
8-Bit Software
The BBC and Master Computer Public Domain Library

Master Compact Welcome Guide
OCRed by Martin Hodgson

This is the BBC Master Compact Welcome Guide Scanned by Chris Richardson, OCRed and converted
to HTML by Martin Hodgson.

Each HTML file corresponds to one page of the Guide, the file name corresponding to the page
designations in the guide.

The original order is as follows :

Addendum 1 2 3 4 5 6 7 8 9 10

Addendum 11

Cover (Title) page 1

Contents 1 2 3

Foreword 1

Introduction 1

A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A A11 A12 A13 A14

B B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

B B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

C C21 C22 C23 C24 C25 C26 C27 C28 C29 C30

C C31 C32 C33 C34 C35 C36 C37 C38 C39 C40

C C41 C42 C43 C44 C45 C46 C47 C48 C49 C50

C C51 C52 C53 C54 C55 C56 C57 C58 C59 C60

C C61 C62 C63 C64 C65 C66 C67 C68

D D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

D D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

D D21 D22 D23 D24

E E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E E11 E12 E13 E14

F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

F F21 F22 F23 F24

G G1 G2 G3 G4

Appendix 1 1-1 1-2

Appendix 2 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8

Appendix 3 3-1 3-2 3-3 3-4 3-5

Appendix 4 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8

Appendix 5 5-1 5-2 5-3 5-4 5-5

Appendix 6 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9

Appendix 7 7-1 7-2 7-3 7-4

Appendix 8 8-1 8-2

Appendix 9 9-1 9-2 9-3 9-4

Appendix 10 10-1 10-2

Appendix 11 11-1 11-2 11-3

Index 1 2 3 4 5

A note concerning readability of these HTML pages: Browsers on the 32 bit Acorn computers (RISC PC
etc.) default to the Corpus (Courier) and Trinity (Times) fonts. Given those fonts (built into the OS) and
the Acorn font display technology, these pages are very clear and easy to read (tested in Oregano and
WebsterXL).

On Widows PCs, using Internet Explorer v.6, Widows 68 SE, and MS display technology, the picture is
nowhere near so clear (literally). MSIE defaults to the acceptable Courier as the 'TT' font, but does not
seem to have access to a decent body text font.

If you do have more fonts installed than the basic set I strongly suggest you try some of the others (on
the Tools menu select the General tab, click Fonts).

The main text on the page should be clearly differentiated from that text which the book is saying you
type in, e.g. the programming examples. On Apple Macs I am not able to advise. I would expect them to
be better than Windows PCs.

Martin Hodgson

file:///C|/Documents%20and%20Settings/Chris%20Richardson/My%20Documents/8bs/website%20full/main.htm

ADDENDUM

COMPACT WELCOME GUIDE (ISSUE 1)

PAGE A3 Screen display should show :

Acorn MOS

Acorn ADFS

BASIC

<_

PAGE A9 Paragraph 2 should read : We shall use modes 0-7 in most of the

examples in this guide.

PAGE A10 Teletext symbols at bottom of page should be :

ASCII SYMBOL

TELETEXT SYMBOL

PAGE A11 Paragraph 2 "redefines the A key" not the TAB key. example

should read:

Mode 134

VDU23,65,0,2,124,168,40,40,40,0,

PAGE B1 Screen display should show in top right-hand corner:

Device/Colour rather than Screen Colour

PAGES B4, B5, B6, B7, B8. Screen displays should now show :

Welcome in place of Programs

in the top right-hand corner.

Page B7 2 nd paragraph is now entitled "Welcome" not "Programs".

The paragraph should now read :

The welcome item is a quick way of returning to the welcome menu which you

encountered at the start of this section. It contains no entries,

therefore clicking here will ask you if you wish to leave the desktop.If

you answer 'Y' (Yes) you will return to the original Welcome menu. A

short description of each of these programs appears at the end of this

section.

After line six of the 3rd paragraph (entitled "CLOCK") add:

Note: You can make the stepping of the minutes/hours go faster by holding

down the SHIFT key.

Also pressing - or DELETE will decrement the number.

PAGE B16 Add to the end of paragraph 4:

Clicking on the Welcome box will allow you to return to the Welcome
menu.

PAGE C51 Paragraph 7 program example should read :

280 DATA4

320 DATAWho won the 1982 World Cup, Italy

PAGE C54 Program example should read :

230 IF name$(count)="xxx" THEN count=count-1

240 FOR number=1 TO count

PAGE D1 Last paragraph should read:and then type:

*MOUNT

*LIB LIBRARY

*WORD

PAGE D2 Screen di„splay should show:

VIEW

Bytes free 27902

Editing No File

Screen mode 7

Printer Epson

=>

PAGE D5 Line 4 onwards should read: Insert the Welcome disc into your

disc unit, then type:

*DIR $.WELCOME.APPLIC

LOAD GRANT1

PAGE El4 Paragraph 3 should read: For more advanced users the Welcome

disc contai„ns a file called INTER. This will convert ABC files into a form

that can be read by the VIEW word-processor. To use INTER type the

following :

*DIR $.ABC

CHAIN INTER

PAGE F4 Paragraph 1, line 6, new sentence: The disc is write protected

with the tab pushed down.

PAGE F7 Insert after paragraph 2:

If you wish to make backup copies of discs using only a single drive use

the *SDBACKUP command. It will backup ADFS format discs on a single drive

using 80 Kbytes of the computer's memory as a buffer. You can either run

this utility from the menu or to run it from the Library of your welcome

disc type:

*SDBACKUP

After it has finished making copies of your discs press the BREAK key.

If you wish to re-load the Welcome program insert the Welcome disc in the

drive and press: SHIFT + BREAK

NOTE: it is advisable to make a backup copy of your Welcome disc as soon

as possible

PAGE Fl3 Paragraph 6 should read:it has the same effect as if you

had typed *CAT followed by the full pathname of the CSL.

PAGE APP7.3 Insert at bottom of page:

VDU 23,9 Set Flash Rate

PAGE APP7.4 Insert after VDU 29 description:

VDU 32-126 prints the equivalent ASCII character.

PAGE APP10.1 Insert at line 6:

*MOUNT

*LIB LIBRARY

Compact Welcome Guide (Issue 1) Addendum August 1986

ROM SOFTWARE

1. Introduction

Any modification or upgrade carried out to the printed circuit board of

any ACORN equipment is undertaken at the sole risk of the person carrying

out the modification or upgrade. No claim for loss or damage to the

equipment caused by the modification or upgrade by unqualified personnel

shall be accepted by ACORN COMPUTERS Ltd.

Before commencing an upgrade please read all of the instructions

carefully. if you are in doubt about your ability to carry it out, the

upgrade kit and your computer should be taken to your nearest authorised

ACORN dealer.

A charge may be levied by the dealer for installing ROM software in your

Master Series Compact Computer, such a charge shall be entirely at the

discretion of the dealer.

2. Installation

IMPORTANT

Most electronic devices can be damaged by static electricity, therefore it

is important to note the following points:

i) Avoid personal static charge where possible

ii) Keep the IC(s) in the anti-static foam until fitting

iii) Avoid touching the pins on the IC(s) whilst fitting

2.1 Unplug all peripherals and remove the power lead from the computer.

2.2 Lay the computer face down on a flat surface and undo the four case

fixing screws. Gently turn the computer over allowing the screws to fall

free. Put them in a safe place until required again.

2.3 Lift the top case including keyboard away from the base of the

computer - (taking care not to strain the ribbon cable) an lay it in

front of the machine.

2.4 You are now ready to install the ROM(s) in your computer. but first a

few tips on the insertion of ICs:

Before removing the ICs from the foam identify pin 1. (see below).

Before trying to insert an IC into a socket first check to see if the legs

of the IC are parallel with each other. If they appear crooked or splayed

apart then they should be re-aligned. To do this hold the IC sideways-on

and press it gently against a firm flat surface, repeat this for the other side

of the IC.

To insert an IC, hold the ends of the IC between thumb and forefinger and

line-up all the pins over the socket. Pin 1 should face to the WEST (or

left-hand side) of the pcb. note: all of the ICs on the pcb face in the

same direction.

Apply firm pressure to the IC, but do not force it into the socket. Check

that all the pins have entered the socket and that none of them are bent

either outwards or under the body of the IC.

Referring to the diagram below and to silk screen markings on the pcb

insert the new ROM(s) as described above.

3. ROM operating priorities

ROM sockets have what is known as "Operating priorities". Essentially

this means that the ROM with the highest operating priority contains the

software (BASIC, PASCAL, VIEW etc.) that will be entered when the machine

is switched on or after a "hard reset" (CTRL BREAK) is performed. The

operating priority also governs which ROM will respond to a "*" command if

more than one is programmed to do so. The computer is supplied with BASIC

in the highest priority position and this will need to be changed if you

wish to default to another language. (How to do this is described below).

Each of the sockets is given a priority ranging from 0 to F (Hexadecimal),

where F is the highest priority and 0 is the lowest. The priority number

is actually known as the ROM's slot number. If you type:

 *ROMS RETURN

the system slot numbers are displayed on the screen with the title of the

Software actually in the ROM(s). For example:

ROM F UTILS 01

ROM E BASIC 40

ROM D ACORN ADFS 01

The *CONFIGURE command can be used to make a lower priority language or

filing system ROM take precedence. In the example given above, the last

two digits shown on each line are binary version numbers of the software.

If you wish to know the actual version numbers of the software present in

your computer type :

*HELP

(Note that *BASIC selects the BASIC with the lowest slot number

so that any alternative BASIC may be selected instead of

that in slot E).

IMPORTANT NOTE : External ROM software accessed via Edge Connector PL13

is controlled by the position of link PL11, refere to the table below for

the different link positions.

PL11 North :

PL 11 SOUTH :

Note : Ensure power is off before adjusting link positions. If necessary

coantact your nearest ACORN dealer for advice.

The BBC Microcomputer

System

Master Compact

WELCOME GUIDE

Part number 0458,000

Issue 1

August 1986

WARNING: THIS COMPUTER MUST BE EARTHED

Important:

The wires in the mains lead for the computer are coloured in accordance with the following code:

Green and yellow Earth

Blue Neutral

Brown Live

For United Kingdom users:

The moulded plug must be used with the fuse and fuse carrier firmly in place. The fuse carrier is of the
same basic colour (though not necessarily the same shade of that colour) as the coloured insert in the
base of the plug. Different manufacturers plugs and fuse carriers are not interchangeable. In the event of
loss of the fuse carrier, the moulded plug MUST NOT be used. Either replace the moulded plug with
another conventional plug wired as described below, or obtain a replacement fuse carrier from an Acorn
Computers authorised dealer. In the event of the fuse blowing it should be replaced, after clearing any
faults, with a 3 Amp fuse that is ASTA approved to BS1362.

For all users:

If the socket outlet available is not suitable for the plug supplied, either a different lead should be
obtained or the plug should be cut off and the appropriate plug fitted and wired as noted below. The
moulded plug which was cut off must be disposed of as it would be a potential shock hazard if it were to
be plugged in with the cut off end of the mains cord exposed

As the colours of the wires may not correspond with the coloured markings identifying the terminals in
your plug, proceed as follows:

The wire which is coloured green and yellow must be connected to the terminal in the plug which is
marked by the letter E, or by the safety earth symbol - or coloured green, or green and yellow.

The wire which is coloured blue must be connected to the terminal which is marked with the letter N, or
coloured black.

The wire which is coloured brown must be connected to the terminal which is marked with the letter L,
or coloured red.

Exposure

The computer should not be exposed to direct sunlight or moisture for long periods.

Ventilation

Do not block the ventilation slots in the case -- see text for details.

NOTE: Your Master computer contains an EEPROM integrated circuit which is used to maintain
configuration information after the removal of mains power. This device has an effective lifetime of
approximately 10,000 programming operations. The chip can, however, be replaced when necessary.

Within this publication the term BBC is used as an abbreviation for British Broadcasting Corporation.

© Copyright Acorn Computers Limited 1986

Neither the whole or any part of the information contained in, or the product described in, this manual
may be adapted or reproduced in any material form except with the prior written approval of Acorn
Computers Limited (Acorn Computers).

The product described in this manual and products for use with it are subject to continuous development
and improvement. All information of a technical nature and particulars of the Acorn Computers in good
faith. However, it is acknowledged that there may be errors or omissions in this manual. A list of details
of any amendments or revisions to this manual can be obtained upon request from Acorn Computers
Technical Enquiries. Acorn Computers welcome comments and suggestions relating to the product and
this manual.

All correspondence should be addressed to:

Technical Enquiries

Acorn Computers Limited

Cambridge Technopark Newmarket Road

CAMBRIDGE CB5 8PD

All maintenance and service on the product must be carried out by Acorn Computers authorised dealers.
Acorn Computers can accept no liability whatsoever for any loss or damage caused by service or
maintenance by unauthorised personnel. This manual is intended only to assist the reader in the use of
this product, and therefore Acorn Computers shall not be liable for any loss or damage whatsoever
arising from the use of any information or particulars in, or any error or omission in, this manual, or any
incorrect use of the product.

Acorn is a trade mark of Acorn Computers Limited.

VIEW is a trademark of Acornsoft Limited.

Econet is a registered trademark of Acorn computers Limited, Cambridge.

Written, edited and typeset by Interaction Systems Limited, Cambridge.

First published 1986

Issue 1 -- August 1986

Published by Acorn Computers Limited

Contents

Foreword

Introduction

A Getting Started A1

Unpacking the computer A1

Fault finding A3

Using the computer A4

Communicating with the computer A11

B The Icon Software B1

Operating the Icon software B1

Card Index B3

Calculator B4

Note Pad B5

Catalogue B6

Programs B7

Clock B7

Other Welcome programs B7

The Welcome utilities B10

Using the Control Panel B14

C The BASIC Language C1

Writing a Program C1

A simple program using variables C3

Help that BBC BASIC can give you C7

Saving and loading programs C11

To program or not to program C12

Simple graphics C13

Printing text C20

Input C27

Structured programs C29

Functions C36

Loops C37

Making choices C41

Error handling C45

More about strings C47

Arrays C52

Files C54

More about graphics C56

The teletext mode C61

Sound C64

128K BASIC C66

Assembly language C66

D Introducing VIEW D1

What is word processing? D1

The VIEW word processor D1

Printing from VIEW D20

Additional features of VIEW D22

E The ABC Word Processor E1

Starting with ABC E1

WRITE, READ and WRITE and the SLATE E8

Converting ABC files for use with VIEW E14

F Filing Systems F1

What is a filing system? F1

Standard filing systems F1

The ROM Filing System (RFS) F2

The Advanced Disc Filing System (ADFS) F2

Using the ADFS F7

Directories F9

More about directories F13

MOS filing system commands F19

G Expanding the system G1

Connecting colour and monochrome monitors G1

Connecting a television G1

Disc drives G2

Connecting a printer G2

The RS232 interface G3

Connecting a Joystick, Mouse or Trackball G4

The Econet Network G4

Appendices

1 Mode characteristics App l .1

2 Character sets App 2. 1

3 Operating system commands App 3. 1

4 *FX commands App 4. 1

5 Filing system commands App 5. 1

6 BASIC keywords App 6. 1

7 VDU codes App 7 .1

8 PLOT codes App 8. 1

9 VIEW commands App 9 .1

10 BASl28 information App l0. 1

11 Technical information App l1. 1

Index Index- 1

Foreword

A few years ago, the suggestion that you might have a computer in your own

home would have been greeted with disbelief. Now, home computers are an

accepted fact and more and more people are beginning to investigate their

potential.

Thankfully, the intervening years have seen many developments and today's

microcomputers offer real computing power making them suitable for use not

only in the home but also in classrooms, laboratories and our increasingly

automated offices.

BBC Microcomputer systems have been available; throughout this period of

change and, as a result of a process of continuous development, they span a

wide range of facilities and sophistication whilst maintaining software

compatibility. This ensures that with the arrival of new models there does not

come an enforced wait for software with which to put the machine to work. The

computer you have just purchased is provided with some of the most highly

developed software for the BBC Microcomputer range and there are literally

thousands of other programs which can potentially be used on your computer.

Welcome to the world of personal computing!

Introduction

This book is the 'Welcome Guide' for your Master Series computer. It provides

an introduction to the computer for all new owners -- including those who have

never used a computer before.

The book covers the initial setting-up of the system, information on how to

make the computer understand your commands, details of the programs

supplied with the system and appendices covering the facilities of the computer

in some detail. It is not intended as a technical reference manual or a self-study

guide -- users requiring this kind of material should refer to their supplier for

information on current publications.

The first chapter describes how to start using your computer and explains the

layout and use of the keyboard. Subsequent chapters introduce:

-- the 'Welcome' programs (including word processing and other useful

applications;

-- the BBC BASIC language;

the disc storage system;

-- expanding the computer.

A. Getting Started

Unpacking the computer

Your computer is supplied in three boxes. In addition to this manual they

should contain:

In the first box:

-- a monitor unit (similar to a television);

an interconnecting lead;

-- an instruction booklet.

In the second box:

-- the computer unit (with a keyboard);

-- a 'Welcome Disc';

-- a guarantee card;

-- a VIEW reference card;

-- a VIEWIABC function key card;

-- a Logo guide.

In the third box:

-- the disc drive and monitor stand;

-- a mains power lead for the disc drive unit.

Fill in the details on the guarantee card immediately and then put it in a safe

place. Unpack all the items listed above, then flatten the cardboard boxes and

keep them and the polystyrene inserts so that, in the unlikely event of a fault,

the computer may be safely returned to your supplier. If any of the items listed

above are missing you should contact your supplier.

Connecting the components

Place the disc drive unit on a flat horizontal surface, running the disc and

power cables coming out of the unit underneath, so that they are now lying in

front of it. Avoid soft surfaces, such as carpets, which may block the ventilation

slots in the casing. You will need a mains power outlet nearby, and you should

allow yourself some space at the rear to allow easy access to cables. Position the

computer in front of the disc drive unit, as shown on the next page.

A l

Referring to the diagrams, connect the disc and 5 volt power cables from the

disc drive unit to the appropriate sockets on the computer. Plug the monitor

unit mains lead into the power 'Out' socket at the rear of the disc drive unit.

Plug the disc drive unit mains lead connector into the power 'In' connector at

the rear of the unit; now insert the mains lead plug into a mains outlet.

A 2

Your monitor unit will connect to either the 'RGB' or 'Comp Video' sockets on

the rear of the computer: normally a colour monitor will plug into 'RGB' and a

monochrome monitor into the 'Comp Video' socket, but if you are uncertain,

refer to the instructions supplied with the monitor. Before you turn the

computer on you should set the Brightness and Contrast controls on the

monitor unit to roughly their mid-positions, again consulting the

documentation supplied as neccessary. Now switch on the monitor.

Switching On

You are now ready to switch on the computer with the on/off switch located at

the rear of the disc drive unit (refer to the diagram above). A few moments

after turning on the power you should hear a bleep from the computer's

loudspeaker and the 'Power On' indicator should light up on the front of the

keyboard. Ensure that the monitor ON-OFF switch is set to ON.

After a moment you should see a message like this appear on the monitor:

Your computer is now ready for use, and you can move on to the section Using

the computer. If you cannot see the message above then go through the fault finding guide below.

Fault finding

The first thing to check is that the disc drive unit and the monitor are plugged

into the appropriate mains outlets and switched on. Once you are satisfied of

that, make sure that the power lead from the disc drive is firmly plugged into

the computer.

A 3

Now go through the instructions supplied with your monitor to make sure that

it is plugged into the correct connector on the rear of the computer and on the

monitor itself. Check that the Brightness and/or Contrast controls are not

turned down too far, as this could prevent you from. seeing any picture that is

being generated by the computer.

By now you should have the desired result of an illuminated 'Power' light on

the keyboard and a picture, similar to the photograph above, on the monitor. If

not, then you will need to contact your supplier for advice or warranty support.

Using the computer

This section is intended to familiarise you with the operation of the computer at

its most basic level, i.e. using the keyboard for giving simple commands. We

start with a description of the keyboard itself and introduce the conventions we

shall use to describe key depressions in subsequent sections.

The keyboard

For descriptive purposes, the computer's keyboard can be divided into four

separate areas:

-- the main, alpha-numeric keyboard, which is laid out in the same format as

found on a typewriter, with one or two additions;

- a smaller, numeric keypad, which contains keys associated with the input

of numeric data;

-- a group of grey-green cursor control / editing keys;

-- a row of red function keys, labelled f0 -- f9

A 4

The keyboard's 'touch' is similar to most electric typewriters in that only brief,

light pressure is required to activate each key. The difference, of course, is that

the characters produced by each key depression are displayed on the screen,

rather than being printed on paper. Under normal circumstances, the response

is immediate, although there are occasions (when the computer is busy doing

something else) when there may be a momentary delay before the characters

appear.

The keyboard also incorporates a feature known as auto-repeat if a key is

pressed and held down, the corresponding character will be repeated, after a

short initial delay. Repetition continues until the key is released or until the

computer runs out of space to store the line being input (indicated by a

continuous tone from the speaker).

Throughout the remainder of this guide, we shall use

text Like this

to denote input from the keyboard and output on the screen whereas symbols

like

denote specific key depressions. The large Space Bar at the bottom of the

keyboard is denoted by . The simultaneous depression of two keys is

indicated like this:

The alpha-numeric keyboard

The alpha-numeric keyboard contains keys denoting all the letters of the

alphabet (including space), the numbers 0 to 9, various special symbols (such as

punctuation, £, % etc.) plus a number of other special-purpose keys. It also

contains, in the lower left-hand corner, a row of three indicators labelled power,

caps lock and shift lock.

The power indicator is illuminated while the computer is switched ON.

If caps lock is ON (i.e. illuminated), depression of any alphabetic key will

produce a capital (upper-case) letter; depression of any key containing two

symbols will produce the lower of the two characters.

If shift lock is ON, the alphabetic keys will still produce upper-case letters but

depression of any key containing two symbols will produce the upper of the two

characters.

If neither caps lock nor shift lock is ON, depression of the alphabetic keys will

produce small (lower-case) letters and the keys containing two symbols will

once again produce the lower of the two characters.

A 5

The state of the caps lock and shift lock indicators is controlled by the

and keys -- each depression switches the corresponding indicator ON or

OFF, depending on its current state. Note that it is impossible to illuminate

both caps lock and shift lock from the keyboard -- the computer uses this

simultaneous indication to denote a particular circumstance, as described

below.

The two keys have no effect while shift lock is ON. If shift lock is OFF,

(regardless of the setting of caps lock) the keys cause upper-case letters

and symbols to be produced if either is held down while another key is

depressed. The keys do not affect the shift lock indicator.

A further option is provided by pressing + . In this case, caps lock is

switched ON as usual but in the input of subsequent characters lower-case

letters of the alphabet may be obtained by holding down a key.

Whether caps lock or shift lock (or neither) is ON for a particular session at the

computer is a matter of personal preference although the choice will also

depend upon the type of input, for example:

-- Conventional text, such as an item of correspondence input to the VIEW

word-processor, consists mainly of lower-case characters interspersed with a

few capital letters;

-- A BASIC program consists of a mixture of special upper-case words (called

keywords) interspersed with other, often lower-case words (called variable

names).

 (which is an abbreviation for control) has no effect on its own but it may

be used in conjunction with other keys on the keyboard to invoke a number of

special effects. For example, + G causes the computer to emit a short

bleep; + L clears the display screen. Other examples are given in the

remainder of this guide and a summary of the various effects is given in

Appendix 7.

 is provided to allow the range of characters generated by the keyboard to be

extended, for foreign language use in particular. When pressed simultaneously

with the and keys the next character to be typed on the keyboard

will be reinterpreted as a special symbol by the computer. You should not

concern yourself too much with this feature for the moment.

 normally acts like a space-bar depression although it has a special

significance when using the VIEW word processing software, as described later

in this guide.

 is used to indicate that a particular line of input is complete -- prior to

the depression of , may be used to erase the most recent

character(s) you have typed.

A 6

 and as their names imply, are provided to enable you to

interrupt what the computer is doing, although also has a special

significance when using VIEW. should be considered to be a 'polite

request', which normally stops the computer without any side-effects, whereas

 is a definite command which stops the computer at all costs.

Depression of alone is sometimes referred to as a soft break because it

has the effect of resetting the computer to the condition it was in at the start of

the current session (BASIC, VIEW etc.). A hard break is achieved by pressing

+ ; this resets the computer so that it assumes the state in which it

would normally be immediately after switching on.

„„„ has a special significance when using a disc unit and further

details are given in the section entitled The Icon Software, on page B1

The potential side-effects of accidental depression of can be avoided by

turning the break key lock (see illustration) clockwise through 90'' using a

suitable flat-bladed screwdriver. Normal operation is restored by returning the

screwhead to its original position

The numeric keypad

The numeric keypad is provided as a convenient means of entering large

quantities of numeric data -- it contains:

-- the digits 0 -- 9;

-- symbols denoting the four arithmetic operations (* being used for

multiplication, / for division);

-- full stop (decimal point) and comma;

-- separate and keys;

-- the # symbol.

A 7

Each key replicates the function of the corresponding key in the main

keyboard, with the added advantage that +, , *, / and # may be obtained

directly (i.e. without the use of .

The cursor control / editing keys

Under normal circumstances, the screen will show a flashing symbol known as

the cursor; it indicates the position at which the next character to be typed will

be displayed. The cursor moves one character position to the right for each

normal key depression, one character position to the left for each depression of

 and to the start of a new line for each depression of .

The four arrowed cursor control keys may be used to move the cursor around

the screen and it will be seen from later chapters that this facility is

fundamental to the use of VIEW.

 has a special function in each of the above but it is also used in

conjunction with the cursor control keys for cursor editing -- a technique

mainly used during the input and correction of programs and which is

described on page C7.

The function keys f0 - f9

In certain applications, such as VIEW, it is convenient to make use of a single

key depression to denote a particular action and the 10 red function keys across

the top of the main keyboard are provided for this purpose. Each key may be

used on its own, in conjunction with , or, indeed, + ,

giving a total of 40 additional keyboard functions. In these cases, it is usual to

show the function invoked by each type of depression on a special keyboard

insert, such as those supplied with your computer.

In addition, the function keys may be 'programmed' to produce a sequence of

one or more characters, thereby minimising the number of keystrokes required

to carry out frequently used tasks. A brief description of function key

programming is given in the next section and full instructions (including the

way in which the cursor control keys, and the numeric keypad can be

programmed) are contained in the Master Series Reference Manual.

The screen display

This section introduces the various screen displays that are available and gives

you an opportunity to try out your newly-acquired keyboard skills. For the time

being, however, do not worry about the meaning of what you are asked to type

but concentrate on pressing the correct keys. If you type a line incorrectly (i.e.

you press before you spot the mistake), the computer will respond with

a simple message, such as:

A 8

Mistake

or

No such variable

Ignore these messages for the time being and merely type the line in again;

their significance is explained in later chapters. One of the most likely mistakes

at this stage is to type the letter O instead of the number 0, which are denoted

by 0 and Ø respectively. If things appear to have gone irretrievably wrong, try

pressing and, if that has no effect, press .

The computer is able to display output on the screen in a variety of different

modes, each of which has its own characteristics, in terms of the number and

length of its lines of text, the size and shape of the characters displayed and its

ability to present graphics (points, lines and areas of colour). Each screen

mode is identified by a number, which may be in the range 0 -- 7 or 128 -- 135.

These two sets of modes are identical in terms of what is actually displayed on

the screen; they differ only in the size and location of the area of memory set

aside for storing the current content of the screen. Modes 0 -- 7 are identical to

the eight modes available on the BBC Model B microcomputer; modes 128 --

135 are referred to as the shadow screen modes (identical to those available on

other BBC Master Series microcomputers) which provide the maximum

amount of user memory for a given type of display. We shall use modes 128 --

135 in all the examples in this guide.

You have a means of instructing the computer to start up in any of the

available modes (see page B10) but the standard setting is mode 7, which

provides:

-- 25 lines of text, each 40 characters in length;

-- the teletext character set (see below);

-- limited graphics in the form of small blocks of colour.

The > symbol immediately to the left of the flashing cursor is an example of a

prompt and its appearance indicates that the computer is waiting for you to

type something. Try typing these lines to see the effect; in each case the

computer will respond by displaying the characters inside the quotation marks:

PRINT"White on black''

PRINT'' +f0 Red on black"

In mode 7, + f1 and + f2 etc. generate what are known as

teletext control codes which affect the way in which the remaining

characters on a particular line are displayed. Examples of this type of screen

display can be seen on pages from either the BBCs CEEFAX or the IBA's

Oracle services and further information is provided In the section of this

manual on the BASIC language.

A 9

If you type:

M0DE128

the screen will clear and a smaller prompt will appear in the top left-hand

corner.

You have now selected mode 128 which provides:

-- 32 lines of text, each 80 characters in length;

-- the full ASCII character set (see below);

-- high-resolution, 2 colour graphics.

Now type:

PRINT"White on black''

COLOURØ:C0LOUR129: PRINT"Black on white"

MOVE 6ØØ,5ØØ:PLOT149,75Ø,5ØØ

MOVE 6ØØ,5ØØ: PL0T157 , 7ØØ,5ØØ

You may like to try repeating the same sequence of examples in each of modes

129, 130, 132 and 133 -- the remaining modes which offer a graphics facility.

Notice the effect that each change of mode has on the size and shape of each

character you type, the colours produced and the 'crispness' of the circle.

Modes 131 and 134 offer a text-only display consisting of 25 lines of 80 and 40

columns respectively.

The Welcome software contains a demonstration of the capabilities of the

various screen modes and Appendix 1, on page Appl.l, gives a full specification

of the characteristics of each mode.

A note on character sets

Computers use simple codes to represent characters which are stored in

memory or displayed on the screen and your computer offers two

internationally accepted coding conventions, namely Teletext and ASCII.

(ASCII is an abbreviation for American Standard Code for Information

Interchange.) The Teletext set is available only in modes 7 and 135 and the

ASCII set is available in all others-

It is the ASCII character set which is etched into the keytops on the computer's

keyboard and in any mode other than 7 or 135 a representation of the

corresponding character will be displayed on the screen. The Teletext character

set is identical for all the letters of the alphabet, the digits 0 -- 9 and all except

eight of the special symbols:

ASCII symbol: [\] ^ { | }

Teletext symbol:

A 10

In addition, the Teletext character set contains the elementary graphics

characters and Teletext control codes mentioned on page C61, full details of

which are given in Appendix 2.

Matters are made somewhat more complicated by the fact that your computer

allows the ASCII character set to be redefined and extended, thereby enabling

foreign, italic and a variety of user-defined characters to be displayed. The

example below redefines the key so that it displays the mathematical

symbol used to denote pi:

M0DE134

VDU23,9,Ø,2,124, 168,4Ø,4Ø,4Ø,Ø

A utility to help you design your own characters is provided as part of the

Welcome software.

Communicating with the computer

You have now spent a short time typing things at the computer's keyboard and

witnessing the result. Initially, it does not seem particularly surprising that

when you press, say, A, the computer displays an A on the screen -- this is

exactly what you would expect. In fact, one part of the computer, called the

machine operating system (MOS) works incredibly hard to produce this

simple result and it is in action for every instant that the computer is switched

on. Even when the computer appears to be idle, waiting for you to type

something at the keyboard, the MOS is busy maintaining the screen display

and carrying out other vital functions.

The MOS is also responsible for calling up each of the other systems provided in

your computer e.g- VIEW. Only one system may be operational at a given time

and, unless you tell it otherwise, the MOS will automatically select the BASIC

language system for you when the computer is switched on - hence the

appearance of the word BASIC in the screen display shown on page A3.

Thereafter, all input from the keyboard is collected by the MOS and passed to

the system you have chosen -- you have (perhaps without realising it) been

typing BASIC instructions in the previous section. Any messages you received,

such as Mistake or Missing " , were produced by the BASIC system to indicate

that it was unable to make sense of the line it received from the MOS. Needless

to say, it was the MOS which actually did the job of putting the characters on

the screen.

There are, however, occasions when it is neccessary to communicate directly

with the MOS, regardless of the system currently in use. Direct operating

system commands have an asterisk (*) as their first character and this

symbol is used to tell the MOS that it must deal with the remainder of the line

itself.

A 11

For example, if you type:

*HELP

the MOS will respond with a list of the names and version numbers of the

software contained in the computer.

*ROMS

will cause the MOS to list the various systems and languages resident in the

computer's read-only memory (ROM) sockets and 'sideways' RAM areas.

Initially your computer will probably contain just BASIC and the ADFS disc

control software.

Now try typing:

*BASIC

The MOS restarts the BASIC language, resulting in the word BASIC being

displayed on the screen.

The *KEY command tells the MOS to associate a sequence of characters with a

particular function key. For example, if you type:

*KEYØfunction

each subsequent depression of f0 will produce the characters function, so

you could abbreviate the input of the phrase function keys have lots of

functions by typing:

f0 keys have Lots of f0 s

In this somewhat trivial example, the line remains incomplete (i.e. you can add

further characters to it, delete characters from it etc.) exactly as if the

characters were being typed one at a time from the keyboard. You can,

however, include a special sequence (|M) to simulate depression of so

that a function key depression becomes equivalent to one or more complete

lines. There is also no reason why the string of characters associated with a

particular function key should not itself contain operating system commands,

for example:

*KEY 1*R0MS |M

This causes each depression of f1 to produce a listing of the computer's ROM

contents.

Other operating system commands can be used to tell the MOS to change the

way it behaves. You will recall, for example, that pressing and holding down a

key on the keyboard invokes the auto-repeat facility in which the character is

repeated after an initial delay. Both the initial delay and the speed at which the

character is repeated are controlled by the MOS and they can be changed if

A l2

required. Remind yourself of the normal settings by producing a sequence of

characters using auto-repeat (and), then type:

*FX12,1

and repeat the sequence. Now see what happens if you try to produce the same

sequence after typing:

*FX11,Ø

In other words, *FX12 enables you to adjust the speed at which characters are

repeated and *FX11 enables you to adjust the delay before auto-repeat

commences. (*FX11,0 actually switches the auto-repeat facility off altogether).

You can restore both the speed and delay to their initial settings by typing:

*Fx12,Ø

A summary of these, and the host of other special effects is given in Appendix 4.

Finally, the MOS also responds directly to control key depressions, such as

+ G and + L mentioned above. These two examples are complete in

themselves but others, such as + S (which can be used to change the

screen colours in modes 0 -- 6 and modes 128 -- 134) need further keystrokes to

achieve their effect. Select, say, mode 3 and press:

+ S followed by Ø 4 Ø Ø Ø

The five additional characters do not appear on the screen but the MOS

interprets them as a request to change the background colour (0) to blue (4).

Similarly:

+ S followed by 7 1 Ø Ø Ø

changes the text colour (7) to red (1).

+ T, or a subsequent change of mode resets the screen to its default

values of white text on a black background-

Using the disc drives

Your computer is equipped with either one or two disc drives, which store

information and programs for later use. The Welcome disc supplied with the

computer already has programs stored on it; you should refer forwards to the

chapter on Filing Systems for information on how to put the Welcome disc into

the disc drive.

A 13

A 14

B. The Icon Software

In recent years increasing importance has been placed on making computers

more consistent and therefore simpler to use. This benefits experts and novices

alike, since it usually means fewer references to weighty instruction manuals

such as this! Your Master Series computer is supplied with a set of programs

which provide a simulated 'desktop environment' which behaves in much the

same way as that of some popular but more expensive computers, and it is

likely that you will quickly see the benefits of this approach.

Loading the program

Ensure that your Welcome disc is inserted into disc drive 0 and then press and

hold down , releasing the key first.

At this point the disc drive light will glow and after a few seconds the screen

will clear to reveal the Icon software 'Welcome page', shown below, with its list

of words across the top and its arrow-shaped cursor.

Operating the Icon software

The central feature of the Icon software is that in order to tell the computer to

do something you do not have to type at the keyboard but instead you can

simply point to an object on the screen, the objects being either words or small

pictures known as icons. Unfortunately, you cannot touch the appropriate

B l

symbol with your fingertip; instead, some kind of pointing device is needed to

tell the computer precisely what you are pointing at. There are two

alternatives:

-- Firstly, you may use the cursor keys located at the top right of the main

keyboard. If you press and hold one of them down you will see the small

arrow-shaped cursor on the screen move in the appropriate direction.

Furthermore, if you keep the key pressed, the cursor will begin to accelerate,

shortening the time it takes to cross the screen.

-- Secondly, if you own a joystick or mouse with a suitable connector you can

use this to move the cursor around the screen. Logically, pushing the joystick or

rolling the mouse to the right will move the cursor towards the right of the

screen, and so on. You may wish to consult Appendix 11 for information on

attaching these devices to your computer.

Whichever method you use, once you have pointed to the appropriate place, you

need to indicate to the computer that you wish it to do something. This is

known as selecting, and it is achieved from the keyboard by means of the

key. If you are using a joystick or mouse, a special button will have the same

effect, usually the 'fire' button.

Nearly every function of the Icon software can be controlled by this

'point-and-press' action, which is commonly referred to as clicking. Try it out by

moving the cursor up towards the top of the screen and onto the item marked

'Applications'. You will discover that when you move the cursor onto the name

and click, a short list of phrases appears below it. This is known as a menu, and

the row of items it 'hangs' from is the menu-bar. Run the cursor along the

menu-bar and notice the various menus that appear underneath each entry. If

you move the cursor down any of the menus, each item under the cursor will be

highlighted.

For the moment we shall ignore most of the menu items which you can see on

the screen and instead concentrate on the Icon desktop. Move the cursor to the

Applications menu again, click and then move down to the item marked

DeskTop; now select it (by clicking) and the screen will be change to show the

menu-bar for the DeskTop.

Move the cursor along to the Card Index entry on the menu-bar, click, and

move down to the first menu entry. If you select it a box will appear on the

screen marked 'Card Index' containing a number of words and symbols. This is

the Card Index window and it contains icons for all the functions associated

with the Card Index program. You can move the window around the screen by

putting the cursor on the 'Card Index' title box, clicking, and then moving the

cursor to the desired location and clicking again. You may also remove the

window from the screen entirely by selecting it and then pressing the

key.

B 2

Card Index

Card Index is a useful database program which keeps information organised as

a series of lines, called fields, which are initially labelled Name, Address, Tel.

and Other. These are displayed on the screen in a style similar to a real box of

cards. You might like to use it to keep a directory of your friends or business

associates.

To begin with you need to tell Card Index the name of the 'file' in which your

cards are stored, which is done by pulling down the Card Index menu again and

selecting 'Load Index'. At this point a window will pop up on the screen

suggesting a name for the file and the computer will wait for you to press

 If you wish to use another file, with a different name, you will need to

select it from within the Catalogue program first -- see below for details. Once

the appropriate file has been chosen, the pop-up window will disappear, and

after a brief pause the fields in the window will fill up to show the first card in

the file.

To move to other cards you can click on the left- and right-arrows or the

double-arrow icons to travel through the Card Index one card or ten cards at a

time respectively.

Changing the information on the card is very simple: point the cursor to the

line you want to alter, and then type in the new information, using ifyou

make a mistake.

To search for a particular card, you need first to move the cursor to the

appropriate line (Name, Address etc.) and then click on the 'Find' icon. A

window will pop up asking you what text you want to search for, and after

entering it and pressing , the program will check each card for a match.

The search is quite versatile; you may type just a single letter or several words

and if any of the cards contain the text in the selected field then the first such

card will be displayed. Further matching cards may be seen by clicking on the

left- and right-arrow icons, whilst 'Restore' will allow you to see the whole file

again (rather than just the matching cards).

The first time you select the Card Index window it will be blank, allowing you to

create your own card index simply by filling in the blank lines in each card.

When you have entered the information, or after making changes to an

existing card index, pull down the Card Index menu and select 'Save Index':

this will save the index onto the disc for future use. The computer will once

again suggest a name for your file, which you may accept by pressing

alternatively you can use to delete the suggested name and enter your

own. You„ should not use the Welcome disc for this purpose, and you may wish

to first consult the section on 'Filing Systems' later in this guide.

B 3

<>

Card Index has a special feature which allows you to incorporate information

from it into documents prepared with the VIEW word processor. The last item

in the Card Index menu, 'Export Index', will transfer the names and addresses

in your index to VIEW where you may use them to address letters etc. This

facility is covered in more detail in the section on VIEW later in this manual.

Calculator

The second item on the menu-bar is the calculator. It is exactly what it

suggests: a push-button calculator which you can operate by pointing. The

menu has only one entry, which controls whether or not the calculator is

visible. If you select it, you will see that it has all the buttons of a simple

four-function calculator. When the pointer is on the calculator, you can also use

the equivalent keys on the keyboard, including 'C' to clear the display and 'O' to

turn it off (te. remove it from the screen). Once again, you can move the

calculator around the screen by selecting within the grey area of the window.

B 4

Note pad

The note pad is an electronic jotter: it stores what you type into it in its own

area of memory, so you can use it to leave messages to yourself, make shopping

lists and so forth! Moving the cursor onto the note pad part of the menu-bar and

clicking produces a short list of items, the first of which allows you to control

whether the note pad is visible or not. If you select this item the note pad will

appear, showing its first page of text (which is initially blank). The up- and

down-arrow icons, and their equivalent entries in the menu, allow you to turn

the pages of the pad one by one. Each page can store up to 20 lines of 31

characters, and there is a limit of 16 pages in all.

The note pad has one icon we have not encountered before, a sort of inverted 'L'

called a stretch box. This allows you to expand and contract the size of the

window in a similar way to moving a window. Try it out for yourself. The note

pad is moved by selecting on its title at the top of the window.

You can store your note pad on disc or retrieve those you have already saved

with the 'Load Pad' and 'Save Pad' entries in the menu, which will ask you to

enter a filename as usual.

B 5

The final item in the Note Pad menu, 'Export Notepad', transfers the contents

of the note pad into the VIEW word processor ready for printing. This function

is covered in greater detail in the section on VIEW, later in this manual.

Catalogue

Catalogue allows you to examine the contents of the Welcome disc which is in

the disc drive. Programs and information are stored on the disc in chunks,

known as files, and these files are organised into groups, known as

directories: we speak of 'cataloguing' a directory to reveal which files it

contains. You may want to refer forwards to the chapter on Filing Systems to

fully understand some of what follows.

Upon pointing to the Catalogue entry on the menu-bar a menu will appear

containing an entry for turning the Catalogue window on and off, and three

other entries. If you select the first entry the Catalogue window will appear and

in it a list of the files and sub-directories in the Currently Selected Directory

(CSD). At the top of the list is an entry for '<Parent>', this being the directory

above the CSD in the disc structure. Below this are alphabetically-ordered

entries for sub-directories (marked '<Dir>') and files, which are followed by

their size in bytes or Kilobytes (indicated by a 'K'). You can expand the window

with the stretch-box to see more information about files.

Selecting an item in the list has an effect which depends on the type of the item:

selecting a directory will reveal its contents, whilst selecting a file will cause it

to be highlighted, awaiting a further command. These commands may be any

B 6

of the three remaining entries in the menu, and they are standard ADFS

functions whose effects are discussed in detail in the chapter on Filing Systems.

Programs

The Programs item is a quick way of returning to the Welcome menu which you

encountered at the start of this section. It contains only one entry, 'Welcome',

which leads to the Welcome menu. Each item on the menu-bar contains

demonstration programs of a particular type, any of which you can select by

pointing and clicking in the normal way. A short description of each of these

programs appears at the end of this section.

Clock

The Clock item is fairly self-explanatory. Clicking on the first entry of its menu

displays a fully-working analogue and digital clock. You can move it around the

screen as you wish, and set it using the 'Step Hours' and 'Step Minutes' entries

in the menu. The clock keeps good time, but you may find it stops if you start

doing things in other windows. However, if you move the cursor back to the

Clock window, time will catch up with itself !

Other Welcome programs

Having used the DeskTop application let us now return to the Welcome page

and look at the other demonstration programs. To do this, move the pointer to

the Programs menu, click, and then click on the word Welcome. After a few

moments the Welcome page will appear, and you will see a row of menus across

B 7

the top of the screen. The menus group the programs together according to

their function, so let us first examine the Graphics programs.

Graphics programs

CASTLE illustrates the computer's ability to produce high-speed, multi-colour

graphics. It uses a variety of shapes (squares, rectangles, circles and triangles)

filled with either plain colours or patterns.

CLOWN is a similar illustration which incorporates other shapes.

CLOUD is a simple animated sequence in which various parts of a graphic

image are moved about the screen. The smoothness of movement is achieved by

switching between the normal and the shadow screens. Changes of colour are

used to produce a pleasing effect.

PATTERNS produces a sequence of complex figures, facinating to watch in

themselves, but which are then used to illustrate the speed with which the

computer can flood-fill an area with either a plain colour or a more complex

pattern.

SHAPES is a sequence of examples showing the basic shapes which can be

produced directly using built-in graphics commands. For the purposes of the

demonstration, each shape is drawn as a solid figure, each superimposed upon

the previous one, but it is also possible to produce outline shapes using solid or

broken lines.

B 8

Tutorials

ADFS is an introduction to the way the computer stores information on discs.

You might like to use it in conjunction with the Filing Systems section of this

guide.

KEYBOARD is an program designed to help you to familiarise yourself with

the operation of the keyboard. You will be shown a character which you must

find and press; the computer will time you and display your score out of ten in

each of five different tests, together with the average time that you take to find

each key.

SCREENS cycles through the eight basic screen modes and displays examples

of text, the available colours and, where possible, the basic graphics capability.

TEXT demonstrates the computer's ability to display text in a variety of

orientations and styles.

Applications

Each of the applications programs are dealt with individually, either later in

this guide or within separate guides supplied with the computer.

Games

ADVENTURE is an adventure game in which you must explore a world

revealed to you by the computer -- the aim is to find the hidden treasure.

The computer will describe your surroundings, possible routes you may take

and what objects (if any) are to hand. You give instructions using simple

commands of one or two words. For example, to 'go north', you could type

GO NORTH or simply NORTH. (In fact, NORTH, SOUTH, EAST, WEST, UP and

DOWN can also be abbreviated to N, S, E, W, U and D respectively.) You can

collect any objects you come across (such as a key) by typing TAKE KEY or

GET KEY. If you type INVENTORY (or simply INV) you will be given a list of the

objects which you are carrying. Do not be afraid to experiment with a wide

range of words -- you may be surprised to learn how many commands the

program can understand!

ARCADE

Aqua attack is an arcade-style game in which you score points by destroying

various objects in an undersea scene. You control the movement of the black

submarine using either the keyboard or a joystick. (See Appendix 11 for

instructions on how to connect a joystick).

Points are scored for each direct hit on an object but some require several hits

before they are destroyed. If you hit the rapidly-moving 'sea-snake', it splits

into two segments. You lose one of your three lives if you steer your submarine

into any object or if you are caught by either the octopus or a falling mine !

B 9

The Welcome utilities

The CHARACTERS program allows you to re-define the characters the

computer displays on the screen to produce effects similar to the TEXT

program mentioned above.

ENVELOPE is a program which demonstrates the versatility of the sound

generating circuitry. You can use the keyboard like a piano keyboard by

referring to the diagram below.

PATTERN EDITOR allows you to design your own fill patterns for use with the

PLOT commands discussed with BASIC later in this guide.

DISC UTILS leads to a menu of four disc utilities which are only of real

relevance to advanced users.

Your Master computer contains some memory known as Electrically Erasable

Programmable Read-Only Memory (or EEPROM for short) which retains its

contents even after the mains power is turned off. The EEPROM is used to

store information on your preferred configuration of various options relevant to

the computer's operation. NOTE that the EEPROM has a limited life of about

10,000 programming operations. The chip can, however, be replaced when

necessary.

The PANEL utility is a program which pictorially shows the current settings of

these configuration options and allows you to change them. The effects that the

Panel program produces are exactly equivalent to those of the MOS command

*CONFIGURE, and advanced users may wish to refer to the MOS Commands

appendix for more information. You may find that some of the information that

follows assumes an understanding of features of the computer which have not

yet been discussed; you should not be unduly concerned by this, as all should

become clear as you read through this guide.

When you select 'Control Panel' from the Utilities menu you will see the

program build up a series of illustrations on the screen and fill in various pieces

of information in appropriate places. Once this has taken place you may move

the pointer around the screen and change the configuration options by

selecting within the ruled boxes. Notice however that these changes will not

actually come into effect until they have been stored explicitly; this process is

detailed below.

B 10

CHARACTERS

This utility allows you to alter the shapes of the letters and numbers that

appear on the screen; in other words, it allows you to design your own fonts.

The screen display is divided into three areas, the top showing all the current

character shapes, the central box showing an enlarged version of the currently

selected character (together with a normal size version to its right) and the

bottom area providing a summary of the operating keys.

Characters to be redefined may be selected in one of two ways:

-- by pressing the appropriate key on the keyboard (for standard keyboard

characters);

-- by using the cursor control keys to position the cursor under one of the

characters at the top of the screen and pressing This method may be

used to select both standard characters and those which cannot be obtained

directly from the keyboard.

Once a character has been selected, an enlarged version is shown in the central

box. Thereafter, the cursor keys may be used to select a particular element in

the central box and depression of changes its state (i.e. if it is currently

is white, switches it to black and vice versa). The effect of any change is

reflected immediately in the character to the right of the grid.

 is used to end execution of the program.

 is used to save the current font to disc, making it possible to design a

number of fonts, each of which may be reloaded when required.

 is used to reset the font to normal. Note that unless you use before

ending the utility, the effects of any changes to the font will remain until you

switch the computer off or execute a hard break.

ENVELOPE

Brief mention of the BASIC ENVELOPE command has been made on page

C65, but the fact that it takes no less than 14 parameters makes it unsuitable

for description in a guide of this nature. However, ENVELOPE is a utility

program which enables you to experiment with the envelope command. It

allows you to change some or all of the various parameters and to listen to the

effect that the changes have upon the sounds generated by the computer. It

may also be used to determine the parameters necessary to generate a

particular sound for inclusion in say, a computer game.

B l1

nt>

Once loaded, ENVELOPE displays a number of boxes. Two different envelopes

may be defined by changing the content of the box marked Number; the

remaining boxes represent the settings of the 14 parameters associated with

the currently-selected envelope:

Length Length of each step l/l00sec.

Pstepl Change of pitch per step in I

Pstepi2 Change of pitch per step in 2

Pstep3 Change of pitch per step in 3

Steps I Number of steps in section I

Steps2 Number of steps in section 2

Steps3 Number of steps in section 3

AstepA Amplitude change in attack

AstepD Amplitude change in decay

AstepsS Amplitude change in sustain

AstepR Amplitude change in release

Peak Target level at end of attack

Level Target level at end of decay

You can move between the boxes by using „<--- and -->; the current box will be

highlighted in black. To increase or decrease the value held in the current box

press arrow up or arrow down as required. Alternatively, you can load a number of 'pre-set' envelopes by
pressing any of the function keys.

The effect of the current set &ENVELOPE parameters can be heard using the

keyboard, which is divided up into two 'piano-style' keyboards:

B 12

You may press one or several keys at a time, from either one or both envelopes.

You may replace any of the preset envelopes with one of your own by pressing

followed by the number of the envelope you wish to redefine.

PATTERN EDITOR allows you to design your own colour patterns in any of

the graphics modes.

When it starts you will be asked which mode you wish to use. Choose which you

would like to use and type the number, the possibilities are:

Mode 0 (128) 2 colours, 640 by 256 pixels

Mode 1 (129) 4 colours, 320 by 256 pixels

Mode 2 (130) 16 colours, 160 by 256 pixels

Mode 4 (132) 2 colours, 320 by 256 pixels

Mode 5 (133) 4 colours, 160 by 256 pixels

The other modes are unsuitable because they do not allow the display of

graphics.

Once the mode has been selected, a grid will be shown on the screen, with a

flashing cross in the top left-hand box; the cross can be moved around using the

cursor control keys-

The range of colours you can use to fill each box in the grid is given at the

bottom of the screen and to fill the box currently marked with a cross, simply

press the corresponding number. Each time you fill a box the large rectangle at

the top of the screen will be filled with the current pattern from the grid. The

eight parameters required to specify the current pattern are always displayed

at the side of the grid. Note, however, that the parameters are shown in

hexadecimal notation (i.e. the values are preceded with &).

Having produced a satisfactory pattern you can note down these numbers and

use them in your own programs to fill any of the solid shapes (such as triangles,

circles or ellipses) which the computer can plot.

Down the right hand side of the screen you will see a strip of coloured blocks.

This is the palette -- it allows you to change the relationship between the colour

numbers and the actual colour which is seen. To alter it type P.

The pointer by the palette will then start flashing and can be moved up and

down the strip using arrow up and arrow down. To change the appearance of a colour numberpress one
of the keys 0,1,2,3,4,5,6,7 ,8,9,A,B,C,D,E or F; this will select the

actual colour from the 16 which are available. To return to the grid press

B 13

Using the Control Panel

If you look at the display produced by the Control Panel you can see in the top

left-hand corner a box containing the word 'Mode' followed by a number. This

sets the screen mode which the computer will use when it is switched on. You

can change it by clicking within the box or by using the '+' and '--' keys on the

numeric keypad to increase and decrease it. In fact, all of the options discussed

below may be changed either by using '+' and '--' to increase and decrease

values by one, or by pressing at the same time in which case values will

be altered in steps of ten.

Below 'Mode' is the 'TV' option. This allows the position of the picture the

computer generates to be moved up and down on the monitor. It is equivalent

to the first parameter of the *TV command. The 'Interlace' option controls

whether the video interlace is on or off; you can change it by clicking.

In the next box down are three keyboard options: 'Delay', 'Repeat' and the Shift

status. The first sets the time delay before keys which are held down will

automatically repeat (in hundredths of a second). The second sets the speed

with which such keys will be repeated. The final option controls whether the

Caps Lock light is set to CAPS LOCK, SHIFT CAPS or NO CAPS.

B l4

The third box contains the printer control options. The printer ignore character

(also altered with *FX6) can be set to IGNORE, NO IGNORE or IGNORE

followed by a number (which is the character number to be ignored). Below it is

the type of the selected printer, which may be SINK, PARALLEL, SERIAL (i.e.

using the optional RS232 interface), USER or ECONET. Finally, the last option

controls the station number of an Econet printer. The '+' and '--' keys will

affect only the number after the full stop, and you need to press at the

same time to change the number before the full stop. You should not concern

yourself with this unless you are using an Econet network.

At the bottom of the left-hand row are the Mouse/Joystick options. The first

controls whether the MOS simulates a SWITCHED or PROPORTIONAL

joystick (useful when running games in particular). The second, STICK

followed by a number, sets the acceleration rate which the MOS uses when a

proportional joystick is selected.

At the top of the middle column are two options. The first, SCROLL or NO

SCROLL, controls the action of the MOS windowing software and you should

not concern yorself with it too much. The second, LOUD or QUIET, sets the

overall volume of sounds produced by the computer's internal loudspeaker.

The second box contains options to control the optional RS232 serial interface.

BAUD followed by a number sets the speed of the interface, whilst DATA

followed by a number sets the data format. The File Server option sets the

station number of an Econet File Server: the '+' and '--' keys will affect only the

number after the full stop, and you need to press at the same time to

change the number before the full stop. This option is only relevant when you

are using the Econet.

The bottom box contains options to control the Advanced Disc Filing System

and the disc drives. The first, BOOT or NO BOOT, controls whether the ADFS

attempts to load a program automatically from disc when the machine is

turned on or reset with the key. The second option, DIR or NO DIR,

affects whether a directory is set automatically when the disc is mounted; this

is discussed in greater detail in the section on Filing Systems. The final option,

FDRIVE followed by a number, sets the parameters which control the

operation of the disc drives; these should only be altered by experienced users.

Selection and control of ROMs

The entire right-hand column of the Control Panel is taken up by a table of the

software which is presently contained in the computer, either in ROM chips or

in the 'sideways' RAM areas. The table is a list with 16 spaces, each of which

represents the contents of one ROM chip or RAM area. The name of each piece

of software appears in the table and is followed by a combination of three letters

or dashes. The letter 'S' indicates that the named software is a 'Service' ROM,

B 15

the letter 'L' that the software is a 'Language' and the letter 'F' that the

software is a 'Filing system'. Alternatively, the final space may be occupied by

the letter 'U', which indicates that the ROM is 'Unplugged'.

On the menu-bar at the top of the screen are three menu items. The first,

'Actions', contains four options. 'Default' loads the default option settings onto

the screen from disc, allowing you to restore the machine to its original state.

'Update' permits you to save your own configuration options into the EEPROM;

if you select it a box will pop up and ask you to confirm your choice before they

are actually saved. 'Quit' leaves the Control Panel program and returns to the

Icon menu. 'Fresh' reads the current option settings from the EEPROM onto

the screen so as to effectively nullify any changes you may have made. Of

course, if you have already used 'Update' to save your settings, then the

usefulness of this option is limited.

The second menu item, 'File', offers the option of loading and saving the

configuration options to disc (rather than the EEPROM). You may thus keep a

less frequently used set of options readily accessible on your disc.

The final item, 'ROMS', controls which language ROM and which filing system

ROM are executed by the computer when it is switched on. The menu contains

two items, 'Language' and 'Filing System', and after selecting either of them

the currently selected ROM is highlighted on the right of the screen. You can

use '+' and '--', or simply , to cycle through the available software of

each type; whichever ROM you leave highlighted will subsequently be used on

swi tch-on.

TIMPAINT

This program allows you to create and save your own pictures using many of

the advanced graphics features provided by your computer.

Once loaded, TIMPAINT produces the display shown on the next page.

The boxed area on the left is the menu, from which you select the various

functions, colours and typestyles (fonts) that you wish to use. The larger,

empty area to the right is the 'canvas' on which you create your artwork.

B 16

The menu is divided into 3 columns:

-- the leftmost column determines which colour will be used for all subsequent

operations, the one selected being shown in the larger rectangle at the

bottom of the menu;

-- the middle column contains all the available functions, each identified by a

special symbol, such as camera, typewriter, scissors etc., each of which is

described below;

-- the rightmost column is further subdivided:

-- the top four boxes contain the colour 'palette';

the boxes immediately below the palette contain the four types of line

which can be used;

-- the bottom four boxes show which font will be used when text is placed on

the screen.

Selections from the menu are made by moving the arrow pointer to the

required box and pressing . Slow movement is provided by the four

cursor control keys; fast movement (eight times normal) is provided by the

simultaneous depression of . (It is also possible to operate TimPaint using

a joystick, in which case the 'fire' button replaces the function of . (See

Appendix 11 for instructions on connecting a joystick to your computer.)

The current menu selections are normally highlighted and, when TIMPAINT is

first loaded, the selections are:

-- black background;

-- white foreground;

-- spray can option (see below);

B 17

-- joysticks off;

-- grid off;

-- solid lines;

-- normal font (Fa).

Thus, to select a background other than black, move the pointer to the box

containing the colour or pattern of your choice and press ; the box at the

bottom of the menu will then fill with your selection.

You can change the palette (i.e„ the range of available colour combinations)

using the four boxes at the top of the third menu column. For example, to

change red to green, move the pointer to the red box and keep pressing

until the box shows green.

Similarly, the drawing function, line and type styles are selected by moving the

pointer to the appropriate box and pressing .

Whenever you move the pointer outside the menu area the arrow is replaced

with the symbol denoting the function you have selected. The various

procedures are described below, on the assumption that the corresponding

function has already been selected from the menu.

---The spray gun allows you to draw one or several lines at a time; each dot of the

spray leaves one line behind it when it moves. Press to increase the

number of dots and to reduce it. To use the spray gun, move to the place

where you want to start your line and press . Then, with held

down, move around the screen and release

---The hand will move the whole screen in any direction. To start, move the hand

symbol to a readily identifiable point on the screen and then press . With

 held down, move the hand to the position to which you wish to move the

original point and release -- the whole screen will then be moved. Note

that any part of the picture which is shifted off the screen will be. lost.

---The flood fill option can be used to fill any enclosed area of the screen with the

current colour. Simply move to any point within the area you want to fill and

press . Note that if you try to fill an outline which has a gap in it then the

colour will escape out of the gap and carry on until it hits a solid boundary or

the edge of the screen. Areas can be 'unflooded' by pressing . Sometimes,

however, this operation does not only reverse the action of the flood but affects

other shapes on the canvas, depending on the colours used.

---The line allows single lines to be drawn anywhere on the canvas. Press

to start a line and release it when you are happy with its position.

---Ellipse outlines and solid ellipses are produced by moving to the point which is

to be the centre of the ellipse and pressing . Then, while holding

down, the width and height of the ellipse can be altered using the arrow keys.

B 18

Circle outlines and solid circles are drawn in a similar manner -- press to

indicate the centre and alter the position of the circle symbol to produce the size

of the circle you want then release .

The camera allows copies of any rectangular area of the canvas to be made.

Move the symbol to one corner of the area and press . Then hold down

 whilst moving the cursor keys to increase the depth and width of the

box. Release when you have enclosed the area to be copied. Pressing the

cursor keys now will move a second box which should be placed where you want

the copy to be put. The copy is made by pressing .

The scissors will move a rectangular area of the screen, replacing it by a block

of the background colour. This is performed in the same manner as the copy

routine described above.

The polygon allows a series of lines to be drawn, each one beginning where the

previous one finished, thereby producing a continuous line drawing. Press and

release to begin and then each time a line is to be drawn-

The typewriter can be used to print text on the screen. On the canvas, the

typewriter symbol is replaced by a 'pencil' and the start point for the the text is

identified by pressing . Any subsequent key depressions produce

characters in the screen in the current font and the end of the text is marked by

pressing . Note that text can only be placed between the starting point

and the right hand side of the canvas -- it is not allowed to wrap round to the

beginning of the next line.

When selected, the joystick option allows the movement of the symbols to be

controlled by a joystick rather than by pressing the arrow keys. In addition the

fire button replaces the key.

The grid option restricts movement of the symbols to positions in an invisible

grid on the screen, making it easier to draw several circles with the same centre

point etc.

Loading and saving can be carried out by pressing L or S. This clears the menu

area and allows you to type in the name you wish to use.

To clear the screen and start again press the 'R' key. This will reset all the

options to their initial values.

B 1 9

B 20

C. The BASIC Language

Writing a program

Languages such as English are too ambiguous to be used for communication

with a computer. Instead, all instructions are given using a computer language

consisting of just a few hundred words that the computer can interpret.

Your computer comes complete with the powerful and flexible computer

language, BBC BASIC. This is composed of a number of English-like words,

which make the language easy to learn and use. (You may already be familiar

with some other computer language such as Pascal.)

In the last section you learnt that the computer can obey some commands

immediately. For example, if you type:

PRINT "Hello"

the computer displays the word Hello.

PRINT is a BBC BASIC keyword that the computer recognises. It tells the

computer to display on the screen whatever follows the PRINT statement. The

most important BASIC keywords are described in this section of the book, and

a full list of all the keywords and their meanings is given in Appendix 6.

You may already have found out what happens if you give a command to the

computer that it cannot interpret. For example, if you type:

PRINT "Hello

the computer responds with the message:

Missing "

The computer gives an error message to show that it cannot obey your

command because you have not followed the rules of the BASIC language. It is

easy to make mistakes when giving the computer instructions, and error

messages are helpful in tracking down and correcting these mistakes.

If you want the computer to carry out a calculation in BASIC, you can use

either the normal keyboard or the numeric keypad. Try:

PRINT 8+7

C 1

Multiplication involves using the * symbol, and division, the / ;

PRINT 12*9

PRINT 25/2

Basic contains many other arithmetic functions which can be used to find

things like the square root of a number, or calculate its logarithm. Try typing:

PRINT SQR(9)

PRINT LOG (75)

If you intend to use your computer mainly for carrying out many complex

calculations, you may find your needs are better met by ViewSheet, which is

available from Acorn software dealers.

The screen is looking rather cluttered now, so type:

CLS

which is the BASIC instruction to clear the screen.

You have been giving commands which the computer obeys immediately. More

commonly, you will give the computer a series of numbered instructions to

obey. These instructions are stored in the memory and are called the program.

The computer only obeys program instructions when you want it to do so.

You can see the difference between the methods of giving instructions by

typing:

10 PRINT "Hello''

This time nothing happens and the > prompt reappears.

At the start of the line you typed the number 10. This is called a line number,

and it tells the computer that the statement which follows is not to be obeyed

immediately. Instead the line is stored in the memory, as you can see by typing:

LIST

Your one-line program is listed on the screen. You can make the computer

carry out or 'execute' this very short program by typing:

RUN

Once the computer finishes executing the program, the > prompt returns to

the screen. This shows that the computer is ready to accept further commands

at the keyboard. The program is still stored in memory, as you can confirm by

typing:

LIST

C 2

If you add another line to the program the computer automatically puts the

lines into line number order. For example, type:

3 PRINT "This is another Line"

and LIST the full program.

Program lines are usually numbered in tens as this makes it easy to insert

extra lines later. If you type:

RENUMBER

the computer automatically renumbers the program, making the first line 10.

Once a program is complete it can be saved onto disc so that it can be used

again. The Welcome software contains a series of programs which have been

saved in this way. You probably don't want to save the present program, so

type:

NEW

which tells the computer to 'forget' the program -- you can confirm this by

trying to LIST it.

You may accidentally lose a program by pressing , or by typing NEW

before you realise that you have not saved a copy of the program. Normally, the

program can be recovered provided no new program lines have been typed. Use

the command:

OLD

to restore the old program.

A simple program using variables

Throughout this section and the remainder of the chapter, you will be required

to type a number of short programs and, for clarity, we shall omit the

symbol at the end of each line.

Type the following program in:

10 PRINT "Can you give me a number ";

20 INPUT yournumber

30 PRINT "You typed ";yournumber

and then RUN the program. The computer obeys line 10 and displays the

question :

Can you give me a number ?

The question mark is added automatically by the execution of line 20. The

C 3

INPUT statement makes the computer wait for you to type something -- in this

case a number. Type:

6

Once you have typed the number, line 30 is obeyed and the message displayed

is:

You typed 6

Line 20 causes the computer to store your number in a variable, so called

because its value can vary. Here the variable is called yournumber. You can

think of a variable as an internal pigeon-hole which the computer fills with a

value, in this case 6.

Whenever the computer comes across any reference to yournumber in the

program, it uses the current value of the variable. So line 30 causes the

computer to print You typed, then find the value of the variable yournumber,

and finally print that value, 6.

RUN the program again, inputting a different number, and watch the effect.

yournumber is a numeric variable -- it can be used to store the value of whole

numbers, decimals, or negative numbers. Variables can be used in arithmetic --

add these lines to the program and RUN it again:

40 PRINT "Twice " ;yournumber; " is " ;2*yournumber

50 PRINT "Subtract 5 from ";yournumber;" and you get '';yournumber-5

60 PRINT"Add 28 to " ;yournumber;" and you get " ; 20+yournumber

The value of a variable does not have to be input, it can be given directly. For

example, type:

LET height=2

Then type:

PRINT height

PRINT height*2

You can change your program to include a LET statement by adding these

lines:

35 LET yournumber=10

36 PRINT "But the new value is " ;yournumber

LIST the program so that you can see the order in which the computer obeys

the instructions, and then RUN the extended program.

In the versions of BASIC provided on some computers only very short variable

names like Q or AB are allowed. BBC BASIC, on the other hand, lets you use

C 4

long variable names, which makes a program easier to follow and easier to

modify. For example, the following are all allowed statements:

LET Length0fCarpet=7.56

LET costof3Tins=1.21

LET SPEED_DF_CAR=60 (the underline character is on the same key as the £)

Although all the examples above have LET before the variable name, its

inclusion is optional. The example program runs just as well if you type:

35 yourmumber=10

As LET is optional you will find it is omitted in most programs.

Whilst variable names may be of any length, they must obey a few simple rules:

-- The variable must begin with an upper- or lower-case letter, the £ or

underline character.

-- The other characters can be upper- or lower-case letters, the £ or underline

character, or numbers.

-- Variables that begin with Basic keywords such as PRINT or LET are not

allowed.

As all Basic keywords are capitalised, it is easy to avoid including keywords at

the start of a variable name by using only lower-case letters in the variable.

This also makes program listings more readable, as the variables stand out.

Integer variables

The variables described so far are known as real variables, because they can be

used to store real numbers -- those with a decimal point. A real variable can be

used to store numbers with up to 9 figure accuracy.

The computer always uses the same amount of memory to store a real quantity,

even if the number stored there is an integer (a whole number). Some

programs only need integers, and using real variables wastes computer

memory. It also slows the program down, because the computer will treat 9 x 8

as 9.00000000 *: 8.00000000 with all the extra calculation this entails!

An integer variable is another sort of numeric variable, and is used to store

only whole numbers in the range --2147483648 to 2147483647. Calculations

with integer variables are much more rapid, and the variables themselves. use

less memory than real variables.

C 5

An integer variable always ends in a percentage sign, as shown in the program

below:

10 PRINT "Type any number " ;

20 INPUT whole%

30 PRINT "You typed ";whole%

RUN the program and input, say 4.5. The result shows why you must not use

an integer variable unless you are certain that the value stored there will

always be a whole number.

The variables A% to Z% are known as the resident integer variables and

memory space is automatically given to these variables when the computer is

switched on, so no extra memory is taken up if they are used in a program.

The computer loses the values of other variables after a program is run, but the

values of A% to Z% remain unchanged, even after typing NEW or pressing

. They provide a means of passing information from program to program.

There is one other special resident integer variable, @%. The value of @% is

used to control the way the computer prints numbers. @% is described in more

detail on page C24.

String variables

The variables described so far are numeric variables -- they can be used only to

store numbers. The computer can also store strings of characters (te. words

and phrases) in what are called string variables. A string variable always

ends in a dollar sign, as you can see in these examples:

Type_of_car$="Mini Metro"

CURRENCY$=" Francs"

Weather$="Wet "

The characters within the inverted commas are called strings. Type in and run

this brief program:

10 PRINT "What is your name " ;

20 INPUT name$

30 PRINT "Pleased to meet you ";name$

The string variable name$ in line 20 is used to store any name typed in. The

contents of name$ are printed out by line 30. A string variable can hold from

zero to 255 characters. You can prove this for yourself by running the program

a few times and inputting names of different lengths.

Any set of characters can be stored in a string variable, for example:

a_mixed_string$=" 123% . abc'@*"

C 6

However, you cannot carry out arithmetic on strings, even if the variable

contains only numbers. Thus, although:

example$="365"

is an acceptable string,

PRINT exampLe$+5

is meaningless to the computer. The contents of a string variable are treated as

a series of characters. You cannot reasonably carry out arithmetic on a house

number or a shoe size, and numbers stored as a string fall into the same

category.

Help that BBC BASIC can give you

BBC BASIC has many features to make programming simpler. You may

already have made a few mistakes when typing the example programs. If not,

type:

10 PRONT "This is a mistake."

and see what happens when you run the program. The most Iong-winded way

of correcting the error is to type the entire line again. Alternatively you can

edit or alter the line using the cursor control and keys at the right-hand

side of the main keyboard.

Press Arrow Up. As soon as you press the key, the cursor splits into two; the flashing

cursor is the copy cursor, which you can move around to copy text from

elsewhere on the screen; the white block is the write cursor, showing where

anything you type or copy will appear. The write cursor moves only after a

character has been typed or copied.

Move the copy cursor around until it is underneath the first character in the

erroneous line and then press once. The '1' is copied into the character

position indicated by the write cursor. Now press key four times more to

give:

10 PR

You do not want to copy the next character because it is incorrect. Type I at

the keyboard, and it will appear on your new line then use --> to move the copy

cursor until it is under the N in 10 PRONT . You can now copy the rest of the line

to give:

10 PRINT "This is a mistake. "

(If you make any errors when copying, you can use to remove the most

recent characters on your new line). When you have copied the last character,

press , and the corrected version of the line will replace the old one.

C 7

You can move the copy cursor elsewhere on the screen at any time whilst

copying, so you can copy sections from several different lines to create a

completely new line. If you want to abandon editing a line half-way through,

press . Do not press , as your old line will be replaced by the

partially-edited version.

AUTO

Earlier you saw that program lines are usually numbered in tens. This leaves

plenty of free line numbers for any statements that are inserted later. If you

wish, the computer can automatically number lines for you. Remove the

current program using NEW and then type:

AUT0

The computer prints 10 and waits for you to type a statement. Type the

following, remembering to press after each line. (You can still use the

editing facilities: most of line 40 can be copied from line 20, for example.)

10 PRINT "A short program"

20 PRINT "What is your first number " ;

30 INPUT first

40 PRINT "What is your second number " ;

50 INPUT second

60 PRINT first; " plus ";second; " gives "; first+tsecond

After the last line the computer prints 70. As the program is complete, press

-- you no longer want the computer to generate new line numbers. You

can now LIST or RUN the program.

AUTO can be used to begin numbering at any line number, with any interval

in between. The default interval is ten, so AUTO 100 produces line 100, 110,

120 and so on. AUTO 15,1 would produce line numbers 15, 16, 17 etc.

LIST

You have already used LIST, but an extended LIST command is also available

which is useful as a cross-reference in longer programs. Try typing:

LIST IF PRINT

and

LIST IF first

In other words LIST IF displays only those lines containing the specified

sequence of characters.

C 8

DELETE

Sometimes you will find you need to remove lines from a program. Single lines

can be deleted by typing the line number and pressing . A number of

lines in sequence can be deleted using the DELETE command. Try typing:

DELETE 20.50

LIST

which deletes all line numbers from 20 to 50 inclusive.

RENUMBER

If you have inserted many extra lines in a program you can tidy it up by using

RENUMBER to spread the line numbers out at intervals of 10. Renumbering

always begins from the first line of the program. Like AUTO, you can use

variations such as RENUMBER 100,5 to make the first line 100 and successive

lines 105, 110, etc.

REM

The REM statement enables you to put remarks within a program to remind

yourself or others what parts of the program do. Sensible variable names can

make a program largely self-documenting, but REMs are useful to summarise

the purpose of a number of lines:

100 REM Lines 110 to 150 plot a circle

500 REM Find the largest number and print it

The computer ignores any line beginning with a REM statement when a

program is run.

Minimum abbreviations

If you are not used to a keyboard you may find it tedious to pick out the correct

letters to type PRINT, for example. The computer recognises BASIC keywords

if they are spelt in full or if an allowed abbreviation is used. Type:

P. "Hello"

This is exactly the same as:

PRINT"Hello"

and is obeyed as such. Similarly, I. is the abbreviation for INPUT. Use NEW to

remove the current program, select AUTO line numbering and then type in the

following program, which uses several abbreviated keywords:

10 P. "Pick a number " ;

20 I. choice

C 9

30 P. "Number " ; choice; "!"

40 P."A good selection! "

Now LIST the program -- abbreviations used in program lines are expanded to

their full length automatically when a program is listed.

The abbreviations for all BASIC keywords are given in Appendix 6.

Using the function keys

Most of the keys on the keyboard print a particular character whenever they

are pressed. Across the top of the keyboard are a group of red keys which act

differently. They are called the function keys. Each key can be programmed

to produce a character or string of characters when it is pressed.

For example, you can program f0 to to produce the word PRINT by typing:

*KEY0 PRINT

f1 can be programmed to produce INPUT if you type:

*KEY1 INPUT

Now press f0 and f1 to see the effect You will notice that after the

characters have been printed the cursor remains at the end of the line.

Sometimes it is useful to program a function key so that it behaves as if

had been pressed after the characters are printed and this is achieved by

including the characters | M in the key definition. For example:

*KEY2 LIST |M

causes the current program to be listed whenever f2 is pressed. Some screen

modes only print 20 characters per line, which makes a listing very difficult to

read; so it would probably be better to define f2 so that the computer

switches to mode 135, the most readable mode, before listing a program:

*KEY2 MODE 135: MLIST |M

It is useful to write a brief program that defines the keys. This program can be

loaded and run at the start of a computing session. The key definitions remain

set until:

-- the keys are redefined;

-- a *FX18 command is given, which clears the keys;

-- there is a hard break (i.e. +

C 10

Type in the following program, which sets all the function keys:

10*KEY0 M0DE135 |M LIST |M

20*KEY1 RUN |M

30*KEY2 MODE

40*KEY3 PRINT

50*KEY4 INPUT

60*KEY5 COLOUR

70*KEY6 MOVE

80*KEY7 DRAW

90*KEY8 PLOT

100*KEY9 GCOL

Later you may want to use key definitions of your own, but you will find the

above program useful in the next few chapters. The next section shows how you

can save the program you have just written so that it is available whenever you

need it.

Saving and loading programs

Most of the programs you have just typed in have been fairly short and do not

really do anything worthwhile. It is therefore not really worth keeping a

permanent copy on disc but, as you learn more about BASIC programming, you

will probably want to keep versions bf your masterpieces so that you can run

them without having to retype all the instructions.

Making a permanent copy of a program is referred to as saving a program and

the BASIC language provides a special command for this purpose. Its format is:

SAVE "name''

where name (which must be enclosed in double quotation marks) is something

you choose to identify the program from all others.

Note: You will need a formatted disc (not the Welcome disc) if you wish to carry

out the commands given below. If you do not have such a disc, read the

examples now and try them out once you have read the section on Filing

Systems later in this guide.

So, to SAVE the function key definition program you have just entered, you

could type:

SAVE "KEYS"

or possibly:

SAVE "KEYDEFS"

or a SAVE command including any name you wish.

C 11

Put the disc into the disc drive and then type:

*MOUNT 0

followed by the SAVE command of your choice (remember not to use the

Welcome disc).

As soon as you press , the disc drive light comes on and the motor begins

to whirr before the program is saved.

The > prompt reappears when the program has been saved.

Note that SAVE merely transmits a copy of your program, it remains in

memory for you to RUN, LIST or modify.

The process of retrieving a program from disc is referred to as loading and,

once again, the BASIC language provides a special command:

LOAD "name"

Clearly, the named program must exist for it to be loaded.

Take a deep breath and remove your function key definition program from

memory by using NEW.

Simply type the LOAD command containing the name of your function key

definition program and press . The > prompt will reappear as soon as

the program is loaded.

LIST the program to prove that it has been retrieved.

Note that the LOAD operation replaces the current program, so you must be

sure that you have SAVEd it if necessary.

To program or not to program

In the previous sections you have been introduced to a few of the BASIC

programming facilities on the computer. You may be eager to learn more -- in

which case the next few sections are for you.

Or you may feel you have learned quite enough about programming. Is it really

necessary to know so much before you can use the computer?

It is worth emphasising at this stage that it is up to you how you choose to use

your computer.

Many thousands of people enjoy computing as a hobby. They write programs to

play games or work out the monthly budget. They attend computer clubs and

swap hints and tips with other enthusiasts.

C 12

Other computer owners never bother to learn beyond the rudiments of

programming. When they want software to catalogue their stamp collection,

they buy a pre-written program from a local shop or via mail order. Rather

than struggling to write a program to play noughts and crosses they prefer to

purchase complex games such as Elite, which have taken professional

programmers months to produce.

Some computer owners play the occasional game but primarily use the

computer for more serious purposes. They prepare and print out letters with

the help of a word processor, use spreadsheets to help them make financial

decisions, and store important information on disc.

The computer is a tool; complex and sophisticated, but a tool nonetheless. Do

not feel that you must learn to program to use it properly. Your computer

contains other powerful facilities which are described in later sections. A wide

range of software to meet virtually any need is available -- you do not need to

program to find the computer a valuable and useful aid.

The next few sections demonstrate some of the possibilities of programming.

They are intended only as an introduction to BASIC, but you will learn more

from them if you experiment with the example programs that are listed.

Change the values of the variables or add some lines of your own. Don't worry if

you make a mistake that seems to keep the program going forever. You can

always press which stops the program and brings back the > prompt to

show you can again input instructions.

Simple graphics

The computer provides eight different screen display modes and the Welcome

software showed you one of the most obvious differences between the modes --

the number of characters that can be displayed on .a line. The Welcome

software also demonstrated how some modes allow both the printing of text and

the display of graphics.

The modes differ in a number of important ways. Some of these differences will

be explained in this chapter, but a full list of the characteristics of the modes is

also provided in Appendix 1.

Two sets of modes are available, modes 0 to 7 and modes 128 to 135. Each

low-numbered mode N has a high-numbered counterpart mode N + 128 which

behaves visibly in exactly the same way and has the same features. For

example, mode 7 and mode 135 are identical in appearance.

You should use modes 0 to 7 if you are writing programs which may also be run

on the original BBC Model B microcomputer. In the Master Series computers,

modes 128 to 135 leave more memory free so that longer programs can be

written. For this reason you should always use the high-numbered modes but,

C 13

in the example programs that follow, all references to a particular mode apply

equally well to its lower-numbered counterpart.

Modes 128, 129, 130, 132 and 133 are known as graphics modes because they

allow the use of both text and graphics. Modes 131 and 134 are text-only

modes. Mode 135 allows the use of graphics, but the commands involved are

very different and so are dealt with in a separate section beginning on page (361.

In each of the graphics modes, points on the screen are given coordinates so

that their position can be identified.

The point A in the figure has coordinates 640 across and 512 up, roughly the

middle of the screen. The point B is at position 100,800 and C is at 1000,20.

Type in and run this program:

10 MODE 128

20 MOVE 1900100

30 DRAW 800,100

40 DRAW 800,900

50 DRAW 100,100

Line 10 changes to a graphics mode, and as a result the invisible graphics

cursor is automatically positioned at point 0,0 -- the bottom left comer of the

graphics screen.

Line 20 causes the computer to move to 100,100 without drawing a line.

The DRAW command draws a line from the last point visited (which was

100,100) to 800,100. The remaining DRAW commands produce a series of

joined lines making a triangle.

C 1 4

Earlier you saw that after running a program you can clear the screen by

typing:

CLS

You can also clear the screen with:

CLG

Although both commands appear to have the same effect, CLS actually clears

the text screen and CLG clears the graphics screen. Normally these are exactly

the same and fill the whole screen. Later you will see that the areas in which

text and graphics appear can be separated, and so it is useful to have two

commands for clearing the screen.

The lines drawn in mode 128 are the finest that your computer can produce,

and so this mode is used whenever very accurate high-resolution graphics are

needed. The same program runs in other graphics modes, as you can see if you

edit line 10 and then run the program again, i.e. type:

10 MODE 129

RUN

This time the lines produced are thicker -- mode 129 is a medium-resolution

mode. The main advantage it offers over mode 128 is that it allows the display

of four colours at the same time. You can change the colour of the lines by

adding:

35 GCOL 0,1

45 GCOL 0,2

and running the program again. GCOL is used to select the colour to be used in

the DRAW statement. The number following GCOL 0, is related to a particular

colour in each mode. In mode 129:

GCOL 0,0 gives black lines

GCOL 0,1 gives red lines

GCOL 0,2 gives yellow lines

GCOL 0,3 gives white lines

Once a colour has been selected, it is automatically used in all further DRAW

statements until a new GCOL command is given.

GCOL can also be used to change the background graphics colour. For

example, type:

MODE 129

GCOL 0,130

CLG

15

C 15

This sets the background to yellow, and then clears the whole graphics screen

to that colour. All GCOL numbers greater than 127 change the background

colour.

RUN the program again after editing line 10 to be:

10 MODE 130

Mode 130 is a low-resolution mode giving much thicker lines, but up to eight

colours can be displayed simultaneously, along with eight pairs of flashing

colours.

Note that GCOL 0,2 gives green and not yellow in this mode. The numeric

references to colour are not the same in all the graphics modes. You must refer

to Appendix 1 for the correct GCOL number to produce a particular colour.

In mode 130, GCOL 0 can be followed by any number from 0 to 15 to select a

colour. Try changing the GCOL statements to see its effects.

The PLOT command

The PLOT command is an all-purpose drawing command. MOVE and DRAW

are special examples of PLOT. Because moving and drawing are used so

frequently, the PLOT commands that produce these effects have been given

equivalent keywords:

PLOT 4,100,100 is the same as MOVE 100,100

PLOT 5,800,100 is the same as DRAW 800,100

The first number after PLOT decides how the lines are plotted. PLOT

commands enable rectangles, parallelograms, circles, segments, sectors, arcs,

triangles or ellipses to be drawn in outline, solid colour or patterned. You have

seen this demonstrated in the Welcome software. A program to draw a solid

rectangle is:

10 MODE 129

15 REM move to one corner of rectangle

20 MOVE 100, 100

25 REM move to diagonally opposite corner

30 PLOT 101,800,900

C 16

PLOT 101 tells the computer to draw a rectangle with opposite corners at the

last point visited and the present point:

Change line 20 and RUN the program again:

20 MOVE 300, 100

You may not be surprised to see that the rectangle gets smaller because the

position of the first corner has changed. If you wanted to plot a whole series of

identical rectangles in different positions, you would have to calculate the new

position of the opposite corner for every rectangle. There is, however, another

PLOT command which avoids this problem by describing the rectangle slightly

differently.

C l7

Instead of giving the exact or absolute position of a point on the screen, its

distance from another point can be given -- this is the relative position of the

point:

The point A in the figure is at 500,200. The point B is 200 to the left and 300

above A, so its relative position is -200,300. This program draws a rectangle

using A and B as the positions of the two comers:

10 MODE 129

20 MOVE 500,200

30 PLOT 97,-200,300

Now change line 20 and RUN the program again:

20 MOVE 300, 100

PLOT 97 tells the computer to draw a rectangle using the two points given,

with the second point being relative to the first point. This means that the

computer always draws the same size rectangle, wherever the first point is

placed. Relative positioning is very useful if a drawing needs to be moved

around on the screen.

The PLOT commands are very versatile and provide a great deal of control over

how images are drawn. Lines or figures can be drawn absolutely or relatively,

solid or dotted, in the foreground or background colour. Figures can be drawn

in outline or as solid blocks of colour. A full list of the PLOT commands is given

in Appendix 8.

C 18

A circle can be drawn by giving the position of its centre and a point on its

circumference:

10MODE 1

15 REM coordinates of centre

20 MOVE 300,300

25 REM coordinates of point on circumference

30 PLOT 149,550,300

Here is an example of a PLOT command that draws a solid figure. Edit line 30

to:

30 PLOT 157,550,300

and RUN the program again. You can get a red circle by adding:

10 GCOL 0, 1

Other PLOT commands enable you to create solid rectangles, ellipses, sectors of

a circle, and so on. More complex figures must be built up using these simpler

shapes. Any shape can be flood filled with colour once it has been drawn:

1 REM Teddy-- an unfinished masterpiece

10 MODE 130

19 REM select red

20 GCOL 0, 1

29 REM draw circular head

30 MOVE 500,500

40 PLOT 149,800,500

49 REM right eye

50 MOVE 620,600

60 PLOT 149,680,600

69 REM Left eye

70 MOVE 380,600

80 PLOT 149,440,600

89 REM rectangular nose

90 MOVE 460 ,600

100 PLOT 101,540,400

109 REM use arc for the smile

110 MOVE 500,600

120 MOVE 350,350

130 PLOT 165,650,350

139 REM change to yellow for flood-fill

140 GCOL 0,3

150 PLOT 133,500,320

You might like to finish the picture by adding ears and colouring the eyes.

C 19

The Teddy program runs in mode 130, which allows eight different colours, In

other modes, such as mode 129, only four colours can be displayed at the same

time. The range of colours is increased by four extra patterns made up of

various colour combinations. For example, in mode 129:

GCOL 16,0 red-orange

GCOL 32,0 orange

GCOL 48,0 yellow-orange

GCOL 64,0 cream

These colours are produced regardless of the second number used. The effect of

the commands varies from mode to mode, as the patterns are built up from the

colours available in that mode. Change the GCOL commands in the Teddy

program to see some of the patterns available in mode 130.

You can create your own colour patterns in place of those provided -- this is

described on page Bl3.

Printing text

Text can be displayed in any of the eight modes, but the number of characters

per line varies from mode to mode, and can be 20, 40 or 80 characters. Try:

10MODE 128

20 PRINT "Here is a sentence"

30 PRINT "to demonstrate printing."

Edit the program and run it a few times with line 10 altered to produce mode

129, 130 or 135. Mode 135 gives the clearest display. If you are using a TV

rather than a monitor you may find mode 128 text rather hard to read.

After obeying any PRINT statement the computer moves to the start of a new

line unless instructed to do otherwise. Run the program again after changing

line 20 to:

20 PRINT "Here is a sentence";

The semicolon at the end of the line tells the computer to stay on the same line

after printing the string. The result is:

Here is a sentence to demonstrate printing

The semicolon is useful if you are printing a variable within a sentence, and

want all the text to be on the same line. Add these lines:

40 my_age=105

50 PRINT "I am ";my_age;" years old."

The spaces within line 50 are very important, as they stop the text running

together untidily, as in the first example.

C 20

Including apostrophes causes extra blank lines to be printed. For example:

50 PRINT '' "I am " ;my_age;" years old."

prints two blank lines before the actual line of output.

The position of any character on the screen can be described in terms of its text

coordinates. Text coordinates are given relative to the top left of the screen,

unlike graphics. In mode 135, the text coordinates are:

Notice that although there are 40 character positions on a line, the positions

are numbered zero to 39, and the lines are numbered similarly.

The PRINT TAB statement enables you to control the position at which

printing begins. Use NEW to remove the current program then type:

10 MODE 135

20 PRINT "0123456789"

30 PRINT TAB(5);"An example of TAB."

When run, this gives:

0123456 789

An example of TAB

Printing begins at character position 5 on the line, i.e. the 6th column. More

than one TAB can be used on the same line, but if the computer has already

moved beyond the required TAB position it begins a new line. For example:

C 21

30 PRINT TAB(5);"An";TAB(10) ;"example";TAB(15) ;"of";TAB(20);"TAB."

gives:

0123456789

An example

of TAB.

The computer is already at character position 17 when it comes to the TAB(15)

command, and so it starts a new line.

By also giving the line number, you can use PRINT TAB to place text

anywhere on the screen, for example:

10 MODE 135

20 PRINT TAB(8,24) "It can go at the bottom"

30 PRINT TAB(14,0) "Or the top"

40 PRINT TAB(1,11) "Or the Left" ;TAB(27) ;"Or the right"

Line 30 should remind you that although mode 135 has 25 lines these are

numbered from 0 to 24. Line 40 shows that once you are on a line you can use

TAB as before without referring to the line number.

Printing text in colour

The computer lets you change the colours used in printing text with the

COLOUR command. Type:

MODE 129

COLOUR 1

The number after COLOUR indicates red in mode 129, and tells the computer

that the new text foreground colour is to be red. Anything you type from now

on will be printed in red. Type:

COLOUR 2

COLOUR 129

The first COLOUR command changes the text colour to yellow, and the second

changes the background colour to red. All text from now on will be printed as

yellow on red. You can change the entire screen to the new background colour

by typing:

CLS

The COLOUR commands apply in all modes except modes 7 and 135. As with

GCOL, the numbers used to indicate a particular colour vary from mode to

mode. Consult Appendix I for a full list of the numeric colour references for

each mode.

C 22

More advanced print formatting

When producing a table of figures, it is useful to print at particular positions

without having to use TAB every time. If the printed items are separated by

commas the computer does this automatically:

10 MODE 135

15 REM Lines 20 & 30 help

16 REM to show character positions

20 PRINT TAB(10) "111111111122222222223"

30 PRINT "0123456789012345678901234567890"

40 PRINT 1.23,4.567,89

Running the program gives:

11111111122222222223

0123456789012345678901234567890

1.23 4.567 89

Each number is printed at the right-hand side of a column 10 characters wide.

These columns are called fields and the width of each field is set to 10

characters when the computer is switched on.

Text is printed to the left of the field, as you can see by adding:

50PRINT "Hello" ,"my" ,"friend"

which gives:

111111111122222222223

0123456789012345678901234567890

1.23 4.567 89

Hello my friend

If a number or word is longer than the field width, the item following is printed

in the next empty field. For example:

111111111122222222223

0123456789012345678901234567890

1.23 4.567 89

Congratulations my friend

The field width can be altered to vary from 0 to 255 characters:

10MODE 135

18REM set field width to 8 characters

19 REM giving 5 fields across the screen

20 @%=&08

30 PRINT TAB(8) "Income from sales regions"

C 23

40 PRINT '"Jan" ,1234.56,789,123.45,678.9

50 PRINT "Feb",234.5,67 .89,12,3456.78

@% in line 20 is a special variable which controls the printing of numbers. In

this case it is used only to reduce the field width to eight characters. The result

is very untidy and confusing because the numbers are not aligned vertically

about the decimal point. Make line 20:

20 @=&020208

This tells the computer to print each number to two decimal places and with a

field width of eight.

@% offers a great deal of control over the way the computer prints numbers,

and is discussed in more detail in the Reference Manuals. Note that once @% is

set, its effects remain until you reset @%, perform a hard break, or switch the

computer off.

Text and graphics

It is sometimes useful to restrict the printing of text to part of the screen. You

saw an example of this in the Welcome software.

Type:

MODE 135

You can set up a text 'window' within which text is displayed by typing:

VDU 28,12,15,30,10

Type a few characters at the keyboard (anything will do). The text is printed

inside a window in the middle of the screen.

The VDU 28 command is one of a series ofVDU commands which enable you to

control the way text and graphics are displayed on the screen. VDU commands

can be used to change the colours of text or graphics, move the cursor, clear the

screen, etc. VDU 28 is used specifically to set up a text window.

The first two numbers following the VDU 28 give the position of the bottom left

character within the new text window. The remaining two numbers give the

position of the character at the top right of the text window (see the top

illustration on the next page).

C 24

Once you have created a text window, the top left position within the window

becomes 0,0. All PRINT TAB commands are relative to this new position, as

you can see if you type:

CLS

PRINT TAB(4,3)"The middle"

A graphics window can be set up in any mode which allows the use of graphics.

Type:

MODE 129

VDU 24, 160; 128; 1118; 1000;

VDU 24 is followed by the graphics positions which are at the bottom left and

top right of the new window:

C 25

In this case graphics coordinates are used -- notice the numbers are separated

by semicolons unlike the VDU 28 command.

You can see the graphics window by typing:

GCOL 0,130

CLG

Although graphics are now displayed only within the window, the whole screen

is still used for text. To completely separate text and graphics we must set up

both a graphics and a text window. Create a text window below the graphics

window by typing:

VDU 28,5,31,34,28

Change the background text colour to red:

COLOUR 129

CLS

Type in some MOVE and DRAW commands. The text is displayed within the

text window, and any lines drawn only appear within the graphics window.

After a VDU 26 command the whole screen is used for text and graphics once

again, so return things to normal by typing:

VDU 26

Note that using a MODE command has the same effect as it automatically

destroys all windows.

Printing text at graphics positions

TAB is used to print characters on the screen at any text coordinate. It is

sometimes helpful to position text more accurately on the screen than PRINT

TAB allows, especially if graphics are also used.

In modes in which graphics can be used, text can be printed at graphics

coordinates after a VDU 5 command. This program gives a three dimensional

effect by printing the same message twice and slightly off-setting the second set

of characters which are printed in a different colour:

10 MODE 1

20 PRINTTAB(16,15)"H e l l o"

30 VDU 5

40 GCOL 0,1

50 MOVE 516,540

60 PRINT''H e l l 0"

70 VDU 4

C 26

Line 20 prints characters using the usual text coordinates. The VDU 5 in line

30 joins the text and graphics cursors. In line 50 MOVE is used to position the

text, which can now only be printed at graphics coordinates. Finally, the VDU 4

command returns the text cursor to normal so that PRINT TAB is usable

again.

Input

Earlier you saw that you can type in information while a program is running if

the program contains an INPUT statement:

10 MODE 135

280PRINT "How old are you" ;

360INPUT age

40 PRINT "So you're ";age;" years old."

50 PRINT "You don't look it !"

The INPUT statement in line 30 causes the computer to print a question mark,

and then wait for information to be typed at the keyboard. The computer

expects a number to be typed, because age is a numeric variable. Once

is pressed, the computer stores the value typed in the variable age. If you type

text rather than a number, the computer assumes the number is zero.

If you want to input text, you must use a string variable in the INPUT

statement:

10 MODE 135

20 PRINT "What is your name" ;

30 INPUT name$

40 PRINT "Hello " ;name$;'' and how are you?"

You can use a single INPUT statement to ask for several inputs:

10 MODE 135

20 PRINT "What is your name and age ";

30 INPUT name$, age

40 PRINT "Hello ";name$;". So you are " ;age;" years old. "

In this case the computer will expect two inputs, one a string and one a numeric

variable. They can either be separated by commas, or both can be followed by

The PRINT statement just before the INPUT is there to give a message to

remind you what you should type. This message can be included within the

INPUT statement:

10 MODE 135

20 INPUT "What is your name ";name$

30 PRINT "Hello " ;name$; ". Pleased to meet you."

C 27

INPUT ignores any spaces at the beginning of an input or anything typed after

a comma:

What is your name ? Nero,Emperor of Rome

Hello Nero. Pleased to meet you.

If you need to type in text that includes spaces at the start or may include

commas, you should use INPUT LINE rather than INPUT:

20 INPUT LINE "What is your name ";name$

This gives:

What is your name ? Nero,Emperor of Rome

Hello Nero,Emperor of Rome. Pleased to meet you.

GET and INKEY

In some programs, such as games, the computer needs to respond as soon as a

key is pressed. Programs like this use GET or INKEY rather than INPUT

statements. GET waits until a key is pressed before continuing:

10 MODE 135

20 PRINT "Press any key to continue"

30 chosen=GET

40PRINT "The program has ended."

INKEY causes the computer to wait for a key to be pressed within a fixed time:

10 MODE 135

20 PRINT "Press any key to continue"

30 PRINT "You have 3 seconds only !"

40 chosen=INKEY(300)

50 PRINT "The program has ended."

The timing is in hundredths of a second, so line 40 makes the computer wait for

a key depression for three seconds (300 hundredths of a second). If no key is

pressed within three seconds, the computer moves on to the next line of the

program. If a key is pressed, the computer immediately continues with the next

line of the program.

ASCII codes

Both GET and INKEY produce what is called the ASCII code of the depressed

key. Internally, the computer uses a number from 0 to 255 to represent each

character that it stores in its memory. This number is the character's ASCII

code. For example, the ASCII code for A is 65, B is 66 and C is 67, so the

computer would store the word CAB as the numbers 67, 65 and 66.

C 28

The computer can give you the ASCII code for a character. For example:

PRINT ASC("A")

prints 65. Note that ASC works with single characters only. If you want the

ASCII codes for a series of characters you should consult the table showing the

full character set in Appendix 2.

In the previous two programs the ASCII code is stored in the variable chosen. If

no key is pressed before the INKEY time limit is reached, chosen is given the

value -- 1.

GET or INKEY do not automatically display the character typed at the

keyboard. This is useful in programs where printing would spoil the screen

display. If you do want to print the character, use PRINT CHR$ to convert the

ASCII code into a string:

10 MODE 135

20PRINT "Type any character -- " ;

30 chosen=GET

40 PRINT CHR$(chosen)

50 PRINT "You typed ";CHR$(chosen)

VDU followed by an ASCII code has the same effect as PRINT CHR$. For

example, both PRINT CHR$(65) and VDU 65 would print the letter A. If you

type:

VDU 66,66,67

the computer prints:

BBC

The ASCII codes for the characters start at 32. Lower codes are used to give

commands to the computer, as you have seen with VDU 26 and VDU 28.

Structured programs

In the last section you were introduced to some of the most commonly used

commands from BBC BASIC. Most of these commands dealt with the ways in

which you can communicate with the computer while a program is running,

and how you can effect the way the computer displays information on the

screen.

C 29

You have already seen that programs are much more readable if they contain

sensible variable names. Additionally, all the example programs have used

only a single statement per program line. Programs can be written to contain

more than one statement per line, provided the statements are separated by

colons:

10 MODE 135:PRINT "Type any character-- ";:chosen=GET:PRINT CHR$(ch

osen):PRINT "You typed ";CHR$(chosen)

You can imagine that a program with many multi-statement lines like this is

not easy to follow!

The next section deals with the facilities BBC BASIC offers to simplify the

development and modification of programs. So far you have only used programs

made up of a sequence of instructions. The computer can also repeat

instructions, or choose which of several instructions it will obey. All programs

are built up from a combination of the three program structures: sequence,

repetition and choice. The next few sections describe how you can use these

structures in BBC BASIC.

Planning your programming

The programs in the earlier chapters have all been fairly short, but the easiest

way to write more complex programs is to organise them differently.

Look back at the Teddy program on page Cl9. The program consists of a

sequence of instructions which the computer obeys in line-number order. A

longer program might contain several hundred lines, and is simpler to write if it

is broken into small sections known as procedures.

This program shows the use of procedures:

1 REM draw butterfly

10 MODE 130

20 PROCbody

30 PROC Left_wing

40 PROCright_wing

50 END

60 DEFPROCbody

70 GCOL0,2

80 MOVE 600,500

90 MOVE 700,500

100 PLOT 205,640,700

110 ENDPROC

120 DEFPROC Left-wing

130 GCOL 0, 1

140 MOVE 200,200

C 30

150 DRAW 600,500

160 PLOT 85,200,800

170 ENDPROC

180 DEFPROCright_wing

190 GCOL 0,1

200 MOVE 1080,200

210 DRAW 600,500

220 PLOT 85,1080,800

230 ENDPROC

The main program is really only lines 10 to 50:

10MODE 2

20PROCbody

30 PROCleft_wing

40 PROCright_wing

50 END

Lines 20 to 40 are known as procedure calls. Each PROC tells the computer

not to obey the next line number. Instead it must search the program for a

DEFinition of the PROCedure (DEFPROC) with the correct procedure name,

and obey the instructions in that procedure.

For example, after line 20 the computer moves to line 60 and then executes

lines 70 to 100 which draw the butterfly's body. Line 110 is the END of the

PROCedure (ENDPROC).

After carrying out the procedure, the computer returns to the line after the

procedure call to carry on with the program. Here the line following line 20 is

another procedure call. PROCleft _wing draws the butterfly's left wing, and

the computer then executes PROCright _wing, which draws the right wing.

The END in line 50 tells the computer that the program is finished. END is

optional in some programs, such as the Teddy program. It must be used here as

otherwise the computer will carry on and execute line 60 (and attempt to draw

the butterfly body again!

The order in which procedures appear does not matter and you can place

procedures wherever you want within a program, except at the very beginning.

Procedure names follow much the same rules as for variable names, although a

procedure name can begin with a number.

A procedure can be called more than once in a program, saving you the trouble

of repeating program lines:

10 MODE 130

20PROCvariables

30 PROCengine

C 31

40END

50 DEFPR0Cvariables

60 scale=0.6

70 xstart=300

80 ystart--200

90 xdoor=360

100 xdist=900

110 ydoor=500

120 ydist=300

130 xbump=300*scale

140 bump_rad=50*scale

150 xchim=100*scale

160 ychim=200*scale

170 chimstart=60*scale

180 xdoorstart=xstart+(xdist*scale)

190 xwind=xdoorstart-30*scale

200 ywind=ystart+(ydist-30)*scale

210 xwinddist=300*scale

220 ywinddist=200*scale

230 wheel_dist=130*scale

240 wheel_rad=100*scale

250 ENDPROC

260 DEFPROCengine

270 PROCrectangle(xstart,ystart,xdist*scale,ydist*scale,1)

280 PROCrectangle(xdoorstart ,ystart,-xdoor*scale ,ydoor*scale,1)

290 PROCrectangle(xwind,ywind,-xwinddist,ywinddist,6)

300 PROCrectangle(xstart+chimstart ,ystart+(ydist*scale) ,xchim,
ychim,1)

310 PROCcirc(xstart+wheeldist,ystart,wheel_rad,4)

320 PROCcirc(xdoorstart-wheel_dist,ystart,wheel_rad,4)

330 PROCcirc(xstart+xbump ,ystart+(ydist*scale) ,bump_rad,1)

340 ENDPROC

350 DEFPROCrectangle(x,y,xmove,ymove,col)

360 GCOL 0,col

370 MOVE x,y

380 PLOT 97,xmove,ymove

390 ENDPROC

400 DEFPR0Ccirc(x,y,rad,col)

410 GCOL 0,col

420 MOVE x,y

430 PLOT 153,rad,0

440ENDPROC

The procedures to draw the engine use relative MOVE and DRAW commands.

PROCvariables sets the values of the variables used throughout the rest of the

C 32

program. You can change the size and position of the engine by changing the

values of scale'%, xstart% and ystart%.

Information can be passed to a procedure from the main program:

10 MODE 130

20 PR0CcircLe(400,300,200)

30 PR0CcircLe(600,600,100)

40 PR0Ccircloe(690,750,50)

50 END

60 DEFPROCcircle(xcentre%,ycentre%,radius%)

70 MOVE xcentre%,ycentre%

80 PLOT 157,xcentre%+radius%,ycentre%

90 ENDPROC

The values in brackets at line 20 are called parameters. The computer takes

the parameters and stores them in the variables xcentre%, ycentre%, and

radius% in line 60 when it obeys the procedure call. It uses these variables in

the rest of the procedure to draw a circle with its centre at 400,300 and a radius

of 200.

Lines 30 and 40 demonstrate how this same procedure can be used whenever a

circle is drawn. Only the parameters need to be changed.

A procedure like PROCcircle is very useful because:

-- it can be used many times in the same program with different parameters to

give. different results;

-- it can be used even if you do not know or remember how the procedure

works;

-- it can be used in other programs.

You might use xcentre% and ycentre% to hold the coordinates of the screen

centre in a program. It seems as if these values will be lost if PROCcircle is used

in the same program, because this also has variables called xcentre% and

ycentre%:

16 MODE 130

15 xcentre%=640:ycentre%=512

20 PR0Ccircle(400,300,200)

30 PR0Ccircle(600,600,100)

40 PR0Ccircle(690,750,50)

45 PRINT''xcentre% remains " ;xcentre%

46 PRINT"ycentre% remains ";ycentre%

50 END

60 DEFPR0Ccircle(xcentre% ,ycentre%,radius%)

C 33

70 MOVE xcentre%,ycentre%

80 PLOT 157,xcentre%+radius%,ycentre%

90 ENDPROC

RUN the program. The values of xcentre% and ycentre% are not affected by

PROCcircle. This is because any parameters passed to a procedure are

automatically local to that procedure. The xcentre%, ycentre% and radius% in

PROCcircle exist only within the procedure, and do not change the value of

variables with the same name elsewhere in the program.

All variables except parameters are global to a program. The whole program,

including procedures, 'knows' the value of the variables:

10 MODE 135

20 PROCname

30 PR0Cprint

40 END

50 DEFPR0Cname

60 INPUT"What is your name " ,name$

70 ENDPROC

80 DEFPR0Cprint

90 PRINT"This procedure is called PROCprint"

100 PRINT"It 'knows' your name is ";name$

110 ENDPROC

The string variable name$ is global. It is set up in PROCname, but PROCprint

also 'knows' name$ and uses it.

The distinction between local and global variables only becomes important if a

procedure contains global variables. For example, here is a procedure which

centres text on a given line:

100 DEFPR0Ccentre(text$)

110 Length%=LEN(text$)

120 x_position%=(40- length%) /2

130 PRINT TAB(x_position%) text$

140 ENDPROC

A useful procedure which might be called several times in a single program.

However, the procedure contains two global variables, length% and

x_position%. If variables of the same name are used in the program, their

values are lost after PROCcentre is called:

10 MODE 135

20 Length%=5

30 x_position%=15

40 PRINT" Length% is " ; Length%

C 34

50 PRINT"x_position% is " ; x_position%

60 PR0Ccentre("A few characters")

70 PRINT" l„ength% i s now " ; length%

80 PRINT"x_position% is now " ; x_position%

90 END

10 DEFPROCcentre(text$)

110 length%=LEN(text$)

120 x_posi ion%=(40_length%) /2

130 PRINT TAB(x_position%) text$

140 ENDPROC

You can make sure that variables within a procedure do not interfere with the

rest of the program by declaring the variables as local. Add this line to the

previous program and run it again:

105 LOCAL length%,x_position%

This time length% and x_position% are unchanged despite PROCcentre.

There are effectively two copies of the variables: the global values, available to

the whole program, and the local values, which exist only within PROCcentre.

PROCcentre is now completely isolated, and it can be used in any program

without giving unexpected side-effects.

Note that variables can also be used as parameters. This brief program

contains an improvement on PROCcircle so that you can select the colour used:

10MODE 135

20 PR0Cchoose

30 MODE 130

40 PR0Ccircle(xchoice%,ychoice%,radius_choice%,colour_choice%)

50 END

60 DEFPROCchoose

70 INPUT"Centre of circle " ,xchoice%,ychoice%

80 INPUT"Radius " ,radius_choice%

90 INPUT"Colour number (1 to 15) " ,colour_choice%

100 ENDPROC

110 DEFPR0Ccircle(xcentre% ,ycentre%,radius%,colour%)

120 GCOL 0,colour%

130 MOVE xcentre%,ycentre%

140 PLOT 157,xcentre%+radius%,ycentre%

150 ENDPROC

Throughout the rest of this chapter on BBC BASIC, procedures are used

extensively. This is because it is simpler to write and modify programs that are

broken into smaller sections. Some of the procedures will be specific to a

C 35

particular program, but others, such as PROCcircle, are more general-purpose.

You may like to use these procedures in programs of your own.

Functions

A function is a routine which takes one or more parameters and uses them to

calculate a result. BBC BASIC contains some built-in functions. Try:

PRINT LEN("Acorn Computers")

LEN is a function which takes a string as a parameter and produces the length

of the string as the result. Now try:

PRINT SQR(9)

SQR is a function taking a number as a parameter and producing its square

root as the result.

BBC BASIC allows you to set up your own functions, as this example shows:

10 MODE 135

20 PROCinput_t ime

30 END

40 DEFPROCinput_time

50 PRINT'"Input a time in minutes and seconds."

60 PRINT '"The function will convert it into"

70 PRINT"seconds. "

80 INPUT'"How many minutes and seconds ",minutes%,seconds%

90 total%=FNconvert (minutes%,seconds%)

100 PRINT' "That is " ; total%; " seconds. "

110 ENDPROC

120 DEFFNconvert(mins%,secs%)

130 =mins%*60+secs%

Line 90 calls the function. The computer scans the rest of the program until it

finds the DEFinition of the FuNction (DEFFN) at 120.

Line 130 begins with an equals sign. This tells the computer that the

calculation which follows will produce the required result, and that the function

ends on this line. The calculation is carried out, the function ends, and the

program returns to line 90 and stores the result in total%.

The function here is a trivial example, as it is simpler to just put:

90 total%=minutes%*60+seconds%

C 36

The program below uses a much more complex function, containing statements

which are explained in the next few sections:

10 MODE 135

20 PR0Cinput_word

30 END

40 DEFPROCinput_word

50 INPUT"Type in a word " ,word$

60 PRINT'"An anagram of that word is ";FNanagram(word$)

70 ENDPROC

80 DEFFNanagram(choice$)

90 length%=LEN(choice$)

100 FOR count=1 TO length%

110 random_letter%=RND(Length%-1)

120 choice$=RIGHT$(choice$,length%-random_

letter%)+MID$(choice$,random_letter%,1)+LEFT$(choice$,random_

letter%-1)

130 NEXT

140 =choice$

Loops

FOR...NEXT

The real power of computers comes from their ability to repeat instructions.

This can transform trivial programs so that they produce very impressive

results.

The FOR...NEXT loop makes the computer repeat a set of instructions a fixed

number of times:

10 MODE 128

20 FOR count=1 TO 100

30 PRINT count

40 NEXT count

Line 20 is the start of the loop, with the variable count being set to 1 initially.

After printing the value of count at line 30, the computer finds the NEXT

statement which indicates the end of the loop.

At this point count is increased by I. Provided that count has not gone beyond

the end value of 100 the computer now repeats all the instructions again.

Line 40 can be written as just:

40 NEXT

C 37

The use of the variable name is optional, but if you are using many loops in a

program, including the name makes the program easier to follow.

You can change the step size so that count does not increase by 1:

20 FOR count=7 TO 50 STEP 2

The step size can be decimal:

20 FOR count=3 TO 10 STEP 1.6

It can even be negative, although the start and end values for the loop must

also be adjusted so that the loop starts with the highest value:

20 FOR count=20 TO 1 STEP -1

Of course, the loop values can also be variables. You can experiment with loops

by adding these lines and running the program a few times:

15 INPUT "What is the start, end and step size ",start,end,step

20 FOR count=start TO end STEP step

Here is a brief program which shows the power of the loop:

10 MODE 2

20 PR0Cmodern_art

30 END

40 DEFPR0Cmodern_art

50 FOR count=l TO 50

60 PR0Ccircle(RND(1279) ,RND(1023) ,RND(200),RND(7))

70 NEXT count

80 ENDPROC

90 DEFPR0Ccircle(xcentre%,ycentre%,radius%,colour%)

100 GCOL 0,colour%

110 MOVE xcentre%,ycentre%

120 PLOT 157,xcentre%+radius%,ycentre%

130 ENDPROC

RND produces a random whole number between 1 and the bracketed value.

Line 60 draws a random-sized circle in a random position and random colour by

calling PROCcircle with random parameters.

You may get an idea how some of the Welcome software works by running the

program again using these lines:

50 FOR count=7 TO 1 STEP -1

60 PR0Ccircle(640,512,count*50,count)

C 38

More than one FOR...NEXT loops can be included within another. These are called nested

loops:

10 MODE 7

20 PR0Ctables

30 END

40 DEFPR0Ctables

50 FOR table=1 TO 12

60 PRINT''TAB(8)"The ";table;" times table"''''

70 FOR count=l TO 10

80 PRINT count;" times " ;table; " is "; count*table

90 NEXT count

100 PR0Cinput

110 NEXT table

120 ENDPROC

130 DEFPR0Cinput

140 PRINT''''"Press any key when you're ready for"

150 PRINT' TAB(2)"the next multiplication table"

160 key=GET

170 CLS

180 ENDPROC

The main loop running from line 50 to 110 counts through the multiplication

tables from 1 to 12. The other loop from 70 to 90 nests completely within the

main loop. It multiplies the value of table by all the numbers from I to 10.

The effect of LIST may be altered so that it automatically produces

indentations for every FOR and NEXT pair (and certain other structures).

Type:

LISTO 7

LIST

Notice that the start and end of the loops are in line vertically. This makes it

easier to pick out the loops and spot errors.

Delete line 90, which contains a NEXT, and LIST the program again. The start

and finish of the loop at lines 50 and 110 no longer line up. This is a sure sign

that a loop somewhere in the program is missing a FOR or NEXT.

The option provided by LISTO remains in force until you reset it (using LISTO

0), execute a hard break or switch the computer off. However, leave it in force

for the next section.

REPEAT ... UNTIL

C 39

Imagine a program based on the BBC quiz Mastermind. The program needs to

repeatedly ask questions until the time limit of one minute is reached. Can we

use a FOR...NEXT loop here?

FOR...NEXT loops always end as the result of a count reaching a certain value.

Here we have no idea beforehand exactly how many questions will be answered

in one minute. One person running the program may answer only three

questions, whereas another may answer a dozen.

In this case we must use a different sort of loop, the REPEAT ...UNTIL loop

This is a loop that ends when a condition is satisfied, rather than as a result of a

count. For example, many programs include a procedure that prevents the

program from rushing on until a particular key is pressed:

10 MODE 7

20 PR0Cwait

30 END

40 DEFPR0Cwait

50 PRINT TAB(8,24)"Press C to continue"

60 REPEAT

70 key$=GET$

80 UNTIL key$="C"

90 ENDPROC

Lines 60 to 80 REPEATedly scan the keyboard UNTIL the C is pressed. Press

some other key at line 70. The computer finds that key$ does not satisfy the

condition at line 80, and so it executes the loop again from line 60.

The Mastermind program might look something like this:

10 MODE 7

20 PR0Cquiz

30 END

40 DEFPROCquiz

50 TIME=0

60 answers=0

70 REPEAT

80 first=RND(12)

90 second=RND(12)

100 PRINT'"What is ";first;" times ";second;

110 INPUT response

120 answer=answer+1

130 UNTIL TIME>=600

140 PRINT' "You answered " ;answer ;" questions"

150 ENDPROC

C 40

Line 50 introduces TIME, which gives the value of the computer's internal

clock. TIME counts in hundredths of a second from the moment the computer is

switched on, or from when it is reset. Line 50 sets TIME back to zero, so that it

can be used to count the minute allowed for questions.

The variable answer is used to count the number of answers given, and is

initially set to zero by line 60. The loop runs from 70 to 130, and repeatedly asks

random multiplication questions until TIME is >= (greater than or equal to)

6000 hundredths of a second, one minute.

The program has one big flaw -- unlike Magnus Magnusson, it doesn't check the

answers! You will find out how to extend the program to do that in the next

section, so you might like to save the program before you continue.

Making choices

You have already seen that the computer can obey a series of instructions, or

repeat instructions a number of times. It can also choose whether to obey an

instruction or not:

10 MODE 7

20 PROCinput_age

30 END

40 DEFPR0Cinput_age

50 INPUT"How old are you " ,age

60 IF age<18 THEN PRINT'''So you can't vote in elections."

70 ENDPROC

RUN the program a few times, inputting different ages. In line 60, the

computer checks the statement after the IF, and if it is true, it executes the

instructions after the THEN. If the statement is false, the computer ignores the

rest of the IF...THEN and carries on to the next line.

Now add these lines to the program and run it several times, so that you are

sure you understand how IF ...THEN works:

63 IF age=21 THEN PRINT'"You are the same age as me!"

66 IF age<65 THEN PRINT '"You are below retiring age. "

The quiz program can now be extended so that it checks your answers. The new

lines are 65, 115 and 145:

10 MODE 7

20 PR0Cquiz

30 END

40 DEFPR0Cquiz

50 TIME=0

60 answers=0

C 41

65 wrong=0

70 REPEAT

80 first=RND(12)

90 second=RND(12)

100 PRINT' "What is " ;first;" times " ;second;

110 INPUT response

115 IF response<>first*second THEN wrong=wrong+l

120 answer=answer+1

130 UNTIL TIME>=6000

140 PRINT' "You answered " ;answer;" questions"

145 PRINT '"You had " ;wrong; " wrong"

150 ENDPROC

Line 115 can be extended so that it gives the correct answer as well as counting

the wrong answers:

115 IF response<>first*second THEN wrong=wrong+1:PRINT "No, the ans

wer is ";first*second

Where there are only two possible outcomes, such as an answer being right or

wrong, an extended form of IF...THEN can be used:

115 IF response<>first*second THEN wrong=wrong+1:PRINT "No, the ans

wer is ";first*second ELSE PRINT "Well done! "

In other words, IF the response is wrong, THEN the computer gives the right

answer, ELSE it congratulates you on getting it correct.

The line is beginning to get rather long. To make the program easier to read

and understand it is better to use:

115 IF response<>first*second THEN PR0Cwrong ELSE PR0Cright

and add extra procedures at the end:

160 DEFPROCwrong

170 wrong=wrong+1

180 PRINT "No, the answer is ";first*second

190 ENDPROC

280 DEFPROCright

210 PRINT "Well done!"

220 IF wrong<2 THEN PRINT "Keep it up"

230 ENDPROC

C 42

Conditions

A REPEAT ...UNTIL loop can be set so that it ends under a variety of

conditions:

10 MODE 135

20 PROCreaction

30 PROCtest

40 PROCcomment

50 END

60 DEFPROCreaction

70 PRINT TAB(0,8)"Press the correct key when it is"

80 PRINT"flashed on the screen. "

90 PRINT TAB(0,13)"You have 2 seconds to respond, and you"

100 PRINT" can continue until you miss twice or"

110 PRINT"20 seconds is up."

120 PRINT TAB(0,24)"Press any key when you're ready.";

130 key=GET

140 ENDPROC

150 DEFPROCtest

160 CLS

170 missed=0

180 right=0

190 TIME=0

200 REPEAT

210 Letter=RND(26)+64

220 PRINTTAB(19,11)CHR$(letter)

229 REM VDU? gives a bleep

230 VDU 7

240 response=INKEY(200)

250 IF response=l THEN missed=missed+1

260 IF response letter THEN right=right+1

270 UNTIL missed=2 OR TIME>2000

280 ENDPROC

290 DEFPROCcomment

300 CLS

310 PRINT"You got " ; right;" right"

320 PRINT"You missed " ;missed

330 IF right>10 THEN PRINT'''A very good result."

340 IF right<4 THEN PRINT' "Rather poor. "

350 ENDPROC

The loop runs from 200 to 270, and ends either when two keys are missed or 20

seconds is up. The OR can also be used in IF ...THEN statements:

325 IF right>10 OR missed=0 THEN PRINT'''A very good result."

C 43

You may want an IF ...THEN statement to be executed only if several

conditions are true at the same time:

345 IF right<3 AND missed=2 THEN PRINT'"Quite pathetic."

AND can also be used to end a REPEAT...UNTIL loop:

270 UNTIL missed=2 AND right=5

Now the loop only ends after you have both missed two letters and have five

correct -- not a very sensible test!

There is (almost) no limit to the number of conditions, for example you might

have:

270 UNTIL missed=2 OR TIME>2000 OR right>5

Multiple choices

IF... THEN ...ELSE is useful if there are only two alternative choices of action,

but often in a program there may be many more. For example, programs often

contain a menu which allows the user to choose one of a number of actions.

Here is the start of a drawing program which contains a menu:

10 MODE 135

20 PROCmenu

30 END

40 DEFPROCmenu

50 REPEAT

60 CLS

70 PRINT TAB(7,5)"Do you want to:"

80 PRINT TAB(8,9)"1 Load a picture"

90 PRINT TAB(8,12)"2 Save a picture"

100 PRINT TAB(8,15)"3 Draw a picture"

110 PRINT TAB(8,18)"4 End the program"

120 PRINT TAB(7,22)"Your choice, 1 to 4 ";

130 REPEAT

140 response=GET

150 UNTIL response>48 AND response<53

160 choice=response-48

170 ON choice PROCLoad, PROCsave, PROCdraw, PROCmake_sure

180 UNTIL choice=4

190 ENDPROC

(This program is incomplete and gives an error message if you run it.)

C 44

The loop from lines 130 to 150 only ends when a key with an ASCII code

between 48 and 53 is pressed. These are the ASCII codes for the numbers 1 to 4

on .the keyboard, so this loop screens out accidental key depressions like Q or W.

Subtracting 48 from the ASCII code in line 160 gives a number from 1 to 4

again and line 170 uses this number to choose which of four procedures to

execute. If choice=1, the computer carries out PROCload, with choice_2, it

executes PROCsave, and so on. After carrying out the procedure the computer

continues with line 180.

The program avoids the problems that might arise with a wrong key depression

by only continuing when one of the keys 1 to 4 is pressed. However, the loop

from lines 130 to 150 can be omitted and the problem of incorrect keys handled

by an extension of the ON...PROC statement:

120 PRINT TAB(7,22)"Your choice, 1 to 4 ";

140 response=GET

160 choice=response-48

170 ON choice PROCLoad, PROCsave, PROCdraw, PROCmake_sure ELSE

PR0Cwrong_key

The computer executes PROCwrong_key if choice does not fall in the range 1

to 4. Only a single statement can follow the ELSE, although it need not be a

PROC, for example:

170 ON choice PROCload, PROCsave, PROCdraw, PROCmake_sure ELSE

PRINT"Wrong key ! "

ON...PROC is very useful, but note that it only works with numbers which

must range from one upwards in steps of one. Normally, therefore you will need

to carry out some kind of calculation in order to produce a suitable range of

values.

Error handling

You can reduce the time you spend correcting errors in your programs by using

procedures and sensible variable names, but it is inevitable that you will make

some mistakes. The computer is able to identify some types of error itself, and

gives an error message to let you know what is wrong.

You should always include an error-handling routine in your program. This

tells you (or anyone else using the program) as much about the error as

possible, and makes correcting it easier:

10 ON ERROR GOTO 50

20 MODE 130

30 PROCmain_program

C 45

40 END

50 MODE 7

60 PRINT"Error number ";ERR;" at Line ";ERL

70 END

This program contains a major error - there is no procedure called

PROCmain _program! Running the program gives this result:

Error number 29 at Line 30

The ON ERROR statement at line 10 tells the computer that if it finds an error

while it is running the program it should go to line 50. Every sort of error the

computer can detect has an error number, and the computer uses the variable

ERR to store this number. It uses ERL to store the line number at which the

error occurred.

The Reference Manual gives a full list of the error numbers and describes the

errors themselves in detail. However, you can get more information about the

error from the computer itself by including a REPORT statement in the

error-handling routine:

55 REPORT

60 PRINT " at Line " ;ERL

Running the program gives:

No such FN/PROC at Line 30

This shows that the computer could not find a procedure called

PROCmain_program at line 30.

You have probably already had some experience of the computer giving error

messages. As it does this automatically, you may wonder why you should

bother including an error-handling routine at all. The main reason is that the

routine can restore the computer to normal. Error messages can otherwise

prove unreadable, as you will see if you RUN this program:

10 MODE 2

20 VDU 28,19,31,19,0

30 COLOUR 135

40 a terribke mistake

50 END

Add these lines to see the advantage of an error-trapping routine:

5 ON ERROR GOTO 60

60 MODE 7

70 REPORT

80 PRINT "at Line " ;ERL

90 END

C 46

More about strings

Strings are merely groups of characters and this section deals with their

manipulation in BBC BASIC.

You can join together (concatenate) several strings simply by telling the

computer to 'add' one string to the end of another:

10 MODE 135

20 first$="The start"

30 second$="and the end. "

40 all$=first$+second$

50 PRINT all$

Running the program gives:

The startand the end.

Other than that the composite string may not exceed 255 characters, there is

effectively no limit on the number of strings which may be joined together at

one time. You could, for example, include an additional space in the line shown

above using:

40 all$=first$+" "+second$

Two strings can also be compared using < = and > (or any combination of the

three). The two strings are compared character by character until a difference

is found. The string containing the character earliest in the alphabet is 'less

than' the other string. For example:

-- PUPPY is less than SHARK because P comes before S;

-- PUPPY is less than RAT because P comes before R;

-- PUPPY is greater than POPPY because both words begin with the letter P

and U comes after O;

-- PUPPY is greater than MONKEY because P comes after M.

If you are still not sure about this, run the following program which lets you

compare pairs of strings:

10 MODE 135

20 REPEAT

30 INPUT LINE "What is the first string", first$

40 INPUT LINE "What is the second string" , second$

50 IF first$<second$ THEN PRINT first$;" is earlier alphabetically

than " ;second$

60 IF first$=second$ THEN PRINT "The two strings are identical."

C 47

70 IF first$>second$ THEN PRINT first$;" is later alphabetically

than " ;second$

80 UNTIL first$="STOP"

Can you see how to stop execution of the program?

The computer can sort a long list of strings into alphabetic order by using string

comparisons like the above. Strictly speaking, the computer compares the

ASCII codes of the characters concerned. A lower-case letter like a is considered

to be greater than the upper-case A because the ASCII code for a is 97 and the

ASCII code for A is only 65.

LEN enables you to find out how many characters there are in a string:

10 MODE 135

20 INPUT "What is your string ";choice$

30 Length=LEN(choice$)

40 PRINT choice$;" contains "; length;" characters. "

The earlier anagram program (see page C37) used LEN to find the length of the

word supplied as input. It then rearranged the characters by combining parts of

the string in a different order. There are several functions which enable you to

copy part of a string:

10 MODE 135

20 example$="Yellow submarine"

30 PRINT "The string is ";example$

40 part1$=LEFT$(example$,4)

50 PRINT "The leftmost 4 Letters are ";part1$

60 part2$=RIGHT$(exampLe$,6)

70 PRINT "The rightmost 6 letters are " :part2$

80 part3$=MID$(example$,5,6)

90 PRINT "The middle 6 characters are ";part3$

100 part4$=MID$(example$,4)

110 PRINT "The characters from the 4th are: ";part4$

LEFT$ and RIGHT$ work in a similar way, by taking the chosen number of

characters from the left or right of the string respectively. MID$ is slightly

different in line 80 it is used to extract letters beginning at the fifth letter and

going on for six letters. In line 100 the second number is omitted, which causes

MID$ to extract all the characters from the fourth to the end of the string.

Needless to say the numbers in each of the examples above may be replaced by

numeric variables.

C 48

A string can be created which consists of a series of copies of another string

using STRING$:

10 MODE 135

20 INPUT "What is your string " ,text$

30 copy$=STRING$(10,text$)

40 PRINT "A string containing 10 copies Looks Iike this:"

50 PRINT copy$

INSTR is used to check for the first occurrence of one string within another, for

example:

10 MODE 135

20 INPUT LINE "Ptease type in any sentence",sentence$

30 check=INSTR(sentence$,"e")

40 PRINT "Your sentence contains ";

50 IF check>0 THEN PRINT "an 'e' at position " ;check ELSE PRINT "d

oes not contain an 'e'"

The variable check at line 30 contains the position within sentence$ at which

the first letter e occurs. If sentence$ does not contain an e, check is 0. You can

also search for groups of letters using INSTR. For example replacing line 30

with:

30check=INSTR(sentence$,"the")

makes the program check for the string the within sentence$.

You cannot carry out arithmetic on a string variable, even if that string

variable contains only numeric characters. This can be inconvenient, so there

are two functions which enable you to change a number to a string and vice

versa :

10 MODE 135

20 INPUT "What is today's date (eg 27) ";number

30 number$=STR$(number)

40 INPUT "What month is it ";month$

50date$=month$+" "+number$

60 PRINT "Today's date is ";date$

STR$ in line 30 converts the numeric variable number into a string variable

number$. Lines 50 and 60 are included to demonstrate that the string version

can be concatenated with other strings.

VAL gives the numeric value of a string:

10 MODE 135

20 INPUT "Type in any mixture of numbers and Letters ";mixture$

C 49

30 number=VAL(mixture$)

40 IF number>0 THEN PRINT "The string begins with the numbers ";

number

If a string begins with numeric characters, a + or -- sign, VAL converts those

characters to their numeric equivalent. Note that VAL ignores the remainder

of the string following the first non-numeric character it discovers, for example:

PRINT VAL("123g456")

produces 123.

READ, DATA and RESTORE

Many programs need some basic data before they can run, and it is often

convenient to store that data as part of the program. For example, here is a

simple quiz program that includes the questions and answers in DATA

statements:

10 MODE 135

20 PR0Cstart

30 PROCquiz

40 END

50 DEFPROCstart

60 correct=0

70 READ how_many

80 PRINT TAB(14) "A quiz game"

90 PRINTSTRING$(4,"=")

100 ENDPROC

110 DEFPR0Cquiz

120 FOR question=1 TO how_many

130 READ question$,answer$

140 PRINT'question$

150 INPUT response$

160 IF response$=answer$ THEN PR0Cright ELSE PR0Cwrong

170 NEXT question

180 PRINT '"You had " ;correct;" right out of ";how_many

190 ENDPROC

200 DEFPROCright

210 correct=correct+1

220 IF RND(2) >1 THEN PRINT '"That's right ! " ELSE PRINT '"Well
done! "

230 ENDPROC

240 DEFPR0Cwrong

250 PRINT' "No, the answer is:"

260 PRINTanswer$

270 ENDPROC

C 50

200 DATA3

290 DATAWhich century is this,20th

300 DATAWhich British king had six wives,Henry VIII

310 DATAWhat is the seed of an oak called,Acorn

The READ statement in line 70 makes the computer search through the

program until it finds the first line beginning with the word DATA, which is

280. The computer reads the first value after the word DATA and stores it in

the variable how_many. DATA items can either be numbers or strings, and

are separated by commas.

The loop from lines 120 to 170 is carried out 3 times (the value of how_many).

Line 130 successively reads a question and answer from the DATA statements.

Each time through the loop the computer carries on reading data at the point at

which it left off, so each time it reads a different question and answer.

Any number of data items can be included in a DATA statement, up to the

maximum line length of 255 characters. Thus all the data in the program could

be confined to a single line:

280 DATA3,Which century is this,20th,Which British king had six wiv

es,Henry VIII,What is the seed of an oak called,Acorn

The main reason for breaking the data up is that it makes changes easier. For

similar reasons DATA lines are usually collected together although they can be

placed anywhere within the program. You can add an extra question simply by

inputting these lines:

200 DATA4

310DATAWho won the 1982 World Cup,Italy

Running the program reveals one of the problems of using strings. The

computer only accepts as correct a response that exactly matches its stored

answer -- for example, Henry the Eighth is treated as a wrong answer to

question 2!

You can use the RESTORE statement to make a program read DATA

beginning at a particular line. Add these lines to the quiz program to offer

alternative questions:

91 PRINT "Do you want (1) genera[knowtedge questions"

92 PRINT TAB(13),(2) questions on animals"

93 INPUT "1 or 2" ,choice

94 IF choice=1 THEN RESTORE 280 ELSE RESTORE 500

500 DATA3

510 DATAWhat is the young of a wolf called,wolverine

520 DATAWhat is the largest mammal,whale

530 DATAWho killed Cock Robin,sparrow

C 5l

Line 94 uses RESTORE to make the program read data beginning at line 280

or at 500, depending upon the set of questions are chosen.

Arrays

The computer is very useful for finding a particular data item in a long list or

for sorting sets of data into a particular order. For example, you might want to

sort a list of names into alphabetical order. The computer is quite able to do

this, but it needs to compare every name with every other name to decide upon

their order. All the names must be accessible at the same time, and it is easier

to compare them if they are all stored in a list or array.

This program reads 10 names into an array and then displays any selected

name:

10 MODE 135

20 PR0Cset_up_array

30 PR0Cfind

40 END

50 DEFPR0Cset_up_array

60 DIM name$(10)

70 FOR count=1 TO 10

80 READ name$(count)

90 NEXT count

10 ENDPROC

110 DATA Smith,BLoggs,Hutchings,Broome

120 DATA Turner,Dick,James,Neale,Sewell,van Someren

130 DEFPR0Cfind

140 INPUT "Which name do you want (1-10)",number

150 PRINT' "Number " ;number;" in the list is ";name$(number)

160 ENDPROC

The DIM statement in line 60 tells the computer how many items there are in

the array -- in this case, 10. The loop from lines 70 to 90 reads the names from

data statements and automatically stores them in the array name$, so that

name$(l) is Smith, name$(2) is Bloggs, and so on. PROCfind at 130 is included

so that you can confirm for yourself that the computer has stored the names in

the order they are given in the DATA statements.

The program can search through the array very rapidly to find a name or set of

names which meet certain requirements. For example, to find all names

beginning with a particular letter, change the last few lines to:

140 INPUT "Which letter shoutd the name begin with " ,letter$

150 FOR count=1 TO 10

160 name$=name$(count)

C 52

170 IF LEFT$(name$,1)=letter$ THEN PRINT name$

180 NEXT count

190 ENDPROC

This program contains only a few names, but the computer can deal just as

easily with a list of several hundred names -- the limiting factor is the

computer's memory capacity.

It is more common to deal not with a single array but with several

simultaneously. We usually make lists of data items that are in some way

associated -- names and addresses, books and their authors, and so on. For

example, if names and ages are being stored we can set up two arrays. The

association between the arrays makes it easy for the computer to carry out

searches. If Broome is the fifth name in the names array, his or her age is fifth

in the age array:

name$(5)="Broome" age(5)=27

Here the age is stored in a numeric array age() rather than a string array,

because we may want to carry out a calculation involving the age.

This program stores the names and ages of 10 people, and searches the array to

find the age of any person once you have input their surname:

10 MODE 135

20 PR0Cset_up_array

30 PR0Cfind_age

40 END

50 DEFPROCset_up_array

60 DIM name$(10), age(10)

70 FOR count=1 TO 10

80 READ name$(count), agetcount)

90 NEXT count

100 ENDPROC

110 DATA Smith,42,BLoggs,35,Hutchings,57

120 DATA Postlethwaite,35 ,Broome,49,Turner,23

130 DATA Dick,39,James,24 ,Neale,63,Sewell,75

140 DEFPR0Cfind_age

150 INPUT "Whose age do you want ",search$

160 count=l

170 REPEAT

180 name$=name$(count)

190 IF name$=search$ THEN PRINT name$;" is ";age(count)

200 count=count+l

210UNTIL count=11 OR name$=search$

220 IF name$<>search$ THEN PRINT search$;" is not in the list"

230 ENDPROC

C53

Only one DIM statement is needed to set up the size of both arrays, line 60. The

loop from 170 to 210 examines each name in the array to see if it is the one

required.

It is also possible to use integer arrays. In the previous program all the ages

were integers, and could have been stored in an array age%().

Files

The last section showed how you can store data in arrays. One weakness of this

storage method is that it wastes computer memory. Every data item is stored

twice: once as part of the DATA statements within the program, and again

elsewhere in memory when the computer copies each data item into the array.

A more sensible method is to store the data completely separately from the

program, as a data file. The file can be saved onto disc (in a similar manner to

a program) and can be loaded back when required.

This program creates a file of names and telephone numbers:

10 MODE 135

20PR0Ctake_names

30 PR0Cmake_file

40 END

50 DEFPR0Ctake_names

60 DIM name$(100), tele$(100)

70 PRINT' "PLease type in the names and"

80 PRINT"te0ephone numbers of your friends."

90 PRINT"You can end by typing XXX „when you"

100 PRINT"are asked for a name. "''

110 count=0

120 REPEAT

130 count=count+1

140 INPUT "Name",name$(count)

150 IF name$(count)<>"XXX" THEN INPUT "Telephone number",tele$(count)

160 UNTIL name$(count)="XXX" OR count=100

170 ENDPROC

180 DEFPROCmake_file

190 CLS

200 PRINT'"What name do you want to give to"

210 INPUT"your data file",file$

220 this_one=0PEN0UT(file$)

230 IF name$(count)="XXX" THEN count-count-1

240 F0Rnumber=1 TO count-1

250 PRINT#this_one,name$(number) ,tele$(number)

260 NEXT number

C54

270 CL0SE#this_one

280 ENDPROC

PROCtake -- names sets up two string arrays which can hold up to 100 names

and telephone numbers. The loop from 120 to 160 takes input from the

keyboard and stores the names and numbers in the two arrays.

PROCmake _file creates the file, which is given a name at line 210. Line 220

opens the file using OPENOUT so that data can be output to it.

BBC BASIC allows you to have up to five files open at the same time. Each file

is given a number by the computer so that it can distinguish between files. This

number is called the channel number. All references to the file are made via

the channel number, so it is vital that it is saved. Line 220 stores the channel

number for the file in the variable this _one.

The loop from lines 230 to 250 writes the data out to the file. Line 240 tells the

computer to print the data out via channel this _one.

The computer needs to be told that there is no more output, so line 260 closes

the channel once all the data has been printed to the file.

Note that running the program only saves the file containing the names and

telephone numbers. The program itself must be saved in the same way you

would save any other program.

A file is of little use unless you can read the information stored in it and the

followings program reads the names and phone numbers in the file back into

memory, and finds the phone number for any friend whose name you have

stored on the file:

10 MODE 135

20 PR0Cread_file

30 PR0Cfind_number

40 END

50 DEFPR0Cread_file

60 DIM friend$(100), numb$(100)

70 PRINT'"What name did you give to"

80 INPUT"your data file",file$

90 that_one=0PENIN(file$)

100 count=0

110 REPEAT

120 count=count+1

130 INPUT#that_one,friend$(count),numb$(count)

140 UNTIL E0F#that_one

150 CLOSE #that_one

160 ENDPROC

170 DEFPR0Cfind_number

C55

100 CLS

190 INPUT "Whose number do you want",name$

200 search=0

210 REPEAT

220 search=search+1

230 IF name$=friend$(search) THEN PRINTname$;" has the number

" ;numb$(search)

240 UNTIL search=count OR name$=friend$(search)

250 IF name$<>friend$(search) THEN PRINT'"I can't find this name"

260 ENDPROC

PROCread _file reads the contents of the file back into memory and stores the

names and phone numbers in two arrays friend$() and numb$().

Line 90 opens the file using OPENIN so that data can be input from it. Once

again we save the channel number, this time storing it in the variable

that _one.

The loop from lines 110 to 140 reads in items from the file and stores the data in

the arrays. Line 130 inputs data via the channel that _ one.

The computer does not know how many data items there are in the file, so it

continues to read data until it reaches the End Of File (EOF) at line 140. As

there is no more data, line 150 closes the file.

Al] the data has now been copied from the file into the arrays friend$() and

numb$(), and PROCfind _number searches those arrays for the phone

number if you input as friend's name.

The previous two programs are very simple and only illustrate the principles of

using files. Much more sophisticated software is available which allows you to

create and modify files of data of any nature, rather than specifically names

and phone numbers. You can expand your system to include ViewStore, a very

powerful file-handling program, details of which are available from Acorn.

More about graphics

In any graphics mode a fixed number of pure colours can be shown on the

screen simultaneously. Four other patterns made up from a combination of the

pure colours can also be displayed. For example, in mode 129 four pure colours

are available, and four patterns. This program displays all eight colours at the

same time by drawing seven rectangles on a background of black:

10 MODE 129

20 PR0Cpure

30 PROCmixed

40 END

50 DEFPR0Cpure

C56

60 FOR colour=1 TO 3

70 GC0L0,colour

80 corner=80*colour

90 PR0Crectangle(corner,corner,corner+100,corner+100)

100 NEXT colour

110 ENDPROC

120 DEFPROCmixed

130 FOR colour=16 TO 64 STEP 16

140 GCOL colour,6

150 corner=80*((colour/16)+3)

160 PR0Crectangle(corner,corner,corner+100,corner+100)

170 NEXT colour

180 ENDPROC

190 DEFPR0Crectangle(x,y,11,y1)

200 MOVE x,y

210 PLOT 100,x1,y1

220 ENDPROC

PROCpure draws rectangles in the pure colours following the GCOL 0

command at line 70.

PROCmixed draws rectangles using the patterns. Each time through the loop

the pattern is dictated by the GCOL command at line 140. The first time this is

GCOL 16,0; the next GCOL 32,0; and so on.

The patterns dictated by GCOL16,0 and the other high-numbered GCOL

commands are not fixed, and can be changed by a VDU command. Add the

following lines to the program and run it again:

121 REM gives yellow/black shading for GCOL 16,0

122 VDU23,2,160,80,160,80,160,80,160,80

The command VDU 23,2 changes the pattern produced by GCOL 16,0. The

eight numbers following describe the new pattern -- in this case alternate black

and yellow areas. Similarly, VDU 23,3 can be used to give a new pattern

following GCOL 32,0 and VDU 23,4 changes the pattern produced by GCOL

48,0. Add these lines to get a completely new set of patterns:

123 REM gives Large block red/yellow shading for GCOL 32,0

124 VDU23,3,60,195,60,195,60,195,60,195

125 REM gives black/red shading for GCOL 48,0

126 VDU23,4,5,10,5,10,5,10,5,10

127 REM gives black/white shading for GCOL 64,0

128 VDU23,5,85,170,85,170,85,170,85,170

Working out which eight numbers produce which pattern is a little complex,

and the procedure varies from mode to mode -- you will find it easier to use the

C57

pattern generator utility (PFILL) from the Welcome software and which is

described at the end of this chapter. Further information about the way the

VDU23 command works is given in the Reference Manual.

PFILL lets you define your own pattern and displays the numbers needed to

recreate it. The numbers are shown in hexadecimal form (counting in 16s). Do

not worry if you are not familiar with hexadecimal. You need only put these

numbers in a suitable VDU statement to use the pattern in your own

programs. For example:

122 VDU23,2,&A0,&50,&A0,&50,&A0,&50,&A0,&50

is the hexadecimal equivalent of the previous line 122 and has the same effect.

(The & symbol is used to denote that the number following is in hexadecimal

notation.)

Defining your own characters

VDU 23 can also be used to define new characters for games or for specialist

programs in science or mathematics which require unusual notation. You may

recall that the symbol for pi was used as an example in the introduction to this

guide.

AI] the normal characters are based on an 8 by 8 grid, so the upper-case A looks

like this:

Any of the characters can be redefined, but changing the upper-case A to some

other shape does not help the readability of programs!

C 58

Here is a 'dog' character which has been drawn on the 8 by 8 grid:

You can redefine character 255 as the dog by typing:

VDU 23,255,17,225,34,60,60,66,129,129

To see the character, try typing:

MODE 129

PRINT CHR$(255)

Each number after VDU 23,255 describes one of the eight rows of points which

together make up the character, from top to bottom. To get this number you

must first note the points within the row which will be 'lit' when the figure is

displayed. For example, in the top row only the fourth and last points will be lit.

The number to describe this row is 16+ 1=I 7, obtained by adding the figures

above these two points.

Similarly, the second row is described by the number 128+64+32+ 1=225, the

third row by 32+2=34, and so on.

Draw up an 8 by 8 grid and try defining a character of your own.

The Welcome software also contains a character design utility called

CHARDES which provides an automated method of changing the characters

which the computer can display. This utility is described at the end of this

chapter.

Changing the range of colours

Modes like 128 only allow two colours to be displayed on the screen at any one

time -- for example, the normal colours for mode 128 are black and white.

Although there is no way you can use more than two colours simultaneously in

C 59

mode 128, you can change the range of colours available, i.e. instead of black

and white you could choose red and yellow.

However, the numbers used in GCOL and COLOUR commands produce

different effects in different modes and the colour displayed depends upon two

sets of information.

Colour number assignments Actual Colours

in Mode 0 (128)

 0 0 Black

 1 Red

 2 Green

 3 Yellow

 4 Blue

 5 Magenta

 6 Cyan

 1 7 White

 8 Black/White

 9 Red/Cyan

 10 Green/Magenta

 11 Yellow/Blue

 12 Blue/Yellow

 13 Magenta/Green

 14 Cyan/Red

 15 White/Black

The list on the right shows what are called the actual colour numbers of the 16

pure colours. This list never changes and is the same for every mode. The way

the colour numbers for the mode are associated with this actual colour list can

be varied by using the VDU 19 command. For example, type:

MODE 128

VDU 19,0,1,0,0,0

This instantly changes the normal black background colour to red.

C 60

The first number after VDU 19 is 0, which normally produces black in mode

128. The second number refers to the actual colour number 1, which always

stands for red. The VDU 19 command effectively changes the association

between the colour numbers and the actual colours:

Colour number assignments Actual colours

in Mode 0 (128) after using

VDU19,0,1,0,0,0

 0 Black

 0 1 Red

 2 Green

 3 Yellow

 4 Blue

 5 Magenta

 6 Cyan

 1 7 White

 8 Black/White

 9 Red/Cyan

 10 Green/Magenta

 11 Yellow/Blue

 12 Blue/Yellow

 13 Magenta/Green

 14 Cyan/Red

 15 White/Black

Similarly, white can be changed to yellow by:

VDU 19,1,3,0,0,0

(The last three zeroes are for future expansion and they must be included even

though they have no effect.)

The same principle applies in all other modes except 7 and 135.

The teletext mode

Modes 7 and 135 are unique in the way they display text and graphies.

Commands such as COLOUR, GCOL, MOVE and DRAW do not work in these

modes. Instead, colourful displays are produced using what are known as

teletext control codes.

You may have seen teletext pages broadcast by CEEFAX or Oracle - modes 7

and 135 are teletext compatible modes.

The computer lets you produce your own teletext displays using mode 7 or 135.

These modes use very little memory, and offer a wide range of colours for

simultaneous display on-sereen. The graphics are limited but effective.

C 6 I

Throughout the rest of this section only mode 135 will be discussed, but all

comments apply equally to mode 7.

This program demonstrates the text colours available in mode 135:

10 MODE 135

20 PRINT "This";CHR$(129);"shows how a control code"

30 PRINT "only effects the";CHR$(130);"characters"

40 PRINT "after it on the";CHR$(131);"same";CHR$(129);"line."

The PRINT statement at line 20 prints some text containing a series of

invisible control codes. Each code takes up a character position, so the words

are printed with spaces between. The codes affect the way the remaining

characters on that particular line are displayed. For example, printing

CHR$(129) before 'shows' makes the computer display the text in red,

CHR$(l30) causes the text after it to be printed in green, and so on.

Printing any of the ASCII codes 129 to 135 affects the colour of any characters

printed after the code on the same line. Try:

PRINT CHR$(130)

which prints in green. A full list of the teletext control codes is given in

Appendix 2.

The colour of text can be changed directly from the keyboard. Hold down

and at the same time press the red function key f1. This prints the control

code 129. Any characters you type on the same line will now be displayed in

red. Pressing and any of the function keys f1 to f7 gves a different

colour for any text printed afterwards on the same line.

You can also make text flash:

PRINT CHR$(36);"Flash";CHR$(137);"no flash";CHR$(136);"flash"

Flashing coloured text can be produced by using two control codes:

PRINT "Flashing";CHR$(129);CHR$(136);"red"

The codes each occupy a character position, so the words are printed separated

by two spaces.

Again, the same effects are possible using the function keys. SHIFT and f8

print the control code for flashing, SHIFT and f9 print the non-flashing code.

Double height characters can be printed using CHR$(14l):

10 MODE 135

20 PRINT CHR$(141);"Double height"

30 PRINT CHR$(141);"Double height"

C 62

The same text must be printed on two successive lines beginning with

CHR$(141), otherwise only the top half of the letters is displayed.

Changing the background colour uses two codes:

PRINT CHR$(131);CHR$(157)

The first code is for yellow text. CHR$(l57) tells the computer to use the

previous control code as the background colour. The net effect of the two codes

is to give yellow text on a yellow background, as you can see if you type:

PRINT CHR$(131);CHR$(157);"Hello"

This is obviously not very useful, as the text is unreadable. To print text visibly

on a coloured background requires three control codes, two codes to change the

background colour and a third to change the colour of the text:

PRINT CHR$(131);CHR$(157);CHR$(132);"Blue on yellow"

The first two codes set the yellow background and CHR$(l32) is the code for

blue text.

All of these codes can be combined and incorporated into strings. If you intend

to use a particular set of codes many times within a program it is useful to set

up a single string containing those codes:

10 MODE 135

20 ryflash$=CHR$(131)+CHR$(157)+CHR$(129)+CHR$(136)

30 PRINT ''ryflash$; "A demonstration"

40 PRINT "of normal printing"; ryflash$; "and in colour"

Teletext graphics

All graphics in mode 135 are produced as the result of printing characters. If

any line contains a graphics control code, any characters other than upper-case

letters that appear after it on the same line are printed as graphics shapes.

Each letter corresponds to a particular shape which is based on a two by three

grid, for example:

C 63

A full table showing the graphics shape associated with each character,

together with the graphics control codes, is given in Appendix 2.

The printing of any of the ASCII codes 145 to 151 causes characters on the

same line to be printed in their graphics form. Upper-case letters are

unaffected:

PRINT CHR$(145);"Aa";CHR$(146);"Bb";CHR$(147);"Cc"

It is easier to appreciate the effectiveness of teletext graphics when a series of

graphics characters are displayed together:

PRINT CHR$(148);STRING$(30,"9")

Graphics characters can be displayed in double height, on defferent

backgrounds, or flashing.

You can produce the graphics control codes directly from the keyboard by

pressing and any of the function keys f1 to f7 simultaneously.

Any non-upper-case characters you subsequently type on the same line will be

displayed as graphics shapes.

Sound

Your computer contains a sound generator with four channels.

Two BASIC commands are available that give a wide degree of control over

sound. The SOUND command is used to play single notes. For example:

SOUND 1,-15,53,20

plays a note on channel 1 at maximum loudness for one second. The command

can be summarised as:

SOUND channel,loudness,pitch,duration

The first of the four parameters after SOUND denotes the channel number.

This can be 0 to 3, with channel 0 producing noises for special effects, and

channels 1 to 3 producing musical notes. For example:

SOUND 0,-15,53,20

changes only the channel number from the previous example but gives a very

different effect.

The second parameter controls the loudness or amplitude of the note, and can

have any value from -15 to 16. The loudest is -15, -14 is quieter and other

negative numbers give softer sounds up to 0, which is silence. Any positive

number from 1 to 16 indicates the sound is under the control of an ENVELOPE

command (discussed shortly).

C 64

The third number gives the pitch of the note, and can have any value from 0 to

255. Low values produce deep notes; high values, high notes. The pitch value

has a different effect if channel number 0, the noise channel, is used. In this

case the range for the third parameter is only 0 to 7, producing various pitches

of noise.

The last parameter shows the duration of the sound in twentieths of a second,

and can have any value from 0 to 255. In the example, this value is 20, so the

note sounds for one second (20 twentieths of a second). A value of 255 produces

a continuous sound that stops only if you press .

To play a simple tune you need only sound several notes in succession:

10SOUND 1-15,97,10

20SOUND 1,-15,105,10

30SOUND 1,-15,89,10

40SOUND 1,-15,41,10

50SOUND 1,-15,69,20

Notes can be sounded simultaneously on another channel if you add:

15S0UND 2,-15,97,10

25SOUND 2,-15,105,10

35S0UND 2,-15,89,10

45S0UND 2,-15,41,10

55SOUND 2,-15,69,20

Sounds with a loudness parameter of l to 16 are controlled by the envelope with

the corresponding number. The envelope can affect both the pitch and

amplitude of a note. For example:

SOUND 1 ,-1 5 ,255 ,255

plays a continuous loud note. Change the second parameter to 1 and the note

comes under the control of envelope 1. The ENVELOPE command requires 14

parameters:

ENVELOPE 1,1,-26,-36,-45,255,255,255,127,0,0,-127,126,0

The number immediately after ENVELOPE is the envelope number, which can

vary from 1 to 16. The remaining parameters control and vary the pitch and

amplitude of the note. Try the same note as before, but under the control of

envelope 1:

SOUND 1,1,255 255

The SOUND and ENVELOPE commands are extremely versatile and together

enable the computer to function as a music-maker superior to much more costly

synthesisers -- both commands are discussed in detail in the Reference Manual.

C 65

In addition, the Welcome software includes an envelope editor (called

ENVELOPE) which allows you to experiment with the parameters in the

envelope command.

128K BASIC

Your computer is equipped with a ROM-based version of BBC BASIC which, in

conjunction with the shadow memory facilities can access up to 64K of the

available 128K of random-access memory (RAM). Access to the remaining 64K

of paged RAM is possible using a dise-based version of BBC BASIC (referred to

as BAS128) which is provided on the Welcome disc. You should consult

Appendix 10 for more information on BAS128.

Assembly language

Although programs in BBC BASIC run very quickly, some programs -- such as

games -- need to run even more rapidly if they are to be effective. Every time

the computer runs a program written in BASIC, it has to translate (or

interpret) each statement so that it can carry out the necessary function using

routines written in the computer's internal language -- machine code. It is the

translation process which slows the computer down.

Writing a program directly in machine code means the computer need not

interpret each statement, so a machine code program runs many times faster

than its BASIC equivalent. However, writing a program as a series of numbers

is extremely difficult. Instead the program is written in assembly language.

The computer translates an assembly language program into machine code

using a built-in program called an assembler. The machine code translation of

the program can be saved on its own. When the computer next runs the

program it does not need to translate any of the instructions, and so execution

is very rapid.

Assembly language is more difficult to use than BASIC, although it results in

faster and shorter programs. Fortunately, however, your computer allows you

to mix BASIC and assembly language in one program, and it is sensible to use

assembly language only in sections of a program where speed is vital.

This brief program demonstrates the use of assembly language -- be sure to

type it in exactly as shown:

10 MODE 135

20 DIM demo 10

30 P%=demo

40 [

50 LDA #67

60 JSR &FFEE

C 66

70 RTS

80]

90 P%=demo

100 END

Line 20 reserves 10 memory locations to hold the machine code version of the

program. P% at line 30 is used to indicate to the computer the first memory

location to be used for the machine code program.

The brackets at lines 40 and 80 indicate the beginning and end of the assembly

language section of the program. The short program from line 50 to 70 prints

the letter C on the screen. If you run the program you will see the following:

E71

E71 A9 43 LDA #67

E73 20 EE FF JSR &FFEE

E76 60 RTS

The computer has used the assembler to translate the assembly language

instructions into machine code. The numbers in the left-most column are the

hexadecimal memory locations where the machine code is stored. Each

remaining hexadecimal number on the line is the equivalent of one assembly

language instruction.

Notice that running the program has only translated the assembly language

into machine code, and does not run the machine code program itself. To

actually execute the machine code, type:

CALL P%

CALL is a statement to the computer to execute a piece of machine code. It is

followed by the memory location at which the execution of the machine code is

to begin. You should find that the computer prints the letter C.

Once an assembly language program has been translated by the assembler, the

machine code program can be run independently. If you use NEW, the original

program is removed but the machine code remains in memory, as you can

prove by typing CALL P% again. The section of memory containing the machine

code can be saved on its own and used again without any need for the original

program containing the assembly language instructions.

The facility for mixing BASIC and assembly language instructions is a

powerful one, but any further discussion on the subject is outside the scope of

this guide.

C 67

C68

D. Introducing VIEW

What is word processing?

Word processing has had a more profound impact on office practice than any

other application of computer technology. Consider the number and variety of

documents that are produced daily in homes and offices. Letters, memos,

membership lists, agendas, reports. .. the list is endless.

In many cases, a document will undergo several changes before appearing in its

final printed, or written, form. Using a conventional typewriter, for example, a

rough draft may be produced, edited by hand, then retyped to obtain a final

copy. If, perhaps at a later date, a similar document is required but with minor

modifications, the whole document will have to be retyped.

A word processor offers significant advantages over the typewriter. Text

entered on a word processor appears on the monitor screen for editing and

inspection before it is committed to paper. Corrections and modifications are

simple to make. Characters, lines or complete paragraphs can be inserted,

deleted or moved about at will. Furthermore, text may be stored for later use

with modified details such as names and addresses. Personalised copies of a

standard letter can be produced, all identical except for individual names and

addresses. The main body of the letter need be typed only once.

The VIEW word processor

Your computer is supplied with VIEW, a powerful word processor. VIEW has

established itself as one of the more popular word processors available for use

on microcomputers. Whether your particular requirements are business or

domestic, VIEW will save time and effort in the production of all kinds of text.

Before starting to use VIEW, place the function key card supplied at the top of

the keyboard. Ensure that FORMAT PARAGRAPH on the card is aligned with

key f0.

When you switch your computer on it will probably be ready to run programs in

BASIC. In order to change from BASIC to VIEW make sure your Welcome disc

is in the disc drive and then type:

*WORD

D l

The screen will look like this:

If you are currently using screen mode 7, there will be only 40 character

positions across the screen. Mode 131, with 80 character positions, is far more

useful. We shall see later that a number of the available character positions on

each line are reserved for special purposes. To select mode 131, type:

M0DE131

Throughout this chapter, it will be assumed that you are using screen mode

131. Remember that modes 128 -135 are identical to modes 0 -7 except for the

memory that is available to hold your text. Note, however, that the VIEW

command screen will always show one of modes 0 7.

You are looking at the VIEW command screen. This is the screen from which

general commands such as SAVE will be issued. Note also that commands to

the operating system (*commands) can be issued from the VIEW command

screen. For example, you can speed up the cursor movement by typing:

* FX 12,3

To return to the standard cursor speed, type:

*Fx12,0

Another useful command is *CAT which displays a list of the files stored on a

disc. More information on operating system commands can be found in

Appendix 3.

D 2

We will return to the command screen later in the chapter, but for the moment

type:

NEW

then press and you will switch to the text screen. always

switches, or toggles, between command and text screens. Note that any text

that you have typed in will not be affected by pressing .

Entering text

The text screen looks like this:

The flashing white symbol is the cursor - any text typed in will appear at the

current cursor position. Type a few lines of text without pressing .

Notice what happens as you reach the end of each line. If a word will not fit on

the current line, it is automatically carried over to the next line. VIEW takes

care of new lines for you ensuring that no lines are too long and that no words

are split.

Al! the usual keyboard functions are operative in VIEW just as in BASIC so

that if, for example, all your text appears in capitals, pressing will switch

to lower case characters.

It will soon be obvious that VIEW is doing more to your text than just carrying

over words that will not fit on a line. VIEW always comes on with the

justification feature on, indicated by the J in the top left corner of the screen.

This means that all text is vertically aligned at both the left- and right-hand

D 3

ends of each line. In order to make all lines of text the same length, spaces are

automatically inserted between some of the words.

If automatic justification is not required, it can be switched off by holding down

 and pressing f3. Try it now and you will see the J disappear from the

top of the screen. If you now type a few lines of text, all word spacing will be

identical but lines will be of varying lengths.

Switching justification on and off is just one of the facilities you will see labelled

on the fuction key strip. VIEW has been designed in such a way that the most

frequently used commands are obtained by pressing a function key. These

functions are the ones you can see labelled along the bottom of the key strip.

The row above consists of functions called by simultaneously pressing

and a function key, and the top row facilities require simultaneous depression

of .

These are called immediate commands because they can be issued directly

from the text screen without switching to the command screen. Throughout

this chapter, immediate commands will be referenced by the key number

together with its function. For example:

 + f7 (SET MARKER)

means 'hold down SHIFT and press function key f7'.

The line of dots and asterisks along the top of the screen is called the ruler.

Amongst other things, it determines the maximum length of your lines of text.

By adjusting the ruler, you can reduce or increase the number of characters per

line for the text that follows it. Press a couple of times to leave some

space, then press:

 + f5 (RULER)

Another copy of the standard ruler will appear. Use the arrow keys to take the

cursor to the left-most end of the ruler, then erase part of the ruler by pressing

the SPACE BAR about ten times. Now enter a left margin stop >. Press

 to begin a new line and type in another two or three lines of text to

observe the effect of shortening the ruler. The right-most end of the ruler can

be adusted in the same way but using the right margin stop <.

Editing a text file

The real power of a word processor lies in the facility for editing and correcting

text that has already been entered. To save time, a document called GRANTI

on which you can try out the editing facilities, is provided as part of your

Welcome software.

D 4

Ensure that you are looking at the VIEW command screen and clear the VIEW

workspace by typing:

NEW

Insert the Welcome disc into your disc unit, then type:

LOAD GRANT1

The LOAD command causes any text currently in memory to be overwritten by

the new file. If you had wanted to append GRANT1 to to text currently in

memory you could have typed:

READ GRANT1

as described above.

Press to switch back to the text screen.

The screen will look like this:

You are looking at the first part of the document GRANT1. Hold down the

downward arrow key and watch what happens as the cursor reaches the

bottom of the screen. The VIEW text area is not limited to the screen itself. The

text area is a very large 'page', only a little of which is visible to you through the

screen. The screen is rather like a window which you can move (using the

arrow keys) to any part of the page you wish.

Use the downward arrow key to scroll to the end of the document. You will find

that the cursor will go no further than the last line of text. If you need to move

D 5

further down, perhaps to begin another paragraph, you must press to

add extra lines.

Clearly, moving through a long document using cursor keys alone can be

somewhat tedious. Take the cursor back up the text by holding down and

pressing the up arrow key. The effect of is to make the cursor jump in

blocks of one screenful rather than one line at a time - useful for scanning

quickly through a document. Another facility for speeding up movement

around a document can be seen on function keys f1 (TOP OF TEXT) and

f2 (BOTTOM OF TEXT). Their purpose is self-evident.

GRANTI contains several mistakes, each of which can be easily corrected

using VIEW. Firstly, if the letter has been delayed, the date may have to be

changed. Using a typewriter the alteration could be made with correcting fluid

but the result is unlikely to be entirely satisfactory. In fact, when a letter

contains more than one or two mistakes, the only realistic option is to retype

the letter. VIEW enables you to correct such mistakes quickly and

undetectably .

Take the cursor to the first character of the date and type:

5 March

Your new date will replace or overtype the one on the screen. A few characters

from 26 February will remain but these can be removed by moving the cursor to

the space beyond y and using

As a result of changing the date, the reference in the first sentence to last

month will have to change to in January. Do this now by overtyping.

The next mistake can be seen in line 2 where the word with has been

inadvertently typed twice. It is possible to overtype one of the words with

spaces, but unless the whole line were to be retyped this would leave a large

gap between two words. Take the cursor to the w of the first with and press:

f9 (DELETE CHARACTER)

You will see the character disappear and everything to the right of the cursor

will move over to close the gap. The cursor should now be on the letter i. Press

f9 to delete this and twice more to delete the t and the h.

On line 5, a letter has been omitted from the word development. Place the

cursor on the letter p and press:

f8 (INSERT CHARACTER)

Everything to. the right of, and including, the cursor position will move to the

right to make an extra space. Now type o and the correction is complete.

The next mistake occurs towards the end of the paragraph where a line of text

D 6

has been omitted after the word important. Place the cursor anywhere on the

line below and press:

f6 (INSERT LINE)

All lines of text below and including that line will move down to make room for

a new line to be inserted. Take the cursor to the left hand end of the blank line

and type:

therefore, that all members contribute to the effort

The final error in this paragraph can be seen at the bottom where a line has

been typed twice. Put the cursor on the bottom line and press:

f7 (DELETE LINE)

By this time, your paragraph will have lost its neatly formatted appearance.

Insertions and deletions will have left some lines shorter than they should be,

others will be too long. This situation can be easily remedied. Place the cursor

on the top line of the paragraph and press:

f0 (FORMAT PARAGRAPH)

The effect of this is to reposition all text from the line containing the cursor

down to the end of the paragraph so that a neat format is maintained. Note

that justification should be switched on, as shown by a J at the top of the

screen, so that the paragraph will be formatted as justified text. If, after

formatting, the paragraph is unjustified, press:

+ f3 (JUSTIFICATION)

and format the paragraph again-

Having corrected the first paragraph, you should be able to correct the errors in

the remainder of GRANTI. Remember to format blocks of text as necessary,

either following each correction or after editing a complete paragraph - the end

result should be the same.

D 7

Your new version of GRANT1 will look something like this:

Sheen & District Historic Buildings

Preservation Society

101Nestlyn Close

Briar Common

Sheen SH2 4WJ

5 March

Dear Member

Following our Annual General meeting in January, I wrote

to the OCP Trust with a view to obtaining financial

assistance towards our proposed renovation work on Steem

Priory. I hope members will appreciate that the Sheem

Priory project is the most ambitious development that

the Society has undertaken. It is particularly

important, therefore, that all members contribute to

the effort that will be required if the project is to

be a success. I received a reply from Mr Beeswing of

OCP, of which the following paragraph is an extract.

"The CEP Trust does not normally contribute towards

restoration work on buildings intended for business use.

However, we are aware that if the priory were not

restored, it couldnean thee loss of a building of great

historic interest. Consequently, an application for

assistance from the Trust would te favourably

considered. "

It wrauld seean that Mr Beeswing is sympathetic to our

cause and I suggest that we forward an application to

the OCP Trust as soon as possible. I would be interested

to hear suggestions from members as to what form such an

application should take. Suggestions shculd be sent to

me bythe endof March, in time for me to present them

to the executive meeting on April 6th. A prempt reply

would be rnuch appreciated in order that I rnight meet

that deadline.

Yours sincerely

Martyn Giltert (secretary)

D 8

After checking that all mistakes have been corrected, you will want to save

your new document onto a disc. Even if you intend further editing in the same

session, it is a wise precaution to save your text at regular intervals. Then, if

you should accidentally lose the document from memory (perhaps because of a

power failure), only your most recent alterations will need to be done again.

To save your text file, first decide upon a filename. As the original document is

called GRANTI we would probably name the second version GRANT2.

Remove the Welcome disc from your disc drive and replace it with a disc onto

which files can be saved. Type:

SAVE GRANT2

Next time you come to work on your document, you will be able to load it by

typing:

LOAD GRANT2

Block operations

The editing facilities that you have used so far, with exception of f0

(REFORMAT PARAGRAPH), affect no more than one line of text at a time.

However, facilities are available that operate on complete blocks of text. You

can try these techniques by entering the song Ten Green Bottles.

Press to return to the command screen and clear the workspace by

typing:

NEW

Press „ again to switch to the text screen and type in the first verse as

shown on the next page. Note that in this case you will have to press at

the end of each line because each is shorter than the standard ruler shown at

the top of the screen.

Ten green bottles, hanging on the wall

Ten green bottles, hanging on the wall

And if one green bottle should accidentatty fall

There'd be nine green bottles, hanging on the wall

You can quickly produce the entire song by using the COPY BLOCK facility.

First indicate which block of text is to be copied. This is done by setting markers

at the start and finish of the relevant block which, in this case, is the entire

verse.

Position the cursor on the T at the beginning of the first line then press:

 + f7 (SET MARKER)

The characters MK appear at the top left of the screen. Then press:

D 9

1 to indicate that you are setting the position of marker 1.

A white block will appear indicating its position.

Now move the cursor to the line below the end of the verse and press:

 + f7 (SET MARKER)

Press:

2 to indicate that you are setting the position of marker 2.

Another white block appears, indicating the position of the second marker.

If you press and examine the command screen header, you will see that

confirmation of the fact that you have positioned markers 1 and 2 is given by

the additional line:

Marker(s) set 1,2

Press to return to the text screen and move the cursor to the point at

which you want the copy to appear; in this case, immediately below your second

marker. Finally, to execute the copy, simply press:

There should now be two identical verses in the document and the screen will

look something like this:

Note that the two markers are still set, so by positioning the cursor and

pressing the verse can be reproduced as many times as needed. Complete

the song by creating ten copies of the verse then editing each one as necessary.

D l 0

Another useful operation enables blocks of text to be moved from one part of a

document to another. Set markers to indicate one of the verses in your Ten

Green Bottles document. Position the cursor elsewhere in the document and

press:

 + f0 (MOVE BLOCK)

The marked verse will be transferred to the cursor position. You will notice

that, unlike the COPY operation, the markers are automatically cleared after

MOVE BLOCK. The reason for preserving markers after copying is to facilitate

a repeated copy as when compiling Ten Green Bottles.

The other block operation to be aware of is deletion, executed by setting

markers and pressing:

 + f0 (DELETE BLOCK)

Any text below the deleted block moves up to close the gap.

Using CHANGE

Suppose you have typed in a document and you realise that a word has been

consistently misspelt. You could search for each mistake and edit it

independently. In a long piece of text, however, you may have to make the

same correction many times and one or two occurrences may be missed.

It is easier using the CHANGE facility, which can be illustrated with your Ten

Green Bottles document.

From the command screen, type:

CHANGE/green/red/ VIEW responds with a message such as

50 string(s) changed

If you switch to the text screen and examine the document you will see that all

occurrences of green have been changed to red.

You can also change the into a by typing:

CHANGE / the/ a/

but the result may not be quite what you expect. The problem is that VIEW

has, quite rightly, identified every occurrence of the whether it occurs alone or

as part of there, they, lithe or pathetic. One way to overcome this problem is to

apply CHANGE not to the alone, but to the together with spaces before and

after. In other words, VIEW will search for / the / rather than /the/

You can try this technique by changing a back to the, avoiding the creation of

words like hthenging and fthell. Switch back to the command screen and type:

D ll

CHANGE/ a / the /

Switch to the text screen and observe the effect.

You can apply CHANGE to phrases as well as single words. For example:

CHANGE/ insect / small invertebrate segmented animal /

The slash (/) in a CHANGE command is known as a delimiter because its

function is to mark the beginning and end of a word or phrase. A space may be

used instead of a slash provided no other spaces are required in the command.

For example:

CHANGE kangaroo wallaby

As a diversion, readers may like to use CHANGE on single characters in order

to decode the following passage. Despite its appearance, only five CHANGE

operations are necessary!

Kzch ykzj, zw whk hkighw of whk wujiqw qkzqon, ouj ciwy

zcwq zq hoqw wo „ahouqzndq of viqiwojq fjom homk znd

ovkjqkzq. Ylw in whk midqw„ of zll whiq zcwiviwy, whkjk

zjk liwwlk ozqkq of chzjm znd pkzck.

The CHANGE operation is just one of a group of global operations that provide

very powerful editing facilities. Treatment of more advanced techniques is

outside the scope of this introduction and users are advised to consult the

VIEW User Guide.

More on rulers

Clear any text that you have typed in by switching to the command screen and

typing:

NEW

If you are not already in mode 131 (shown as 'Mode 3' at the top of the

command screen), type:

MODE 131

Press to switch to the text screen.

As you saw earlier, the state of the text ruler determines the maximum line

length for the text below it. The ruler at the top of the current screen is the

standard ruler for mode 131 and it corresponds to a line length of 74 characters.

Each mode has its own standard ruler and that for mode 135, for example,

corresponds to a line length of 34 characters.

Put another standard ruler on the screen by pressing:

 + f5 (RULER)

D 12

It is good practice always to put in a ruler before starting to enter text. This

ensures that your document is not mistakenly reformatted under a different

ruler at a later date.

Now type in the text shown below. Remember that there is no need to press

 at the end of each line.

You may have twken this morning to the sound of a

microprocessor controlled alarm clock. The clothes that

you put on and the breakfast you ate were probably

produced under computer control.

The layout of the text can be altered by editing the current ruler. Take the

cursor up to the ruler and change it to look like the one shown below.

Remember, you can use any of the usual editing facilities such as overtyping

and deleting characters.

>.......*.......*.......*.......*.......<

Now press to move the cursor from the newly edited ruler to the first

line of the text. You will notice that the ruler at the top of the screen now

matches the new current ruler. The top ruler always acts as a reminder as to

which ruler is operative in the current cursor position. Press:

f0 (FORMAT PARAGRAPH)

D 13

You may want the next paragraph to have a different ruler setting, in which

case a new ruler must be added to the document. You can do this by pressing:

 + f5 (RULER)

to put a standard ruler in the required position, then editing the ruler as

appropriate. Sometimes it may be more convenient to copy the current ruler

and edit that -- pressing + together will generate a copy of the

current ruler at the current cursor position. Having created your new ruler,

any text typed in below it will be subject to the new margin setting, as shown

below.

VIEW recognises a ruler by the two dots in the left margin. They are normally

followed by a line of dots and asterisks bounded by margin stops > and <. The

left margin stop is omitted on standard rulers. With two exceptions, the

characters that appear between the margin stops > and < are irrelevant so it

makes sense to adopt the convention of using a line of dots as this renders the

ruler immediately recognisable to the user.

The asterisks in standard rulers are TAB stops. Their function can best be

illustrated by putting the cursor on a blank line then pressing the key

two or three times. The cursor jumps from one TAB position to the next. This

facility is particularly useful in constructing tables. Having used to move

the cursor across the screen, the effect of pressing may surprise you.

Instead of moving by one character position at a time, the cursor jumps back

from each TAB stop to the next. This effect is less surprising when you realise

that TAB is, in fact, an invisible character. Cursor movement, therefore, by

D 14

means of arrow keys or the key, is still taking place from character to

character.

The other special character that may be used in a ruler is b for bleep. This

corresponds to the bell that signals an approaching end-of-line on a typewriter.

A bleep will sound whenever you type past a position at which a b has been

inserted in the ruler.

Back to GRANT2

Load the document GRANT2.

It is often necessary to carry out wholesale changes to the way in which a

document is structured and formatted. Consider the suggested changes that

have been marked up on GRANT2 as shown below.

D 15

Firstly, the name of the society should be centred on the page. You could do this

by inserting spaces but you would have to count characters or judge the right

position for both lines. Also, if the width of the text were to be adjusted at a

later date the positioning would no longer be accurate.

It is far easier to use one of the stored commands available in VIEW. These

commands are entered in the stored command margin to the left of the text

area. They have no immediate effect but are simply stored until the document

is printed, whereupon they come into operation. On this occasion you need the

stored command CE, which stands for CEntre. Its function is to centre text

according to the current ruler, so if a new ruler is inserted the relative position

of the text will still be correct.

Switch to the text screen and take the cursor to the first of the two lines to be

centred. Press:

+ f 8 (EDIT COMMAND)

The cursor moves into the left margin. Now type:

CE

The command CE remains in the margin and the cursor moves back into the

text area.

Take the cursor to the second line to be centred and repeat the operation.

The stored command CE has no immediate effect, but there is a way to preview

the document as it would appear if it were printed. Switch to the command

screen and type:

SCREEN

You should see the first part the document with no ruler and with the name of

the society centred. In order to preview the next screenful, press and release

. Once the complete document has been SCREENed, press to

return to the text screen.

The SCREEN command is a convenient way of checking on the appearance of

text before it is printed. The effects of rulers and of stored commands can be

previewed before committing anything to paper.

You can use another stored command to position the address at the top of the

letter. Take the cursor to the first line of the address and press:

+ f8 (EDIT COMMAND)

Now type:

RJ

D 16

Additional features of VIEW

This concludes the introduction to word processing using VIEW. By now you

should have an understanding of what word processing is all about and a

working knowledge of VIEW. As you will probably appreciate, we have been

able to describe only the basic features of the word processor. Given below are

outlines of some of the more advanced features of VIEW, operational details of

which can be found in the full VIEW Guide which is available from your

supplier.

Macros

A macro is a piece of text that is given a unique 'name', and may then be

incorporated in the main text as often as required merely by repeating the

name in the margin. A macro may also be modified so that each time it is

called, different words or phrases, known as parameters are inserted at

particular positions.

A common use of macros is in the printing of personalised standard letters, as

mentioned in the introduction to this chapter. The letter can be printed as

many times as needed and each copy will include a different name and address.

Another possibility is in the production of documents which are made up from

standard pieces of text, for example legal contracts, where details are inserted

to customise the document before printing.

The Card Index program, which we looked at in the section on the Icon

software, has a facility for 'exporting' the names and addresses it stores so that

they may be used in preparing personalised letters. The 'Transfer Index' option

in the Card Index's menu generates a file containing VIEW macros which may

be READ into VIEW.

Global editing

You have used the CHANGE command to alter words throughout a document.

Similar operations include SEARCH, which will locate items of text and

REPLACE which performs the same job as CHANGE but gives you the option

to accept or reject each alteration.

Special symbols can be used which enable all of these facilities to operate on

invisible characters such as tabs and carriage returns. In addition there is a

wildcard symbol which can be used, for example, to search for all occurrences

of a word even though some occurrences may be misspelt.

Further printing facilities

Additional printing facilities include the use of headers and footers. They can

be used to print a document with, for example, automatic page numbering and

D 22

Press until the screening is complete, then to return to the text

screen.

You will come across more stored commands later in this chapter. For the

moment, we will move on to the other changes to be carried out to GRANT2.

A block of text has to be moved from the first paragraph to the end of the letter.

To do this, set markers 1 and 2 to indicate the beginning and end of the block.

Unlike the example you saw in the last section, this block lies in the middle of a

paragraph so you cannot set markers on blank lines. Simply set marker 1 on

the I of line 4 and marker 2 in the space immediately following the last

character of the block. This is before the I on line 9.

Take the cursor to the point at which you want the block to appear; in this case,

two lines down from the end of the final paragraph. Press:

+ f 0 (MOVE BLOCK)

If, as in this instance, moving a block has destroyed the format of the text,

simply reformat the affected paragraphs by positioning the cursor on the first

line and pressing:

f0 (FORMAT PARAGRAPH)

The next alteration to GRANTE' involves paragraph two, which has to be

reformatted to a narrower text width. This involves inserting and editing a new

ruler above the relevant paragraph. As you have seen, however, each ruler

affects all the text below it until the occurrence of the next ruler. As we only

want one paragraph to be reformatted, it will be necessary to insert a new ruler

below the paragraph as well as above it.

Position the cursor above the first line of the paragraph and press:

 +

to obtain a copy of the current ruler. Now put another copy of the current ruler

below the last line of the paragraph. The first of these two rulers can now be

edited to obtain the required format.

D18

Note that no account has been taken of the tab positions (*) as tabs are not be

used in this particular document. For documents in which tabulation is

required the positions of the asterisks must be adjusted accordingly.

Now all that remains is to position the cursor on the first line of the paragraph

and press f0 to reformat.

Another alteration to GRANT2 involves deleting the final sentence of what is

now paragraph three. Position the cursor on the letter A at the beginning of the.

sentence and press:

f3 (DELETE END OF LINE)

The following two lines of text can be deleted by positioning the cursor and

pressing:

f7 (DELETE LINE)

Finally, it appears that OCP should have been typed as OPC. Carry this out

using CHANGE.

Having completed your second edit, the document will be ready to save again

onto a disc. If you choose to keep the same name that appears at the top of the

command screen, then all that is necessary is to type:

SAVE

VIEW will assume that you require the filename currently shown.

Note that the filename on the command screen can be changed at any time. For

example, to change the filename to FRED type:

D 19

NAME FRED

It is not always wise to save an edited document under its former name. With a

disc system, the new file will overwrite any other file with the same name. In

many cases, this is perfectly acceptable but you may decide you want to keep

older versions, perhaps as a security measure. If this is the case, then it makes

sense to use a numbering system such as GRANTI, GRANT2 GRANT3 and so

on. Never include spaces in your filenames. Everything following a space will

be ingored so that GRANT I, GRANT 2 and GRANT 3 will be treated as the

same name.

Printing from VIEW

When instructed to print, VIEW sends codes to a printer driver program

which controls the operation of the printer. The default driver program

contained in VIEW is designed to drive EPSON printers (one of the most

common brands) although it is possible to use more sophisticated drivers. We

will come to these later but for the moment it is assumed that you are using the

default printer driver contained in VIEW.

There are two ways to print. If you want to print a copy of the file that is

currently in the computer's memory, all that is necessary is to switch to the

command screen and type:

PRINT

Alternatively, you can print from a file, or files, held on disc without affecting

the text currently in memory. To print a file called GRANT3, for example, type:

PRINT GRANT3

Try printing a few pieces of text to get used to the method. Remember, if you

want to see a simulated print-out on the screen before committing anything to

paper you can SCREEN a file as described on page D17. You will have to do this

if you do not have a printer connected to the computer.

If you print a document that is longer than one page, VIEW assumes a page

length of 66 lines of text and splits the text into pages at appropriate points.

The page length can be changed by entering a stored command at the

beginning of the document. Press:

 + f8 (EDIT COMMAND)

The cursor moves into the left margin. Now type:

PL

The command PL remains in the margin and the cursor moves back into the

text area. Now type:

50

D 20

This number specifies the number of lines in the new page length.

Subsequent PRINT or SCREEN operations on that file will now result in a page

length of 50 lines.

Sometimes page breaks occur at inconvenient points such as in the body of a

table or immediately following a heading (SCREEN shows you where they will

occur). This may be remedied using the stored command PE -- which stands for

Page Eject. The command is placed in the margin wherever the printer is

required to move on to a new page. It overrides the automatic page breaks

specified by the PL stored command.

On page D 16 you were introduced to the stored commands CE and RJ. Now you

can add PL and PE to the list. These commands serve to illustrate the way in

which stored commands operate in VIEW and they are sufficient for most

general printing tasks. However, there are many more stored commands

available in VIEW and users are referred to Appendix 9 and the VIEW User

Guide.

Highlight codes

To allow you to introduce 'special effects' such as underlining and emboldening

of words into your text there are two function keys with the legends 'Highlight

1' and 'Highlight 2'. These are displayed as a reversed line and asterisk

respectively. Highlight 1 is used ta underline text by placing the symbol at the

start and end of the text to be underlined. Highlight 2 will 'double-strike' text to

produce a bold effect, and this is similarly employed by inserting the Highlight

2 character before and after the text which you wish to be affected. Any

amount of text, from a single letter to several pages, can be affected by the

highlight codes. You can use both at the same time, for very strong emphasis,

by placing one of each character at the start and end of a piece of text.

Printer drivers

Because printers differ in the codes which activate special features, a 'Printer

driver' program is necessary to translate codes on VIEW's behalf and control

the printer. VIEW has a printer driver for EPSON .compatible printers built in,

but you may wish to change this for another by means of the PRINTER

command.

Typing PRINTER and pressing will cause the printer driver to be reset

to a simple type, with a corresponding change to the text at the top of the

command screen. This printer driver is suitable for printers with limited

facilities.

D 21

a running title. The illustration below shows one effect that can be achieved by

differentiating between odd and even numbered pages.

D 23

D 24

E. The ABC Word Processor

Introduction

Your Welcome disc contains ABC, a simple-to-use word processor designed to

meet the needs of young writers (aged seven years and upwards). It has been

designed to be easily operated and quickly understood. Users can begin writing

immediately and then move on to ABC's more sophisticated features whenever

they wish.

This chapter is a guide to the use of ABC. It is aimed primarily at parents and

teachers in order that they can introduce children to ABC at an appropriate

pace, although older children will be able to read the chapter with little or no

assistance.

ABC offers three types of screen display: WRITE, READ AND WRITE and

SLATE. Switching between displays is a simple matter of pressing the red

function keys. Text can be displayed, edited, printed and stored. Writers

familiar with word processors will appreciate the facilities for word

wrap-around, right justification, centreing and formatting.

Another feature of ABC is the use of picture symbols. These are shown on the

ABC function key card and appear at the top of the screen so that it is always

very easy to see what is happening.

Starting with ABC

Select ABC from the Applications list in the Icon main menu; after a short

introduction you will see the WRITE screen display.

Place the function key card on the top of the keyboard. Ensure that the name

and the symbol for each function line up above the following function keys on

your microcomputer.

E 1

If you are new to word processing, experiment by typing in some text. ABC is

generally silent in operation although a warning buzzer is heard when no more

text can be entered.

Lower case: To obtain a lower-case letter or symbol on the lower level of

two-symbol keys first ensure that both the CAPS LOCK and

SHIFT LOCK lights are off. (Press the appropriate key if

either is on.) Typing now will give you letters abcde. .. and

numbers 12345. - ., plus other symbols including , ./; :

Upper case: To obtain a capital letter or symbol on the upper level of

two-symbol keys hold down either of the two keys as

you press the appropriate key. To obtain these continually

you should press the SHIFT LOCK key (light on). Press this

again (light off) to disengage.

Spaces in the text: To obtain a single space in text press the

 Pressing the key takes you to the next writing line.

Pressing and together takes you to the

beginning of the previous line.

„ The ESCAPE key (top left of the keyboard) may be used to

interrupt any function and take you to the top of your text in

the WRITE screen display.

 Pressing the BREAK key (top right) will erase the ABC

program, and any text you have typed in, from the

computer's memory. As there should never be a need to press

BREAK it is advisable to use ABC with the break key lock

On.

Arrow keys When typing with ABC a white block rests on the line at the

point where the next character can be entered. This is the

cursor. The arrow keys may be used to move the cursor

atound the screen. If a key (bottom left or right) is held

down when an arrow key is pressed the cursor will move

more rapidly.

 If you make a mistake and realise it immediately afterwards,

pressing (bottom right) will remove the character to

E 2

the left of the cursor -- and allow you to replace it with

another. If you realise your mistake later and wish to correct

a character or word within the text, use the arrow keys to

position the cursor over the character you wish to remove.

Press . Type in the character(s) you wish to insert. Use

the arrow keys to move on.

 This switches on the COPY facility (described later). The

 key switches off the COPY facility.

Note: When you press the keys that show these symbols

ABC will display the followmg characters on the screen:

Word processing with ABC

If you have already tried out the keyboard on the initial WRITE screen you will

have noticed some of the automatic functions which ABC has to offer in the

way that your text is arranged. At this point you may find it useful to look at

these functions and others through processing a simple piece of text. A

traditional 'Thank you' letter will serve as a good example.

Writing new text

Make sure that that CAPS LOCK and SHIFT LOCK lights are off. If you have

already entered some text you will need to delete it as follows:

Press the OPTIONS function key-

Select option 8 'delete text'.

The screen will show:

Are you sure that you want to delete this text?

Answer Y, then press the labelled function key f0 to return to the WRITE

screen.

Now try typing in the following text:

E 3

Home Sweet Home

32 Owl Way

Hooting

Midshire

29th December

Dear Auntie Edna,

Thank you very much for your kind

present. Socks are always useful,

and they match the shirt you gave

me last year. How clever of you to

remember that it was orange and

purple as well! My friends have all

commented on the bright effect.

I hope that you and Uncle Harry are

both well and have enjoyed that

holiday from work. We've all been

having fun on our new computer. I

expect you guessed that this letter

wasn't written on an ordinary

typewriter! By the way, it's a BBC

Master Series microcomputer and you

can buy lots of 'programs' to go

with it. .. in case you can't find

any different coloured socks next

year.

Your loving nephew John.

Now you can 'save' the text as a file on a disc.

Saving files

Note: Do not use the Welcome disc. Use a formatted disc of your own for this

purpose (see Chapter F).

Press the red function key labelled OPTIONS.

Press number key 5 to select the SAVE TEXT option.

Type in a filename, say, EDNA.

When the file has been saved you will again see the message:

Press number (1-9).

Now that you have saved one version of your letter to Auntie Edna you can

experiment with the text on the screen and still be able to load the original if

E 4

you wish. If you want to try this, press the WRITE function key, then alter the

current copy of the letter by adding or deleting a few words so that this copy

will differ from the original. Now load the original as described below.

Loading files

Press the red function key labelled OPTIONS.

Press number key 4 to select LOAD TEXT option.

Type in the filename EDNA.

Press

When the file has been loaded you will again see the message:

Press number (1-9).

When loading is complete press the red function key labelled WRITE. The

original EDNA text will overwrite the altered version. If you increase the

length of the letter, some of the altered version will remain below the original

text, as files are loaded into the top lines of the WRITE screen.

Features of ABC

You may wish to use the EDNA file to practise the techniques described in this

section.

Word wrap-around

Each line of writing may contain a maximum of 35 characters (including

spaces). As you type a line of text the number of words that will fit into the line

is calculated automatically. Any word that will not fit into the available space

at the end of the line is transferred whole to the beginning of the following line.

This automatic function is called word wrap-around and it means that you will

not need to press the or arrow keys every time you approach the end of

the line -- with wrap-around you can keep typing.

Scrolling

The ABC screens will display text a section at a time. Each screen is like a

window. Text is moved past the windows by pressing the UP and DOWN arrow

keys (or the function key arrows on the READ AND WRITE screen). When you

fill a screen with writing the text moves and a new line is made available for

you to write on. This up and down movement of text (like a roll of paper

winding or unwinding past the screen window) is called scrolling.

When words are inserted in the upper half of the WRITE screen the text scrolls

downwards. It will scroll upwards if words are inserted in the lower half of the

screen.

E 5

Deletion

ABC adjusts the system of deletion automatically to suit your immediate

requirements. Deletion to the left occurs when you press immediately

after writing or when there is no text at, or to the right of, the cursor position.

Deletion at the cursor position and deletion to the right occur when you stop

writing and use the arrow keys to move to the start of any text to be deleted.

Insertion

ABC will automatically move any existing text to make room for new text as it

is typed in.

Deleting lines

Use the arrow keys to position the cursor on the solid line beneath the words

you want to delete. You will notice that the cursor stands out from the line and

leaves a slight gap to either side. Press . The line of the text disappears

and the other lines automatically close up to fill the gap.

Inserting lines

Use the arrow keys to position the cursor on the solid line beneath the words:

me Last year. Hew clever of you to

You will notice that the cursor stands out from the line and leaves a slight gap

to either side. Press the or to insert a blank line in the text.

Use the arrow keys to move the cursor to the beginning of the blank line if you

want to type in new text.

Note: When inserting blank lines the moves the cursor down to the

new line, but positions the cursor on the solid line beneath the new

blank line and may be pressed again to insert more lines.

Tidy

Sometimes you will erase a word in the middle of a text or replace a long piece

of text with a short one. This will give the text an uneven appearance. Try

deleting:

present, clever and purple

from the first paragraph of your letter.

Move the cursor to the top line of the text you wish to tidy and press the TIDY

function key. This will reshuffle the entire block of text from the line that the

cursor is on to the next blank line, 'centred' line or 'fixed' line.

E 6

Centre

You will have noticed that ABC automatically lines text up against the left

margin (left justification) although the right margin is not regular. You might

prefer to present each line of text in the middle of the screen with an equal gap

at the beginning and end. This can be done by using the arrow keys to move the

cursor on to the line of text you wish to centre. Press the function key labelled

CENTRE.

The line of text is automatically centred and the CENTRE symbol appears at

the top of the WRITE screen. If you return to this line in the future the symbol

will reappear to remind you that the line has been centred. It is then possible to

uncentre the line by pressing the CENTRE key again.

Note: If a line fills the width of the screen already, it will not move-

Fix line

You may wish to ensure that certain lines within your text (such as addresses

and sub-headings) are always left as originally entered on the screen, and not

reshuffled when the TIDY function is used (or when printing). This can be done

by pressing TAB while the cursor is on that particular line of the text. The line

is now 'fixed', and an exclamation mark will appear at the top of the screen to

remind you of this whenever the cursor is on that line.

To 'unfix' a line you should press TAB again.

Tug

TUG gives you the fastest way of moving whole single lines. Use the arrow

keys to place the cursor on the line of text you wish to move.

Press the function key labelled TUG. The text to be moved will now be coloured

yellow (highlighted in monochrome).

When TUG is being used the yellow TUG symbol appears at the top of the

screen.

Use the arrow keys to reposition the coloured text:

-----> moves text forward past the next unmarked word

<----- moves text back before the last unmarked word

v moves text forward (i.e. down) one whole line

^ moves text back (i/e. up) one whole line

TUG can be switched of by pressing the labelled key again.

Note: It is possible to create a buffer line of characters containing no spaces

which mark the limit beyond which text cannot be tugged.

E 7

Paint

PAINT allows you to move more or less than whole single lines.

Press the arrow keys to place the cursor on the (first) word you wish to move.

Press the function key labelled PAINT. That single word will now be painted

yellow (highlighted) and may be moved alone. You can also spread the paint

using the arrow keys:

-----> spreads the paint to the next word on that line

<---- spreads the paint to the previous word on that line

v spreads the paint to the next whole line

^ spreads the paint the previous whole line

Use to unpaint text.

When PAINT is being used the PAINT symbol appears at the top of the screen.

It may be switched off by pressing the PAINT key again.

In order to move painted text simply press the TUG function key and use the

arrow keys as outlines for the TUG.

Note: The TUG and PAINT operations require that at least three clear lines

remain at the bottom of a text.

Copying text

It is possible to copy text from an upper part of the screen to a lower part. The

original text will not be moved or deleted.

Use the arrow keys to move the cursor to the place where you want the copy to

appear. Tap at the bottom right of the keyboard once. The COPY symbol

will appear at the top of the screen and a second cursor will be created.

Use the arrow keys to move the smaller cursor through the text and place it at

the beginning of the section you wish to copy.

Keep pressing until you have copied all the text you require.

Press to clear the COPY function when you have finished-

WRITE, READ AND WRITE and the SLATE

There are three screen displays which offer different facilities for writing and

manipulating text: WRITE, READ AND WRITE and the SLATE. All three are

reached by simply pressing the labelled function key at the top of the keyboard.

You may well find yourself switching frequently between the three when

working on a single document.

E 8

This is the main screen display with which the ABC program begins, and to

which the program will return whenever the WRITE function key or ESCAPE

is pressed.

The READ AND WRITE symbol appears at the top of the screen.

Four lines at the bottom of the screen can be filled with the immediate text you

are working on. At the same time the main 'reading frame' of the display allows

you to view up to 11 lines of your text.

You can LOOK UP or LOOK DOWN the text in the reading frame by pressing

the labelled function keys.

The text in the lower part of the screen can be edited as on the WRITE screen.

 will allow you to copy text from the reading frame to the lower writing

area.

The SLATE symbol appears at the top of the screen. A cursor allows you to

write on either the bottom four lines or the upper 'slate' area. The SLATE offers

basic 'note-book' facilities. It can be used to jot down ideas and notes without

affecting the main text. will delete the character that the cursor is on

and backspace one character. To retype something, use the arrow keys to

reposition the cursor, then simply type over the old text.

You can scroll up or down the text in the lower writing area by moving the

cursor to the beginning or end of the line using the LEFT and RIGHT arrow

keys.

The text in the lower part of the screen can be edited as on the WRITE screen.

 will allow you to copy text from the 'slate' to the lower writing area.

Options

The OPTIONS page is reached by pressing the labelled function key at the top

right of the keyboard. (Be careful not to press the key!)

All nine options are obtained from the OPTIONS page by pressing the

appropriate number key as requested at the bottom of the screen. When you

have finished using the options press the labelled function key f0 to return to

the WRITE screen.

1 Special options

See following section, Special options.

2 Look for

This option allow you to look for a particular word (or words) in your text.

Type in the word you wish to find. (Be sure to use capital/lower case where

appropriate. A maximum of 18 characters is allowed.)

E 9

Press

The WRITE screen display appears and the cursor moves through the text

until it finds the first occurrence of the word in question.

The message:

Stop here? Press Y or N

will appear at the top of the screen.

Press Y if you wish to edit that word or area of text.

Press N if you wish to proceed to the next occurrence of the word.

The screen will return to the OPTIONS page if the word is not found. Press the

WRITE, READ AND WRITE or SLATE function keys to resume writing.

3 Replace with

This option allows you to replace one word (chosen using the LOOK FOR

option) with another. Type in the new word (maximum of 18 characters).

Press

The WRITE screen display ap„„pears and the cursor moves through the text

until it finds the first occurrence of the word to be replaced.

The message:

Replace? Press Y or N

will appear at the top of the screen.

Press Y if you wish to replace that word.

Press N if you wish to proceed to the next occurrence of the word you wish to

replace.

The screen will return to the OPTIONS page if the word is not found. Press the

WRITE, READ AND WRITE or SLATE function keys to resume writing.

4 Load text/5 Save text

These two options have already been described but the following points are

worth noting.

New files loaded into ABC will overwrite any text already there. The new file

will load into the top lines of the WRITE screen. The remaining lines of an

original text which is longer than the new one will not be deleted. By inserting

blank lines above the original text on the WRITE screen you can avoid

overwriting and use this facility to incorporate new blocks of text.

E 10

6 Display

This option allows you to display your text in double height characters. A

maximum of 11 lines can be displayed at one time.

Use the UP and DOWN arrow keys to move through the text.

The following messages will appear at the bottom of the screen when

appropriate.

Use down arrow key to go on and

Use up arrow key to go back

The LEFT and RIGHT arrow keys may be used to change colour or produce a

flashing white display.

Press the WRITE, READ AND WRITE or SLATE function keys to resume

writing or press the OPTIONS function key.

7 Print

See section entitled Print options.

8 Delete text

When this option is selected you will be asked:

Are you sure you want to detete this text?

Press key Y if you wish to do so.

The main text (but not the 'slate') will be erased.

Press the labelled function key when you are ready to return to the WRITE.

READ AND WRITE or SLATE screens.

9 End

When this option is selected you will be asked:

Are you sure?

Press key Y if you wish to stop using ABC; you will be returned to the menu

system.

Special options

The special options can be regarded as 'switches' which control certain facilities

available at all stages of the ABC program. Press the appropriate number key

in order to 'change the switch'.

E 11

1 Auto key repeat

When switched ON this allows you to repeat a character or movement (such as

the writing keys, key or arrow keys) simply by keeping the particular

key pressed down.

2 Auto capitals

When switched ON a capital letter is automatically generated after a full stop,

a question mark or an exclamation mark. (You will have the chance to

and retype if you wish).

3 Usual delete

When switched ON the 'usual' method (i.e. that most commonly found

elsewhere) of deletion applies:

Pressing erases the character immediately to the left of the cursor. The

character in the same position as the cursor can be erased by pressing as

well as

When switched OFF the special ABC method of deletion applies (see

sub-section on deletion).

4 Line number/lines left

When switched ON two numbers are displayed at the top of the screen when

writing:

The TOP number (green) is that of the line on which the cursor currently rests.

The LOWER number (red) is that of empty lines available for text. (This

function is automatically switched on when you begin to run out of space.)

5 Use a * command

Press number key 5 if you wish to use a command such as *CAT, which will

give you a catalogue of files on a particular disc. * commands are also used to

select disc drives and to change filing systems (see page F 2).

Print options

When you select this option the screen displays a 'printing menu' which allows

you to control the actual presentation of your text on paper. The initial

selections are ready for use with A4 sheets of paper.

ABC includes automatic reshaping of lines so that you need not print the text

in exactly the same width as the screen display. The page width option controls

this reshaping: if you are creating newspaper-like columns you may want the

text in a narrow strip, but for most purposes you would want to spread the text

across the page.

E l2

Reshaping can be turned off altogether with the AS ON SCREEN option.

Sometimes, as in the letter to Auntie Edna, you may want most of your text to

be reshaped into wider lines but some of it (i.e. the address) to be left as it

appeared on the screen. To ensure that these parts are left alone, you should

'fix' the appropriate lines (rather as you do when centring) by pressing the TAB

key. An exclamation mark (!) appears at the top of the screen to show you when

the cursor is on a fixed line. Lines marked by the CENTRE function key will

adjust to the centre of all page widths.

Print options, and any centred or fixed lines, are saved with each text so that

identical printouts can be made quickly every time the texts are reloaded.

1 Page length

This sets the number of lines (from 5 up to 999) that will be printed before you

are prompted to insert a new sheet of paper. To change the page length: press

number key 1 and type in a new value followed by .

2 Width

This sets the maximum number of characters (from 15 up to 80) that may be

printed on each line. To change the line width: press number key 2 and type in

a new value followed by .

Note: Line width cannot be altered if the AS ON SCREEN option has been

selected.

3 Justify

When ON this stretches each line to reach the right-hand margin producing

regular blocks of text. 'Centred' and 'fixed' lines and the last lines of paragraphs

are not affected. Press number key 3 to switch the JUSTIFY facility on or off.

4 Double space

When ON a blank line will be printed between each line of the text. Press

number key 4 to switch the DOUBLE SPACE facility on or off.

5 Lonely lines

Occasionally a heading or the first line of a paragraph appears at the foot of a

printed page. This facility attempts to identify such 'lonely lines' and to move

them to a more logical position at the beginning of the next printed page. Press

number key 5 to switch the LONELY LINES facility on or off.

6 As on screen

When ON the text will be printed with the same width as the WRITE screen

(te. 35 characters per line). AS ON SCREEN may be used with or without the

JUSTIFY facility. Press number key 6 to switch the AS ON SCREEN facility

on or off.

E 13

7 Start printing

Press number key 7 to begin printing. Instructions for connecting and setting

up a printer can be found on page G 2.

Note: Attempting to print without a printer attached or with the printer

switched off will cause the program to 'pause'. If this happens, press ESCAPE

to resume writing.

Converting ABC files for use with View

The Welcome disc supplied with your computer contains a program called

INTER which will convert a file produced by ABC into a form that can be read

by the View word processor.

Select INTER from the list of applications provided in the menu system.

INTER provides four options:

1 Load ABC file

2 Save VIEW file

3 Use a * command

4 End

Option 1 asks you for the name of the ABC file you wish to convert and option 2

asks you for the name you wish to use for the converted file. Use a different

filename for the new file if you wish to retain the original ABC version.

Option 3 allows you to use * commands (such as *CAT etc.), just as in ABC.

Selection of option 4 will return you to the computer's menu system.

E 14

F. Filing Systems

What is a filing system?

Virtually every computer application (barring the most trivial) requires some

kind of access to an external storage medium, for example a magnetic disc, with

which to save information. There are several possible reasons for this, the most

common one being that the contents of the computer's memory is not

maintained when you turn off the power. Also, it is quite usual for programs to

need to work with more data than can be accommodated in the main memory of

the computer along with the program itself. Clearly, if programs and data are

to be stored outside the memory in this way, the user must be provided with a

convenient means of referring to them, in order to:

-- retrieve (LOAD) existing items;

-- access existing items selectively (i.e. without having to load them in their

entirety);

-- store (SAVE) new items.

The items are normally referred to as files because of their similarity to the

cardboard files offices use to store information tidily. A filing system provides

a convenient way of performing these tasks, along with a variety of other

'housekeeping' facilities.

Standard Filing Systems

Your computer comes equipped with two standard filing systems:

-- the ROM Filing System (RFS)

-- the Advanced Disc Filing System (ADFS)

thus enabling the computer to access files held on Read-only Memory (ROM)

chips and on conventional flexible ('floppy') magnetic discs. Additionally,

further optional filing systems can be added to the computer enabling it, for

example, to act as a workstation on an Econet network.

Whenever the computer is switched on, or subjected to a 'hard' break

(+), it automatically selects the filing system which has been

designated by the contents of the configuration memory (see page B l0). This

becomes the current filing system and remains in force until you instruct the

MOS that you wish to use a different system (using commands described

below).

It is worth noting that each filing system is, as far as possible, compatible with

the others. This means that the command required to, say, load a file into

F l

memory is equally applicable in the ROM Filing System, the Advanced Disc

Filing System, the Disc Filing System and even the Advanced Network Filing

System. This compatibility exists to make life easier for you, the user, and it

minimises the number of commands that you need to remember in order to

operate your computer. Of course some filing systems have facilities, and

therefore commands, which are not shared by others; for example it is not

possible to SAVE files in the ROM Filing System because of the read-only

nature of the storage medium.

The BASIC language and other applications programs available for the

computer each have their own built-in commands for communicating with the

filing system, and their purpose and effects are described in the appropriate

documentation. What follows in this chapter is a description of the way in

which files are stored by each filing system and a discussion of the MOS

commands necessary to use the filing system at a fairly elementary level. The

complete range of commands is summarised in Appendix 5.

The ROM Filing System (RFS)

Selected by: *R0M

The ROM (Read-only Memory) Filing System is provided for the purpose of

accessing files held in ROM chips, which may be inserted into sockets inside

your computer. Storing files in ROM chips means that they are readily

available to the computer, since information may be read from them almost as

fast as the computer can request it.

ROM chips are essentially a permanent form of storage and because they

contain no moving parts they are simple and reliable. For these reasons they

are also used to store information separately from the filing system; all of the

BASIC language and MOS, for example, are stored in ROMs inside the

computer, and many of the commercial programs available for Acorn

computers are also provided in ROM.

Of course, despite their name ROMs can in fact be 'written to', usually at the

time of their manufacture or with a special 'programmer'. More advanced users

of the computer may wish to put their own software in ROM, in which case they

should consult the Master Series Advanced User Guide for further information.

The Advanced Disc Filing System (ADFS)

Selected by: *ADFS

Discs

The Advanced Disc Filing System (ADFS) is the method of external storage

provided by your computer; the term 'advanced' refers to its capabilities and

performance rather than its suitability for new computer users. The ADFS

F 2

provides a powerful file storage facility based on conventional 3.5" floppy dises.

Each disc consists of a thin sheet of plastic coated in a magnetic material, and

this is housed in a hard protective shell to prevent it from being damaged

during use. Files are recorded on the disc in a series of concentric rings called

tracks, each of which is divided up into 16 sectors:

The discs used in your computer have 80 tracks and are double-sided (i.e.

both sides of the disc are used to store information) and the computer reads

them with a device called a disc drive. The disc drive rotates the disc at a

precisely regulated speed between the read/write heads which alter the

magnetic properties of parts of the disc in order to store information. When

both sides of the disc are used each disc will store about 640K bytes.

The computer is normally supplied with one disc drive, mounted on the

left-hand side of the case, which is referred to as 'drive 0'. You may wish to

purchase a second drive, mounted on the right, from your Acorn dealer. This

second drive is referred to as 'drive 1', and you are only likely to need it if you

expect to be working with very large amounts of information.

You will also have one disc, the Welcome disc, which contains numerous

example programs and utilities. If you look closely you will see a couple of

important features:

-- There is a protective metal shutter along one edge of the disc, which keeps

dust out when the disc is not in use. If you gently slide it sideways you can

see the disc itself inside but be careful not to touch it.

F 3

-- On the reverse side is a small plastic tab called the write-protect tab, which

can be slid aside. This tab provides a way of preventing the computer from

writing any information onto the disc, primarily to allow permanent storage

of files without fear of them being erased. You will probably be aware of a

equivalent tab on audio cassette tapes which serves the same purpose.

The illustration below shows how to insert a disc into the disc drive correctly:

F 4

Care of discs

Before we look at the ADFS in more detail, a few words of caution. Floppy discs

are delicate pieces of engineering and should be treated with due care and

attention. Two kinds of damage can be done to them, physical and magnetic:

-- Physical damage means bending the disc's casing, touching the surface of

the disc itself, or allowing dirt, dust or liquids to come into contact with the

disc. Always store your discs above tabletop height, to avoid drinks, and in a

dustproofbox, to avoid dust and smoke. Avoid exposing the discs to extremes

of temperature, and keep them out of direct sunlight. The disc drive itself is

sensitive to knocks, so keep it on a horizontal surface where it won't slip

about.

-- Magnetic damage is not as easy to sustain but is just as dangerous. Don't

leave discs anywhere near electrical equipment (except inside the disc drive!)

and especially avoid strong magnetic sources like permanent magnets,

transformers, hi-fi and televisions. Never try to remove a disc from the disc

drive while the red light on the drive is illuminated: any information which is

being written to the disc could be garbled.

If you treat your floppy discs carefully they will repay you with long and

reliable service, and with luck you will never experience the depression of

disappearing disc data.

Formatting discs

When you buy brand new floppy discs, they arrive in a completely blank state

known as 'unformatted'. Blank discs cannot be used for storing information

until they have been through a process called formatting which creates a

framework of information on the disc and thereby allows the computer to keep

track of where information is stored on the disc's surface. Note that formatting

a disc completely erases any information already stored on it, so if you format a

non-blank disc by mistake there is nothing you can do to recover its contents.

The Welcome disc is both formatted and full of information, so you can use it

right away. However, when you buy discs of your own you will need to format

them before you use them by means of the ADFS *FORMAT command. You

need to tell the computer into which drive the disc you wish to format has been

inserted, and also how much information the disc can store. There are three

possibles 'sizes' of disc: Large, Medium and Small, but unless you have a good

reason not to you should use the largest, size 'L', which makes use of both sides

of the disc. To format a 'Large' blank disc inserted into your left-hand disc drive

(drive 0) you should type the following:

*FORMAT 0 L

F 5

Before the computer formats the disc it will ask you to confirm your choice:

Format drive :0 ?

to which you must. respond by typing 'YES' at the keyboard to allow formatting

to take place; typing anything else will abort the process.

If the write-protect tab is set to prevent writing then the error:

Disc protected

will appear, and you should move the write-protect tab and issue the

formatting command again.

Once the disc has been formatted the ADFS will verify the disc to ensure that

formatting has been completed successfully. This process checks each track and

displays a '?' if any problems occur. Discs which produce transient or 'soft'

errors, indicated by one or more '?'s should be re-formatted, but if the disc

contains true defects or 'hard' errors then the program will indicate this, e.g.:

Disc error 08 at 000201

and the disc should be discarded. You can use the command *VERIFY to verify

a disc at any time, for example if you are unsure about the reliability of a disc.

As a rule discs which generate 'hard' verify errors should be discarded.

Disc safety

Even though floppy discs are fairly reliable, external circustances such as

power failures or inquisitive children with sticky fingers can sometimes

damage discs and cause loss of information. To guard against this it is good

practice to make 'safety' or backup copies of discs containing important

information; invariably the cost of losing information far outweighs the cost of

a few more floppy discs. The ADFS provides the *BACKUP command for

exactly this purpose, and if you have not already done so you should make a

backup copy of the Welcome disc as soon as possible. The syntax of the

*BACKUP command is:

*BACKUP 0 0

The two numbers that follow it are the number of the 'source' drive and that of

the 'destination' drive, respectively. If you have only one drive then the two

numbers will be the same, as they are in the example, and the ADFS will ask

you to swap discs as necessary during the copying process. Of course the

destination disc should always be a freshly formatted one, otherwise you could

erase valuable information, but it is also good practice to set the write-protect

tab on the disc you are copying just to make sure it is not altered. The computer

asks you to confirm that you want to overwrite the destination disc by asking:

Backup drive :0 to :0

F 6

to which you must respond 'YES' before copying will take place.

If you have two disc drives then you can copy one disc to another without

having to swap discs by putting the original disc in one drive and a blank

formatted one in the other; you can then type:

*BACKUP 0 1

Using the ADFS

Before you start reading this section you might like to know that there is a

tutorial program on the Welcome disc which teaches you about the ADFS. You

can call it up by selecting it from the main menu in the Icon software, which

was covered at the beginning of this guide.

Initialising the ADFS

Normally, the ADFS is the filing system which is automatically selected by the

computer when switched on. However, if you have other optional software in

the computer then you may need to select the ADFS explicitly, by typing:

*ADFS

which will cause the light on the left-hand drive to glow. The ADFS is now

waiting for a disc, so put the Welcome disc into the drive with its label

uppermost and the metal shutter nearest the drive. It is impossible to insert a

disc the wrong way around, as you will quickly discover if you are trying to do

so. NEVER try to force a disc into a drive as you stand a good chance of

damaging both. Once you have inserted it the ADFS will spend a couple of

seconds reading information from the disc and it is then ready for use.

If you want to use the other disc drive you need to start up the ADFS 'quietly',

ie. without accessing the drive, and then tell it where to find your disc with the

*MOUNT command, thus:

*FADFS

*MOUNT 1

The *FADFS command tells the ADFS to prepare for work but does not cause it

to access either drive. The *MOUNT 1 command instructs the ADFS to refer

henceforth to the disc in drive 1. If you wish to change drives again you need to

type:

*DISMOUNT

to allow the ADFS to 'release' the disc in drive 1, and then issue a *MOUNT

command to tell the ADFS where the new disc is, e.g.:

*MOUNT

F 7

You should always use *DISMOUNT before you remove a disc from its drive, as

this command allows the ADFS to make sure all the information on the disc is

up to date. Never try to remove a disc whilst the red light is on: you may

damage both disc and drive.

Whenever you use a program or utility on the Welcome disc you should ensure

that it is mounted and ready for use. To do this, issue the following commands

before you attempt to load or save any information:

*MOUNT

*LIB LIBRARY

The meaning of the second command will become clear later in this chapter.

Keeping files on the ADFS

The concept of a file exists to make it simpler for you to refer to information

stored on discs, which is after all invisble to the naked eye. A file is simply a

sequence of bytes (characters) that happens to be stored on a disc instead of in

the computer's memory. A file can be as short as zero bytes (an empty file) or a

little over 600K bytes long, a limit imposed by the capacity of the disc. Every

file has a name, referred to as its filename, which can be up to ten characters

long. Names can contain upper- and lower-case letters and digits (though

ADFS treats all letters as upper-case when referring to files). Certain

punctuation symbols may also be used, but because many of these have special

meanings to the ADFS it is best to avoid them for the present.

To allow you to look at the files stored on a disc the ADFS provides the

'catalogue' command, *CAT; the ADFS lets you abbreviate this to *. because it

is the command you will type more often than any other. Make sure your

Welcome disc is inserted in the drive and mounted, and then try typing:

*CAT

which should produce a table looking something like this:

Welcome (13)

Drive:0 Option 03 (EXEC)

Di r. $ Lib. "Unset"

!BOOT LWR(10) LIBRARY DLR(12)

WELCOME DLR(11) UTILS DLR(06)

The bottom two lines show the filenames of various files stored on the disc.

Above them is some ancillary information, such as the name of the disc, which

we won't concern ourselves with now. Instead, let's try to SAVE a BASIC

program and see what happens. If you don't already have a program in

memory, then type in the following, pressing at the end of each line:

F 8

NEW

10 FOR I%=32 TO 126

20 VDU I%

30 NEXT I%

40 PRINT ''

Now SAVE the program in the usual way:

SAVE "TEST"

The red light on the drive will glow for a couple of seconds, and then the BASIC

prompt ('>') will reappear. You can establish that the program was properly

saved by typing another *CAT command. This time, you will see the name

"TEST" in the list of files (they are displayed in alphabetical order) and next to it

the letters "WR". These letters tell us what operations are allowed on the file:

'W' means it may be written to and 'R' means that it may be read (i.e. loaded

into memory); we shall see later their purpose and how to alter them.

To satisfy yourself that the program has truly been SAVEd type NEW to clear

the program from memory and then:

LOAD "TEST"

Once again, the red light on the drive will glow and the BASIC prompt will

reappear. If you now type LIST you will see that the program has indeed been

copied back into memory from the disc.

It is important to understand that if you SAVE a file using a name that has

already been used, then the new file will always overwrite the old. To see this

effect, add a new line to the program in memory like this:

1 REM This is a new version of "TEST"

And then SAVE it again:

SAVE "TEST"

The previous version of the program has now been replaced with the new

version, which you may check as before if you wish. This demonstrates that

reusing an existing name always overwrites the old file, and you should bear

this in mind when choosing filenames of your own.

Directories

You can probably imagine that there are circumstances where it would be

useful to be able to reuse names when referring to files; furthermore, you would

not have to save many files before it became a chore to check whether you had

already used a particular name. For these and other reasons the ADFS

provides a very neat enhancement to file naming, in the form of directories,

which overcome these potential problems.

F 9

It is easier to understand directories with the help of an analogy: imagine a disc

file as a sheet of paper, with its name written at the top. In order to keep your

collection of sheets of paper tidy you choose to put related sheets together in a

folder, and give the folder a name of its own. Now you can more quickly find a

given sheet of paper, and you can tidy them up still more by putting several

folders one inside another, and so on ad infinitum. The ADFS allows you to

create special files, called directories, which contain other files, just as folders

do in the analogy above. Directories may also contain further directories,

known as sub-directories which can themselves contain files and

sub-directories. Such a collection of objects nested inside one another is

sometimes referred to as a hierarchy or 'tree', and it is more easily visualised

with the help of a diagram:

At the top of the hierarchy is a directory called the root (we draw the 'tree'

upside-down because it's simpler) which contains all the files and directories on

the disc; the root is represented within the ADFS by the symbol '$'. In this

example the root contains several sub-directories, e.g. LIBRARY and

F 10

WELCOME, and they in turn contain files of their own. In case you hadn't

noticed, this diagram mimics the directory hierarchy of the Welcome disc, and

you can use *CAT to see the contents of '$' for yourself.

When you first start up the ADFS, or issue a *MOUNT command, the '$'

directory automatically becomes the 'Currently Selected Directory' or CSD.

When you type *CAT the ADFS produces a catalogue of the CSD, but you may

instead request catalogues of other directories by following the *CAT command

with the name of a directory, e.g:

*CAT LIBRARY or

*CAT WELCOME

Using *CAT in this way only allows you to see what is in another directory; you

need to be more specific before you can load a file from a sub-directory because

normally the ADFS assumes you are looking for a file in your Currently

Selected Directory.

Earlier you saved a file called TEST in directory '$'. To fully specify where this

file is to be found we need to use its full name, or pathname. In the case of

TEST it is written '$.TEST'. The full stop is used to separate the filename from

the directory name, and you can use as many of them as necessary. Here are

some examples from the diagram above:

$.WELCOME The sub-directory 'WELCOME' in directory '$'

$.LIBRARY .PANEL The file 'PANEL' in directory $.LIBRARY

The CSD's name is assumed to prefix any filename that does not start with '$',

and you can include it explicitly in a pathname by using the symbol '@'.

Using the directory hierarchy

For directories to be useful you need to be able to 'move around' (i.e. change

your current directory) and to create new directories. The *DIR command is

used to change the CSD; for example either of the following commands will

make the root directory your CSD:

*DIR

*DIR $

In fact you can use pathnames of any length, e.g.:

*DIR $.LIBRARY.BASIC

Sometimes you may want to move to the 'parent' of your CSD, that is the

directory which contains it. You can do this by including the circumflex symbol

'^' whose similarity to an upward-facing arrow is not coincidental. Suppose

your CSD is deep down in a hierarchy, for example it has the pathname

F 11

'$.Business.Letters.May .ToAlex'. If you wanted to move up a level (imagine the

tree diagram) you would have to give the command:

*DIR $.Business.Letters.May

However, the circumflex shorthand allows you to type:

*DIR ^

A similar effect can be achieved with the the *BACK command, which returns

you to the directory you previously selected, irrespective of where it was in the

hierarchy. This is not usually the same as *DIR ^ ,although you may like to try

and imagine the sequence of events which would lead to it being so.

The pathnames that *DIR accepts have a further feature, which is that you

may include the drive number in a pathname by preceding it with a colon (':').

For example to catalogue the directory $.GAMES on the disc in drive 1 you may

type:

*CAT :1.$.GAMES or, synonymously,

*CAT :1.GAMES (because the '$' is assumed automatically).

This means that you don't have to dismount your current drive and mount the

other just to look at or load files from it.

Creating directories

You can create new directories in the hierarchy wherever you wish. To do this

the *CDIR command is used; it should be followed by the pathname of the new

directory, e.g.:

*CDIR $.Letters.ToKitty

which will create a directory called 'ToKitty' in '$.Letters'. If '$.Letters' was

your CSD then you could equally use:

*CDIR ToKitty

Once you have created a directory you will need to 'move' to it, i.e. make it your

CSD, with the *DIR command. If you catalogue a new directory with *CAT you

will see it is empty of files, and it will remain so until you explicitly store some

there.

Libraries

There are three ways of executing machine code programs on the computer:

*RUN filename

*/ filename

*filename

F 12

The first is the most 'proper' form, the second being an abbreviation for it. The

*RUN command causes the file to be loaded into memory and executed. The

named file is sought in the CSD and then in a special directory called the

library, specifically the 'Currently Selected Library' (CSL).

The third form of this command enables the MOS to intercept the request and

execute a ROM version of the program, if one exists; otherwise it continues its

search through the CSD and then CSL in the normal way. The library thus

lives up to its name by allowing disc-based extensions to the computer's

ROM-based operating system commands.

To specify the library directory to be searched, the CSL is set with the *LIB

command:

*LIB $.Library

To set the CSL to be the CSD, which in effect prevents the second search, you

can use the '@' abbreviation for the CSD, thus:

*LIB @

When the ADFS is entered using *FADFS, CSD and CSL are both 'unset'.

Typing *MOUNT sets the CSD to '$', but the CSL remains 'unset' and must be

set with *LIB.

The *LCAT command exists to allow you to catalogue the CSL quickly; it has

exactly the same effect as if you had typed *LIB followed by the full pathname

of the CSL.

More about directories

We will now look in more detail at the information printed by the *CAT

command. Suppose the following was produced:

Main disc (69)

Drive:0 Option 00 (off)

Dir.$ Lib.$.Library

BOUNCE LR(01) Capricorn DLR(03)

Games DLR(06) Library DLR(12)

TEST WR(13) XX EL(05)

The first three lines contain general information about the directory and the

ADFS, and subsequent lines give information about the individual files within

the directory.

The first line gives the title and 'Master Sequence Number' (MSN) of the disc.

The disc title is a string of up to 19 characters which usually describes what the

F 13

disc contains. You can set the title of the CSD with the *TITLE command, but it

is set by default to the name of the directory. In the example the title is 'Main

disc'.

The Master Sequence Number is set to zero when the disc is formatted.

Whenever a file is saved into the directory, the MSN is increased by one and

this number is stored in the file's own sequence number entry (examples of

which may be seen lower down). The number allows you to get an idea of how

old a file is by comparing it with the files around it. Sequence numbers are reset

to 00 after reaching 99.

The second line of the listing gives information about the current drive. The

drive number is usually 0 or 1. The 'Option' tells the ADFS what to do with the

file !BOOT when the sequence is used (see the item concerning

*OPT 4 at the end of this section). The default setting is 'Off'.

Line three of the listing gives the names of the currently selected directory and

the currently selected library.

The remainder of the listing gives the names of the files in the directory, their

'access codes' and their individual sequence numbers. Access codes are

described in detail under the *ACCESS command below.

Detailed file information

The ADFS holds more information about each file than it displays when you

catalogue a directory. The *INFO command displays this extra information if

you follow it with the name of a file; it has a companion command, *EX, which

prints information on all of the files in the CSD or a named sub-directory.

The result of a *INFO command might look something like this:

Acorn DLR(03) 0001FE

RUBBISH LWR(09) 00000000 FFFFFFFF 00000EFE 00009C

Letters DLR(07) 00004A

The first part of the line is exactly the same as for a catalogue, but the latter

part is dependant on whether the named item is a file or a directory.

Files are followed by four items of information, each expressed in hexadecimal

notation; they are: the load address, the execution address, the length of the file

and its disc address. The load address tells the ADFS where to load the file in

memory, the execution address tells it where to start running the program once

it is loaded and the length is simply the number of bytes the file occupies. You

can print any of these values in decimal using BASIC, for example:

PRINT

to find the length of RUBBISH, above, in decimal.

F 14

The disc address is used internally by the ADFS to find the file on the disc's

surface, and it is not usually of interest to users. Directories have only their disc

address displayed, the other information being meaningless.

A special form of the *EX command, *LEX, exists to produce detailed

information about files in the CSL.

Wildcards

The ADFS supports a facility for using special characters, known as wildcards

in filenames. These characters can be used to specify an ambiguous filename

which can match several real names and thus perform actions on several files

with only one command. The single character wildcard '#' indicates one

unspecified character, whilst the multiple character wildcard is '*'. Examples of

filenames incorporating wildcards are:

Chapter# (e.g. 'Chapterl', 'ChaptertG')

DAY ## (e.g. 'DAYaa', 'DAY36')

$. LETTERS . * (any file in '$.LETTERS')

PHYSICS .*Joules* (any filename in 'PHYSICS' with 'Joules' in it)

The way in which filenames incorporating wildcards are interpreted depends

on the command with which they are used. Most commands will act on the first

file that satisfies the given wildcard pattern in alphabetical order. The *CAT

command works like this so, for example:

CAT Q

will catalogue the first directory in the CSD that begins with a 'Q' or a 'q'

(remember the ADFS takes no notice of the case of letters).

Other commands will act on all filenames which match the pattern, for

example *INFO. Thus:

INFO Chapter

will display information about all files whose names begin with 'Chapter'.

A third group of commands do not permit wildcards at all, and they produce the

'Wildcards' error message if you try to employ them. Such a command is

*DELETE, which we shall come to shortly.

Access codes and the *ACCESS command

*CAT, *INFO and their associated commands print letters between the

filename and the sequence number which describe the kind of operations

permitted on the file. There are five such possible letters, each of which may be

'set' (and therefore printed by *CAT/*INFO) or 'unset' (and not printed):

F 15

D -- Directory. The presence of this letter means that the file is a directory. It

is set when the file is created and can not be changed. Directory files may not be

loaded or run.

E -- Execute. If this letter is present, the (non-directory) file may not be loaded

or read in any way, but only executed. The commands which will operate on an

execute-only file are *RUN, */, *ACCESS, *DELETE, *REMOVE and

*DESTROY. Once the 'E' has been set it can not be removed, and the only other

letter which may be changed is 'L' (see below). *INFO produces the minimum of

information about such files.

L -- Locked. Locked files cannot be deleted using *DELETE, *REMOVE or

*DESTROY, nor may they be renamed with *RENAME or overwritten in any

way (see below). Any attempt to do any of these things without first removing

the 'L' code using *ACCESS will result in the error message 'Locked'.

Directories have 'L' set by default when they are created, and files may have it

set or removed by the user.

R -- Read. Only if this character is present may any information be read from

the file; it is unlikely to be changed by most users since usually you do want to

read your files. You can not remove the 'R' access character from a directory.

W--- Write. This character determines whether information may be written to

the file; if it is not present, the file may be neither written to nor altered in any

way (note, however, that the 'L' character must be set to prevent the file from

being deleted). Directories cannot have the 'W' character set.

The *ACCESS command allows a file's access code characters to be changed; it

needs to be followed first by a pathname (wildcards allowed) and second by the

access codes to be applied to the matching files. Examples include:

*ACCESS test Remove all access except 'D' and 'E' from 'test'.

*ACCESS * LR Protect all files in the CSD from overwriting and deletion

ACCESS Letters. WR Make all files in 'letters' readable and writable.

The most common applications of access codes are

to set 'L' to prevent accidental deletion, to unset

'L' to allow intentional deletion and to unset 'W' to

prevent overwriting.

Deleting, renaming and copying files

When a file is no longer required, it should be deleted from the disc. This makes

the space it previously occupied free for use by other files, reducing the

likelihood of the disc becoming full. The *DELETE command removes a single

named file from a directory; the filename must not contain any wildcards. For

example:

F 16

*DELETE rubbish

*DELETE $. !BOOT

If the file you are trying to delete does not exist, a 'Not found' error will be

generated. Sometimes, particularly from within programs, it is convenient to

ensure that a file does not exist, but without causing an error if it has already

been deleted. For this reason the *REMOVE command behaves exactly as

*DELETE but produces no error if the file did not already exist.

Neither *DELETE or *REMOVE will operate successfully on a file which has

been 'Locked' using the 'L' access code. To delete a locked file you must first

remove the lock with *ACCESS, e.g.:

*ACCESS data

*DELETE data

Directories are always locked unless you alter their access codes, and they have

a further restriction on deletions: a directory must be empty of files before it

can be deleted. If you attempt to delete a non-empty directory, you will receive

the error message 'Dir. not empty'.

To delete a group of files, for example all the files in a directory, you can use the

*DESTROY command, which will accept a filename containing wildcards. Any

file which matches the wildcard speefication will be deleted, so you can see the

command's name was not chosen lightly. Before the command massacres your

files it prints *INFO information on all of the affected files and then asks:

Destroy ?

to which you must reply by typing 'YES' at the keyboard for the command to

take effect, otherwise it is aborted.

The ability to rename files is important by virtue of its versatility: renaming

may not only change the name of a file, it may also move the file around in the

hierarchy, because the hierarchy is, after all, based on names. The *RENAME

command is followed by the source pathname and then the destination.

Therefore. the command:

*RENAME this that

will change the name of the file currently called 'this' to 'that'. Furthermore,

this command:

*RENAME test $.programs.test

actually moves the file 'test' from the CSD into '$.programs' and names it 'test'

in that directory. You may also alter the name of the file whilst moving it, like

this:

*RENAME 0ldFile ^.NewFile

F 17

which moves the file 'OldFile' from the CSD into the CSD's parent directory

and renames it 'NewFile'. You can never use wildcards in a *RENAME

command, because of the great scope for confusion (your files might end up

almost anywhere).

The *COPY command makes a copy of a file, or files, whilst retaining the

originals) where they were. The command is followed by the source filename

(which may contain wildcards) and then by the destination pathname (which

may not); it will not copy directories (because they may contain further

directories, and so on, and so on]. An example of copying is:

COPY $.$.Backup

which copies all the non-directory files in '$' into the directory '$.Backup', thus

making duplicates of the files.

*COPY uses as much shadow memory as is available to it during copying and

uses shadow memory in preference to main memory.

If you have two disc drives you can copy files from one to the other by including

the drive number in the pathnarne, e.g.:

COPY :0. :1

which copies all the (non-directory) files from the root on drive 0 to the root on

drive 1. This is not possible with a single drive because *COPY is unable to

prompt you to change discs. If you want to copy between discs on only one drive,

or if you want to copy whole directories (including any sub-directories they may

contain), you should use the 'DIRCOPY' utility which is in the library on the

Welcome disc.

Disc control commands

Because discs have only a finite, albeit fairly large, capacity for storing

information, the ADFS provides several commands to allow you to make the

most of your discs. The first such command, *FREE, tells you exactly how much

space is in use and how much is still free. If you type:

*FREE

the ADFS will respond with a table similar to this:

0006AA Sectors = 436,736 Bytes Free

000356 Sectors = 218,624 Bytes Used

The first figures are in hexadecimal, being the number of 256 byte sectors

currently either free or in use. Files are allocated space in multiples of whole

sectors depending on their size, whilst directories occupy five sectors.

F 18

The *MAP command produces a rather cryptic list of the areas of the disc which

are free. If you issue a *MAP command you might get a table like this:

Address : Length

000002 : 00000A

00014A : 000043

0001E3 : 00013D

The list you see may be shorter or longer than this, and the numbers it displays

will certainly be different. Each entry consists of a disc address and the amount

of space free at that location. Both numbers are given in hexadecimal.

The ADFS keeps this free space list automatically, and updates it whenever

files and directories are created and deleted. Because free space is broken up

across the disc it is quite possible for sufficient space to be available to save a

file but for it not to be contiguous on the disc (which is a prerequisite of the file

structure). It may therefore be neccessary, on occasion, to compact the disc

and the computer may warn of this with the 'Compaction required' error.

Compaction shuffles the files around on the disc to close up the free space 'holes'

and leave the largest possible area of contiguous free space.

Just like the *COPY command, *COMPACT makes use of as much shadow

screen memory as possible. When you issue the command:

*COMPACT

the red drive light will glow, and may continue to do so for up to a couple of

minutes. When it goes out, you will find that a *MAP command reveals a few

large chunks of free space on the disc. You can then return to your previous

screen mode and continue with your work.

MOS Filing System commands

What follows is a discussion of some general-purpose commands that the MOS

operating system provides for use with any filing system; in the examples that

follow, use of the ADFS is assumed. These commands provide advanced

facilities which are likely to be employed mainly by experienced computer

users; you should not feel under any obligation to read this information on your

first pass through the Guide.

A note about the ROM Filing System

The reader should be warned that, because of the read-only nature of the ROM

Filing System (RFS), a proportion of what follows is not relevant to its use.

Specifically, the RFS does not implement any commands which attempt to

create or alter files, and thus does not support *SAVE, *SPOOL, *BUILD,

*CREATE or *APPEND.

F 19

General-purpose file commands and utilities

Files can be regarded as copies of the computer's memory which are stored on

disc. They may contain BASIC programs, word processed text, machine-code

programs, copies of the computer's screen or arbitrarily complex data.

Languages such as BASIC provide commands to save and load programs, but

when sections of the computer's memory have to be saved or loaded the MOS

filing system commands are used.

The *SAVE command saves a 'snapshot' of the computer's memory straight

onto the disc, and it has several forms; for example:

*SAVE RAM 0 8000

*SAVE area 3969+452

The first command saves the all of the computer's main memory, betwee

addresses &0000 and &7FFF. Addresses given to, and displayed by, filing

system commands are always in hexadecimal. The first number following the

name is the address of the first byte to be saved; the second number is the

address of the byte after the last one to be saved. It is a common practice in

Acorn products to state upper limits in 'byte after' form (e.g. HIMEM in

BASIC). This tends to simplify lengthy calculations.

The second command saves the area of memory between &3969 and &3DBB

(&3969+&452) in the file called 'area'. This form of the command uses a '+'

followed by the length of the area of memory.

Having issued a *SAVE command, it is informative to look at the file's *INF

information. For example, try typing these commands into BASIC:

>*SAVE chunk 1C00+200

>*INFO chunk

chunk WR (15) 00001C00 00001C00 00000200 000FE2

Name Access Load Execute Length Disc address

The entries marked 'Load','Execute' and 'Length' are of most interest. 'Load' is

the address in memory at which the file will be reloaded (using the *LOAD

command, see below). Notice that this is the same as the start address of the

block of memory when saved, so it will be restored to the same place. The

'Execute' entry is the address which will be called if the file is executed with

*RUN or one of its equivalents. By default it is the same as the load address,

but it may be changed if required. The next entry, 'Length', is the length of the

file in bytes which was given with the command; if you use the alternative form

the MOS will calculate this automatically. The last entry is the disc address,

which need not concern us.

F 20

Sometimes, we want a file's execution address to be different from its load

address, perhaps because it is a machine-code program preceeded by data. This

is achieved by adding the execution address last when issuing the *SAVE

command, e.g.:

*SAVE Energy 2000+1000 2100

In this case the execution address is &2100, overriding the default value (which

is the load address).

The final extension to the *SAVE command is the ability to specify a different

loading address, the reload address, for the file. For example:

*SAVE MyR0M 4000+2000 8002 8000

*SAVE Utility 1900 1980 910 900

The first saves memory from &4000 to &5FFF into the file 'MyROM' and gives

it a reload address of &8000 and an execution address of &8002. The second

saves the program 'Utility' between addresses &1900 and &197F with a load

address of &900 and an execution address of &910. Note that you may only

specify a reload address if the execution address is also present.

The *LOAD command has the reverse effect to *SAVE, and it has two

variations. In the first it is simply followed by the name of the file, and the other

information is retrieved from the directory. In the second the load address may

be overridden, thus:

*LOAD MyR0M

*LOAD Utility 700

As we saw earlier, executing a machine-code program can be done with three

different forms of the *RUN command:

*RUN filename

*/filename

*filename

where 'filename' is a pathname which can contain wildcards (which are

interpreted by using the first file which matches). *RUN and */ are exactly

equivalent; they look in the CSD and then the CSL for the named file, and then

load and execute it. If the file cannot be found a 'Bad command' error is

generated. The third form first tests to see if the name corresponds to a ROM

command; otherwise, it behaves as above.

If a file is given an execution address of &FFFFFFFF, it will not be loaded and

executed in response to these commands but will instead be *EXECed, which

process is described below.

F 21

Screen and keyboard effects

The MOS provides several commands which enable you to affect how the

computer communicates with the user. The first of these, *SPOOL, directs a

copy of all the computer's output which appears on the screen to a named file on

disc. This is achieved by issuing a command such as:

*SPOOL screen

in which case all screen output will be copied to the file until the command:

*SPOOL

(without a filename) is executed. This is useful for keeping a record of the

output a program has produced, particularly when it fills several screenfuls.

The *TYPE command displays the contents of such a file on the screen,

'replaying' the recording made with *SPOOL. For example:

*TYPE screen

An alternative form to this command, *LIST, displays the file in the same way

but adds line numbers (from 0001 upwards) at the start of each displayed line.

A command which has roughly the opposite effect of *SPOOL is *EXEC. This

reads in the contents of a named file as if it had been typed at the keyboard,

disabling the keyboard whilst this takes place. Because the ADFS knows the

length of the file (from its directory information) \you do not need to stop *EXEC

explicitly, though pressing will do this if you so desire.

The *BUILD command creates a file containing lines of text typed at the

keyboard, suitable for subsequent *EXECing. If you type:

*BUILD Droid

the computer will respond with:

0001

and store what you type in the file 'Droid' (without the line numbers, which are

displayed simply to aid you). Each line must be terminated by pressing ,

and to tell the computer you have finished you should press . You may

have noticed that the *LIST command is the precise reverse of this.

The *BUILD command is a handy way of storing sequences of commands you

often have to type, for example to define the contents of function keys. You may

also like to know that any line of text preceded by '* |' is ignored by the

operating system, for example:

*BUILD keys

0001 *| My function key definition file

0002 *KEY 0 OLD:||MLIST ||M

F 22

0003 *KEY 1 NEW | | M AUTO | | M

A similar command is *APPEND, which allows you to add new text onto the

end of an existing file. It is used in precisely the same way as *BUILD, but the

named file must already exist, otherwise a 'Not found' error is generated.

Miscellaneous commands

The MOS provides several further commands which are best described as

'utilities'; they are *DUMP, *CREATE, *CLOSE and *HELP.

*DUMP is followed by a filename and produces a listing of the bytes in the file

displayed in hexadecimal and ASCII. If the file is of any length this information

will roll off the top of the screen unless restrained by pressing + .

You can use to stop the listing altogether, e.g.:

*DUMP Rubbish

*CREATE will create an empty file of specified length. Its uses are rather

limited, but it is employed thus:

*CREATE Mess 1000

creating a file called 'Mess', &1000 bytes in length.

*CLOSE causes the MOS to close all files which have been opened under the

current filing system. The command is usually only used at the end of a

program or programming session, or when the 'Already open' error message is

generated.

Finally, *HELP produces information about the commands implemented by

various pieces of software in your computer. For example:

*HELP ADFS

will generate a list of the commands the ADFS understands and their syntax,

whilst:

*HELP

will generate a similar list for all of the ROM software in the computer. So you

won't need to have this manual in front of you forever.

F 23

F 24

G. Expanding the System

This section covers expansions to your basic computer in the form of

peripherals (i.e. printers, joysticks etc.) The aim here is to provide basic

information -- it is important to read and follow any additional instructions

provided with any peripheral or expansion unit.

The computer has a number of sockets on the rear panel into which peripherals

may be plugged. Additionally, there is an expansion connector on the

right-hand side when the case is viewed from the front which provides all the

electrical signals necessary to add more sophisticated devices.

Connecting colour and monochrome monitors

Your computer has probabby been supplied with a display unit, known as a

monitor, with either a colour or monochrome screen. Colour monitors allow

you to use the colour graphics that your Master computer can produce to the

full, displaying the complete range of eight static and eight flashing colours.

Monochrome monitors display the image the computer generates in one basic

colour and several shades of that colour, normally on a black background.

Monochrome monitors normally display the image in white, green or amber,

the latter two colours being chosen because they are considered less tiring to

the eye. Monochrome monitors are commonly employed for tasks such as word

processing where the operator spends a great deal of time looking at the screen.

Besides a mains supply the monitor needs to be connected to the computer by

means of a lead supplied with it. Colour monitors should be connected to the

'RGB' socket on the rear panel of the computer, and most monochrome

monitors should be connected to the 'Video Out' socket, although some may use

the 'RGB' socket; consult the instructions supplied with the monitor for further

information.

Connecting a television

An optional adaptor is available to allow the computer to display an image on

an ordinary domestic television. This device is powered by the computer and

has two leads, one of which should be connected to the 'RGB' socket and the

other of which should be inserted into your television aerial socket. Select a

spare channel on your television tuner and, with the computer turned on, tune

it to Channel 36 or until you see the computer's display in the top left of the

picture-

G 1

Disc drives

Fitting a second 3.5" disc drive

The ADFS can support a second 3.5" floppy disc drive which may be mounted

on the right-hand side of the base unit next to the existing disc drive. The

second drive allows you to access twice as much information (bringing the

maximum to 1280K bytes) without having to change discs. Furthermore, it

simplifies many copying operations by eliminating the need to change discs.

Fitting this upgrade is a specialist job and unless you have considerable

relevant experience you should ask an official Acorn dealer to perform it for

you.

Connecting a 5.25" external disc drive

In order to allow your computer to access the physically larger 5.25" floppy

discs you may wish to fit an external disc drive. Such a drive is connected via an

adaptor which connects in-line with the normal disc drive cable.

To provide software compatibility with earlier Master computers the Acorn

Disc Filing System (DFS) is available from your supplier. It should be

emphasised that this software is NOT suitable for use with 3.5" drives, nor

should its availability be assumed by software producers.

Connecting a printer

A printer is essential if you are going to use your computer for word processing

or other business work, and it is a great convenience if you are writing your

own programs.

Your computer can be used with the vast majority of currently available

printers, which connect to the computer in one of two ways:

-- with a parallel interface, often known as 'Centronics-style';

-- with an optional serial interface, using the 'RS232-C' or 'V-24' interface

standard.

All printers are powered from the mains; parallel printers are connected to the

'Printer' socket on the rear of the computer; serial printers are connected to the

optional RS232 socket, also on the rear panel. The RS232 socket takes a '5-pin

Domino DIN' plug, and you will need an interconnecting lead with such a plug

on one end and a plug suitable for your printer at the other. Your Acorn dealer

should be able to furnish you with printer leads.

You must tell the computer which kind of printer you are using, and this is

done with the *FX5 command:

-- *FX5, 1 tells the computer that you are using a parallel printer;

-- *FX5 ,2[„„ tells the computer that you are using a serial printer, in

G 2

which case you must also set the speed at which the RS232 interface

operates (also known as the baud rate) using the *FX8 command. Your

printer documentation should tell you the default baud-rate at which the

printer operates.

The available baud rates are selected as follows:

*FX8,1 --75 baud

*FX8,2 --150 baud

*FX8,3 --300 baud

*FX8,4 --1200 baud

*FX8,5 --2400 baud

*FX8,6 --4800 baud

*FX8,7 --9600 baud

*FX8,8 -- 19200 baud (not guaranteed)

Many printers have an automatic line-feed facility which can cause unwanted

blank lines to be printed; these may be eliminated by instructing the computer

not to send the line-feed character (ASCII code 10) using the command:

*Fx6,10

Software control of printing

You can instruct the computer to copy all output sent to the VDU drivers (and

so to the screen) to your printer with the BASIC VDU 2 command; a

subsequent VDU 3 command will restore output to the screen alone.

For example, to list a BASIC program which is in memory on your printer,

type:

VDU 2

LIST

VDU 3

If, for any reason, the printer is not ready to receive information for printing

(e.g. it is not connected, or is simply turned off), both the 'Caps Lock' and 'Shift

Lock' lights on the keyboard will glow. If you are unable to make the printer

ready right away, press and re-enter the VDU 2 command again later.

The VIEW word processor provides explicit facilities for controlling printing,

including a 'PRINT' command and 'Highlight codes' which may be inserted into

the text. These facilities are discussed in the VIEW documentation earlier in

this guide-

The RS232 interface

The optional RS232 interface can serve a variety of purposes other than driving

printers as described above. 'RS232' is an electrical standard which is common

G 3

to many types of computers and peripherals. The MODEM, a device which

permits computer data to be sent over telephone lines, is a common RS232

device as are line plotters which produce hard-copy graphical output.

The RS232 socket accepts a '5-pin Domino DIN' plug, whose connector pin-out

is illustrated in Appendix 10. Your Acorn dealer will be able to supply you with

the interface itself and also with most readily available RS232 devices,

including MODEMs.

Connecting a Joystick, Mouse or Trackball

Many computer applications require two-dimensional input from the user of

greater precision than, say, the cursor keys can conveniently provide. In such

cases it is common to employ a 'pointing device' such as:

-- a joystick, named after the aircraft pilot's control;

-- a mouse, being a device held under the hand which may be moved about

freely;

-- a trackball, which is similar to a mouse but has a larger ball facing upwards

which may be spun with the hand.

Any of these pointing devices may be plugged into the 'Joystick/Mouse'

connector on the rear panel. This is a 9-pin D-type plug, and should thus

accomodate any Atari-compatible joystick and most other devices which

conform to this standard.

The Econet Network

Your computer may optionally be fitted with an interface to enable it to act as a

terminal on an Acorn Econet local area network. The Econet can interconnect

up to 250 computers, facilitating the sharing of expensive resources such as

very large fixed disc drives and high quality printers. The Econet can also

provide a path from desktop terminals to faster commercial networks and

thence into the international data transmission services.

The Econet interface is supplied as a plug-in circuit board which is fitted inside

the keyboard case; connection is then made to the network cable by means of a

flying lead from the 'Econet' socket on the rear panel. Consult the appropriate

documentation for further information.

Your Acorn dealer can give you further details on the advantages offered by

the Econet network, as well as supplying interfaces and other supporting

products.

G 4

Appendix 1

Mode characteristics

Table I below gives the text, character set, graphics and colour capability of

each of the eight standard screen modes and their corresponding 'shadow'

screen modes.

Information relating to the default colour assignments for screen modes 0 - 6

and their corresponding 'shadow' screen modes is given in Table 2. A change of

mode always results in the selection of a white foreground and a black

background for both text and graphics (if available).

Table 1

Mode Text Rows
Text
columns

Character
Set

Graphics Pixels Colours

0 (128] 32 80 ASCII 640 x 256 2

1 (129} 32 40 ASCII 320 x 256 4

2 (130) 32 20 ASCII 160 x 256 16

3 (131) 25 80 ASCII -- 2

4 (132) 32 40 ASCII 320 x: 256 2

5 (133) 32 20 ASCII 160x256 4

6 (134) 25 40 ASCII - 2

7 (135) 25 40 TELETEXT
(see Appendix
2)

App 1 .1

Table 2

Mode Foreground Background Colour

0 (128)

3 (131) 0 128 Black

4 (132) 1 129 White

6 (134)

0 128 Black

1 (129) 1 129 Red

5 (133) 2 130 Yellow

3 131 White

0 128 Black

1 129 Red

2 130 Green

3 13 1 Yellow

4 132 Blue

5 133 Magenta

6 134 Cyan

2 (130) 7 135 White

8 136 *Black/White

9 137 *Red/Cyan

1 0 138 *Green/Magenta

11 139 *Y ellow/Blue

12 140 *Blue/Yellow

13 141 *Magenta/Green

14 I 42 *Cyan/Red

1 5 I 43 *White/Black

*denotes a flashing colour
pair

App 1.2

Appendix 2

Character sets

ASCII displayed character set (modes 0 to 6 and 128 to 134)

ASCII codes in the range 0 to 31 are control codes which correspond to the VDU

codes described in Appendix 7.

Each displayed character consists of eight rows of eight dots.

App 2.1

App 2_2

Teletext displayed alpha-numeric character set (modes 7 and 135)

Codes in the range 0 to 31 are control codes which correspond to the VDU codes

described in Appendix 7.

Codes in the range 128 to 159 are the Teletext control codes which affect

subsequent characters on the same line (see page C61). The characters shown

in the table below are those displayed under the effect of an alpha-numeric

control code.

Each code produces a unique character. Thus VDU 78 or PRINT CHR$(78)

would display an N since column 70, row 8 shows an N.

App 2.3

App 2.4

Teletext displayed graphics characters

Codes in the range 0 to 31 are control codes which correspond to the VDU codes

described in Appendix 7.

Codes in the range 128 to 159 are the Teletext control codes which affect

subsequent characters in the same line (see page (C 61). The characters shown

in the table below are those displayed under the effect of a graphics control

code.

Each character has a code. Thus H is code 72 since it is in column 70, row 2.

App 2.5

App 2.6

Keyboard codes

The code produced by each key on the keyboard depends upon the settings of

caps lock, shift lock and the depression of SHIFT or RETURN. For each key in the

diagram below:

-- the lower number is the lower-case code;

-- the middle number is the upper-case code;

-- the top number is the code generated if the key is depressed in conjunction

with RETURN.

The codes generated by the 10 function keys can be specified by the user (see

Appendix 4).

The cursor editing keys produce codes only if enabled with *FX4 (see Appendix

4).

All numbers are given in decimal.

App[2.7

App 2.8

Appendix 3

Operating system commands

Operating system commands provide a means of communicating your

requirements to the MOS. The commands described below are of a general

nature; summaries of the commands applicable to the various filing systems

are contained in Appendix 5.

Operating system commands may be issued directly from the keyboard (in

which case they are terminated by depression of RETURN or incorporated in

programs (where they should appear as the last statement on a line).

Most commands may be abbreviated to their first few characters terminated by

a . -- where applicable; the minimum abbreviation for each command is given

in brackets after each command name.

Commands marked '' apply to facilities required only by advanced users and

full details can be found in the Reference Manual.

*CODE '' Provide a means of executing machine code

routines which are already in memory as if they

were part of the MOS.

*CONFIGURE Provide a direct means of altering the settings held

(*CO.) in the EEPROM (i.e. without using the Control

Panel utility described on page B 10).

*CONFIGURE takes one or two parameters, the

first being the name of the setting to be changed;

the second (if necessary) being the value to be

stored in the EEPROM. Note that you can restore

default values by holding down the 'R' key whilst

turning power on to the computer. In the

parameter list below, n and m denote decimal

numbers; x denotes a number in hexadecimal

notation.

BAUD n Change the RS232 transmit/receive

rate setting according to n.

BOOT Reverses the actions of BREAK and

SHIFT+BREAK.

CAPS Set CAPS LOCK option.

App 3.1

'' DATA n Change the RS232 data format

setting according to n.

DELAY n Change the keyboard auto-repeat

delay setting to n hundredths of a

second.

'' DIR Initialise ADFS with selected

directory.

'' FDRIVE n Configure the disc controller for

different types of disc unit according

to n.

FILE x Change the default filing system

setting to that contained in ROM

socket x.

IGNORE n Change the 'printer ignore character'

to ASCII n. If n is omitted, all

characters are sent to the printer.

LANG x Change the default language setting

to that contained in ROM socket x.

LOUD Change the volume setting for the

BELL sound to full.

MODE n Change the display mode setting to n

(0-7 or 128-135).

NOBOOT Assigns normal function to BREAK

and SHIFT+BREAK.

NOCAPS Reset the CAPS LOCK option.

'' NODIR Initialise ADFS without a directory

selected.

NOSCROLL Enables the scroll protect option.

PRINT n Change the printer type setting

according to n (see page G2).

PROPORTIO- Configure cursor-key simulation of

NAL joysticks to produce full range of

values.

QUIET Change the volume setting for the

BELL sound to half volume.

REPEAT n Change the keyboard auto-repeat

rate setting to n hundredths of a

second.

SCROLL Disables the scroll protect option.

SHCAPS Set the SHIFT+CAPS LOCK option.

STICK n Set joystick acceleration rate in

PROPORTIONAL mode to n (0--7).

App 3.2

Appendix 4

*FX commands

A proportion of the memory reserved for use by the MOS is given over to the

storage of information relating to the current state of the machine and how it is

to react in various circumstances. This information is directly accessible to, and

may be changed by the user by means of special operating system calls (often

referred to simply as OSBYTE calls).

Some OSBYTE calls have an equivalent *FX command which may be issued

directly from the keyboard or included in, say, a BASIC program and these

commands are summarised below. Commands marked „# provide access to

facilities required only by advanced users and full details can be found in the

Reference Manual.

Apparent gaps in the sequence relate to OSBYTE calls which do not have an

equivalent *FX command and which must therefore be implemented by means

of techniques beyond the scope of this guide.

Parameters in *FX commands may be separated by a comma (as in the

examples below) or a sequence of one or more spaces.

If a parameter is omitted it is assumed to be zero.

*FX0 Display MOS version.

*FX1 # Reserved for application programs.

*FX2 Select input stream:

*FX2,0 keyboard only (disables RS232 (optional) input);

*FX2,1 RS232 (optional) input only;

*FX2,2 keyboard input and buffered RS232 (optional) input.

*FX3 Select output stream:

*FX3,0 Printer and screen only;

*FX3,1 Printer, screen and RS232 (optional);

*FX3,2 Printer only;

*FX3,3 Printer and RS232 (optional);

*FX3,4 Screen only;

*FX3,5 Screen and RS232 (optional);

*FX3,6 none;

*FX3,7 RS232 (optional) only.

Other values may also be used.

App 4.1

*FX4 Enable/disable cursor editing:

*FX4,0 enable cursor editing;

*FX4,1 disable cursor editing and assign ASCII codes:

COPY 135

<-- 136

--> 137

v 138

^ 139

*FX4,2 disable cursor editing and assign soft key

numbers:

COPY 11

<-- 12

--> 13

v 4

^ 15

*FX4,3 cursor keys have joystick effect. COPY is equivalent to

(and ORed with) the 'fire' button.

*FX5 Select printer type (see page G2):

*FX5,0 selects printer sink (no printing);

*FX5 , 1 selects parallel printer;

*FX5,2 selects serial printer;

*FX5,3 selects user printer routine;

*FX5,4 selects network printer server.

Printer types higher than 4 should not be used.

The default setting can be set using *CONFIGURE PRINT
(see

page App 3.1).

*FX6 Select printer ignore character (equivalent to *IGNORE). For

example:

*FX6,10 prevents line feeds (ASCII 10) being sent to the

printer.

*FX? # Select RS232 (optional) receive rate.

*FX8 # Select RS232 (optional) transmit rate.

*FX9 Set flash rate of first colour in fiftieths of a second (default

setting 25).

*FX9,0 disables flashing and forces the first colour on the

screen;

*FX9 , 10 sets the flash rate to one fifth of a second.

App
4.2

*FX10 Set flash rate of second colour in fiftieths of a second (default

setting 25).

*FX10,0 disables flashing and forces the second colour on
the

screen;

*FX10,5 sets the flash rate to one tenth of a second.

*FX11 Set keyboard auto-repeat delay in hundredths of a second

(default setting 32 or as set by *CONFIGURE DELAY).

*FX11,0 disables auto-repeat;

*FX11,10 sets auto-repeat delay to one tenth of a second.

*FX12 Set keyboard auto-repeat period in hundredths of a second

(default setting 8 or as set by *CONFIGURE REPEAT).

*FX12,0 restores default settings of auto-repeat delay and

auto-repeat period;

*FX12,3 sets auto-repeat period to three hundredths of a

second.

*FX13 Disable various events.

*FX14 Enable various events.

*FX15 Flush buffers:

*FX15,0 flushes all buffers;

*FX15,1 flushes current input buffer.

*FX18 Clear user-defined function key definitions.

*FX19 Wait for vertical synchronisation.

*FX20 Restore default font definitions te. reset the characters

corresponding to ASCII codes 32 to 126 to normal.

*FX21 Flush selected buffer:

*FX21,0 keyboard buffer;

*FX21,1 RS232 (optional) input buffer;

*FX21,2 RS232 (optional) output buffer;

*FX21,3 printer buffer;

*FX21,4 sound channel 0;

*FX21,5 sound channel I;

*FX21,6 sound channel 2;

*FX2 ,7 sound channel 3.

*FX22 Increment ROM polling semaphore.

*FX23 Decrement ROM Polling sernaphore.

App 4.3

*FX25 Restore a group of font definitions:

*FX25,0 restore character codes between 32 and 255;

*FX25,1 restore character codes between 32 and 63;

*FX25,2 restore character codes between 64 and 95;

*FX25,3 restore character codes between 96 and 127;

*FX25,4 restore character codes between 128 and l59;

*FX25,5 restore character codes between 160 and 191;

*FX25,6 restore character codes between 192 and 223;

*FX25,7 restore character codes between 224 and 255.

*FX108 Switch main / shadow memory into main map:

*FX108,0 switches shadow memory into main map

(immediate);

*FX108,1 switches main memory in to main map (immediate).

*FX109 Make temporary filing system permanent.

*FX112 Select memory to which characters will be written until the

next mode change:

*FX112,0 writes to memory specified by the mode change;

*FX112,1 writes to main memory (immediate);

*FX112,2 writes to shadow memory (immediate).

*FX113 Select memory to be displayed until the next mode change:

*FX113,0 displays the memory specified by the mode change;

*FX113,1 displays main memory (immediate);

*FX113,2 displays shadow memory (immediate).

*FX114 Select main / shadow memory in subsequent mode changes

(equivalent to *SHADOW):

*FX114,0 forces selection of shadow memory;

*FX114,1 selects mainlshadow memory according to mode

number.

*FX118 Reflect keyboard status in keyboard LEDs

*FX119 Close any *SPOOL / *SPOOLON / *EXEC files.

*FX120 Write 'keys pressed' information.

*FX124 Acknowledge 'escape condition' without side effects.

*FX125 Set 'escape condition'.

*FX126 Acknowledge 'escape condition' with side effects.

*FX136 Define entry point for user MOS routine (equivalent to *CODE).

App 4.4

*FX138
Insert character code into buffer. (See *FX21 for a list of
buffer

numbers.) For example:

*FX138,0,65 places ASCII 65 (A) into the keyboard buffer.

*FX139 Select option value (equivalent to *OPT).

*FX141 Select ROM filing system (equivalent to *ROM).

*FX142 Enter language ROM.

*FX143 Issue paged ROM service request.

*FX144 Set vertical screen shift and interlace option for next mode

change or break (equivalent to *TV). For example:

*FX144,0,1 gives no screen shift and turns the interlace off;

*FX144,1,0shifts the screen up by one line and turns the

interlace on;

*FX144,255 shifts the screen down by one line (and turns
the

interlace on).

*FX146- Access memory-mapped 1/0 areas.

*FX151

*FX153 Insert character code into buffer, checking for ESCAPE.

*FX154 Write to Video ULA control register.

*FX155 Write to Video ULA palette register.

*FX156 Write to 6850 ACIA control register (part of optional RS232

interface).

*FX162 Write to EEPROM.

*FX178 Disable keyboard scanning.

*FX179 Write ROM polling sernaphore.

*FX180 Write Operating System High Water Mark (OSHWM).

*FX181 Write RS232 (optional) mode.

*FX190 Write interpretation of ADVAL.

*FX191 Write RS232 (optional) use flag.

*FX193 Write flash counter.

*FX194 Write mark period count.

*FX195 Write space period count.

*FX196 Write keyboard auto-repeat delay.

App 4.5

*FX197 E„ Write keyboard auto-repeat period.

*FX198 Write *EXEC file handle.

*FX199 Write *SPOOL file handle.

*FX200 Set BREAK and ESCAPE effect according to n:

*FX200,0 set normal BREAK and ESCAPE action;

*FX200,1 set normal BREAK and disable ESCAPE;

*FX200,2 clear memory on BREAK and set normal ESCAPE

action ;

*FX200,3 clear memory on BREAK and disable ESCAPE.

*FX201 Write keyboard disable.

*FX202 Write keyboard status byte.

*FX203 Write RS232 (optional) handshake extent.

*FX204 Write RS232 (optional) input suppression flag-

*FX206- Used by Econet.

*FX208

*FX210 Write sound suppression status:

*FX210,0 enables sound output;

*FX210,1 disables sound output.

*FX211 Write BELL (CTRL+[G]) channel (default setting 3). For

example:

*FX211,0 selects channel 0.

*FX212 Write BELL (CTRL+[G]) sound information (default setting

144). For example:

*FX212,200 produces a 'softer' BELL sound.

*FX213
Write BELL (CTRL+[G]) frequency (default setting 101).
For

example:

*FX213,200! produces a high-pitched BELL sound.

*FX214 Write BELL (CTRL+[G]) duration (default setting 7). For

example:

*FX214,1 produces a very short BELL sound;

*FX214,255 produces an indefinite BELL sound.

*FX215 Write start-up message suppression and !BOOT option status-

*FX216 Write length of soft key string.

App 4.6

*FX217 Write number of lines printed since last page halt.

*FX218 Write number of items in VDU queue.

*FX219 Write character value returned by [TAB] (default setting 9, i.e.

- cursor right). For example:

*FX219, 127 makes [TAB] equivalent to [DELETE]

*FX220 Write ESCAPE character (default setting 27). For example:

*FX220,32 makes [SPACE BAR] the [ESCAPE] key.

*FX221- Write input buffer code interpretation status.

*FX224

*FX225 Write function key status:

*FX225,0 disables the function keys;

*FX225,1 gives the keys their normal function of generating

strings.

*FX225,2 returns a code representing the key preceded by a

NULL.

The function keys may also be set to generate a single ASCII

code using *FX225,n (where n is the base number in the range 3

-255). This has the effect of assigning ASCII n to [f0], ASCII

n+l to [f1], ASCII n+2 to [f2] etc. So, for example:

*FX225,65 causes [f0] to generate ASCII 65 (A), [f1] to

generate ASCII 66 (B), [f2] to generate ASCII 67

(C) etc.

*FX226 Set base number for [„„SHIFT]+function key depressions (default

setting 128). For example:

*FX226,97 causes [SHIFT]+[f0] to generate ASCII 97 (a),

[SHIFT]+[f1]to generate ASCII 98 (b) etc.

*FX227 Set base number for [CTRL]+function key depressions (default

setting 144). For example:

*FX227,48 causes [CTRL]+[f0] to generate ASCII 48 (0),

[CTRL]+[f1]to generate ASCII 49 (1) etc.

*FX228
Set base number for [SHIFT„„]+[CTRL„„]+function key
depressions

(default setting: no effect). For example:

*FX228,200 causes [SHIFT]+[CTRL]+[f0] to generate ASCII

200, [SHIFT]+[CTRL]+[f1]to generate ASCII 201

etc.

App 4 .7

*FX229 Write ESCAPE key status:

*FX229,0 gives [ESCAPE] its normal function;

*FX229,1 causes [ESCAPE] (or the key selected by *FX220)
to

generate its ASCII code.

*FX230 Write flags determining ESCAPE effects.

*FX231 Write IRQ bit mask for user 6522.

*FX232 Write IRQ bit mask for 6850 (RS232 (optional)).

*FX233 Write interrupt bit mask for system 6522.

*FX236 Write character destination status.

*FX237„ Write cursor editing status.

*FX238 Set base number for numeric keypad (default setting 48 for

keypad 0).

*FX241 Not used.

*FX244 Write soft key consistency flag.

*FX245 Write printer destination flag.

*FX246 Write printer ignore character.

*FX247 „„ Intercept BREAK vector.

*FX249

*FX254 Set effect of [SHIFT] on numeric keypad:

*FX254,0 causes [SHIFT] to operate (i.e. [SHIFT]+keypad 0

generates !) ;

*FX254,1 makes [SHIFT] have no effect.

*FX255 Write start-up options.

App 4.8

Appendlx 5

Filing system commands

Listed below are the commands available under the various filing systems. In

reality, many of the commands are handled by the MOS but, for the sake of

completeness, such commands are listed (and duplicated) under each filing

system heading.

Most commands may be abbreviated to their first few characters terminated by

a . -- where applicable; the minimum abbreviation for each command is given

in brackets after each command name.

Commands marked | | apply to facilities required only by advanced users; full

details can be found in the Reference Manual.

The ROM Filing System

CAT (.) Display a catalogue (i.e. a list of filenames plus other

information) of all ROM Filing System ROMs.

*CLOSE (*CL.) Close all currently open RFS files.

*DUMP (*D.) Produce a hexadecimal dump of the named RFS file.

For example:

*DUMP MYFILE produces a dump of file MYFILE.

*EX || Similar to *CAT (above) except that it provides

additional information about each file.

*EXEC (*E.) Cause the MOS to take input from the named RFS

file rather that the keyboard. For example:

*EXEC START causes the MOS to take input from file

START .

*LIST
(*LI.)
||

Display the content of the named RFS file in

GSREAD format with line numbers.

*LOAD (*L.) || Load the named RFS file into memory.

*0PT1 (*0,1) Adjust the level of output during file operations:

*OPT'1,0 suppresses output of all information;

*OPT'1 ,1 allows output of the filename, block
count

and length;

App 5.1

*OPT1 ,2 allows output of the filename, block
count,

length, load address and execution address.

*PRINT (*P.) || Display a pure ASCII dump of the named RFS file.

*RUN Load and execute the named machine code program

from ROM. For example:

*RUN PANEL

*SRLOAD || Load the specified file into a designated area of

sideways RAM.

*TYPE (*TY.) || Display the content of the named file in GSREAD

format without line numbers.,

The Advanced Disc Filing System

Unless stated otherwise all commands operate on the currently selected

directory.

Many Advanced Disc Filing System commands allow the use of the wildcard

characters * and #.

*ACCESS (*AC.) Set the attributes associated with files. The

attributes are:

E for 'execute-only' access (for machine-code

program files only);

L for locking a file;

W for write access;

R for read access.

For example:

*ACCESS MEMO L locks file MEMO;

*ACCESS DADSPROG WR assigns read/write access
to

file DADSPROG.

*APPEND (*AP.) Extend files created using *BUILD (below).

*BACK Instruct the Advanced Disc Filing System to select

the previously-accessed directory and make it the

current directory.

*BACKUP Make a duplicate copy of one disc on another disc.

*BUILD (*BU.) Create a disc file containing subsequent lines of

input.

App 5.2

*BYE Ensure that all currently open files are closed at the

end of a session (similar in effect to *CLOSE).

CAT (.) Display the filenames in the current or a specified

directory. For example:

*CAT displays the catalogue for the current

directory;

*CAT $. DAVE displays the catalogue for directory

DAVE (which is subordinate to the

root directory.

*CDIR (*CD.) Create a subordinate directory with the specified

name in the current diectory. For example:

*CDIR MARY creates a directory called MARY in the

current directory.

*CLOSE (*CL.) Close all currently-open disc files.

*COMPACT (*COM.) Reorganise the files in the directory heirarchy so

that spaces created by file deletions are

amalgamated into larger blocks.

*COPY Copy a file from one directory to another. For

example:

*COPY $.TEXT $.BACKUP.VIEW

copies the file TEXT (in the root directory) into

directory $.BACKUP. VIEW i.e. it creates a file

whose full pathname is $.BACKUP-VIEW .TEXT.

*CREATE || Reserve space for a file.

*DELETE (*DE.) Delete the name of the specified file. For example:

*DELETE IDEA deletes file IDEA from the

current directory;

*DELETE $.DAVE.B1 deletes file B1 from directory

DAVE (itself in the root

directory).

A directory may be deleted only if it is empty.

*DESTROY (*DES.) Delete a group of files(using the wildcard facility).

*DIR Set the current directory.

*DISMOUNT Ensure that all currently-open files are closed prior

(*DISM.) to changing a disc.

App 5.3

*DRIVE (*DR.) Set and mount the specified drive as the current

drive. This command is provided for compatibility

reasons. It should not be used by software

developers.

*DUMP (*DU.) || Display a hexadecimal dump of the named file.

*EX || Display information about the files contained in the

specified directory.

*EXEC (*E.) Cause the MOS to take subsequent input from the

named disc file rather than the keyboard.

*FORMAT (*FO.) Format the disc in the specified drive using the

specified disc size.

*FREE (*FR.) Lists amount of disc that is free.

*INFO (*I.) || Display information about a single file (or a group of

files) using the 'wildcard' option.

*LCAT (*LC.) Display a catalogue of the library directory.

*LEX || Display information about the files held in the

library directory.

*LIB Set the library to the specified drive and directory.

For example:

*LIB $.UTILITIES

*LIST (*LI.) || Display the named disc file in GSREAD format with

line numbers.

*LOAD (*L.) || Load the specified file into memory.

*MAP Display the free-space map.

*MOUNT (*MOU.) Initialise a disc drive -- commonly used to switch

between more than one drive.

*MOUNT 0 initialises drive 0.

Note that *MOUNT 0 is equivalent to *DIR:0.

*0PT1 (*0.1) Set the reporting level during file operations.

*0PT4 (*0.4) Set the operation of the auto-boot option.

*PRINT (*P.) Display a pure ASCII dump of the named file.

App 5.4

*REMOVE (*RE.) Equivalent in effect to *DELETE, except that the

Not found message is suppressed if the file cannot

be located.

*RENAME (*REN.) Change the name of a disc file. For example:

*RENAME PR0G1 PROG2

changes the name of file PROGI to PROG2 (in the

current directory).

*RENAME can also be used to physically move

(rather than copy) a file from one directory to

another. For example:

*RENAME $.BASIC.THIS $.GARBAGE.THAT

moves file THIS from directory $.BASIC to
directory

$.GARBAGE and renames it THAT.

*RUN Load and Execute a machine code program.

*SAVE (*S.) || „ Save a block of memory to the named disc file.

*SP00L(*SP.) Cause all subsequent output to the screen to be

written to the named disc file.

*SPOOLON Append all subsequent output to the screen to the

named disc file.

*SRLOAD || Load the specified file into a designated area of

sideways RAM.

*SRSAVE || Save a designated area of sideways RAM to the

specified file-

*TITLE (*TIT.) Set the title for the current directory. For example:

*TITLE MadALex

Note that a directory title is distinct from a directory

name.

*TYPE (*TY.) || Display the content of the named disc file in

GSREAD format without line numbers.

*VERIFY (*V.) Ensure that the entire surface of the specified disc

has been formatted correctly and is without defects.

App 5.5

Appendix 6

BASIC keywords

Eagh BASIC keyword is described briefly below. If an abbreviated form of the

keyword is allowed, it is given in brackets after the full version. Note that the

abbreviation for some keywords includes an opening bracket; for example LE.

is equivalent to LEFT$(and not just LEFT$.

Many of the keywords are explained in more detail in Chapter 2. Keywords

marked || provide access to facilities beyond the scope of this guide and users

should consult the Reference Manual for further information.

ABS Function giving the positive value of any number.

ACS Function giving the are-cosine, in radians, of any

number from I to 1 inclusive.

ADVAL (AD.) || „ Read data from the joystick port or buffers.

AND (A.) Used as a logical or bitwise operator.

ASC Function producing the ASCII code of the first

character in a string.

ASN Function giving the are-sine, in radians, of any

number from -1 to 1 inclusive.

ATN Function giving the arc-tangent, in radians, of any

number.

AUTO (AU.) Command to give automatic line-numbering.

BGET# (B.#) || Give the code of the next character in a file-

BPUT# (BP.#) || „Write the code of a character to a file.

CALL (CA.) Execute a machine-code routine.

CHAIN (CH.) Load and run a BASIC program.

CHR$ Function producing the character with the given

ASCII code.

CLEAR (CL.) Clear the memory of all program variables, except

the resident integer variables.

CLG Clear the graphics window to the current graphics

background colour.

App 6.1

CLOSE# (CL0.#) Close an open file.

COS Function giving the cosine of any angle, the angle

background colour.

COLOR or Set the text foreground or background colours.

COLOUR (C.)

CLS Clear the text window to the current text

COUNT Variable containing the number of characters

printed since the last new line.

DATA (D.) Used in conjunction with READ to specify data items

to be used in a program.

DELETE (DEL.) Delete a number of lines from a program.

DIM Reserve memory space for an array of given size.

DIV Carry out integer division, any remainder being

discarded.

DRAW (DR.) Draw a line from the last graphics point specified to

the given point.

EDIT Call the optional text editor available from your

supplier.

ELSE Part of the extended IF...THEN statement used

when an alternative decision may be required.

END The computer executes no further statements after

it reaches the END statement. Its use is optional if

the END statement is physically the last statement

in the program.

ENDPROC (E.) Indicate the end of a procedure definition.

ENVELOPE || Define a sound envelope.

(ENV.)

EOF# Function indicating whether the end of a file has

been reached.

EOR Used as a logical or bitwise exclusive OR.

ERL Give the line number where the last error occurred.

App 6.2

ERR Give the error number of the last error.

ERROR (ERR.) Part of the ON...ERROR statement.

EVAL (EV.) Function which evaluates a string as if it were a

BASIC calculation.

EXP Function which calculates e (which is 2.7183...)

raised to the given power.

EXT# Function which controls the length (extent) of an

open file.

FALSE (FA.) Function returning the value 0. Used in logical

expressions.

FN Used in the definition of a function or a call to that

function.

FOR (F.) Start of the FOR--NEXT loop which causes the

computer to repeatedly execute the statements

between the FOR and the NEXT...

GCOL (GC.)
Set the graphics colour to be used by future
graphics

commands, and determine the way the colour

interacts with the colour of any point in the same

position on the screen.

GET Wait for a key to be pressed and produce the ASCII

code for that key.

GET$ Wait for a key to be pressed and produce the

character for that key.

GOSUB (GOS.) Execute a subroutine, then return control to the

statement following the GOSUB call. GOSUB is a

more limited predecessor of DEFPROC, and does
not

allow the passing of parameters. It is included for

compatability with the BASIC language on other

- computers.

GOTO (G.) Jump to the given line number.

HIMEM (H.) || Variable used to indicate the highest free memory

location which can be used by the current program.

HIMEM can be reset by the user so as to protect a

portion of memory above HIMEM where data has

been stored.

App 6.3

IF
Part of the IF... THEN statement. The computer
only

executes the instruction after THEN if the condition

following IF evaluates TRUE.

INKEY || „Wait for a given time for a key depression, and

produce the ASCII code for that key. The time is

expressed in hundredths of a second.

INKEY$ (INK.) || Wait for a given time for a key depression, amd

produce the character for that key. The time is

expressed in hundredths of a second.

INPUT (I.) Wait for an input or inputs from the keyboard

terminated by RETURN.

INPUT LINE Accepts, from the keyboard, a single input

containing leading or trailing spaces or commas,

terminated by RETURN.

INPUT# (I.#) Input data from an open file and store the data in the

variables following the INPUT# statement.

INSTR (INS.) Search one string for occurrences of another string,

and give the character position where the matching

string begins.

INT Function which converts a decimal number into the

nearest integer smaller than the original number.

LEFT$((LE.) Extract the left part of a string.

LEN Function which gives the length of a string.

LET Set a variable to a given value. The use of LET is

optional in BBC BASIC.

LIST (L.) List the current program. LISTO sets the

indentation options to make the program easier

toread. LIST IF is used to list all lines containing a

particular character sequence.

LN Function which gives the natural logarithm of a

number.

LOAD (LO.) Load a BASIC program.

LOCAL (LOC.) Declare the variables that follow as local only to that

procedure or function. Thus they will not interfere

with similarly named variables elsewhere in the

program. Parameters passed to a procedure are

automatically local.

App 6.4

LOG Function which gives the logarithm of a number to

base 10.

LOMEM (LOM.) || 0 Variable used to indicate the lowest free memory

location which can be used to store the value of

variables used by the program. LOMEM can be reset

by the user.

MID$((M.) Extract a substring from a longer string.

MOD Give the integer remainder after a division.

MODE (MO.) Change the display mode. Mode cannot be changed

within a procedure or function.

MOVE Move the graphics cursor invisibly to the given

position.

NEW Remove the current program. It can be retrieved

using OLD.

NEXT (N.) Part of the FOR...NEXT loop indicating the end of

the statements which are to be repeatedly executed.

NOT Used as a logical or bitwise operator.

OFF Part of the ON ERROR OFF statement which

switches error trapping off and enables the computer

to again print its standard error messages and halt

the program.

OLD (0.) Retrieve a program after a NEW or after BREAK

has been pressed. If typing OLD gives a 'Bad

Program' message after the BREAK key has been

pressed, the program has been corrupted and must

be loaded again from disc.

ON ERROR Used to control the action taken by the computer if it

encounters an error in the program.

ON.. .GOTO or The value of the variable following ON is found. If its

ON.. .GOSUB value is 1, the computer jumps to the first line

number in the list following the GOTO/GOSUB

statement; if the value is 2, it jumps to the second

line number, and so on-

ON.. .PROC Used to give a multi-branching facility and enable

one of a series of procedures to be executed.

OPENIN (OP.) Open a file for input only.

App 6.5

OPENOUT (OPENO.) Open a file for output only.

OPENUP Open a file for updating (input and output).

OR Used as a logical or bitwise operator.

OSCLI || Used to pass a string to the operating system.

PAGE (PA.) || Variable used by the computer to indicate the

memory location at which storage of the program

begins. PAGE can be reset by the user, so with care

it is possible to have several programs in the

computer memory at the same time.

PI Give the value of pi (3.141592653) for use in

calculations.

PLOT (PL.) Carry out a plotting function according to the

parameters following the PLOT command (see the

full list of PLOT codes in Appendix 8).

POINT((PO.) Give the logical colour number at a particular

graphics point.

POS Give the current x coordinate of the text cursor.

PRINT (P.) Print characters to the screen. The format of

printing is affected by the use of ; , ' and the

printing of numbers is controlled by the value of the

integer variable @%.

PRINT# (P.#) Print the variable values following PRINT# to an

open file.

PROC Define or call a procedure.

PTR# Function which gives the position within a file where

the next characters will be read or written. The user

can change the value of PTR# and can thus read or

write anywhere within the file, allowing random

access to records.

RAD Function which converts an angle from degrees to

radians.

READ Read items from a DATA statement.

REM A remark to help document the program. REMs are

ignored by the computer on execution of the

program.

App 6.6

RENUMBER (REN.) Assign default (or specified) line numbers to a

BASIC program.

REPEAT (REP.) Part of the REPEAT...UNTIL loop which executes

all statements between REPEAT and UNTIL until a

condition or conditions are satisfied. Note that such a

loop is always executed at least once, even if the

terminating conditons are met immediately, as the

test for the conditions comes at the end of the loop.

REPORT (REPO.) Print an error message for the most recent error

found.

RESTORE (RES.) Read further data beginning at the line number

following the RESTORE.

RETURN (R.) Indicate the end of a subroutine which has been

called using GOSUB. The computer returns to the

statement in the program which is immediately after

the GOSUB which called the routine.

RIGHT$((RI.) Extract the right-hand part of a string from a longer

string.

RND Function which produces a random number. RND(1)

gives a random decimal from 0 to 0.99999. RND(N)

gives a random integer from 1 to N inclusive.

RUN Execute the program in memory.

SAVE (SA.) Save a program in the computer's memory to disc.

SGN Function which gives the sign of the number

following, producing 1 for minus numbers, 0 for

zero and + 1 for positive numbers.

SIN Function which gives the sine of any angle, the angle

being in radians.

SOUND (SO.) Produce a sound through the internal loudspeaker.

SPC Used only with PRINT or INPUT to print multiple

spaces.

SQR Function which finds the square root of the number

that follows.

STEP
Part of the FOR...TO..STEP statement which
allows

a FOR...NEXT loop with steps other than 1.

App 6.7

STOP Interrupt a program with the untrappable error

message STOP.

STR$ Converts a number into its equivalent string

representation.

STRING$ (STRI.) Produce multiple copies of a string up to a maximum

length of 255 characters.

TAB Used only with PRINT or INPUT to position the text

cursor on the screen.

TAN (T.) Function which gives the tangent of any angle, the

angle being in radians.

THEN Part of the IF...THEN statement.

TIME (TI.) Set or read the value of one of the internal clocks in

hundredths of a second. „.

TIME$ This pseudo-variable is used to control the real-time

clock in other Master Series computers. Its use on

this computer will result in the intentionally ludicous

result Fri, 31 Dec 1999.23:59:59.

Attempts to assign values to this pseudo-variable

will have no effect.

TO Part of the FOR...TO...NEXT statement.

TOP || Variable giving the first free memory location after

the end of the BASIC program. TOP is usually the

same as LOMEM, but unlike LOMEM it cannot be

reset by the user.

TRACE (TR.) Display the line number of each line executed. Used

for tracing errors. TRACE OFF switches trace off,

TRACE ON switches it on.

TRUE Function producing the value -1, used in logical

expressions.

UNTIL (U.) Part of the REPEAT... UNTIL loop, signalling the

end of the loop. Statements between REPEAT and

UNTIL are executed repeatedly until certain

conditions are met.

USR || Function providing a means of calling a machine

code routine designed to produce one value.

App 6.8

VAL Function which converts a string into its numeric

equivalent. The string is examined up to the first

non-numeric character, so a string not beginning

with a number is given a value of 0.

VDU (V.) A general purpose command producing various

effects on the screen display.

VPOS (VP.) Give the current y coordinate of the text cursor.

WIDTH (W.) Set the width of all subsequent lines of output.

App 6.9

Appendix 7

VDU codes

The output of text and graphics is controlled by a complex set of MOS routines

referred to as the VDU driver. The VDU driver is active unless the display

screen has been disabled using *FX3 (see page App4. I) or VDU 21 (see below).

The codes described below alter the the behaviour of the VDU driver and may

be used to produce a variety of effects. The most common implementation is

through the BASIC language's VDU statement although commands to the

VDU driver may also be issued directly from the keyboard by means of control

key depressions (i.e. simultaneous depression of [„„CTRL] with another key).

Some VDU codes consist of a sequence of values. Where necessary, these extra

values must be specified for the code to take effect.

Code [CTRL] Extra Effect

key values

VDU 0 @ 0 Does nothing.

VDU 1 A 1 Send the next character to the printer only.

For example:

VDU 1,65 prints but does not display the

character A.

VDU 2 B 0 Enable the printer.

VDU 3 C 0 Disable the printer.

VDU 4 D 0 Write text at text cursor (i.e. restore the text

cursor and display subsequent text in normal

character positions).

VDU 5 E 0 Write text at graphics cursor (i.e. remove the

text cursor and display subsequent text at

graphics co-ordinates). The position of the

text cursor remains unaltered.

VDU 6 F 0
Re-enable screen output (i.e. enable the
VDU

driver).

VDU 7 G 0 Emit a bleep from the speaker.

App 7.1

VDU 8 H 0 Move the text cursor one character position to

the left.

VDU 9 I 0 Move the text cursor one character position to

the right.

VDU 10 J 0 Move the text cursor down one line.

VDU 11 K 0 Move the text cursor up one line.

VDU 12 L 0 Clear the screen and restore the text cursor to

position (0,0). (Equivalent to CLS).

VDU 13 M 0 Move the text cursor to the start of the

current line.

VDU 14 N 0 Set page mode on (i.e. suspend output at the

end of each full screen of output and wait for

the user to depress [SHIFT]).

VDU 15 O 0 Set page mode off (i.e. allow unrestricted

output).

VDU 16 P 0 Clear the current graphics area to the current

graphics background colour. (Equivalent to

CLG.)

VDU 17 Q 1 Change the foreground or background colour

for subsequent text output (equivalent to

COLOUR). In mode 5 (133), for example:

VDU 17,2 sets the text foreground colour

to Yellow.

VDU 17,129 sets the text background
colour

to Red.

VDU 18 R 2 Change the foreground or background colours

for subsequent graphics output and define the

way in which it is to be placed on the screen

(equivalent to GCOL). In mode 2 (130), for

example:

VDU 18,0,4 changes the graphics

foreground colour to Blue.

VDU 18,0, 134 changes the graphics

background colour to Cyan.

App 7.2

VDU 19 S 5 Change the colour palette. VDU 19 allows

any of the 16 available colours to be assigned

to the colour numbers available in a

particular mode. In mode 0 (128) for example:

VDU 19,1,2,0,0,0 changes colour 1

(normally White) to Green.

VDU 19,0,7,0,0,0 changes colour 0

(normally Black) to White.

The three items at the end of this sequence

should always be 0.

VDU 20 T 0 Restore default colours (i.e. revert to white

text / graphics on a black background) and

reset the palette to its default colour

assignments.

VDU 21 U 0 Disable the VDU driver (i.e. stop subsequent

output to the screen).

Note that [CTRL]+ U issued from the
keyboard

has the effect of deleting the current line.

VDU 22 V 1 Select screen mode. This sequence should not

be used from the keyboard in languages such

as BASIC or from the command screens of the

View family. See the Reference Manual for

further information.

VDU 23 W 9 Miscellaneous functions.

VDU 23 provides a great many functions,

most of which are beyond the scope of this

guide. The functions are listed below -- details

of the remaining parameters are given in the

Reference Manual-

VDU 23,0 control 6845 directly

VDU 23,1 change cursor

VDU 23,2

VDU 23,3 set full pattern-fill

VDU 23,4 patterns

VDU 23,5

VDU 23,6 set dotted line pattern

VDU 23,7 scroll window directly

VDU 23,8 clear block in text window

VDU 23,9

App 7.3

VDU 23,10 set flash rate

VDU 23 ,11 restore default pattern-fills

VDU 23,12

VDU 23,13 set simple pattern-fill

VDU 23,14 pattern

VDU 23,15

VDU 23,16 control cursor movement

Functions 17 to 31 are reserved.

Any value greater than 31 following VDU 23

is taken as a reference to a character which is

to be redefined.

VDU 24 X 8 Define graphics window.

VDU 25 Y 5 Equivalent to the BASIC PLOT statement

(See Appendix 6.)

VDU 26 Z 0 Restore text and graphics windows.

VDU 27 [0 Does nothing.

Note that [CTRL]+ [is equivalent to
[ESCAPE„„„].

VDU 28 \ 4 Define text window.

VDU 29] 4 Define graphics origin (te. the position on the

screen with graphics co-ordinates (0,0). For

example:

VDU 29,640;512;

makes subsequent graphics co-ordinates

relative to (640,512) --a point roughly in the

centre of the screen.

Note the (mandatory) use of semicolons.

VDU 38 ^ 0 Move text cursor to (0,0).

VDU 31 -- 2 Move text cursor to a specified position

(equivalent to PRINT TAB). For example:

VDU 31,28,18 moves the text cursor to

character position 20 on line 10 (the first

character position and line being 0).

VDU 127 0 Backspace and delete (i.e. the normal action

of [DELETE].

App 7.4

Appendix 8

PLOT codes

The BASIC PLOT statement can be summarised as:

PLOT code,x,y

and its effect is to plot to the point (x,y) in a manner determined by the value of

code. An identical effect can be produced using:

VDU 25,code,x;y; (note the use of semicolons).

The permissible PLOT codes and their effects are given (in groups of eight

codes) in Table 1. The codes within each group are obtained by adding an 'offset'

value to the first code in the group. The offset values are as follows:

0 move relative to the previous point;

1 plot relative to the previous point in the current graphics

foreground colour;

2 plot relative to the previous point in the logical inverse colour;

3 plot relative to the previous point in the current graphics

background colour;

4 move to absolute position;

5 plot to absolute position in the current graphics foreground colour

6 plot to absolute position in the logical inverse colour;

7 plot to absolute position in the current graphics background

colour.

The column headed Previous points contains the number of points which must

have been 'visited' before the corresponding PLOT statement is executed. For

example, in order to plot a rectangle, one corner must be first be visited

(perhaps using MOVE or DRAW) -- the co-ordinates of the diametrically

opposite corner are specified in the PLOT statement.

Examples of various PLOT commands are given in Chapter C, and detailed

information can be found in the Reference Manual.

App 8.1

Table I

Plot code Effect Previous

points

0 -- 7 Solid line, includes both ends 1

8 -- 15 Solid line, final point omitted 1

16 -- 23 Dot-dash line, includes both ends, 1

pattern restarted

24 -- 31 Dot-dash line, final point omitted, 1

pattern restarted

32 -- 39 Solid line, first point omitted 1

40 -- 47 Solid line, both points omitted 1

48 -- 55 Dot-dash line, first point omitted, 1

pattern continued

56 -- 63 Dot-dash fine, both ends omitted, 1

pattern continued

64 -- 71 Point plot

72 -- 79 Line fill left and right to non-background

80 -- 87 Triangle fill 2

88 -- 95 Line fill right to background

96 -- 103 Rectangle fill 1

104 -- 111 Line fill left and right to foreground

112 -- 119 Parallelogram fill 2

120 -- 127 Line fill right to non-foreground

128 -- 135 Flood until non-background

136 -- 143 Flood until foreground

144 -- 151 Circle outline 1

152 -- 159 Circle fill 1

160 -- 167 Circular arc 2

168 -- I 75 Circular segment 2

1 76 -- 183 Circular sector 2

184 -- 191 Rectangle copylmove:

184 Move relative 2

185 Relative rectangle move 2

186/187 Relative rectangle copy 2

188 Move absolute 2

189 Absolute rectangle move 2

190/191 Absolute rectangle copy 2

192 -- 199 Ellipse outline 2

200 -- 207 Ellipse fill 2

208 -- 255 Reserved

App 8.2

Appendix 9

VIEW commands

Command screen commands

Most commands may be abbreviated to their first few characters. Where

applicable, the minimum abbreviation is given in brackets after each command

name.

Commands marked ||„ apply to facilities for which detailed descriptions are

outside the scope of this guide. Full details may be found in the VIEW User

Guide.

Note that operating system and filing system commands can be issued from the

VIEW command screen.

CHANGE (C) Find all occurrences of one target string and

change it for another. For example:

CHANGE WATER WINE

CLEAR (CL) Remove all markers from the text.

COUNT (CO)
Count the number of words in memory or
between

markers (if specified).

EDIT (E) || Start editing a file which is too large to fit into

available memory-

FINISH (F) ||„ Finish an EDIT session.

FIELD n (FI) || Assign the tab function to the key with ASCII

value n. (Default setting FIELD 9.)

FOLD || Turn the facility to ignore case on and off with

SEARCH, CHANGE and REPLACE. With no

parameters, FOLD tells you the current status.

FORMAT (FOR) Format the whole document in memory.

LOAD (L)
Load the specified file into memory replacing
what

was there previously. For example:

LOAD RESIGN

MICROSPACE (MI) || Enable microspacing.

App 9. 1

MODE (M) Switch the computer into the specified screen

mode. For example:

MODE 132

MORE (MO) || Continue an editing session.

NAME (N) Name (or rename) the file in memory. For example:

NAME JULY12

NEW Clear the text from memory.

PRINT (P) Print text onto continuous stationery. PRINT (P)

by itself prints the text in memory; if followed with

filename(s) it prints the contents of the named

file(s).

PRINTER (PRINTE) || Load the specified printer driver into memory. For

example:

PRINTER LASER

QUIT || Abandon an EDIT session.

READ (RE) Read a file onto the end of the document in

memory. May be used to read a file into a document

at a point indicated by a marker. For example:

READ INDEX 1 reads file INDEX into the current

document at the point indicated by

marker 1.

REPLACE (R) Find all occurrences of one string and request the

user to confirm replacement with another. For

example:

REPLACE FAT ROTUND

SAVE (SA) Save the text in memory with the specified name.

For example:

SAVE MY-CV saves the current file with the name

MY-CV ;

SAVE saves the current file with its current

name.

SCREEN (SC) Display the text on the screen as it will appear

when printed. For example:

SCREEN LETTER displays the file LETTER;

SCREEN displays the file in memory.

App 9.2

SEARCH (S) Search the text for the specified string. For

example:

SEARCH dog

[CTRL]+[f1] (NEXT MATCH) to find subsequent

occurrences.

SHEETS (SH) Print the text pausing between pages for the user

to feed in the next sheet of paper. For example:

SHEETS BOOK prints file BOOK;

SHEETS prints the file in memory.

SETUP (SET) Set any or all of the text screen flags, for example:

SETUP FI selects formatting and insertion, but not

justification.

WRITE (W) Write text to disc using the specified filename. This

is slower than SAVE but can be used with markers,

for example:

WRITE PORTION 1 2 saves the section of the

current document between

markers 1 and 2.

Stored commands

These commands are used in the text screen and are placed in the command

margin by using [SHIFT]+[f8] (EDIT COMMAND).

CE text Centre text between the left and right margins.

RJ text Right justify text, i.e. aligns it to the right margin.

LJ text Left justify text, i.e. aligns it to the left margin.

DH || Define page header.

DF || Define page footer.

HE ON/OFF || Switch printing of page headings on or off.

FO ON/OFF || Switch printing of page footers on or off.

DM m || Define the start of macro m.

EM || End macro definition.

SR l v || Set register l to value v.

PB ONIOFF Switch page breaks on or off (default ON).

PL n Set page length to n lines (default 66).

App 9. 3

TM n Set top margin to n lines (default 4).

HM n Set header margin to n lines (default 4).

FM n Set footer margin to n lines (default 4).

BM n Set bottom margin to n lines (default 4).

LM n Set left margin for printed output to n spaces

(default 0).

LS n Set line spacing -- causes n blank lines to be printed

between each line of text.

TS ON/OFF || Switch two-sided printing on or off.

PE Page eject. PE n may be used to perform a page

eject if n is greater than the number of lines

remaining on the current page.

OP || Odd page i.e. give one page eject if on an even

numbered page, two if on an odd numbered page.

EP || Even page ii.e. give one page eject if on an odd

numbered page, two if on an even numbered page.

HT -/ * n || Set highlight character to n.

App 9.4

Appendix 10

BAS128 information

Disc-based BBC BASIC -- BAS128

This version of BBC BASIC, supplied on the Welcome disc, gives the user

access to a full 64K of memory for BASIC programs.

BASl28 is loaded by typing:

*BAS128 [RETURN]

The screen will be cleared and the banner BBC BASIC will appear together

with the message Bytes free 64K.

The > prompt will be displayed and commands may be issued in the same way

as for ROM-based BBC BASIC.

If you are a new user of Master series computers you should read the section of

this manual about BASIC before attempting to use this software. If you are

familiar with BBC BASIC and intend to write your own programs, you may

need to be aware of the technical differences between the ROM-based and

dise-based versions. The key point is that this disc-based version is loaded into

the RAM area which would usually be occupied by a user program. The 64K

area of additional 'sideways' RAM is then made available for user prograrns.

The detailed differences between the two BASICs are as follows:

1. When using BASl28, the 64K of additional memory pretends to be a

continuous address space above the normal 64K address space of the computer.

Thus addresses &000000 to &00FFFF refer to normal memory and addresses

&010000 to &0IFFFF refer to the 64K bytes of sideways RAM.

PAGE defaults to &10000.

HIMEM defaults to &20000.

Similarly, LOMEM and TOP are addressed in this way.

2. Statements such as:

DIM code 100

App 10.1

will assign a l7-bit value to 'code'. Indirection operators may then be used to

read and write data into the area of memory reserved by the DIM statement,

e.g. :

!code=27128;

PRINT code?3;

$(code+27)="Arvo and Sue"

Indirection operators will address normal memory if the calculated pointer is in

the range &000000 to &00FFFF and will address sideways RAM if the pointer

is in the range &010000 to &01FFFF.

3. The Assembler will operate using O% and P% as l7-bit pointers.

If the destination for the machine code generated by the assembler is in the

range &000000 to &00FFFF then normal memory is referenced. Addresses

from &010000 to &0IFFFF reference sideways RAM.

The Program Counter is adjusted so that address references in the range

&010000 to &01FFFF refer to sideways RAM addresses &008000 to

&00BFFF. References from one bank of sideways RAM to another are trapped,

giving a 'Bank' error, e.g.:

P%=&13F00:[JSR &1CF34

will give a 'Bank' error. When compiling, any code generated over a bank

boundary is trapped, resulting in a 'Wrap' error. Thus the maximum amount of

code that can be generated at any one time is 16K bytes. For example:

P%=&13FFC:[LDA #0:TAY:SEC:SBC &70]

will give a 'Wrap' error since execution cannot pass from one bank to the next

directly.

4. Shadow mode will be forced on (ignoring low-valued MODEs) so that

BAS128 can reside in RAM between &3000 and &8000. The remaining

memory from OSHWM to &3000 may be used by BASl28 as workspace.

5. The LOAD, SAVE and CHAIN commands make use of the OSGBPB routine.

App l0.2

Appendix 11

Technical information

Connector pin assignments

The pin assignments for the connections on the rear of the computer are shown

in the diagrams below. Each view is towards the socket, from outside the

computer's case.

Joystick 9 Way D-type plug

Internal 6522 connections:

1 Up (negative true) PB3

2 Down (negative true) PB2

3 Left (negative true) PBI

4 Right (negative true) PB4

5 Internal connection CBI

6 Fire PB0

7 + 5V

8 0V

9 Internal connection CB2

App 11.1

Printer 24 Way Ribbon socket

1 -- Strobe (negative true) 13 -- Ground

2 -- Data 0 14 -- Ground

3 -- Data 1 15 -- Ground

4 -- Data 2 16 -- Ground

5 -- Data 3 17 -- Ground

6 -- Data 4 18 -- Ground

7 -- Data 5 19 ----Ground

8 -- Data 6 20 -- Ground

9 -- Data 7 21 -- Ground

10 -- Acknowledge (negative true) 22 ---Ground

11 -- No connection 23 -- Ground

12 -- No connection 24 -- Ground

Disc 25 Way D-type socket

1 Index 14---- Ground

2 Drive select 0 15 -- Ground

3 Drive select 1 16 -- Ground

4 No connection I 7 -- Ground

5 Load Head/Motor Control 18 -- Ground

6 Direction 19 -- Ground

7 Seek/Step 20 -- Ground

8 Write Data 21 -- Ground

9 Write Enable 22 -- Ground

10 Track 0 23 -- Ground

11 Write Protect 24 -- Ground

12 Read Data 25 -- Ground

13 Side Select

App 11.2

Memory Map

App 11.3

Index

ABC E1 CARD INDEX B2

access codes F15 CASTLE B8

accuracy C5 CATALOGUE B3

actual colour C60 centreing text D3

ADFS B9, F1, F2, F7 , App5.1 CHAIN C11

ADVENTURE B9 CHANGE D11

alpha-numeric keyboard A4, A5 changing colours C22, C59

AND C44 character design C58

AQUA ATTACK B9 character sets App2.1

ARCADE B9 CHARACTERS B11

array C52 CHR$ C29

arrow keys A4, A8 CLG Cl5

ASC C29 clicking B2

ASCII character set A10 CLOCK B8

ASCII C28, App2.1 closing (files) C55

assembler C66 CLOUD B8

assembly language C66 CLOWN B8

AUTO C8 CLS C2

auto-boot F14 CODE key A6

auto-repeat B11 COLOUR C22

colour monitor A3, G1

b (bleep) Dl5 colour numbers App2.l

background colour Bl4 command screen D2, App9.1

backup F6 compact F19

BAS128 C66, App10.1 concatention C48

BASIC C1, Appl0.l conditions C40

BASIC keywords App6 1 connector pin assignments App 11.l

BASIC program file C11

baud B12 control key A6

BBC BASIC C1, App10.1 control panel B14

block D11 copying F16

block operation D9 copy cursor C7

boot Bl2, F14, App3.l COPY key A8

BREAK key A5 CSD B6, F11

BREAK key lock A7 CSL F13

CTRL key A6

CALCULATOR B4 currently selected directory B6, F11

CALL C67

caps lock indicator A5

Index - 1

currently selected library F13 error handling C45

cursor C7 error message C45

cursor control keys A4, A8 ESCAPE key A7

cursor editing C7, App2.7 external connections App11.1

fault findmg A3

DATA (BASIC) C50 fdrive B12, App3.2

data (Panel) Bl2, App3.1 field (Card Index) B3

data file C54 field (BASIC) C23

database B2 file B3, B6, C54, F1, App3.2

default language B13 file server Bl2

DEFFN C36 filename F8

DEFPROC C31 filing system B13, F1

DELETE A6, C9 filing system commands App5.l

DELETE key A6 flashing colours C62

deleting D6, F16 floppy disc F1

DESKTOP Bl FN C36

DIM C52 font B13

dir B12, App3.2 footer D22

directory B6, F9, F13 FOR. . .NEXT C37

directory catalogue D2, F9 foreground colour Bl4

disc drive A1, A13, F3, G2, App
11.2

formatting F5

 function C36

DISC UTILS B12 function key A4, A8 ,C10

double height characters C61 function key definition C10

double-sided F3

double spacing B12 games B9

DRAW C14 GCOL Cl5

Econet G4, App11.1 GET C28

global operation D22

Econet (Printer) B12 global variable C34

Econet socket G4 graphics A9, C56

EEPROM B10 graphics cursor C14

Elite C13 graphics mode Cl4

ELSE C44 graphics window C24

END C31

End Of File C56 hard break A7

end of file marker C56 header D22

ENVELOPE B11 hexadecimal C58

ENDPROC C31 Hierarchy F10

ENVELOPE C65 hierarchical directory structure F10

EOF C56 highlight codes D21

Epson D21ERL C46 high-resolution graphics C56

ERR C46

Index - 2

icon Bl marker D4, D9

IF C44 memory map App11.3

IF.. .THEN C44 menu B2, Bl3,

ignore Bl2, App3.2 menu-bar B2

immediate command D4 MID$ C48

INKEY C28 minimum abbreviation C9

INPUT C6, C27 MODE C14, App3.2

INPUT LINE C28 mode B11, C14

insert mode D6 mode characteristics Appl.l

INSTR C49 modem G4

integer array C54 monitor A1, A2, A3, G1

integer variable C5 monochrome monitor A3, Gl

interlace B11 MOS A11, App3.1

mouse G4

joystick G4, App11-1 MOVE C14

justification D3 MSN F13

multiple choices C41

keyboard A1, A4, F22

keyboard delay B1l, App3.2 nested loops C39

keyboard codes App2.7 network G4

KEYBOARD B9 NEW C3, D4

keyboard repeat B11, App3.2 no boot Bl2 ,App3.2

keyboard status B11 no dir B12, App3.2

keyword Cl, App6.1 no ignore B12, App3.2

no scroll B12, App3.2

language Bl3, App3.2 NOTE PAD B5

LEFT$ C48 numeric array C52

LEN C36 numeric keypad A4, A7

library Fl3 numeric variable C4

line feed Bl2

line number C2 OLD C3

LIST C2, C8 ON ERROR C45

LIST IF C8 ON. . .PROC C45

LISTO C8 OPENIN C56

LOAD C12, D5 OPENOUT C55

loading programs C11, C12 operating system commands A11

local variable C34

LOG C2 OR C44

loops C37 OSBYTE App4.1

loud B12 overtype mode D6

overtyping D6

machine code C66

Machine Operating System A11 page eject D2l

macro D22 page length D2l

Mad Alex F10, App5.5 palette B14

margin stop D4 Index - 3

PANEL B10, B11 RENUMBER C3, C9

parallel (Printer) B12, G2 REPEAT. . .UNTIL C40

parallel interface G2 REPORT C45

parameter C33 resident integer variable C6

parent directory F12 RESTORE C50

pathname F11 RETURN key A6

PATTERN EDITOR B10 RES Fl, F2, F19, App5.1

PATTERNS B8 RGB A3, App11.l

peripherals G1 RGB socket A3

PLOT C16 right justification D17

PLOT codes C16, App8.l, App8.2 RIGHT$ C48

plotter G2 RND C42

pointing device G4 ROM B12

power indicator A5 ROM Filing System F1, F2, F19

power-on reset B12, F14 root directory F10

proportional B12 RS232 interface G2, G3

PRINT B10, Cl, App3.2 RS232 socket G2, App11.1

print formatting C23 ruler D4

PRINT TAB C21 RUN C2

print window C26

printer D20, G2, App11.1 SAVE C11

printer driver D20, D2l saving programs C11

printer options B12, App4.2 SCREENS B9

printer server B12 screen drsplay A8

printing D20 screen mode A9, B11, Appl.l

printing text at graphics cursor C26 screen window C24

 scroll Bl2

printing text in colour C22 scroll protect option B12, App3.2

PROC C31

file:///C|/Documents%20and%20Settings/Chris%20Richardson/My%20Documents/8bs/website%20full/othrdnld/manuals/compactwelcome/PageD17.htm

procedure C30 sector F3

procedure call C3l selecting B2

PROGRAMS B7 serial interface G2

prompt A9, C2 serial (Printer) Bl2, G2

proportional C11, App3.2 service Bl2

shadow memory App3.4

quiet B12, App3.2 shadow screen A9, App1.l

sideways RAM A12, Bl2

RAM B12 SHAPES B8

READ C50, D5 SHIFT key A6

read-only memory Al2 shift lock indicator A5

read/write head F3 sink (Printer) Bl3

real variable C5 soft BREAK A7

Reference Manual App5.1 SOUND C64

renaming F16 sound C64

REM C9 Index - 4

sound channel C64 VDU drivers App7.1

sound generator C64 verify F6

sound option B12 VIEW D1

SQR C2 VIEW commands App9.1

STEP C37

stick B12 ,App3.2 Welcome programs B7

stretch box B5 Welcome utilities B10

stored commands D16, App9.3 wildcards D22, F15

stored commands margin D16 window B2

STR$ C49 word processmg D1

string C6, C47 wrap around D3

string array C52 write cursor C7

string vanable C6 write-protect tab F4

STRING$ C49

structured programs C29 !BOOT F14

sub-directory F10 # F15

switched B12, App3.2 $ C6

% C6

TAB C21 * A11, C2, Fl5

TAB key A6, Dl4 + C2

TAB stop D14 . C5, F11

teletext A9, A10, C61, App2.3 / C2, F12

TEXT B9 : F12

text co-ordinate C21 < C40, D4

text file D4 = C40

text screen B3 > C40, D4

text window C24 @ F11

TIME C41 @% C24

TIMPAINT B13 ^ F12

track F3

trackball G4

tutorials B9

unplugged B13

UNTIL C40

user (Printer) B12

user-defined character C58

utility programs B10

VAL C50

variable C4

variable name C4

VDU C24

VDU codes App7.1

VDU Command C24 Index - 5

	Local Disk
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide
	Master Compact Welcome Guide

