
Development Package
on the BBC Microcomputerwith 6502 Second Processor

BARRY MORRELL

ACORN-

Acknowledgements
The 6502 Development Package was developed by Jon Thackray. Thanks are also
due to Pete Cockrell and David Christensen.

Barry Morrell

Copyright @ Acornsoft Limited 1984

All rights reserved

First published in 1984 by Acornsoft Limited

No part of this book may be reproduced by any means without the prior consent
of the copyright holder. The only exceptions are as provided for by the Copyright
(photocopying) Act or for the purposes of review or in order for the software herein
to be entered into a computer for the sole use of the owner of the book.

Note: Within this publication the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

FIRST EDITION

Acornsoft Limited, Betjeman House, 104 Hills Road,
Cambridge CB2 lLQ, England. Telephone (0223) 316039

CONTENTS

Preface

1 Getting under way

Page

1

2 Developing programs with the Second Processor 2

2.1 What is MASM? 2

3 Developing a simple MASM program 4

3.1 Creating program source using EDIT
3.2 Assembling the program and running it
3.3 Producing a listing of your program
3.4 Program development

4 The building bricks of MASM
- -- - -

MASM mnemonics and address modes 9
The format of MASM source code 16
MASM operators 19
Operating system commands 2 3

5 The MASM directives 24

Declaring symbols (*)
Defining a byte of data (=)
Defining a byte pair (&)
Reserving variable space (^ @ and #)
Defining the start of code (ORG and .)
Linking source files (LNK and <)
Ending an assembly (END)
Defining page titles (TTL)
Setting print options (OPT)
Using the special instruction set (CPU)
Changing object file drives (>)

6 Program example 34

7 Using macros in your programs 38

7.1 Default values in macros
7.2 Missing parameters
7.3 Parameter names
7.4 Nesting macro calls
7.5 Macro libraries

8 Conditional assembly

Logical expressions
Global and local variables
Routines and local labels

9 Repetitive assembly 56

9.1 The WHILE.. .WEND loop 5 6
9.2 The MEXIT directive 58

10 Trapping errors in source code 59

11 Creating source files using EDIT 60

11.1 Entering EDIT 61
11.2 Adding text 61
11.3 Using the cursor keys 62
11.4 The cursor edit mode 62
11.5 The function keys 63
11.6 Changing display mode 63
11.7 Saving, loading and inserting text 64
11.8 Insert and overtype modes 66
11.9 Special characters in the text 66
11.10 Dealing with blocks of text 67
11.11 The scroll margins 69
11.12 Finding and replacing text 69
11.13 Using command 'macros' 78

12 Using MASM to assemble your programs 81

12.1 MASM commands 81

13 Producing program listings 9 1

14 Debugging your programs 94

14.1 Introduction
14.2 Using the cross-referencer (XREF)
14.3 Using the free-standing cross-referencer

(SRCXREF)
14.4 Using the trace utilities (TTRACE and

BTRACE)

Appendix A The macro substitution method

Appendix B MASM error messages 117

B. 1 MASM fatal errors 117
B. 2 MASM non-fatal errors 120

Index 124

Preface
This user guide is intended for owners of the 6502 Development Package. It
describes how to use the following utilities: EDIT, MASM, PRINT, XREF, SRCXREF
and TTKACE (as well as PR and BTRACE - versions of PRINT and TTRACE for the
110 processor). Together, these utilities and the 6502 Second Processor provide
a powerful means of producing machine code programs for use with any
6502-based machine, particularly a BBC Microcomputer Model A or B, or an Acorn
Electron.

Before reading this book you should be familiar with the concepts covered in the
BBC Microcomputer System User Guide. You should also be reasonably familiar
with the standard set of 6502 assembler mnemonics.

If you are not familiar with 6502 assembler, the following books may help you:

Creative Assembler for the BBC Microcomputer Model B and Acorn Electron by
Jonathan Griffiths, a Penguin publication

Assembly Language Programming for the BBC Microcomputer by Ian Birnbaum,
a Macmillan publication

The approach adopted within this book is to give you 'hands-on experience' of
MASM and its associated utilities as quickly as possible: this is vital if you are to
appreciate the range of facilities available. By the time you have finished reading
the book you will be familiar with most o f the facilities of MASM. After this, you
will find the 6502 Dezdopment Package Reference Card of use.

1 Getting under way
The 6502 Development Package is designed for use on the BBC Microcomputer
Model B; it will not work upon any other type of microcomputer. You should also
have the following equipment:

- A 6502 Second Processor

- Disc drive(s)

As well as this book, the Development Package consists of:

- A copy of the 6502 Development Package Reference Card

- A floppy disc labelled 6502 Development Package

- A function key card

If any of these is missing you should contact your Acorn dealer.

Before you go any further, you should start up your system and take a security
copy of the disc. The procedure, which uses "ENABLE and *BACKUP, is described
in your Disc Filing System User Guide. You are reminded that copyright exists
in this software and that you may only make a single security copy for your own use.

Next, insert your copy of the disc in a drive and look at the files on it (*CAT
command). They should be as follows:

MASM
XREF
SRCXREF
IOMASM
TTRACE
BTRACE
PRINT
PR
EDIT

A macro assembler
A MASM-dependent cross-referencer
A free-standing cross-referencer
MASM code in the I10 processor
A trace package for the second processor
A trace package for the BBC Model B
A print utility for the second processor
A print utility for the BBC Model B
A text editor

If any of these files are missing you should contact your Acorn dealer.

Finally, you should slip the function key card provided under the clear plastic slip
above the red function keys on your keyboard, lining it up so that GOT0 LINE
comes immediately above the red function key 'fO'. This legend will be your guide
when you are inputting and amending your programs using EDIT.

2 Developing programs
with the Second Processor
With the 6502 Second Processor, you can develop sophisticated programs in MASM
assembler. These can then be run in any 6502-based machine, but particularly either
your BBC Microcomputer Model B or the 6502 Second Processor.

You can, of course, develop programs in other languages using the Second
Processor.

2.1 What is MASM?

MASM is a macro assembler and forms the main part of this package. For the present
we will forget about the macro and concentrate on the assembler part of the name.

Most computer languages are high level languages; BASIC, FORTRAN, Pascal and
COBOL are examples. They are generally aimed at particular areas of use; for
example, FORTRAN is designed to aid in the solution of mathematical and scientific
problems. Because of this, they are often highly-specialised and may be unsuitable
for some functions. Additionally programs in languages like BASIC have their
instructions interpreted every time the program is run, so they can be slow.

Machine code, on the other hand, is extremely efficient in operation and does not
need processing by an interpreter every time it is run. However, it is not efficient
from the point of view of time spent programming inrit.

Assembly language offers a compromise between these two approaches.
Instructions in assembly language have an almost one-to-one correspondence with
machine code. They also have mnemonics which are easier to recognise than
machine code (though not as easy as high level language instructions). In addition,
programs written in assembly language do not have to be translated from
mnemonics into machine code every time they are run. Instead, the translation
is done once, by an assembler such as MASM. From this stage onwards, the machine
code object program can be loaded and run as many times as required.

Let's look at the way assemblers such as MASM work before going any further.
Below, on the left, is a sample of MASM assembly code (the source code); at the
right of it is the equivalent machine code and some typical memor addresse:

L D X I M 1 &2000

Loop I N X
C P X I M 100

6 4
B N E l o o p D 0

& 2 0 0 6 E3 F B

To produce the code on the right from that on the left, MASM scans through the
program from start to finish and builds up a symbol table. MASM makes a note.
in its symbol table, of the position of each label (such as 'loop') so that, when it
encounters the label in subsequent instructions, it can insert an actual address in
the instruction (or at least a representation of the actual address).

This works fine for pieces of code like the one shown above. However, what
happens in the case of the code shown below, where the address 'server' is further
down the program than the instruction that uses it?

. . . .
L D X I M 1 0 0

J S R s e r v e r
. . . .
. . . .
. . .

s e r v e r
. . . .

In this case, the assembler has no address for 'server' when it encounters the
instruction. 'server' is called a forward reference.

MASM, like most assemblers, resolves this problem by always making two passes
through the program source code. During the first pass, a symbol table is built up;
during the second pass, the instructions are converted into object code.

The actual process of assembly is more complicated than the way we have described
it, but this description should suffice for the present. If you want to know more
about how assemblers work, Assemblers and Loaders, by D W Barron might be
of interest.

3 Developing a simple
MASM program
There are four main stages to writing a program and getting it working using the
6502 Development Package:

- Designing the program structure

- Coding the program source (using the EDIT utility)

- Assembling the program (using MASM) and running it

- Debugging the program (using PRINT to obtain the necessary listings and a
TRACE utility).

It is assumed that the user is familiar with designing the structure of a program,
since the method is similar for all programming languages. Each of the subsequent
stages will be explained in this chapter by getting you to develop a simple program
yourself, using the 6502 Development Package and your computer.

3.1 Creating program source using EDIT
The EDIT program helps you to create and amend program source files. I t is
described fully in chapter 11, 'Creating source files using EDIT: but for now only
a simple introduction is given so that you can create a small source file.

To run the editor, insert the program disc that comes with the package into the
current drive, type:

and press RETURN. This will cause the editor to be entered with no text, so that
the screen is almost blank. The only text is an inverse video asterisk (' * ') at the
top left hand corner and a couple of words on the bottom line. The asterisk is
the 'end of file marker' and it tells you where the end of the text is. The bottom
line is called the 'status line', since it gives various pieces of information about the
editor.

To add text when you are in the editor you simply have to type it. The end of
text marker will be moved along to make room. If you make a mistake simply press
the DELETE key as usual. At the end of a line press the RETURN key and the flashing
cursor will move onto the next line,

If you don't get this message, go back to EDIT to repair your source. The information
you need is described in chapter 11, 'Creating source files using EDIT'.

Now, assuming there were no errors, your program will have been assembled into
a file with the same name as your source file, but it will be in the directory X.
In the present case, the file will have the file specification X.TEST and you can
run the program by typing

* X . T E S T

then pressing RETURN. Do this now; the program will display the following
message:

M E M O R Y O K

3.3 Producing a listing of your program
If your program did not work, you would want a listing of it to help you debug
it. You would also want a listing even if it did work, to use as part of your program
documentation.

You can produce the listing using the PRINT utility. First of all, ensure that your
printer is connected according to the instructions in the BBC Microcomputer System
User Guide. Now press CTRL B to enable it and then type the following:

You will get the following prompt:

F i l e name:

and you should type TEST then press the RETURN key Next, you will be given
the prompt:

P a r a m e t e r s :

and you should reply by typing:

then pressing the RETURN key. Your program will now be printed. To disable the
printer you should press CTRL C.

Note that some ROMs will respond to a *PRINT command, and if you encounter
this problem it will be necessary to use */PRINT or *RUN PRINT to load the utility
from disc.

You can also produce an assembly listing of your program using MASM, but this
is only possible if the first pass was successful.

- m u will make rrnstakes anct the program WIII n o r w o r K 111s~ LIIIIC, U111C3h 11 13 d V L L v

s ~ m p l e nnpl %-hrr~ 111is I L I ~) ~ J C I I > LUU will nccd debugging tools bevond a mere
P R I N T u~ilit).

T1lr 6 5 0 2 Dcvclugnlcnt l'ackagc gives you some of these tools, but we nil11 nor
dcscribc them yet. Later, in chapter 14, 'Debugging yoilr prc~yrx~~~s', wc will
introduce some bugs Into the prognrrl 111x1 you d c v c 1 ~ ~ c d in this chaptcr. Wc will
then use rhr rlrt111ggirlg IOO~:, w Iclnovc thcm. Tor thc present, R-e will forget about
L ~ I C I ~ and look a bit dccpcr into the 6502 itself and other parts of the Elevelopmenr
Package.

4 The building bricks of
MASM
The first section of this chapter describes the mnemonics of MASM instructions
and their related address modes. The second section describes the format of MASM
source code. Finally, the MASM operators, which handle arithmetic and logical
operations (for example), are covered.

4.1 MASM mnemonics and address modes
Table 4.1 shows the 6502 instructions and their equivalent MASM mnemonics. These
are similar, but the MASM mnemonics have additional characters that indicate their
address mode.

Mnemonic ADC AND AS L BCC* BCS* BEQ' BIT
Immed. ADCIM ANDIM tBITIM
Abs ADC AND AS L BIT
ZeroPage ADCZ ANDZ ASLZ BITZ
Abs,X ADCAX ANDAX ASLAX ?BITAX
Abs,Y ADCAY ANDAY
z,x ADCZX ANDZX ASLZX TBITZX

,y
(Z m ADCIX ANDIX
(n y ADCIY ADCIY
Accum. ASLA
(Ind.) tADCI tAhlDI
Mnemonic BMI * BNE* BPL* +BRA* BRK* BVC BVS *

Mnemonic
Immed.
Abs.
ZeroPage
Abs,X

Standard 6502 Mnemonics
CLC * CLD* CLI* tCLR* C LV CMP C PX

CMPIM CPXIM
tCLR CMP C PX
tCLRZ CMPZ CPXZ
tCLRAX CMPAX

C M PAY
tCLRZX CMPZX

CMPIX
CMPIY

Accum.
(Ind.) t CMPI
Mnemonic CPY DEC DEX* DEY* EOR INC INX *
Immed. CPYIM EORIM
Abs.
ZeroPage
AbS,X
Abs,Y
z , x
z .Y

Accum

C PY DEC
CPYZ DECZ

DECAX

DECZX

EOR INC
EORZ INCZ
EORAX INCAX
EORAY
EORZX INCZX

EORIX
EORIY

tINCA
(Ind.) tEORI
Mnemonic INY JMP JSR LDA LDX LDY LSR
Immed. LDAIM LDXIM LDYIM
Abs. JMP JSR LDA LDX LDY LSR
ZeroPage LDAZ LDXZ LDYZ LSRZ
Abs,X LDAAX LDYAX LSRAX
Abs,Y LDAAY LDXAY
z,x LDAZX LDYZX LSRZX
2 y LDXZY
(Z X tJMIX LDAIX
(z),y LDAIY
Accum. LS RA
(Ind.) JMI tLDAI

'These instructions have the standard mnemonics in implied or relative addressing mode.

tMnemonics i n italics are available only with CMOS processors.

The arrow keys are used to move around the screen (though naturally you can't
move below the bottom line or above the top one). Armed with this information,
you should be able to type in the short example program listed below:

z e r o p * & 7 0
ORG & I 9 0 0

t e s t L D A I M 0
STAZ z e r o p
L D A I M f i n / & 1 0 0 + 1
STAZ z e r o p + l
L D Y I M 0

L o o p L D A I Y z e r o p
P H A
L D A I M &AA
S T A I Y z e r o p
C M P I Y z e r o p
BNE e r r o r
L D A I M & 5 5
S T A I Y z e r o p
C M P I Y z e r o p
BNE e r r o r
PLA
S T A I Y z e r o p
I N Y
BNE l o o p
I N C Z z e r o p + l
LDAZ z e r o p + l
CMPIM & 8 0
BN E L o o p
BRK
- - 1
- - "MEMORY OK"
- - 0

e r r o r BRK
- - 2
- - "MEMORY F A U L T "
- - 0

f i n
END

Note that a carriage return is necessary at the end of the source code (after the
END directive) otherwise a ' L i n e t o o 1 o n g ' error will be generated.

When you are happy that the text on the screen is as shown above you should
save the file on disc. To do this, press the function key marked 'f3'. This will produce
a prompt to which you should reply with the name of the file in which the text
must be saved. Let's use the name 'TEST' for this example. Press RETURN after
the filename; the text will be saved. Note that the disc supplied with the pack has
a write-protect label on it to prevent accidental erasure of any files. A separate disc
should be used for your own programs.

Note that it does not matter what case the labels and opcodes are in, but the code
is easier to read with them as shown. The exact number of spaces between items
is also not critical, so long as there is at least one.

3.2 Assembling the program and running it
Now that you have created a program source file you will want to assemble it. You
can do this by issuing an operating system command to call the assembler. When
in EDIT, press the function key 'fl'. This will prompt you with an asterisk, implying
that you should type an OS command. To call the assembler, type:

MASM

then press RETURN. It is possible to issue 'star' commands from all of the programs
in the package. For all of them apart from EDIT, you simply type the command
prefixed by an asterisk, just as you would in BASIC. You can use operating system
commands such as *CAT, 'COPY and *DELETE in command mode.

You will enter the command mode of the MASM utility and the following prompt
will be displayed:

A c t i o n :

To assemble your program type:

ASM T E S T

then press the RETURN key. MASM will print the following prompt:

M a c r o L i b r a r y :

You can ignore this for the present; its significance will be described later. Merely
press the RETURN key.

MASM will now do two passes through your program source, as described in chapter
2 , 'Developing programs with the Second Processor'; it will tell you when it finishes
each pass. When the assembly is complete, it will print the following message on
your display then return to command mode

A s s e m b l y f i n i s h e d , no e r r o r s
A c t i o n :

Mnemonic NOP* ORA PHA* PHP* tPHX' tPHY' PLA'
Immed. ORAIM
Abs.
ZeroPage
Abs,X
Abs,Y

Accum.

ORA
ORAZ
ORAAX
ORAAY
ORAZX

ORAIX
ORAIY

(Ind.) tORAI
Mnemonic PLP* TPLX* tPLY* RO L RO R RTI ' RTS '
Immed.
Abs. ROL ROR

ROLZ RORZ
ROLAX RORAX

ROLZX RORZX

ROLA RORA
(Ind.)
Mnemonic SBC SEC* SED' SEI' STA STX STY
Immed. SBCIM
Abs. SBC STA STX STY
ZeroPage SBCZ STAX STXZ STYZ
Abs,X SBCAX STAAX
Abs,Y SBCAY STAAY
z , x SBCZX STAZX STYZX
z ,y STXZY
(Z X SBCIX STAIX
(z),Y SBCIY STAIY
Accum.
(Ind.) tSBCI tSTAI
Mnemonic tSTZ TAX ' TAY* tTRB tTSB TSX * TXA*
Immed.
Abs. tSTZ
ZeroPage tSTZZ
Abs,X tSTZAX
Abs,Y
z,x tSTZZX
z ,Y
(Z A
(Z),Y
Accum.

tTRB tTSB
tTRBZ tTSBZ

Mnemonic TXS * TYA*
Standard 6502 Mnemonics

'These instructions have the standard mnemonics in implied or relative addressing mode.

tMnernonics in italics are available only with CMOS processors.

Table 4.1 M A S M mnemonics

The rest of this section briefly describes the address modes that you can use with
the BBC Microcomputer. In this description, examples of the appropriate MASM
mnemonics are given and the equivalent 6502 instruction is given alongside it in
brackets, for example: RORA (ROR).

4.1.1 Implied addressing

In this address mode, the address is implicitly defined by the operation code of
the instruction, for example, INX, INY, CLC and SEC. All implied address
instructions consist of one byte, and are the same as in the BBC BASIC assembler.

4.1.2 Accumulator addressing

Instructions in this address mode consist of one byte and involve operations upon
the accumulator. Examples of these instructions are ROLA (ROL) and RORA (ROR).
The mnemonics are the same in MASM and in the BBC BASIC assembler.

4.1.3 Immediate addressing

In this type of addressing, the information to be accessed is held in the second
byte of the instruction. Examples of instructions that are used in this mode are
SBCIM (SBC) and ADCIM (ADC).

4.1.4 Absolute addressing

In this address mode the second and third bytes of the instruction point to the
argument address: the second byte points to the low order byte of the address
and the third byte points to the high order byte. You can access the entire 6 4 K
bytes of addressable memory in this mode.

Note that absolute addressing is automatically truncated to zero page addressing
if the argument is in zero page.

STA, STX and STY are examples of mnemonics for absolute addressing; they are
the same in MASM and the BBC BASIC assembler.

4.1.5 Zero page addressing

This address mode gives a shorter execution time than absolute addressing and
uses only two bytes. It accesses the first page of memory. Zero page addressing
instructions include STAZ (STA) and STXZ (STX). Note, however, that MASM
automatically truncates absolute addressing to zero page addressing if the address
given is in zero page.

4.1.6 Absolute indexed addressing

This is used with the X and Y index registers. The two forms are also called kbsolute,
X', kbsolute, Y' and are shown as Xbs, X' and Xbs, Y' in Table 4.1. The instructions
used have three bytes and the target address is formed by adding the contents of
either X or Y and the address in the second and third bytes.

You can use this type of addressing to access tables by putting the base address
as the second and third byte of the instruction then using the X or Y register as
a displacement pointer.

Examples of absolute indexed addressing are shown below on the left in MASM
code. Their equivalents in BBC BASIC assembler are shown on the right.

LDAAX t a b s t
STAAY t a b s t

LDA t a b s t , X
STA t a b s t , Y

Note that code such as LDAAX &70 is truncated by MASM to LDAZX &70. This
means that it is not possible to assemble code such as LDAAX &70 without resorting
to the = directive (see section 5.2). This problem will not normally be encountered,
except in programs such as:

l o o p LDAAX & I 0 0
STAAX &FF
DEX
B N E l o o p

which will not do what is expected if assembled in MASM

4.1.7 Zero page indexed addressing

This is similar to absolute indexed addressing but the target addresses are in page
zero. The instructions themselves are two bytes long and the last byte is the base
address of the area to be accessed. The contents of this byte are added to the
contents of the X or Y register to give the target address.

The two forms of this address mode are also called 'Zero Page, X' and 'Zero Page,
Y: and are shown as 'Z,X' and 'Z,Y' in Table 4.1. Examples of MASM code using
this mode are given below on the left. Their equivalent in BBC BASIC assembler
is shown alongside them.

t a b s t * & 7 5 t a b s t = & 7 5

......
LDAZX t a b s t
STAZX t a b s t
ST X Z Y t a b s t

.
LDA t a b s t , X

STA t a b s t ,) :
S T X t a b s t , Y

4.1.8 Relative addressing

This can only be used with branch instructions and these are two bytes long. The
second byte is the displacement of the target address from the instruction after
the branch instruction: negative values are backwards jumps, positive values are
forward jumps. The maximum jump is 128 bytes backwards or 127 bytes forwards.

Relative addressing instructions have the same mnemonics in both MASM and BBC
BASIC assembler.

4.1.9 Zero page indexed indirect addressing

This is also called 'Indirect, X addressing' and is shown as '(Z,X)' in Table 4.1. Here,
the target address is held in a location in page zero and accessed 'indirectly' through
this location.

The instructions used have two bytes and their second byte is added to the contents
of the X index register to give an address in page zero. This address contains the
low order byte of the target address and the next location in page zero contains
the high order byte of the target address.

The following are examples of the instructions used in this mode: ADCIX (ADC),
CMPIX (CMP) and LDAIX (LDA).

4.1.10 Absolute indexed indirect addressing

This is a special mode that is only available on CMOS 6502s and for just one
instruction: the jump instruction. It is similar to the address mode described in
the last section, zero page indexed indirect, but the operand is two bytes long
(absolute) rather than one (zero page). Thus, the action of the jump instruction
using this mode is to add the value of X to the operand and jump to the location
stored in the sum of these two. The mnemonic for the instruction is 'JMIX'.

4.1 .ll Indirect indexed addressing

This address mode is also called 'Indirect, Y' and is shown under the heading '(Z),Y'
in Table 4.1. Its instructions are two bytes long and include ADCIY (ADC) an example
of which is shown in the diagram below. The second byte of the instruction points
to a location in page zero and the contents of this location are added to the contents
of the Y register to give the low order byte of the target address. To get the high
order byte of this address the carry from the addition is added to the contents
of the next location in page zero.

Instruction

4.1.12 Zero page indirect addressing

In this address mode, which only exists in CMOS CPUs, the instructions are two
bytes long. The second byte points to a location in page zero that contains the
low order byte of the target address. The next byte in page zero contains the high
order byte. An exam le of the use this d
Instruction

4.1.13 Absolute indirect addressing

The instruction in this address mode JMI (JMP) is three bytes long. The second
byte consists of the low order byte of an address and the third byte the high order
byte of the address.

The contents of this new address contain the low order byte of the target address
and the next byte contains the high order byte. The target address is loaded into
the program counter. =
Instruction /B[3
A 'Bad JMI' error is caused by an instruction of the form JMI &XXFF when MASM
is in CPUO mode which will crash when executed on a standard NMOS.

4.2 The format of MASM source code
MASM source code takes the following general form:

(unless the line contains a directive as described in chapter 5) .

Where things appear between < and > in this book they should not be taken
literally; they indicate a 'class' of items. The line above, for example, means that
a line of MASM source code consists of four parts: a label, an opcode, an operand
and a comment. None of these is compulsory (except that if there is an operand
then there must be an opcode); for example, opcodes such as INX do not need
an operand. Also, comments are never needed by MASM, but they should be
included to help anyone who reads your program. Below are some examples of
MASM source lines:

b e 1 L L D A I M 7 ;Sound b e L l
J S R o s w r c h

; J u s t a comment o n t h i s L i n e !

The first example has all four of the possible components present. 'bell' is a label;
in this case, the label could be the destination for a

J S R b e l l

instruction, and so stands for an address within the program. Next comes the
opcode; in this case, a 6502 instruction that means 'load the accumulator immediate:
You may be more familiar with the

form of this instruction. MASM's way of specifying address modes has already been
outlined.

The operand on the first line is '7: which happens to be the ASCII bell control
character. The comment (which must be preceded by ';' to warn MASM) is the last
item on the line. MASM completely ignores this part; it is present purely to help
anyone who is trying to understand the program.

The second example above has neither a label nor a comment (labels are needed
only if a reference is made to the line elsewhere in the program). The opcode in
this example is 'JSR' (jump to subroutine) and the operand is 'oswrch: 'oswrch'
is another example of a label; this time, the label refers not to a location within
the program, but to an address elsewhere (in the Machine Operating System ROM,
to be precise). It would have been equally valid to use '&FFEE' here, as this is the
numeric address of the oswrch routine. However, labels (or symbols) make a
program more readable and should be used whenever possible. The mechanism
for defining symbols is described later, in chapter 5, 'The MASM directives'.

The third line in the example above is empty; blank lines are accepted by MASM
and are used to separate routines in the listing. Again, this is purely to improve
the appearance of the listing rather than something that MASM demands.

The fourth line in the example shows how a comment can occupy an entire line
of the source file.

Labels can consist of letters and numbers, but must start with a letter. They can
be up to six characters long.

Note that if a line has no label, any opcode present must start after the first column
(that is, there must be a space before the opcode appears).

4.2.1 Using expressions in operands

MASM allows you to use a general expression in operands, where a number is
required, just as in high-level languages like BASIC. These expressions consist of
the normal features of an operand (symbols, numeric constants and string constants)
combined with operators (described in section 4.3). Some examples of these
expressions are given below.

L D A I M & F O : A N D : & l F
A D C I M & F O : O R : & O F
L D A I M b y t e s / s i ze

4 .2 .2 Symbols

Symbols are strings of alphanumeric characters starting with a letter and having
up to five further characters. Note that the letters may be upper or lower case.

We have already come across one type of symbol: the address label. Symbols are
identifiers which stand for constant values throughout the program. Thus, the label
'loop' in the memory check program of section 3.1 always has the value of the
address at which it appears in the program. Also, wherever 'loop' is used in an
operand, that address will be substituted.

Symbols can also be defined explicitly using the ' * ' directive (described in chapter
5, 'The MASM directives'). This is different from the ' * ' operator used in expressions,
and it stands for 'define symbol'. Its effect is similar to the assignment operator
' = : The example below defines two symbols:

oswrch * & F F E E

Limit * &I 00

The first symbol is used as an address (in this case, the address of the operating
system's character output routine) and it might be used in a line such as:

Loop J S R oswrch

The second symbol defines some value which might appear many times in a
program and deserves a name for the sake of readability, as in:

L D A s t a r t + l i m i t

Notice that when a symbol is being defined with '*: the identifier must appear
in the label field of the line, that is, it must start at the first column of the line.
Because of this rule, symbols are often referred to as 'labels' whether they stand
for an address in the program or not.

There are two special symbols which will be defined in the next chapter, but are
mentioned here for completeness: these are the program counter and the variable
counter. They define the current points in the program and the variable space.

4.2.3 Numeric constants

Numbers that appear in MASM source code can be in decimal or hexadecimal. A
typical decimal number is '32768: and '&loo' is a hexadecimal number (hex numbers
are preceded by the character I&'). Numeric constants are limited to two bytes
precision (&0000 to &FFFF in hex).

4.2.4 String constants

These are enclosed in double quotation marks (I 1) , for example the string:

- - "Memory O K "

in the memory check program of section 3.1. If the quotation mark itself is required,
you need to use two sets of quotation marks; for example, to obtain the string
consisting of just the character '": you should use String constants can be
used in place of a string of single bytes or as a number. An example of a string
of single bytes is given above. The general form of this use is:

The part in brackets can occur any number of times, as in the following:

mesg - - 6 5 , 6 6 , 6 7

This would insert the codes for the characters A', 'B' and 'C' into your program.
A more readable alternative would be:

mesg - - " A B C "

Another use for string constants is shown below. Here, two symbols are defined
by giving them 'string' values.

p r o m p t * 1 1 > 1 1

e n d s y m l lal l

.
L D A I M p r o m p t

J S R o s w r c h

..........
J S R o s r d c h

C M P I M e n d s y m
B E Q f i n

What actually happens is that the symbols have the ASCII values of the characters
assigned to them. Using symbols in this way would enable the prompt or end
symbol to be changed merely by altering the two initial ' * ' lines.

4.3 MASM operators
MASM provides an extensive set of operators for use in expressions. The power
of these operators rivals some high-level languages and they are described in detail
below.

4.3.1 Arithmetic operators

These operators include:
+ Add

Subtract
* Multiply

I Divide
: M O D : Remainder after division

Examples of the use of arithmetic operators are given below:

L D A s t a r t + l i m i t

L D A I M f i n / & 1 0 0 + 1

You may recall the last example; it was used in the memory check program to
calculate the start address of the page above the program.

An example of the use of :MOD: is:

L D X I M o f f s e t : M O D : 2 5 6

which would load the low byte of 'offset' into the X register.

4.3.2 Logical operators

These include the following:

:OR: Inclusive OR function
:EOR: Exclusive OR function
:AND : Logical AND function

Some examples will help to explain their effect:

Result

L D A I M & F O : A N D : & I F L D A I M & I 0
L D X I M & I 2 : E O R : & O F L D X I M & I D
A D C I M & F O : O R : & O F A D C I M & F F

Of course, actual examples would include items other than constants, otherwise
you might as well do the operations in your head.

4.3.3 Rotation and shift operators

These operators take a bit pattern and either shift or rotate it a number of positions
to the left or the right. You can imagine them as two basic operations:

: S H x y : f o r s h i f t
: R O x y : f o r r o t a t e

The suffix x can be either L or R for left or right, respectively. y is 1 for operation
on one byte and is omitted for operation on two bytes. Some examples might clarify
this:

Result

4.3.4 String operators

These operators join (concatenate) two strings or strip out part of one string. They
are as follows:

:CC: concatenates two strings as follows:

I1ABCU : C C : 1 1 1 2 3 1 1 yieldsthestring " A B C 1 2 3 "

:LEFT: takes a string on the left and a numeric expression on the right to give the
left-most substring. For example,

I1ABC1 2311 : L E F T : 3 yields "ABCU

:RIGHT: takes a string on the left and a numeric expression on the right to give
the right-most substring. For example,

I t A B C D 1 2 3 " : R I G H T : 4 y i e l d s " D 1 2 3 "

Again, it would be more natural to use expressions rather than constant values for
operands.

4.3.5 Arithmetic unary operators

These act on a single operand. They include:

+ No effect
- Negate the operand

:LSB: Take the least-significant byte of the operand
:MSB: Take the most-significant byte of the operand

! Set the most-significant bit of the operand's lesser byte
1 Swap bytes of operand

+ has no net effect on an expression, whereas - negates it. All the unary operators
have the highest precedence, so brackets may be needed:

- (a d d l + s i z e) yields - a d d l - s i z e
- a d d 1 + s i z e yields - a d d l + s i z e

:LSB: and :MSB: yield, respectively, the least significant and most significant bytes
of their operand. For example,

: L S B : & I 2 3 4 y i e l d s & 3 4
:MSB: & I 2 3 4 y i e l d s & I 2

Notice that :LSB: and :MSB: are equivalent to the following expressions:

In practice, of course, you would use expressions for :LSB: and :MSB: to operate
upon, rather than constants. For example:

LDXIM :LSB: c m d l i n
LDYIM :MSB: c m d l i n
JSR o s c l i

! takes the least significant byte of the operand and sets its most significant bit.
The most significant byte is not affected by the operation. For example,

1 &O1 yields & 8 1
! & 0 1 0 1 yields & 0 1 8 1

Again, you would use expressions in the operand, rather than constants, otherwise
you might as well do the calculations yourself.

1 swaps the order of the bytes attached to it. For example,

/ & I 2 3 4 yields & 3 4 1 2
/ & 3 2 yields & 3 2 0 0

4.3.6 The :NOT: unary operator

The :NOT: operator takes a two byte operand and inverts the state of each bit. For
example,

:NOT: &AA yields & F F 5 5
:NOT: &FFEE yields & I 1

4.3.7 The unary string operators

The last three operators we have to look at are :LEN:, :STR: and :CHR:.

:LEN: gives the number of characters in its string operand. For example,

: LEN: IIABC1 2 3 " yields 6
:LEN: (" 1 2 " : C C : 113211) yields 4

:STR: takes a two byte numeric operand and converts it into a string containing
the hexadecimal equivalent of the operand. For example,

:STR: 1 0 yields " 0 0 0 A W
:STR: & F yields " 0 0 0 F"
:STR: & I 2 3 4 yields " 1 2 3 4 "

When it is used on logical operators, :STR: returns the two strings "T" and "FH,
corresponding to TRUE and FALSE. For example,

:STR: (1 2 > 1 3) yields " F M
:STR: (1 2 < 1 3) yields " T "

:CHR: takes an arithmetic value and turns it into a string without changing its value.
For example,

: C H R : 8 4 1 yields " A v

4.4 Operating system commands
You can include operating system commands in your source files. These must be
put in the label field, for example:

; S w i t c h t o s e r i a l p r i n t e r f o r L i s t i n g

*FX5,2

It should be noted that it is not recommended that 'SPOOL be used to save
assembly listings to disc.

5 The MASM directives
At some stage you might want to tell the assembler to reserve some variable space,
end an assembly or perform some other action. You would do this through the
use of 'directives' in your source file and these are described below.

5.1 Declaring symbols .(*)
Symbols are declared using the * directive. This has the following format:

The label should obey the rules for symbols, and the expression should yield a
numeric result in the range &0000 to &FFFF (in decimal, this can be taken to be
0 to 65535 for unsigned numbers, or -32768 to 32767 for signed numbers). Some
examples of this directive are given below:

o s w r c h * & F F E E
o s b y t e * & F F F 4
t a b l e 1 * t a b l e 2 + & 1 0
t a b l e 2 * & 7 0
d e 1 * & 7 F
e o l n * I t I II

Notice the different uses to which the symbols, or labels, will be put: the first two
are subroutine addresses which should be familiar to users of the BBC
Microcomputer.

Next, there are two addresses of tables; these could be fixed data areas that the
program should know about. The definition of table 1 uses table2 in its operand
expression. There is nothing wrong with this: it is known as a forward reference,
and we have come across these before in chapter 2, 'Developing programs with
the Second Processor'. Forward references will be 'resolved' during the first pass
of the assembler so that, at the start of the second pass, all label values should
be known. A consequence of this particular forward reference is that tablel will
be assumed to be a two-byte (non-page zero) address, so an instruction like:

LDA t a b l e l

will use absolute addressing rather than zero page addressing. However,

LDA t a b l e 2

will use zero page addressing, since table 2 is known to be less than &I00 during
the assembler's first pass. The only real significance of all this is that the program
will be slightly longer in its assembled form than if there were no forward references
at all.

Note, however, that 'nested' forward references cannot be resolved by MASM, for
example:

c o d e 1 ; l a b e l p o s i t i o n d e t e r m i n e d c o d e a s s e m b l y

which will give an 'Undefined symbol' error on pass2 through the first line.

The last two examples of the * directive define character constants. They give names
to two frequently-occurring values in the program, and can be used in circumstances
such as:

CMPIM e o l n ;End o f l i n e r e a c h e d ?
BEQ e n d l n
CMPIM d e l ; D e l e t e c h a r a c t e r ?

5.2 Defining a byte of data (=)

You will sometimes need to include some data bytes inside a program. To do this,
you would use the = directive. This has the format:

where the label is optional.

One place where you might use this directive is when the 6502 BRK command
is being used to issue an error message (as is the convention with the BBC
Microcomputer). The BRK instruction is followed by an error string and this string
is terminated by a zero byte:

e r r o r 1 BRK ;An e r r o r
- - 2 5 4 ; E r r o r n u m b e r
- - I1Too many p a r a m e t e r s u ; E r r o r message
- - 0 ; E r r o r t e r m i n a t o r

e r r o r 2 BRK ;And s o o n

As discussed above, the string will be converted into a sequence of bytes. In fact,
all of the data bytes above could be replaced be the one line:

- - 254 , "Too many p a r a m e t e r s l ' , O

Another use for the ' = ' directive is in setting up a table for use by the program.
The one below is a table of powers of two, located at 'powers':

p o w e r s = 1 , 2 , 4 , 8 , 1 6 , 3 2 , 6 4 , 1 2 8

...........
L D X i n d e x
O R A A X p o w e r s

The fragment of code shows how the table might be used. Register X is loaded
from location 'index: which should contain a value between zero and seven, and
this is used to index the table of powers during the OR-ing operation.

5.3 Defining a byte pair (&)

Two bytes can be inserted into the program at once using the & directive. This
could be used, for example, when setting up a table of addresses in memory, such as:

j m p t a b & r e s e t 1 ; S e t u p jump t a b l e
& r e s e t 2
& p l o t
8 d r a w
& e r a s e

The value of the label resetl will be placed at address jmptab in standard low-byte,
high-byte order. The next two bytes will contain the value of reset2, and so on.
Each time an '&' is encountered, the program counter will be incremented by two.

The program which manipulates the jump table shown above might contain the
following instructions:

e x e c L D A
A S L A
T A X
L D A A X
S T A

L D A A X
S T A
J M I

a c t i o n ; G e t t h e a c t i o n c o d e .
; T i m e s t w o f o r i n d e x i n g
; w i t h t h e X r e g i s t e r .

j m p t a b ; G e t jump a d d r e s s Low b y t e .
j mpvec ; S a v e i n jump v e c t o r .
j m p t a b + l ;Same w i t h h i g h b y t e .
j m p v e c + l
j mpvec ;Do t h e i n d i r e c t jump.

Incidentally, there is a more efficient way of handling jump tables. You should break
the above table into two separate halves, one containing the low bytes and the other
the high bytes; each address should be one less than the location to be jumped
to. To use the table, you load the high byte and push it onto the stack, load the
low byte and push it onto the stack then do the branch using an RTS instruction.
This will save you two instructions.

If a single character is placed into two bytes using
the & directive, the second byte will be zero.

Thus,

will result in the four bytes 65,0,66 and 0 being inserted into the object code.

5.4 Reserving variable space (^, @ and #)

The variable storage area is separate from the object program area. It has its own
origin, which is defined using the A directive, and its own location counter, @.
This directive has the format:

where <expression> is fully defined during the first pass of the assembler. If there
is no A directive in a program, @ will be set to &0000. There can be as many A

directives as you wish in a program, so data areas can be separated into logical
places in the memory.

To reserve space in the variable storage area, you use the # directive. Its format is:

Whenever this directive is encountered, the variable counter @ is incremented
by the appropriate amount and <label> is given the old value of @. For example,
after the sequence:

A & 2 0 0 0

m e s g l # 81 0 0
mesg2 # 2 4

the variable counter '@' would contain &2118 because 280 (&118) bytes were
reserved by the ' # ' directives, mesgl would be 8~2000 and mesg2 would be &2100.

An example of the use of the ' # ' directive might be when space is needed for the
input buffer in an interactive program. For example:

A 8 2 1 0 0 ; I n i t i a L i s e v a r i a b l e c o u n t e r

o s w o r d * &FFF1
b u f l e n * 4 0 ; b u f f e r l e n g t h
b u f f e r # b u f l e n ; r e s e r v e 40 b y t e s
p a r b l k # 5 ; 5 b y t e s f o r p a r a m e t e r b l o c k

i n p u t LDAIM : L S B : b u f f e r

STA p a r b l k
LDAIM : M S B : b u f f a r
STA p a r b l k + l
LDAIM b u f l e n
STA p a r b l k + 2
LDAIM I' I'

STA p a r b l k + 3
LDAIM &FF
STA p a r b l k + 4
LDXIM : L S B : p a r b l k
LDYIM : M S B : p a r b l k
LDAIM 0
JSR o s w o r d

; S e t u p p a r a m e t e r
; b l o c k b u f f e r
; a d d r e s s

;Max. L i n e L e n g t h

; M i n . A S C I I v a l u e

;Max. A S C I I v a l u e

; X Y p o i n t t o p a r b l k

; I n p u t i s o s w o r d 0

Notice that the expression after the # may not contain forward references,
otherwise a phasing error will result. For example, the following code will generate
an error:

An interesting alternative, which may be used if the parameter block will never
change throughout a program run, is to use ' = ' and 2%' to set it up:

p a r b l k & b u f f e r - - b u f Len
- - 'I " ,&FF

If this method is used, only the statements from the 'LDXIM' onwards are necessary
to perform the input.

You can, if you wish, preset store to zero using the % directive. This has the format:

% < e x p r e s s i o n >

This fills store with zeroes from the address in the program counter.

The areas of memory that are available for use in both processors, when defining
memory, are described in the table in the next section.

5.5 Defining the start of code (ORG and .)
The directive ORG is used to define the address at which assembled code will
originate. This has the format:

O R G < e x p r e s s i o n >

The expression must be fully defined at this point, so any symbols that it contains
should be introduced before the ORG directive. Examples of the directive are given
below:

O R G & I 9 0 0

s t a r t * &I 2 0 0
.
.
.
ORG s t a r t

; F o r d i s c

;Change a s a p p r o p r i a t e

Associated with the ORG directive is the program counter (.). This marks the
address of the current point in the program (during assembly) and is initialised
by the ORG directive. Thus, after the statement

O R G & I 9 0 0

using ' . ' in an expression will yield the number 8~1900. Whenever an instruction
is assembled, '. ' is incremented so that it holds the address of the first byte in
the following instruction. For example, if the line

JSR i n i t

were to appear next, the program counter ' . ' would become &I903 since a JSR
instruction takes up three bytes.

There can be only one ORG per source file, so if the object code is to lie in several
discrete 'lumps: several files will need to be assembled separately with different
ORG lines. If an ORG is included, it must appear before any instructions which
increment the program counter (all 6502 instructions, & etc). Omitting ORG sets
' . ' to &0000 initially.

You can put machine code in the following places in your BBC Microcomputer
system:

Processor Space available

BBC Model B Between OS High Water Mark and HIMEM

Between locations &900 and &AFF inclusive, if you are
not using the RS423 channel or sequential cassette I 1 0

Between locations &COO and &CFF inclusive, if you do
not want to use programmed characters

6502 Second Between locations &400 and &F7FF inclusive
Processor

If the machine code is to be called from, say, BASIC, it should not corrupt the
language workspace unless control will not be passed back.

5.6 Linking source files (LNK and <)

The problem of having only one ORG directive per file can be overcome by using
the LNK directive. Its format is as follows:

L N K < f i l e name>

When this directive is encountered, MASM gives up assembling the current file
and restarts from the beginning of the new one. As the latter can contain its own
ORG directive, your object code can be split into as many separate parts as you
want. All of the source file after a LNK directive is ignored, but the symbols in
one file are accessible from another, so the following will work:

; T h i s i s i n f i l e 1
s y m b l * symb2*2

O R G & I 9 0 0

...........
L N K f i l e 2

; A n y t h i n g a f t e r t h i s i n f i L e l w i l l b e i g n o r e d

...........
E N D

What happens here is that 'symbl' is defined by referring to a symbol in file2. This
forward reference will be resolved when file2 is linked in using the LNK directive,
so symbl would have the value 8~2400. Notice that there is no 'ORG' statement
in file2; in this case, its instructions will be assembled immediately after the last
one in filel, as if the files had actually been concatenated. When the 'END' directive
is encountered in file2, the assembly process will either start pass2 (if pass1 has
been completed without error) or it will be terminated; the assembler will not return
to the place just after the 'LNK' in filel and continue from there.

The file specified after a LNK is a string, of at most ten characters.

You can specify the source drive using the < directive. This has the format:

where <expression> is the source file drive code. Note that this directive applies
only when using the disc filing system; it is ignored by other systems.

5.7 Ending an assembly (END)
When MASM encounters the directive END in the operand field of a line, it either
starts the second pass (if it has completed the first pass without error) or it terminates
the assembly process. This directive is similar to the LNK directive in that any source
lines following it will be ignored by the assembler.

During the assembly of a file or sequence of files, there must be one END directive
somewhere, otherwise a 'No END' error will occur.

An END directive is not needed in a file which links with another one.

5.8 Defining page titles (TTL)

One of the MASM commands described in chapter 12, 'Using MASM to assemble
your programs', enables you to produce an assembler listing of your program
(assuming no errors were encountered). This listing is in a standard format, and
each page has a header or title. If you wish, you can alter the latter by using the
TTL directive. For example, after the line:

T T L S O R T P A C K A G E I N P U T M O D U L E

has been assembled, all subsequent page headings will contain the string

SORT PACKAGE I N P U T MODULE

There can be as many TTL directives in a program as you wish. However, if they
are too close together, not all of them will be used unless you explicitly start a
new page every time TTL is used (see the following section).

5.9 Setting print options (OPT)
You can control the assemble-time output using the OPT directive. This has the
following format:

O P T < e x p r e s s i o n >

where <expression> is treated as a four bit number. Bits 0 to 3 of this number have
the following meaning:

Bit Meaning when set

0 R r n printing ON
1 Tbrn printing OFF
2 Start a new page in the listing
3 Reset the line count in the listing

The first two options allow selective listing, provided the PRINT ON command
has been issued (see chapter 12, 'Using MASM to assemble your programs').

5.10 Using the special instruction set (CPU)

MASM will recognise the extra instructions which are provided by the CMOS version
of the 6502 processor; these include PHX and CLR. If you want to use these in
your programs you must first use the CPU directive. This has the format:

CPU 0 (the default) will restrict MASM's knowledge to the standard 6502
instructions; CPU 1 will allow the extra CMOS instructions to be assembled without
errors being generated. Any CPU directive in your program must appear before
the first code-generating op-code is met. Thus, it is not possible to (or even very
likely that you would want to) change the instruction set half way through the
source code.

5.11 Changing object file drives (>)

You can assemble object files to a different drive using the > directive. This has
the format:

where <expression> is the object file drive code.

6 Program example
Now that you understand the basic components of the MASM assembly language
it is a good time to consolidate them in the form of a complete program example.
Clearly, it is not possible to include all of the features easily into one program,
but the following example shows many of them in use.

The program takes a file name that you input and produces a histogram which
shows the distribution of character codes in the file. The screen output is produced
in MODE 4.

I A F i Le C h a r a c t e r D i s t r i b u t i o n P r o g r a m

I

I F o r BBC M i c r o c o m p u t e r M o d e L A o r B

I

TTL F i l e C h a r a c t e r i s t i c s

I D e f i n e OS A d d r e s s e s e t c .

o s w r c h
o s a s c i
o s w o r d
o s f i n d
o s b g e t
z e r o p
b u f l e n
t a b l e n
c o d e
m i n a s c
m a x a s c
n o p c d
mode
c l s c d
p l o t c d
m o v e c d
d r a w c d

b u f f e r

t a b l e

&FFEE
&FFE3
& F F F I
&FFCE
&FFD7
& 7 0 ; U s e r z e r o p a g e L o c a t i o n s
1 0 ; I n p u t b u f f e r s i z e
& I 0 0 ; T a b l e o f c o u n t s
& I BOO ; E x e c u t i o n a d d r e s s
& 2 0 ; F i r s t p r i n t i n g c h a r
& 7 F ; L a s t L e g a l A S C I I c o d e
& E A ;NOP i n s t r u c t i o n ' s c o d e
2 2 ; V D U MODE b y t e
1 2 ;CLS
2 5 ;VDU PLOT b y t e
4 ; A b s o l u t e move
1 ; R e l a t i v e d r a w
c o d e - t a b l e n - b u f l e n
b u f Len ;Space f o r i n p u t b u f f e r
t a b l e n ;One b y t e p e r A S C I I c o d e

ORG c o d e
JMP c o u n t ; S t a r t v e c t o r

p a r b l k & b u f f e r ; S e t u p o s w o r d b u f f e r
- - b u f l e n
- - m i n a s c
- - maxasc

c o u n t J S R

JSR
JSR

c o u n t l JSR
B C S

TAX
INCAX

BNE

i n i t ; Z e r o t h e t a b l e

i n p u t ;Get t h e f i l e name

o p e n ; T r y t o f i n d i t

o s b g e t ;Read a b y t e
e o f ;We 've r e a c h e d t h e e n d

; I N C t h e e n t r y f o r c h a r .

t a b t e
c o u n t 1 ; C o u n t i s > & F F

e o f JSR c l o s e ; C l o s e t h e f i l e
JSR p l o t ; P l o t t h e r e s u l t s
RTS ;Go home

i n i t LDAIM 0 ; P u t z e r o s i n t h e t a b l e
TAX

i n i t l p STAAX t a b l e
DEX
BNE i n i t l p
RTS

i n p u t JSR p r i n t ; P r i n t p r o m p t
- - c L s c d , " F i Le name? "
NOP
LDAIM 0 ;Osword 0 i s INPUT
LDXIM :LSB: p a r b l k ; X Y p o i n t s t o p a r b l k
LDYIM :MSB: p a r b l k

JSR o s w o r d
RTS

p r i n t PLA ; T h i s p r i n t s t h e s t r i n g
STA z e r o p ; f o l l o w i n g t h e JSR p r i n t

P L A ; S t o r e p o i n t e r t o s t r i n g
STA z e r o p + l
LDYIM 0

p r i n t l INC
BNE
INC

p r i n t f LDAIY
CMPIM
BEQ
JSR
J MP

p r n r e t J M I

z e r o p ; N e x t a d d r e s s
p r i n t f
z e r o p + l
z e r o p ;Get a b y t e
n o p c d ; L a s t b y t e ?
p r n r e t ;Yes
o s a s c i
p r i n t 1 ; A l w a y s
z e r o p

o p e n LDAIM & 4 0 ; O s f i n d & 4 0 i s OPENIN
LDXIM :LSB: b u f f e r ; X Y p o i n t s t o f i l e name
LDYIM :MSB: b u f f e r
JSR o s f i n d
T A Y ;Ge t f i Le h a n d l e i n Y
BNE o p n r e t ; F i l e f o u n d

BRK ; O t h e r w i s e c a u s e e r r o r - - &86 ;DFS E r r o r number
- - " F i l e n o t f o u n d " ; S t a n d a r d message
- - 0 ;End o f e r r o r

o p n r e t RTS

c l o s e LDAIM 0 ; O s f i n d 0 = CLOSE#Y
JSR o s f i n d
RTS

p l o t LDAIM mode ;Do MODE 4
JSR o s w r c h
LDAIM 4
JSR o s w r c h

JSR p r i n t - - " D i s t r i b u t i o n o f A S C I I C 0 d e s ~ ~ , l 3
- - 113
N 0 P

LDXIM 0 ;Do e a c h e n t r y i n t a b l e

p l o t l p L D A I M p l o t c d
JSR o s w r c h

L D A I M m o v e c d
JSR o s w r c h

TXA
JSR Low
TXA
JSR h i g h
L D A I M 0
JSR o s w r c h
JSR o s w r c h

L D A I M p l o t c d
JSR o s w r c h
L D A I M d r a w c d
JSR o s w r c h
L D A I M 0
JSR o s w r c h

JSR o s w r c h
LDAAX t a b l e
JSR Low
LDAAX t a b l e
JSR h i g h

I N X
BNE p l o t l p
RTS

; x
; VDU A * 4

; N e x t b y t e

Low AS LA ; S e n d Low b y t e o f A * 4 t o
AS LA ; o s w r c h
JSR o s w r c h

RTS

h i g h ROLA ; S e n d h i b y t e o f A * 4 t o
ROLA ; o s w r c h

ROLA
A N D I M 3
JSR o s w r c h
RTS

END

7 Using macros in your
programs
Quite often, the same pattern of instructions occurs several times in a program.
In such a situation, it would be useful if you could type just one line, then sit back
and have it expanded for you. For example, look at the following error handling
code:

e r r 1 B R K - - & 8 3
- - "Too f e w a r g u m e n t s "
- - 0

This type of code might occur at several points in a large program. Wouldn't it
be handy if you could type something like:

e r r 1 E R R O R &83,11Too f e w a r g u m e n t s "

every time such a piece of code was needed, and have the assembler expand it
for you?

This type of facility is called a macro, and it gives MASM its name: MASM is a macro
assembler.

Before you use a line such as:

e r r 1 E R R O R & 8 3 , " T o o f e w a r g u m e n t s 1 '

in your program, the macro must be defined. Thus, the macro ERROR could be
defined as follows:

M A C R O
$ L a b e l E R R O R $ e r r n u m , $ e r r s t r
S l a b e l B R K - - $ e r r n u m

- - S e r r s t r
- - 0

M E N D

This is called the 'formal definition' of the macro, and the parameters Slabel,
terrnum and Serrstr are called its 'formal parameters'. When you use the macro,
you will supply parameters such as

e r r l
&83
I1Too few arguments"

and their values will be substituted in place of the formal parameters.

There is a tendency to think of a macro definition as being the same as a subroutine
to which the program can JSR. This is wrong! When a subroutine is called, a single
instruction

J S R Label

is assembled. However, when a macro is called, all the instructions in the macro's
body are assembled 'in line'. Thus, the liberal use of long macros can result in an
object file much larger than might be expected: this demands some caution on
your part.

You can probably appreciate now how the use of even a simple macro such as
ERROR can save much typing (and in the process reduce the number of typing
mistakes you might make).

Now that we have described the basic principles, we will look at macros in more
detail. Look at the line

e r r 1 E R R O R &83 , l lToo few arguments1I

The fields are similar to a normal line: first comes a label (optional, as usual), then
the opcode (the name of the macro in this case), then the operand. In fact, macros
can take several operands, or parameters; the one above has two.

Now look at the formal definition of this macro:

M A C R O
S l a b e l E R R O R Ser rnu rn ,Se r r s t r
$Label B R K - - Serrnurn

- - S e r r s t r
- - 0

M E N D

The first line is the directive MACRO. This warns MASM that a macro definition
follows. The second line is the 'header line': it tells MASM the name of the macro
being defined (in this case ' E R R O R ') , and the names of the parameters it takes. These
parameter names are standard identifiers, but have the prefix S. They correspond
positionally to the parameters which are used when the macro is called.

Notice that '%La be 1' appears twice in succession. This is normal in a macro
definition: the first occurrence gives a name to the label used when the macro
is called, and immediately below it the name is actually used (substituted) in the
assembler code.

7.1 Default values in macros
There are 'extras' which are useful to know when using macros. First, it is possible
to initialise the formal parameters to a default value which will be used if the actual
parameter is ever omitted. For example, look at the following macro:

M A C R O
SLabe 1 INPUT $ p r ~ r n p t = " ~ ~ ~ ~ ? ~ ~ ~ ~ "
%Label J S R p r i n t - - %prompt

N 0 P

.
M E N D

This assembles the instructions needed to perform the equivalent of a BASIC

INPUT "Prompt", A %

statement. The prompt could be a parameter to the macro, but if you wanted, a
default '?' might be used instead.

In the definition shown above, the parameter %prompt is given a default value of
by the = l I 1 l l I ? l I 1 l I I part. Note the lack of spaces; this is important. Note also

the escape quote sequence u u u u that is used to obtain the string "?" . The %prompt
parameter will be used, subsequently, in setting up a call to the standard print routine
which was used in chapter 6 , 'Program example'.

Now look at the following code which uses 'INPUT':

g e t s t r INPUT I1How many eggs?

.
INPUT I

The first call to INPUT provides an actual parameter, llHow many eggs? ", and
this will be used in the macro's body. The second call, however, has the parameter
I (vertical bar), and this will be taken to mean 'use the default, if there is one1.

7.2 Missing parameters
If the macro has more than one parameter, those that are missing must be indicated
by putting commas in the calling line. For example, you might define the macro
'MAC1' as follows:

MACRO
S l a b e l MAC1 $ P I , $ P Z , $ P 3

.
MEND

and then call it in the following ways:

In the first call, all three parameters are present. In the second, only $ P I is set
up (to l), and the third call only uses $P2. Any parameters which are missing will
be set to null, which effectively means that they disappear when the body of the
macro is assembled. Note that quotation marks should not be put round string
parameters when they are used in macro calling statements, otherwise a ' q p e
mismatch' error will be generated.

7.3 Parameter names
Since $ marks the start of a parameter name, it is vital that M A S M can distinguish
the actual character '$: Where confusion may arise, the 'escape sequence' $$ can
be used to denote a single $. Look at the following macro, for example:

MACRO
$ L a b e l P R I C E $ c o s t

- - " T h e p r i c e i s $ $ $ c o s t . "

MEND

Here, the first two ' S ' symbols are replaced by a single ' S ' currency symbol. The
last '$ ' marks the start of the parameter name '$cost', which will be substituted
as usual.

This example illustrates another property of macro parameters: they are substituted
wherever they occur in the macro's body The example below shows a macro which
produces instructions that will swap either the X or Y register with a specified
memory location:

MACRO
$ l a b e l SWAP $reg ,$mem
$ l a b e l PHA ; S a v e A

LDA Smem ; G e t tmem
S T S r e g Smem ; S a v e $ r e g i n t m e m
T A S r e g ; P u t Smem i n $ r e g
P LA ; R e s t o r e A
MEND

Some code which uses this macro is shown below:

s t a r t SWAP X ,&1000
SWAP Y , & I 0 0 1

Wherever $reg appears in the body of this macro, it is changed to X or Y. This
applies within string constants (otherwise the S example above wouldn't work
properly); it also applies within comments, if some substitution has occurred earlier
in the line.

If you need to use a macro parameter name immediately before some other
identifier, confusion could arise. Consider this macro definition, for example:

MACRO
$ L a b e l GETPUT $mode
% L a b e l %modeA ; L o a d o r S t o r e A

.
MEND

The idea here is that a call to GETPUT will have either 'LD' or 'ST' as a parameter
and, after substitution, the third line of the macro definition would have either
'LDA' or 'STA' as its operand. However, 'SmodeA' is a perfectly valid parameter name,
and MASM always tries to find the longest name possible. Thus, instead of
recognising the parameter '$mode' followed by the text 'Al, MASM will interpret
the third line as a single object, namely, the parameter '$mod&. As no such
parameter exists, an error will occur.

To avoid this difficulty, you can insert a point '.' after the parameter name, to
explicitly terminate it. In the last example, the third line should now be:

B l a b e l Sm0de.A ; L o a d o r S t o r e A

This time, MASM will see the end of the parameter and do a proper substitution.
The ' . ' will then disappear.

7.4 Nesting macro calls
Another property of macros is that calls to them can be nested: one macro's
definition can contain a reference to another macro. Suppose, for example, that
there is a macro called PLOT defined somewhere in a program. This macro could
be used by other macros as follows:

MACRO
$ L a b e l MOVE S x , $ y
$ L a b e l PLOT 4 , S x , S y

MEND

.
MACRO

S l a b e l DRAW $ x , S y
$ l a b e l PLOT 5 , $ x , $ y

MEND

.
MOVE 0 , O

The line 'MOVE 0 , O ' will lead indirectly to the call:

PLOT 4 , 0 , 0

and this will result in the generation of actual instructions. In some circumstances,
it might even call yet another macro.

It is perfectly correct to have macro definitions without parameters, for example:

MACRO
S l a b e l SAVER ; S a v e t h e r e g i s t e r s
$ L a b e l PHP

P H A
TYA
P H A
T X A
PHA
MEND

MACRO
$ L a b e l RESTOR ; R e s t o r e t h e r e g i s t e r s

P LA
TAX
P LA
T A Y

P H A
P LP
MEND

e n t r y SAVER
.
.

e n d RESTOR

7.5 Macro libraries
You can keep a number of macros in a file and have them included in your program
source by MASM itself. This macro library file can only contain macro definitions,
comments, a LNK directive or an END directive.

When MASM is run with the ASM command, it gives you the prompt:

M a c r o L i b r a r y :

and you can then specify the name of the file containing your macros.

If you want to include macros from a number of files you can link them together
using the LNK directive described in section 5.6. MASM will search the files until
a macro file with END is encountered.

8 Conditional assembly
The C and I directives enable a section of a source file to be assembled only if
a certain condition is true. Their use applies particularly to macro definitions,
although they can, in fact, be used anywhere in the source listing.

The C directive is known as 'IF' and the ' 1 ' directive as 'END IF'. Look at the
following code:

[< L o g i c a l e x p r e s s i o n >
< c o n d i t i o n a l i n s t r u c t i o n s t o b e a s s e m b l e d >

I
c r e s t o f i n s t r u c t i o n s >

If the <logical expression> yields a true result then the conditional instructions
will be assembled. Once the 1 is encountered, assembly continues as normal.

An example might make things clearer. The macro definition below provides a
selective version of SAVER that was described in the last chapter:

M A C R O

S l a b e l SAVE S p l ,Sp2,Sp3
S l a b e l

C I t $ p l l t < > " " ; i f $ p l c o n t a i n s r e g i s t e r
S T S p l TEMPSpl ; s t o r e i n c o r r . temp. s t o r e

I
C l1$p2"<>"I1 ; s i m i l a r l y f o r Sp2
STSp2 TEMPSp2

I
C l 8$p3 l1<>" " ; f i n a 1 1 y Sp3
STSp3 TEMPSp3
I
MEND

............
SAVE A , ,

SAVE X , A , Y

SAVE Y , A , ,

............
END

The action of the macro is simple. There are three conditional tests, each testing
one of the parameters. If any parameter contains the name of the A, X or Y registers
then the contents of that register are stored in the memory location with label TEMP
followed by the name of that register. For example, the contents of the Accumulator
are stored in TEMPA.

Note that the parameters may be in any order. For example, if the call to SAVE is:

S A V E A , X ,

then SP1 will have the value A, SP2 the value X and SP3 will have no value. Thus
the test:

C Ilgpl l l < > l l l l

will become:

when the parameters are substituted. This is obviously a true condition, so the
next line will be assembled as:

S T A T E M P A ; s t o r e i n c o r r . t e m p . s t o r e

The next test will cause:

S T X T E M P X

to be assembled, and the third test will become:

C 11 11 <> I l l 1

which is clearly false, so the next line will not be assembled,

When your source program is assembled, the code ignored by your conditional
assembly directives will be suppressed. If you want to list this code on assembly
you can do so using the MASM TERSE command (see section 12.1.10).

There is an enhancement to the IF directive in the shape of I , or ELSE. With this
new directive it is possible to make MASM take one of two paths that are dependent
upon the result of the logical expression. The enhanced form of the IF directive
becomes:

;Do t h e s e i f < L o g i c a l e x p r e s s i o n > i s t r u e
............
............
............

; O t h e r w i s e , d o t h e s e
............
............
............
1.

; C a r r y o n a s s e m b l i n g

This construct is related to the 'IF ... THEN ... ELSE .. .' structure of some high-
level languages. It is, of course, perfectly acceptable to have labels in the conditional
parts of a source file. They will be assigned a value if they lie in the part which
is actually assembled, otherwise they will be ignored.

The parts that are being conditionally assembled may themselves contain C , I and
I directives. In other words, conditionals may be nested. A skeletal example is given
below:

C e x p r l
............
............
C e x p r 2

; A s s e m b l e d i f e x p r l :LAND: e x p r 2

; A s s e m b l e d i f e x p r l :LAND: :LNOT: e x p r 2

............
I

; A s s e m b l e d i f e x p r l

; A s s e m b l e d i f :LNOT: e x p r l

8.1 Logical expressions
What constitutes a <logical expression> will now be described. You have already
come across a number of them, for example:

The ' = ' symbol above is a relational operator and logical expressions are formed
by using these. MASM provides a whole range of relational operators:

Operator Meaning

- - equal to
> greater than
< less than
> = greater than or equal to
< = less than or equal to
<> or I= not equal to

All of these take two operands which can be either string or arithmetic expressions.
For arithmetic expressions, the meanings of the relational operators are as might
be expected:

1 2 + 4 > 1 0 yields T R U E
4 2 <> 4 2 yields F A L S E

and so on. Of course, actual occurrences of these operators would involve non-
constant operands.

Using strings with relational expressions is a little different and great care should
be taken since the results of relational tests are not those that would be obtained
in, for example, BASIC. The two cases of <> and = are fairly straightforward:

I IA I I : C C : I I B C I I = " A B C " yields T R U E
I I A I I = 1 f B 8 t yields F A L S E

" X Y Z " <> " X Y " yields T R U E

So two strings are only counted as equal if they are exactly the same in all characters.
For > = and < = the string interpretations read:

sl > = s2 if s2 is a leading substring of sl
sl < = s2 if sl is a leading substring of s2

where sl and s2 are string expressions. sl is a leading substring of s2 if the first
(:LEN: sl) characters of s2 are the same as sl. In BASIC, this could be expressed
as follows:

I F I N S T R (s l $, s 2 $) = 1 THEN REM s 2 $ i s a L e a d i n g s u b s t r i n g o f s l $

Here are some examples of the use of these operators with strings:

I IAI I <= I IAI I yields TRUE
II II <= " A t 1 yields TRUE
I IAI I <= I IBI I yields FALSE
I IABCII >= I IABII yields TRUE

The > and < operators are the same, except that the case when the operands are
equal yields 'FALSE'. This is shown in the following BASIC example:

I F I N S T R (s l $, s 2 $) = 1 AND s l $ < > s 2 $ THEN REM s 2 $ < s l $

Here are some examples of these operators:

"AH < l1AH yields FALSE
"A" < llAB1l yields TRUE

< I1AH yields TRUE
l1BU > llA1t yields FALSE

Logical expressions formed by using the relational operators can be combined with
the Boolean operators :LOR:, :LEOR:, :LAND: and :LNOT:. These are the same as
the binary logical operators :OR:, etc., but with the prefix L, which indicates that
they are used with logical values rather than numbers. The actions of these operators
are as expected, that is,

L1 : LAND: L 2 is TRUE iff L1 AND L2 are TRUE
L1 : L O R : L 2 is TRUE if L1 OR L2 is TRUE
L1 : LEOR : L 2 is TRUE if either, but not both,

of L1 or L2 is TRUE
: LNOT : L 1 is TRUE iff L1 is FALSE

(iff being 'if and only if).

The order of precedence of these operators is such that brackets are rarely used
in conditional expressions; they are lower than the relational operators, which in
turn have lower precendence than the arithmetic operators, so a complex expression
such as:

a + b <= a d d 1 : L A N D : a d d 1 <> s t a r t

has the bracketed meaning of

((a + b) <= a d d l) :LAND: (a d d l <> s t a r t)

The :LNOT: operator has very high precedence, in common with the other unary
operators, such as -(unary minus) and :NOT:

8.2 Global and local variables
The only symbols discussed so far have had a fixed value which is defined at some
time during the first pass of MASM through the source file. The exception to this
rule is the case of macro parameters, which take on the values assigned to them
at a given call of the macro. It is possible, however, for you to define variable symbols
whose values can be updated throughout the assembly process. These come in
two varieties: local and global variables. Local variables are accessible only within
the macro definition to which they belong, whereas global variables have the whole
of the source file for their scope.

Before variables can be used they must be declared. This is done using one of the
following directives:

Directive Meaning

GBLA Define a Global Arithmetic Variable
GBLL Define a Global Logical Variable
GBLS Define a Global String Variable

LCLA Define a Local Arithmetic Variable
LCLL Define a Local Logical Variable
LCLS Define a Local String Variable

If these directives are classed as <directive>, then the general form of a variable
declaration is as follows:

where <variable name> obeys the same rules as macro parameters. The first three
directives shown above are used in the main part of the source file and the last
three are used within macro definitions. Some examples are shown below:

GBLA $ u s a g e ;A g l o b a l a r i t h m e t i c v a r i a b l e
GBLL t f l a g ;A g l o b a l L o g i c a l v a r i a b l e

M A C R O
F R E D

LCLS B s t r ;A L o c a l s t r i n g v a r i a b l e

............
M E N D

When a variable is defined, it is set to the default value for that type. More precisely,
arithmetic variables are set to zero, logical ones to FALSE and strings to null. To
give a variable a value, one of the SET directives must be used. There is one of
these for each type of variable and their format is as follows:

The SET directives are SETA, SETL and SETS for arithmetic, logical and string
variables respectively Examples of them are given below:

S c o u n t SETA $ c o u n t + l
S m o d e l b SETL memsze = &8000
S e r r m s g SETS "MACRO P a r a m e t e r s w r o n g "

Once it 'as been given a value, a variable can be used in the appropriate type of
expression, just like a normal symbol. The following example shows how the last
three variables could be used:

s p a c e # $ c o u n t + l
C Smode 1 b

; T h e s e w i l l b e a s s e m b l e d i f S m o d e l b i s TRUE

; O t h e r w i s e , t h e s e w i l l b e a s s e m b l e d

............
I

mesg - - 1 1 $ e r r m s g t 4

Notice that string variables behave similarly to macro parameters (see Appendix
A for an explanation of the exact mechanism used for substitution). The substitution
is a literal one into the source text, so that the third example above needs the
q u o t e s (~ ~ ~ ~) around "Serrmsg". The alternative would be to insert the quotes when
the string is defined, and this method is shown below:

S e r r m s g SETS ltltlfMACRO P a r a m e t e r s w r o n g 1 f 1 r t f
mesg - - S e r r m s g

This use of variables means that you could say:

%Label S E T S "Labl"
$ l a b e l L D A I M & F F

and this would be assembled as follows:

Lab1 L D A I M & F F

Since macros may be called from a number of places in the source program, it
is important that each call creates unique labels. Consider the macro definition
given below, together with some calls to it:

MACRO
S l a b e l I N C Z $addr
$Label I N C $addr

B N E Labl
I N C $addr+ l

lab1 M E N D

............
I N C Z count1

Here, the first call of INC2 will create a label 'labl' which will correctly mark the
next point in the program. However, the second call to INC2 will also try to create
this symbol, so MASM will produce a 'Symbol already defined' error. One way
around this problem is to use a global variable which can be incremented every
time the macro is used, thus giving a series of unique labels. In fact, two variables
have to be used as you can't do arithmetic on string variables. In the listing below,
'%count' is a global arithmetic variable which is incremented by the macro INC2.
This macro contains a local string variable '$lab' whose value is obtained from
'$count1.

GBLA $ c o u n t
$ c o u n t SETAO ; N o t n e c e s s a r y

MACRO
S l a b e l INCZ $ a d d r

LCLS S l a b
S l a b e l INC S a d d r
$ L a b SETS " i n c " : C C : (:STR: $ c o u n t :RIGHT: 3)
$ L a b e l INC S a d d r

BNE $ l a b
INC $ a d d r + l

$ L a b ; L o c a l L a b e l
$ c o u n t S E T A $ c o u n t + l ; I n c r e m e n t c o u n t e r

MEND

u p d a t e INCZ c o u n t

............
INCZ & 7 0

This time, the label '$lab' is derived from a complex-looking expression. It is made
up from the letters 'inc', followed by the rightmost three characters from the
conversion of '$count' into a hex string. Thus, the first expansion of INC2 would
produce the label 'inc000: the next one 'incOOl', and so on. The eleventh one would
be 'incOOA2, not 'inc010:

8.3 Routines and local labels
In section 8 .2 , a global variable was used to generate a unique label for use within
the body of the macro definition. It is possible, however, to specify explicitly the
scope of certain labels. These labels are numbers in the range zero to 99, and they
belong to a particular routine as defined by the ROUT directive. For example, look
at the following code:

m u l t ROUT ; 8 * 8 b i t m u l t i p l y
LDA o p l ;Get f i r s t o p e r a n d
BEQ # F O l m u l t ; S k i p i f t i m e s 0
............

0 0 ROLA ; T i m e s t w o
BCC #BOOmul t
.

0 1 RTS ;And r e t u r n
d i v ROUT

Here, the routine 'mult' is defined as the instructions which lie between the two
ROUT directives. Any two-digit labels in this range will be treated as being local
to 'mult: A reference to a local label is of the form:

and two examples are given in the code above, namely '#FOlmult' and '#BOOmult'.

The <routine name> part is optional, and is simply the name of the routine to
which the specified label belongs, <label num> is a two-digit number, and
<options> is a sequence of zero to two characters which tell MASM where to look
for the label. It is made up of two parts and the first character is defined as follows:

Character Meaning

Nothing Cook backwards or forwards for the label
B Look Backwards only for the label
F Look Forwards only for the label

The last character is defined as follows:

Character Meaning

Nothing Look at this macro level and above
(nearer to the source level)

A Look at any macro level
T Look at this macro level only

Usually, the default cases will suffice when specifying a label, so you may find
yourself using things like:

J M P #12name

quite frequently. Note that local labels and routines can be used anywhere, not
just within macro definitions.

Note, also, that it is possible to doubly define local labels without MASM generating
an error message. For example:

Z A P R O U T
0 1 L D A I M 0
0 1 L D A I M 0

Unless this is done deliberately and with great care a number of errors will be
caused.

9 Repetitive assembly
9.1 The WHILE...WEND loop
Given the ability to vary the value of symbols throughout an assembly, it becomes
possible to implement some kind of 'looping' facility; in other words, it is possible
for you to assemble a group of instructions repeatedly until some condition
becomes false. MASM achieves this with the two directives WHILE and WEND.
The format of the loop is:

U H I L E < l o g i c a l e x p r e s s i o n >

; A s s e m b l e t h e s e i n s t r u c t i o n s
............
............
............
WEND ; M a r k s t h e e n d o f t h e Loop

; C a r r y o n a s s e m b l i n g a s u s u a l .
............

WHILE ...W END loops can appear anywhere in a source program, not just within
a macro definition. It is usually convenient, however, to put such loops within a
macro, rather than embed them in the main program. Below is an example of a
WHILE ...W END loop. It emulates part of the MOS clear screen routine in that it
generates instructions to store the contents of the accumulator in 80 pages of
memory. This memory is indexed by the X register.

r a m t o p * & 8 0 0 0
o n e k * 1 0 2 4

MACRO
S l a b e l CLSMAC
$ L a b e l LCLA $ a d d r
$ a d d r SETA r a m t o p - 2 0 * o n e k

WHILE $ a d d r <> r a m t o p
STAAX $ a d d r

S a d d r SETA $ a d d r + & I 0 0
WEND
MEND

When called, CLSMAC will generate 80 STAAX instructions and this method is
obviously much less error-prone than typing in all of the lines separately. Notice
that as the test for the WHILE condition is made at the top of the loop, there is
a possibility that no instructions at all will be generated; in other words, there is
a possibility that the body of the loop will never be reached. A contrived example
is given below:

W H I L E 1 > 2

In this example, one is never going to be greater than two, so all of the loop's
instructions will simply be skipped.

. . . Another application of the WHILE WEND loop is to generate a number of
instructions which varies according to the value of some macro parameter. For
example, consider a multiple precision rotation to the right:

M A C R O
S l a b e l R O R N $ a d d r , $ b y t e s = 2

C L C
$ L a b e l L C L A $ c o u n t
$ c o u n t S E T A 0

W H I L E $ c o u n t <> $ b y t e s
R O R $ a d d r + $ c o u n t

$ c o u n t S E T A $ c o u n t + l
W E N D
M E N D

R O R N & 1 2 0 0 , 4
............
............
R O R N z e r o p ,

The first example call to RORN rotates the four bytes from &I200 to &I203 right
by one bit; the second one rotates the two bytes 'zerop' and 'zerop + 1' by one bit.
Notice the use of the default parameter in the second example.

9.2 The MEXIT directive
A further directive which may appear in a macro definition is MEXIT. This causes
an exit to be made from the current macro as if the MEND instruction had been
encountered. It can be used to terminate WHILE loops or IFs if some abnormality
has occurred. An example of its use is given below:

MACRO
$ L a b e l P R I N T S s t r i n g
S l a b e l C I l $ S t i n g l l = l l ~ ; N u l l s t r i n g ?

M E X I T ; Y e s , e n d
3
JSR p r i n t s ; O t h e r w i s e d o - l l S s t r i n g l l ; m a c r o
NOP
MEND ;And t e r m i n a t e

P R I N T H e l l o t h e r e ;No q u o t e s n e e d e d

............
P R I N T ; T h i s w i l l d o M E X I T

Note that MEXIT is the only way to leave a macro definition from within an IF
(C) or WHILE. You must not use MEND within either of these constructs.

10 Trapping errors in
source code
I t is good practice when developing programs to check macro parameters. For
example, the coding in section 9.2 where PRINT was called with a null string could
be treated as an error, if required. To aid error trapping, the ASSERT directive is
provided and this can be used either inside or outside macros. It has the format:

A S S E R T <Logica l exp re s s ion>

If the <logical expression> yields a TRUE result, nothing happens. A FALSE result,
however, will cause MASM to stop what it is doing and return control to the
command level. Thus, the macro PRINT might have the line:

A S S E R T : L E N : " $ s t r i n g " > 0

When this line is met during the second invocation of PRINT in section 9.2, the
logical expression would be FALSE (since :LEN: u u is zero), so assembly would
terminate with an 'Assert failed at line XXXX' error. MASM's check on the logical
expression is made on the second pass only, so any symbol can be used in the
expression, no matter where it is defined in the program.

A similar device is the ! directive. This has the following format:

During the each pass of the assembly, the arithmetic expression item is evaluated.
If it is zero, nothing happens. If, however, the item yields a non-zero result on the
first pass, the string will be printed out along with the message 'stopped at line
XXXX', and assembly will stop. During the second pass, the string will be printed,
but assembly will not stop. Because the expression is evaluated on both passes,
it must not contain any forward references.

11 Creating source files
using EDIT
This chapter describes EDIT, the program editor which was introduced briefly in
chapter 3, 'Developing a simple MASM program'. As noted earlier, the function key
card should be placed above the function keys when using EDIT, since they are
used a great deal.

11.1 Entering EDIT

EDIT is called by issuing the operating system command *EDIT. So, in order to
use the editor, you must be in a situation where issuing a command line is possible.
This could be, for example, in the command mode of MASM or one of the cross-
referencers, or from within BASIC. Note that some ROM utilities respond to *EDIT
and if this hdppens it will be necessary to type */EDIT to load the editor from disc.
It is also possible to load a file to be EDITed at the same time as calling EDIT by
entering *EDIT <filename> or */EDIT <filename>.

When entered, EDIT selects screen mode 0 as this gives the maximum number
of characters that the BBC Microcomputer can display (80 columns by 32 lines).
There is no 'memory overhead' associated with the screen mode when using EDIT
as it only runs on the Second Processor. The capacity for text is over 47000
characters, regardless of the mode.

11.2 Adding text

When the EDIT command is given, the screen clears apart from the very top and
bottom lines. On the top line is an inverse video * which marks the end of text.
The fact that it is at the start of the page implies that there is no text being edited
currently. Just below the marker is the flashing cursor. This always marks where
characters will be put into the text.

The bottom line of the screen contains the 'status line'. This gives you information
about various modes of operation which are described later.

To add text, simply type it in. The end of text marker will be moved along to make
room for the new text. To illustrate some of the features of the editor, the entry
of the simple MASM program listed below will be described in detail:

o s w r c h * & F F E 3
O R G & I 8 0 0

c s e t L D X I M lo la

L o o p T X A
J S R o s w r c h

I N X

C P X I M I l " f l

B N E L o o p

R T S

E N D

First type the top line exactly as shown above (the exact number of spaces is not
essential, but at least one must be used in each case). If you make a mistake, press
the DELETE key to erase the incorrect characters. Notice that pressing DELETE
removes the character before the flashing cursor. An alternative is to press COPY
to delete the character at the cursor position. When you reach the end of the line,
press RETURN. This will move the cursor to the start of the next line.

The second line of text is indented. To achieve this, simply press the Space Bar
the correct number of times. It is also possible to use the right-arrow cursor key,
though pressing the Space Bar is probably more convenient.

The third line of the program is blank. Producing blank lines simply involves
pressing RETURN if the cursor is at the start of the line. In this example, it means
pressing RETURN twice after the '0' of line two instead of just once.

Line four can be typed as normal, as can line five. The next few line are indented
and, to save typing here, the TAB key can be used.

The TAB key can be used in two ways: by default it uses tab stops which are eight
characters apart. However, we need the other mode which is accessed by pressing
SHIFT TAB. TAB then acts as described below. To return to the default mode SHIFT
TAB should be pressed again.

The first line ('JSR oswrch') should be typed as normal, pressing the Space Bar
to achieve the indentation. When you press RETURN to get on to the next line,
instead of typing spaces, press TAB instead. This moves the cursor so that it is
underneath the 'J' of the line above. In this mode, TAB moves the cursor so that
it is underneath the first non-space character of the line above. It is useful, therefore,
when many lines need to be indented by the same amount.

You can now type in the remaining lines, using TAB in the same way. At this stage,
assuming no errors have been made, the file could be assembled, as described in
chapter 12, 'Using MASM to assemble your programs'.

11.3 Using the cursor keys
Now that we have some text to manipulate, you can start using the various facilities
of EDIT. First of all, you need to be able to move around the screen, changing
various parts of the text. To do this, the four cursor (arrow) keys are used. If you
press one of these keys, the cursor moves one space in the direction indicated,
that is one character to the left or right for the left- and right-arrow keys respectively,
and one line up or down for the up- and down-arrow keys (scrolling the screen
when the cursor gets near the top or bottom).

As an example, change the label 'cset' on line four above to 'charset'. To do this,
use the arrow keys to position the cursor on the 's' of 'cset'. Then type the extra
characters 'h', 'a' and 'r: The text after the cursor will be shifted to the right to
make room for the new text. This happens when the editor is in insert mode. There
is another mode called overtype mode which is described in section 11.8.

Deleting small sections of text is similarly easy. Move the cursor to the character
after the item to be deleted, then press DELETE the appropriate number of times.
Again, the text will move, this time to the left. Notice that if you move the cursor
to the beginning of a line and press DELETE, the current line will join up with
the one above it. This happens because you have deleted the (usually invisible)
carriage-return character which separates the two lines.

The cursor keys can be used in combination with SHIFT or CTRL to make more
drastic movements around the screen. If SHIFT is pressed with the up or down
keys, the text will scroll up or down by a 'page'. The length of a page depends
upon the screen mode in use. This facility is useful for moving rapidly over a large
region of text. SHIFT pressed with the left and right keys moves the cursor
backwards and forwards by one word (a word in this context is a sequence of
alphanumeric (but not -) characters separated by groups of any other characters).

The CTRL key can be used with cursor up or cursor down to reach the top or
bottom of the text, respectively. Pressing CTRL with cursor left or right moves
the cursor to the start and end of the current line respectively.

11.4 The cursor edit mode
The use of cursor editing with the COPY key in the editor is slightly different to
its use in, say MASM command mode. Normally, to copy some text when typing
in a MASM command, the arrow keys are used to move the copy cursor to the
required part of the screen, then COPY is pressed to do the copying. Copy mode
ends when RETURN is pressed.

In the editor, the only difference is that instead of one of the cursor keys initiating
copy mode, SHIFT COPY must be pressed. The cursor keys can then be used to
move to the text to be copied, and COPY can be pressed the appropriate number
of times. Copy mode is terminated when ESCAPE (rather than RETURN) is pressed.

This technique is very versatile as it means that the cursor keys may be used to
move around the screen when inserting or deleting text, and also to move the copy
cursor around as usual. The obvious application of copying is to duplicate identical
or nearly identical lines.

When in cursor edit mode, the status line reflects this by containing ' C u r so r
Ed i t i n g ' in inverse video.

11.5 The function keys
It can be seen that quite a lot of editing may be achieved simply by using the keys
discussed so far. However, EDIT provides functions which makes the manipulation
of program text even easier. These functions are accessed by using the red function
keys at the top of the keyboard. The function key card gives some clues as to how
they are used and the following text describes the functions in detail.

As some of the keys provide more than one function, it is sometimes necessary
to press SHIFT or CTRL at the same time as the key itself. For example, pressing
function key 0 searches for a given line number, whereas SHIFT function key 0
switches the display of carriage-returns on and off. In the text below, 'function
key 'n' will be abbreviated to 'fn: where 'n' is 0 to 9.

If you want to type a string of characters several times, you can do so using the
function keys. Pressing the function keys together with CTRL and SHIFT enables
the soft key strings to be accessed. Thus, if you type the command "KEY0 LDAIM'
from command mode, pressing CTRL SHIFT fO in the editor will produce this string.
Note, however, that this is not the default situation and the OS command *FX228,1
must be issued to enable strings to be generated in this way.

11.6 Changing display mode
As mentioned above, the editor uses MODE 0 when it is first called. The command
SHIFT f5 is used to change mode. When it is issued the prompt:

New mode:

is given, to which you should reply with a digit in the range 0-7 followed by
RETURN. There is a slight difference in the way that characters are displayed in
MODE 7; for example, markers are shown as inverse video digits in the soft modes
(0-6) but as plain white 'blobs' in MODE 7. As mentioned above, using low memory-
cost modes gives no advantage when using EDIT.

An alternative to specifying 0-7 for the mode is to type the letter 'D' instead. This
causes EDIT to use its 'descriptive mode', which is MODE 0, but with a great deal
of help information displayed at the top of the screen. For example, a layout of
the function keys is shown together with their actions, and whenever a function
key is pressed, detailed information about what it does is shown in a window.

Descriptive mode is very useful when you are becoming familiar with the editor
and can also serve as a reminder later on, when you have forgotten a particular
detail. There are, however, a couple of disadvantages with this mode. One of these
is the lack of space for text on the screen, and the other is that the screen scrolls
more slowly than usual. Nevertheless, descriptive mode should make the process
of learning a new editor easier than it might otherwise be.

A condensed version of mode 'D' is mode 'K: which only prints the key layout
without the other help informatibn.

11.7 Saving, loading and inserting text
It is obviously useful to be able to save and load files from the editor. There are
three commands for manipulating files from within EDIT (pressing a function key
will be treated as issuing a command in this chapter). The commands are:

f2 - Load the text from a file
f3 - Save text to a file

SHIFT f2 - Insert text from a file.

In addition, there are

f9 - Restore old text
SHIFT f9 - Delete the text being edited

Pressing f3 produces the prompt:

T y p e f i l e n a m e t o s a v e :

In response you should give the name of the file into which the text should be
saved. If an error occurs, it is reported and you will be prompted to press the
ESCAPE key to continue.

If you press RETURN instead of typing a filename, the editor will look for a name
at the start of the text. The filename should be preceded by the '>' character and
terminated by a space or carriage-return. The '>' should occur within the first 128
characters of the text. In MASM programs, the name should be in a comment so
that the assembler doesn't try to interpret it as part of the program:

; > t e s t
O R G 81800

This will make the editor use the filename 'test' whenever RETURN is pressed in
response to a filename prompt.

Another alternative is to press COPY then RETURN. This will use the 'current'
filename, ie the name last used in a load, save or insert command. The current
filename is updated every time one of these commands is executed.

If you wish, you can save only part of the file you are editing. The method you
should use is to put a marker at the start of the portion of text to be saved, move
the cursor to the end of the section, and then use f3 as described above. The setting
and deletion of markers is described in section 11.10.

Text is loaded using the command f2. The prompt this time is:

T y p e f i l e n a m e t o L o a d :

This command wipes out any text already in the machine. Errors are reported in
the manner described above. Additionally, if the file is too large to read into the
computer, the error 'File too long' is given (unless the Cassette Filing System is
in use). As with save, RETURN and COPY RETURN may be used instead of a proper
filename.

SHIFT f2 inserts a file into a particular place in the text. Its prompt is:

T y p e f i l e n a m e t o i n s e r t :

to which you should reply with a filename, RETURN or COPY RETURN. The file
will be read into the text at the current cursor position. Text before the cursor
will be unaffected; characters at and after the cursor will be shifted up in order
to make room for the file, and the cursor will be placed at the start of the text
just read in. This command is useful for inserting frequently-used procedures into
programs.

Note that when text has been inserted using SHIFT f2, the current filename will
become the name of the file that is inserted, not that already in the machine. Hence,
COPY RETURN should be used with care in these circumstances.

Pressing SHIFT f9 causes a prompt to the effect that all the current text will be
deleted if any key is pressed. If no key is pressed within a short time (about ten
seconds), or if ESCAPE is pressed, then the previous editing mode is resumed.
SHIFT f9 is fairly drastic, so the command should obviously be used with some
caution. If you press SHIFT f9 (and another key) or BREAK by mistake, you can
restore the text using f9. Using SHIFT f9 twice in succession deletes the text
irretrievably.

11.8 Insert and overtype modes
So far, only insert mode has been discussed. When the editor is first called, text
typed at the keyboard is inserted into the file by shifting everything after the cursor
to the right. In order to replace a word, it must be deleted and then retyped. It
is sometimes more convenient to be able to replace characters simply by overwriting
them.

In EDIT, you can switch between insert and overtype mode by pressing SHIFT
fl. This key acts as a 'toggle' so that if you are in overtype mode, pressing it will
put you in insert mode, and if you are in insert mode, pressing SHIFT fl will put
you in overtype mode.

The bottom (status) line of the display shows the current typing mode as ' 1 n s e r t '
or ' O v e r '. Try pressing SHIFT fl several times to see the effect on the status line.

To see how overtype mode differs from insert mode, press SHIFT fl until the status
line has ' O v e r ' in it and move the cursor to the start of a line already containing
some text. Now start to type. The line will be overwritten by what you typed rather
than be moved in order to make room for it.

The way in which carriage-return characters are treated differs between insert and
overtype modes. In insert mode, as we have seen, you can delete a carriage-return
by moving the cursor to the start of the previous line and pressing DELETE. You
may have also discovered that you can split a line into two by moving the cursor
to where you want the split to appear and pressing RETURN.

In overtype mode, neither of the above actions is possible. Pressing RETURN merely
moves the cursor to the start of the next line. Pressing DELETE at the start of the
line will move the cursor up to the end of the next line, but will not delete the
carriage-return itself. Thus, you cannot split or join lines in overtype mode. The
COPY key and the function keys work in overtype mode exactly as in insert mode.

11.9 Special characters in the text
You can type control characters in the same way as any other character. To
distinguish them, they are shown in inverse video in MODES 0 to 6 and as white
'blobs' in MODE 7. ESCAPE is ignored when typing in text and is used to abort
commands such as 'find and replace'.

A special inverse character is RETURN, which is the same as CTRL M. Since a
RETURN character appears on the end of every line, showing it as an inverse 'M'
would be very distracting. Normally, then, EDIT does not show carriage-returns.
However, pressing SHIFT fO will make them visible. Pressing it a second time will
render the inverse 'M's invisible again, so it acts as a toggle (like SHIFT f l for
insertlovertype mode).

By making the RETURNS visible, you can see if there are any unnecessary trailing
blanks on a line (these can occur when the cursor is past the end of the normal
text and the Space Bar is pressed inadvertently).

The character DELETE (whose code is 127) is shown as a small white rectangle
in all modes. Characters with codes greater than 127 are displayed as normal (so
user-defined characters and MODE 7 colour codes have their usual effect). However,
characters with codes between 127 and 255 may only be entered from the keyboard
using *FX228 and SHIFT CTRL function keys (see the BBCMicrocomputer System
User Guide for details). Note that the codes between 128 and 192 are used by the
function keys and so should not be entered except as described in section 11.13
'Using command macros:

11.10 Dealing with blocks of text

There are five operations which can be performed on a block of text. These are:

SHIFT f8 - Delete a block of text
fl - Copy a block of text

SHIFT fl - Move a block of text
f3 - Save text to a file (described in section 11.7)
f5 - Global find & replace (described in section 11.12.3)

In addition, two commands are needed to set and reset markers, which are used
in conjunction with the above commands. These are:

f6 - Set marker
SHIFT f6 - Clear marker(s)

11.10.1 Deleting a block

To delete a block of text, two 'delimiters' are needed, one at the start and one at
the end of block. One of the delimiters is the cursor and the other .is a marker.
Consider the text:

T h e q u i c k
b r o w n f o x jumps

o v e r t h e
L a z y d o g .

Suppose you want to delete the middle two lines. This is accomplished thus: move
the cursor to the 'b' in 'brown'. Press f6. This sets marker 1 (an inverse 'l'), which
will act as the first delimiter, at the cursor position. Then move the cursor to the
'1' in 'lazy' and press SHIFT f8. This will delete the required two lines.

Notice the exact characters which are deleted: from the first delimiter inclusive
to the last delimiter exclusive, so the first delimiter should be placed at the first
character in the block and the second delimiter should be just after the last character.

Note also that the marker can equally well be the second delimiter. The two lines
could have been deleted by setting the marker at the '1' in 'lazy' and moving the
cursor up to the 'b' in 'brown' before pressing SHIFT f8. The result would be the
same.

11.10.2 Copying a block

As described earlier, you can copy text using the COPY key. This can be very tedious
if there is a lot to copy, so a way is provided of duplicating a whole block of text.
Again, there are two delimiters needed to mark the area and a way of marking the
destination of the copied block.

Suppose you want to copy the text:

L D A I N ">"
J S R o s w r c h

so that it occurs twice in succession. This is done as follows: move the cursor to
the 'L' of 'LDAIM' and press f6. This sets marker one. Move the cursor to below
the 'J' of 'JSR' and press f6. This sets marker two. Move the cursor to the required
destination to (this must not be between the two markers or a 'Bad marking' error
will occur, but it can be on the second marker). In the present example the cursor
should be moved to marker two. Now press f7. This produces a copy of the required
lines.

Notice again that the block copied lies between delimiter one inclusive and delimiter
two exclusive and that, in this case, the markers are still present.

11.10.3 Moving a block

Moving is equivalent to copying a block then deleting the original. The block to
be moved is delimited by two markers and it is moved to the position of the cursor
when SHIFT f7 is pressed. Again it is illegal for the cursor to be within the region
delimited by the markers when the move command is given.

11.10.4 Deleting the marker(s)

The delete block and move block commands automatically delete any markers
present. However, it is sometimes desirable to delete the markers without having
to execute a 'block' command. Pressing SHIFT f6 will delete the active marker(s).

Apart from when cursor editing is active, the status line indicates how many markers
there are in the text. You can have at most two.

11.11 The scroll margins
You may have noticed that when the cursor is moved near to the top or bottom
of the screen, the text scrolls and the cursor stays on the same line. This usually
happens when the cursor tries to move above the fourth line from the top or below
the fourth line from the bottom. These two lines mark the so-called 'scroll margins'
and may have their positions altered.

The commands to set and reset the scroll margins are:

CTRL f6 - Set the top scroll margin
CTRL f7 - Set the bottom scroll margin
SHIFT f3 - Reset the scroll margins

To set the top scroll margin, CTRL f6 is used. First position the cursor on the line
at which you want scrolling to occur when moving up the text, then press CTRL
f6. Similarly, to set the bottom scroll margin, move the cursor to the line below
which you do not want it to move and press CTRL f7.

Pressing SHIFT f3 will set the margins to the top and bottom of the screen.

Note that, when the very top (or bottom) of the text is reached, the cursor can
be moved into the top (or bottom) margin so that the first (or last) few lines may
be edited.

If CTRL f6 and CTRL f7 are pressed in succession without moving the cursor, the
margins will be set to the same line. The result is that any vertical movement of
the cursor will cause the screen to scroll.

The scroll lines are used by various search commands. For example, the f4 search
command described later causes its target to be displayed on the bottom scroll
line and fO displays the new line on the top scroll line. Also, when CTRL down
is used to move to the end of text, the last line is displayed on the bottom scroll line.

11.12 Finding and replacing text
One of the most useful features of EDIT will now be described. When editing a
large file, it is often desirable to find the occurrence of a particular word or phrase,
perhaps with a view to changing it to something else. Scanning through by eye
is tedious and prone to error. Another requirement is to be able to jump to a given
line in the text (this is necessary as MASM gives the line number at which an error
occurred). Being able to quickly find this erroneous line speeds up debugging.

EDIT has the ability to find a given line, find and selectively replace one string
with another and count all occurrences of a string, optionally replacing it with
something else. The relevant commands are:

fO - Goto a line number
f4 - Find and selectively replace a string
f5 - Globally count and replace a string

11.12.1 Finding a given line

Pressing fO produces the prompt:

A t L i n e x x , new L i n e :

to which you should type the number of the line to be found (the top line is number
one). If the line number specified is geater than the number of lines in the
document, a 'Line not found' error is generated. Otherwise, the screen is updated
so that the line in question becomes the current line.

11.12.2 Finding and selectively replacing a string

A more general way of searching the file is searching for a particular string. EDIT
lets you search for simple strings such as 'begin', but more powerfully for such
things as 'all identifiers beginning with A'. The command f4 finds strings and, if
necessary, changes them to something else. In this context the string being sought
is called the 'pattern' and the string with which it will be replaced is called the
'replacement'.

In response to f4 EDIT will produce the prompt:

F i n d and r e p l a c e :

You should type one of two things: a pattern, followed by RETURN, or a pattern,
then a '1' as a separator, then a replacement and finally RETURN. Examples are:

b e g i n <RETURN> (Find occurrences of ' b e g i n')
f or/FOR<RETURN> (Replace occurrences of ' f o r)
= / : =<RETURN> (Replace occurrences of '=')
t h e n / <RETURN> (Delete occurrences of ' t h e n ')

In the last example, the replacement is a null string, which leads to the pattern
being deleted.

The search for the pattern begins at the cursor position, so it's a good idea to move
the cursor to the top of the file (CTRL up-arrow) if you want to find all occurrences.
When the pattern is located, the editor updates the screen so that the pattern is
on the bottom scroll line and prompts with:

R (e p L a c e 1 , C (o n t i n u e) o r ESCAPE

If you press 'R' and specified a replacement then the change is made and the next
occurrence sought. If you press 'R' but didn't specify a replacement you will be
prompted with 'Replace string:' so that you can give one, then the change will
be made and the next occurence sought. If you press 'C', this occurrence is skipped
and the next one sought. If you press ESCAPE, the search ends. After the last
occurrence has been found the editor returns to normal mode, and displays 'Not
found' on the end of the status line to indicate the end of the search.

11.12.3 Globally counting and replacing a string

The command f5 acts in a similar way to the last one, but assumes that if you specify
a replacement string, all occurrences of the pattern should be replaced. If no
replacement is given, then the number of times the pattern occurs in the file is
counted. The prompt for the pattern and (optional) replacement is:

G l o b a l r e p l a c e :

Typical replies are:

F R E D / J 0 H N <RETURN> (Replace all occurrences of ' F R E 0')

H E L LO / <RETURN> (Delete all occurrences of 'HELLO')
f o r <RETURN> (Count all occurrences of ' f o r ')

Notice that the only difference between counting occurrences of the pattern and
deleting them is whether or not a 'I' appears at the end of the line. The f5 command
does the search and replace automatically without any prompts. As this is a 'global'
search and replace, the search starts from the top of the file, independent of the
cursor position (but see the next paragraph). After the search (and replace), the
number of times the pattern was found is given on the status line in the form:

It is possible to make the global search and replace slightly less so by setting a
marker before issuing the command. If this is done, only text between the marker
and the cursor will be affected. It can be useful when, for example, only the
occurrences of an identifier in a particular routine need to be altered.

11.12.4 Patterns

The patterns used by the search commands may be regarded as expressions. In
fact, the formal name for patterns is 'regular expression'. They may be thought of
as having constant parts (literal text) and variable parts (wildcards, ranges, choices,
repeats and inversions). This section describes the different parts in detail.

In the examples given so far, the patterns and their replacements have been simple
strings. However, by using special symbols in a pattern, it is possible to specify
the variable parts mentioned in the list above. The special characters available in
patterns are:

match any character
a match any alphanumeric (0-9, A-Z, a-z, or -)
match any digit (0-9)
C x y z I match any of 'x: 'y' and '2'

a - z match any character between 'a' and '2' (inclusive)
S match the carriage-return character
I c match CTRL c (c should be a CTRL-key character)
"-c match anything but c (which can be a wildcard or a set)
\ c match c (with no special meaning attached to c)
* c match zero or more of c (shortest match)
A c match one or more of c (longest match)

A . in a pattern will match any single character in the range ASCII 0 to ASCII 255.
All of the wildcards may be duplicated, so ' . . ' will match any two characters, and
so on. @ is slightly more restrictive and will match those characters which are
allowed in identifiers. # will match any of the ten characters in the range '0' to
'9: that is, the digits.

If neither of Q or # provides a suitable range of characters to match, it is possible
to define your own range using - . Thus k-F' will match any valid hexadecimal letter.
Another way is to put several choices inside square brackets. Only one of the
characters in the brackets will be matched. For example ' C I I$ I will match either
TAB (CTRL I), carriage-return or space. These characters are sometimes known
collectively as white-space.

You can, if you wish, combine ranges and choices. For example, to match any
hexadecimal character, the choice ' CO-9A-FI ' would be used. Since existing
wildcards may be put in a range, this could also be expressed as ' C #A-F 1 : Another
example is a pattern to match characters which may occur at the start of a MASM
identifier: ' [a-zA-21'. This can be read as 'match any character in the range 'a' to
'z' or 'A' to 'Z".

Note that when letters are being matched, they are case equated. That is, upper
and lower case letters are not counted as different and the pattern 'egg' will match
the expected 'egg' as well as the unexpected 'Egg' and 'eGg: This is useful when
editing MASM files as the assembler does not differentiate between upper and lower
case letters in identifiers. When letters are used in conjuction with the special
symbols ' - ' (for range) and square brackets (for choice), then they are treated
'literally: so the pattern 'a-z' will only match lower case letters between 'a' and 'z',

$ is a convenient way of putting the carriage-return character in a search string
(the RETURN key can't be used for obvious reasons). The vertical bar I has the
same meaning as within *KEY and filename strings, that is, 'make the next character
a control character: Thus, ' I @' means ASCII 0 , ' IA' means ASCII 1 and so on. ' IM'
is the same as ' $ ', ' I C ' is the ESCAPE character, I ? is DELETE and ' I I ' is TAB.

The action of " is to match anything but the sub-pattern that follows. Thus '-A'
will match anything but A' (or 'a'), ' " # ' will match any non-digit and '"A-Z' will
match anything that isn't an upper case letter.

The backslash character \ is needed to remove any special meaning from the
symbol which follows it. Thus, ' \ $ ' stands for 'S', not carriage-return, ' \ I' prevents
the character after the bar from being interpreted as a control character, ' \ . ' means
'. ' not 'any character: and ' \a ' means lower case 'a' only, not 'A' as well. \ / is
necessary to get the slash itself rather than the delimiter.

Sometimes it is useful to be able to find where a sequence of characters occurs,
especially when whatever is matched is to be replaced by something else. A typical
example would be to delete trailing spaces at the end of lines. Here, we want to
look for zero or more space characters followed by a carriage-return and replace
them with just the carriage return. One way of doing this would be to repeatedly
use:

G l o b a l r e p l a c e : $/$<RETURN>

Eventually, all the trailing spaces will be deleted and f5 will come back with '0
found'. However, the global replace command will have to be issued several times:
one for each space on the end of the line with the most trailing spaces. What we
need here is a mechanism for letting us match any number of spaces in one go.
The asterisk I * ' performs this task. In a pattern, the sequence '*c' means match
zero or more of the character 'c'. For example the trailing spaces on each line can
be deleted in one go by:

G l o b a l r e p l a c e : *$/$<RETURN>

This can be read as 'replace zero or more spaces followed by a carriage-return with
a carriage return'. Preceding a character with an asterisk is called 'forming a closure'
over that character, but is usually read, as indicated above, as 'zero or more of'.

It is possible to form closures over any type of pattern, not just simple characters.
For example, it is possible to match zero or more digits using the pattern ' * # ' or
zero or more upper-case letters with '*A-2'.

Notice that it is not very useful to end a pattern with a closure pattern because
it always matches the shortest string it can and this includes the null string. An
example will make this clearer. Suppose we wanted to replace all strings of the
form 'fred' followed immediately by zero or more digits with the string 'fredId'.
Our first try might be:

Global r e p l a c e : fred*#/fredId<RETURN>

We might expect this to replace 'fred123' with 'fredId: In fact it will really become
'fredIdl23'. The reason is that the pattern 'fred* # ' will always match just 'fred', as
the " # ' part will match zero digits if it can. What we really need here is a way
of matching all of the digits that come after 'fred', instead of none of them. To do
this, another form of closure is provided: I"'. This acts similarly to I * ' , but differs
in two ways: firstly it matches one or more of the following character, and secondly
matches the longest string possible rather than the shortest.

Global r e p l a c e : f redA#/fredId<RETURN>

You may realise that the pattern '"c' matches exactly the same strings as 'PC-c:
where 'c' is any sub-pattern that may occur after a '*: However, the ' A ' form is
more convenient, especially when replacing rather than just searching for strings.

It can be seen that the closure (also called 'multiple match') facility is very powerful,
but must be used with care. In order to use ' * ' to match one or more of a character
(as opposed to zero or more) the format:

Find and r e p l a c e : c*c<RETURN>

should be used. Below are some more example patterns.

If you want to find all identifiers beginning with A or a, you can use the following
format:

Find and r e p l a c e : A*@"@<RETURN>

Here, the 'A' matches the first character; the ' * @' matches the rest of the identifier
up to the non-alphanumeric character matched by ' " @'.

If you want to find all integer constants, you can use the following format:

Find and r e p l a c e : "#<RETURN>

An integer is, of course, just one or more digits.

If you want to find all non-null strings in a BASIC program, you can use the following
format:

F i n d and r e p l a c e : ""."<RETURN>

Here, the '"' matches the opening quote; the '" . ' matches one or more characters
and the '" ' matches the end quote. Note, however, that it will not find ' n " " w :

To find all the ' \ 's in a file, you can use the following format:

F i n d and r e p l a c e : \\<RETURN>

Two backslashes are needed as ' \ ' itself is a special character. It therefore needs
a preceding ' \ ' to 'quote' it.

If you want to find all MASM ' * ' directives, you can use the following format:

F i n d and r e p l a c e : $"a* *<RETURN>

The ' * ' directive must be preceded by a label, and a label must start at the first
character on the line. Thus, '$"@' matches the identifier at the start of the line;
' * ' matches the zero or more spaces separating it from the directive, and ' \ * '
matches the directive itself, the backslash taking away the asterisk's special meaning.

To find all blank lines, you can use the following:

F i n d and r e p l a c e : S * $<RETURN>

A blank line is simply where a carriage-return is followed by another one with
only zero or more spaces intervening. The first '$ ' matches a carriage-return; the
' * ' matches zero or more spaces; the second '$ ' matches the carriage-return of
the blank line. Note that this pattern will only find the first of one or more blank
lines.

If you want to find all the integer variables in a BASIC program you can do so by
using the following:

F i n d and r e p l a c e : "@\%<RETURN>

The I " @ ' matches one or more alphanumerics; the ' \ %' matches the percent sign
at the end. The percent sign is 'quoted' with backslash because, although it has
no special meaning in patterns, it does in replacement strings. In the editor, all
special characters that may be used in pattern matching have to be quoted if they
are to be used as themselves, whether their special meaning is relevant to the context
or not.

Actually, the pattern as given will match something like '123%: which isn't a proper
identifier. The problem is that '@' matches digits. To be strictly accurate, we should
use:

Find and r e p l a c e : [a-zA-Z-£]*@\%<RETURN>

so that the first character has to be a letter, an underscore or a pound sign, all of
which may start a BASIC identifier.

If you want to match any control character, you can use the following:

Find and r e p l a c e : I@-:-<RETURN>

' I @' is CTRL @, the lowest valued control character (ASCII 0) and ' I-' is CTRL
-, the highest control character (ASCII 31).

To match any word in a text file, you can use the following format:

Find and r e p l a c e : "[a-zA-Zl<RETURN>

This pattern stems from the simple definition of a word: the longest sequence of
one or more upper or lower case letters.

If you want to match a hexadecimal constant, you can use the following:

Find and r e p l a c e : \&"[#A-FI<RETURN>

This is simply '&' followed by one or more hex characters. Again, '&' is quoted
as it has a special meaning in replacements.

Two useful global search without replace commands are:

Global r e p l a c e : .<RETURN>
Global r e p l a c e : $<RETURN>

These display the number of characters and lines in the file, respectively, on the
status line.

11.12.5 Replacements

Although it is obviously very useful to be able to find patterns of the type described
above, it is even more useful to be able to replace them with something else. A
replacement can be either a literal string, such as 'fred', or it may contain various
special characters. These are as follows:

$ Stands for a carriage return
I c Means CTRL c
\ c Means c (with no special meaning)
& Means whatever was matched by the pattern
% n Means field number n

In the list above, 'c' stands for a character and 'n' stands for a digit between 0 and
9 . The first three items have already been encountered in patterns.

The ampersand '&' is a character which only has a special meaning in the
replacement string (though, as we saw earlier, it still needs to be quoted in patterns).
It means 'whatever the pattern matched'. Clearly, if the pattern was just a literal
such as 'until', then that is what '&' will stand for. However, when wildcards and
repeats are used in the pattern, it is not possible to know exactly what was matched.
Suppose you want to duplicate all digits so that, for example, '1' becomes '11' and
'123' becomes '112233'. This could be achieved with the following global replace:

G l o b a l r e p l a c e : #/&&<RETURN>

Whatever is matched by the pattern will become the ampersand in the replacement.
Notice that although global replacing was used in the example above, the same
replacement string could have been used in a selective replace just as legally.

The final special replacement character acts as a more restricted version of '&'. The
percent sign '%' is followed by a digit n between 0 and 9. This combination stands
for the nth field of the pattern. A 'field' is defined as a wildcard character, a multiple
match (that is, a symbol preceded by ' * ' or '"'), an inverted match (that is, a
character preceded by I " ') , a range ('a-2') or a choice (' C 135791 '). The fields are
numbered from zero on the left. Some examples might make this clearer:

F i n d and r e p l a c e : A*@+.<RETURN>

Here, the characters matched by the '*a' are field 0, and the character matched
by the ' . ' is field 1.

F i n d and r e p l a c e : # # " a * <RETURN>

Here, there are four fields: I # ' , '#: ' "@' and ' * ' respectively.

F i n d and r e p l a c e : "*#"#<RETURN>

This matches any number of non-digits followed by one or more digits. The first
field is '717' and the second field is ' " # I .
Below are some examples of using the fields in replacement strings:

If you want to reverse the order of alternate characters, you can do so as follows:

G l o b a l r e p l a c e : ../XlXO<RETURN>

If you want to delete the % sign from integer variables in BASIC: you can do so
as follows:

G l o b a l r e p l a c e : "@\X/XO<RETURN>

(Note that the quoted '%' sign in the pattern is for the character at the end of BASIC
integer variables.)

If you want to put a 'S' after all variables beginning with 'S-' and delete the 'S-',
you can do so as follows:

G l o b a l r e p l a c e : S-"@/XO\$<RETURN>

(Again, note the quote sign ' \ ' before the 'S' so that it is not treated as a special
character by EDIT.)

Notice that when replacing (rather than simply finding) patterns, you have to be
very precise about what marks the end of a string. For example, to insert '-1' at
the end of all identifiers, it is insufficient to use:

G l o b a l r e p l a c e : @*@/&-I <RETURN>

This will, in fact, cause '-1' to be placed after the first letter of identifiers as the
' *@ ' will match the bare minimum, that is, nothing at all. It is necessary to explicitly
find the last character in the identifier and use the following:

G l o b a 1 r e p l a c e : @*@@/%0%1~1%2<RETURN>

This time the '-1' is placed between the ' * @: that is, the tail of the identifier, and
the '"a' that is, the non-identifier character which marks the end.

More simply, using '"', we could say:

GLoba 1 r e p l a c e - : "@/&-I <RFTURN>

though this uses a less strict rule to determine what constitutes an identifier.

11.13 Using command 'macros'
As mentioned earlier, you can generate strings from function keys if CTRL and SHIFT
are used together with the key. Since EDIT commands are really just characters
above 127, if these are put into function key definitions you can issue several
commands at a single keystroke.

Most usefully, this facility may be used to execute several global replaces in quick
succession. The code of the global replace command is 133. To obtain this in a
function key string ' I ! I E' is used. Thus, to make the string produced by fO replace
all tabs with spaces, the following sequence of commands must be used:

First, press f l to enter an operating system command. Then type the following
(note that you don't need an * before the command:

F X Z 2 8 , l
K E Y O I ! IEII / IM<RETURN>
<RETURN>

The first line sets up the CTRL SHIFT function key status so that this combination
generates strings. The next line programs key zero so that it contains the characters
necessary to perform the global replace: ' I ! I E ' issues the command (as if you'd
typed f5); the ' I I/ ' is the pattern and replacement part, and 'IM' is the RETURN
at the end of the command. The third line returns you to edit mode.

When CTRL SHIFT fO is pressed, the string defined above will be produced. Because
you are holding CTRL and SHIFT down at the same time, the carriage-return at
the end won't be printed. The command will not be executed until you let go of
the keys.

Obviously, you can build up quite useful command strings using the function keys.
Here is a list of the strings required to generate various commands:

Command

f0
f l
f2
f3
f4
f5
f6
f7
f8
f9

TAB
COPY
left
right
down

UP
DELETE

Alone

I!:@
I!IA
I!IB
I!IC
!!ID
I!(E
:!IF
I!IG
I!IH
I!II

I!IJ
I!IK
i!iL
I!IM
:!IN
! ! I 0
I ?

+ SHIFT

i!iP
I!IQ
I!IR
I!IS
:!IT
:!Iu
I!IV
I!IW
I!IX
I!IY

I!iZ
:!I C
I!! \
!!I1
I (I A
1 . 1 *

:!I -
I ?

+ CTRL

: !<SPACE>
I!!
I

I!#
I!$
:!%
I !&
I !'
I !(
I !)

I!*
I!+
:!,
I !-
I!.
I!/
I ?

Notice that you can generate cursor moves since, within the editor, the cursor keys
are treated as extra function keys. As another example, to set-up a key to insert
a file called 'decl' the following would be used:

<f l>
K E Y O I ! I R d e c 1 lM<RETURN>
<RETURN>

Note that it is possible to write 2 command file using EDIT which may then be
'*EXECed'. The method is to put, say, 'f5' in the file as the letter 'f' and the figure
'5' wherever a 'global replace' will be required, and then to perform a global replace,
thus:

G l o b a l r e p l a c e : fSl<fS><RETURN>

where <f5> indicates pressing the f5 key, which will appear as a space on the
display.

12 Using MASM to assemble
your programs
Chapter 3 showed you how to use MASM to assemble a simple program. This
chapter describes the facilities of MASM in more detail.

To start using MASM, you should type the line:

You can do this from the normal system prompt or from the command mode of
all the 6502 Development Package utilities. After MASM has been loaded, it will
enter MODE 7 and print its prompt Action: : Any of the commands described below
can be entered at this point. If you press ESCAPE, MASM will stop what it is doing
as soon as possible and return to command level. Pressing BREAK will have the
same effect, but MASM will not be able to take precautions against corrupting your
files, so only press BREAK in dire emergencies, and NEVER press it when a disc
drive light is on.

If you wish, you can shorten MASM commands to the shortest distinct substring,
for example, instead of the following:

A S M F R E D

you could type:

A F R E D

Beware, however, of commands that have common beginnings, for example, SAVE,
STOP, SYMBOL. Here, the command S will choose the first command beginning
with S that HELP prints.

12.1 MASM commands
This section describes each of the MASM commands in detail.

MASM commands can be typed in upper or lower-case; they mean the same thing
either way. At any time when MASM is waiting for a command, you can give an
operating system command line by prefixing it with ' * '. For example, the command
line:

would produce a catalogue of the currently selected drive.

You can enter the first parameter required by any command on the same line as
the command itself. If it is not given, you will be prompted by MASM. Thus to
turn on an assembly listing, you could use either one of the following lines:

A c t i o n : P R I N T O N

A c t i o n : P R I N T
O p t i o n : ON

File names which you use in commands should obey the rules laid down in the
User Guide for the filing system currently in use. In addition they must be valid
MASM identifiers (whose maximum length is six characters) since if a longer name
is used, MASM only uses the first six characters and will probably, therefore, give
a 'not found' error.

12.1.1 The ASM command (Assemble program)

This is the most important command available in the assembler. Thse dialogue is
as follows:

A c t i o n : ASH < f i l e name>

or:

A c t i o n : ASH

S o u r c e f i Le : <f i Le name>

and you will then be prompted as follows:

M a c r o l i b r a r y :

You can now type the name of a macro library file or, if you have none, you can
press RETURN. If you have typed ASM without a file name attached, you will now
be prompted for the file name. MASM will then look for the source file on the
disc and, if it finds it, try to assemble it. If you specify the name of a non-existent
file, this will result, in an error message. MASM will always return to the command
level after such an error.

The file specified in the ASM command should be of the format described in
previous chapters of this book; any discrepencies will be pointed out. MASM will
give an error message which specifies the type of error and the line number in
the file (and macro if appropriate) where the error was detected. The offending
line will also be printed.

After detecting an error in the first pass, MASM will, in most cases, continue trying
to assemble the file so that all errors will be detected (see the STOP command below,
though). Be warned, however, that one error may generate several more as a 'side
effect: so correcting this one may improve matters considerably. Common errors
are:

- Forgetting the END directive

- Forgetting to define a label

- Misspelling a label

The last two of these are the sort which can generate several error messages from
a single mistake in your source file.

MASM will print which pass it is on at the beginning of the pass. If the first pass
was completed without error, the second pass will be started. During the second
pass, the object file (or files if other source files are 'LNKed' in) is produced; this
contains machine code instructions which correspond to the program being
assembled. The object file will have the same name as the source file, but it will
be held in the directory 'X'. Thus, if you type:

A S M t e s t

MASM will place the object code in a file called 'X.testl. The load and execution
address of this file will be as was specified by the ORG statement in the source
file (or &0000 if no such instruction was given). Addresses in the program will
be set with &0000 as the high-order bytes; this means that your object file will
load into the 6502 Second Processor unless you force it to do otherwise when
you SAVE it (see the SAVE command later).

Your object file can be run using the OS command:

Since all of your source code must be loaded into the Tbbe at once, there is a limit
on the size of this code: it is currently about 17K. However, the LNK directive can
be used to increase the total size of your source program.

12.1.2 The PRINT command (turn listing on or off)

It is helpful, when debugging a program, to have the assembler produce a listing
of the code it has assembled, along with the addresses and values it has generated;
Figure 12.1 shows such a listing. If you use the command

PRINT ON

all subsequent successful assemblies will' produce a listing. You can disable this
facility by using the command:

PRINT OFF

This is the default state upon entering MASM.

Listing can also be controlled from within the source file using the TTL and OPT
directives; these were explained in chapter 5, 'The MASM directives:

To send the listing to your printer as well as to the screen, you need to enable
the device using the appropriate control codes. qp ing CTRL B at any time during
a command input will turn on the printer (if it has been selected properly with
*FX5), and CTRL C will turn the printer off. Use of the printer is explained fully
in the BBC Microcomputer System User Guide. For listings on the screen, you will
find it useful to engage page mode (CTRL N). This can be disengaged by typing
CTRL 0.

A c o r n mac ro a s s e m b l e r Page 1

Pass 1
Pass 2
0001 0000 0070 z e r o p * &70
0002 0000 O R G & I 9 0 0
0003 1 9 0 0 A9 0 0 t e s t LDAIM 0
0004 1902 85 70 STAZ z e r o p
0005 1 9 0 4 A9 1A LDAIM f i n / & I 0 0 + 1
0 0 0 6 1 9 0 6 85 71 STAZ z e r o p + l
0007 1 9 0 8 A0 0 0 LDYIM 0
0008 190A B1 7 0 Loop LDAIY z e r o p
0009 190C 48 P H A
0010 190D A9 A A LDAIM &AA
0011 190F 9 1 7 0 STAIY z e r o p
0012 1911 D l 7 0 CMPIY z e r o p
0013 1913 D O 22 BNE e r r o r
0014 1915 A9 55 LDAIM &55
0015 1 9 1 7 9 1 70 STAIY z e r o p
0 0 1 6 1 9 1 9 D l 70 CMPIY z e r o p
0017 1918 D O 1A BNE e r r o r
0018 1 9 1 0 68 P LA
0019 191E 91 7 0 STAIY z e r o p
0020 1 9 2 0 C8 INY
0021 1921 D O E7 BNE Loop
0022 1923 E6 71 INCZ z e r o p + l
0023 1925 A5 71 LDAZ z e r o p + l
0024 1927 C9 80 CMPIM &80
0025 1 9 2 9 D O D F BNE Loop
0 0 2 6 1928 0 0 B R K

0027 192C 0 1 - - 1
0028 192D 4D 45 4D - - "MEMORY O K "

0 0 2 9 1 9 3 6 0 0 - - 0
0030 1937 0 0 e r r o r BRK
0031 1 9 3 8 02 - - 2
0032 1 9 3 9 40 45 40 - - "MEMORY FAULT"

0033 1945 00 - - 0
0034 1 9 4 6 f i n
0035 1 9 4 6 END
Assemb ly f i n i s h e d , no e r r o r s

Figure 12.1 Sample assembler listing

12.1.3 The WIDTH command (set printer width)

You can specify the width of your output using this command; this can be between
zero and 127 characters. MASM will try to format the output from the assembler
passes (and the SYMBOL command) as neatly as possible within this range. For
viewing on the screen, WIDTH 39 gives the best results, since each line of assembled
code fits on to one screen line. For printers, WIDTH 79 or WIDTH 80 is probably
the best choice. Note that if output is attempted of a line containing a greater number
of characters than that specified by WIDTH the line is truncated to fit that width,
and not wrapped round to the next line.

12.1.4 The LENGTH command (set the printer length)

This command lets you specify the height of pages on your printer. After each page,
MASM gives a form feed (this turns into a clear screen on your display). The
parameter can be in the range zero to 127, but most printers have page lengths
of between 60 and 70 lines (for screen viewing, 127 is probably the best choice).

If you wish, you can force a form feed using the appropriate OPT directive in your
source file.

12.1.5 The SYMBOL command (print a symbol table)

After an assembly, successful or otherwise, you can get a listing of all the symbols
MASM came across in the file. This is very useful when debugging a program, and
you have three alternatives:

S Y M B O L A
S Y M B O L N
S Y M B O L S

The first two give listings in alphabetic or numeric order. The last one prompts
you for a symbol name and then prints its value.

Each symbol is listed, together with the value associated with it (in hex) if this has
been set. Symbols declared but unused are marked with a *. Symbols which are
undefined are given the value XXXX. The format of a table produced by SYMBOL
is affected by the current WIDTH and LENGTH settings.

12.1.6 The STOP command (stop on errors)

If the command:

S T O P O N

is issued before assembling a file, any error will stop the assembly process
immediately. MASM will then wait for you to press ESCAPE, after which control
will be returned to command level.

If you use the command:

S T O P O F F

instead, the whole file will be processed for the first pass regardless of the number
of errors produced. STOP OFF is the default value of the command when you load
MASM.

12.1.7 The SAVE command (save the object file)

The SAVE and GET commands allow you to save files to disc and load them. They
are similar to the 'SAVE and 'LOAD OS commands, but give you more freedom
in the specification of load and execution addresses. If you type:

S A V E <f i l e name>

the following prompts will be given:

Prompt Meaning

Start address This is where the file to be saved starts in the Second
Processor

End address This is where the file to be saved ends in the Second
Processor

Load address This is where you want the file to be reloaded in
memory

Proc. This is the processor in which you want the file to be
reloaded

I for 110 (BBC), T for Tbbe
H host P parasite

Note that I and H are identical in their effect, as are T
and P

Exec, address This is what the execution address should to be set to

Proc. This is the processor in which you want the file to be
executed

The two 'Proc.' prompts are needed to set the high- order bytes of the load and
execution addresses for the file. For example, suppose you want to save a &400
byte section of the Tube processor's memory, starting from &5600. The file is to
be saved with the name 'BODGE' so that it loads at &I600 in the BBC
Microcomputer's memory and starts to execute at &I645 when it is run. The
following dialogue would achieve this:

A c t i o n : SAVE BODGE
S t a r t a d d r e s s : & 5 6 0 0
End a d d r e s s : & 5 A 0 0
L o a d a d d r e s s : & I 6 0 0
P r o c . (T / P / H / I) I
E x e c . a d d r e s s : & I 6 4 5
P r o c . (T / P / H / I) I

You could check that the load and execution addresses, and the length, have been
set as required by using the disc filing system command 'INFO:

* I N F O BODGE

Notice that the addresses you use can be any valid MASM expressions, rather than
just simple numbers. For example, look at the following:

L o a d a d d r e s s : s t a r t
E x e c . a d d r e s s : s t a r t + t a b l e n

Here, 'start' and 'tablen' are symbols in the current symbol table.

12.1.8 The GET command (load a file or files)

This command is complementary to SAVE. After entering:

GET C f i l e name>

the following prompt will be displayed:

New, O w n o r P r e v i o u s a d d r e s s (N / O / P)

The three possible responses to this question have the following meanings:

Response Meaning

-- -

N You want to specify the address at which file will load
(in the 'Ibbe)

0 The file is to be loaded into the address given in its
directory entry, but in the Tube, even if the load
address is in the 110 processor

P The file is to be loaded after the last file loaded

In addition, if the file name ends in a two-digit number (for example, MOS02),
you will be asked for an 'offset'. This specifies the last file you want to load in a
sequence. For example:

A c t i o n : GETMOSOZ
O f f s e t : 0 5
New, Own o r P r e v i o u s a d d r e s s (N / O / P) N
A d d r e s s : & I 2 0 0

This will result in the files MOS02, MOS03, MOS04 and MOS05 being loaded
successively. The first file (MOS02) will be loaded at &I200 and the other three
will be appended to it automatically, whatever the address specified for the first file.

12.1.9 The XREP command (make a cross-reference file)

The XREF command is associated with the cross-reference utility. This is a
debugging tool and it is described in detail in chapter 14, 'Debugging your programs'.
Basically, the cross-reference utility finds all of the occurences of certain symbols
in your source program, thus saving you looking through the entire assembly listing.
To be able to do this, it needs a file which contains all the relevant information.
MASM can be instructed to produce this file by using the XREF command. This
must be issued before assembling the file, so a typical command sequence would be:

A c t i o n : XREF
X r e f o u t p u t f i l e : x r o u t
A c t i o n : ASM s o u r c e

These instructions would assemble the file as normal and also a produce a file called
'xrout'. The latter must be cited when the cross reference utility is used.

12.1.10 The MLEVEL command (suppress macro level information)

To help keep track of local labels, MASM stores information about the points at
which it enters and leaves macros in a local label table. If you have a lot of macros
in your program, this table can become full even when you have no local labels.
You can stop it filling by using the MLEVEL command.

The command has the default value of ON and, if you give it the alternative value
OFF, macro level information will be omitted from the local label table. You give
it the appropriate value by typing one of the following:

M L E V E L O N

M L E V E L O F F

Note that after MLEVEL OFF is issued the macro level specifiers in local label usages
are ignored.

12.1.11 The TERSE command (print conditional assembly source
code)

The TERSE command allows you to print the source code that is ignored by
conditional assembly. To do this, type:

T E R S E O F F

The default value is ON; this suppresses the source code.

13 Producing program
listings
The 6502 Development Package contains a general-purpose printing program: the
PRINT utility. This allows you to print source files on the screen or printer, with
variable-size pages, line numbers and assembler formatting, amongst other things.

To load the utility you type:

* P R I N T

You will then be prompted as follows:

F i l e name:

At this point, you can type one of the OS commands (for example, 'CAT) or the
name of the file to be printed. If you select the latter option, the following prompt
will then be displayed:

P a r a m e t e r s :

Here, you can again type one of the OS commands, or, instead, you can type a
list of PRINT parameters separated by spaces. There are nine parameters which
you can use; they are set by typing the initial letter of the parameter followed by
the value to be assigned to that parameter (where relevant).

The initial letters of the parameters are as follows:

Parameter Meaning

This defines the page width and is set to a default
value of 92

This defines the page length and is set to a default
value of 60

This defines the length of the page heading (title) and
is set to a default value of five

This defines a page heading. It can be any string of up
to 46 characters, enclosed in quotes (""). Its default
value is the filename

This indicates that you want the line number printed
on each line

This indicates that you want the output formatting into
fields as understood by the assembler

This indicates that you want the printer to stop after
printing each page. Printing will be resumed when you
press the SHIFT key

This indicates that you want to output text to the
Econet printer

This runs the print program

You can set these parameters in any order and you will be prompted until the 'R'
parameter is set. Examples of the dialogue are given below:

* P R I N T
F i l e name: TEST1
P a r a m e t e r s : L70
P a r a m e t e r s : W79
P a r a m e t e r s : R

F i l e name: T E S T 2
P a r a m e t e r s : L70 U79 N R

If you wish, you can avoid the 'Parameter' prompt by setting the parameters in
the 'Filename' prompt. In this case, you do not need to use the 'R' parameter: it
will be set automatically. For example:

F i l e name: TEST3 W79 L70 N

There is a version of PRINT called PR which is identical except that it is located
in the 110 processor rather than the 6502 Second Processor, and so may be used
to print source files when a second processor is not available.

Debugging
programs

vour

This chapter is divided into four sections: the first one is a brief introduction to
the principles of debugging and how the MASM utilities can help with this. The
other three sections describe the debugging utilities XREF, SRCXREF, and TTRACE
and BTRACE. If you are an experienced programmer and understand debugging
you can probably omit reading the first section.

14.1 Introduction
Even if you are the world's best programmer your programs will still have bugs
in them at some time. When that time come's you will need all of the tools at your
disposal.

The most useful tool of the lot is the human brain! Every program you write should
be dry run before you put it on to your computer. This involves thinking through
every step in the program and it can save many a wasted hour on the computer.

Later on, most of your bugs will be removed in this way. However, in the beginning
you may not fully understand the nuances of assembly code, and you might expect
different results from an instruction than those which are possible. At this time,
some further debugging tools will help a lot.

Look at the following program, for example:

z e r o p * & 7 0
O R G & I 9 0 0

t e s t LDAIM 0
STAZ z e r o p
LDAIM f i n / & 1 0 0 + 1
STAZ z e r o p + l
LDYIM 0

Loop LDAIY z e r o p
P H A
LDAIM &AA
S T A I Y z e r o p
CMPAY z e r o p
B N E e r r o r
L D A I M 8 5 5
S T A I Y z e r o p

CMPAY z e r o p
BNE e r r o r
P LA
STAIY z e r o p
I N Y
BNE Loop
I N C Z z e r o p + l
LDAZ z e r o p + l
CMPIM &80
BNE l o o p
BRK
- - 0
- - "MEMORY OK"
- - 0

e r r o r BRK
- - 0
- - "MEMORY FAULT"
- - 0

f i n
END

This is similar to the program you developed in chapter 3, 'Developing a simple
MASM program: but a couple of 'bugs' have been introduced into it. If you ran
the program, you would see the following message displayed:

MEMORY FAULT

This might imply that there is something wrong with your 6502 Second Processor,
but as it is the first time you've run the program that should make you suspicious.

The place in the program at which the message is generated is easy to find: it is
at the label 'error: It is also easy to find which parts of the program cause a branch
to 'error', but if your program was a large one there may be many such branches.
When this is the case, you can save yourself a lot of reading by using the cross-
reference utility (XREF). This enables you to find the occurence of various symbols
in an assembly language program. It will tell you the values (if any) of the symbols
and where they are defined.

Before you can use XREF you must produce a cross-reference file which it can
use; this is done using the XREF command in MASM (see chapter 12, 'Using MASM
to assemble your programs'). The following dialogue would produce a cross-
reference file called 'xrout' for you and also assemble your program (which is
assumed to be in the source file 'TEST'):

A c t i o n : XREF
X r e f o u t p u t f i l e : x r o u t
P R I N T ON

(type CTRL B to enable the printer before pressing RETURN)

A c t i o n : ASM TEST

M a c r o L i b r a r y :<RETURN>

Tbrn the printer off with CTRL C.

Next, you can activate XREF by typing:

and it will reply with the prompt:

A c t i o n :

XREF holds a list of symbols which you want it to search for and you need to ADD
'error' to this list. You do it by typing 'ADD error', then, when the prompt:

Symbol :

appears, you should press ESCAPE. You can now get XREF to scan through the
cross-reference file by typing 'XREF' in reply to the 'Action : ' prompt. It will then
prompt you as follows:

X r e f F i Le :

and you should type 'XROUT: XREF will scan the file and print the message:

ERROR d e f i n e d L i n e 0 0 3 0 i n f i l e TEST
ERROR u s e d L i n e 0 0 1 3 i n f i Le TEST
ERROR u s e d L i n e 0 0 1 7 i n f i l e TEST

It will then return to the action prompt

There is another, more limited version of the cross-reference utility which operates
directly upon your source program file without needing MASM. This is called the
source file cross-referencing utility (SRCXREF) and it is described in section 14.3.

Once you have found all the branches to 'error' in your program, you will need
to find out which one caused the 'fatal' result. You can do this using the TRACE
utility First of all, load your program by typing:

Now load the trace utility by typing:

*TTRACE

Note that this is the utility for tracing code in the 6502 Second Processor; if the
code is located in the I10 processor then the BTRACE utility should be used. This
is identical to TTRACE except that it may only be used in mode 7. Throughout
this description TRACE is used to refer to whichever version is being used.

The TRACE utility will reply with the prompt ' + : TRACE will execute your program
and give you reporting information as it does this. You can 'set' different types
of reporting level; for example, it will report the state of the Y register or the
execution address after each instruction. For the first run through, we will ask it
to report the execution address; this should enable us to find out where the branch
to 'error' occurred. You should type:

RT A D D R

to do this. Now, you can get TRACE to run your program by typing:

'EN' sets the entry point of the program and 'CO' continues execution from that
point. TRACE will print out the following list of execution addresses as it runs your
program:

1900
1902
1904
1906
1908
190A
190C
190D
l9OF
1911
1914
1939

MEMORY FAULT

If you look at your assembly listing, you will see that '1939; the last execution
address, is the address of 'error: The address before it, '1914: must be the address
of the instruction which caused the fatal branch to 'error:

Now that we have isolated the code which is causing the trouble, it would be useful
if we could stop the program executing, before it branches to 'error: and look at
what is happening more closely We can do this by inserting what is called a
'breakpoint' in the program at location 1914 (the branch to 'error'). The program
will run until it reaches this point then stop, allowing you to inspect the registers
and memory locations, or even to change their contents. You set the breakpoint
by typing:

Now set the reporting level to report everything, and run the program by typing:

R T A L L
E N & I 900
C 0

You will get a display in the following format, showing you the results of every
instruction executed and the status at the breakpoint (it is best to move to an 80
column mode when using TTRACE if possible):

1900 A 9 00 L D A I M & 0 0 A = 0 1 X = 5 4 Y = 0 7 P = . . l B S = E 2
1 9 0 2 8 5 70 S T A Z & 7 0 A = O O X = 5 4 Y = 0 7 P = . . l B . . Z . S = E 2
1 9 0 4 A 9 1 A L D A I M & 1 A A = O O X = 5 4 Y = 0 7 P = . . 1 B . . Z . S = E 2
1906 8 5 71 S T A Z & 7 1 A = 1 A X = 5 4 Y = 0 7 P = . . l B S = E 2
1908 A 0 00 L D Y I M & 0 0 A = I A X = 5 4 Y = 0 7 P = . . l B S = E 2
1 9 0 A B 1 70 L D A I Y & 7 0 A = I A X = 5 4 Y = O O P = . . 1 B . . Z . S = E 2
1 9 0 C 48 P H A A = A A X = 5 4 Y = O O P = N . I B S = E 2
1 9 0 D A 9 A A L D A I M & A A A = A A X = 5 4 Y = O O P = N . I B S = E 1
1 9 0 F 91 70 S T A I Y & 7 0 A = A A X = 5 4 Y = O O P = N . I B S = E 1
191 1 D 9 70 00 C M P A Y 80070 A = A A X = 5 4 Y = O O P = N . l B S - E l
S t o p p e d a t b r e a k p o i n t
l o 1 4 D O 2 3 B N E & 2 3 A = A A X = 5 4 Y = O O P = N . I B . . . C S = E 1

Note that the contents of some of the registers may not be exactly as shown above,
since they are dependent on the machine configuration.

The CMPAY instruction compares the contents of the accumulator (AA on the last
line of the display) with the contents of (&70 + Y) and branches to the error routine
if they are not equal. You can check the contents of address &0070 by typing the
following:

and you will get the result:

You would probably realise that the instruction should have been a CMPIY
instruction and you could confirm it by treating the contents of addresses &0070
and &0071 as a 16-bit address and looking at their contents, in turn.

These memory locations point to the address &1A00, and you can inspect its
contents by typing:

You will get the result:

The contents of &1A00 are the same as those of the accumulator and it is clearly
this address which the compare instruction should have referenced. You could
prove this by 'patching' the CMPAY instruction with a CMPIY and rerunning the
program. To do this, you type:

P S &I 91 1 (RETURN)
Dl +
+
E A (RETURN)

TRACE will print out the contents of the location before you change it. You type
' + ' to move on to the next location; if you wanted to change the previous location,
you could display it by typing '-'. In the text above, 'Dl' is the CMPIY opcode;
the following address (&70) does not need to be changed. However, since CMPIY
needs one byte less than CMPAY, you have to use a 'no-operation' instruction
(opcode 'EA') as well.

You need to change the CMPAY at address &191A, as well, before you can run your
program successfully. You do this by typing:

P S & 1 9 1 A (RETURN)
Dl +
+
E A (RETURN)

Now get rid of the breakpoint by typing:

(this is the 'breakpoint clear' instruction). You can get rid of the information
reporting facility and run your program by typing:

RT NONE
EN &I 900
C 0

Your program will take much longer to execute than it would normally; this is
because TRACE slows it down by a factor of about 100.

The preceding dialogue has been very simplistic; in reality, you would have spotted
the errors much sooner. However, it serves to illustrate the most common debugging
facilities. These are described in much more detail in the following sections.

14.2 Using the cross-referencer (XREF)
To run the cross referencer, simply type *XREF when the Development Package
disc is in the currently selected drive. This will take you into the command mode.
XREF can only be used if there is a 6502 Second Processor fitted to the BBC
Microcomputer.

The prompt for XREF is:

A c t i o n :

You can get a list of XREF's commands by typing 'HELP' in reply to the action
prompt. You will get the following display:

Commands a v a i l a b l e :

ADD
CLEAR
HELP
I N I T
L I S T
RESULT
SUMMARY
X R E F

A command can be activated by typing the appropriate command name in upper
or lower case. The command can be abandoned at any time by pressing ESCAPE;
this will return you to the menu followed by the prompt. You can enter OS
commands after the 'Action:' prompt by prefixing them with a *, as in:

The purpose of XREF is to help you find the occurence of various symbols in an
assembly language program. It will tell you the symbols' values (if any) and where
they are defined and used throughout the program. In order to do this, XREF needs
a cross-reference file which it can use; this is done using the XREF command in
MASM (see chapter 12, 'Using MASM to assemble your programs', for details).

Below is a description of each of XREF's commands. The first three relate to the
entry of symbols which are to be referenced, the last three are to do with the actual
cross referencing.

14.2.1 The ADD command (add symbols)

The first thing XREF needs is a list of symbols to look up for you. This is entered
using the command ADD. Once the command has been issued, XREF will
repeatedly prompt you as follows:

S y m b o l :

You should reply with a valid symbol name which you expect to find in your
program. XREF will check the symbols in the file using the same rules as MASM,
so replying '123: for example, will produce the following message:

Bad s y m b o l

Once all the symbols have been added, you should rep:y with a single point ' . '
to get back into command mode.

You can also enter the symbols from a file, using the 'EXEC command. For example,
if you envisage using a set of, say, 10 symbols which are common to many of your
programs, the following file could be created with the *BUILD command:

Command : *BUILD comms
0 0 0 1 A
0 0 0 2 s y m b l
0003 symb2

..........
0 0 1 1 s y m b l O
0 0 1 2 .
0 0 1 3 E s c a p e

The first line is the A command (for ADD), then come the ten symbols to be entered,
then the ' . ' to terminate command entry. Once created, the file can be used as
follows:

Command : * E X E C comms

This will cause the file 'comms' to be treated as the input source until its end is
reached. See the Disc Filing System User Guide for more details of *BUILD and
'EXEC.

The maximum number of labels which XREF can handle at once is 1024. This
should be sufficient for most purposes.

14.2.2 The CLEAR command (clear symbol table)

CLEAR will remove a single named symbol from the symbol table. You can type
CLEAR followed by the symbol name in reply to the action prompt. Or you can
issue the command CLEAR, followed by RETURN, and XREF will prompt you as
follows:

S y m b o l :

You should reply with a valid symbol name which you want deleting from the
symbol table. XREF will return you to command mode when it has successfully
deleted your symbol.

14.2.3 The INIT command (initialise symbol table)

This command will restart the program by clearing out the symbol table.

14.2.4 The LIST command (list symbol table)

You can check the current contents of the symbol table by entering the command
LIST. The symbol names will be printed in a simple list across the page, for example,

E R R O R F I N L O O P T E S T Z E R O P

14.2.5 The XREF command (cross-reference a file)

Once the symbols are correct, you need to tell XREF which file you want cross-
referenced. You can type XREF followed by the filename. Typing XREF will produce
the prompt:

X r e f f i l e :

to which you should reply with the name of a file that was produced by MASM
when its XREF command was used. XREF will read this file and look up the names
you entered into the symbol table. It will then print a summary and return to the
prompt stage. If the name given does not refer to a valid cross-reference file then
a 'Read error' will be generated.

14.2.6 The RESULT command (print results)

This should be the command you issue after cross-referencing a file with command
XREF. The program will print a list of the locations (line numbers) and the file at
which the various symbols in the symbol table appear. If there are many symbols
in the table, and/or the file which produced the cross-reference file was very large,
there may be many entries printed out. In this case, it is wise to use a printer to
get a hard-copy of the reults, or alternatively send them to a *SPOOL file where
you can examine them at your leisure. Remember that all the OS * commands can
be issued after the 'Command :' prompt, and the printer can be enabled and disabled
using CTRL B and CTRL C respectively.

After the table of symbols entries has been printed, a summary will appear. This
summary mentions two types of symbols: it gives a warning for any symbols in
the table which were not found at all in the cross-reference file; and it gives a
comment for any symbols which were defined in the source but not used in the
program.

14.2.7 The SUMMARY command (set the summary flag)

The printing of a summary can be disabled using this command. If you type
SUMMARY, the following prompt will appear:

S u m m a r y ? (S e t / U n s e t) :

You should reply 'S' if you want a summary to be printed or 'U' if you don't. Control
then returns to the command level.

14.3 Using the free-standing cross-referencer
(SRCXREF)

The free-standing cross-reference utility is a more-limited version of XREF which
does not need a cross-reference file produced by MASM. To run it , simply type
*SRCXREF when the 6502 Development Package disc is in the currently selected
drive. This will take you into the command mode. SRCXREF can only, be used if
there is a 6502 Second Processor fitted to the BBC Microcomputer.

The prompt for SRCXREF is:

A c t i o n :

You can get a list of SRCXREF's commands by typing:

HELP

and it should be as shown below:

Commands a v a i l a b l e :

ADD
CLEAR
HELP
I N I T
L I S T
RESULT
XREF

A command can be activated by typing the appropriate command name (for example
'ADD') in upper or lower case. It can be abandoned at any time by pressing ESCAPE;
this will return you to command mode. You can enter OS commands after the
'Action:' prompt by prefixing them with a *, as in:

A c t i o n : *CAT

Below is a description of each of SRCXREF's commands.

14.3.1 The ADD command (add symbols)

The first thing SRCXREF needs is a list of symbols to look up for you. This is entered
using the ADD command. Once the command has been issued, SRCXREF will
repeatedly prompt you as follows:

S y m b o l :

You should reply with a valid symbol name which you expect to find in your
program. SRCXREF will check the symbols in the file using the same rules as MASM,
so replying '123: for example, will produce the following message:

Bad s y m b o l

Once all the symbols have been added, you should reply with a single point ' . '
to get back into command mode.

14.3.2 The CLEAR command (remove symbol)

CLEAR is the inverse operation to ADD. It will remove a single named symbol from
the symbol table. Once the command has been issued, SRCXREF will prompt you
as follows:

S y m b o l :

You should reply with a valid symbol name which you want deleting from the
symbol table. When you have done this, SRCXREF will return to command mode.

14.3.3 The INIT command (initialise symbol table)

This command will restart the program by clearing out the symbol table entirely.

14.3.4 The LIST command (list items in symbol table)

You can check the current contents of the symbol table by entering the LIST
command. The symbols will be printed in a simple list across the page, together
with a count, for example:

ERROR LOOP Z E R O P
3 s y m b o l s i n t a b l e

14.3.5 The XREF command (cross-reference a file)

Once the symbols are correct, you need to tell SRCXREF which source file you
want cross-referenced. Typing 'XREF' will produce the prompt:

X r e f f i Le :

to which you should reply with the name of a file at which the cross-referencer
is to start. The referencing will continue along a series of files which have been
'joined' using the LNK directive and will finish when END is encountered or a
LNK file is not found. Note that MASM directives to change drives are ignored,
so you must do this using OS commands.

SRCXREF will read the file(s) and look up the names you entered in the symbol
table. It will then print a summary and return to command mode.

14.3.6 The RESULT command (print results)

This should be the command you issue after using the XREF command. The
program will print the symbol name and a definition of its usage, for example:

E R R O R
E R R O R u s e d a t L i n e 1 5 i n E X A M P L
L O O P
L O O P u s e d a t L i n e 23 i n E X A M P L
Z E R O P
Z E R O P u s e d a t l i n e 6 i n E X A M P L

3 s y m b o l s i n t a b l e

If there are many symbols in the table, there may be many entries printed out.
In this case, it is wise to use a printer to get a hard-copy of the results, or,
alternatively, to send them to a *SPOOL,file where you can examine them at your
leisure. The printer can be enabled and disabled using CTRL B and CTRL C
respectively.

14.4 Using the TRACE utilities (TTRACE and BTRACE)

The TRACE utility comes in two forms and the appropriate form should be
substituted wherever the term TRACE is used throughout this book. BTRACE will
run on the BBC Microcomputer and works on either side of the Tube, however
for use in the 6502 Second Processor the locations used by TTRACE (&E600-&F7FF)
are often more convenient.

Except in special circumstances, every instruction executed by the program is
traced. In most cases this is done by placing them in a 'scratch pad' and allowing
them to run; in other cases (for example, JSR and BRK) it is done by simulation.

Information which you request is reported before the execution of each instruction;
the amount of this information is determined by the current reporting level (defined
in some commands). Errors are reported at the global reporting level (defined by
the 'RT' command) and this may differ from the current reporting level.

You can, if you wish, define an interrupt key. This can be used to break into tracing
or lengthy print operations, for example.

BTRACE occupies the memory from &6AOO to &7C00. It also uses &6800 to &69FF,
as variables area, and locations &7E and &7F in page zero.

TTRACE occupies the memory from &EGO0 to &F7FF. It also uses &E400 to &ESFF,
as variables area, and locations &EO and &El in page zero.

All numbers which are input to TRACE must be in hexadecimal and must be
preceded by '&'. If a one-byte value is expected by TRACE and you give it a two-
byte value, the low byte will be used.

14.4.1 Use of breakpoints and reporting

This group of commands includes the following:

Set breakpoint
Clear breakpoint
Display breakpoints
Set global reporting level
Set reporting high memory point
Set reporting low memory point
Stack trust
Clear trust address
Set trust address
Display trusts
Set interrupt key
Set break high memory point
Set entry point for trace
Continue tracing
Snapshot

Each of the commands is described below.

Set breakpoint (BS)

This command has the following format:

and it will set a breakpoint at <address>. If you do not specify the count, a count
of zero will be assumed.

When <address> is reached, TRACE will break in if the count is zero; otherwise
it will decrement the count and continue.

The following example will set a breakpoint at address &I914 with a count of zero:

Clear breakpoint (BC)

This has the format:

and it removes the breakpoint at <address>.

Display breakpoints (DB)

This gives a list of the currently-set breakpoints, with their counts, in descending
order of address, for example:

To use this command, you merely type 'DB'

Set global reporting level (RT)

This command has the format:

and it defines the 'level' of tracing information output. The following reporting
options are available:

Option Meaning

NONE
AB
ALL
ADDR
HEX
OP
A
X
Y
P
S

Report nothing
Report all but the following options (defined)
Report everything described below
Report the execution address
Report the opcode in hexadecimal form
Report the opcode in mnemonic form
Report contents of A register
Report contents of X register
Report contents of Y register
Report contents of flag register
Report contents of stack pointer

If you do not use the RT command, a default value of XLL' will be used. The output
from this looks like the following:

............
.. 1 9 0 0 A9 0 0 LDAIM & O O A=01 X=54 Y=07 P = . . 1 B . . S=F8

1902 85 7 0 STAZ 870 A=OO X=54 Y=07 P = . .1B. . Z . S=F8

Set reporting high memory point (RH)

This command allows you to define a page address in memory above which
reporting will not take place. It has the format:

Reporting will be suppressed if the program counter high byte equals or exceeds
<byte value>. The default value is &80, corresponding to an address of 32768
decimal.

Set reporting low memory point (RL)

This command allows you to define a page address in memory below which
reporting will not take place. It has the format:

Reporting will be suppressed if the program counter high byte is less than <byte
value>. The default value is &00.

Stack trust (ST)

This command allows you to suppress reporting in subroutines if the stack 'level'
goes below a given value. Its format is:

It is used in conjunction with the TS command (described below): TS allows you
to to suppress reporting in a given subroutine; ST allows you to suppress it in
subroutines below a given 'level'.

Reporting will resume when the stack level returns to the given level or above.

Set trust (TS)

This command adds a trust address to the 'trust table'. It allows you to suppress
the trace output in a particular subroutine. The format of the command is as follows:

If, on tracing a JSR instruction, <address> is found to be in the trust table, reporting
will be temporarily turned off until the stack level rises to the current level or above.

Clear trust address (TC)

This removes a trust address from the trust table. Its format is as follows:

Display trust addresses (DT)

You can display the current trust addresses by typing 'DT: They will be given in
descending order of address and will look something like the following:

Set interrupt key (IK)

If you wish, you can define an interrupt key and this could be used to break into
over-long tracing operations, for example. The format of the command is as follows:

<byte value> corresponds to the value of the key as defined in the section on
INKEY in the BBC Microcomputer System User Guide and must be given in the
hexadecimal form. For example,

would define the '@' key as an interrupt key,

If you are interpreting or printing store, the interrupt key will be checked before
the start of each line of output. If you are tracing, it will be checked at most once
every 256 instructions. When the key is found to be depressed, a return will be
made to command level (the ' + ' prompt).

Set break high-memory point (BH)

If the program counter is above the break high-memory point, the interrupt key
will not be checked. You can specify this address using the BH command. Its format
is as follows:

where <byte value> is the high byte of the address.

The following example would set the break high-memory point to &F000:

Set entry point (EN)

This command is used to define the starting point for tracing. Its format is as follows:

E N <addres s>

EN does not cause tracing to start; this operation is performed by the CO command
(see below).

Continue tracing (CO)

The 'CO' command continues tracing from the current address; it is also used to
start tracing, after you have defined the start point using the 'EN' command. The
format of the command is as follows:

C O <opt i o n a 1 r e p o r t i n g Level>

If a current address has not been defined, the command will fail

The reporting level, if present, will be made the current reporting level; otherwise,
the global reporting level will be used.

Snapshot (SS)

This instruction displays the full status at the start of the current instruction. It
does execute the instruction.

14.4.2 Looking at memory

This group of commands includes the following:

IT Interpret (disassemble) store
PT Print store

Interpret store (IT)

This command allows you to interpret (disassemble) store from the given address;
it displays the addresses and opcodes in the following way:

190F 91 7 0 S T A I Y &70
1911 D l 7 0 C M P I Y &70
1913 E A N O P
1914 D O 23 B N E &23

Standard MASM mnemonics are used.

The format of the command is as follows:

Store will be disassembled from <address> and the process will stop at <optional
address>. If the latter is not present, disassembly will stop at &FFFF. To produce
the above example, the following command would have been used:

Print store (PT)

This command allows you to print store from the given address; it displays the
contents in the following way:

The format of the command is as follows:

Store will be printed from <address> and the process will stop at <optional
address>. If the latter is not present, printing will stop at &FFFF. To produce the
above example, the following command would have been used:

14.4.3 Patching memory and registers

This group of commands includes the following:

PS Patch store locations
PR Patch register

Each of these commands is described below.

Patch store (PS)

This command allows you to modify data and instructions in the computer's
memory. Its format is as follows:

After you type the command, the contents of <address> will be displayed and you
can then modify them. The command is interactive, in that you can modify a
number of locations in succession with the minimum amount of effort. If you type
' + ' after an address, or in place of an address, the contents of the next address
will be displayed and you can modify them also. Similary, if you type ' - ', the
contents of the previous location will be displayed and you can modify these. When
you have finished modifying store, you can return to command level by pressing
either RETURN or ESCAPE.

As an example, the following dialogue will change locations &I911 and &I913 to
&Dl and &EA, respectively:

Here, the underlined items would be typed in by you.

Patch register (PR)

This command allows you to modify ('patch') the contents of the A, X, Y, P or
S register; only one of these can be modified with a single command. Its format
is as follows:

For example, the following commands will alter the X and A registers to &70 and
&FF:

14.4.4 Memory protection

This group of commands includes the following:

SP Store protect
DP Display store protections
SA Store allow (unprotect)

Each of these commands is described below.

Store protect (SP)

If a memory location in your program is being corrupted and you do not know
how this is happening, you can find out by using this command. It has the following
format:

Suppose, for example, that the location &I900 should contain the value '&55', but
it is being changed somewhere in your program. You would type the following:

Each time a store-modifying instruction is obeyed, TRACE would check if it is
altering address &1900. If it is, a message similar to the following will be displayed
and you can inspect the code that is causing the problem:

Protection failure at 1900 was 88 should be 55

Display protections (DP)

This command gives you a list of protected locations, in descending order of
address. All you need do is type in 'DP' and you will get a display which looks
something like the following:

Store allow (SA)

This command removes a given location from the table of protected addresses.
Its format is as follows:

For example, the following command would remove &I900 from the protection
table:

14.4.5 Realtime tracing

Single-stepping through time-critical subroutines to find errors will cause
complications. The commands described below are intended to help you in this
situation. They include the following:

RS Set realtime point
RC Clear realtime point
DR Display realtime points

Set realtime point (RS)

This command has the following format:

<address> will be added to the table of realtime addresses. Whenever a JSR
instruction is executed, its address will be checked against those in the table. If
it is found, then instead of simulating the JSR instruction, the call will be made
from within TRACE and the subroutine will run at real time speed.

Clear realtime point (RC)

This command removes an address from the realtime table. It has the following
format:

Display realtime points (DR)

This command gives you a list of realtime points, with their expected values,in
descending order of addresses. All you need do is type 'DR' and you will get a
display something like the following:

14.4.6 Miscellaneous

Set sideways ROM number (SR)

This command allows you to trace code in sideways ROMs. It has the following
format:

If <hex value> is > = 0, tracing will take place only in the sideways RQM specified.
If it is < 0 tracing will take place in all sideways ROMs.

Since this command applies to the sideways ROMs in the BBC Microcomputer, it
does not apply when tracing in the lbbe.

Restrict tracing of operation codes (TO)

This command restricts the class of operation codes which will be reported. It
has the following format:

the contents of <integer> have the following significance:

<bit> Class of operation codes reported

0 Control codes
1 Loops
2 Stacks and tests
3 Arithmetic and the rest

Thus,

TO &F traces all instructions
TO &3 traces loops and control codes only
TO &8 traces arithmetic instructions

APPENDIX A The macro
substitution method
The following algorithm is used to substitute variables and parameters when a macro
is called:

1 Substitute macro parameters throughout the macro

2 For each line do the following:

(i) If it is not a directive, substitute for string variables in the line

(ii) Else, if the directive is not LCL or GBL, substitute for strings after the
directive

(iii) Else (for LCL or GBL), do nothing

3 Next line, until MEND or MEXIT

APPENDIX B MASM error
messages
MASM error messages can be divided into two groups: those which always stop
an assembly (called 'fatal' errors) and those which stop an assembly only if STOP
ON is set (called 'non-fatal' errors). Both groups are listed below:

B.l MASM fatal errors
Assembly stopped

This is printed at the end of the first pass of an assembly in which one or more
errors were detected.

ASSERT failed

This is caused when the condition part of an ASSERT directive did not yield a TRUE
result. It warns you that something you assumed to be true about the assembly
was not.

Bad command

This is given when MASM does not recognise a command typed in response to
the 'Action:' prompt. The HELP command will cause a list of valid commands to
be displayed.

Bad expression

When one of the expressions given in response to the SAVE command's prompts
cannot be understood by MASM (eg contains an identifier it doesn't know about),
this error is given.

Bad FS

This means 'Bad filing system' as is given when an attempt is made to use disc
MASM on the NetIADFS.

Bad macro definition

This is caused by an error occuring between the MACRO and MEND parts of a
macro definition, eg a badly formed MACRO line.

Bad macro library

If the response to the ASM command's 'Macro library:' prompt does not yield a
string that can be used as a filename, this error is given.

Bad nesting

This is caused by the end marker of one 'structure' being encountered when another
type of structure is still open. It is roughly analogous to ending a FOR loop with
an UNTIL in BASIC. The structures of MASM are WHILE.,WEND, MACRO..MEND,
and [. . ! . . I .

Bad offset

This is caused when the response to the GET command's 'Offset:' prompt does
not yield a suitable number.

Bad option

This is caused by specifying an illegal option in one of the MASM commands. For
example, only 'A' and 'N' are valid SYMBOL options.

Bad processor

This is caused by giving an illegal processor type letter in the SAVE command. Valid
processors are 'T' or 'P' (for the Tube), or 'I' or 'H' (for the 110 processor).

Bad qualifier

This error is given when an attempt is made to assemble a source file in directory
X. This is where MASM puts the object files, so the source file would be overwritten.

Bad value

This occurs in the WIDTH and LENGTH commands when an illegal number is
given.

Can't open

This means that MASM can't open the XREF output file, for example, because a
locked file of the same name already exists.

Code overwriting source

This occurs when the amount of code generated by a program is much larger than
the source code generating it. It should never occur if MASM is used properly.

Doubly defined MACRO

This error is given when the same macro name occurs in more than one MACRO
directive. Macros should only be defined at a single point, and can't be redefined.

ENDlLNK in macro

The only thing that may terminate a macro definition is MEND. If either of the
above directives occurs in a macro definition, this error will be given.

Escape

This is printed whenever the user presses ESCAPE.

Expression stack overflow

This means that an expression in an operand is too complex for MASM to evaluate.
It should only occur in expressions where brackets are nested extremely deeply.

File too big

Source files must be less than 17K. This error means you should split a large source
file into two or more smaller ones.

Heap overflow

This means MASM has run out of space in which to store string variables. It can
only be cured by changing the source program to use shorter strings.

Local label table overflow

This is caused by calling macros with local labels very frequently. See the command
MLEVEL for a way of curing the problem.

Mac def in expansion

This means MASM encountered two MACRO directives without an intervening
MEND. Although macro calls may be nested, macro definitions may not.

Macro nesting too deep

Macros may only call each other (or themselves) to a level of eight deep. Deeper
nesting causes this error.

Macro parameter table full

This occurs when the text to be substituted by macro parameters totals more than
250 characters.

Macro space exhausted

This means MASM has run out of space to save macro definitions. It is very unlikely
that this will happen, but if it does you will have to use fewer or shorter macros.

No macro being defined

This is caused when a MEND directive is encountered without a corresponding
MACRO.

No symbols

This is printed when a SYMBOL command is issued before an ASM or after an ASM
in which no symbols were defined.

Stack fault

Will only occur if there is a bug in MASM: report it to Acornsoft.

Stack overflow

This occurs when structures (WHILE..WEND, C . . I . . I) are nested too deeply. It
will not occur with sensible use of the structures.

Stack underflow

See 'Stack fault'.

Stopped

This is printed when a ! directive is used and causes assembly to stop. See chapter 10.

Symbol table overflow

This occurs when more than 1536 symbols have been encountered in the source.
The BBC MOS, BASIC and Acornsoft COMAL all assemble without this error
occurring, so you shouldn't get it.

Too many macros

See 'Macro space exhausted'.

B.2 MASM non-fatal errors
Bad directive use

This occurs when a symbol used in a directive's expression has not been defined yet.

Bad JMI

This is caused by an instruction of the form JMI &XXFF when MASM is in CPU
0 mode, which will crash when executed on a standard NMOS 6502 (but not the
CMOS type).

Bad label

A label must be between one and seven characters long and may only contains
letter or digits. It must start with a letter. Anything in the label field of a line not
obeying these rules will cause this error to be generated.

Bad local label number

These must be two-digit numbers (see section 8.3).

Bad drfve number

This is printed when the number after a > or < directive is not a valid drive.

Bad opcode

This is caused b y an unrecognised instructionldirective in the opcode field of a
line o f asserhbly source.

Bad operand

This is reported w h e n an expression contains an object which should be an
operand, eg a label or variable, but isn't recognised as such.

Bad operator

This is reported w h e n an expression contains an object which should be an
operator, eg + or :CC:, but isn't recognised as such.

Bad OPT

T h e expression after the OPT directive should lie in the range 0-15.

Bad routine name

T h e name o f a routine (section 8.3) should con form to the same rules as any other
label.

Bad string length request

This occurs w h e n an attempt is made to create a string variable whose length is
greater than 127 characters.

Bad zero page value

This is given w h e n an address operand wh ich should be less than 256 isn't, eg
LDAZX 4321 will give this error.

Badly defined manifest symbol

This occurs w h e n a symbol is forward-referenced too indirectly for the assembler
to resolve it b y the end o f the first pass. An example o f code that might cause this is:

L D A A
A * B
B * 1

In this example, the symbol A is def ined b y a forward reference to B. Thus B will
be k n o w n b y the end of the first pass, but A won ' t be k n o w n until the end o f the
second pass. T h e LDA instruction cannot therefore k n o w the value (and hence
number o f bytes o f) its operand, and cannot be assembled.

Division by zero

This occurs during expression evaluation w h e n the right hand operand o f a divide
operator is zero.

Double defined variable

A variable defined using the GBL directive may only be defined once. Thereafter
it may be set to different values using SET.

End of line missing

This occurs when the end of the source file is encountered halfway through a source
line. All lines in MASM source should be terminated by a carriage return.

Expansion line too long

When string variables and macro parameters are substituted, they may make the
source line longer than it was. If the line grows to more than 250 characters after
substitution, this error will be given.

Label already defined

Once a label has been set to a certain value, it retains it for the rest of the first
pass and all of the second pass. An attempt to redefine a label that has already been
set will yield this error.

Line too long

A source line must be less than 255 characters long, and terminated by a carriage
return character.

Missing t

If the assembler comes across an 'else' (I) or 'endif' and has no corresponding 'if'
(I), this error is given.

Missing WHILE

This error occurs when a WEND directive is encountered and the assembler has
not had a WHILE to match it with.

No current macro

This is given when an attempt is made to access local variables outside of the macro
level. Only global variables may be used outside of macros.

Offset to <label> out of range

This occurs in branch instructions when the destination label is more than 129
bytes after or 126 bytes before the first byte of the branch.

Syntax error

This means that MASM is unable to make any sense of a line of source code.

Too late for LCL directive

The LCL directives must be the initial lines of a macro definition. Inserting other
directives or code-generating lines between the MACRO and LCL will cause an error
to be given.

Too late for ORG

The ORG directive must be given before any code has been generated by the source
in the current file.

To late to change CPU

The CPU directive must be given before any opcodes have been encountered in
the assembly.

Type mismatch

This is given when strings and numbers are mixed illegally in expressions, eg 123
:CC: "MASMn (both operands of :CC: should be strings).

Unknown symbol

This error is caused by an attempt to access a symbol which has not been defined
in an expression.

Unknown variable symbol

This is caused in a similar way to the last error, but refers to symbols that are
preceded by the variable sign '$'.

Index

[45, 72-8
1 45, 72-8
! 59
: 46, 72-8
% 29
< 30
> 33
. 29, 72-8
= 25
& 26
" 27,72-8
@ 27,72-8
27, 72-8
$ 72-8
\ 72-8
* 4, 24
6502 Instructions 9
6 502 Second Processor 1, 32, 83,

9', I03

Absolute addressing 12, 13, 14, 15,
24

Accumulator addressmg 12
Addressing 12 - 25
Assembly language 2
ASSERT 59
Boolean 49
Breakpoints 107, 108, 109
BTRACE 1, 94, 106
Code tracing in sideways ROMs 115
Control characters 66
COPY 61
CPU 32
The cross-referencer cornrnands

ADD 101
CLEAR 102

INIT 102
LIST 102
XREF 102
RESULT 103
SUMMARY 103

Cross-referencing a non MASM
file 103

CTRL B 7
CTRL C 7
Cursor edit mode 62, 63
Declaring symbols 24
Defining a byte of data 25
Defining byte pair 26
Defining page titles 31
Defining the start of code 29
DELETE 61
Descriptive mode 64
Display mode 63
End of file marker 4
Ending an assembly(END) 31
END IF 4 5
EDIT 1, 4, 60, 62, 63, 80
Errors 59, 83
File cross-referencing 89, 96
File loading 64, 88
File printing 91
File saving 64
Forming a closure 73, 74
Forward references 3, 24
Function key card 1
GBLA 50
GBLL 50
GBLS 50
Generating command strings 79
Global operations 71
Global variables 50, 53
HELP 104
High level languages 2, 17. 30
IF 45
Immediate addressing 12

Implied addressing 12
Indirect addressing 14
IOMASM 1
LAND 49
LCLA 50
LCLL 50
LCLS 50
LEOR 49
Limiting global operations 71
Listing a program 91
LNK 30
LNOT 49
Local variables 50, 53, 54. 55
Logical operators 48
Loop directives 56, 5;: 58. 61
LOR 49
Machine code 2 , 3, 30
Macro directive 39, 56, 58, 78
Macro library 6, 44, 82
Macros 38, 52

formal definition 38-39
formal parameters 38-39
formal parameters default
value 40
header line 39

Markers 71
MASM commands 81-83

ASM 82
PRINT 84
WIDTH 86
LENGTH 86
SYMBOL 86
STOP 86
GET 88
XREF 89
TERSE 46, 90
MLEVEL 90
SAVE 87

MASM directives 24-33, 45, 50, 84
MASM tnnenomics 10, 11

SIXShl operators
arithmetic 19
logical 20. 48, 49
relational 48
rotation 20
shift 20
string 21

MAS31 source code
comment 16
label 16, 1'
opcode 16
operand 10

hIAShI symbols 1'. 18. 24
h1ASR.I unary operators

arith~netic 21
NOT 22
string 22

hIEXIT directive 58
Numeric constants 18
Object code 3
ORG 29
Operand 16
Opcode 16
Operating system co~nrnands 6, 2 3 .

34-3', 60-68. -9, 92
OPT 32
Patterns '2-'8
PR 1
Presetting store 29
PRINT 1, 59, 84, 93
Program counter 29
Protecting memory 113
Realtime tracing commands

Set realtirne points 114

Clear realtime point 114
Display realtime point l I +

Kegular expressions '2
Relative addressing 14
Reserving variable space 2'
Restricting operation code

reporting 115
ROUT 53
Routine labels 53-55
Searching 72-75
SET directives 51
Setting a breakpoint 98
Setting file parameters 91-93
Setting print options 32
SHIFT COPY 63
SHIFT f O 70, 79
SHIFT fl 66, 79
SHIFT f2 64, 79
SHIFT f3 64, 67, 79
SHIFT f4 70, 79
SHIFT f5 63, 67, 70, 71, 79
SHIFT f6 67, 70, 79
SHIFT f7 67, 68, 79
SHIFT f8 67, 79
SHIFT f9 65, 79
Source code 3
SRCXREF commands

ADD 104
CLEAR 105
INIT 105
LIST 105
XREF 105
Display breakpoints 108
Set global reporting level 108
Set reporting high memory
point 108
Set reporting low memory
point 109
Stack trust 109
Set trust 109
Clear trust address 109
Display trust address 109
RESULT 106

SRCXREF 1, 94, 96, 103-108
Status line 4
String constants 18

String operations 70-80
Switching mode 66
Symbol table' 3
TAB 61
Text copying 67, 68
Text deletion 64, 67
Text global operations 67, 69, 70,

71, 73, 76, 77, 78
Text insertiom from a file 64
Text loading 64-65
Text moving 67, 68
Text restoration 64
Text saving 67
TRACE commands

Set breakpoint 107
Clear breakpoint 107
Set interupt key 110
Set break high-memory point 110
Set entry point 110
Continue tracing 110
Snapshot 111
Interpret store 111
Print store 111
Patch store 112
Patch register 112
Store protect 113
Display protections 113
Store allow 113

Tracing in citical subroutines 114
TTL 31
TTRACE 1, 94, 97, 106
Using the special instruction set 32
WEND 56
WHILE 56, 57, 58
XREF 1, 94, 95, 96, 100
XREF commands 100

ADD 101
CLEAR 102
INIT 102
LIST 102

RESULT 103
SUIMMARY 103
XREF 102

Zero page addressing 12, 13, 14, 15.

24, 2 5

