascending order

starting at the location : (Start of VDU variables) + &1 B, ie. at &31 B in

MOS version 1.2

VDU23,32-255,a,b,c,d,e,f,g,h - Define character
Spec as MOS 1.2

VDU24,11,1h,b1,bh,rl,rh,tl,th - Set graphics window

Spec as MOS 1.2

VDU25,p,xLxh,yl,yh - Plot

Vv
VDU25,0-63 - Plot line

Spec as MOS | .2, but some improvements

VDU25,64- 71 - Plot point

Same as MOS 1.2

VDU25,72-79 - Horizontal line fill

Spec as MOS 1.2

VDU25,80-87 - Plot triangle
Spec as MOS 1.2

VDU25,88-95 - Horizontal line fill

Spec as MOS 1.2

180

VDU25,96-103 - Plot rectangle
Plots a filled axis aligned rectangle with opposite corners at the current

graphics cursor and the new point.

VDU25,104-111 - Horizontal line fill
Similar to VDU25,72-79..., with the difference that the word

“nonbackground” should be replaced by “foreground”

VDU25,112-119 - Plot parallelogram
Plots a filled parallelogram with vertices at the old graphics cursor, the

current graphics cursor, the new point, and at (new point)-(current
graphics cursor)+(old graphics cursor) in cyclic order. The fourth point

is calculated in terms of internal pixel co-ordinates to ensure that the
sides are parallel.

VDU25,120-127 - Horizontal line fill

Similar to VDU25,88-95..., with the difference that the word

“background” should be replaced by “non-foreground”

VDU25,128-143 - Flood fill
This flood fills the screen starting from the new point and continuing until

non-background (plot codes 128-135) or foreground (plot codes 136-

143) pixels are found. These sequences make use of soft-key 11-15

buffers (they will reset soft keys to empty strings and will fail to do

anything if these soft keys are being expanded. Sequences may fail if
the area to be filled is too complicated, the colour being used to fill can

itself be filled or an escape occurs

VDU25,144-159 - Plot circle
Plots a circle outline (plot codes 144-151) or a filled circle (plot codes

152-159) with its centre at the current graphics cursor and the new point

on its boundary.

VDU25,160-183 - Plot circular arc
Plots a circular arc (plot codes 160-167) the filled chord segment

between a circular arc and the chord joining its end points (plot codes

168-175) or the filled pie sector between a circular arc and the two radii

joining its end points to the centre of the circle (plot codes 176-183). In

all three cases, the centre of the circle is at the old graphics cursor , the
first endpoint of the arc is at the current graphics cursor the second

endpoint of the arc is on the circle and in the same direction from the
centre of the circle as the new point is, and the circular arc is taken to

be the arc going clockwise from the first end point to the second one.

181

VDU25,184-191 - Move/copy rectangle
Causes the axis-aligned rectangle with opposite corners at the old and

current graphics cursors to be moved (plot codes 185,189) or copied

(plot codes 186, 187,190,191) so that its new bottom left hand point is at

the new point (plot codes 184 and 188 simply move the graphics cursor

to the new point, like other plot codes which are 0 MOD 4).

Any part of the source rectangle which lies outside the current graphics

window is assumed to contain the current graphics background colour

for the purposes of the copy or move. The difference between copying

and moving is that moving sets any part of the source rectangle which

lies outside the destination rectangle to background, whereas copying
leaves such parts of the source rectangle unchanged

VDU25,192-207 - Plot ellipse

Plots an ellipse outline (plot codes 192-199) or a filled ellipse (plot
codes 200-207). The centre of the ellipse is at the old graphics cursor.

VDU25,208-231 - Unassigned
Not reserved for application programs

VDU25,232-239,xI,xh,yl,yh - Acornsoft sprites

VDU25,240-255 - User program calls
Reserved for application programs. Will result in a call to the unknown

plot codes vector (&226,&227). Call recognised by.
C=0 on entry

Computer is in a graphics mode (can test location (start of VDU
variables) + &61 , i.e. &361 on MOS 1.2 This contains

(number of pixels/byte)-1 (1-e. 1,3 or 7) in graphics modes, and 0 in
nongraphics modes).

A contains the VDU25 code (i.e. the first number following the 25). The

coordinates can be found in ascending order starting at the location

(start of VDU variables) + &1 Fie. &31 Fon MOS 1 .2

VDU26 - Restore default windows

Spec as MOS 1.2

VDU27-Null

Spec as MOS 1.2

VDU28,Ix,by,rx,ty - Define text window

Spec as MOS 1.2

VDU29,x1,xh,yLyh - Define graphics origin
Spec as MOS 1 .2

182

VDU30 - Home cursor

Spec as MOS 1 .2

VDU31,x,y - Tab cursor

Spec as MOS 1.2

VDU32-126 - Print a character

Spec as MOS 1.2

VDU127 - Backspace and delete

Spec as MOS 1.2

VDU128-255 - Print a character

Prints characters from the extended character set in a similar manner to

VDU32-126

EDITOR

Text file editing with ability to go to defined line numbers.

Includes a formatter to provide reasonable presentation on printed documents.

Can display on-screen help info. State of this HELP info is kept in CMOS RAM.

Cursor keys used to move cursor around screen, with screen scrolling up or down

as necessary.

Shift mode Action
NONE + up/down arrow cursor moves one line

NONE + left/right arrow cursor moves one character
SHIFT + up/down arrow cursor moves one screen

SHIFT+ left/right arrow cursor moves one word
CTRL + up/down arrow cursor moves top/bottom doc

CTRL + left/right arrow cursor moves start/end line

ESCAPE safely abandons most operations.

Function key operations:

f0 - Goto specified line number

SHIFT f0 - Toggles between invisible display of carriage returns (default) and

small reverse video 'M's, thus easily controlling trailing spaces.

fl - Access to OSCLI e.g. <fl >CAT for Disc Catalogue.

SHIFT f1 - Toggles entry mode between insert (default) and overtype. State
is displayed at bottom left of screen.

f2 - Load text from named file.
SHIFT f2 - Insert text from named file at the cursor position.

f3 - Save text to named file.
SHIFT f3 - Remove top and bottom scroll margins.

183

f4 - Enter interactive find and replace option. A prompt of
FIND/REPLACE will appear at bottom of the screen. The text until

the next '/’ or RETURN is the string to be searched for.

Some characters represent powerful operators :

$ - Carriage return.

. - ANY character except carriage return.

- A digit 0 to 9.

@ - An alphabetic (a to z, A to Z) or digit.

~ - 'NOT' the following character

* - any number of the following character.

“- As many as possible of the following character.
\- An escape to allow special characters to be

introduced.
- - Signifies a range e.g. a-z matches a lower case

character.
[] - Is a set of options for this character e.g. [0123] would

allow 0,1,2, or 3.

ii- Control characters as MOS e.g. iiJ is CTRL + J.

If the string is ended ina RETURN ie. no /, then the string will be

found (if possible) and a prompt of R(eplace), C(ontinue) or

ESCAPE will be displayed. C moves on to the next occurrence, R

replaces and moves on, ESCAPE stops altogether. The text after
the second 7’ is the string which may replace the found string. If

there is no / then you may type in the text and move on when R is

used. There are special characters here:

$ - Again represents carriage return.

\- As find string.

ii- As find string.

& - Represents the found string.

%n - (n is 0 to 9) represents the nth wild section of the

found string.

SHIFT f4 - Return to language, text being replaced into language.
Clear text buffer.

£5 - Global replace. Syntax exactly as find string. Displays the
number of found objects after working. Will operate either over

whole file or from mark to cursor.
SHIFT f5 - Set HELP display mode.

f6 - Mark position. When present, the character that the cursor is on

will be replaced by an inverted 1 or 2 and the number of marks

displayed at the bottom left of the screen will be increased.

Marked positions can be used to delete blocks of text, copy and

move them, and perform restricted searches. Up to two marked

positions may be set; an attempt to set a third will produce an

error message. No editing may be done while marks are set
SHIFT f6 - Remove all marks.

184

{7 - Copy text delimited by two marks to where the cursor is now.
The marks are not cleared so the operation can be repeated. The

cursor must not be in the marked area.

SHIFT f7 - Move text delimited by two marks to where the cursor is now.

The marks are cleared. The cursor must not be in the marked

area.

f8 - Print out text

SHIFT f8 - Delete text between single marked position and current cursor

position. An error message will occur if there is not exactly one

mark present.

£9 - Get old text back. Works if SHIFT f9 has just been pressed or
EDITOR has been broken out of and re-entered.

SHIFT f9 - Delete all text.

Miscellaneous changes

Sideways ROM headers which have been “illegal” previously on Models B & B+,
but accepted by the MOS, may not be accepted by this MOS version.

The screen Paged Mode algorithm has been improved in this MOS, resulting in

slight differences in the number of displayed lines in some modes compared with

Model B& B+.

In the Econet Terminal, the User VIA chip (6522) is not normally fitted. Application
software intended for Econet use should not use the VIA timer.

The RAM latch at &FE34 has some changes and additions to the use of each bit.

The machine start-up mode & language are now easily reconfigured. Software

should always have an auto-boot file which sets the language and screen mode,

without assuming a default state. (The machine may NOT be in Mode 7 or in

BASIC at disk Boot-up).

Software should not use “*abbreviation” due to the risk of clashes with other fitted
ROMs with similar *commands. In particular, *D. no longer selects the DFS, but

selects *DUMP.

Software should NEVER assume the position of PAGE. If it needs to know it should
ask the operating system where OSHWM is.

To provide conversion compatibility across DFS & ADFS, note the following:

*DRIVE ADFS does not support this. Use *DIR :X.Y , which is a format
common to both filing systems.

185

*DIR ADFS does not support moves directly from one directory to
another, arbitrarily across the structure. Use the full pathname

where relevant in DFS to support ADFS.

Programs should never define soft characters by directly loading into the soft-key

definition area (&CO0O-&CFF).

Memory map changes

The Shadow screen in the Model B+ from &3000 - &7FFF (Sideways) is present in

the Master 128 machine. The 12K of additional Paged RAM in Model B+ is

implemented differently in the Master 128 machine and is reserved for operating

and filing system use as “Private RAM” (see below).

The minimum machine configuration is 128K, where 64K is allocated to sideways

RAM (4 by 16K pages) in a similar way to the 128K Model B+. Use of internally
fitted ROMs in two of the three sockets will require changes to the link settings

which will remove access to some of the sideways RAM. (They are ROM locations
4,5,6 & 7).

Memory map below OSHWM
with changes from Model B/B+ indicated

Page zero - &00-&FF
&00-&8F Language workspace. BASIC allows &70-&8F for the user.

&90-&9F ECONET workspace. Do not use.

&AO-&A7 NMI workspace. It must be claimed before use.
The owner must

1) have a Filing System number allocated to it. Note the error in the
Advanced User Guide (Bray, Dickens & Holmes) on page 323. The

NMILID passed around by Service Calls &0B and &0C are Filing System
numbers not ROM numbers.

2) be able to process ROM Service Calls &0B and &0C i.e. they must
be ROMs or intercept OSBYTE &8F.

&A8-& AF MOS scratch space.

&BO-&BF Filing System scratch space. Watch out for “hidden” filing
system

calls i.e. those produced by OSWRCH if *SPOOL used.

&CO-&CF Current Filing System PRIVATE workspace.

&DO-&FF MOS workspace only

Page one-&100-&1FF

Machine stack and error message buffer.

186

Page two - &200-&2FF
&200-&235 Vectors.

&236-&28F Main MOS variables.

&290-&2FF MOS workspace (for MOS only).

Page three - &300-&3FF
&300-&37F VDU variables (for use by graphics routines only).

In the Model B, B+ and this machine, Page three is used for VDU workspace.

Most variables are the same, with the following exceptions:

Model B& B+ Master
&359 Foreground graphics colour Plotting foreground/background
&35A Background graphics colour Current graphics plot mode

&366 Mode 7 cursor Cursor control flags (VDU 23,16)

&367 Exploded font flag Dotted line pattern (VDU23,6)

&368 Exploded font location bytes Current dotted line state
&369 Plot colour (0- solid, Not 0-pattern)

&36A F/grnd col. (0- solid,Not 0-pattern)

&36B B/grnd col. (0- solid, Not 0-pattern)

&36C Col. 81 flag (top bit set pending)

&36D Foreground graphics colour

&36E Background graphics colour

&380-&3DF Cassette Filing System workspace (do not use).

&3E0-&3FF Keyboard input buffer (do not use unless replacing).

Page four, five, six and seven - &400-7FF

Language workspace. Do not use unless you are the current language or the

current language has allowed you to use it.

Page eight - &800-&8FF
&800-&87F Sound workspace. DO NOT USE (unless you want strange

noises!).

&880-&8BF Printer buffer. Useable if, and only if , no printing needed.

&8&CO-&8FF Sound workspace (envelopes | -4). Useable if , and only if,

envelopes not needed.

Page nine - &900-&9FF

&900-&9BF RS423 O/P buffer, or cassette O/P buffer (1ST part), or sound

workspace (envelopes 5 - 16). Do not use for anything else,

as this area could be re-allocated.
&9CO-&9FF Speech buffer or cassette O/P buffer (2nd part). Do not

use for anything else, as this area could be re-allocated.

187

Page ten - &A00-& AFF
RS 423 IP buffer, or cassette IP buffer. Do not use for anything else, as this

area could be re-allocated.

Page eleven - &B00-&BFF
ECONET workspace. Do not use.

In the Model B & B+ this is used for the soft key buffer. In this machine, the

soft key buffer resides in the Private 12K RAM and should not be accessed

by
the user. Programs directly accessing Page eleven on the Model B & B+ for

soft-key purposes will be incompatible with this machine
Note: Initial Page states are:

Model B, B+. &BO0-&BFF - &10
This machine: &BO0-&BFF - &00

Page twelve - &C00-& CFF
ECONET workspace. Do not use.
In the Model B & B+ this is used for user defined characters in the range

ASCII 224-255. In this machine, all characters up to ASCII 255 are defined

with a standard font. This definition resides in the Private RAM area and

should not be accessed by the user (the user can, however , re-define all of

them as before with VDU23). Programs directly accessing Page twelve on

the Model B & B+ for user defined characters will be incompatible with this

machine.

Note. Initial Page states are:
Model B, B+. &C0O0 - &0D &CO1-&CFF - &00

This machine: &CO0-&CFF - &00

Page thirteen - &D00-&DFF
&D00-&D5F NMI routine and workspace. NMI's must be claimed to use

this area.

&D60-&D9E ECONET private workspace. Do not use.

&D9F-&DEF Expanded vector set.

&DFO-&DFF Paged ROM workspace, one byte per ROM.

12K Private RAM:
&8000-&83FF Soft-key buffer. Do not use directly.

&8400-&87FF VDU workspace. Reserved for routines that need a large

area, such as flood-fill. Do not use directly.
&8800-&88FF VDU variables and workspace. Do not use directly.

&8900-&8FFF Character definitions. Do not use directly.
&C000-&DCFF Paged ROM workspace, claimed via a Service Call.

&DD00-&DFFF MOS workspace. Do not use.

188

PCB Link settings

Fitted links
Link 1 Audio to | MHz bus. Normally set for input. Can be changed to audio

output.
Link 4 Allocated for advanced software use. Enables real-time clock Alarm

facility to be used. Not normally fitted.
Link 12 Composite Sync output to Cartridge. Normally set to A (West). Set to B

(East) for Composite Sync out to Cartridge.

Link 18 Set East for ROM socket IC 41 active. Normally set West for sideways

RAM active.

Link 19 Set East for ROM socket 1C 37 active. Normally set West for sideways

RAM active.

Link 21 Not normally fitted. Links Light-pen strobe into the intercartridge link pin

10. Can be used for Genlock sync via LPSTB.

Link 60161 Normally AB only linked. Link CD in addition for 8MHz output to

cartridges. Link DB only (not AC) for external clock input to computer
e.g. Genlock etc.

Non-fitted link positions
Link 2. Not used.

Link 5 Invert Sync output.

Link 7 Invert Video.

Link 9 IC 24 pin 22 connected to GND when 1/2 Mbit MOS fitted as in
Econet Terminal machine.

Link 10 Used to select Channel 3 or 4 on VHF modulators.
Link 13 Change Link when fitting a different reference diode on the AID input.

This diode should be fitted at position PRI.
Link 14 Used for Divide-by-13 circuit when chroma MSI chip not fitted.

Link 15 Select PAL or NTSC TV system encoding.

Link 16 Not used.

Cartridge sockets

The cartridge socket specification is a superset of the Electron Plus-1 specification

All Electron Cartridges should work in this machine, but may run faster. The

converse may not be true unless a specification sub-set is used.

189

APPENDIX THREE

FUNCTIONAL DIFFERENCES

BETWEEN MASTER 128 AND

MASTER COMPACT

Hardware

Interfaces present on the Master 128 which are deleted or changed

Cassette

Tube

1 MHz bus

User I/O port

Disc

Printer

RS 423

AtoD

Audio (external)

Composite Video
TV

Cartridge sockets

Internal modem

Aux power out

Interfaces added :

Joystick/Mouse

+5VDC

Connector and internal hardware deleted.

Connector and internal hardware deleted.

Connector deleted.

Connector deleted. The internal 6522 User VIA

connections to the original 20-pin connector are split as

follows:
Joystick/mouse - PBO-PB4 + 2 control bits.

Expansion port - PB5-PB7

25-pin D-type socket. Note that there is no hardware

support for a third drive.

24-pin Delta-ribbon socket.

Now optional and RS 232 specification. The upgrade

consists of plugging in four ICs (5, 9 , 13 and 14).
Connector and internal hardware deleted.

Connector and internal hardware deleted.
Monochrome only, cannot be colour.

Connector and internal hardware deleted.
Connectors deleted. Potential capability through the

expansion port.

Internal connector deleted.

Connector deleted. No PSU in computer case.

Suitable for one digital joystick (Atari compatible) or

mouse with suitable pinning. A Trackerball can also be

used.
Power input to the computer.

190

Expansion Port

Functions

This interface is similar, but not identical to a Master 128

Cartridge socket. It can support Sideways ROM's 0 & 1

when link PL11 is set North. A 2MHz bus is provided by this

port as in the Master 128. The port must be used with care

as lines are not necessarily buffered. Only a limited amount

of +5V power is available, and demand should be kept

below 200mA total for this connector, the RGB connector

and the Joystick/Mouse port.

In addition to the functional changes implied by the interface changes mentioned

above, also note:

Real-time clock

CMOS RAM

Sideways ROMs

System ROM

Links (misc)

Deleted.

Deleted. Function replaced by an EEPROM device which
does not need battery back-up. This device is socketed and

has a maximum number of 1000 write cycles per location.

In addition to the system ROM, there are four 28 pin

sockets. Three take 16K ROM's (ICs 23, 17 , 29 - ROM

number 2, 3, 8 resp.) and one takes a 16K or 32K (IC 38,

ROM numbers 0 & 1). The latter socket must be enabled

by
setting link PL11 South. It is normally set for the

“external”

ROM(s) to be active for test purposes. Note that “Paged”

EPROM 's such as the 27513 and 27011 cannot be used,

Link PL12 is set North for a 64K ROM and South for a

128K ROM.

Inverse Video PL9 (not fitted) is normally tracked East.

Inverse Sync PL10 (not fitted) is normally tracked East

Sound volume VR1 (1 OK) may be fitted.

191

Expansion Port pinout

Solder Side Component Side

PIN M.COMPACT M-128 PIN M-COMPACT M-128
la SCREEN (OV) +5V lb SCREEN(OV) +5V

2a +5V AT13 2b +5V Al10

3a AT13 (neg) RST 3b Al10 CD3

4a (neg)RST AAI5 4b CD3 All

5a AAI5 A8 5b All A9

6a A8 Al3 6b A9 CD7

Ta Al3 Al2 7b CD7 CD6
8a Al2 PHI 2 out 8b CD6 CD5

9a PH12out -5V 9b CD5 CD4
10a N/C (neg) CSYNC/O 10b CD4 LPSTB

lla NIC BR/(neg)W 1lb 1PSTB BA7
12a BR/(neg)W (neg)NMI 12b. ~=BA7 BA6

13a (neg)NMI (neg)IRQ 13b »=BA6 BAS

14a = (neg) IRQ (neg) INFC 14b ~BAS BA4

15a (neg) INFC (neg)INFD 15b BA4 BA3

16a (neg)INFD AAI4 16b =BA3 BA2

17a AAI4 (neg) 8/16mhz 17b =BA2 BAI

18a (neg) 8MHz CRCT (neg) RST 18b =6 BAI BAO

192 OV ANOUT 19b BAO CDO

20a PB7 USER 20b CDO CD2

21a PB6USER SPEECH 21b CD2 CD1
22a PBSUSER OV 22b =CDI1 OV

POLARISATION SLOT POLARISATION SLOT

24a OV 24b OV
25a SCREEN(OV) 25b SCREEN(OV)

Firmware

ADFS

*DRIVE has been added to the ADFS to assist with compatibility in file

conversions
from DFS. *DRIVE n is equivalent to *DIR :n

As ADFS only has two drives, if n<4 it is forced to drive 4 or 5. If n>4 it is rejected.
(*DRIVE should not be used in new applications.)

*COPY/*COMPACT/*BACKUP use shadow RAM if available, and will not corrupt

user workspace. If shadow RAM is not available, the utilities will first consider

using

unclaimed Filing system RAM, and then finally will force Mode135. The commands

force *FX112,0 to avoid overwriting their own buffer.

192

*COMPACT no longer takes parameters and ADFS will issue an error message to
remind the user that the memory specified will not be used.

*FORMAT/*VERIFY/*BACKUP are contained within the ROM.

*FORMAT takes parameters <drv> <siz> where <drv> is the drive number (0 or

1,4

or 5), and <siz> is S,M or L for 40-track, 80-track single-sided and 80-track double-

sided respectively. 40-track is provided for use only where a 5.25” single-sided 40-

track drive is fitted. The user must ensure that the syntax chosen is suitable for the

drive type being used. The use of *FORMAT does not corrupt user workspace ie. it
uses 2 pages of utility workspace at &DDOO. Sector skew is now 4 (it was 9 in the

Master 128). This results in slightly faster disk performance with the 3.5” drive
fitted

as standard.

OSGBPB calls 6 & 7 return a zero byte after the CSD name or library name to be
compatible with the ownership byte returned by the Net Filing System.

CLOSE#9 no longer produces “Channel on Channel 57” when following an EXEC

sequence.

Modifications have been made to the floppy driver software in ROM which results

in

a noticeable speed-up in disk operation compared with the Master 128.

*CONFIGURE FDRIVE now uses write pre-compensation on all four parameter
values. This is applied to tracks 32-79 and 112-160. The four FDRIVE step rates

are

0 - 6mS,

1-12mS,

2 - 2mS,

3 -3mS
The 40 track limitation which caused OSWORD &72 (*LOAD/SAVE etc) to

generate

an error when an attempt was made to read the last track of a 40-track disk has

been removed.

The TUBE and Winchester support code has been removed to provide space for
the utilities.

A head settle has been added to cover the situation when doing a *BACKUP

between two 5.25” drives and the head is on the right track, the other drive has just
been used and the motor is still on. A disk error 48 might otherwise be issued.

*BYE now closes all files when in a “No directory” state.

*RENAME wildcards are always rejected.

193

MOS

The Operating System is effectively compatible with that of the Master 128. All of
the extended graphics features are available as for the Master 128.

The Real-time clock is not present, and calls to this will return a year of “1999” Le.

“Fri,3 1 Dec 1999.23:59:59”.

The Configuration system is similar for *CONFIGURE and *STATUS, but the

latter lists in alpha order. References to Tube/Notube/Extube/Intube have been

deleted and new keywords for the joystick have been added as follows:

SWITCHED makes stick default to switched mode

(0/&7FFF/&FFFF). Currently affects bit &20 of default

*FX190 value.

PROPORTIONAL makes stick give values in the range 0 thru &FFFF.
Currently affects bit &20 of default *FX190 value.

STICK <decimal> makes stick have speed <decimal>. Currently affects
bit &1 F of default *FX190 value. The default takes

effect after power-up, CTRL + BREAK or BREAK.

An EEPROM is used instead of the Master 128 CMOS RAM. This is normally 128

bytes, but a 256-byte version may be fitted later.

OSBYTE call with A = 161, X = 255 yields the following:
Y=0 Indicates no EEPROM present.

Y=&7F 128 byte EEPROM present.
Y=&FF 256 byte EEPROM present.

Writes to EEPROM address 128 using *FX162 will be ignored. A read from 128 is

allowed.

The A to D port is not present, and hence analogue joysticks cannot be used. The
new digital Joystick/Mouse port is introduced, and this is a sub-set of the previous

User Port connections. The User Port is no longer present as such. The
connections for this 9 way D-type connector are:

Joystick D-type pins: 6522 connections :

1 Up(-ve true) (PB3)

2 Down (-ve true) (PB2)

3 Left (-ve true) (PB1)

4 Right (.ve true) (PB4)

5 No joystick connection (CB1)
6 Fire (PBO)

74+5V
80V

9 No joystick connection (CB2)

194

On power-up, CB1 and CB2 interrupts are enabled. A sideways ROM that can
process these interrupts must be present if a mouse or tracker-ball are fitted. When

such an interrupt is confirmed, the sideways ROM can set the top bit of OSBYTE

190's X parameter to disable MOS processing of ADVAL values, then every clock

tick, service call &2C is offered sideways. In the Y register is an offset from &0200

to the following workspace:

+0 ADVAL lo-byte (ADVAL hi-byte from OSBYTE var 188)

+1 Xlo-coord (x-coord returned as ADVAL1)

+2 Xhi-coord

+3 Ylo-coord (y-coord returned as ADVAL2)
+4 Yhi-coord

+5 spare

+6

OSBYTE 188 and 189 have their normal meanings.

If the top bit of OSBYTE 190's X parameter is set, the MOS will not update
ADVAL values from the digital joystick or cursor keys. This is designed only for

external ROM’s wishing to control ADVAL values e.g. mouse/trackerball software.

Note that by just setting the top bit of this option, the old value may conveniently be

restored by simply resetting the top bit.

*FX190,64 This option enters a key into the keyboard buffer according to bits set in

ADVALO (lo-byte). The character “typed” is as follows (in order of priority) :

bit 7 &80 (right) cursor right

bit 6 &40 (up) cursor up

bit 5 &20 (down) cursor down

bit 4 &10 (left) cursor left

bit 3 &08 delete key
bit 2 &04 return key

bit 1 &02 copykey

bit 0 &01 (fire) copykey

The characters are typed with (almost) the same effect as typing them at the

keyboard (i.e. within a centisecond or two). Auto-repeat is supported. In this mode

ADVALI1 and ADVAL2 will not reflect the state of the “joystick” position. Bits

&08,

&04 and &02 are never set by the digital joystick, but may be set ifa
mouse/trackerball is supported.

*FX190,32 affects the digital joystick and ADVAL. It is designed for games that

used the analogue joystick as switches and has the following effect:

ADVALI1 Xleft&FFFF Xcentre &7FFF Xright &0000

ADVAL2 Ydown &0000 Ycentre &7FFF Yup &FFFF

195

*FX190,1 (01.,2,3,4,5,6,7) - an experimental feature by which the speed of the

analogue simulation of the joystick may be adjusted.

*FX190,1 make left/right & up/down sweeps slow.

(*FX190,2 or ,3,4,5,6 are progressively faster).

*FX190,7 make left/right & up/down sweeps fast.

“Standard” settings *FX190,0, *FX190,8 and *FX 190,12 use the speed selected by

*FX190,3

*FX4,3

The *FX4,3 option makes the cursor keys have joystick-like effects:

left cursor moves joystick left
right cursor moves joystick right

up cursor moves joystick up

down cursor moves joystick down
copykey makes joystick fire

The state of the real joystick and cursor keys (in this mode) are read together. This

has the primary advantage that either the real joystick or the cursor keys may be

used to affect ADVAL values. When this option is selected, pressing a cursor key

does not enter a code into the keyboard buffer. If a value is “poked” into the
keyboard buffer, RDCH will assume the code to represent a soft key (rather like

*FX4,2). If a mouse or trackerball is connected, this option has no effect (the

mouse/trackerball takes priority). (See BASIC section below for ADVAL
implications).

Some TUBE code has been removed, but:

The TUBE flag is accessible from OSBYTE 234 remains and indicates NOTUBE.

Service call & FE remains.

The command *X (which controls an external Tube splitter) has been removed.

SRAM utils and Ellipse code are now within the MOS ROM area. A bug with long,

thin ellipses has been fixed. A facility to load an SRAM image and update the MOS

ROM type table has been added. An “1” should be added to the *SRLOAD
command.

BUILD/ APPEND now allow top bit set characters to be input.

The keyboard layout has been changed as follows:

The “@” character has been moved to the “Shifted-0” position as for the Electron.
SHIFT+0 gives “@” (&40), and CTRL+0 gives NUL (&00).

196

The key position previously used for the ,'@” character is now used for “CODE”
input and is marked with two squares (set Vertically). The use of

CTRL+SHIFT+CODE preceding any ONE key stroke will cause that key stroke

character to be entered with the top-bit set. Top-bit set characters must not be

used within file names.

The first call of JSR BREAK in the MOS to allow break indirection has been

changed to preserve ROMID.

INKEY-256 now returns 253 (&FD).

*FX16,0 suppresses ADVAL support as usual, and reduces interrupt processing

overhead accordingly. The default number of channels has been altered to 2.

Key interpretations set by *FX 221 thru 228 have been extended. Options 0 and 1
of *FX 22x remain as before. The meaning of value 2 has been changed. It used

to mean “use 2 as a base”. It now means “return a code representing the key
preceded by a NUL”. For example:

After *FX225,2 set NUL &80 means f0

After *FX225,2 set NUL &89 means f9

After *FX226,2 set NUL &91 means SHIFT + f1

After *FX227,2 set NUL &A3 means CTRL + f3
After *FX228,2 set NUL &B6 means SHIFT + CTRL + f6

Values other than 0,1 and 2 remain unchanged.

Note that when a NUL is entered at the keyboard it is supplied as NUL NUL.

This extension of the *FX calls enables applications (such as the revised version of
VIEW in the machine) to continue using function keys extensively but also handle

characters with the top-bit set.

Operation of the keyboard is transparent to the MOS RDCH routine. For example,

pressing CTRL+0 on the keyboard results in a NUL being returned to RDCH.

Similarly entering a top-bit bit code results in the return of that single byte through

RDCH.

Keyboard buffer input and output changes (the use of NUL in the two operations

is two completely separate uses and they should not be confused)

Keyboard buffer input rules (via *FX138 etc.) :
normal codes &01 thru &7F are entered using | byte (as normal).

special keys (e.g. function & cursor keys) are entered using 1 byte (as normal).
extended printable codes (&80 thru &FF) are entered as 2 bytes i.e. NUL

followed by extended (top-bit set) code.

197

A NUL must be entered using 2 bytes NUL NUL.

Note that when CTRL+0 is entered into the keyboard, the MOS automatically

supplies NUL NUL to the keyboard buffer.

RDCH automatically converts codes leaving the buffer as follows:

normal codes &01 thru &7F are remove as | byte (as normal).

special keys have their usual special effects e.g. key expansion (as normal).

Extended printable codes are returned in a SINGLE byte.

a NUL NUL is returned as a single NUL (as normal)..

This means that legal calls continue to work as before, except NULs poked into the
keyboard buffer may have strange effects.

When the new *FX22x,2 is in operation
special keys may expand to 2 bytes (NUL followed by &80 thru &BF).

NUL is returned as 2 bytes (NUL NUL).

Previously the VDU drivers made calls to the user printer vector and the extension

vector, without allowing for the possibility that these may page-in the FSRAM. This

has been corrected.

*ROMS now indicates whether a slot is ROM or RAM.

*TAPE and *MOTOR commands are supported, but have no effect. “-CFS-” and
“-TAPE-” are not supported.

To provide for additional fonts in the future (e.g. the [SO-font), an additional

parameter value 8 has been added to *FX25 specifically to select the Master 128
font ie.:

*FX25,8 forces the Master (Series) font.

*FX25,0 continues to reselect the default font.

*TIME will attempt to get the time from the Network if the ANFS is in use. The

“day” will be filled with three SPACE characters.

A fix to prevent spurious 1770 NMIs has been added.

BUILD/ APPEND now allow 8-bit characters to be entered.

*SHOW without a parameter now displays all soft keys.

198

BASIC

The version of BASIC fitted is TV , with improvements to accuracy and speed of
transcendental functions.

ADVAL is implemented via the digital joystick port as follows:

ADVAL returns:
Hi-byte of 16-bit value - last channel to convert now totally bogus but

provided for compatibility.

Lo-byte of 16-bit value - bits (msb to Isb) are:

PB4PB3 PB2PB1 000 FIRE

ADVAL1 ADVAL3 ADVALS return:
X coordinate in range &0000 thru &FFFF

ADVAL2 ADVAL4 ADVAL6 return:
y coordinate in range &0000 thru &FFFF

The x and y coordinates are supported in an Acorn-compatible fashion i.e.
Left - x value increases

Right - x value decreases

Up- y value increases

Down - y value decreases

ADC events are still supported.

TIMES returns the dummy time 'Fri,31 Dec 1999.23:59:59”, unless ANFS is present
and active, in which case an attempt will be made to get the time from the Network.

*BASIC uses *FX142 to change language.

199

APPENDIX FOUR

FUNCTIONAL DIFFERENCES

BETWEEN NFS AND ANFS

The Advanced Network Filing System contains the features of the NFS with the

following additions

Local file buffering. All open files will be buffered in RAM in the I/O Processor. All

uses of OSBGET and OSBPUT calls will be significantly faster. Up to 16 buffers

are allocated dynamically. If only one file is open, for example, sixteen pages of

data are buffered on that file.

New machine entry points for automatic retries of packets.

File-server extensions.

Extra commands in ROM

ANES :

*CDIR <Dir>(<Number>) creates directory. Number can be between | &
245

*FS (<stn. id.>) entries, with 19 as default.

changes file server number. Enables user to be

*FLIP logged on to more than one FS.
exchanges CSD and CSL. Useful when files

which
*HELP are to be LOADed, via OSFILE, are to be made

*LCAT (<Dir>) public.

*LEX (<Dir>) has sublevels AN FS & UTILS.

*WIPE (<Dir>) catalogue the current library, or pathname
*T am (<stn.id.>) examine the current library, or pathname

deletes files or directories also.

<user id> ((:<CR>)<password>)

now accepts [DELETE] and [CTRL-U] during

invisible input.

*PASS (:<CR>)<old password><new password>

Now accepts a”.” within the line to allow invisible
passwords.

200

UTILS:

These now work when ANFS is the currently selected FS or not:

*POLLPS (<stn id>:<ps type>) shows CSPS number and type. Also lists all

network printers and their state.

*PROT (<prot type>)... protects against some/all ops

*PS (<Stn. id.>:<PS type>) selects PS.

*UNPROT (<prot type>)... converse of PROTECT.

*WDUMP <filename> (<offset> (<address>))

CONFIGURE:

*FS <stn. id.> selects File Server.

*PS <stn. id.> selects Printer Server.

*SPACE <number> moves OSHWM to use old FS utilities,

*NOSPACE <number> converse of SPACE.

STATUS:

*FS returns station id.

*PS returns station id.

*SPACE returns “Space” or “NoSpace”.

Extra filing system interfaces:

*OPTS additional bootstrap by *RUNning 'FindLib’. For FS Library
compatible with this machine. CMOS RAM bit.

*OPT6 - OPT6,1 claims &200 space instead of using &B and &C. OPT6,0
reverts to normal CMOS RAM bit.

OSFILE with A = &7 on entry, a file is created. This behaves

similarly to 'save' (A = &O) but no data is transferred.

OSARGSA=&FF now functions and ensures all open files to the file server. A

call with y=0 and A=? returns 0 to differentiate

from NFS 3.nn.

OSARGS A=3 performs BASIC “EXT#channel=value”
OSARGS A=4 returns space allocated to file.

OSARGS A=&80 __ returns variety if file/FS info.

OSWORD A=&0E _ read the time.
OSWORD A=&10 — extended for zero length transmissions.

OSWORD A=&13 _ returns fault indication.

201

Extended error messages:

"Not listening’ & 'No Reply’ now have the station number added.

"Won't , (&93,147) - occurs when trying to *RUN a file with load address of

&FFFFFFFF or execute address which isn't & FFFFFFFF.

‘Bad parameter , (&94,148)

‘Station <stn. id.> not present ' (&A4,164)

‘Printer busy’ , (&A6,166)

’ Printer jammed’ (&A7,167)

‘Bad net sum’ (&AA,170)

"Bad rename’ (&80,176)

‘Outside file’ , (&B7,183)

Write only’ , (&D4,212)

"No more FCBs'’ , (&C0,192)

“Bad station number' , (&DO0,208)
"Bad net number’ (&D1,209)

"Remoted' (&0)

No’. , (&93,147) - *RUN file with load & FFFFFFxx

‘Syntax’ , (&DC,210) - Recognised command but wrong syntax

"Net channel’ 'On channel’ 'Not on this file server’ (&DE,222)

"Bad number’ (F0,240)

"Bad hex’ (F1,241)

"Bad address’ , (FC,252)

‘Bad string’ (FD,253)

Fatal error caused by OSWORD A=&14 function code 2 now produces
‘Fatal error’

Additional library functionality.

Any file with exec address of & FFFFFFFF that is *RUN, */<filename> or

*<filename> will be *EXECd.

Screen saving. To differentiate between ‘standard’ and shadow screen modes, the

following is used:

& FFFExxxx - Current screen RAM.

&FFFFxxxx - User RAM or non-shadow mode screens.

Auto action during Logon can now be stopped using CTRL key.

Number of “retries” is now adjustable.

‘Help' extensions so that help text can be held on FS disk.

A new Master Series Level 2/3 File Server Utilities Disk is available to optimise the
use of a Master Series machine on an Econet Network. (Ordering Code ADJ2S)

202

APPENDIX FIVE

CHANGES INTRODUCED IN

BASIC 4

Changes from Basic 2 and Basic 3

Provides some formatting of assembly listings

COLOR is accepted as an alternative to COLOUR

SAVE A$+B$ works correctly

Use of . & ? as formal parameters works correctly

A US version listing COLOR instead of COLOUR is available

Additional changes

The version number in ROM is 4.

Incorporates all the 65C02 (65C12) instructions in Assembler:

DEC A may be represented as DEA

INC A may be represented as INA for compatibility with MASM

STZ may be represented as CLR

ASL ALFRED or similar is accepted 1.e. the 'A’ indication of accumulator

addressing

mode for ASL LSR ROL ROR DEC INC no longer affects symbol recognition. .

X,Y or A in the assembler may be in lower case. EQUB, EQUW & EQUD may also

be in lower case.

Trailing spaces will always be stripped from lines entered into the interpreter.

Leading spaces will be stripped from lines entered into the interpreter when a non-
zero LISTO is set. The assumption is that there will be a formatted listing on screen

when cursor editing is used when LISTO is non-zero.

LISTO indents loops correctly.

Cross-reference/Search output is available from LIST. Lines will be Listed IF the

specified string is present e.g.:

LIST IF DEF

LIST 10, 1000 IF =

LIST , 2000 IF A%

It is not possible to search for TIME=90 , for example, as a statement - it will only
be

checked for as a boolean expression; PTR# , HIMEM, LOMEM are similarly

affected.

203

RENUMBER or LIST will not be affected by &8&D in comments or strings. In
addition, LIST will not be confused by coloured comments.

A statement to update an open file’s extent 'EXT#chan=length , has been added.

This uses OSARGS and so will not work until there are suitable filing systems.

A display real-time clock pseudo variable TIME$ has been introduced. It fetches a

fixed 24-byte string from the operating system in response to PRINT TIMES (or

similar). The string looks like Wed,31 Dec 1900.23:59:59. Assigning

TIME$=* fred” merely passes the string directly to the operating system with the

length in the first byte.

AUTO no longer outputs a space after the line number.

General recursion is now allowed in 'FOR’ loops e.g.:
DEF FNQ FORJ=ITOIO :P .J. iN. .=10

FORI=FNQ-9 TO FNQ STEP FNQ/10
now works. In previous versions only the first FNQ or FNQ's without the FOR loop

would work.

A new command EDIT which has identical syntax to LIST (even the IF section) can

be used to create an in-core text file of the current program (or section of it e.g.

EDIT 10 ' 100). It then issues the command “*EDIT hh, hh” where the hex

addresses are addresses in zero page of the start of the in-memory text and the

address in zero page of the end of the in-memory text plus one. LISTO 0 is set
before conversion begins. If there is not enough space to convert the entire file, the

error message ‘No room’ will be given together with a line number which shows how
far through the program it had reached. At this stage either CLEAR or a different

EDIT command should be used. ESCAPE will behave similarly, stopping the
conversion to text.

The use of the “ii* character at the end of VDU parameters can be used to insert
the correct number of remaining zeros.

204

APPENDIX SIX

PCB SELECTION AND TEST

POINTS

The printed circuit board is provided with a number of points which may be used to

select different hardware configurations or to extract test signals,

Master 128

LK1 PCB track, made A: IMHz Bus Audio Input/Output - two-position link.

In the A position the 1 M Hz Bus signal is an input to the computer's audio mixer.
In the B position the 1 MHz Bus signal is an output from the computer's audio

circuit
(Minimum load 1Kohm).

This link is a permanent track in the A position. The track must be cut before a wire
link is used to make the B position.

LK2 PCB track, made: Cartridge -5V decoupler - one-position link.
In some instances, particular cartridge hardware may need a -5V supply that is

decoupled from the main computer -5V load. To do this R9 needs to be fitted and

LK2 which is a track on the circuit board should be cut.

LK3. Not present.

LK4 plug, made: Clock chip IRQ - one-position link.
The 6818 clock/RAM chip has a daily alarm function built in. When the alarm is

triggered, the CPU is interrupted via its IRQ line. Removing the shunt from LK4
disconnects the CPU IRQ line to the clock line. This function is not supported by

the operating system as this feature may not be present in future versions of the
circuit board. Consequently the clock chip must be directly operated by the

application software.

LKS PCB track, made East: CSYNC polarity - two-position link.
The polarity of the composite synchronisation signal is determined by this link. It is

supplied as a track on the PCB causing negative synchronisation polarity. This

track must be broken and a piece of wire used to make the other side of the link for

positive synchronisation.

LK6(0) and LK6(1) plug, made A B: Main Clock Select - multi-function link.

This group . of 4 pins can take either one or two shorting plugs as follows:

205

Link between A and B - The computer main 16MHz reference is provided by on-
board circuitry. This is normally how computers are shipped.

Link between B and D - The computer main 16MHz reference must be provided

from pin A17 on either of the cartridge connectors. Note that in this case a clock

source MUST be provided or the dynamic memories could be destroyed.

Link between C and D - The cartridges are clocked by the 8MHz signal from the

computer. This is a synchronous signal with the 2MHz (d2) signal, also supplied to

the cartridges. Note that the link between A and B must also be fitted.

LK7 PCB track, made East: Video polarity - two-position link.

The polarity of the video RGB signals is determined by this link. It is supplied as a
track on the bottom of the PCB causing true polarity. This track must be broken

and a piece of wire used to make the link West for negative polarity.

LK8 : Not present.

LK9 : Not present.

LK10 fitted for NTSC only: Channel Select - two position link.
When used with NTSC VHF televisions, the modulator enables one of two channels

to be selected. Note that the computer as supplied for use in the UK is fitted with a

UHF modulator so LK1 0 is not fitted.

L.K11 : Not present.

LK12 Plug, made B (East): CSYNC/Cartridge Machine Detect - two-position

link.
Position A - This connection to the computer CS YNC line is provided for

GENLOCK
purposes.

Position B - Certain hardware cartridges may need to detect whether they are
plugged into a Master Series computer or an Acorn Electron. Master computers are

shipped with this link in the B position causing a logic LOW to appear on pin Al 0
of

the cartridges. The Electron has no connection to this pin.

LK13 PCB track, made West: A to D converter reference select - two-position

link.
As shipped, this link is a track on , the bottom of the PCB causing the A-to-D

converter reference voltage input to be | .8V.
If the LK13 track is cut then the voltage reference must be applied between

analogue ground and Vref on the external connector.
If the LK13 track is cut and LK13 made East with a wire link, a precision reference

can be fitted in the position PR1 shown on the circuit diagram.

LK14 PCB track, made: Serial data clock reference - one-position link.
As shipped, this link is a track on the PCB connecting the CHROMA chip 1.23MHz

output to the Serial Processor. This link is provided for production purposes and
should not be modified.

206

LK15 PCB track, made West: PAL/NTSC select . two.position link.
As shipped in the UK, this link is a track on the bottom of the PCB causing the

CHROMA chip to encode colour information on to the television output in PAL

format. If the track is cut and a wire link used to make the other side of the link,

then colour information will be encoded in NTSC. In general, televisions within the

UK can only accept the PAL format.

LK16 wire link, not fitted :

Chrominance information luma trap bypass . one.position link.

This link is not normally fitted. It is provided for those applications where filtering

of
the luminance information from the chrominance part of the television signal is not

required.

LK17 : Not present.

LK18 plug, made West: Paged ROM/RAM Select . two-position link.
When fitted in the West position, this link causes 16Kbyte of RAM to appear in each

of the “sideways” memory “slots” 6 and 7.
When fitted in the East position, a 32Kbyte ROM occupying slots 6 and 7 may be

plugged into socket labelled IC41 .

LK19 plug, made West: Paged ROM/RAM Select . two-position link.
When fitted in the West position, this link causes 16Kbyte of RAM to appear in e

of the “sideways” memory “slots” 4 and 5.
When fitted in the East position, a 32Kbyte ROM occupying slots 4 and 5 may b

plugged into socket labelled 1C37.

LK20 : Not present.

LK21 plug, not made: Light Pen Strobe to cartridge.
This link is not normally made, so position B1 0 on the cartridges is merely a

connection from one to the other. When the shunt is fitted. the CRTC Light Pen

Strobe input is connected to B10. This is to facilitate GENLOCK and an alternative

LPSTB connection to the rear analogue connector.

Master Compact

TP1 - MAX232 -ve output.

If the serial interlace is fitted, the voltage on this pin should be between -1 Ov and
-5v. A figure of -9v is quite typical.

TP2 - MAX232 +ve output.
If the serial interlace is fitted, the voltage on this pin should be between 5yv and 1 Ov.

A figure of 9v is quite typical.

207

Test points TP1 and TP2 are positioned close to IC5 (North of the PCB).

TP3 - connected to the CPU NMI pin.
This should be generally at 5v while running, making excursions to Ov only when

disc and Econet are being used.

TP4 - connected to the CPU IRQ pin.
Check that this is not stuck either high or low when free running.

TPS - connected to the CPU SYNC pin.

This is asserted during an op-code fetch by the processor, and is used by ACCCON
to ensure that the correct memory area is accessed at this time. If this is

continuously high or low, then the processor has completely stalled.

TP6 - This is connected to the processor READ/WRITE Line.
This should change between Ov and 5v frequently (but not necessarily regularly!)

Test points TP3 to TP6 are situated South of the CPU IC28 (65C12) to the

southeast of the PCB.

PL7 - Not fitted
allows the light pen strobe (LPTSTB) to be connected to the CRTC IC.

PL9- pcb track made north

If set North, the video output will be normal, if set South the video output will be
inverted. If change is required, cut circuit board track, and either use tinned copper

wire, or fit three pins, and select the required position using a mini shunt.

PL10 - peb track made east
If set East, the RGB CSYNC signal will be inverted. If set West, it will be non-

inverted. This is necessary for certain monitors. If change is required, cut circuit

board track, and either use tinned copper wire, or fit three pins, and select the

required position using a mini shunt.

PL11 - plug made north
If set North, 32k ROM space banks 0 and 1 are assigned to the edge connector. If

set South, 32k ROM space banks 0 and 1 are assigned to IC38.

PL12 - plug made north
If set North, allows system ROM containing 64k bytes of code. If set South, allows

ROM containing 128k bytes. Factory position is currently NORTH, but may change
to SOUTH in future production.

208

Circuit board modifications necessary for fitting optional

components.

VRI
If a volume control is required for the loudspeaker, a preset potentiometer VR1 may

be fitted. If this modification is done, first cut the circuit board track joining two
pins

of VRI.

FS1
A fuse (FS1) may be fitted if required, first cut the track under FS1 on the PCB.

LU/L2

If further filtering (L1 and L2) is used, the tracks under L1 and L2 on the main PCB

must be cut.

209

APPENDIX SEVEN

THE MASTER 128

CARTRIDGE INTERFACE

The Master Series Cartridge Interface is an enhancement of that of the Electron

Plus 1. The connections and any differences are noted below.

Abbreviations used in this Appendix are as follows:

AIL Active low.

O/C Open Collector output.

CMOS Complementary Metal Oxide Semiconductor.
CPU Central Processor Unit i.e. the microprocessor.

TTL Transistor-Transistor Logic.
& A hexadecimal number follows.

n As a signal prefix means Active low output(A/L) .
PCB Printed Circuit Board.

NMOS N-channel Metal Oxide Semiconductor

Cartridge Orientation

The cartridge pinning in the Master Series machine is arranged as follows:

Viewed from above

Side A

Rom Nos 0 and 1

Side B

Side A

Rom Nos 2 and 3

Side B

FRONT

Components are normally mounted on to Side A of the PCB within the cartridge.

210

Pinout

Pins are described viewed from “within” the cartridge i.e. an “Input” is an input to
the cartridge. An “output” is an output to the computer.

Side A

1 +5V - logic power supply
150mA max in a Master with co-processor fitted and with disc drives.

50mA max in an Electron Plus 1 .

2 nOE - Output Enable Input from AIL CMOS level .
low during d2 period of system clock. It is intended to switch on the

output buffers of cartridge memory devices. It is not guaranteed

low at other times.

3 nRST-System Reset Input from AIL CMOS level.
low during a system reset. It is not synchronised to any clock.

4 CSRW - chip select - Read/Write Input from CMOS level.
Master
Changes function according to the memory region that the CPU is

addressing. During accesses to &FCOO thru &FEFF it is equivalent to

the CPU Read/Write line during nd2. For all other accesses, it is an

Active High chip select for memory devices. It is not guaranteed low at

other times.

Electron
CPU Read/Write line.

A8 -Address line 8 Input from TTL level.
A13 - Address line 13 Input from TTL level.

A12 - Address line 12 Input from TTL level.

d2 - CPU clock Input from CMOS levels.
computer's d2 output.

9 -5V - Negative supply voltage.
20mA max. This -5V may not be available on all Acorn Cartridge

Interfaces. To ensure compatibility, negative voltages should be

generated within the Cartridge if required.

10 CSYNC/MA DET

Master
There are two functions dependent upon link 12 in the computer.

E/nB - the default function. It enables Cartridges to know which
machine they are plugged into. It is connected to OV in the Master, (and

unconnected in the Electron). Link 12 is set to position B.

CSYNC - Composite Sync. Input from TTL levels.

System Vertical & Horizontal sync is made available for Genlock use.
Set Link 12 to position B.

Electron
Unconnected

m
r
r
a
A
I
n
w

211

11

12

13

14

15

16

17

18

RnW/READY

Master
R/W - Data Direction control Input from TTL levels.

System data buffer direction control. If low , cartridges are being written

to; if high and selected, they may drive the bus during d2.

Electron
READY - CPU wait state control O/C AIL output.

When driven low , this line will cause the CPU to extend its cycle until

READY is released. Only works with CMOS CPUs and only on

READ cycles.

nNMI - Non-maskable Interrupt O/C A/L output.

Connected to system NMI line.

nlRQ - Interrupt Request O/C AIL output.

Connected to the system 1 RQ line.

nINFC - Internal Page & FC Input from TTL levels.

AIL. Memory Active decode input.

Master
When bit IFJ in the Master ACCON register (via &FE34) is set, all

accesses to &FCO0 thru &FCFF will cause this select to become active.

Electron
Not applicable.

nINFD - Internal Page & FD Input from TTL levels.
AIL. Memory Active decoded input.

Master
When bit IFJ in the Master ACCCON register (via & FE34) is set, all

accesses to &FDO00 thru &FDFF will cause this select to become active.

Electron

Not applicable.
ROMQA - Memory paging select Input from TTL levels.

This is the least significant bit of the ROM select latch located at &FE30

in the Master, and &FEOS in the Electron.

Clock Input/Output TIL levels.

Master
Links on the computer select one of two functions:

a) 16Mhz output to computer (Link DB only).

b) 8Mhz Input to cartridge (Link CD in addition to AB).

The user should ensure that the links are set correctly, and that there is

proper termination. Normally only AB is linked in the computer.

Electron

16MHz Input.
nROMSTB/nCRTCRST TTL levels.

Master
nCRTCRST is an Active Low Output signal of the system CRTC reset

input. It is provided for Genlock use.

212

19

20

21

22

SIDE B

m
e

m
I

anA

u
b

W
h
y

Electron
nROMSTB is an Active Low Input which selects &FC73. It is intended

to be used as a Paging Register.

ADOUT - System audio Output.
Filtered output of the sum of all audio inputs to the computer. No

significant load should be taken from this pin.

AGND - Audio Ground.
The zero volt return for ADOUT. It should be used instead of system 0V

to minimise audio noise.

ADIN - System audio input.

Master

An input to the computer's audio circuitry. It presents an impedance of
at least 1 K ohm. Only one cartridge using this input should be

connected to the computer at one time.

Electron

This is a connection from one cartridge to the other.

OV - Zero volts.
System earth return for digital signals.

+5V - Logic power supply
150mA max in a Master with Co-processor fitted and with disc drives.

1 OmA max in an Electron Plus 1.

A10 - Address line 10 Input from TTL levels.

D3 - Data bus line 3 Input/Output TTL levels.
A11 - Address line 11 Input from TTL levels.

A9 - Address line 9 Input from TTL levels.

D7 - Data bus line 7 Input/Output TTL levels.

D6 - Data bus line 6 Input/output TTL levels.

D5 - Data bus line 5 Input/output TTL levels.

D4 - Data bus line 4 Input/Output TTL levels.

nOE2/LPSTB - O/P Enable/Light Pen Strobe Input from TTL

levels.

Master
With link 21 removed in the computer, this pin provides a connection

between the two cartridges. With the link in place, the pin forms a

connection to a pull-up resistor in the computer to +5V. The connection
is also made to the CRTC Light-Pen Strobe and interrupt structure.

Electron
This provides an additional AIL enable for ROMs in the Electron. This

corresponds to ROM position 13 and responds quickly to Service Calls.
It is low during the AIL portion of d2. It is not guaranteed high at other

times.

213

11

12

13

14

15

16

17

18

19

20

21
22

BA7 - Buffered address line 7 Input from TTL levels.

Master
This line holds addresses valid for 125nS after d2 goes low.

Electron

This is not buffered nor held valid for an extended period in the

Electron.

BA6 - Buffered address line 6 Input from TTL levels.
See pin 11.

BAS - Buffered address line 5 Input from TTL levels.

Seepin 11.

BA4 - Buffered address line 4 Input from TTL levels.

See pin 11.
BA3 - Buffered address line 3 Input from TTL levels.

See pin 11.
BA2 - Buffered address line 2 Input from TTL levels.

See pin 11.

BAI] - Buffered address line 1 Input from TTL levels.

See pin 11.

BAO - Buffered address line 0 Input from TTL levels.
Seepin 11.

DO - Data bus line 0 Input/Output TTL levels.

D2 - Data bus line 2 Input/Output TTL levels.
D1 - Data bus line 1 Input/Output TTL levels.

OV - Zero volts
Digital signal Earth return.

214

APPENDIX EIGHT

65C12 INSTRUCTION SET

This appendix lists each 65C12 instruction on a separate page along with details of

the status flags affected and a brief description.

A number of new mnemonics which do not exist on the 6502 are provided on the

65C12 which also has one new addressing mode called “(indirect zero page)”. This

is similar to “(indirect,X)” and “(Gindirect), Y” but does not require the X or Y
registers
to be set to zero.

The new 65C12 mnemonics are:

BRA Branch always

CLR Clear memory (also STZ)

DEA Decrement accumulator

INA Increment accumulator

PHX Push X register onto stack

PHY Push Y register onto stack

PLX Pull X register from stack

PLY Pull Y register from stack

STZ Clear memory (also CLR)

TRB Test and reset bits

TSB Test and set bits

The Rockwell R65C02, which is normally fitted within the 6502 and Turbo Second

processors, has two instructions which do not exist on the 65C12 and which have to
be assembled by hand.

BBR Branch on bit reset

BBS Branch on bit set

In the tables listing the various op.codes the time taken to execute each instruction

is given as a number of cycles. Each cycle represents:

0.58 on a BBC model B

0.33us on a Master or 6502 Second Processor

0.25us on a Master Turbo Co-processor.

215

Status Register

ape HOeRoEe
MMEBOUMM

ADD to Accumulator with Carry

Operation
A,C=A4+M+C

Description
Adds the contents of a memory location to the Accumulator. If the carry

flag is set then 1 is also added. If the result overflows then the carry flag
will be set, allowing multiple byte addition.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&69 Immediate ADC #dd 2 2
&65 Zero Page ADC aa 2 3

&75 Zero Page,X ADC aa,X 2 4

&72 (Indirect Zero Page) | ADC (aa) 2 5**

&6D Absolute ADC aaaa 3 4

&7D Absolute, X ADC aaaa,X 3 4*

&79 Absolute, Y ADC aaaa,Y 3 4*

&61 (Indirect,X) ADC (aa,X) 2 6

&71 (Indirect), Y) ADC (aa), Y 2 3*
* Add 1 Cycle if page is crossed

** Add 1 cycle if in decimal code

216

Status Register

ANP UOeeoee
MOBS OMG

AND Memory with Accumulator

Operation

A=A AND M

Description
A logical AND is performed between the accumulator and a memory

location. The result is left in the accumulator.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&29 Immediate AND #dd 2 2

&25 Zero Page AND aa 2 3
&35 Zero Page,X AND aa,X 2 4

&32 (Indirect Zero Page) | AND (aa) 2 5

&2D Absolute AND aaaa 3 4

&3D Absolute, X AND. aaaa,X 3 4*

&39 Absolute, Y AND. aaaa,Y 3 4*

&21 (Indirect,X) AND (aa,X) 2 6

&31 (Indirect), Y) AND (aa), Y 2 5*

* Add 1 Cycle if page is crossed

217

Status Register

ASL
R MUB PY a
MELLEL

Accumulator Shift Left

Operation
C=M7, M=M*2

Description
Shifts the contents of a memory location or the accumulator one bit to the

left. This operation effectively multiplies by two and leaves any overflow
in the carry flag.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&O0A Accumulator ASL A 1 2

&06 Zero Page ASL aa 2 3

&16 Zero Page,X ASL aa,X 2 6

&0E Absolute ASL aaaa 3 6

&1E Absolute, X ASL aaaa,X 3 7

218

Status Register

vee HOeRoEe
FFE EE EEE

Branch on Bit Reset

Operation
Branch if bit=0

Description
BBR is not normally available but does exist on the Rockwell R65C02

which is usually fitted within the Master Turbo and 6502 Second
Processors. If a bit in a zero page location is clear a branch will occur.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&OF Zero page, bit 0 BBR aa 3 3*
&1F Zero page, bit | BBR aa 3 3*

&2F Zero page, bit 2 BBR aa 3 3*

&3F Zero page, bit 3 BBR aa 3 3*

&4F Zero page, bit 4 BBR aa 3 3*

&5F Zero page, bit 5 BBR aa 3 3*

&6F Zero page, bit 6 BBR aa 3 3*

&7F Zero page, bit 7 BBR aa 3 3*
* Add 1 Cycle if branch occurs or

add 2 cycle if branch crossed a page boundary

This instruction is not available in the BASIC assembler and will have to be

inserted using EQUB

Example: Branch if bit 5 of zero page location &70 is 0 (reset)

EQUB &5F \BBR op.code for bit 5

EQUB &70 \zero page &70
EQUB &09 \branch forward 9 bytes

219

BBS

Operation
Branch if bit=1

Description
BBS is not normally available but does exist on the Rockwell R65C02

which is usually fitted within the Master Turbo and 6502 Second
Processors. If a bit in a zero page location is clear a branch will occur.

Status Register

S0088088
EEE EEE

Branch on Bit Set

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&8F Zero page, bit 0 BBS aa 3 3*
&9F Zero page, bit | BBS aa 3 3*

&AF Zero page, bit 2 BBS aa 3 3*

&BF Zero page, bit 3 BBS aa 3 3*

&CF Zero page, bit 4 BBS aa 3 3*

&DF Zero page, bit 5 BBS aa 3 3*

&EF Zero page, bit 6 BBS aa 3 3*

& FF Zero page, bit 7 BBS aa 3 3*

* Add 1 Cycle if branch occurs or

add 2 cycle if branch crossed a page boundary

This instruction is not available in the BASIC assembler and will have to be

inserted using EQUB

Example: Branch if bit 5 of zero page location &70 is | (set)

EQUB &DF \BBS op.code for bit 5

EQUB &70
EQUB &09

\zero page &70
\branch forward 9 bytes

220

Status Register

Bee HOeRoEe
EISIclcleicigie

Branch on Carry Clear

Operation
Branch on Carry Clear

Description
If the carry flag is clear this instruction performs a relative jump forwards

or backwards a specific number of bytes from the next instruction. This
relative figure is a two's complement signed number which can span up

to 127 bytes forward, or 128 bytes backward.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&29 Relative BCC aa 2 2*

* Add 1 Cycle if page is crossed

add 2 cycle if branch crossed a page boundary

221

Status Register

ves HOeRoEe
EBB BREE

Branch on Carry Set

Operation
Branch on Carry Set

Description
If the carry flag is set this instruction performs a relative jump forwards

or backwards a specific number of bytes from the next instruction. This
relative figure is a two's complement signed number which can span up

to 127 bytes forward, or 128 bytes backward.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&BO Relative BCS aa 2 2*

* Add 1 Cycle if page is crossed

add 2 cycle if branch crossed a page boundary

222

Status Register

mea HOeRoEe
ARPEEOERE

Branch on Result Equal to Zero

Operation
Branch on Zero Flag=1

Description
If the zero flag is set this instruction performs a relative jump forwards

or backwards a specific number of bytes from the next instruction. This
relative figure is a two's complement signed number which can span up

to 127 bytes forward, or 128 bytes backward.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&FO Relative BEQ aa 2 2*

* Add 1 Cycle if page is crossed

add 2 cycle if branch crossed a page boundary

223

Status Register 0

BIT
R MLE!
ME LLU ME

Test Bits in Memory with Accumulator

Operation
A AND M, N=M7, V=Ms

Description
This instruction is used to test whether various bits are set in a memory

location by performing an AND instruction. It does not however effect
either the accumulator of the memory location, but just sets the status

flags. Also bits 7 and 6 are transferred to the N and V flags respectively.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&89* Immediate* BIT #dd 2 2

&24 Zero Page BIT aa 2 3

&34* Zero Page,X* BIT aa,xX 2 4

&2C Absolute BIT aaaa 3 4

&3C* Absolute, X* BIT aaaa,X 3 4

* New op.codes for 65C12 only, which is

fitted in the Master.

224

Status Register

su088088
HEE EEE

Branch on Result Minus

BMI

Operation
Branch on Negative Flag=1

Description
If the negative flag is set this instruction performs a relative jump forwards

or backwards a specific number of bytes from the next instruction. This
relative figure is a two's complement signed number which can span up

to 127 bytes forward, or 128 bytes backward.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&30 Relative BMI aa 2 2*

* Add 1 Cycle if page is crossed

add 2 cycle if branch crossed a page boundary

225

Status Register

one HOeRoEe
AEE EE EEE

Branch on Result Not Equal to Zero

Operation
Branch on Zero Flag=0

Description
If the zero flag is clear this instruction performs a relative jump forwards

or backwards a specific number of bytes from the next instruction. This
relative figure is a two's complement signed number which can span up

to 127 bytes forward, or 128 bytes backward.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&DO Relative BNE aa 2 2*

* Add 1 Cycle if page is crossed

add 2 cycle if branch crossed a page boundary

226

Status Register

su088088
HEE EEE

Branch on Result Plus

BPL

Operation
Branch on Negative Flag=0

Description
If the negative flag is zero this instruction performs a relative jump forwards

or backwards a specific number of bytes from the next instruction. This
relative figure is a two's complement signed number which can span up

to 127 bytes forward, or 128 bytes backward.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&10 Relative BPL aa 2 2*

* Add 1 Cycle if page is crossed

add 2 cycle if branch crossed a page boundary

227

Status Register

su088088
HEE EEE

Branch Always

BRA

Operation
Branch Always

Description
This instruction always performs a relative jump forwards

or backwards a specific number of bytes from the next instruction. This
relative figure is a two's complement signed number which can span up

to 127 bytes forward, or 128 bytes backward.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&80 Relative BRA aa 2 3*

* Add 1 Cycle if page is crossed

228

Status Register

BRK
R MUP PAE fl
HELE AEE

Force Break

Operation
Push PC+2 and P on stack and PC=&FFEE

Description
This instruction forces a break which causes the program counter to be

pushed onto the stack along with the status register. The program
counter is then set to &FFFE. The BRK instruction is usually used for

errors.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&00 Implied BRK 1 7

229

Status Register

pve HOeRoEe
ARPEEOERE

Branch on Overflow Clear

Operation
Branch on Overflow Flag=0

Description
If the overflow flag is clear this instruction performs a relative jump

forwards or backwards a specific number of bytes from the next
instruction. This relative figure is a two's complement signed number

which can span up to 127 bytes forward, or 128 bytes backward.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&50 Relative BVC aa 2 2*

* Add 1 Cycle if branch occurs

add 2 cycle if branch crossed a page boundary

230

Status Register

mys HOeRoEe
ARPEEOERE

Branch on Overflow Set

Operation
Branch on Overflow Flag=1

Description
If the overflow flag is set this instruction performs a relative jump

forwards or backwards a specific number of bytes from the next
instruction. This relative figure is a two's complement signed number

which can span up to 127 bytes forward, or 128 bytes backward.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&710 Relative BVS aa 2 2*

* Add 1 Cycle if branch occurs

add 2 cycle if branch crossed a page boundary

231

Status Register

cee HOeRoEe
ABBE EEo

Clear Carry Flag

Operation
Carry Flag=0

Description
This instruction clears the carry flag and is mainly used to prepare for

ADC or SBC.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&18 Implied CLC 1 2

232

Status Register

cee HOeRoEe
ABBE EEE

Clear Decimal Mode

Operation
Decimal Flag=0

Description
This instruction switches the 65C12 back to normal binary arithmetic

mode.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&D8 Implied CLD 1 2

233

Status Register

ou HOeRoEe
AREEOURE

Clear Interrupt Disable Bit

Operation
Interrupt Flag=0

Description
When maskable interrupts have disabled using SEI, this instruction

re-enables them.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&58 Implied CLI 1 2

234

Status Register

ER HOeRoEe
ARPEEOERE

Clear Memory

Operation
M=0

Description
CLR clears a byte of memory by storing zero at the specified location.

STZ is an alternative mnemonic.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&64 Zero Page CLR aa 2 3

&74 Zero Page,X CLR aa,X 2 4

&9C Absolute CLR aaaa 3 4

&9E Absolute, X CLR aaaa,X 3 5

235

Status Register

oy HOeRoEe
AM OBBEEE

Clear Overflow Flag

Operation
Overflow Flag=0

Description
This instruction clears the overflow flag .

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&B8 Implied CLV 1 2

236

Status Register

oe HOeRoEe
Gleleleleleiaia

Compare Memory and Accumulator

Operation
A-M

Description
CMP subtracts the contents of a memory location from the accumulator

and sets the status flags without actually affecting the contents of the
accumulator. See table below for results of compare.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&C9 Implied CMP #dd 2 2

&C5 Zero Page CMP aa 2 3

&D5 Zero Page,X CMP aa,X 2 4

&D2 (Indirect Zero Page) | CMP (aa) 2 5

&CD Absolute CMP. aaaa 3 4

&DD Absolute, X CMP. aaaa,X 3 4*

&D9 Absolute, Y CMP. aaaa,Y 3 4*

&Cl1 (Indirect,X) CMP (aa,X) 2 6

&D1 (Indirect), Y CMP (aa), Y 2 5*

* Add 1 Cycle if page crossed

After a CMP instruction the following conditions will apply:

A<M N=1* Z=0 C=0
A=M N=0 Z=1 C=l
A>M N =0* Z=0 C=l

* Only valid for “two's complement” compare

237

Status Register

en HOeRoEe
Gleleleleleiaia

Compare Memory and X Register

Operation
X-M

Description
CPX subtracts the contents of a memory location from the X register

and sets the status flags without actually affecting the contents of the
X register. See table below for results of compare.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&EO Immediate CPX #dd 2 2

&E4 Zero Page CPX aa 2 3

&EC Absolute CPX aaaa 3 4

After a CPX instruction the following conditions will apply:

X<M N=1* Z=0 C=0
X=M N=0 Z=1 C=l
X>M N =0* Z=0 C=l

* Only valid for “two's complement” compare

238

Status Register

“un HOeRoEe
Gleleleleleiaia

Compare Memory and Y Register

Operation
Y-M

Description
CPY subtracts the contents of a memory location from the Y register

and sets the status flags without actually affecting the contents of the
Y register. See table below for results of compare.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&CO Immediate CPY #dd 2 2

&C4 Zero Page CPY aa 2 3

&CC Absolute CPY aaaa 3 4

After a CPY instruction the following conditions will apply:

Y <M N=1* Z=0 C=0
Y=M N=0 Z=1 C=l
y>M N =0* Z=0 C=1

* Only valid for “two's complement” compare

239

Status Register

ee JU0880a8
ME EEE ME

Decrement Memory by One

Operation
M=M-1

Description
This instruction subtracts one from a memory location and sets the

appropriate status flags. The additional addressing mode on the 65C12
allows the accumulator to be decremented by using DEC A or just DEA.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&3A* Accumulator* DEC A(DEA) 1 2

&C6 Zero Page DEC aa 2 5

&D6 Zero Page,X DEC aa,X 2 6

&CE Absolute DEC aaaa 3 6

&DE Absolute, X DEC aaaa,X 3 7

* New op.codes for 65C12 only, which is

Fitted to the Master.

240

Status Register

= suoeeoee
MEE EEEME

Decrement X Register by One

Operation
X=X-1

Description
This instruction subtracts one from the X register and sets the

appropriate status flags.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&CA Implied DEX 1 2

241

Status Register

uuoeeoee
MELEE EME

Decrement X Register by One

Operation
Y=yY-l

Description
This instruction subtracts one from the X register and sets the

appropriate status flags.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&88 Implied DEY 1 2

242

EOR

Operation

Status Register

Decrement X Register by One

A=AEORM

Description
This instruction performs an exclusive OR between the accumulator and a

memory location leaving the result in the accumulator.

sHOee08R
MELEE EME

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&49 Immediate EOR #dd 2 2

&45 Zero Page EOR aa 2 3

&55 Zero Page,X EOR aa,X 2 4

&52 (Indirect Zero Page) | EOR (aa) 2 5

&4D Absolute EOR aaaa 3 4

&5D Absolute, X EOR aaaa,X 3 4*

&59 Absolute, Y EOR aaaa,Y 3 4*

&4l (Indirect,X) EOR (aa,X) 2 6

&51 (Indirect), Y EOR (aa), Y¥ 2 5*

* Add 1 cycle if page crossed

243

Status Register

tNGINA HOeRoEe
GIeleleleleiae

Increment Memory by One

Operation
M=M+1

Description
This instruction adds one to a memory location and sets the

appropriate status flags. The additional addressing mode on the 65C12
allows the accumulator to be incremented by using INC A or just INA

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&1A* Accumulator* INC ACINA) 1 2

&E6 Zero Page INC aa 2 5

&F6 Zero Page,X INC aa,X 2 6

&EE Absolute INC aaaa 3 6

&FE Absolute, X INC aaaa,X 3 7

* New op.codes for the 65C12

which is fitted to the Master

244

Status Register

“ HOeRoEe
MABE EME

Increment X Register by One

Operation
X=X+1

Description
This instruction adds one to the X register and sets the

appropriate status flags.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&E8 Implied INX 1 2

245

Status Register

“w HOeRoEe
MABE EME

Increment Y Register by One

Operation
Y=Y+1

Description
This instruction adds one to the Y register and sets the

appropriate status flags.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&C8 Implied INY 1 2

246

Status Register

mu HOeRoEe
ARE EEEEE

PC = new location

Description
This instruction jumps to the new location by loading the new

address to the program counter.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&AC Absolute JMP aaaa 3 3

&6C (Indirect) JMP (aaaa) 3 5

&7C (Indirect,X) JMP (aa,X) 3 6

247

Status Register

Ik HOeRoEe
Bl ieleleicisie

Push PC+2 on stack then PC = new location

Description
This instruction is similar to JMP but first pushes the current program

counter plus 2 onto the stack. When a RTS instruction is encountered
the program counter is then reset using the location that was previously

stored on the stack.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&20 Absolute JSR aaaa 3 6

248

Status Register

ee Suoeeuee
MELEE EUME

Load Accumulator with Memory

Operation
A=M

Description
This instruction loads the accumulator with the contents of a specified

byte of memory.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&& AD Immediate LDA #dd 2 2

&A5 Zero Page LDA aa 2 3

&B5 Zero Page,X LDA aa,X 2 4

&B2 (Indirect Zero Page) | LDA (aa) 2 5

&AD Absolute LDA aaaa 3 4

&BD Absolute, X LDA aaaa,X 3 4*

&B9I Absolute, Y LDA aaaa,Y 3 4*

&Al (Indirect,X) LDA (aa,X) 2 6

&Bl (Indirect), Y LDA (aa), Y 2 5*

* Add one cycle if page crossed

249

LDX

Operation

Status Register

Load X Register with Memory

X=M

Description
This instruction loads the X register with the contents of a specified

byte of memory.

sHOee08R
MELEE EME

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&A2 Immediate LDX #dd 2 2

&AG6 Zero Page LDX aa 2 3

&B6 Zero Page, Y LDX aa,Y 2 4

&AE Absolute LDX aaaa 3 4

&BE Absolute, Y LDX aaaa,Y 3 4*

* Add one cycle if page crossed

250

Status Register

en Suoeeuee
MELEE EUME

Load Y Register with Memory

Operation
Y+M

Description
This instruction loads the Y register with the contents of a specified

byte of memory.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&AO Immediate LDX #dd 2 2

&A4 Zero Page LDX aa 2 3

&B4 Zero Page,X LDX aa,X 2 4

&AC Absolute LDX aaaa 3 4

&BC Absolute, X LDX aaaa,X 3 4*

* Add 1 cycle if page crossed

251

Status Register

LSR
R MUB PAE a
MELEE

Logical Shift Right

Operation
C= Mb, M = M/2

Description
Shift the contents of a memory location or the accumulator one bit to the

right. This operation effectively divides by two and leaves any remainder
in the carry flag

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&4A Accumulator LSR A 1 2

&AG Zero Page LSR aa 2 5

&56 Zero Page,X LSR aa,X 2 6

&4E Absolute LSR aaaa 3 6

&5E Absolute, X LSR aaaa,X 3 7

252

Status Register

“or HOeRoEe
A EBBEBEEE

No Operation

Operation
No operation

Description
This is an instruction which has no effect other than to use up a memory

location and takes 2 cycles. It may be used to reserve space or to replace
redundant code without having to re-assemble.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&EA Implied NOP 1 2

253

ORA

Operation

Status Register

OR Memory with Accumulator

A=AORM

Description
A logical OR is performed between the accumulator and a memory

location. The result is then left in the accumulator.

sHOee08R
MELEE EME

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&09 Immediate ORA #dd 2 2
&05 Zero Page ORA aa 2 3

&15 Zero Page,X ORA aa,x 2 4

&12 (Indirect Zero Page) | ORA (aa) 2 5

&0D Absolute ORA aaaa 3 4

&1D Absolute, X ORA aaaa,X 3 4*

&19 Absolute, Y ORA aaaa,Y 3 4*

&01 (Indirect,X) ORA (aa,X) 2 6

&11 (Indirect), Y ORA (aa), Y 2 5*

* Add 1 cycle if page crossed

254

Status Register

_ uU088008
HELE EEE

Push Accumulator onto Stack

Operation
Push A

Description
This instruction pushes the contents of the accumulator onto the stack.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&A8 Implied PHA 1 3

255

Status Register

PHP
R MOBS ql
HELE EEE

Push Processor Status onto Stack

Operation
Push Status register (P)

Description
This instruction pushes the contents of the status register onto the stack.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&08 Implied PHP 1 3

256

Status Register

vm UOeeoee
BSc

Push X Register onto Stack

Operation

Push X register

Description
This instruction pushes the contents of the X register onto the stack.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&DA Implied PHX 1 3

257

Status Register

PHY
R MUB PY a
HELE LE EIE

Push Y Register onto Stack

Operation
Push Y register

Description
This instruction pushes the contents of the accumulator onto the stack..

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&5A Implied PHY 1 3

258

Status Register

PLA
R MOUBIE AE! a
MELEE ME

Pull Accumulator from Stack

Operation
Pull Accumulator

Description
This instruction pulls a value from the stack into the accumulator.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&68 Implied PLA 1 4

259

Status Register

PLP
R MUB PAE a
MMLUM MMM

Pull Processor Status from Stack

Operation
Pull Status register (P)

Description
This instruction pulls a value from the stack into the status register.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&28 Implied PLP 1 4

260

Status Register

me UOeeoee
MOBS OMG

Pull X Register from Stack

Operation

Pull X Register

Description
This instruction pulls a value from the stack into the X register.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&FA Implied PLX 1 2

261

Status Register

me UOeeoee
MOBS OMG

Pull Y Register from Stack

Operation

Pull Y register

Description
This instruction pulls a value from the stack into the Y register.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&7A Implied PLY 1 2

262

Status Register

nor : MOBIEIE - :

Rotate Left

Operation
C=M7,M=M*2,Mo=C

Description
Rotate the contents of a memory location or the accumulator one bit to

the left.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&2A Accumulator ROL A 1 2
&26 Zero Page ROL aa 2 5

&36 Zero Page,X ROL aa,X 2 6

&2E Absolute ROL aaaa 3 6

&3E Absolute, X ROL aaaa,X 3 7

263

Status Register

soe : MOBIEIE - :

Rotate Right

Operation
C=Mo,M=M/2,M7=C

Description
Rotate the contents of a memory location or the accumulator one bit to

the right.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&6A Accumulator ROR A 1 2
&66 Zero Page ROR aa 2 5

&76 Zero Page,X ROR aa,X 2 6

&6E Absolute ROR aaaa 3 6

&TE Absolute, X ROR aaaa,X 3 7

264

Status Register

“ HOeRoEe
MMEMMMMM

Return from Interrupt

Operation
Pull Status register (P) then pull program counter (PC).

Description
This instruction pulls both P and PC from the stack on return from an

interrupt.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&40 Implied RTI 1 6

265

Status Register

ms HOeRoEe
Bl ieleleicisie

Return from Subroutine

Operation
Pull Program counter (PC) from stack

Description
This instruction is used in conjunction with JSR to terminate a subroutine.

RTS pulls into the program counter the values pushed by JSR from the
stack. Execution is then resumed just after the original JSR.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&60 Implied RTS 1 6

266

Status Register

SBC
R MOUBIE AE! a
MME LUE

Subtract from Accumulator with Carry

Operation
AC=A-M-(1-C)

Description
This subtracts the contents of a memory location from the accumulator.

The carry flag is used as a borrow and is usually set before a subtraction.
When the carry flag is clear 1 is also taken away, thus allowing multiple

byte subtraction.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&E9 Immediate SBC #dd 2 2

&ES5 Zero Page SBC aa 2 3

&F5 Zero Page,X SBC aa,X 2 4

&F2 (Indirect Zero Page) | SBC (aa) 2 5

&ED Absolute SBC aaaa 3 4

&FD Absolute, X SBC aaaa,X 3 4*

&F9 Absolute, Y SBC aaaa,Y 3 4*

&El (Indirect,X) SBC (aa,X) 2 6

&F1 (Indirect), Y SBC (aa), Y 2 5*

267

Status Register

um HOeRoEe
EBB EEo

Set Carry Flag

Operation
Carry flag = 1

Description
This instruction sets the carry flag and is mainly used to prepare for SBC

or ADC.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&38 Implied SEC 1 2

268

Status Register

“ HOeRoEe
EBB WEEE

Set Decimal Mode

Operation
Decimal flag = 0

Description
This instruction switches the 65C12 to binary coded decimal arithmetic

mode.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&F8 Implied SED 1 2

269

Status Register

ia HOeRoEe
ARFEEOURE

Set Interrupt Disable Status

Operation
Interrupt flag = 1

Description
This instruction disables maskable interrupts by setting the interrupt flag.

While all normal MOS functions will be suspended until a CLI is
performed.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&78 Implied SEI 1 2

270

Status Register

sme HOeRoEe
ARE EE EEE

Store Accumulator in Memory

Operation
M=A

Description
This instruction stores the accumulators contents to a specified memory

location.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&85 Zero Page STA aa 2 3
&95 Zero Page,X STA aa,X 2 4

&92 (Indirect Zero Page) | STA (aa) 2 6

&&D Absolute STA aaaa 3 4

&9D Absolute, X STA aaaa,X 3 5

&99 Absolute, Y STA aaaa,Y 3 5

&81 (Indirect,X) STA (aa,X) 2 6

&91 (Indirect), Y STA (aa), Y 2 6

271

Status Register

™ R MOB eA a

Store X Register in Memory

Operation
M=xX

Description
This instruction stores the X register in a specified memory

location.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&86 Zero Page STX aa 2 3
&96 Zero Page, Y STX aa,Y 2 4

&8E Absolute STX aaaa 3 4

272

Status Register

™ R MOB eA a

Store Y Register in Memory

Operation
M=Y

Description
This instruction stores the Y register in a specified memory

location.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&84 Zero Page STY aa 2 3
&94 Zero Page,X STY aa,X 2 4

&8&C Absolute STY aaaa 3 4

273

STZ

Operation
M=0

Description
STZ clears a byte of memory by storing zero at the specified location.

CLR is an alternative mnemonic.

Status Register

sHOee08R
HELE EIEE

Clear Memory

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&64 Zero Page STZ aa 2 3
&74 Zero Page,X STZ aa,Y 2 4

&9C Absolute STZ aaaa 3 4

&9E Absolute, X STZ aaaa,X 3 4*

* Add 1 cycle if page crossed

274

Status Register

ms HOeRoEe
Gieleleleleiae

Transfer Accumulator to X Register

Operation
X=A

Description
This instruction copies the contents of the accumulator to the X register.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&AA Implied TAX 1 2

275

Status Register

my HOeRoEe
Gieleleleleiae

Transfer Accumulator to Y Register

Operation
Y=A

Description
This instruction copies the contents of the accumulator to the Y register.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&A8 Implied TAY 1 2

276

Status Register

mu HOeRoEe
AEE EEE

Test and Reset Bits

Operation
M=(AEOR &FF) AND M

Description
This instruction ANDs the complement of the accumulator with the

specified memory location and stores the result in that location. The Z
flag is set if A AND M = 0.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&14 Zero Page TRB aa 2 5
&1C Absolute TRB aaaa 3 6

277

Status Register

me HOeRoEe
ARFEEOEME

Test and Set Bits

Operation
M=AORM

Description
This instruction ORs the accumulator with the specified memory location

and stores the result in that location. The Z flag is set if
A AND M=0.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles

Lang

&04 Zero Page TSB aa 2 5
&0C Absolute TSB aaaa 3 6

278

Status Register

mn HOeRoEe
Gieleleleleiae

Transfer Stack Pointer to X Register

Operation
X = Stack pointer (S)

Description
This instruction copies the contents of the stack pointer to the X register.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&BA Implied TSX 1 2

279

Status Register

ma HOeRoEe
Gieleleleleiae

Transfer X Register to Accumulator

Operation
A=X

Description
This instruction copies the contents of the X register to the accumulator.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&8A Implied TXA 1 2

280

Status Register

mas HOeRoEe
FEBBEBEHE

Transfer X Register to Stack Pointer

Operation
Stack pointer (S) = X

Description
This instruction copies the contents of the X register to the stack pointer.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&9A Implied TXS 1 2

281

Status Register

ma HOeRoEe
Gieleleleleiae

Transfer Index Y to Accumulator

Operation
A=Y

Description
This instruction copies the contents of the X register to the accumulator.

Op. Code | Addressing Mode Assembly No. Bytes | No. Cycles
Lang

&98 Implied TYA 1 2

282

INDEX

A-to-D converter, 17

AC Parametric test (peripheral bus), 65

Access Control (ACCCON), 27
Access restrictions RTCRAM, 35

Acorn approval, 72

ADC, 216
Address space allocation, 73

Address space map, 77

ADFS track format, 146

ADVAL (Master Compact), 199

Advanced Network Filing System, 148

Alarm,34
Analogue port, 17

Analogue to Digital converter, 17

AND, 217
ANDY, 30
ANFS, 148
ANFS and NFS, differences, 200

ANFS configuration, 33

ANFS enhancements, 154

ANFS Error messages, 155

ANFS OS commands, 149

ANFS Printing, 154

ANFS/DEFS compatibility, 157

ANFS/NFS, routines to check which, 159

APC sequence, 160
Approval of equipment by Acorn, 72

Architecture, 12

Aries B32 Shadow RAM, compatibility, 170

ASL, 218
Audio Generator, 14, 33

Automatic motor control, 22

AUTO, 204
Auxiliary control register (User VIA), 56

B Bus drive waveforms, 68

Base processor, 12

BASIC 4 changes from earlier versions, 203

Baud rate generator, 61
BBC Micro Expansion Box, 74

BBR (Rockwell 65C02 only), 219

BBS (Rockwell 65C02 only), 220

BCC, 221
BCS, 222
BEQ, 223
BIT 224
BMI, 225
BNE, 226
Bootstrapping (AN FS) , 157

BPL, 227

283

BRA (65C12 only), 228
Bridges (ANFS), 158

BRK instruction, 88, 229

Buffer transfer (Editor/Language), 161

Buffers, ANFS, 148

BVC, 230
BVS, 231
C Bus drive waveforms, 67

Cartridge interface, 210

Cartridge pinout, Master 128, 211

Cartridge ROM, 30

Cartridge sockets, 189

Changes between :

BASIC 4 and earlier versions, 203

NFS to ANFS, 200
Master 128 and B/B+, 171,

Master 128 and Compact, 190

Master 128 memory map from B/B+, 186

Changes: Model B+ and Model B, 165

Character definitions (memory), 83

Circuit description, 19

Circuit operation detail, 24

CLC, 232
CLD, 233
CLI (mnemonic), 234

CLI buffer, 83

Clock, 15

Clock rate, CPU, 19

Clock signals, 24

CLR (65C12 only), 235
CLV,236
CMOS RAM, 15
CMOS RAM byte allocation, 33

CMP, 237
CNPV 94
CODE key (Master Compact), 197

Column detection mode (keyboard), 39

Compact, 190
Comparison of memory map (M128 & B/B+),

186
Compatibility ANFS/DFS, 157

Composite video, 44

Control registers, video, 45

Controller chip, CRT, 46

Controller, keyboard, 37

Controller, Peripheral Bus, 63

Co-processor (80186), 131

CP/M, 123
CP/M character I/O, 126

CP/M device assignments, 126

CP/M device characteristics, 129

CP/M disc format, 147

CP/M IOBYTE facility, 127
CP/M logical devices, 128

CP/M physical devices (Acorn), 128

CP/M screen control, 125

CP/M System patch area, 130

CP/M Terminal Emulator codes, 125

CPX, 238
CPY, 239
Cathode Ray Tube Controller chip, 46

CRTC chip registers, 47
CRTC Multiplexer, 48

Data Bus (Slow), 32

Data register (User VIA), 53

DEA/DEC A (65C12 only), 240
DEC, 240
Detailed circuit operation, 24

DEX, 241
DEY 242
DFS (B+), 169
DFS track format, 145

DFS/ANFS compatibility, 157
Differences between :

NFS and ANFS, 200
Master 128 & B/B+, 171

Master 128 & Compact, 190

Model B+ and Model B, 165

Disc Filing Systems, 145

Display, 42

DRAM, 12
DRAM timing, 31

Dual Processor Systems, 98

Dynamic RAM chip (4464), 19

Dynamic RAM timing, 31
E Bus drive waveforms, 69

ECONET, 22
Econet terminal, 185

Editor (Master 128), 161, 183

EDIT, 204
EEPROM (Master Compact), 194

EOR, 243
Equipment approval by Acorn, 72

Error messages, ANFS, 155

Error messages, extended in ANFS, 202

Events on reception (ANFS), 159

Events (Z80), 121

EVENTV,87, 96
Expansion box, 74

Expansion Port (Compact), 191

Expansion Port pinout (Compact/M128), 192

EXT# change in BASIC 4, 204

Extending the MOS, 84

LSR, 252
Luminance balance (TV), 21

LYNNE, 28

284

External second processor, 17

File buffers, ANFS, 148

Filing System vector, 93

Formatting characters, View, 162

Formatting discs, 145

Free run mode (keyboard), 39

FSCV, 93
General description, 12

GSREAD format, 160

Half-frames (TV) , 50

Hardware Control Locations (B+), 168

Hardware requirements, 1 MHz Bus, 70

Hardware scroll, 43

Hardware scroll and CRTC Multiplexer, 49

HAZEL, 29
HELP information (Master 128), 183

High resolution screen modes, 42

Host processor, 98

I/O address space with ANFS, 157

I/O processor, 99
I/O processor, Z80 memory usage, 124

INA/INC A (65C12 only), 244
INC, 244
INDirect Vectors, 95

INSV 94
Internal hardware strobes, 16

Internal second processor, 16

Interrupt flag register (User VIA), 58

Interrupt handling, Z80, 122

Interrupt request vectors, 96

Introduction, 12

INX, 245
INY 246
IRQLV & IRQ2V, 96
IRQs, 96
JMP,247
Joystick/Mouse (Master Compact), 194

JSR, 248
Keyboard, 24, 33

Keyboard buffer (Master Compact), 197

Controller, 37

matrix, 40

timings, 40

KEYV 90
Language processor, 12, 98

LDA, 249
LDX, 250
LDY 251
Library (ANFS), 157
Light pens, 48

LIST IF, 203
LISTO, 203
Logical colour, 20

Machine Operating System. 77

Master 128 Cartridge interface, 210

Master 128 PCB links, 205

Master 128 Sideways ROMs, 175

Master 128 versus Compact, 190

Master 128 versus Model B/B+, 171

Master 128 VDU Commands, 176

Master Compact Expansion Port, 191

Master Compact PCB links, 208
Master Compact test points, 207

Master Compact versus Master 128, 190

Matrix, keyboard, 33, 40

Memory access control (80186), 143

Memory consistency check, View, 164

Memory format, View, 163

Memory map, 27

Memory map changes (Master 128), 186

Misc functions control register, 45

Model B/B+ versus Master 128, 171

Modulator, 20

MOS, 77
MOS CLI buffer, 83
MOS Function vector table, 86

MOS version, read/display (B/B+), 165

MOS version (Electron, B+) , 166

MOS workspace, 83

Monitor (280) , 122 138

Monitor commands (80186),

Motor control example, 59

Multiplexer, CRTC, 48 17

NEC mPD7002 A-to-D converter,

NETY, 95
Network collisions, 23

Network number, 158

NFS and ANFS, differences, 200

NES, ANFS, routines to check which, 159

NMI Workspace, claiming, 118

Non-Maskable Interrupts, 118

NOP,253
NTSC video output, 44

Number register locations, View 164

Optional component fitting, 209

ORA, 254
OS calls, Z80 (general), 120
OS commands, new in Master 128, 172

OSARGS (80186), 133
OSARGS (ANFS), 154
OSARGS (Tube), 109
OSASCI (80186), 133
OSBGET (80186), 132
OSBGET (Tube), 109
OSBPUT (80186), 132

285

OSBPUT (Tube), 108
OSBYTE (80186), 134
OSBYTE (Tube), 107
OSBYTE 0 (B+), 165

14 (&0E), 96
96 (&60), 160
112 (&70), SO
113 (&71), 50
114 (&72) (B+), 166
117 (&75), 50
117 (&75) (B+), 166
129 (&81) (B+), 166
132 (&84) (B+), 166
133 (&85) (B+), 166
135 (&87) (B+), 167
150 (&96), 52
151 (&97), 52
190 (&BE) (Master Compact) , 195

239 (&EF) (B+), 167
OSBYTE call summary, Master 128, 174

OSCLI (Tube) , 106
OSFILE (80186), 133
OSFILE (ANFS), 154
OSFILE (Tube), 109
OSFIND (80186), 132
OSFIND (Tube), 109
OSGBPB (80186), 132
OSGBPB (Tube), 110
OSNEWL (80186), 133
OSRDCH (80186), 133
OSRDCH (Tube), 106
OSRDSC (B+), 167
OSWORD 5 and 6 (B+), 168
OSWORD 114 (&72) bug, 193
OSWORD 250 (&FA) (80186), 142
OSWORD 255 (&FF) (Z80), 123
OSWORD (80186), 134
OSWORD (Tube), 107
OSWRCH (80186), 134
OSWRCH (Tube), 106
OSWRSC (B+), 167
Overlaid RAM in ROM area, 30

Page signals, 73

Paged Mode algorithm, 185

Paging memory, 27

Page 0,77

Page 0 and | (changes from B/B+ shown),

186
Pages 1 to &D, 78

Page 2 to 9 (changes from B, B+ shown), 187

Pages &A to &D (changes from B, B+), 188

Pages &E to &7F, 80

Pages &80 to &BF, 80

Pages &CO to &DF, 82

Page &FC, 72, 73, 82

Page &FD, 74, 82

Page &FF, 82

PAL video output , 44

Palette, 20

Palette control register, 46

Parallel printer port, 52

Parasite processor, 98

Parasite protocols, 105

PCB link settings, 189
PCB links, Master 128, 205

PCB links, Master Compact, 208

PCB selection and test points, 205

Pens,48

Peripheral Bus, 63

Peripheral Bus controller, 63

Peripheral Bus, I/O definition, 64

Peripheral Bus, timing spec, 65

Peripheral control register (User VIA), 57

PHA, 255
PHP,256
PHX (65C12 only), 257
PHY (65C12 only), 258
Physical colour, 20

PLA,259
PLP,260
PLX (65C12 only), 261
PLY (65C12 only), 262
Pre-compensation (Master Compact), 193

Print vector (user) , 92

Printer port, parallel, 52

Printing (ANFS), 154

Private RAM, 188

Processor, serial, 61

RAM, 28
RAM overlaid in ROM area, 30

Random Access memory, 28

Retries with ANFS, 158

Read MOS version (Electron/B+), 166

Read/display MOS version (B/B+), 165

Real Time Alarm, 34

Real time clock, 14

Recursion in FOR loops, 204

Refresh control, 49

Registers, CRTC chip, 48

REMV,94
Reserved characters, View, 162

RGB output, 44

ROL, 263
ROM Cartridge selection, 30

ROMSELect, 30

286

ROR, 264

Row detection mode (keyboard) , 39

RS423 buffering, 61

RTCRAM access restrictions, 35

RTI, 265

RTS, 266

SAA5050 devices, 43

SAA5050 teletext character generator, 20

SBC,267

Schottky TTL loads, 72

Screen display, 42

Screen modes, 42

Screen modes, teletext, 43

Second Processor (Z80), 120

Second Processor (80186), 131

Second Processor architecture , 98

Second Processor, external, 17

SEC, 268

SED,269

SEI, 270

Serial interfaces, 21

Serial Processor, 61

SERPROC, 61
Shadow mode OSBYTE calls (B+), 166

Shadow screen (B+) , 165

Shadow screen memory, 82

Shift register (User VIA), 54

Sideways ROM headers, illegal, 185

Sideways ROMs, new service calls, 175

Sideways ROM (B+) , 169

Signal definitions, 1 MHz Bus, 70

Slow Data Bus, 32

SN7694A sound generator, 14

Soft Key definitions, 186

Soft Key expansion buffer, 82
Sound Generator, 14, 33

STA, 271

STX, 272

STY,273

STZ (65C12 only) , 274

System configuration, 33

System VIA, 15

TAX, 275

TAY 276

Teletext adapter 72

Teletext character generator, 20

Teletext modes, 43

Terminal Emulator, 160

Terminal file transfer, 160

Test points, Master Compact, 207

Time & Date (ANFS), 157

Time-dependent functions, 96

Time-independent functions, 84

Timing requirements, peripherals, 75

Timings, keyboard, 40

Track format, ADFS, 146

Track format, DFS, 145

TRB (65C12 only), 277
TSB (65C12 only), 278
TSX, 279
TUBE, 16, 63, 69, 99
Tube code in 1770 DFS ROM, 169

Tube protocols (general), 101

Tube, checking for presence, 114

claiming, 114

data transfer, 116

filing system usage, 103

hardware dependency, 106

host protocols, 113

initiating data transfer, 115

Interrupt-driven operations, 110

non-interrupt protocols, 106

OS usage, 102

OSARGS protocol, 109

OSBGET protocol, 109

OSBPUT protocol, 108

OSBYTE protocol, 107

OSCLI protocol, 106

OSFILE protocol, 109

OSFIND protocol, 109

OSGBPB protocol, 110
OSRDCH protocol, 106

OSWORD protocol, 107

OSWRCH protocol, 106

parasite protocols, 105

register addresses, 113

register locations, 116

releasing, 116

startup protocol 113

transferring data, 116

vectors. 1 05

Tube/Filing System interlace, 117

TV modulator 20
TXA, 280
TXS, 281
TYA, 282
UPTV 91
URD (ANFS), 156
Use of EPROMS for memory, 81

User bytes in CMOS RAM, 33

User library (ANFS), 157

User Port, 52

User print vector, 92

User Root Directory (ANFS), 156
User VIA aux control register 56

User VIA data register 53

*B (0186), 139
*PLIP (ANBS), 149

287

User VIA interrupt flag register, 58

User VIA peripheral control register, 57

User VIA shift register, 54

USERV, 90

VDU Commands Master 128, 176

VDU driver, 49

VDU trailing zeros, 204

VDU workspace allocations, 84

VDU workspace, 83

VDUI18, 176

VDU22, 176

VDU23, 177

VDU?24 ,180

VDU25, 180

VDU26-255, 182

VDUV, 91

Vector table, 86

Vectors in co-processors, 85

Vectors in Sideways ROM/RAM, 85

VIA, 15

Video control registers, 45

Video outputs, 44

Video processor, 44

View, 162

View, formatting characters, 162

View, memory consistency check, 164

View , memory format, 163

View, number register locations, 164

View, reserved characters, 162

Viewsheet, 164

WD1770 FDC, 23

WD1770 floppy disc controller, 146

Wrong versions (ANFS), 158

Z80 Escape processing , 122

Z80 faults and events, 121

Z80 I/O memory usage, 124

Z80 interrupt handling, 122

Z80 Monitor, 122

Z80 OS calls (general), 120

Z80 OSWORD call, 123
Z80 Second Processor, 120

*CDIR (ANBFS), 149

*command abbreviation clashes, 185

*COMPACT (Master Compact), 193

*CONFIGURE (Master Compact), 194

*CONFIGURE commands (ANFS), 152

*CONFIGURE FDRIVE (Master Compact),

194

*CONFIGURE, 171

*D (80186), 139

*DIR (Master 128), 186
*DOS (80186) , 139

*DRIVE (Compact), 192

*DRIVE (Master 128), 185

*FORMAT (Master Compact), 193

*FS (ANBS), 150

*FXO (B+), 165 80186 Escape processing, 138

*FX16 default (Master Compact), 197 80186 extra OSWORD call (OFAh), 142

*FX25 (Master Compact), 198 80186 Monitor commands, 138

*FX112, 50 80186 OS calls, 131

*FX113, 50 OSARGS, 133

*FX114 (Bt), 166 OSASCLI, 133
*FX138 (Master Compact), 197 OSBGET, 132

*FX221-8 (Master Compact), 197 OSBPUT, 132

*GO (80186), 140 OSBYTE, 134

*HELP (ANBS), 149 OSCLI, 134

*T AM (ANBS), 150 OSFILE, 133

*LCAT (ANBS), 150 OSFIND, 132

*LEX (ANFS), 150 OSGBPB, 132

*MON (80186), 140 OSNEWL, 133

*OPT extra commands (ANBS), 153 OSRDCH, 133

*PASS (ANBS), 150 OSWORD, 134

*POLLPS (ANBS), 151 OSWRCH, 134

*PROT (ANBFS), 151 80186 Second Processor,131

*PS (ANFS), 152 80186 software interrupts, 131

*RENAME wildcards (Master Compact), 193 8271 code compatibility, 169

*S (80186), 140
*SR (80186), 141
*STATUS commands (ANFS), 153

*TFER(80186), 142
*UNPROT (ANFS), 152
*WDUMP (ANFS), 152
*WIPE (ANBFS), 151
146818 RTC chip, 15
1770 Floppy Disc Controller (B+), 169
1MHz Bus, 70

1 MHz Bus peripherals (note), 69

1 MHz External I/O , 17

1MHz Internal I/O , 15

2MHz Internal I/O , 16

4464 Dynamic RAM, 19

6502 Instruction Set, 216

6522 VIA, 15,21
65C12 (65SC12), 19
65C12 & 65C102 opcode compatibility, 106

65C12 Instruction Set, 216

6845 CRT controller, 17 , 42

6850 ACIA, 21
6850 Control register settings, 62

6850 UART 61
6854 ADLC, 22
80186 Co-processor 131 144

80186 data buffer example,

80186 error handling, 135

80186 error messages, 136

288

