

REPTON INFINITY
Instruction Manual

David Lawrence & David Acton

1

REPTON INFINITY
Featuring a Sophisticated Game Creator

The Repton series of games is the most successful set of software ever published for
the BBC Micro and Electron; more than 120,000 Repton cassettes and discs have
now been sold. Repton has been aptly described as "the thinking man's arcade
game"...since it requires the use of clever strategy as well as pure arcade skill.

Repton Infinity is the ultimate Repton program. You can completely re-design all of
the game characters and game screens. But more than this, you can now also create a
wide variety of diversely different games by using a special game-creating language.

The four games provided give some indication of the versatility of this package:

 * Repton 3 - to show you the way,
 * Repton 4 - a new puzzling predicament for our hero,
 * Robbo - a crazy robot in a strange topsy-turvy world,
 * Trakker - with four animated opponents to petrify you.

Let your imagination run riot as you devise new games. Select your own sound
effects and visual effects. Decide how many opponents you wish to have. Perhaps
include a river inhabited by piranha-fish or a battlefield with daring commandos.
Maybe design a timid adversary who runs away from you. How about some friendly
creatures who will help you in some way?

You control the behaviour of the creatures...You determine the rules of the
game...You create the whole scenario!

FILMSTRIP - The Character Designer
BLUEPRINT - The Game Creator
REPTON 4 - Can you photocopy the Ghost?
TRAKKER - Chased by a Jagga

The screen pictures show the BBC Micro version of the game. The graphics of other
versions may vary.

Game Authors: David Lawrence & David Acton
Game Screens: Matthew Atkinson
Superior Software Ltd., 3 Manor Drive, Scawby, Brigg, NORTH LINCOLNSHIRE
DN29 9AX, England.
Telephone (01652) 658585 00199

2

Loading Instructions

Cassette users should find two tapes supplied: the GAME cassette and the DATA cassette.

Insert the appropriate side of the GAME cassette into your cassette player and rewind the cassette to
the start if necessary.

If you have a Disc Filing System fitted, type the following:
 *TAPE

and press the RETURN key.

Now type CHAIN"" and press the RETURN key.
Press PLAY on your cassette player and wait for the program to load.

After a short while the main menu will appear. To start the game, simply press RETURN. To select
any other option, use the cursor up and down keys to move through the menu and press RETURN
when the required option is highlighted.

Note: If your cassette player has no motor-control, always press STOP on your cassette player after
loading has finished.

Unauthorised commercial exploitation of games, screens or graphics data produced by, or with the aid
of, any of the editors or other software comprising Repton Infinity is strictly prohibited.

3

Contents

SECTION 1 INTRODUCTION

 1.1 Welcome ... 6
 1.2 Playing the game ... 6
 1.3 Loading game files .. 7
 1.4 The rules of the games .. 7
 1.4.1 Repton 3 - Take 2 ... 7
 1.4.2 Repton 4 ... 8
 1.4.3 Robbo ... 8
 1.4.4 Trakker ... 8
 1.5 Creating your own games .. 9
 1.5.1 Using discs and cassettes ... 9
 1.5.2 Fundamentals for designing games ... 11
 1.5.3 Editor characters .. 11
 1.5.4 Adding your name ... 12

SECTION 2 LAND SCAPE - the Level Designer

 2.1 Introduction to Land Scape ... 13
 2.2 Editing screens .. 13
 2.3 Placing transporters .. 14
 2.4 Loading map files .. 14
 2.5 Saving map files .. 14
 2.6 Entering your name .. 14
 2.7 Loading editor characters .. 14
 2.8 Leaving Land Scape .. 14

SECTION 3 BLUE PRINT - the Game Creator

 3.1 Introduction to Blue Print .. 15
 3.1.1 Using Blue Print ... 16
 3.1.2 Entering text ... 16
 3.1.3 "Making" the object code ... 16
 3.1.4 Loading and saving .. 16
 3.1.5 Entering your name .. 17
 3.1.6 Leaving Blue Print ... 17
 3.2 Introducing Reptol .. 17
 3.3 The TYPE section ... 18
 3.3.1 System flags ... 18
 3.3.2 Movement speed ...19
 3.3.3 User flags .. 19
 3.3.4 Setting the flags .. 20
 3.4 The ACTION section .. 21
 3.4.1 The use of ACTION .. 21
 3.4.2 Using the IF statement .. 21
 3.4.3 LOOKing and MOVEing .. 22
 3.4.4 Random programming - CHANCE ...24
 3.4.5 Changing STATE ... 24
 3.4.6 Generating delays - EVENT ... 25
 3.4.7 The CONTENTS of squares .. 26
 3.4.8 CREATEing objects .. 26
 3.4.9 Using STATE and EVENT together ... 27
 3.4.10 Testing movement - MOVING .. 28
 3.4.11 Killing Repton - KILLREPTON .. 28
 3.4.12 Chasing Repton - NORTHOF, etc ... 28
 3.4.13 Examining the Return KEY .. 29
 3.4.14 ENDing a definition .. 29

4

 3.4.15 Changing characters ... 29
 3.4.16 GOTO and LABEL .. 30
 3.5 "Special effect" commands .. 30
 3.5.1 SCOREing points .. 30
 3.5.2 FLASHing the screen ... 30
 3.5.3 Generating SOUNDs ... 31
 3.5.4 Making sound EFFECTs ... 31
 3.6 The HITS section .. 31
 3.6.1 The use of HITS .. 31
 3.6.2 Hit routine commands .. 32
 3.6.3 Using the HITBY condition ... 32
 3.7 Hints and tips .. 33
 3.7.1 Continual FLASH ... 33
 3.7.2 Speeding things up ... 33
 3.7.3 The first 4 characters ... 34
 3.7.4 Killing Repton ... 34
 3.7.5 Creating Repton ... 35
 3.7.6 LOOK before you leap .. 35
 3.7.7 Pushing ... 35
 3.7.8 User flags ... 36
 3.7.9 MOVEing twice ... 36
 3.7.10 MOVEing and LOOKing .. 36
 3.7.11 Transporters ... 36
 3.7.12 AND and OR .. 36
 3.7.13 Diagonal movement ... 37
 3.7.14 Screen scanning .. 37
 3.7.15 Repton - a special case ... 38
 3.7.16 Recursive programming ... 38
 3.7.17 The envelopes .. 39

SECTION 4 FILM STRIP - the Character Designer

 4.1 Introduction to Film Strip .. 40
 4.2 Editing sprites .. 40
 4.2.1 Simple editing .. 40
 4.2.2 Advanced facilities ... 40
 4.3 Animated sprites .. 41
 4.3.1 What animation means ... 41
 4.3.2 Testing out animation ... 41
 4.3.3 Repton's animation ... 41
 4.4 Loading and saving sprites ... 42
 4.5 Entering your name .. 42
 4.6 Leaving Film Strip .. 42
 4.7 Example sprite files ... 42

SECTION 5 FILE LINK - the Linker

 5.1 Introduction to the Linker ... 43
 5.2 Using the BBC/Electron Linker ... 43
 5.2.1 Entering information .. 43
 5.2.2 Linking the files ... 43

SECTION 6 REFERENCE

 6.1 Reptol command summary ... 44
 6.2 Summary of system flags .. 51
 6.3 Blue Print error messages .. 51

QUICK REFERNCE CARD ... 54

5

Section 1

Introduction

1. 1 Welcome

Welcome to Repton Infinity - a suite of four games plus all that you need to create games of your own.
The authors wish you hours of pleasure pitting your wits against our puzzles and making up more for
yourself!

Repton Infinity is a "fully-definable game". Like Repton 3, you can design your own levels and
characters (or "sprites"). But Repton Infinity also allows you to say how characters and objects behave
- so you might like to try playing these first. Our four games are called Repton 3 - Take 2, Repton 4,
Robbo and Trakker.

1. 2 Playing the game

One of the four games supplied, Repton 3 - Take 2, is ready to play. To load one of the three other
games see section 1. 3 "Loading game files" below. Games are divided into "game files" which each
contain four levels. To start play, just press "1" which will take you onto level 1. Pressing "2", "3" or
"4" will take you onto the other levels but you may have to enter a password - see below. The game
keys are:

 Z Move left
 X Move right
 * Move up
 ? Move down
 RETURN Action
 Cursor Keys Scroll screen
 M Display map
 O All sound off
 S Sound on
 CAPS LK End level
 ESCAPE Lose a life
 SHIFT and ESCAPE End game
 P Pause game
 DELETE Resume paused game

The Cursor Keys are used to scroll the screen around Repton (he's the central character who appears in
the games). This allows you to see more of your immediate surroundings. When Repton loses a life,
the screen returns to its initial central position.

The most notable difference in game play between Repton Infinity and Repton 3 is that there is no
longer any time limit for completing a screen. Also, because the game is fully definable, the aim of
any particular game may not be collecting diamonds. For each Repton Infinity game there is a
MINIMUM SCORE and you may not proceed to the next level until you have at least attained this
score. Upon reaching the minimum score the screen will flash and a fanfare will be played. You may
then press CAPS LK to proceed to the next level or continue on the current level to score more points.
There are four levels in each "game file" and on completion of the last level you will usually be given
the name of the next game file to load. The title-page and high-score table will be shown but your
score and number of spare lives will be retained so that you may load a new game file and continue
play.

If a level has been redesigned so that the map can be viewed, pressing (and holding down) "M" will
replace the playing area with a map of the field. Unlike the map options in previous Repton games, the

6

game continues to play when the map is viewed (but Repton is not allowed to move). This is useful if
you are waiting for a monster to hatch or something similar, but remember to release "M" when the
monster starts chasing you!

The only other key you may need to use while playing the game is RETURN - the "action" key. The
use of this key is definable, so you may have to experiment with it on any new games to see if it does
anything. It is not used in Repton 3 - Take 2 or Repton 4 but both Robbo and Trakker use it for various
purposes.

As with other Repton games, there is a password system to allow you to practice higher levels without
having to play all the way through to them. However, unlike Repton 3, these passwords are generated
by the computer. To start on a different level, simply press the appropriate number from the title page.
If that level has a password you will be asked to type it in. If correct, you will be able to start on that
level and the level will be "unlocked" meaning you will not have to enter a password for that level
again. On completion of a level you will be told the password for the next.

When Repton has lost all four lives, you will be returned to the title page and, if you have gained
enough points, you will be invited to enter your name for the high score table.

1. 3 Loading game files

The only other control from the title page is "L" which loads a new game file. These are the files that
the Linker saves (see the sections 5.2 and 5.3 Using the Linker). BBC and BBC Master game files are
prefixed by "G.", Electron games by "eG.". You do not need to type in the prefix when entering the
filename. Press "L" and type in the name of the desired game file (see list below) followed by
RETURN. If all is well the file will be loaded and the title page will return. The title of the game (if
any) and the creation of the various parts of the game are shown on the title page. Each of the four
games supplied has two game files. Tape users will find these on the DATA tape. The game files are
called:

 Game Game filenames

 Repton 3 - Take 2 "G.Rep3A" and "G.Rep3B"
 Repton 4 "G.Rep4A" and "G.Rep4B"
 Robbo "G.RobboA" and "G.RobboB"
 Trakker "G.TrakA" and "G.TrakB"

1. 4 The rules of the games

1. 4. 1 Repton 3 - Take 2

This is the game that is loaded at the start. The rules are very similar to Repton 3. The object is to get
as many points as possible by collecting the diamonds and crowns. Eggs crack when allowed to drop
and, after a while, hatch out into monsters. Squash these with rocks to score more points. Spirits
follow the walls and must be guided into cages whereupon they become diamonds. Safes can be
opened by collecting a key. You may "teleport" to another part of the screen by walking into a
transporter but be warned - you may only use each transporter once. Rocks fall when unsupported and
roll off any curved surfaces - avoid being squashed yourself. Fungus is deadly and grows slowly when
it has room to do so.

Scoring
Collecting a crown 50 points
Killing a monster 20 points
Collecting a diamond 5 points

7

1. 4. 2 Repton 4

This game is the successor to Repton 3 and features many new objects and puzzles. Collect the jewels
and banknotes to score points. Ghouls hatch out of eggs when cracked and must be squashed with
rocks; spirits must be guided into cages and fungus will grow when unattended. Push three
magiblocks in a row to make more treasure and drop rocks through magic walls for further banknotes
to travel to other parts of the screen or push items into transporters to send them elsewhere. Ghouls
and spirits will also teleport if they have the chance so watch out. Photocopiers will duplicate almost
anything but may only be used once.

Scoring
Collecting a banknote 50 points
Killing a ghoul 20 points
Collecting jewels 5 points

The two sets of Repton 4 screens are called "eG.Rep4A" and "eG.Rep4B".

1. 4. 3 Robbo

You are Robbo, a highly intelligent tenth-generation robot. To test your logic circuits you have been
placed in a "time-space puzzle vortex". If you fail to complete all the puzzles you will probably end up
on the interstellar scrapheap with all the other old robots and broken coffee-machines.

To complete each puzzle screen simply collect as many flashing orbs as you can and solve other
puzzles for bonus points. When you have scored enough a fanfare will be sounded and you can
proceed to the next location.

Kettles are harmless but move right if they can; "things" can only move up. A variety of puzzle
objects may be moved around and, if pushed into a pipe, will be whisked along briskly. Use the
lawnmower to cut the grass but don't stand underneath or you'll experience a rather nasty haircut.

Repair the computer with the spanner and collect the disc as a reward. Activate the toilet with the
RETURN key - place a disc at the top and you'll be able to flush out a (useless (?)) fish. Leave the
light bulb on top of the power-station for an illuminating experience. Use RETURN to activate the
Cola machine but remember to keep your cans cool in the fridge. Transform your portable phone with
the machine and use the transporters to teleport yourself or other objects.

Scoring
Illuminating a light bulb 50 points
Flushing a disc away 10 points
Collecting an orb 10 points
Putting a can into a fridge 10 points
Mowing a section of grass 1 point

The two sets of Robbo screens are called "eG.RobboA" and "eG.RobboB".

1. 4. 4 Trakker

As a driver for "J.A.F.F.A." - the Jagga Annihilation and Fruit Flinging Associates" your
responsibility is to dispose of all the Hideous Jaggas and other pests that have invaded the land. To
assist your task you have been supplied with the latest thing in bulldozers, numerous sticks of
dynamite (with detonators) and some top-of-the-range Killafruit! Using these formidable weapons and
your own ingenuity you must clear each screen of "nasties" before proceeding to the next.

To use the dynamite guide Kevin, your associate, to the sticks you want to set off. Drive back over a
detonator and press RETURN. Each detonator can only be pressed once. Hideous Jaggas may be
squashed with tomatoes but note: the only sure way of getting them is from behind. Pushing a banana
at a Hideous Jagga will turn it into a Tubular Spider. These may only be squashed with bananas and it
is only safe to do so from behind. Use the roadsigns to put an end to the evil Oggles. You must get
them from the side though, or they may eat the roadsigns you push at them. Watch out for Repton -

8

he's very angry that you've taken over his game! Trap him so he can't move and he'll fade away. The
OOFs (Overnight Oscitant Facilities) may be pushed about to help in this task. Use the telephone
boxes to transport some objects to other parts of the screen.

Scoring
Killing a Tubular Spider 17 points
Killing a Hideous Jagga 17 points
Trapping a Repton 17 points
Squashing an Oggle 17 points

The two sets of Trakker screens are called "eG.TrakA" and "eG.TrakB".

Note for Electron users

Unfortunately, BBC game and data files are NOT compatible with the Electron version of Repton
Infinity. For this reason, an "e" is added to the prefix of all data files. So, for example, the sprites for
the BBC version of Trakker are supplied on your cassette as a file called "S.Trak" whereas the
Electron version is called "eS.Trak". You will not need to worry about adding the "e" - it will be done
for you.

1. 5 Creating your own games
Repton Infinity allows you not only to define sprites and levels but also lets you change how the
characters move and interact with each other. You are no longer restricted to rocks that fall and
monsters that chase you.

1. 5. 1 Using discs and cassettes

There are five main programs on the discs/cassettes - the main game, the three "editors" and a File
Linker. Any of these programs can be selected from the main menu. As there are three distinct tasks
in designing a Repton Infinity game we decided to give each task its own editor. Thus Land Scape is
the screen designer, Blue Print the definitions editor and Film Strip the sprite editor.

Finally, File Link is used to join together the files that the editors save, and create one file that can be
loaded into the main game. So, the business of creating your own game will go something like this:

 • Design and save sprites using Film Strip
 • Define and save how sprites behave using Blue Print
 • Design and save levels using Land Scape
 • Create a "game file" by linking the sprite, level and definition files together with File

Link
 • Load the game file into Repton Infinity and play it

Throughout Repton Infinity, options are selected from menus by using the up and down cursor keys to
make a selection and RETURN to confirm it. In most cases ESCAPE can also be pressed to cancel a
selected option.

Cassette users will need to fast-forward or rewind the GAME cassette as necessary when loading the
editors they require. The files on the GAME cassette are in the following order:

Repton (loader)
Screen (title screen)
Menu (main menu)
Game, Game2 (main game)
Infinity (loader)
Menu (main menu)
LandScape (Land Scape - the level editor)
Menu (main menu)
BluePrint (Blue Print - the definitions editor)

9

Menu (main menu)
FilmStrip (Film Strip - the sprite editor)
Menu (main menu)
FileLink (the File Linker)
Menu (main menu)
Game, Game2 (another copy of the main game)

The order of the files may seem a bit odd. Note that there is a second copy of the main game saved
after File Link. This is so you can try out your new game after linking the sprite, level and definition
files together.

In general, cassette users should CHAIN "Repton" if they want to play a game; and they should
CHAIN "Infinity" if they want to use the editors or the File Linker. This will ensure that the loading
time is kept down to the minimum.

So, to give you an example, let's say we wanted to change the design of a sprite and try it out in the
game. The complete procedure for tape users would be something like this:

 • Insert GAME cassette and rewind or fast-forward as necessary
 • Type CHAIN "Infinity" and press RETURN
 • Press PLAY and wait for main menu
 • Select Film Strip from the menu
 • Fast-forward cassette to the file "FilmStrip"
 • Film Strip - the sprite editor - is loaded
 • Remove GAME cassette and insert own DATA cassette
 • Load own sprites from DATA cassette
 • Alter sprite and resave on DATA cassette (see section 4. 2 "Editing sprites")
 • Insert GAME cassette again
 • Quit from Film Strip and wait for menu to be loaded
 • Select File Link from menu
 • Fast-forward cassette to file "FileLink"
 • File Link will be loaded
 • Remove GAME cassette and insert DATA cassette
 • Link files (see sections 5. 2 and 5. 3 "Using the Linker")
 • Replace GAME cassette and quit from File Link
 • Select PLAY GAME from menu
 • Insert your own DATA cassette then load and play your new game file

On the face of it, this process seems a little complicated but with practice it will become second
nature. The above process is much easier when using the disc or BBC Master versions of the game.

The DATA cassette contains the game files for our four games. These files are followed by the
definition, object and sprite files for each of the four games supplied. You need not worry about these
data files at this stage but when you come to design your own games (after reading the rest of this
manual thoroughly) you might like to know the exact order of the data files on the DATA cassette.
For reference the order is as follows:

 Filename Description

 eG.Rep3A Repton 3 - Take 2 game file A
 eG.Rep3B Repton 3 - Take 2 game file B
 eG.Rep4A Repton 4 game file A
 eG.Rep4B Repton 4 game file B
 eG.RobboA Robbo game file A
 eG.RobboB Robbo game file B
 eG.TrakA Trakker game file A
 eG.TrakB Trakker game file B

 eE.Rep3 Repton 3 - Take 2 editor characters

10

 eT.Rep3 Repton 3 - Take 2 definitions
 eM.Rep3A Repton 3 - Take 2 map file A
 eO.Rep3 Repton 3 - Take 2 object code
 eS.Rep3 Repton 3 - Take 2 sprites

 eE.Rep4 Repton 4 editor characters
 eT.Rep4 Repton 4 definitions
 eO.Rep4 Repton 4 object code
 eS.Rep4 Repton 4 sprites

 eE.Robbo Robbo editor characters
 eT.Robbo Robbo defintions
 eO.Robbo Robbo object code
 eS.Robbo Robbo sprites

 eE.Trak Trakker editor characters
 eT.Trak Trakker definitions
 eO.Trak Trakker object code
 eS.Trak Trakker sprites

1. 5. 2 Fundamentals for designing games

Here are a few things you should know before starting to design your own game.

Every Repton Infinity game features:

• one or more sets of screens made with Land Scape
• 48 sprites designed with Film Strip
• a set of definitions produced with Blue Print

Of the 48 sprites, only the first 32 are "definable". The remaining 16 are special sprites used for
animation. Animation is described in sections 3. 3. 1 System Flags and section 4.3 Animated sprites
but for now, remember that only the first 32 sprites may be placed on a level in Land Scape or
defined in Blue Print. The first four sprites are also "special". To a certain extent their definitions are
fixed (see 3. 7. 3 The first 4 characters for more details).

Sprite 0 is the "blank" character. In the game, sprite 0 is put on a square when another character has
moved off it.

Sprite 1 is Repton (or whatever character it is that you control in the game). Every level must contain
one of these of it will be ignored by the main game. It is not sensible to have more than one Repton on
a map and so Land Scape beeps if you try to add a second one.

Sprite 2 is the character that is displayed for the wall surrounding the playing area and is therefore
always "solid" to stop Repton walking off the sides of the screen.

Sprite 3 is the "transporter" character; these are described in more details in sections 2. 3 "Placing
transporters", 3. 3. 1 System Flags and 3. 7. 11 Transporters.

1. 5. 3 Editor characters

The sprite editor - Film Strip - is used to create not only the main sprites and map characters used in a
game but also "editor characters". These are the little characters shown at the bottom of each editor
screen. So that you know what's what, it is often handy to save the editor characters separately (see
section 4. 4 Loading and saving sprites for details) and load them in to the other editors by selecting
the CHARS option on the editors' menus. Once loaded, a set of Editor characters will be remembered
between editors until you press BREAK or load another set. When first loaded, there is a default set of
editor characters for Repton 3 - Take 2 built in.

11

It is not compulsory to load the "correct" set of editor characters, but it does make editing games
easier.

On the Electron version of Blue Print, the editor characters are only displayed in monochrome.

1. 5. 4 Adding your name

Each editor allows you to enter your name, this will be saved with the data that the editor normally
creates, and displayed on the title screen of the game when finally linked together and loaded. You
can also give your games titles and "end messages", this is dealt with in sections 5. 2. 1 and 5. 3. 1
Entering information.

12

Section 2

Land Scape - the Screen Designer

2. 1 Introduction to Land Scape

This is the screen designer (or more accurately, level designer) of Repton Infinity. The screen is
divided into four main sections: the main edit area that takes up most of the screen, the character box
below it that shows the available sprites, a small menu in the top right hand corner and an information
area in the bottom right.

As usual, options are selected with the cursor up and cursor down keys and confirmed with
RETURN. The information area contains various data for the current level: the level number (1-4),
the minimum score set for this level and indications of whether there is a password set and if the map
is available while playing the game. Below this are four colour boxes that show the current colours
available.

2. 2 Editing screens

The Edit option should be selected when you wish to edit a game screen. A flashing cursor will
appear in the main editing area. Move the cursor with either the Cursor Keys, or "Z", "X", "*" and "?".
To select a character to place on the screen, use the Cursor Keys while holding down SHIFT. To
place the currently selected character on the screen, press RETURN. Hold down RETURN and move
the cursor to produce a "trail" of characters. Characters can be deleted either by selecting the space
character or by pressing DELETE. The whole level can be cleared by selecting the space character
and then pressing CTRL C. There is no limit to the number of each type of character that can be
placed on the map (except for transporters and Repton - see below).

The keys "1" to "4" select which level to edit. Each level can have its own set of screen colours, map
option, password and minimum score. Colours are selected with the function keys f0-f3: each key
cycles through the eight available colours. If the map is "on", then it is possible to press "M" in the
game and view the map. Pressing f6 switches the map on and f7 switches it off again. There are no
restrictions on which levels can have maps. Passwords in the game are generated by the computer, so
setting a password merely involves telling the map editor that you wish there to be one - the game
does the rest. Key f5 sets "pass" meaning there is a password and f4 sets "none" meaning there isn't.
Fairly obviously, you cannot set a password on level 1.

To set the minimum score for the current level press f8. A window will pop up and prompt you to type
in a number. This can be any number between 0 and 9999. Do so and press RETURN.

Land Scape cannot calculate how many points are available on a particular level as it would need
detailed knowledge of the behaviour of the characters. However, as an aid, press f9 (or "S") when in
normal edit mode and a simple score calculator will appear. This displays the first 32 characters and
with each one, a number (these will all be 0 to start with) which represents any possible score that that
character can give. The block cursor can be moved between the characters with the Cursor up and
down keys, and the numbers increased and decreased by doing the same whilst holding down SHIFT.
The score for each character on the level is added to a total displayed at the bottom of the screen. Note
that as some characters may change into others, the original characters must also be given a score
value. For example, cages in Repton 3 - Take 2 have the same score as diamonds while eggs must be
given the score for killing a monster. Press ESCAPE to leave the calculator.

13

2. 3 Placing transporters

Unlike the other characters, you are limited to six transporters per level. To set up a transporter, select
the transporter character and move to where you want the transporter to be. When RETURN is
pressed (to place the transporter on the map), the cursor will be replaced by a flashing "T": this is the
transporter's destination. It can be moved in the normal way with any of the Cursor Keys. Move the
"T" to the desired destination point and press RETURN. The "T" will change colour to indicate the
transporter has been placed. You are now free to continue editing in the normal way.

Whenever you move the edit cursor on top of an existing transporter, the "T" cursor will indicate the
transporter's destination. Once the limit of six has been reached, the editor will beep if any attempt is
made to place additional transporters.

Transporters are deleted in the usual way, either be pressing DELETE, or by placing another
character on top of them (This can also be a transporter, in which case the old destination is discarded
and you must enter a new one with the "T" cursor.)

At any point, ESCAPE will leave edit mode and return you to the Land Scape menu on the right of
the screen.

2. 4 Loading map files

When Load is selected, a window will pop up and you will be asked for a filename to load. Map
filenames are prefixed with "eM." but this does not need to be entered. Enter the name and press
RETURN. (See section 1. 5. 1 Using discs and cassettes for more details). If all is well, the map file
will be loaded and you will be returned to the main menu. A sample map file - the first set of screens
for Repton 3 - Take 2 can be found on your DATA cassette and are saved as "eM.Rep3A".

2. 5 Saving map files

Save behaves in a similar way to Load, except it saves a file. As with Load, RETURN confirms and
ESCAPE aborts. The editor remembers filenames, so unless you wish to change the filename, you
only need to press RETURN to confirm the old one.

2. 6 Entering your name

When Name is selected, a window will pop up and prompt you for your name. This allows you an
extra degree of personalisation in the game. This name will be shown next to "Scenery" on the main
game title page.

2. 7 Loading editor characters

The Chars option allows you to load a new set of editor characters. See section 1. 5. 3 Editor
Characters for more details.

2. 8 Leaving Land Scape

Finally, the Quit option will leave the editor and return you to the main Repton Infinity menu. Insert
the GAME cassette as necessary.

14

Section 3

Blue Print - the Game Creator

3. 1 Introduction to Blue Print

Blue Print is an editor and "compiler" that allows you to define how the characters in Repton Infinity
move and interact with each other. Definitions are typed in using Reptol - a language that is similar in
format to BASIC or C. These textual definitions are then "compiled" by Blue Print into an "object
file" which can then be linked with a sprite and map file and then loaded into the main game.

The Blue Print screen is divided into five main sections. The majority of the screen is taken up by the
edit area: this is where definitions are entered and edited. Below this is the usual character box that
shows the available characters. The right hand section of the screen contains the Blue Print menu at
the top, "memoryused" indicators (text on the left, code on the right) and the insert/overtype indicator.
Finally, the box at the top of the screen is used to display messages.

 Blue Print
 ________________________________ _____
 Message | Edit Mode: ESCAPE to menu ||Blue |
 Area |________________________________||Print|
 |NAME Egg ||Edit | Menu
 | ||Load |
 |DEFINE TYPE ||Save |
 Edit | Solid ||Name |
 Area | HPush ||Make |
 |_ ||Chars|
 |DEFINE ACTION ||Quit |
 | IF STATE(0) ||_____|
 | LOOK(S) || | | "Memory-used"
 | IF CONTENTS Space || | | indicators
 | STATE(1) ||XX| |
 | EFFECT(4) ||XX| | Left = text
 | ENDIF ||XX| |
 | ELSE ||XX| | Right = code
 | LOOK(S) ||XX| |
 | IF CONTENTS Space ||XX| |
 | MOVE(S) ||XX| |
 | ELSE ||XX| |
 |______CREATE(Broken Egg)________||XX|__|
Character | w j c z n u d j a p v g f s |Entry |Insert/Overtype
 Box | g q y x t s f q p V e r s j s |mode | Indicator
 | n b u f s t l w r e w a r o g | |
 |________________________________|INSERT|
 Currently selected character

This description of Blue Print is divided into three parts. Section 3. 1 deals with the mechanics of
entering, editing and compiling definitions. Sections 3. 2 to 3. 6 contain detailed information about the
Reptol language itself and how to use it. Finally section 3. 7 contains hints and tips for getting the
most out of Blue Print and the game as a whole. Note that the definition files for the four supplied
games are included for you to look at and experiment with. Cassette users will find them on the
DATA cassette. The object code files for all four games are also provided for you to create your own
screens for the supplied games. These can be loaded straight into File Link. The definition files are
prefixed by "eT." and the object files by "eO."

15

3. 1. 1 Using Blue Print

To enter definitions, first select EDIT from the menu, a block cursor will appear in the top left hand
corner of the edit box. The cursor can be moved with the Cursor Keys. If pressed in conjunction with
CTRL, it will move up or down a screenful of text or to the beginning or end a line. SHIFT Cursor
Keys are used to select which character is being edited. The box cursor at the bottom of the screen
indicates the current one.

3. 1. 2 Entering text

Definitions are entered simply by typing in text. Pressing RETURN will move the cursor to a new
line. Mistakes can be corrected by pressing DELETE which deletes characters to the left of the
cursor. If you prefer you can use f9 or CTRL A, either of which deletes characters to the right of the
cursor. By default the editor is in insert mode, meaning that text typed will be inserted in the current
line. f4 toggles between INSERT and OVERTYPE mode. When in OVERTYPE (or indeed, INSERT)
mode, f8 or CTRL Q can be used to insert blank spaces at the cursor position.

As you type in text, the memory used indicator (the bar on the left) will slowly rise. When the bar
reaches the top no more text can be entered and you'll have to shorten or delete some definitions.

Blank lines can be inserted with f6 and unwanted deleted with f7. Because of the structured nature of
the language, it is natural to indent the definitions. This can become tedious when typing in commands
at a fairly deep level. Instead of typing lots of spaces at the start of each line, CTRL I can be used.
This moves the cursor to the same level of indentation as the line above it. When you are happy with
your definitions press ESCAPE to leave Edit mode.

3. 1. 3 "Making" the object code

To turn your definitions into "object code" which may be used in the game select Make from the
menu. The top box will say "Please wait..." and a small box will highlight each of the characters in the
box at the bottom in turn. This is to indicate the character is currently being dealt with. It is a "two-
pass compiler" (rather like the BASIC assembler) and so the characters will be highlighted twice. The
code-memory-used indicator (the bar on the right) will be constantly updated as the object code is
compiled. The bar is actually somewhat bigger than the maximum amount of object code that can fit
in the game. This is because the code produced straight away is not particularly compact and must be
"optimised". This is performed automatically after compilation. During this stage, the code memory
indicator will actually go back down to indicate the memory caved by optimising the code. If this
optimised code is still too big, an error will be generated.

During compilation, the text memory used indicator will also rise, but in a different colour. This is
memory that the compiler needs to store variables (such as sprite names). Sometimes the compiler
may run out of variable space, in which case an error will be generated and compilation will be
abandoned. If this happens, you'll have to shorten some of your variable names.

Compilation may also be abandoned if a syntactical error is found within the definitions, for example,
"Bad IF". If this occurs, the cursor will be positioned on the line that caused the error, and you'll be
returned to edit mode. A full list of errors can be found in section 6. 3. Once the object code has
compiled and optimised successfully, you'll be prompted for an "eO." prefixed filename under which
to save it. If you don't wish to save the code, press ESCAPE.

3. 1. 4 Loading and saving

To save files select Save from the menu. Definition files are automatically saved with "eT." added to
the start of their names. As with the other editors, file names are remembered, and if one has
previously been specified, it will appear as a default name. Once entered, press RETURN to confirm
the name or ESCAPE to abort. Any filing errors during saving will be reported at the top of the
screen.

Previously saved "eT." files can be reloaded using the LOAD option. "eO." files cannot be reloaded.
Selecting Load will prompt for a file-name. To load a new set of editor characters into the bottom

16

box, select Chars and enter the filename. It is not compulsory to load the "correct" set of editor
sprites, but it does make editing definitions easier.

When in Edit mode, you can change the displayed colours by pressing f0-f3, this facility is provided
so you make the editor characters "look right". Any changes are only temporary and will be discarded
when you quit Blue Print.

3. 1. 5 Entering your name

If a name is entered using the NAME option, it will appear alongside the "Screenplay" credit on the
game title page.

3. 1. 6 Leaving Blue Print

The only other Blue Print menu option is quit: this quits the editor and returns you to the main game
menu.

3. 2 Introducing Reptol

This section is designed to be an introduction and tutorial for using Blue Print. After reading this
section, you should have a working knowledge of the language and should be able to design a set of
your own characters.

Unlike other games designers, there are very few restrictions on creating definitions. Also, because of
the "structured" approach adopted, the language Reptol is very powerful and complex objects can be
created very easily. As an example we will build up the definition for a fairly stupid monster that
moves across the screen but occasionally lays eggs that hatch into similar monsters. We'll also define
a sword that can be used to kill the monsters.

The first four sprites already have their definitions fixed to a certain extent and any text typed in on
these sprites (except TYPE information) will be ignored, except Repton's ACTION definition. Our
monster cannot therefore be one of these. It would be nice if the monster was animated, so it would be
sensible therefore to use one of the two pairs of sprites in the bottom left hand corner as the sprites on
the bottom row cannot have their definitions changed either. So we'll use the second sprite on the
middle row. We also need to define an egg and a sword. As these will only be single sprites, any of
the other sprites could be used, so we'll use the ones immediately to the right of the monster. (If you
want, you could change the sprites and editor characters with Film Strip so these three sprites looked
like a monster, an egg and a sword.)

A character definition in Repton Infinity consists of three major sections: these are called TYPE,
ACTION and HITS and are introduced by the keyword DEFINE. For example:

 DEFINE TYPE

The TYPE section is used for setting the "system" and "user" flags for each character. (Flags are
simply pieces of information that tell us something about a character - for example, whether it can be
squashed by a rock or not). The ACTION section describes how each character moves or one character
hits another. The end of a section is denoted either by the end of the definition or another DEFINE.

If you load the "eT.Rep3" file into Blue Print, select Edit mode and have a look at some of the
definitions for Repton 3 - Take 2, you'll be able to see these sections. Note that it is not compulsory to
include all three sections. Indeed some definitions have none of them. There is also a nominal fourth
section, this is the NAME. This is used to name a character for subsequent reference. If present, NAME
should be placed at the very top of a definition. As with the main sections, you do not have to give a
character a name, but if you ever need to refer to that character from within a definition, then a name
is essential. So, for example, to name our egg, type the words:

 NAME Egg

17

on the top line of the definition. Also name the monster in a similar way with:

 NAME Monster

and of course the sword with:

 NAME Sword

Note that the editor does distinguish between upper and lower case, so Egg, egg and EGG are all
different. Having given all our characters names in this way we can refer to them when defining
others.

3. 3 The TYPE section

This is used to set up various flags for a character. There are two types of information that can be
entered in the TYPE section. These are called the "system flags" and "user flags". The system flags are
all pre-defined flags that are tested, and acted upon, by the game itself. The user flags, as the name
implies, can be defined by the user and tested by the user's definitions. To set either sort of flag as
"true" for a definition simply include the name of the flag after the line DEFINE TYPE. A typical
TYPE section might look something like:

 DEFINE TYPE
 NotSolidToRock
 Squash
 Transport

where the flag NotSolidToRock is a user one and the others are system flags.

3. 3. 1 System Flags

The system flags are used wholly internally to the game and cannot be tested by a user definition.
They are used to set up important information about the character. There are 12 system flags, although
only 11 of these are of general use. Cycle can only be used by Repton and transporters.

The names and functions of the 12 system flags are:

Solid - set if this character is solid to Repton. i.e. If Repton is allowed to walk onto it. The safes
are Solid in Repton 3 - Take 2.

We'll make our egg Solid and also the sword, as Repton needs to push it. Because our monster is
nasty though, we'll not make it Solid but allow Repton to walk into it (and suffer the consequences).

Deadly - set if this character kills Repton if it moves on top of Repton, or Repton moves on top of
it. Monsters and spirits in Repton 3 - Take 2 are Deadly.

So far, only the monster will kill Repton, so we only need to make the monster Deadly.

HPush - set if this character can be pushed horizontally (across the screen). The speed at which it is
pushed is dependent on its movement speed (see section 3. 3. 2 Movement speed for more
information). Eggs and rocks are HPush in Repton 3 - Take 2.

VPush - set if this character can be pushed vertically (up and down the screen). See HPush for
details about the speed. The magiblocks in Repton 4 are VPush.

We'll allow Repton to push the sword in any direction, so we'll set both these flags for the sword.

Squash - set if this character can have other objects pushed onto (or under, see below) it. The
space (sprite 0) and monsters are Squash in Repton 3 - Take 2.

18

The monster needs to have this flag set, as it can be killed when hit by the sword. We also need to set
this flag for the space character (sprite 0) otherwise Repton won't be able to push the sword around at
all.

Under - set if characters moving onto this character should appear to move under it. This is only a
visual change - it does not affect movement in any other way. In Repton 3 - Take 2 the earth is not
Under (Repton is seen to move over it) but cages are (spirits "slide" underneath them before turning
them into diamonds).

We'll set the Under flag for our monster.

Transport - set if this character can use transporters. If this flag is set, then the character will be
transported when it enters a transporter. In Repton 3 - Take 2 only Repton himself is Transport, but
it would be very easy to make monsters, spirits or rocks transportable as well. Rocks are transportable
in Repton 4. Also you could deny Repton access to transporters (like in Trakker) by making them
Solid and not putting Transport into Repton's TYPE section.

We are not interested in transporters yet, so we won't bother with this flag.

Cycle - although this can be placed in any TYPE section, it is only of use in Repton's or the
transporter's. If set in Repton's then his horizontal movement will be "cyclic" rather "oscillatory". In
simple terms, if you want Repton to walk, then don't put in Cycle (as with Repton 3 - Take 2); if you
want him to rotate in any way, then use the Cycle flag. In the Trakker game you control a bulldozer
with rotating caterpillar tracks: this is achieved using Cycle. More information on this facility can be
found in section 4. 3. 3 "Repton's animation". If Cycle is set in the transporter's definition, then the
transporter will "regenerate" after it is used, that is: it can then be used again and again. In all the
supplied games the transporters do not Cycle.

Again, this flag is not relevant to our defintions, so we won't use it.

Animate - if you want a character to be animated, then this flag should be set. The game will then
animate this sprite with the one "below" it. Please read section 4. 3 Animated sprites for more details.
In Repton 3 - Take 2 only monsters and spirits are animated.

We do want our monster to Animate, so we'll set this flag for him but not for the egg or the sword.

3. 3. 2 Movement speed

The final three flags describe how fast characters move. The flags are called One, Two and Four.
These describe the speed in terms of how fast Repton moves. In other words setting the One flag
means the character will move at the same speed as Repton, Two means twice as fast and Four
means four times as fast. Rocks in Repton 3 - Take 2 move at speed Four. The speed dictates both the
"natural" movement of the character as described in the definition and also the speed the character
moves when it is pushed by Repton. If a character moves but no speed flag is set in the TYPE section,
then it defaults to speed Four.

As Repton is going to be pushing the sword, we'll make it move the same speed as him, i.e. One, but
we'll make the monster move at Two so he's hard to get. As the egg doesn't move, it doesn't need a
speed.

3. 3. 3 User flags

The eight user flags are rather like the system flags, but their names and meaning can be altered by the
user. The easiest way to describe these flags is to give an example. In Repton 3 - Take 2, some of the
characters are curved to allow rocks to roll round them. This effect could be achieved by an extensive
rock definition that recognised each of these curved sections and acted upon them. But by far the
simplest (and shortest) way is to use two of the user flags. We will name these flags "CurvedLeft" and

19

"CurvedRight" to indicate the nature of the curvature of the character. If a character is curved both
ways (like a diamond) then both flags will be set for that character.

It is very easy to create a new user flag - simply enter a new name within the TYPE section. In other
words, if Blue Print finds a word in this section that it doesn't recognise as a system flag then it
creates a user flag of that name. So to create these two new flags, just type in the words "CurvedLeft"
and "CurvedRight" under the appropriate character definitions. Alternatively, just look at the
definition file for Repton 3 - Take 2. The definition for a rock can now be greatly simplified to just
testing the "Curved" flags for the character below it. Testing user flags is dealt with in full below, in
the IF section.

The only user flag we need in our sword/monster/egg definitions is one indicating if a monster can
move onto a character. This is a bit like the Solid system flag, but as that is explicitly for Repton's
use, we'll have to create our own. We'll allow the monster to move over open space and Repton at the
moment. The latter is because we want the monster to kill Repton if he hits him, so he must be able to
move onto Repton's square. As it is likely that the majority of characters will actually be solid to the
monster, we'll call our flag "MonsterOK", and will put it in the TYPE sections of the characters the
Monster can move onto.

3. 3. 4 Setting the flags

We can now enter this information into Blue Print, as we are introducing a new section, that is the
TYPE section, we first need to enter (for each definition):

 DEFINE TYPE

then for each definition enter the flags required, thus for a sword we need: Solid, HPush, VPush
and One. These words should be entered one per line under the DEFINE TYPE heading. It is also
usual to indent the flags slightly, although this is not compulsory, it does make the definitions easier to
read. The definition for the sword should now look like this:

 NAME Sword

 DEFINE TYPE
 Solid
 HPush
 VPush
 One

the egg like this:

 NAME Egg

 DEFINE TYPE
 Solid

the monster:

 NAME Monster

 DEFINE TYPE
 Deadly
 Squash
 Under
 Animate
 Two

the space character(sprite 0):

 NAME Space

20

 DEFINE TYPE
 Squash
 MonsterOK

and finally, Repton (sprite 1):

 NAME Repton

 DEFINE TYPE
 MonsterOK

3. 4 The ACTION section

3. 4. 1 The use of ACTION
It may help to understand a little of how Repton Infinity works before appreciating what the ACTION
section is for. When playing a Repton Infinity game the computer is continually "scanning" the map,
asking each character what it wants to do. Some characters (for example wall sections or spaces) don't
do anything and so do not have ACTION sections in their definitions. Others, like monsters or rocks
behave in specific ways. These ways are defined using Reptol in the ACTION sections of their
definitions. So, for example, while playing Repton 4 every time the computer finds a photocopier on
the map it asks it what to do - the ACTION part of a photocopier's definition is executed.

To enable you to describe a wide variety of behaviours for characters, the Reptol language
incorporates some of the facilities of programming languages such as BASIC, "C" or Pascal. The
facilities of Reptol can be broken down into four groups and are listed below. By the way, if you've
experience of programming you should pick up the ideas of Reptol very quickly; if not, don't worry,
programming in Reptol is not as difficult as it may seem.

 • An IF...ELSE...ENDIF "construct" for decision making
 • Testable conditions, including the system and user flags
 • Commands for moving, creating and changing characters
 • Special sound and visual effects

Most definitions consist of one or more tests followed by commands or effects: that is, an IF
command followed by some actions dependent on the outcome of the IF.

As our main example, we will concentrate on the definition for the monster detailed above. We want
this monster to move left and right across the screen, changing direction if it can't continue in its
current direction.

We also want it to "lay" an egg every so often which will hatch into another monster. We will build up
this definition very slowly, starting from the top with a broad view, and working down to the details
later.

3. 4. 2 Using the IF statement

Firstly, let's concentrate on the movement. Clearly there are two "states" to our monster - moving and
laying an egg. Conveniently (and not entirely accidentally) Repton Infinity allows each character on
the map to have two states. The state of a character can be set explicitly, "flipped" to the other state
and tested, all from within Reptol. The two states are simply called state 0 and state 1. We will
nominate state 0 as the moving state and state 1 as the egg-laying state. This is because all characters
start in state 0 at the beginning of a level.

So in the broadest terms, our definition could be thought of as being something like:

 IF STATE (0)
 <move left/right>

21

 ELSE
 <lay an egg>
 ENDIF

(Note that at the moment, we have not given the specific instructions for moving or laying; these will
be added later. So do not try "making" the above definition in Blue Print.)

This program fragment introduces the IF...ELSE...ENDIF construct which will be familiar to
programmers. What it means in English is "If we are in state 0 then move left or right; otherwise lay
an egg". Note that there is no keyword "THEN" as there is in other programming languages. Instead
the IF and the condition we are testing (in this case STATE(0)) must be on a line by themselves. In
fact this convention is used throughout Reptol - there is no concept of "multiple statement lines" - put
each individual instruction on its own line.

For every IF, there must be a matching ENDIF: if you miss out either, Blue Print will complain
when you try to "make" the game. There doesn't have to be an ELSE, but you will often find things
easier using ELSE. The definition above could have been written as:

 IF STATE(1)
 <lay an egg>
 ELSE
 <move left/right>
 ENDIF

or even:

 IF STATE(0)
 <move left/right>
 ENDIF
 IF STATE(1)
 <lay an egg>
 ENDIF

(In fact, we will find later that this isn't exactly the same, because if the <move left/right> part of the
definition actually changes the state to 1 (which our definition will do eventually), then the <lay an
egg> part will also be executed.)

You may place one IF...ELSE...ENDIF inside another and may continue "nesting" IFs in this way up
to a depth of 8. We will see nested IFs later, but not that many.

You can also optionally follow the IF with the keyword "NOT", if so, the truth of the condition will
be reversed. For example, IF NOT STATE(0) is equivalent to IF STATE(1). Any IF may be
followed by a NOT, so all the following are valid:

 IF NOT MonsterOK
 IF NOT MOVING
 IF NOT CONTENTS Repton

The keyword STATE(0) is used here as a testable condition. We will see later that it can also be used
as an explicit statement, where it means "set the state of this character to 0". Here it is used in
conjunction with IF and so means "is the state of this character 0?"

3. 4. 3 LOOKing and MOVEing

We can now start on the details of the actual movement. The first stage is to think (in English) how
exactly we want the monster to move: we can then translate this into Reptol. The movement could be
thought of as:
 - can I move forward?
 - YES : move forward one square

22

 - NO : can I move backwards?
 - YES : turn round and move forward
 - NO : I can't move, so do nothing

We have already defined a user flag, MonsterOK that indicates whether a monster can move onto
another character, so we need to be able to see if the character in front of the monster is MonsterOK.
The Reptol keyword to investigate a square is LOOK, and must be followed by a letter or two in
brackets indicating a direction. This can either be a compass direction, or a "relative" direction. There
are eight compass directions, the four cardinal points, N, E, S and W or one of the logical
combinations of two of these, that is, NE, SE, SW, NW. North is taken to be the top of the screen,
South the bottom and East and West, the right and left respectively. These latter two should not be
confused with the relative directions F, L, R and B. These stand for Forward, Left, Right and
Backwards. As the name implies, these directions actually vary according to the direction that the
character is moving. So if a character is moving West, then "Forward" is West, "Left" is South,
"Backwards" is East and "Right" is North.

At the start of a level, all characters are initialised with "Forward" meaning West. Of course, these
will change if the character changes direction.

We can make use of these initial settings because we want out monster to move left and right. In other
words, we'll make our monster move left right. First, we must examine the square to see if the monster
can move forward, and if he can, do so:

 LOOK(F)
 IF MonsterOK
 MOVE(F)
 ELSE
 <rest of move>
 ENDIF

Note the use of the user flag after the IF. This checks that the flag MonsterOK is set for the last
character LOOKed at, in other words the one Forwards. If this character has that flag set, then the first
half of the IF is executed, in this case the instruction MOVE(F).

This means start moving forward. The letter in the brackets indicates the direction. These directions
are similar to those available when looking, but cannot be one of the directions NE, SE, SW or NW. If
the character was not MonsterOK then the ELSE part would be executed.

So, our monster will now move forward one square at a time, twice as fast as Repton - remember the
system flag "Two" we set in the TYPE section. However, what happens when the monster can't move
forward? We need to write some code to make him turn round.

All we need to do is check the square Backwards and if it is MonsterOK, then we need to move
backwards. As the monster is changing direction, the relative directions will also change, so that
Forward is now the opposite direction. This is not a problem, as we want the monster to return the
way it came! The above code can be extended thus:

 LOOK(F)
 IF MonsterOK
 MOVE(F)
 ELSE
 LOOK(B)
 IF MonsterOK
 MOVE(B)
 ENDIF
 ENDIF

This code also caters for a "null" move if the monster is trapped - if neither IFs are true, then no
MOVE is performed. Note the use of the nested IFs - one inside the other. Indenting the IFs in the

23

way shown makes it easier to read a definition. As a rule, make sure each IF is level with its
corresponding ELSE and ENDIF.

It is only valid for a character to make one MOVE from within the ACTION section. If more than one is
given, then only the first will be obeyed. For example in the following, the character would only move
north:
 MOVE(N)
 MOVE(E)

3. 4. 4 Random programming - CHANCE

We now need to make the monster lay an egg. We will make this happen randomly, so every so often
the monster will pause, lay an egg then continue moving. As we are going to put the "lay-an-egg"
code in the ELSE part of the IF STATE(0) condition, all we need to do in the move part, is swap to
state 1. This can be done with another IF statement:

 IF CHANCE(1%)
 STATE(1)
 ENDIF

These lines should follow the previous two ENDIFs. There are two points to notice here. The first is
the use of the condition CHANCE. This is followed by a percentage in brackets. This is the probability
of the IF being executed. The number can vary between 0.01% and 99.99%. In other words, a random
number is generated between 0.00 and 100.00 and if it is less than the given percentage then the IF
part is executed.

3. 4. 5 Changing STATE

The second point to note is the use of the command STATE to explicitly set the state of the character.
As with the condition STATE, it must be followed by a number in brackets (in this case 1): the
character will be set to that state.

There is another way to change state, this is with the FLIP command. However, rather than setting
the state to a given value, FLIP swaps or inverts the state. This is useful if you want a definition to
alternate between two actions. If FLIP wasn't available then the following code would have to be
written every time you wanted to change state:

 IF STATE(0)
 STATE(1)
 ELSE
 STATE(0)
 ENDIF

FLIP will be used later on in the egg definition.

We now have the complete movement section for the monster, which looks like this:

 IF STATE(0)
 LOOK(F)
 IF MonsterOK
 MOVE(F)
 ELSE
 LOOK(B)
 IF MonsterOK
 MOVE(B)
 ENDIF
 ENDIF
 IF CHANCE(1%)
 STATE(1)

24

 ENDIF
 ELSE
 <lay an egg>
 ENDIF

We can now make the monster lay an egg. Again, it is best to think of what we want to happen in
English first and then translate it into Reptol. There are two points that should be considered:
 1) The monster should wait a while before laying the egg.
 2) Eggs should be laid below the monster.

The English definition would therefore be something like:
 - wait a while
 - look below, is there a space?
 - YES : lay an egg
 - NO : carry on moving

This can be translated into Reptol as:

 IF EVENT(4)
 LOOK(S)
 IF CONTENTS Space
 CREATE(Egg,S)
 ENDIF
 STATE(0)
 ENDIF

This section of code illustrates three more features of Reptol and these will be dealt with separately.

3. 4. 6 Generating delays - EVENT

This is a testable condition. It is followed by a number between 1 and 7 (in brackets). The best way to
explain what EVENT does is by way of a table:

 EVENT(n) Maximum wait (approximately)
 1 0.25 seconds
 2 0.5 seconds
 3 1 seconds
 4 2 seconds
 5 4 seconds
 6 8 seconds
 7 16 seconds

Imagine each event number as a hand on a clock. Hand 1 rotates at a particular speed (about four
times a second), hand 2 rotates at half the speed of hand 1, hand 3 at half the speed of hand 2 and so
on. When we say IF EVENT(1) we are really asking 'is the hand 1 of the clock pointing straight
up?' Clearly, hand 1 of the clock points up twice as often as hand 2 so EVENT(1) is twice as likely to
occur as EVENT(2).

With this illustration in mind, there are a couple of things to note. Firstly, we don't know where the
hands of the clock are at any one time. So, although IF EVENT(1) is more likely to be true than IF
EVENT(2) it might just so happen that hand 2 of the clock is pointing up when we look at it. To
expand, if we precede a bit of our definition with IF EVENT(7) it is likely that it will be some time
before that bit will be executed. But it may just so happen that hand 7 is pointing up and so the code
after IF EVENT(7) is executed immediately. The timings given above are maximum values - if, for
example, you use IF EVENT(5) in your definition, the code will be executed some time in the next
four seconds.

The second point to note is that IF EVENT is only really designed for static objects. The reason for
this is that while objects are in the process of moving, their ACTION defintions are not called. But the

25

seven hands of the clock continue to rotate. The upshot of this is that a moving object may just miss
seeing a particular hand pointing upwards. Our monster isn't moving when waiting for an EVENT so
we don't have to worry about this feature. You may use EVENT in the defintions of objects that move
at top speed (Four) without any worries: this is because they, like static objects, are never "between
squares" - they are always in either one place or another.

3. 4. 7 The CONTENTS of squares

As mentioned before, whenever a LOOK is executed, the user flags can be tested to see if the character
in the LOOKed direction is "suitable". It is also possible to check if that square contains a specified
character. This is where CONTENTS comes in. It must be followed by the name of character, that is,
the one following the NAME command at the top of a definition. (You must of course remember to
NAME any characters that you might LOOK for). The IF will then be executed if the square contained
the given character. In the example above, the IF will be executed if the square South, i.e. below,
contains a "Space".

IMPORTANT NOTE:

An IF CONTENTS must immediately follow a LOOK, or the ELSE of another IF CONTENTS
statement. Otherwise it cannot be guaranteed to work.

 LOOK(E)
 IF CONTENTS Repton
 ..
 ELSE
 IF CONTENTS Space
 ..
 ENDIF
 ENDIF

is therefore valid, but:

 LOOK(E)
 MOVE(W)
 IF CONTENTS Space
 ..
 ENDIF

is not. The rule is: don't do anything between LOOK and IF. There is another use for the CONTENTS
keyword: this will be seen below in the CREATE section.

3. 4. 8 CREATEing objects

CREATE is used to place characters on the map. It is followed by either one or two parameters in
brackets. In the example above we see the two-parameter version. Here, the first parameter is the
name of a character, as given by the NAME command and the second is a direction. This can only be
one of the eight compass directions as used by LOOK - it is not possible to use the four relative
directions. The results of this command is, fairly obviously, to create the given character in the
specified direction. In the one-parameter version no direction is given: just the character name. In this
case, the new character is created on top of the old one, that is, the old character changes into the new
one. Note that this does not mean that the ACTION section for the created character is then executed
immediately: the current definition continues to be used until the end. Next time round though, the
ACTION section of the new character will be used instead.

A CREATEd character will "hit" the character it landed on, and will call the HITS section of the
"squashed" character. This is dealt with in much more detail in section 3. 6 The HITS section.

There is one other feature of CREATE. If the character specified to be CREATEd is the keyword
CONTENTS, then the last "LOOKed at" character will be created. This is used by the photocopiers in

26

Repton 4 and the pipes in Robbo. As with the positions of IF CONTENTS, you must be careful about
the position of CREATE(CONTENTS). It is only guaranteed to work immediately after a LOOK, or a
LOOK followed by an IF (of any sort). For example:

 DEFINE ACTION

 LOOK(N)
 IF Copyable
 CREATE(CONTENTS,S)
 ENDIF

defines a character which looks upwards and, finding any character which has the user flag
"Copyable" set will duplicate it below.

Back to the definition:

Finally, whether the monster could lay an egg or not, the monster is swapped back to STATE(0), so
that he starts moving next go.

We therefore have a complete definition for the ACTION of our monster:
 DEFINE ACTION
 IF STATE(0)
 LOOK(F)
 IF MonsterOK
 MOVE(F)
 ELSE
 LOOK(B)
 IF MonsterOK
 MOVE(B)
 ENDIF
 ENDIF
 IF CHANCE(1%)
 STATE(1)
 ELSE
 IF EVENT(4)
 LOOK(S)
 IF CONTENTS Space
 CREATE(Egg,S)
 ENDIF
 STATE(0)
 ENDIF
 ENDIF

3. 4. 9 Using STATE and EVENT together

Now we have created the egg, we need to do something with it. This will be very simple, but will
illustrate the method of using STATE and EVENT together to allow for a "minimum time". As all
characters start off in STATE(0), the following definition should suffice:

 IF EVENT(5)
 FLIP
 IF STATE(0)
 CREATE(Monster)
 ENDIF
 ENDIF

The first EVENT(5) will flip to STATE(1) and so the IF STATE(0) will not be executed. Upon
the next EVENT(5) the state will flip back to 0 and the monster will be created. This means that the
egg will wait for at least one EVENT(5) (about four seconds) before changing. This may be exactly

27

one EVENT(5) or as much as two (about eight seconds) depending on the position of hand 5 of our
EVENT clock when the egg was created.

This definition also demonstrates the use of a single parameter CREATE - here, the monster will be
created on top of the egg.

The sword does not do anything in itself - it is pushed by Repton and may kill a monster if it hits one.
As such it does not need any ACTION section at all. This does not matter: as previously mentioned,
characters need not have all three DEFINE sections.

Further programming

Before leaving this description of the ACTION section, there are a number of other commands and
conditions available. These have not been left until last because they are unimportant; merely that they
have not been needed in our tutorial example.

3. 4. 10 Testing movement - MOVING

It is often useful to check if the character we are dealing with is moving or not. This can be done with
the condition MOVING. For example, rocks in Repton 3 - Take 2, must kill Repton if they land on him,
but not if he simply walks beneath them. The code to deal with this looks like this:

 LOOK(S)
 IF CONTENTS Repton
 IF MOVING
 KILLREPTON
 ENDIF
 ENDIF

(In fact, the MOVING flag is set whenever a character moves and cleared if it doesn't move. So, IF
MOVING will be "true" if the character moved "last go").

The MOVING condition is also useful for creating objects that continue moving once pushed. This is
very easily achieved:

 IF MOVING
 LOOK(F)
 IF CONTENTS Space
 MOVE(F)
 ENDIF
 ENDIF

This means that if the character starts moving in any way, then each turn, it will look forward and
move on if there is nothing in the way. Otherwise it will stop moving completely. The road signs in
Trakker behave like this.

3. 4. 11 Killing Repton - KILLREPTON

The above piece of code also illustrates another feature of Reptol. Normally, Repton will only lose a
life if he collides with a "Deadly" character, that is, one with the "Deadly" system flag set. However,
rocks will kill Repton not by colliding with him, but by landing on his head. The command
KILLREPTON is used in such cases. This will kill Repton wherever he is on the screen - he doesn't
even need to be near the character that killed him!

3. 4. 12 Chasing Repton - NORTHOF, etc

There is no method of determining Repton's exact position, although there are four conditions that can
be used to work out which direction he is in. These are most suited for designing monsters that chase

28

Repton although they need not be limited to just this. The four conditions are NORTHOF, EASTOF,
SOUTHOF and WESTOF. Their meanings should be self explanatory, that is, in
 IF NORTHOF
 ...

the IF will be executed if this character is north of Repton, that is, further up the screen. The other
three work in a similar way, but obviously check for the other directions. In Trakker the Hideous
Jaggas and Tubular Spiders use these conditions, but in different ways, so that they can chase the
bulldozer slightly differently.

3. 4. 13 Examining the Return KEY

There is one final testable condition - KEY - this tests the RETURN key on the keyboard. This facility
has been used in Robbo (to activate the Cola machine, and flush the toilet) and Trakker (to detonate
the dynamite). For example, the Cola machine's definition looks like this:

 LOOK(E)
 IF CONTENTS Repton
 IF KEY
 LOOK(S)
 IF CONTENTS Space
 CREATE(Can,S)
 ENDIF
 ENDIF
 ENDIF

In other words, if Repton is standing to the east (right), RETURN is being pressed and there is a
space below, create a Cola can there. (Exercise for the reader: in fact, the real definition only allows
one can to be dispensed - try changing the above definition to do this).

3. 4. 14 ENDing a definition

If you want to stop executing a definition before the end, you can use the keyword END. This will stop
execution immediately, and move onto the next character. Although rather contrived, the following
example does illustrate the use of END:

 LOOK(E)
 IF CONTENTS Space
 CREATE(Bag,E)
 END
 ENDIF
 CREATE(Cake)

If there is a space to the east, then this definition will create a "Bag" there and then do nothing else. If
there isn't a space, then this character will change into a "Cake". Note that it is perfectly valid to place
an END in the body of an IF statement - END can be placed anywhere within a definition.

3. 4. 15 CHANGEing characters

The final command that actually affects the game directly is CHANGE. This is followed by two
character names (in brackets) separated by a comma. The command has the effect of changing all
occurrences of the first character on the current level by the second. Repton 3 - Take 2 uses:

 CHANGE(Safe,Diamond)

in the definition of a key to change all safes into diamonds when it is collected.

IMPORTANT NOTE: CHANGE must only be used if both characters specified move at the same
speed. i.e. Both move at One, Two, Four or not at all. Very strange things will happen if this rule is
not adhered to.

29

CHANGE could be used to change vicious monsters into "scared" monsters when a "power pill" is
collected, as in Snapper.

3. 4. 16 GOTO and LABEL

The last two commands in this section, GOTO and LABEL, can be used for a number of purposes.
Essentially they change the flow of execution of a definition. GOTO is not usually encouraged in
normal programming, as it tends to lead to messy listings that are difficult to follow. However, as
Reptol is such a small language GOTO is rather useful.

As there are no line numbers in Reptol, the destination of the GOTO must be marked in some way.
This is done with the keyword LABEL. It is followed by a string of one or more characters. This is
called the name of the label. To jump to a label from within a definition, simply enter the keyword
GOTO and follow it with the name of the label you wish to jump to. As with END, a GOTO can appear
anywhere within a definition.

Here's another (contrived) example:

 LOOK(N)
 IF CONTENTS Space
 MOVE(N)
 GOTO notree
 ENDIF
 LOOK(W)
 IF CONTENTS Space
 CREATE(Tree,W)
 ENDIF

 LABEL notree
 ...

If the first IF is executed, then the character will move north, but then the execution will jump to the
label "notree", therefore missing out the second IF.

It is perfectly valid to GOTO a label in another definition to save memory.

You can even jump to labels in different sections. However, this will not work if a CREATE command
is then executed. In general, you shouldn't use GOTO to jump about between ACTION and HITS
sections - this practice is only recommended when using just the "special effect" commands or
CHANGE.

3. 5 "Special effect" commands

There are four special commands that cannot easily be grouped under ACTION or HITS because they
can be used in either section. In most games they are more likely to be found in the HITS section,
although this is by no means "law". The four commands are:

3. 5. 1 SCOREing points

SCORE is followed by a number between 1 and 255 in brackets, for example SCORE(10). This
number is added to the player's score. If this takes the score beyond the "minimum score" for the level
the screen is flashed and the fanfare is played.

3. 5. 2 FLASHing the screen

FLASH is followed by the name of a colour in brackets. The screen's background colour will
momentarily change to the one specified. The name can be any one of the following colours:

30

 RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE.

If you prefer, the colour name can actually be a colour number, 1-7. For example, both the following
are valid and, in fact, have the same effect:

 FLASH(YELLOW)
 FLASH(3)

3. 5. 3 Generating SOUNDs

SOUND is followed by a number between 0 and 255 in brackets and is used to generate a sound effect
(on sound channel 1), for example SOUND(67). There are four types of sound effect available and
you may choose one of 64 different pitches (0 to 63) for each effect. The four effects are listed below.

 Sound effect Description

 0 Short "bell"
 1 "Whizz!"
 2 "Warble"
 3 Extended "bell"

To work out the parameter for a SOUND command simply add the desired pitch value (0=lowest pitch,
63=highest) to 64 times the sound effect number. For example, to generate a note of pitch 32 using the
"warble" effect you would use a parameter of 32+(64*2)=160. So you would include SOUND(160)
in your definition.

Interested readers might like to known that each sound effect is produced using a different sound
envelope. The actual parameters of these four envelopes can be found in section 3. 7. 17 The
envelopes.

3. 5. 4 Making sound EFFECTs

EFFECT is very similar to SOUND, but uses the "noise channel" (sound channel 0). The EFFECT
parameter is calculated in the same way as that for SOUND, and the results are not dissimilar either.
Here are a few examples to try:

 EFFECT(32) Short "drum" noise
 EFFECT(224) "Whoosh"
 EFFECT(160) "Warbly whoosh"

Experiment to find interesting effects of your own.

Examples of all of these commands can be found in the definition files for the four games supplied.

3. 6 The HITS section

3. 6. 1 The use of HITS
The HITS section of a character's definition (usually called the "hit routine") is executed whenever
the character is hit by another character. This can happen in four ways:

 1) Normal movement - when a character completes a move
 2) Creation - when a character is CREATEd on top of another
 3) Pushing - when a character is pushed (by Repton) on top of another
 4) Transportation - when a character enters a transporter, the hit routine for the destination

square of a transporter is called

31

3. 6. 2 Hit routine commands

Defining a hit routine is no different to defining a character's movement except you can only use a
selection of Reptol commands. Also, IF can only be used with HITBY - a condition we have not met
yet. The use of this condition will be explained later. The commands and keywords available are:

 Commands: CHANGE, KILLREPTON, CREATE
 Effects: SCORE, SOUND, EFFECT, FLASH
 Structure: IF, NOT, ELSE, ENDIF, GOTO, LABEL, END
 Conditions: HITBY

3. 6. 3 Using the HITBY condition

In our example definitions, only the monster will have a HITS section, although after reading this
section, perhaps you would like to add one for the egg.

The monster is going to be stabbed by the sword and when this happens, we'll flash the screen, do
some sort of sound effect and award some points for the player's effort. As we are also allowing
Repton to move onto the monster's square, even though he'll lose a life, we don't want to give away
any points or such like. We therefore need to test which character has actually hit the monster. This is
where the new condition, HITBY, comes in. It must be followed by the name of the character as given
by the NAME command. The IF will be executed if that character is "doing the hit". Our monster's hit
routine will therefore be something like:

 DEFINE HITS

 IF HITBY Sword
 FLASH(RED)
 SOUND(130)
 SCORE(20)
 ENDIF

The actions of the "special effect" commands in the body of the IF should be fairly self explanatory.
If you enter the above code following straight after the DEFINE ACTION section of the monster,
you'll have completed the definitions for our example. If you want to try them out:

 • Save the textual definitions with the Save option from the Blue Print Menu
 • Select Make to compile the definitions
 • Quit Blue Print
 • Design some sprites with Film Strip if you have not already done so
 • Design a simple level containing some swords, some monsters and one Repton
 • Load File Link and link the three data files together
 • Load the linked game file into the main game and try playing it

It is quite often unnecessary to use an "IF HITBY..." For example, in Repton 3 - Take 2, by
careful setting of system and user flags, Repton is the only character allowed to move onto a key. The
hit routine for the key can therefore simply be:

 DEFINE HITS
 CHANGE(Safe, Diamond)
 EFFECT(128)

There are a few things to beware of when using the CREATE command from within a hit routine:
these are dealt with in section 3. 7. 16 Recursive programming.

For further examples of hit routines, you may like to look at the definitions of the monster, cage, key,
crown and diamond in Repton 3 - Take 2.

32

That completes this tour of Blue Print and the Reptol language. The best way to learn the language is
to try things out - that's how we wrote the four games supplied! In section 6. 2 there is a summary of
the commands available in Reptol which you may like to refer to while designing your own games. If
you are just beginning, then please feel free to examine the "T." files supplied to see how we built up
the definitions. More advanced users could try and work out what the definitions are for Robbo and
Trakker before taking a peek in the supplied files.

3. 7 Hints and tips

This section contains a number of useful points that illustrate some of the features of Repton Infinity
and the Reptol programming language. There are also some important guidelines that should be
adhered to at all times. Don't worry if you do not follow all the ideas here immediately - we've
included quite a lot of advanced material for when you're an expert Reptol programmer. Here then, in
no particular order, is all you ever wanted to know about Reptol, but were afraid to ask...

3. 7. 1 Continual FLASH

If a definition continually FLASHes, then the background will actually keep a steady colour - it will
not return to black. This is used by the light bulbs in Robbo.

3. 7. 2 Speeding things up

The more complicated the defintions, and the more characters on the map, the slower the game will
run. This is unfortunate, but inevitable. To make the game run as fast as possible, try to bear the
following points in mind:

 (a) Try to keep the defintions of the most common characters as simple as possible. If
there are only eight monsters on the screen, it doesn't really matter how complicated their definitions
are. If there are 150 rocks though, adding a single command to the definition of a rock may have a
noticeable effect on the speed of the game.

 (b) Where possible, use the HITS section to define a character. For example, you
could define a cupboard which continuously looks to the left to see if there is a packet of biscuits
there. If so, you could create a space on top of the biscuits and score 10 points. Alternatively you
could define the cupboard as "squashable" by including Squash in its TYPE section. Then you could
wait until the biscuits were pushed into it. So that the cupboard didn't disappear when hit by the
biscuits, you might define its HITS section like this:

 DEFINE HITS
 IF HITBY Biscuits
 SCORE(10)
 ENDIF
 CREATE(Cupboard)

In this way the "thinking" part of the cupboard's definition is only called when the cupboard is hit by
something and not continually. This will speed up the game if you use a lot of cupboards on the map
but remember - you will be able to push other objects into the cupboard as well. The choice is yours.

 (c) Use quick tests before slow ones. IF STATE and IF MOVING are executed much
more quickly than the other IFs so use them first. For example:

 IF STATE(0)
 LOOK(N)
 IF CONTENTS Space
 ...
 ENDIF
 ENDIF

33

will be faster to execute than if the IFs were in the other order. (Unless of course the state is always
0).

 (d) Try to keep the number of "slow" commands to a minimum, these are LOOK, IF
CHANCE, SOUND, EFFECT and IF KEY.

 (e) The first user flag defined will actually be tested faster than the others so try to use
it for the most "important" functions.

Using "animated" characters does not affect the speed of the game - this is purely a visual effect.

3. 7. 3 The first 4 characters

The Space, Repton, Wall and Transporter characters cannot have their definitions altered completely.
You can give them all a DEFINE TYPE section to set up the relevant system and user flags. The only
other thing you have control over is Repton's ACTION section (because Repton is dealt with
separately - see below). This allows you to add to Repton's built-in definition, which moves him
around, and checks if he is pushing things. So, for example, the following will allow him to open
"doors", by pressing RETURN:

 DEFINE ACTION
 IF KEY
 LOOK(N)
 IF CONTENTS Door
 CREATE(Space,N)
 ENDIF
 ENDIF

It is also possible to make him move independently of pressing keys, for example, to make him
"skate" try the following:

 DEFINE ACTION
 IF MOVING
 LOOK(F)
 IF CONTENTS Space
 MOVE(F)
 ENDIF
 ENDIF

Note that when MOVEing in this way, Repton will not use his animation sequence: he will stand still
and use the defined "waiting sequence".

You cannot define the HITS sections for any of these four characters. Blue Print will still try to
compile any code you may enter, but the game will ignore it.

3. 7. 4 Killing Repton

Repton can be killed in four different ways. If:

 (a) he walks into a "Deadly" character, that is, one with the "Deadly" system flag set in the

DEFINE TYPE section.
 (b) a KILLREPTON is executed from within a definition
 (c) any other character, deadly or not, moves or is created on top of him
 (d) the ESCAPE key is pressed.

The main one to make note of here is (c). This happens because otherwise Repton would disappear
from the map and you wouldn't be able to carry on playing!

34

3.7.5 Creating Repton

The CREATE command is normally used for placing a character on the map regardless. This would
cause strange effects if you CREATE Repton in the same way - there would be two of them on the
screen and the game would not function correctly. To avoid this, if Repton is placed on the map with
CREATE, then he is first wiped off the map, so that after the creation there is still only one Repton.
This also skirts round a possible problem with definitions such as the pipe. The pipe works by creating
whatever is to the west, to its east, then creating a space to the west. If CREATE(Repton,E) didn't
remove the "old" Repton, then the CREATE(Space,W) would kill him.

3. 7. 6 LOOK before you LEAP

Always LOOK at a square and check if it is suitable to move onto, or CREATE on, before actually
MOVEing or CREATEing. Otherwise, two characters may attempt to enter the same square which will
have unpredictable results, or worse, may move off the sides of the screen. (This is acceptable,
although not encouraged, for moving off the left or right, but is not acceptable if the character moves
off the top or bottom.)

Also remember that there should be no other commands between a LOOK and an IF CONTENTS, an
IF <flag>, or a CREATE(CONTENTS). In other words, any command that is related to a LOOK should
follow the LOOK immediately. The following examples are not correct:

 LOOK(N)
 IF CONTENTS Cake
 CHANGE(Biscuit,Trifle)
 CREATE(CONTENTS,S) [CONTENTS is invalid now]
 ENDIF

 LOOK(S)
 IF MOVING
 IF Nasty [Invalid test here]
 CREATE(Splat)
 ENDIF
 ENDIF

The correct versions are:

 LOOK(N)
 IF CONTENTS Cake
 CHANGE(Biscuit,Trifle)
 LOOK(N)
 CREATE(CONTENTS,S)
 ENDIF

[or do the CHANGE after the CREATE]

 IF MOVING
 LOOK(S)
 IF Nasty
 CREATE(Splat)
 ENDIF
 ENDIF

3. 7. 7 Pushing

There is no method of checking the contents of a square before an object is pushed (by Repton) onto
it. Pushing is dealt with internally and can only check if the square is "Squash"able. You cannot, for
example, just allow a rock to squash a monster; anything that is pushable will be able to as well.

35

When making things pushable and squashable, remember to set the "Squash" flag for the Space
character (sprite 0), otherwise Repton won't be able to push things across empty space.

3. 7. 8 User flags

Take care when entering user flags. Remember that any unrecognised word under the DEFINE TYPE
section will be made into a user flag. So if a definition is not quite behaving correctly, check that you
have not made any spelling mistakes.

3. 7. 9 MOVEing twice

Once a character has been told to move with the MOVE command, it cannot be stopped or told to move
in a different direction.

3. 7. 10 MOVEing and LOOKing

If a character definition contains a MOVE command and then a LOOK command, the LOOK will still
refer to the same square; that is, a MOVE only tells a character that it is about to move; it doesn't
actually move it anywhere.

3. 7. 11 Transporters

Transporters in Repton Infinity have a few more facilities over those in Repton 3:

 (a) If the system flag "Cycle" is placed in the DEFINE TYPE section of the
transporter, then they do not disappear after they are used - they can be used again.

 (b) The hit routine for the destination square of the transporter is called when it is
used. At a simple level, this means that if Repton transports on top of diamond for example, he will
collect it and so score five points. This even works if the destination square contains another
transporter, in which case Repton (or whatever is being teleported) will go straight to the destination
of the last transporter in the chain. Because this is inherently recursive, the "stack" may fill up,
although you will only notice this if you make transporters "Cycle", or make use of point (c) below, as
there is enough stack space to deal with the standard six transporters.

 (c) The "Cycle" flag globally affects all six transporters. There is no easy way of
making it affect only some of them. Instead, you can define a character as follows:

 DEFINE ACTION
 LOOK(W)
 IF CONTENTS Space
 CREATE(Transporter,W)
 ENDIF

This can then be placed to the east of transporters (or indeed any other position if the "W"s are
changed) that you wish to "regenerate". It will recreate those transporters when they are used. Note
that if these characters are placed anywhere else, then the transporters they create won't actually work,
as they have no defined destination.

3. 7. 12 AND and OR

Reptol does not support the Boolean operators AND and OR, but they can be easily simulated with
IFs and GOTOs. If you wanted to write:

 LOOK(S)
 IF CONTENTS Space "AND" KEY
 MOVE(S)
 ENDIF

you could write:

36

 LOOK(S)
 IF CONTENTS Space
 IF KEY
 MOVE(S)
 ENDIF
 ENDIF

If you wanted to write:

 LOOK(N)
 IF MonsterOK "OR" NOT CONTENTS Block
 CREATE(Tree,N)
 ENDIF

you could write:

 LOOK(N)
 IF MonsterOK
 GOTO tree
 ELSE
 IF NOT CONTENTS Rock
 GOTO tree
 ENDIF
 ENDIF
 END

 LABEL tree
 CREATE(Tree,N)

3. 7. 13 Diagonal movement

It is not possible to give MOVE a "diagonal" direction; that is NE, SE, SW, NW are all impossible.
However, it is possible to simulate such movement using CREATE. If you wanted a character to
MOVE(NW), the following definition would do:

 LOOK(NW)
 IF CONTENTS Space
 CREATE(<name>,NW)
 CREATE(Space)
 ENDIF

This will make the character move a whole square at a time, like system flag "Four". The only way to
slow it down would be by using EVENT. However, this will not make the movement smooth, just
slower.

3. 7. 14 Screen scanning

The main Repton Infinity game works by "scanning" the map, character by character, from the top-left
down to the bottom-right. This scanning takes place about eight times every second. In fact, two scans
are made. The first looks for any characters that are ready to do something new and, finding any,
executes the ACTION parts of their definitions. The second scan looks for any characters that are in
the process of moving and, finding any, moves them on a little more (according to their speed). The
second scan is also responsible for dealing with collisions between characters and executes the HITS
section of any character that is hit by another.

The reason why we are telling you all this becomes clear when you look at a definition like:

 NAME Pipe

37

 DEFINE ACTION
 LOOK(W)
 IF NOT Fixed
 CREATE(CONTENTS,E)
 CREATE(Space,W)
 ENDIF

This is in fact based on the definition of one of the pipes in Robbo. Imagine a horizontal line of these,
separated by spaces (like in Robbo) with a non "Fixed" character on the left of the leftmost pipe.
When the first screen scan takes place, the leftmost pipe would move the character to its right, the next
pipe would then be scanned and move the character again, as would the next pipe and so on. The final
result is that the character is moved down the length of the whole pipe in one screen scan (an eighth of
a second). The same effect happens for pipes pointing down the screen. The way to get round this is to
use STATE.

 DEFINE ACTION
 LOOK(W)
 IF Fixed
 STATE(0)
 ELSE
 FLIP
 IF STATE(0)
 CREATE(CONTENTS,E)
 CREATE(Space,W)
 ENDIF
 ENDIF

This is the actual definition for a right-pipe, as in Robbo. This problem only comes to light with
objects that act on other objects. Characters that "create themselves", like fungus in Repton 3 - Take 2
are dealt with slightly differently. Take the definition for a very simple one-dimensional fungus:

 DEFINE ACTION
 LOOK(E)
 IF FungusOK
 CREATE(Fungus,E)
 ENDIF

You might think that a similar problem would occur, but there is a subtlety to CREATE - if a character
is CREATEd it has an (internal) flag set that means "don't process this character until next go". This
prevents the proper fungus from filling the screen in a single screen scan!

3. 7. 15 Repton - a special case

Another point to note is that Repton is dealt with as a separate case in terms of screen scanning. In fact
his movement is done before that of any other characters. This may help you to understand some
features of Repton Infinity. For example, unlike Repton 3, in Repton 3 - Take 2 you are allowed to
move out from under a rock and then back again without the rock falling. This also explains why you
can add to Repton's definition. Because Repton's movement and the pushing of objects is dealt with
separately before anything else, Repton's ACTION section property is vacant and so may be used like
any other. If you include an ACTION section for Repton (like the door example above) this is
executed along with all the other ACTION sections during the main screen scan.

3. 7. 16 Recursive programming

Believe it or not, Reptol actually allows definitions to be recursive (that is, for definitions to "call
themselves"). Take for example, the Magic Wall in Repton 4:

 DEFINE HINTS
 CREATE(Rock,S)
 CREATE(Crown)

38

Imagine two of these on top of each other, and a rock hits the top one. This will then create a rock
below it (on top of the other magic wall) and thus call the "hit" routine for the magic wall again,
creating another rock below that. Finally the recursion "unwinds" and creates the crowns in the
appropriate places. You occasionally have to be quite careful about such definitions - especially when
CREATE is used with no direction. For example:

 NAME Coal

 DEFINE HITS
 SCORE(5)
 CREATE(Gold)

Imagine some Coal is hit by a rock: the hit routine will be executed, 5 points awarded, and then Gold
will be created on the same square. This may cause some confusion and so we recommend the
following rule of practice. If any character may be "squashed" by more than one type of character, its
HITS section should use IF HITBY to distinguish between the sorts of things that may do the
squashing. The above definition should really be written as:

 NAME Coal

 DEFINE HITS
 IF HITBY Rock
 SCORE(5)
 CREATE(Gold)
 ENDIF

Because of the limited stack size, the recursion will eventually "fall out" - that is, another call could
not be made because the stack is full. If this occurs, then the routine will return without doing any-
thing. This can be seen if you pile up too many magic walls on top of each other. A rock falling on the
top will change about ten into crowns, but then will simply reappear and not create the crown.

3. 7. 17 The envelopes

And finally, for curious readers, here are the envelopes used in Repton Infinity:

 ENVELOPE 1,1,0,0,0,1,1,1,100,-8,-3,-3,100,30
 ENVELOPE 2,2,1,0,0,10,0,0,100,-3,-3,-5,127,80
 ENVELOPE 3,5,1,-1,0,1,1,1,100,0,0,-16,80,30
 ENVELOPE 4,2,0,0,0,0,0,0,90,-1,-2,-3,90,30

39

Section 4

Film Strip - the Character Designer

4. 1 Introduction to Film Strip

Film Strip is the sprite and character editor of Repton Infinity. It allows you to edit not only the main
sprites used by the game, but also the characters displayed on the game map and the so called "editor
characters" that appear in the boxes at the bottom of the editor screens. Because of this, there are
rather a large number of boxes on the screen.

There are three main edit "grids" occupying most of the screen. The largest (left) of these is the game
sprite grid, the next largest (centre top) is the editor character grid, and the smallest (centre middle) is
the map character grid. Below these grids is the standard character box. The currently selected
character is enclosed by a small square. The right hand side contains (from top to bottom) the options
menu, the four available colours, the currently selected colour, the "actual size" map character and, in
the bottom right hand corner, the "actual size" game sprite. Note that there is no unique indication for
the "actual size" editor character - it is shown in the character box at the bottom of the screen.

As with the other editors, options are selected from the Film Strip menu using the Cursor Keys and
confirmed with RETURN.

4. 2 Editing sprites

On selecting Edit from the menu, a flashing edit cursor will appear in one of the edit grids. The cursor
can be moved using either the cursor keys or Z, X, * and ?. These keys not only control the cursor
movement but also select which grid to edit - the cursor can be moved off the side of a grid into the
adjacent ones.

4. 2. 1 Simple editing

Pixels are set by pressing RETURN and deleted with DELETE. Both these keys can be held down
while moving the cursor to produce or delete a line of dots. Note that the cursor cannot be moved off
the side of a grid when "trailing" in this way.

The current colour is indicated in a box on the right of screen and other colours can be selected using
keys "0" to "3". Colour 0 can also be selected by pressing "4". The four available colours can be
varied using keys f0-f3. These colours are saved with the sprites and will be restored when the sprite
file is reloaded. However, these colours will not be used by anything except Film Strip - the actual
colours used for the sprites in the game are defined using Land Scape.

As with the other editors, the character being edited is selected by holding down SHIFT and pressing
the Cursor Keys. There is no need to indicate that changes have been made to a sprite: all your
changes are stored when another character is selected.

Pressing ESCAPE will return you to the Film Strip menu.

4. 2. 2 Advanced Facilities

In addition to these standard edit keys, there are a number of additional functions to ease the editing
process. To copy a sprite to another position select the sprite and press COPY. Then select the
destination and press "R" to recall the copied sprite. This will copy all three grids across. To copy just
the currently selected grid, press "G" instead of "R". Sprites can also be reflected about the horizontal
and vertical axes using "H" and "V" respectively. Note that "H", "V", "R" and COPY act on all three

40

grids at once. The currently selected grid can be cleared to the currently selected colour by pressing
CTRL C.

It is possible to create a patterned background for your sprites like the one used in ROBBO. To do
this, three functions have been built in to help you. To create the background, first design the pattern
in the top left hand corner of the space character (sprite 0). The pattern must not extend outside the top
4x8 pixels. Once designed, pressing f4 will copy this pattern across the whole grid. Function keys f6
(underlay) and f7 (border) are used to place this pattern "behind" the other sprites. First select a
character that needs a background; then press f6 or f7. Key f6 copies the pattern into ANY black
pixels in the select sprite while f7 leaves a black border around any set pixels - giving the game a
"cartoon" look. It is inevitable that once the background has been applied, some sprites may need
tidying up by hand.

Finally, if you make a serious mistake while editing a sprite, f5 will restore all three grids to their
original state.

4. 3 Animated sprites

Repton Infinity lets you define simple animated sprites. These can have two stages (or frames) of
animation, like monsters and spirits in Repton 3 - Take 2. There are two steps to creating an animated
sprite: the system flag "Animate" must be included in the Blue Print definition file (see section 3. 3. 1
System flags) and the two frames of the sprite should be edited using Film Strip.

4. 3. 1 What animation means

If a sprite is animated, then the game will alternate between displaying that sprite and the one directly
below it in the character box. The first four sprites cannot be animated, and the 14 Repton sprites have
their own pre-defined animation sequences. Because none of the "bottom row" sprites can be defined,
the two sprites in the bottom left hand corner are reserved for animation frames only. Repton 3 - Take
2 uses these for the monster and the spirit. In addition to these two there are 12 other possible pairs of
animated sprites. These are the top and middle rows to the right of the first four "special" sprites. In
short, all sprites except the first four and last 14 may be used for animation and the second image of
an animated sprite should be located immediately below the first as seen in the character box at the
bottom of the screen. Try it out - it's the easiest way.

4. 3. 2 Testing out animation

As an aid, Film Strip lets you test the animation of any sprite. Pressing "A" will attempt to animate
the current sprite: if it is one of the sixteen that cannot be animated you will hear an audible warning;
if not, then the animation sequence for the sprite will be displayed. Because Film Strip does not know
which are the animated sprites, it will always display two frames. This will give strange effects if the
chosen sprite is not animated. Remember - you must use Blue Print to specify that a sprite is to be
animated.

4. 3. 3 Repton's animation

In addition, "A" will also show Repton's walking and waiting movements. Repton has four-stage left
and right movement, two stage up and down movement and three-stage "waiting". Try selecting
various Repton frames and hold down "A" to see this. It is possible to make the left and right
animation sequence "cycle" rather than "oscillate", that is, if you think of the four Repton frames as 0,
1, 2 and 3, then normally the game will display these sprites in the order 0123321001233210...etc to
give a walking effect.

Instead, these frames can be displayed in the order 012301230123... etc to give a cycling effect, which
is useful if Repton is not an "animal". This change is made by setting the "Cycle" System flag in the
Blue Print definition of Repton. As Film Strip does not know if Repton should be "cycled" or not, an
additional key, "C" is used to show Repton's walking movements in a cycle. It is used in exactly the
same way as the "A" key.

41

4. 4 Loading and saving sprites

There are two sorts of files that Film Strip deals with. These are "eS." prefixed sprite files and "eE."
prefixed editor files. "eS." files contain the sprite data for the main game sprites and also the map
characters. "eE." files contain the editor characters as displayed in the character box at the bottom of
each editor screen.

The Load and Save options from the menu have similar formats; that is a sub-menu and a prompt for
a filename. As usual, previous filenames are remembered and are offered by default. At any point
while entering a filename, the sub-menu bar can be moved with the Cursor Up and Down keys. This is
used to select which type of file is to be dealt with. The prefix in front of the filename will also change
as the bar is moved. The first option Sprite saves or loads both the "eS." file, while Chars saves or
loads just the "eE." file. The Both option saves or loads both the "eS." and "eE." files (in that order). It
does not save anything different, it is just a short cut and is mainly for use on disc.

The "eS." and "eE." files for our four games can be found on your DATA cassette or disc.

4. 5 Entering your name

As with the other editors, the Name option is used to enter a name that appears on the game title
screen, in this case next to the "Casting" credit.

4. 6 Leaving Film Strip

As usual, Quit returns you to the main game menu.

4. 7 Example sprite files

To get you going, the sprite files for all four of our games are supplied. Disc users will find them on
one of the DATA discs; cassette users on the DATA cassette. The filenames are:

 Game Sprite file

 Repton 3 - Take 2 "eS.Rep3"
 Repton 4 "eS.Rep4"
 Robbo "eS.Robbo"
 Trakker "eS.Trak"

42

Section 5

File Link - the Linker

5. 1 Introduction to the Linker

File Link, the Linker, performs the all important task of taking screen, sprite and code files and
joining them together in such a way that you can subsequently load them into the game and play them.

 At this point, it is assumed that you are familiar with the three editors and currently have three data
files that you want linked together. If not, please read sections 2, 3 and 4 to see how to create them.

5. 2 Using the BBC/Electron Linker

The Linker screen consists of six boxes in which text can be typed. The large box at the top of the
screen (with "The Repton Infinity File Linker" in) is the "title box". The four smaller boxes in the
central area are the "file boxes", those on the left being "input" files and the one on the right the
"output" file. Finally, the large box at the bottom is the "end message" box.

5. 2. 1 Entering information

The cursor can be moved between the boxes by pressing the Cursor Up and Down Keys. The
RETURN key has exactly the same effect as the Down key. The Left and Right Cursor keys and
DELETE are used to edit text. Newly typed characters will be inserted into existing text rather than
overtyping it.

When first loaded, the cursor will be positioned in the "title box". This is where the title of the game is
entered. This is the name that appears beneath the "Repton Infinity" logo on the high score table of
the game. To enter a title, simply type it in: it will automatically be centred when loaded into the
game.

Pressing RETURN (or the Cursor Down key) will move the cursor down to the Land Scape file box.
Here you should enter the name of the screen file you wish to link. A further RETURN will move
down to Blue Print. Enter the name of the object code file and press RETURN to move down to
Film Strip. Now enter the name of the sprite file and again, press RETURN. At this point, the cursor
will jump across to the "game file" box on the right of the screen. Here you should enter the name you
want the final linked file to be called.

Very often all these four filenames will be the same, or at least very similar. If this is the case, then
there is a short cut you can use. Say you wanted to enter the filename "Test1" into all four boxes:
move the cursor to the "game file" box and enter "Test1" and press COPY. This will copy "Test1"
into the three boxes on the left. These copied names can be edited in the usual way. Note that the
COPY key cannot be pressed if the cursor is already in one of the boxes on the left.

The final piece of information the Linker requires is entered in the bottom box. This is the message
that is displayed after Level 4 of your game has been completed. Usually this is something like:

 "Well done! - Now try eG.Rep4A!"

As with the title, this text will be automatically centred when displayed by the game.

5. 2. 2 Linking the files

At this point, carefully check all the filenames and your spelling. If there is anything wrong, use the
Cursor keys to move to the incorrect box and rectify the error. When you are happy that all the

43

information is correct, press CTRL L to link the file. If you are using a single disk drive you will be
prompted to insert a data disc. Cassette users should insert their own data cassette.

The three "input" files will now be loaded. They are loaded in the order: Land Scape, Blue Print,
Film Strip, that is, the order of the boxes down the left. The filenames are highlighted as they load,
along with messages saying what is happening. Once loaded, the files will be linked together, and the
"eG." game file saved. If all is well, the message "File successfully linked" will be displayed.

You can link another set of files, or quit the editor and return to the main menu by pressing ESCAPE.

44

Section 6

Reference

6. 1 Reptol Command Summary

In the following breakdown, each Reptol keyword/command is given a "Section" and a "Type". The
"Section" lists which sections of a character definition under which the keyword can appear. The
"Type" places the keyword in one of four categories:

 Condition: testable condition - part of an IF statement
 Command: general command - actually does something
 Effect: special effect
 Structure: fundamental part of Reptol

CHANCE(p%)
Sections ACTION
Type Condition

Example IF CHANCE(10%)
 FLASH(YELLOW)
 ENDIF

Evaluates to "true" if a (non-integer) random number between 0.00 and 99.99 is less than the
percentage "p" given in brackets.

CHANGE(x,y)
Sections ACTION, HITS
Type Command

Example CHANGE(Safe,Diamond)

Replaces all occurrences of character "x" with character "y". Both "x" and "y" should be character
names set with NAME. Characters "x" and "y" must move at the same speed (or not at all).

CONTENTS
Sections ACTION
Type Condition

Example 1 LOOK(E)
 IF CONTENTS Space
 MOVE(E)
 ENDIF

Example 2 CREATE(CONTENTS,E)

Has two forms. Firstly can form part of an IF statement following a LOOK, in this case the body of
the conditional is executed if the last character LOOKed at is the one named after the CONTENTS.
Secondly, it can be part of a CREATE in which case the last character LOOKed at is used rather than a
named character.

CREATE(x,d)

45

Sections ACTION, HITS
Type Command

Example CREATE(Fungus,NE)

Used to put characters onto the map. The first parameter is the sprite name of the character to create;
the second is optional, but if present specifies the direction of the creation. If no direction is given,
then the character is placed on top of the current square. The direction is specified in terms of compass
points, so any of N, NE, E, SE, S, SW, W, NW can be used. North is taken to be the top of the screen.

DEFINE
Sections n/a
Type Structure

Used to introduce a new section into a definition. There are three forms:

 (a) DEFINE TYPE
 This section describes the character in terms of the system and user flags.
 (b) DEFINE ACTION
 This section describes how the character moves or what it does (for static

characters).
 (c) DEFINE HITS
 This section describes what happens when other characters land on top of this

character.

EASTOF
Sections ACTION
Type Condition
Example IF EASTOF
 FLASH(RED)
 ENDIF

Evaluates to "true" if the current character is to the east of Repton.

EFFECT(x)
Sections ACTION, HITS
Type Effect

Generates a noise effect on channel 0. "x" is a number between 0 and 255 although only some values
produce unique effects. The bottom 3 bits (i.e. values of 0 to 7) are used as the pitch value and the top
2 bits describe the type of effect (or the envelope number).

ELSE
Sections ACTION, HITS
Type Structure

Forms part of an IF structure. The instructions following the ELSE are executed if the IF is
evaluated to false. See IF for an example.

END
Sections ACTIONS, HITS
Type Structure
Example LOOK(NE)
 IF CONTENTS Wall

46

 END
 ENDIF

Prevents the rest of a definition being executed.

ENDIF
Sections ACTION, HITS
Type Structure

Forms part of an IF construct. There must be a matching ENDIF for each IF. See IF for an example.

EVENT(x)
Sections ACTION
Type Condition

Example IF EVENT(2)
 LOOK(S)
 IF CONTENTS Space
 MOVE(S)
 ENDIF
 ENDIF

Used to delay the execution of a definition. "x" can vary between 1 and 7. The delay is proportional to
two to the power of the value "x". Thus EVENT(1) means "every other time" and EVENT(7) means
"every 128th time". EVENT is only recommended for static characters or those moving at Speed Four.

FLASH(x)
Sections ACTION, HITS
Type Effect

Example FLASH(WHITE)

Momentarily changes the background colour to "x". This can either be a number between 0 and 7, or a
colour name. Colours available are: RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN and
WHITE.

FLIP
Sections ACTION
Type Command

Inverts the STATE bit for the current character. See STATE for more details.

GOTO <name>
Sections ACTION, HITS
Type Structure

Example GOTO left
 ..
 ..
 LABEL left

Jumps to the named LABEL, which can be in another definition and/or section. IMPORTANT: you
must not jump to another section if it CREATEs objects.

47

HITBY <name>
Sections HITS
Type Condition

Example IF HITBY Rock
 SCORE(10)
 ENDIF

Evaluates to "true" if the character has been hit by the given character.

IF <cond>
Sections ACTION, HITS
Type Structure

Example LOOK(N)
 IF CONTENTS Space
 MOVE(N)
 ELSE
 LOOK(S)
 IF NOT CONTENTS Space
 EFFECT(17)
 ENDIF
 ENDIF

Start of an IF..ELSE...ENDIF construction. <cond> can either be a user flag or one of the
testable conditions. If the result of <cond> is "true", then the instructions following the IF are
executed. Execution stops when either an ELSE or an ENDIF is found. The construct also allows an
optional ELSE section. The instructions following the ELSE will be executed if the result of <cond>
is "false". IFs can be nested up to a level of 8. The IF can be followed by NOT in which case the truth
value of <cond> is "inverted", so the IF executes if <cond> is "false".

KEY
Sections ACTION
Type Condition

Example IF KEY
 GOTO opendoor
 ENDIF

Evaluates to "true" if the RETURN key is being pressed on the keyboard.

KILLREPTON
Sections ACTION, HITS
Type Command

Example IF EVENT(7)
 KILLREPTON
 ENDIF

Kills Repton wherever he is.

LABEL <name>
Sections ACTION, HITS
Type Structure

48

Places a label at that point in the definition. This can then be jumped to by GOTO. See GOTO for an
example.

LOOK(d)
Sections ACTION
Type Command

Example LOOK(W)
 IF NOT SolidToTrifle
 MOVE(W)
 ENDIF

Looks in the specified direction and sets the user flags according to the contents of that square. These
(and the contents of that square) can then be tested using an IF.

The direction can either be one of the compass points as in CREATE, or one of F, B, L, R. These stand
for Forward, Backward, Left and Right. These allow directions relative to the current direction of
movement to be used. It may be necessary to LOOK again after an IF, as the results of the IF are not
retained throughout the body of the IF.

MOVE(d)
Sections ACTION
Type Command
Example LOOK(S)
 IF CONTENTS Repton
 IF MOVING
 KILLREPTON
 ENDIF
 ENDIF

Evaluates to "true" if the current characters is moving. The example above comes from a rock in
Repton 3 - Take 2.

NAME <name>
Sections Top of definition
Type Structure

Example NAME Fungus

Gives a character a name. Characters don't have to be named, but if you wish to refer to them
elsewhere using IF CONTENTS, CREATE or CHANGE, then a name is essential.

NORTHOF
Sections ACTION
Type Condition

Same as EASTOF but "true" if north of Repton.

NOT
Sections ACTION, HITS
Type Effect

Optional part of IF. The IF will be executed if <cond> is "false", otherwise the ELSE will be
executed (if present). See IF for an example.

49

SCORE(s)
Sections ACTION, HITS
Type Effect

Example SCORE(10)

Adds "s" to the player's score. "s" must be in the range 0 to 255.

SOUND(s)
Sections ACTION, HITS
Type Effect

Example SOUND(96)

Generates a sound on channel 1. "s" must be in the range 0 to 255. The top 2 bits of "s" are used to
describe the type of sound being generated (that is, the envelope used). The bottom six bits contain the
pitch where 0 is the lowest and 63 the highest.

SOUTHOF
Sections ACTION
Type Condition

Same as EASTOF but "true" if south of Repton.

STATE(s)
Sections ACTION
Type Condition/Command

Example FLIP
 IF STATE(0)
 LOOK(N)
 IF CONTENTS Space
 MOVE(N)
 ENDIF
 ELSE
 FLASH(YELLOW)
 ENDIF

Example IF NORTHOF
 STATE(1)
 ENDIF

Can be used either as part of an IF to test for a specific state, or by itself to explicitly set the state.
There are two states that a character can be in: 0 and 1. All characters start off in state 0. The state
command can be used to vary what a character does. When used in conjunction with FLIP, a
character can be made to alternate between two actions.

WESTOF
Sections ACTION
Type Condition

Same as EASTOF but "true" if west of Repton.

50

6. 2 Summary of system flags

 Flag Meaning

 Solid Solid to Repton
 Deadly Kills Repton
 HPush Can be pushed horizontally
 VPush Can be pushed vertically
 Under Other characters should "move under" this one
 Transport Can use transporters
 Squash Can be squashed by other characters
 Cycle Set if Repton should cycle instead of walk, or if transporters should

"regenerate"
 Animate This sprite is animated
 One Slowest speed - same as Repton's speed
 Two Twice as fast as Repton
 Four Full speed

6. 3 Blue Print error messages

Whenever an error is caused in Blue Print, the error message will be displayed in the message box at
the top of the screen and the cursor will be positioned on the line in the definition which caused the
error. All possible error messages are listed in alphabetical order below:

Aborted
 ESCAPE was pressed when requested to insert GAME or DATA disc

Bad %
 CHANCE parameter was not in the range 0.01% to 99.99%

Bad EVENT
 EVENT parameter was not in the range 1 to 7

Bad MOVE direction
 You have tried to MOVE in a direction other than N, E, S, W, F, L, R or B

Bad STATE
 STATE parameter was not 0 or 1

Bad definition
 You have followed the keyword DEFINE with something other than TYPE, ACTION or

HITS

Bad direction
 Direction parameter to LOOK was not a compass direction (N, NE, E, SE, S, SW, W, NE) or

a relative direction (F, L, R, B) or the optional direction in CREATE was not a compass
direction

Bad name
 Text after the NAME command was missing or invalid

Bad numeric parameter
 You have used an invalid number somewhere. Numeric parameters can only consist of the

characters "0" to "9".

Can't animate this sprite

51

 System flag "Animate" cannot be used in the first four sprites or the last fourteen sprites on
the second row. You have attempted to do so

Can't make small enough
 Blue Print could not shorten the object code sufficiently to fit it into the game. You must

shorten or remove some definitions

Line full
 You have attempted to insert a character in a line that is already full

Missing %
 CHANCE parameter was not followed by a percentage (%) sign

Missing)
 You have omitted a close bracket

Missing ,
 You have missed out a comma in a CHANGE command

Mistake
 Invalid text was found, probably at the end of an otherwise valid line

Name already used
 You have tried to give two sprites the same name

No ENDIF
 There are not enough ENDIFs to match all the IFs

No IF
 An ENDIF was found that couldn't be matched to an IF

No more
 You have attempted to scroll beyond the top or bottom of the current definition

No room
 This is a serious error. You have filled the memory available for definitions. You must

shorten or delete definitions before entering anything new

No such flag
 Reference to a non-existent user flag was made

No such label
 You have tried to GOTO a label that does not exist

No such sprite
 Reference to a non-existent sprite was made

Number too big
 A number greater than 255 has been used where it should not

Syntax error
 You have attempted to define a flag in a section other than TYPE

Too many IFs
 More than eight nested IFs have been used

Too many flags
 More than eight user flags have been defined

52

Type mismatch
 You have mixed "types" of variable by attempting to GOTO a sprite name, CREATE a label,

or similar.

Wrong section
 You have used a keyword in a section where it cannot be used

53

REPTON INFINITY
Quick Reference Card

Note: To use a function key, simultaneously press the CAPS LK/FUNC key and the appropriate
numeric key.

Game Controls
Z, X, *, ? Move left, right, up, down
RETURN Action
Cursor Keys Scroll screen
M Display map
O .. All sound off
S ... Sound on
CAPS LK End level
ESCAPE Lose a life
SHIFT End game
P ... Pause game
DELETE Resume paused game

Land Scape
Z, X, *, ? Move cursor left, right, up, down
Cursor Keys Move cursor
SHIFT and Cursor Keys Select character
RETURN Place character
DELETE Place space character
1, 2, 3, 4 Select level to edit
CTRL C Clear level to character
f0, f1, f2, f3 Alter palette
f4 .. No password
f5 .. Set password
f6 .. Enable map
f7 .. Disable map
f8 .. Set minimum score
f9 (or S) Score calculator
ESCAPE Return to menu

Blue Print
Cursor Keys Move cursor
SHIFT and Cursor Keys Select character
CTRL and Cursor Keys Move to start/end of line or up/down page
DELETE Delete character to the left
CTRL N Clear all definitions
RETURN Move to new line
CTRL I Indent
f0, f1, f2, f3 Alter palette
f4 .. Insert/Overtype
f5 .. Undo alterations to current line
f6 .. Insert blank line
f7 .. Delete line
f8 (or CTRL Q) Insert space character
f9 (or CTRL A) Delete character to the right
ESCAPE Return to menu

Film Strip
Z, X, *, ? Move cursor left, right, up, down
Cursor Keys Move cursor
SHIFT and Cursor Keys Select character
RETURN Set pixel to selected colour

54

DELETE Set pixel to black
0 (or 4), 1, 2, 3 Select colour
COPY Copy sprite
R .. Recall "copied" sprite
G .. Recall selected grid only
H .. Reflect about horizontal axis
V .. Reflect about vertical axis
A .. Show animation sequence
C .. Show "cycle" animation
CTRL C Clear grid to selected colour
f0, f1, f2, f3 Alter palette
f4 .. Replicate top left corner
f5 .. Undo all changes to sprite
f6 .. Underlay sprite 0
f7 .. Underlay sprite 0 with black border
ESCAPE Return to menu

 __
Land Scape		No	Set	Enable	Dsable	Set	Score		
	Alter palette	paswrd	paswrd	map	map	score	calc.		
----------		------+------+------+------+------+------							
Blue Print		Insert	Undo	Insert	Del.	Insert	Del.		
				Overty		line	line	char.	char.
----------+ + + +------+------+------+------+------+------									
Film Strip	Col.1	Col.2	Col.3	Repli-	Undo	Under	Black	//	//
__________	_____	_____	_____	__cate	______	___lay	Border	______	______
 f1 f2 f3 f4 f5 f6 f7 f8 f9

On Land Scape and Blue Print, f0 alters the palette. On Film Strip, it selects Colour 0.

55

