@» COMPUTER COMPANY LIMITED

" BBC MICI

DFS MANUAL

CONTENTS

‘What is a disc system?

A digc drive

Disc filing system
Controlling the filing systenm
Summary

Getting Going

Connecting the disc drive
Starting the filing system
Copying the master disc

Discs

Handling

Prevention of accidental erasure
Tracks, sectors and bytes

What is formatting?

Disc files

File specification
Multi-file operations
Auto-start facilities
Library files

The filing system commands

The filing system utilities
Formatting

Random access files

Using the filing system in assembler
General principles

Read/write one byte

Read/write a group of bytes
Read/write a sector

Changing filing systems

Error messages

16

20

50

53

57

63

64

1"

12

Technical information

18 bit addressing

Disc catalogue

File system initialisation and !BOOT
The floppy disc drive parameters

Filing system command summary

Index

66

69

71

1 WHAT IS A DISC SYSTEM?

If you have never used a computer with discs before there are one or two
new concepts which you will need to learn.

A DISC DRIVE

As you probably know, computers have internal memory called Random Access
Memory or RAM. When you type in your program it is stored in RAM. However
when you switch off the computer. everything stored in RAM is lost, so if
you need the program again. you have to re-type it. To overcome this
problem the computer must be able to transfer the contents of RAM into some
form of permanent or "non-volatile” storage before you switch it off. The
User Guide which comes with your BBC computer describes how to use a
cassette recorder for this purpose. Transferring a program from RAM to
tape is called Saving it, transferring from tape back to RAM is called
loading it. The disadvantages of using tape are:

(a) The process of saving and loading is quite slow

(b) You need to keep track of where on the tape each piece of information
is 8o that you do not record over it.

(c) You have to wind the tape to the right place yourself.

(@) Winding from one end of the tape to the other is slow.

(e) It is not possible to wind the tape to a particular point accur-tely

A disc system does not have these disadvantages.

To help you to understand how a disc system works, we shall draw some
comparisons with a filing cabinet. A disc system always includes at least
one disc drive. The BBC computer's disc drives are buff coloured metal
boxes. The front of a disc drive is black. These are floppy disc drives,
as distinct from fixed disc drives, which you may have heard of. The disc
drive can be compared to an empty filing cabinet with no drawers in it yet.

Just as a filing cabinet is pretty useless without drawexs, so a disc drive
cannot do much without discs. The discs used with the BBC computer are
5.25" soft~sectored floppy discs. They can be inserted and removed from
the disc drive via the slot in the front. There is one right way of
ingerting them, and several wrong ways. As in the case of the filing
cabinet drawers. putting them in the wrong way is a waste of time. Diagram
1 on page 7 shows the correct way to insert a disc. To reinforce this:

Discs should be inserted with the label upwards and with the
edge nearest the label in your hand. The edge opposite to
the label and the read/write slot of the disc go in first.

WB The back of the disc drive has some cables coming out of it. These are
to connect the computer.

Diagram 2 shows and names the various parts of a disc and chapter 3
"Discs” gives more detailed information about them. The discs hold the
information. You can change the discs in the drive just like you can
change the cassettes in a cassette recorder. So you can use lots of discs
to store information, but you can only read the information from one disc
at a time. Just as a music cassette may have several different songs on

it, a disc may have different groups of information and these are called
"files". Files can have any information in them. Typical examples would
be one of your programs or gome data generated by a program which you wish
to keep.

Returning again to the comparisons with a filing cabinet, opening a
drawver and throwing all the papers in it at random would make it difficult
to find them again. To solve this problem, people usually put dividers
into a filing cabinet drawer, and often these are labelled alphabetically.
The result is that the information is grouped so that you can find it again
quickly. The same principle is followed when the computer puts information
on to a disc. When you first buy discs, they are blank - like empty
drawers. Before the computer can put any information on them, the discs
are first prepared by having marks put on them. which divide the discs into
sectors. "Sectors" is the name given to a set of equal divisions created on
the disc by the computer. (See diagram 5). This operation is called
“"Formatting® and is fully described in chapter 6.

When you insert the disc into the disc drive and close the drive door
a rotating boss engages with the central hole in the disc and spins the
magnetic disc inside its protective jacket. (Do not confuse the protecting
jacket with the disc envelope, see diagram 2). In order to read or write
information on to the disc the disc drive has a "Read/Write head" This
head is designed to move in and out along the "Head Slot" in the disc
jacket. This head actually rests on the surface of the magnetic disc as it
rotates inside the jacket. When you want to read some of the information
on the disc, you give the computer the name of the file containing that
information. The computer will move the read/write head to the sector on
the disc where the start of the information in the named file is recorded.
This is equivalent to you opening the filing cabinet drawer, looking along
the dividers until you find the one you want, and t}\en preparing to remove
the relevant file for reading.

At this point it is worth noting that your files may be too large to
fit into the fixed size of one sector This is no problem. A file always
begins in a new sector but may occupy a number of sectors following the
first. Each sector can hold up to 256 characters or "bytes"”.

DISC FPILING SYSTEM

We mentioned five comparative disadvantages of using a cassette recorder
to store information. These may be partly summarised by saying:

You have to control the cassette recorder and keep track

of the information on it.

When using a disc this is all done for you by the "Disc Filing
System”.
The disc filing system is a machine code program produced by the computer
manufacturer. On the BBC computer it is stored in a special kind of memory
inside the computer called "Read Only Memory" or ROM. The program is not
lost when you switch the computer off; once installed, it is always there.
All the actions of the d@isc drives ara controlled by the computer using
this program. When you prepare new discs by formatting them this is done

by the disc filing system When you SAVE one of your BASIC programs the
disc filing system does the following:

- Starts the disc drive working

~ Finds a free place on the disc big enough for your program

- Makes a note of where it put your program in order to be able to find it
again.

- Moves the disc drive's read/write head accurately to the start of the
first sector in the free space.

~ Transfers a copy of your program from the RAM to the disc

- Stops the Adisc drive

All this is done without you having to think about it and is quite a bit
quicker than saving a program on to a cassette tape.

When you save a program you have to give it a name. This is true for
the disc system as well as the cassette system. However, the disc filing
system puts the name to special use. The first two sectors on every disc
are'reserved for a “catalogue" when the disc is formatted.

The name of your program, referred to as a "filename" ig written into the
catalogue together with the number of the sector on the disc where the
information etarts. (Note it may continue over several sectors). When you
want the file containing your program back again you simply type LOAD
“filename". The filing system checks the catalogue to find out where on
the disc to find that file, and then moves the read/write head to that
exact place on the disc. The file is then loaded into the computer's
memory (RAM) automatically. This illustrates another advantage of a disc
drive. The read/write head can be quickly moved to any point on the disac
with great accuracy. (Incidentally, the precision engineering needed to
accomplish this explains why disc drives cost so much more than cassette
recorders) .

Because of this accuracy, a number of other facilities are available
besides Loading and Saving programs. These include the ability to Copy,
Delete, Build and Rename files. Additional facilities let you examine a
disc catalogue, restrict access to files or move directly to specific
points within a file.

As a final comparison, imagine an automatic filing cabinet where to
find something all you have to do is specify the name of a document and
paragraph number within it. The filing cabinet drawer opens, the correct
divider is selected, the document is located and then presented to you open
at the appropriate page. It is not hard to see why microcomputers have
become so popular in offices.

CONTROLLING THE PILING SYSTEM

The filing system controls the disc drive but in turn we must be able to
give instructions to the filing system. Two ways are provided. One is by
typing a special command word preceded by the "*". These are all listed in
chapter 5 together with details of their functions. Any of these direct
commands can be incorporated in a program if required. Chapter 7 of this
manual describes the use of a number of BASIC keywords, with special refer-
ence to files created on a disc. All these keywords are introduced in the
main User Guide.

Summary
—'A disc system includes a disc drive, some discs, a connection to the
computer and a machine code program permanently in the computer called a

“disc filing system”.

- A disc is inserted into the disc drive where it spins round inside its
protective jacket.

~ The disc drive's read/write head moves in and out along a radiuc of the
disc as it spins around.

- The disc filing system controls the disc drive and the movement of the
head.

- Discs are divided into sectors by the filing system and the first two
sectors are reserved for a catalogue.

- Programs and other information are stored on the disc and are given a
"filename".

- By reference to the catalogue the filing system can find any information
on a disc associated with a specified filename.

- Files can occupy more than one sector.
= Procedures are provided to locate particular points in files.

- Instructions may be given to the filing system by direct connand or £tol
within a program.

2 GETTING GOING

With the power turned off, connect the two cables from the disc drive to
the underside of the computer as shown in diagram 1. The plugs are
designed so that they will only fit one way. The plug on the power cable
is shaped like a rectangle with two adjacent corners cut off. DO NOT FORCE
it in the wrong way round. Sometimes the plug on the ribbon cable has a
lump on one side which locates into a notch in the socket on the computer.
However where this aid is not present you may have to try both possible
ways before you get it right. When the drive is connected, turn on the
pover and press BREAK. The following message, or one very similar, should
appear on the screen:

BBC Computer
Acorn DFS
BASIC

>

This indicates that the disc filing system is installed and working O.K.

‘Now press SHIPY and BREAK holding both keys down together. The disc drive
motor will start turning for a couple of seconds and the red 1ight on the
front of the drive will come on. This shows that the disc is properly
connected and working. If nothing happens, check the connections between
the disc and computer.

The foregoing assumes that the auto-start option has been set to work
when SHIFY is held down with BREAK - see Chapter 10.

Insert the utilities disc into drive 0. (With dual drives, drive 0 is
the one directly connected to the computer. See diagram 1, page 7). Press
SHIPT and BREAK again. This time the following message will appear on the
screen:

Midwich Computer Co Ltd
Utilities Disc
Press PO for 40 Track, press F1 for 80 Track

Pressing FO or F1 produces the following display:

FO Format Drive
F1 Format Drive
F2 Format Drive
F3 Pormat Drive
F4 Verify Drive
F5 Verify Drive
F6 Verify Drive
F7 Verify Drive

WN2O0OWN=0

This is an example of a IBOOT file which will be explained in more detail
later. When the > prompt reappears on the screen you can start entering
your programs of filing system commands, but before you do that, read the
next two chapters: "Discs" and “Disc Files".

Diagram 1 - Connecting the disc drive

@)
ol

e e——
e end
e
SRR
e ——
[r——
| ———
L e —
| eoraeam———
[e
SRS

g :

.

b % W 3§ ‘w‘_’ j oot

°) hd
fanY
c o o C
30w Aboer 3 A
sonnecter
—n™ lecanng
noxh

3 DISCS

The BBC Microcomputer uses 5 25" discs for storing information. You may
have heard them referred to as a "floppy discs”, "discettes”, or "mini-
discs”, we will always refer to them simply as discs. (The American
spelling is daisk).

HANDLING

Discs should be handled with care to avoid physical damage or damage to the
recorded information. Diagram 2 will help you to identify the various
parts of the disc that we are referring to. The following guidelines
should be observed:

- Do not try to remove the circular magnetic disc from the square, black
protective jacket covering it.

~ Do not touch the exposed recording surfaces.

~ Avoid dust. Put the discs back into their envelopes when they are not
in the disc drive.

- Do not bend them, drop them on the floor or put heavy objects on themn.

- Keep them in a storage box designed for the purpose.

- Keep them away from strong magnetic fields such as those generated by
televisions, monitors, tape recorders, telephones, transformers, calcu-
lators etc.

~ Avoid excessive heat, moisture and direct sunlight.

- Only use felt-tipped pens to write on the labels and don't press hard.

- Insert discs into the drive carefully. If it rotates noisily open the
drive door and adjust it.

Information is packed quite densely onto the disc, so it is sensitive
to even very small scratches and particles of food, dust or tobacco.

The foregoing is deliberately comprehensive but do not let it frighten
you from using the discs. Handled gensibly, a disc will give good service.

Diagram 2 - A 5.25" disc

10

PREVENTING ACCIDENTAL ERASURE

You will notice from diagram 2 that there is a small notch in the side of a
disc called the "write-protection” notch. It is used to protect the
information on a disc from being overwritten. Every box of discs is
supplied with a number of adhesive tabs which can be used to cover the
write-protection notch in the disc. The diagram below shows that covering
the notch with one of the adhesive tabs will prevent the disc drive from
writing to the disc and from deleting anything on it. Reading the existing
information on the discs is still allowed.

Write protection sticker Write protection notch

me=lma—

)

Protecied Unprotecied

Another way of protecting important information is to keep several copies
of it on different discs. Where computers are used in business, industry
or other activities which use large volumes of information, a standard
routine for this has been evolved. It is often called the "Grandfather,
Father, Son" principle of copying information. Applying this principle to
protecting your own information will be beneficial.

It works as follows:

Day 1, MASTER copied to GRANDFATHER
Day 2, MASTER copied to FATHER
Day 3, MASTER copied to SON

As you can see, it involves keeping three separate discs, each with a copy
of the information from the mastered disc on it. On day 4 the master would
be copied to the grandfather again and so the cycle continues. 1In business
where information on discs changes from day to day this regular routine is
important. For personal computing it is not so vital, but you will want to
keep several copies of important programs and information which you have
worked hard to produce. The filing system provides two facilities which
making copying information easy. These are *BACKUP and *COPY which allow
you to copy a complete disc or specified sections of it. See diagrams 3
and 4 and the appropriate sections of chapter 5 for full details. We
suggest that you make a copy of your utilities disc nowl!

Proceed as follows

If it has not been done already, write-protect the Utilities with a tab as
described. This is very important otherwise you might lose all the inform-
ation on the disc.

11

Insert the utilities disc into drive 0 and type SHIFT and BREAK select FO
if you have 40 Track Drives or Fl1 if you have 80 Track Drives.
Now press the function key corresponding to the task you wish to carry out.
When formatting, the machine will respond with the following message.

nn Track Formatter Version 1.00

Format drive ** (nn tracks) Y/N :

Where nn is either 40 or 80 depending on the type of drive you are using
and ** {s the drive No. you have chosen.

When verifyfing, the machine will respond with the following message.

Disc Verifier Versiom 1.00

Verify drive ** Y/N :
Where ** ig the drive No. you have chosen
IN EITHER CASE PLACE THE DISC YOU WISH TO FORMAT OR VERIFY IN THE DRIVE
CHOSEN. THEN ANSWER Y TO THE PROMPT. Any other answer will result in the
progran stopping and you will have to start again.
NOTES.

Formatting prepares new discs for use by the computer. (See page 14)
FORMATTING DESTROYS ANY DATA ALREADY ON THE DISC.

Verifying is & process of quickly reading the whole of the disc to check
that it is okay.

When you have formatted your first new disc it may be a good idea to make a
copy of your utilities disc using the *BACKUP utility (page 22)

12

Diagram 3 - Copying

13

TRACKS, SECTORS AND BYTES

Information is written on to the disc in concentric circles, called tracks.
Each track is divided into ten sectors. Each sector is further divided
into 256 bytes. Space on the disc and in the computer's memory is measured
in bytes. One byte corresponds to one character. 256 of the bytes in each
sector are available for storing your programs and data. From this it
follows that a 40 track single-sided, single track density disc of the type
used in the single drive unit will holad:

40 tracks x 10 sectors x 256 bytes = 102400 bytes

or characters of information. The dual drive unit uses double-sided double
track density discs. Therefore with 80 tracks on each side, one disc will
hold

160 tracks x 10 sectors x 256 bytes = 409600 bytes

or characters of information.

WHAT IS FORMATTING?

The disc filing system automatically records the location of your programs
and data on the disc. The first two sectors on track zero of a disc are
reserved for this purpose. The "catalogue"” of a disc is recorded in these
sectors. Whenever you wish to access a piece of information on the disc,
the filing system reads the catalogue first to find out where on the disc
it can be found. The tracks and sectors are the reference marks on disc
which make this possible.

Clearly before a disc can be used by the filing system for storing
your information it must have these "reference marks" put on it. All new
discs must be prepared in this way. The process is called "formatting”.
It includes setting up the track and sector format on the disc and creating
the catalogue. (Full details are provided in the technical information on
page 66).

Each sector on each track is given a unique three digit identifier in the
catalogue. The first two digits are the track number, the last one is the
sector number. The sectors are numbered 0 to 9 and the tracks 00 to 39 or
79 if it i8 an 80 track disc.

'rhq important thing to remember is that new discs must be formatted before
you can use them with your computer.

14

Diagram 5 - Tracks, sectors, bytes

Track 39

(78 it double density)

15

4 DISC FILES

Probably the first thing you will want to do with the filing system is to
record one of your programs onto a disc. You can do this simply by using
the BAVE command in BASIC and the filing system takes care of the rest.
(NB Not to be confused with *SAVE described later in this manual). When
you have typed the program into the computer the SAVE command causes it to
be copied on to the disc. When SAVE'd the program must be given a name.
This is called the filename and is used to refer to the program if you
later want to copy it back from the disc. Each program BAVE'd on to the
same drive must be given a unique name. The format of the SAVE command is:

SAVE “filename"

where "filename" can be up to 7 characters. Letters and digits are allowed.
The characters

[2 AN
have special -e{nlnga which are explained later.

The filename is written into the catalogue together with the sector
number where the information starts. Next time you refer to the filename
the £filing system checks the catalogue to see where the information has
been placed on the disc, the old file is deleted and replaced by the new
one. The filing system ensures that each new file begins with a new
sector.

PILE SPECIPICATIONS
The full specification for a file is

:Drive number. Directory. Filename
:<arvd>. <dir>. <Filename>.
e.g:

s 1. Z. NYPROG1

Notice the drive number, directory, and filename are separated by full
stops. These are needed so that the computer can distinguish the separate
parts of the file specification.

Drive numbers must be in the range 0 to 3 and preceded by a : (colon). The
colon in effect tells the computer. “This is the start of a file specifi-
cation, the drive number follows.”

The drives are numbered as shown below. Notice that each side of a
double-sided disc is given a separate drive number.

Single-drive, single-sided
Drive 0

16

Dual~drive, double sided
Drive 0 Drive 1

Drive 2 Drive 3

The effect of including the drive number in the full specification is that
:1.$.MYPROG 1 is different from :2.$.MYPROG1 although the file names are
the same, they are on different drives.

DIRECTORIES

The directory is a single character used to divide the catalogue into
independent sections. Files of the same name can be created on the same
disc with Aifferent directories. Although on the same drive,

:1.$.MYPROG is a different file from 1.A.MYPROG

because the directory is different.

FPILENANES

The filename can be up to seven of most of the characters on the keyboard
in any combination, except the four previously mentioned. When we need to
refer to the complete file specification in future we will use the abbrev-
iation <fsp>.

When the filing system is started by pressing BREAK or SHIPT BREAK,
the current directory and drive number is always set to DRIVE 0 and
DIRECTORY $. The drive and directory can therefore be omitted from file
specifications. They will be assumed to have these values.

TYPING

SAVE “MYPROG"

will automatically store your program in a file named

:0.8.MYPROG

assuming you have not changed the current drive and directory. (Chapter 5
"The filing system commands” explains how you can change the current drive
and directory with the commands *DRIVE and *DIR)

MOLTI-FILE OPERATIONS

Another common term used to refer to multi-file operations is "Wildcarad”
facilities. Some of the filing system commands can operate on a number of
files instead of just one. These are all followed by the abbreviation
<afsp> instead of <fsp>. <afsp> stands for "ambiguous file specification”.
¢INFO is an example of such a command. It provides information about a
named file, e.g:

*INFO :0.$.MYPROG

will display information about the file named MYPROG in directory $ on
drive 0.

17

However, it is possible that you want information about a number of
files. The "WILDCARD" facilities enable you to specify several files for
the command to operate on. The wildcards are provided by the characters *
and # which have special meanings when they appear in the file specifi-
cation, e.g:

*INPFO :04.MYPROG
means: "Display information about files called MYPROG in any directory on
drive O".

*INFO :0.$.MYPROGH
means; Display information about all files on drive 0 on directory $ with
names starting "MYPROG" followed by any SINGLE character. e.qg:

MYPROA, MYPROT and MYPROG and so on.

The character * means multiple #'s to the end of the field, e.g

INFO :0.8.M

will display information about any files on drive 0 and directory $ whose
names begin with M.

AUTO-START PACILITIES

Sometimes it is useful to make a program or a file on one of your discs
*LOAD, *RUN or *EXEC automatically when you insert the Qisc and press
BREAK. This can be done using a file named 1BOOT.

1BOOT is a special filename recognised by the filing system when you
start the computer by pressing SHIPT BREAK. If there is a file of
specification

:0.8.1BOOT

the filing system will do one of four things according to the OPTION set
and the disc using *OPT 4,n see chapter S.

Option 0: ignores 1BOOT

Option ?t: *LOAD's IBOOT into memory

Option 2: ®*RUN's |1BOOT as a machine code program not a BASIC program
Option 3: *EXEC's !BOOT

See Chapter 5 "The filing system commands®” under the section *EXEC for an
explanation of option 3. That section also describes how to use this auto-
start facility to make the computer run one of your BASIC programs auto-
matically.

The Options can be changed using the *OPT 4 command. The "Hello"
program on the filing system utiities disc is loaded using a IBOOT file.

As well as programs, you may wish to store data on the discs. The
filing sytem provides special facilities for storing and retrieving the
data quickly and selectively under the control of your programs.

One of the methods is to use a type of file called a "Random Access
File” - see Chapter 7.

i8

LIBRARY DIRECTORY

The disc file system enables you to specify one drive/directory as the
"Library”. This will always be set to :0.$ when you start the computer by
pressing BREAK. It can be altered using the filing system command *LIB,
until the next BREAK. All the utility programs should be located in the
library. This is because when you type

* (Utility name)

it is equivalent to typing

*ROW (Utility name)

where the drive and directory are omitted and will be assumed to be either
the current drive/directory or the Library. The filing system will firet

search the current drive/directory for the file and then, if it cannot find
it there, it searches the Library.

19

5 THE FILING SYSTEM COMMANDS

The Disc Filing System is an BK byte program. BASIC programs are stored on
a disc or tape, but the filing system is stored in Read Only Memory (ROM)
inside the BBC computer. The filing syastem controls the reading and
writing of information to and from the discs and provides a number of
useful facilities for maintaining that information. The following pages
describe all the filing system commands. They are words which the filing
system program will recognise and act on. They can be typed directly on to
the keyboard or embedded within your BASIC program. They are all prefixed
with the * character which signals the computer that a filing system
command follows. Each command is described under a number of sections with
headings as follows:

COMMARD
This is followed by a syntax abbreviation and a few words explaining the
derivation of the word.

<drv> = dArive’

<fsp> = file specification

<dir> = directory

<afsp>= ambiguous file specification

PURPOSE
A plain English description of what the command does.

EXAMPLES
This section gives a few one-line examples of the use of the commands.
These examples are only intended to be illustrative.

DESCRIPTION
A description of the command using normal computer jargon

ASSOCIATED COMMANDS
This section lists commands which have similar functions or are normally
used in conjunction with this command.

DENORSTRATION PROGRAM
If appropriate a short program is included to illustrate use of the filing
system command in a BASIC program.

Particular points to watch for or special applications of the command are
covered by additional notes if necessary.

DIAGRANS
Diagrams are used where they make a function of a command clearer.

20

*ACCESS <arsp> (L)

PURPOSE

To prevent a file from being deleted or overwritten. The command "locks"
or "unlocks" a file. You cannot delete, overwrite or write to a locked
file until you unlock it again. If you load a file which is locked, you
will not be able to save it again with the same name. This is because
saving a file with the same name as one already on the disc causes the one
on the disc to be deleted and replaced with the new file. A locked file
cannot be deleted.

EXAMPLE
*ACCESS HELLO L
This locks the file HELLO.

*ACCESS HELLO

unlocks it again so that it can be deleted or overwritten.

DESCRIPTION

Sets or un-sets file protection on a named file. It prevents a number of
other filing system commands from acting on the file.

NOTES
Once locked, a file will not be affected by the following commands:

*SAVE

*DRLETE

*WIrR

*RENAME

*DESTROY

If you attempt to use any of these commands on a locked file the message
rile locked

is producead.

If you attempt to use *ACCESS on a write protected disc the message
Disc write protected
is produced.

Locking a file does NOT prevent it from being removed from a disc with
*PORM40 or *FORMBO or from being overwritten with *BACKUP.

21

*BACKUP (source DRY) (DEST. DRvV)

PURPOSE

To read all the information on one disc and write it to another, producing
two discs with identical information.

EXANPLE

*EWABLE
*BACKOP 0 1

copies all the information on drive 0 onto drive 1.

DESCRIPTION

Sector by sector copy program.

ASSOCIATED COMMANDS
*COPY
SEWAELE
WOTES
*EMABLE must be typed before the command will work, otherwise the message
Bot Enabled
is displayed.
If you give 0 as the source and destination drives, eg:
*BACXUP 0 O
the program will alternatively ask you to insert the source and destination
discs into drive 0. This makes it possible to copy discs even if you only
have a single drive. A 40 track disc is copied in 5 sections.

Diagram 4 in chapter 3 illustrates the process.

All the information previously on the destination disc is overwritten
80 be careful not to confuse the source and destination discs. If the
source disc is blank the destination disc will end up blank as well.

The contents of memory may be overwritten by this command. If you have a
program or some data in memory that you want to keep, save it before you
use the command.

22

*BUILD <Fsp>

PURPOSE

To create a file directly from the keyboard. After typing this command
everything else entered will go into the named file. This is useful for
creating EXBC files and the I1BOOT file described in Chapter 3.

EXANPLE

*BUILD !BOOT

will cause everything subsequently typed in to be entered into a file
called I1BOOT

Line numbers are displayed on the screen to prompt you to enter your text
as follows:

>*BUILD !BOOT

00010 FIRST LINE OF TEXT
00020 SECOND LINE

00030 ESC

Typing ESC on a line by itself terminates a *BUILD command.

DESCRIPTION

Builds a file from the keyboard.

ASSOCIATED COMMAMDS
*EXEC

*LIST
*TYPE

23

*CAT <DRV> CATALOGUE

The command displays the catalogue of a disc on the screen, showing all the
files present on the disc. (drv) is the number of the drive you want
displayed. If (drv) is omitted the current drive is assumed.

EXAMPIE: *CAT 0
PROGRAM (nn)
DRIVE: O Option:2 (RUM)
Directory: 0.$ Library :0.$
1BOOT HELLO
SUMS TABLE
TEST VECTORS
ZOMBIE
A.HELLO L B.SUMS

Note that the heading part of the catalogue shows the drive number, the
title of the disc, the currently set auto-start option of the disc (in this
case 2 for RUN), and the currently selected library and directory. The
files are displayed in alphabetical order reading across the two columns.
In the example above there are nine files on the disc. IBOOT to ZOMBIE are
in the current directory $. The current directory's files are always
listed first. A.HELLO is in directory A. It is also followed by L, meaning
that it is a "locked"” file. (See *ACCESS for an explanation) B.SUMS is in
directory B and is not locked.

DRSCRIPTION
Displays a disc catalogue.

ASSOCIATED COMMANDS

¢INFO
SACCESS
*TITLE
*OPT4,n
*DIR
*DRIVE

NOTES

Permitted values of <drv> are 0, 1, 2 or 3 nothing. Other values will
cause the message

Bad drive

to be displayed and you will have to re-enter the command correctly. The
top two lines of the catalogue include the disc title, disc option, drive
number and current directory.

IMPORTANT
The Catalogue, hence the disc, will hold up to a maximum of 31 files.

24

*COMPACT <pRrv>

Attempting to SAVE a program or file on to a disc may produce the message
"Disc Full®™ if there is no single space available on the disc big enough
for the information. It may be that there is enough space, but it is split
into several small sections. This command appends all spare space on a
disc to the end. When you delete a number of files, the spaces they
occupied will probably be distributed over the disc with current files in
between them. *COMPACT moves all current files to the "start” of the disc
leaving the spare space in one continuous block at the end.

EXAMPLE

*COMPACT 1

$.HELLO 1700 801F 0003B 002
$.8MS 1700 801F 00098 003

“w w

As "compacting"” proceeds all the current files are displayed in the order
in which they occur on the disc.

DESCRIPTION

Moves all available space on a disc into one continous block following the
current files.

ASSOCIATED COMMANDS

®*SAVE and BASIC's SAVE and OPENIN

This facility will only do anything if there is space between the files.
There will only be such space if a file has been deleted from between two
others.

25

Diagram 6 - *COMPACT

After

This command may overwrite the contents of memory. If you have a program

or data in memory that you want to keep, save it before you use this
command.

26

“COPY <SOURCE DRV> <DEST- DRV> <AFSP>

PURPOSE

To copy a named file or files from one disc to another.

EXAMPLE

*COPY 0 1 HELLO

This copies a file called HELLO in the current directory on drive 0 onto
drive 1.

DESCRIPTION

File copy program.

ASSOCIATED COMMANDS

*BACKUP

The "wildcard” facilities may be used to specify a group of files to be
copied e.g:

COPY 0 1 #.MY

Copies all files beginning MY irrespective of which directory they are in.
Information already on the destination disc is not affected.

Diagrams 3 and 4 in Chapter 3 apply.

This command may overwrite the contents of memory. If you have a program
or data in memory that you want to keep, save it before you use this
command.

27

*DELETE <fsp>

PURPOSE

To remove a single named file from the catalogue of a disc. The space
occupied by the file becomes available for other information. Succeeding
file names in the catalogue are shuffled up, but not the files themselves.
Once a file is deleted you cannot get it back again.

EXAMPLE

*DELETE FRED

removes a file called FRED from the current directory on the current disc.

DESCRIPTION

Single file deletion.

ASSOCIATED COMMANDS

*WIPE

*DESTROY

*COMPACT

NOTES

If the disc is write-protected the message

Disc write protected

is produced.

If the file is not found in the directory the message
Pile not found

is displayed. If the file is locked the message
rile locked

appears.

Once deleted a file cannot be restored.

28

*DESTROY <aFspP>

PURPOSE

To remove specified files from the disc in a single action. This command
takes the ambiguous file specification so that groups of files can be
deleted. When you use this command a 1ist of the files to be deleted is
displayed. A single Yes/No question appears at the end of the list
offering you the choice to go ahead and delete all the listed files or not.
Use this command with care because its effect is not reversible. It will
not attempt to remove locked files. (See *ACCESS)

EXANPLE

*ENABLE

*DESTROY * . H*

A.HELLO

$.HELLO

Delete (Y/N)?

If you type Y in reply to the question all the named files will be deleted.
The message

Deleted

is displayed when the job is done.
Typing anything else cancels the command.

ASSOCIATED COMMANDS

“wIrE

NOTES
Once destroyed files cannot be restored.

®*ENABLE must be typed immediately before *DESTROY or it will not work and
the message

Bot enabled

is aisplayed.

29

*DIR (<pIR>) SET THE DIRECTORY

PURPOSE

To change the current directory to (<dir>). The current directory is
always set to "$" when you press BREAK. To save files in a different
directory in the catalogue you must use this command to change the current
directory to the one you want and then save them.

EXANPLE

*DIRA

This sets the current directory to A. You now have to access to any files
in directory A in the catalogue. Any files now saved using *SAVE or
BASIC's SAVE will be in directory A.

DRSCRIPTION

Sets the current directory to the argument supplied.

WOTES
Directory can be set to any character except these four exceptions
¢* .

This command does not alter the directories written in the catalogue. It
merely states which directory in the catalogue you have access to by
default.

30

*DRIVE <DR> SET CURRENT DRIVE

PURPOSE

Changes the current drive to <dr>. Any commands which follow will work on
<dr> until another is specified.

EXAMPLE

*DRIVE 1

sets the current drive to 1 and

*CAT

will produce a catalogue of drive 1

*CAT 0

will catalogue drive 0 but the current drive is still drive 1 until you
change it back to 0 or press BREAK

DERSCRIPTION

Sets the current drive

31

*DUNP <Fsp>

Produces a hexadecimal listing of a file on the screen.

*‘DOMP SUMS

DESCRIPTION

Hexadecimal screen dump.

ASSOCIATED COMMANDS
*LIST
*TYPE
NOTES

It is useful to use this command in page mode so that the file is displayed
one page at a time on the screen.

CTRL N selects page mode, CTRL 0 turns it off.

32

*ENABLE

PURPOSE

Some of the filing system commands produce irreversible effects. To
prevent them from being used accidentally it is necessary to type ®ENABLE
before they become operational. These commands are:

*BACKDP

*DESTROY

EXANPLE

*BACKUP

will not work, the message

Not enabled

is produced.

*ERABRLE

*BACKUP

will work.

*ENABLE must be typed immediately before the command to be enabled. Any *
name command typed in between nullifies the *ENABLE

33

“EXEC <FSP> EXECUTE

This command reads byte by byte all the information in a named file as if
it was being typed on the keyboard. This is useful when you find that you
are repeatedly typing the same sequence of commands. Instead you can build
an EXEC file consisting of all these commands and type *RXEC <fsp> each
time you want this sequence of commands. ®BUILD <fsp> is an associated
command used to create an EXEC file.

EXAMPLE

*EXEC HELLO

Takes the contents of file HELLO and reads it one character at a time as if
it was being typed at the keyboard.

DESCRIPTION

Executes the contents of a named file by reading each byte as if it were
coming from the keyboard.

ASSOCIATED COMMANDS

One useful application of the *EXEC command is in association with the
auto-start facilities described in Chapter 3 and in the section on OPT4 in
this chapter. If you create a !BOOT file containing the BASIC keyword
CHAIN followed by the filename of one of your BASIC programs, the effect of
pressing SHIFT BREAK will be to automatically load and run the BASIC
program.

34

*HELP <xkEYWORD>

Displays useful information on the screen. 1In the disc system this
consists of a list of the filing system commands or the utilities depending
on the (keyword) used. The two keywords which produce a response in the
disc filing system are UTILS and DFS

*HELP DFS
DPFS 1.00

ACCESS <asfp> (L)

BACKUP <source drv><dest><drv>
COMPACT (<drv>)

copy <source Adrv><dest drv><afsp>
DELETE <fsp>

DESTROY <afsp>

ENABLE

INPFO <afsp>
RENAME <old fsp><new fsp>
DIR <dir>
DRIVE <darv»

LIB <dir>
TITLE <disc name>
VERIFY (<arv>)
wIire <afsp>
*BELP UTILS

Drs 1.00

BUILD <fsp>

DUMP <fsp>

LIST <fep>

TYPE <fsp>
HOTES

*RUN, *SPOOL, *SAVE, °EXEC, and ®*LOAD are not included in these lists
because they are Machine Operating System commands which operate outside
the disc filing system. *HELP is a Machine Operating System command.

35

*INFO <asFp>

PURPOSE

Displays information about a file or group of files. It includes details

not given by *CAT such as the length of the file and its location. It is

displayed in the following order across the screen.

Directory Pilename Access Load Execution Length Start
Address Address in bytes sector

EKXANPLE

*INFO A. EELLO

Displays

A. HELLO L 001900 ooso1r 00003B 003

DESCRIPTION

Displays detailed file information.

If the file is not found on the specified (or assumed) drive and directory
the message hd

File not found
is produced. The command must be re-entered using the correct <afsp>.

The wildcard facilities # and * may be used if you want information about a
group of files.

36

*LIB : (<pDRvV>). <DIR> SELECTS THE LIBRARY

Sets the library to the specified drive and directory.

EXAMPLE

*LIB :1.A

sets the library to drive 1 directory A. After this, typing
* (filename)

will search directory A on drive 1 for the named file and if it is found
the file will be loaded and executed just as if you had typed

*RUN :1.A. (filename)

Sets the drive/directory containing the library.

The library can contain files which are utility programs, designed to act
on other files eg. Sorts, Edits and Merges are all common utility programs.
It is then possible to say:

*SORT FRED

Where BORT is the name of the file in the library and PRED is the name of
another file in the current drive and directory. This makes use of the
fact that any text after the <fsp> is stored in memory and is available to
your machine code program for interpretation. A pointer to the start
address of this text is available to your program via a call to OSARGS with
Y=0, A=1 and X=the address of the 4 byte block in page 0 where the text is
stored. To read the text stored at this location you must use a call to
OBWORD with A=S. .

OSWORD call with A=S.

Read I/0 processor memory. This enables any program to read a byte in the
1/0 processor no matter in which processor the program is executing.

37

On entry X and Y point to a block of memory as follows
xY L8B of address to be read

XY+

XY42

XY+3 MSB of address to be read

On exit the 8 bit byte will be stored in XY™

As this routine reads one byte at a time you may need to use repeated calls
to it to recover all the text following the <fsp>

Chapter 8 provides more information about using the disc system from
assembler programs.

38

*LIST <Fsp>

Displays a text file on the screen with line numbers.

EXANPLE

*LIST DATA

displays the contents of the file called DATA on the screen, line by line
with each line numbered.

DRSCRIPTION

ASCII list with line numbers.

ASSOCIATED COMMANDS

*TYPR

*ponpP

NOTES

BASIC is tokenised so listing a BASIC program file will display nonsense.
(See User Guide). An ASCIIX text file of a BASIC program can be obtained
using the *SPOOL command.

Piles written with BASIC keyword PRINT # can also be listed with this
command.

In page mode the listing will stop after displaying each screen full until

you press either SHIPT key to make it continue. CTRL N turns page mode
on, CTRL 0 turns it off.

39

*LOAD <FSP> <ADDRESS>

Reads a named file from the disc into the memory in the computer starting
at either a specified start address or the files own load address.

EXANPLE
*LOAD HELLO

Reads the file HELLO into memory starting at location 1900 (hex), which is
the load address of the file when it was saved.

(see example in *INFO)

*LOAD EELLO 3200

Reads the file .HELLO into memory starting at location 3200 (hex).
Other examples are

LOAD *HELLO"

LOAD "HELLO" 3200

DESCRIPTION

Loads a file into memory

ASSOCIATED COMMANDS

*SAVE

*ROW

NOTES

All the above are valid commands. The quotation marks are optional; but
either a pair, or none should be present. The named file must be in the
current directory on the current disc. If the file is not found the
message

File not found

is produced.

40

*0PT 1 (N)

PURPOSE

This command enables or disables a message system which displays a file's
information (the same as *INFO). Every time a file on the disc is accessed
the information is displayed. (n) can be anything from 1 to 99 to enable
the feature. (n) =0 disables it.

EXAMPLE

*OPT 1 1 or *OPT 1, 1

enables the messages;

*OPT 1 0 or *OPT 1, O

disables the messages.

DESCRIPTION

Message system to display file information at every access.

ASSOCIATED COMMANDS

*INFO

A space or a comma between *OPT 1 and its argument (n) is essential.

41

*0PT 4 (n)

Changes the auto-start option of the disc in the currently selected drive.
There are four options to choose from 0,1,2 or 3. Each option initiates a
different action when you press SHIFT and BREAK on the computer. The
computer will either ignore or automatically LOAD, RUR or EXEC a file
called ${BOOT which must be in the directory $ on drive 0.

does nothing

will ®*LOAD the file !BOOT
will *RUN the file !1BOOY
will *EXEC the file !BOOT

[d
L
WNaO

DESCRIPTION

Changes the start-up option of a disc.

It is essential to include a space between the command and (n).
*OPT40 would prod the g

Bad option

If the disc is write-protected the error message
Disc write-protected

is produced in response to the *OP? 4 command.

If the option 0 is set the {BOOT file need not be there. With any other
option the message

Pile not found

is produced if !BOOT is not found in directory $ on drive 0.

XMPORTANT Do not confuse *OPT 4 with BASIC kXeyword OPT or SORPT 1.
They are completely different. Refer also to Chapter 11
where it describes how to swap the effects of BREAK and
SHIFT-BREAK.

The utilities disc is set to option 2 when you receive it 8o when you press
SHIFT-BREAK the "HELLO" program, saved as file |BOOT is *RUM automatically.

42

*RENAME <OLD FSP> <NEW FSP>

Changes the file name and moves it to another directory if required.

EXAMPLE

*RENAME SUMS B.MATHS

Assuming that the current directory is §, the file $.SUMS becomes
B.MATHS

DESCRIPTION

Renames a file

NOTES
*RENAME :0.$.SUMS :1.B.MATHS

This is not allowed. The file cannot be moved from drive 0 to drive 1
using *RENAME. Only the directory and filename can be changed.

If the file does not exist the message

Pile not found

is displayed. 1If the first file is locked

file locked

is displayed. 1If the disc is write-protected

Disc write—protected

is dislayed. If the <new fsp> has already been used the message
file exists

is displayead.

43

*RUN <Fsp> (PARAMETERS TO UTILITY)

This command is used to run machine code programs. It loads a file into
memory and then jumps to the execution address of that file.

EXAMPLE
SRON PROG

will cause a machine code program in the file called PROG to be loaded and
executed starting at the execution address of the file.

DESCRIPTION

Runs a machine code program.

ASSOCIATED COMMANDS

*SAVE
*LIB (for an explanation of "parameters to utility"”)

NOTES
This command will not run a BASIC program

Typing * <fsp> is accepted as being ®*RUN <fsp>

Typing *<filename> results in the file being loaded and ted if it is
found in the currently selected drive/directory or the library.

44

*SAVE <FILENAME> <START ADDRESS> <FINISH ADDRESS>
(<EXECUTE ADDRESS>) (<RELOAD ADDRESS>)

PURPOSE

It is ifmportant not to confuse this with the BASIC keyword SAVE; they are
quite different. This command takes a copy of a specified section of the
computer's memory and writes it on to the disc in the current
drive/directory. It is put into a file of the given name. You will mostly
use this command to record your machine code programs.

EXAMPLE

#SAVE “PROG™ SSSS FFFF EEEE RRRR
#SAVE “PROG" SSSS +LLLL EEEE

SSSS = Start address of memory to be saved
FFFF = Finish address

EEEE = Execution address (see below)

RRRR = Reload address

LLLL = Length of information

NOTES

RRRR and EEEE may be omitted in which case the reload address and the
execution address are assumed to be the same as the start address.

If the disc is write-protected the message

Disc write-protected

is produced. If there are already 31 files on the disc the message
Directory full

is produced. If the specified filename already exists and is locked the
message

File locked

is produced.

If the file already exists but is unlocked it is deleted. Then starting in
sector 2 track 0 a gap large enough to hold nev information is searched
for. 1If none is found the message

Disec full

is produced.

If enough space is available, the information i{s written on to the disc and
the filename is entered on to the catalogue in the current directory.

45

*SPOOL <rsp>

Prepares a file of the specified name on the disc to receive all the
information subsequently displayed on the screen. This is a very useful
command, particularly for producing a text file of one of your BASIC
programs. (See notes below)

EXAMPLE
You can obtain a text file of one of your BASIC programs as follows:

LOAD "NYPROG"
loads a program from disc into memory.

*SPOCL TEXT
opens a file called TEXT on the disc ready to receive information from the
screen.

LIST
causes the BASIC program to be displayed on the screen and also written
onto the file called TEXT

*SPOOL
turns off the “spooling” and closes the file called TEXT

DESCRIPTION

Spools subsequent output to the screen to a named file opened for the
purpose. Closes the file when spooling is terminated.

ASSOCIATED COMMANDS

*BUILD
*RXEC
*LIST
*TYPE

BASIC on the BBC microcomputer is "tokenised". This means that the lines
which you type in your program are abbreviated inside the computer's memory
and on the disc. A program file will contain these abbreviated "tokens”
rather than your original program text.

Displaying the file using *LIST will therefore produce strange results.
The example above shows you how to create a file containing your original
program text. If you display that file using *LIST your program will
appear just as you typed it in.

46

*TITLE <p1sc NAME>

PURPOSE

Changes the titles of the disc in the current drive to the first twelve
characters after the command. It fills in with "nulls” if there are less
than twelve characters. Any characters are allowed.

EXAMPLE

*TITLE "MY DISC" with five "nulls" added on the end.

*TITLE "A DIFFERENT TITLE"

This changes the title to A DIFPERENT. Anything after the first 12
characters 18 ignored. The gquotation marks are only required if the title
includes spaces.

NOTES

If the disc is write~-protected the message

Disc write-protected

appears when you try to use this command.

47

*TYPE <FspP>

Displays a text file on the screen without line numbers

*TYPE HELLO

DESCRIPTION

Screen list of a named file.

BASIC programs are not stored on disc as text files when you SAVE them so
this command will display nonsense.

Page mode is selected with CTRL N and turned off by CTRL O

48

*WIPL <arsp>

PURPOSE

Removes specified files from the catalogue and rearranges the catalogue.
Asks for confirmation that each file conforming to the specification is to
be deleted.

EXANPLE

*WIPE *.SU*

is a request to delete all files on the current drive beginning with the
letters SU. As each file is found the filename is displayed like this:

A.SOM

At this point only type "Y" if you want to delete the file. Typing any-
thing else leaves the file intact.

DESCRIPTION

Delete with <afsp> and confirmation per file.

ASSOCIATED COMMANDS
*DESTROY

*DELETE

NOTES

Once deleted using *WIPE a file cannot be restored. Locked files are not
removed (See *ACCESS).

49

6 THE FILING SYSTEM UTILITIES

As explained in Chapter 5 the filing system commands are, in fact, programs
stored in ROM (read only memory) inside the BBC microcomputer.

The utilities are similar programs but they are stored on the
utilities disc. They are used in the same way as the commands by typing

* (Utiity name)

The utilities disc must be in the disc unit at the time. The utility must
either be in the current directory on the current drive or in the Library.
(See command *LIB)

There are two "formatting” utilities supplied:; one for 40 track discs;
the other for 80 track discs. On the utilities these are normally in drive
0 directory $, which are the default values on the start-up for both the
Library and the Current drive/directory. (See command *DRIVE and *DIR).
The third utility is *VERIFY.

The following pages describe the utilities. You can add utilities of
your own by saving machine code programs into the Library.

*PFORMAO (<drv>) Format a 40 track disc

Purpose

The command prepares new discs for using with the filing system on the BBC
microcomputer. It marks areas of a disc where information will be stored
and gets up a catalogue. The catalogue is empty at first but when you
store programs and data on the disc the catalogue records their position on
the disc. They can then be retrieved quickly by reference to the catalogue.
While formatting, the information put on to disc is verified automatically.

Example

1) To format a new disc, insert the utilities disc into the disc drive and
type
*FORMA0

The computer asks
Do you really want to format drive 0?

Remove the utilities disc insert the disc to be formatted and then answer
Y

The formatting starts immediately and the message
Pormatting drive(n)

is displayed.

50

As each track is formatted and verified the track number is displayed as
follows:

00 01 02 03 04 05 06 07 08 09
OA OB OC OD OE OF 10 11 12 13
14 15 16 17 18 19 1A 1B 1C D
1B 1P 20 21 22 23 24 25 26 27
disc formatted

Above is the response if the formatting was successful.
If not, the formatting will stop and either the message

Verify error

OR

FPormat error

is displayed.

After successful formatting the message
Repeat format (Y/N)

is displayed. You can format another disc straight away.

Description

Initialises discs with track and sector format. Clears the catalogue and
verifies the sectoring.

Asgsociated commands

*PORMBO

Notes

*FORMB0 is the same except that it formats the 80 track discs used in the
dual drive system.

If you find that verification or formatting fails persistently it
could be that either the discs you have are poor quality or that the disc
drive needs servicing.

The drive number may be omitted from the command. The current drive
will be assumed. If you have a dual drive system you can format a disc in
the second drive while the utilities disc remains in the first drive.
® TWINCAT

This command doubles the number of files available from 31 to 62. This
alternate catalogue can be accessed using the command *SC

51

*VERIFY (<pRrv>)

PURPOSE

Checks each sector of a disc for legibility. It is done automatically when
you use the *FORM40 and *FORMB0 commands

EXAMPLE

SVEBRIFY 1

verifies drive 1.

DESCRIPTION

Sector verificaéion program
ASSOCIATED COMMANDS

*PORMAO
*PORMBO

52

7 RANDOM ACCESS FILES

One of the major advantages of a disc over a cassette tape is that the
read-write head of the disc can be moved to a specific place on the disc
quickly and accurately. Imagine you have a data file on cassette tape
consisting of "Names" and "Telephone numbers”. To find a specific telephone
number the file must be loaded and read from the beginning until the
required record is found. If the file is long this will take some time.
Oon the other hand, the Disc Filing System allows you to move to the
required record and just read that one. Clearly this is much quicker.

To make this possible the Disc Filing System provides a pointer. The
pointer points to a particular character in the file. It is the next
character on the file to be read or written. 1In BASIC the pointer is
controlled by the keyword PTR#. The other keywords in BASIC which are used
in connection with the disc files are EXT# and EOP#. EXT# tells you how
long a file is, EOF# returns a value of TRUE (-1) if the end of the file
hae been reached and FALSE (0) 4if not. All the BASIC keywords used to
manipulate disc files are explained in the USER GUIDE. They are:

OPENOOT
OFENIN

PTRE
EXT#
INPUTH
PRINTS
BGETH
BPUTH
EOP#

To prepare a file to receive data the OPENOUT keyword is used. In the USER
GUIDE the following example is given:

330 X = OPENOUT ("cinemas®)
The effect of this line in a BASIC program is as follows
1 If a file called "cinemas” exists it is deleted

2 A file called "cinemas” is entered on to the disc catalogue of
the currently selected drive, in the current directory.

3 The f£iling system reserves 64 sectors (or the length of the previous
file called "cinemas” if there was one) on the disc for the exclusive
use of the file "cinemas". If 64 sectors are not available, the file
is not created and an error is produced.

4 Evaluating PTR# and EXT# at this point will reveal that they are both
set to zero.

S The filing system will have loaded into memory the first sector,
256 bytes of the file. This area of memory is specially reserved
by the filing system for this purpose and is referred to as the
"Buffer"

53

Notice that the first action of the keyword OPENOUT is to delete any
existing file of the specified name.

If there were no files on the disc previously, the effect can be
illustrated as follows:

[Totsl of 84 eactors reserved on dlec
Bytes
et
T TTTTTRyTTTTTTTTTTTTTTT
PR
EXT #
J
— —
Rest sector, sector 2 in memory

Nothing has been written on the file, so the value of EXT# (extent) is
zero.

We can now use the BASIC keyword PRINT# to write three cinema names
into these slots of 10 characters each, as follows:

340 A =PTREX

350 PRINT# X, “VICTORIA"
360 PTRIX = A+10

370 PRINT# X, “REGAL"
380 PTRE X = A+20

390 PRINTS X = "ODEON"
400 PYRS X = A+30

In practice you can do it much more elegantly than shown above. Never-
theless the result immediately after line 400 is:
000000EE0000003G0aNRT0CCR0CANNRNEREREIY

-

(51 84
Notice that the cinema names (in this illustration, VICTORIA) are in the
file backwards. They are preceded by two bytes, represented in the diagram
by "t" and "1". "t" specifies the type of data which follows. In this
case the type is "string” so the first byte will contain &00 in hex, as
indicated in the table below.

"t" =600 = String type, followed by "1", followed by the string.

"t" =40 = Integer type, followed by four bytes containing the integer.
"t" =&FF = Real type, followed by five bytes containg the real number.
In our example the second byte, represented by “1" gives the length of the
string in hex. The integer and the real number types are of fixed length
as indicated above so they do not require the byte represented by "1" to

give the length. Real numbers are stored in exponential format, integers
are stored with the high order bytes first in the file.

54

In the example, we have used only the first 26 bytes of the file, so
everything written to the file fits the sector which is in a "buffer” in
memory. If we had gone on writing names, the filing system would event-
vally have put the information in the memory buffer on to sector 02 of the
disc and loaded sector 03 into the buffer to continue. This is still
assuming that there are no other files on the disc, otherwise different
sectors would be used. Remember that sectors 00 and 01 are reserved by the
disc filing system for the disc catalogue. Clearly then, at the end of a
sequence of writing actions, we are left with a buffer in memory which may
be partly filled with information. We must make sure that this information
is written to the disc. this is done with the CLOSE# keyword in BASIC.
This empties the buffer and frees the channel on which we opened the file
(X in the example).

We can now read the information back from the disc if we want to.
OPENIR is the BASIC keyword used to do this, e.g:

5 DIM cine$ (3)

10 X = OPENIN (“cinemag®)
20B =1

30 PORA = 0 to 20 STEP 10
40 PTRIX = A

50 INPUT#X,cine$ (B)

60 B = B+)

70 MEXT A

Line 10 of the example opens the file "cinema" loads the first sector into
the buffer and sets PTR# to zero and EXT# to the length of the file.

800000UR00RANGE0NEN0000G0CNRERRNRERREN

PTR 2 EXT #

Lines 30 to 50 of the example reads each cinema into an element of the
array CINES$, advancing the pointer to the start of the next name after
reading each one. Now you can see why we stored each name in its own "10
byte record”. This makes it much easier to write a program to find the
names again.

The important principle about using Random Access Files is that you
must keep track of where each item of information is written. You can then
set PTR# to point to it again when you want to read or change it. The
examples illustrate the basis of a very simple technique. There are a
number of others which you can devige.

Wote 1

As shown earlier in this discussion OPENOUT reserves 64 sectors for a file.
Other files opened may reserve sectors which immediately follow, eg

X=OPEMOUT (“cinemas®)
Y=OPEWOUT (“"clubs™)

55

The statements reserve 128 sectors consecutively if the disc was otherwise
empty.

It may be that you require more than 64 sectors for the first file
“cinemas". If 8o, you will need to write "dummy"” records to the file to
extend it to the required length before you open the second file.

eg:

10X=OPENOUT ("cinemas®)

20 FDR A = 1 TO 200

30 PRINT#X, "DUMMY MAME FIELD"

40 PRINT#X, “"DUMMY ADDRESS LINE ONE"
50 PRINTEX, "DUMMY ADDRESS LINE TWO"
60 PRINT#X, “ADDRESS LINE THREE"™

70 PRINT#X, "POST CODE 123"

80 REXY A

This program creates a file 79 sectors long with the dummy name and address
written every 100 bytes.

By writing beyond the reserved area in this way you can effectively
reserve as many sectors as you like. You can then open other files in the
remaining space on the discs. EXT# will give the position of the "“3" after
the last dummy address on the file (20000).

The above method will only work consistently if you start with a blank,
formatted disc. If you want to create a random access file larger than 64
sectors on a disc with other files already on it, there is another method.

First save the file with the names you want with the number of bytes
required. Use the address parameters of the *SAVE command to specify the
number of bytes, eg

*SAVE "DATA" 00000 08000

will create a file of 128 sectors (32X) called DATA. You can then open the
file later in your program. The file will contain miscellaneous data which
you can overwrite with the information you actually want.

This second method causes the filing system to search a disc for a free
space large enough to hold the file. Existing files will be skipped over
if they would otherwise overlap with the new file.

Note 2

Up to 5 files may be open at any one time. This is because the space
reserved for each file in the computer's memory to hold the information
about extent, pointer etc. is limited. In certain versions of the disc
filing system, the commands *LOAD, *SAVE,*EXEC,*SPOOL,*BUILD,®*LIST and
*DUMP each use the space occupied by the information relating to one open
file while they are active.

56

8 USING THE FILING SYSTEM IN ASSEMBLER

Section 43 of the new User Guide is essential reading for anyone wanting to
write assembler programs on the BBC microcomputer. Most of the necessary
information for using the filing system in assembler is presented there.
In this chapter the main points are summarised and particular use of OSWORD
is described in detail.

GENERAL PRINCIPLES

There are a number of routines available to handle disc I/0. All the
routines must be called with a JSR and the decimal flag clear. It is
important that you use these routines. They are called in address range
&FF00 to &FPFF. They then can call an internal (ROM resident) routine
whose address is stored in RAM between &0200 and &02PF. The address here
will vary according to the filing system in use. For example, the routine
OSFIND to open or close a file is entered at &FFPCE. It is indirected via
&021C. &021C and &021D contain the address of the executable routine in
the disc file system ROM. You can intercept the call by changing the
addresses in these RAM locations.

Using the available routines you can perform all necessary functions
relating to disc files. The relevant routines together with their entry
points are as follows:

OSFIND &FFCE FINDV &021C Open or close a file

OSARGS &FFDA ARGSV &0214 Load or save data about a file

OSFILE &FFDD FILEV &0212 Load or save a complete file

OSBGET &FFD7 BGETV &0216 Read a single byte to A from the file

OSBPUT &FFD4 BPUTV &0218 Write a single byte from A to the file

OSGBPB &FFD!1 GBPBV &021A Load or save a number of bytes

OSWORD &FFF1 WORDV &020C - With A=&7F and a parameter block, loads or
saves a sector.

OSFIND

Opens a file for writing or reading and writing. The routine is entered at
&PPCE and indirects via &21C. The value in A determines the type of
operation.

A=0 causes a file or files to be closed

A=§40 causes a file to be open for input (reading)

A=§80 cause a file to be opened for output (writing)

A=&C0 causes a file to be opened for input and output (random access)

If A=80 or &CO then Y (high byte) and X (low byte) must contain the address
of a location in memory which contains the file name terminated with
Carriage return (&0D). On exit Y will contain the channel number allocated
to the file for all future operations. If Y=0 then the operating system
was unable to open a file.

If A=0 then a file, or all files, will be closed depending on the

value of Y. Y=0 will close all files, otherwise the file whose channel
number is given in Y will be closed.

57

On exit C, N, V and Z are undefined and D=0. The interrupt state is
preserved, however interrupts may be enabled during the operation.

This routine enables a file's attributes to be read from file or written to
file. The routine is entered at &FFDA and indirects via &214. On entry X
must point to your locations in zero page and Y contains the channel
number.

If Y is non-zero then A will determine the function to be carried out on
the file whose channel number is in Y.

A=1 write sequential pointer. A=0 read sequential pointer.

A=2 read length
A=&FP "ensure"” that this file is up to date on the media.

If Y 18 zero then the contents of A will determine the function to be
carried out.

A=0 will return, in A, the type of file system in use. The value of A on
exit has the following significance

no file system

1200 baud cassette file system

300 baud cassette file system

ROM pack file system

Disc file system

Econet file system

Telatex/Prestel Telesoftware file system

OOV A WN=O

A=1 return address of the rest of the command line in the zero page
locations.
A=&PF "ensure" that all open files are up to date on the media.

On exit
X and Y are preserved; C, N, V and 2 are undefined; and D=0. The interrupt
state is preserved but interrupts may be enabled during the operation.

This routine, by itself allows a whole file to be loaded or saved. The
routine is entered by &FFDD and indirects via &212.

On entry

A indicates the function to be performed. X and Y point to an 18 byte
control block anywhere in the memory. X contains the low byte of the
control block address and Y the high byte. The control block is structured
as follows from the base address given by X and Y.

58

OSPILE control block

00 Address of file name, which must be terminated LSB

01 by &0D MSB
02 Load address of file LsB
03

04

05 MSB
06 Execution address of file LSB
07

08

09 MSB
OA Start address of data or write operations, LSB
0B or length of file for read operations

oc

oD MSB
OE End address of data, that is byte after LSB
OF last byte to be written or file attributes.

10 MSB

The table below indicates the function performed by OSFILE
for each value of A.

A=0 Save a section of memory as a named file. The files
catalogue information is also written.

A=1 Write the catalogue information for the named file

A=2 Write the load address (only) for the named file

A=3 Write the execution address (only) for the named file

A=4 Write the attributes (only) for the named file

A=S Read the named files catalogue information. Place the file
type in A

A=6 Delete the named file

A=&FF Load the named file

When loading a file the byte at XY+6 (the LSB of the execution address)
determines where the file will be loaded in memory. If it is zero then the
file will be loaded to the address given in the control block. If non-zero
then the file will be loaded to the address stored with the file when it
was created.

59

The file attributes are stored in four bytes. The least significant 8
bits have the following meanings:

Bit Meaning

not readable by you

not writable by you

not executable by you
not deletable by you
not readable by others
not writable by others
not executable by others
not deletable by others

NOVHLEWNLO

File names are as follows:

1] nothing found
1 file found
2 directory found

A BRK will occur in the event of an error and this can be trapped if
required.

On exit X and Y are preserved, C, N, V and Z are undefined and D=0. The

interrupt state is preserved but interrupts may be enabled during the
operation.

Read/write one byte

OSBGET call address &OFFD?7 to get a byte
OSBPUT call address &OFFD4 to put a byte

Y contains the channel number on which the file was opened using OSFIND.
X 4is not used, but preserved.
A contains the byte to be put or receives the byte which is read.

The position in the file where the action of the GET or PUT takes place is
determined by the position of the pointer as set by OSARGS.

On Exit

C clear implies a successfully completed transfer.

C set implies end of file reached before completion of transfer

Read/write a group of bytes

OSGBPB Call address &OFFD1.

This routine will read or write a byte (or group of bytes) to or from a
specified open file. The option to read or write is determined by the
value of A. The length of the data and its location are specified in a

control block in memory.

On entry X (lo-byte) and Y (hi-byte) point to the instruction block:

60

Ooffset

0
Channel
! Pointer to data
> Number of bytes to transfer
g Byte offset in file if used

A determines the type of operation:

A = &01 Put bytes using byte offset

A = &02 Put bytes ignoring byte offset

A = &03 Get bytes using byte offset

A = &04 Get bytes ignoring byte offset

This method is particularly useful in the environment of the xcon-r‘ file
system where the "packaging overhead” for transferring small amounts of
data is proportionally high.

On Exit

C clear implies a successfully completed transfer.

C set implies end of file reached before completion of transfer.

The number of bytes and byte offset (if used) are modified to show how much
data has been transferred (usually as much as was asked for) and the new
pointer value is the old pointer plus the amount transferred.

Read/write a sector

OSWORD with A=&7F

Call address at &OFFF1

A=tF7 indicates that a general read/write operation is required.

On entry X (lo-byte) and Y (hi-byte) point to the instruction block:

offset
0
Drive number
1-4
Start address in memory of source or
R destination of the data
H
Number of parameters
6
Command
7 :

onwards Parameters

§ ECONBT is a trademark of Acorn Computers Ltd.

61

Bxample
Number of parameters = 3

Command = &53 to read or &4B to write

Parameter 1 = Track number
Parameter 2 = Sector number
Parameter 3 = &21 (specifies sector length of 256 bytes and 1 to

be acted upon)

On Exit

0 in the last parameter address +1 indicates a successful transfer. A
failure is indicated by a disc error number.

62

9 CHANGING FILING SYSTEMS

Your computer can have several filing systems available other than the disc
£filing system. The following commands are all used to exit from the
current filing system into the one named.

*TAPE3 300 baud cassette

*TAPE12 1200 baud cassette

*TAPE 1200 baud cassette

‘HET Bconet filing system

*TELESOFT The prestel and teletext system

*RON The cartridge ROM system

*DISK Enters the filing system from one of the others
*p1I8C Alternative spelling for above

Typing the command to enter the system you are already in has no effect.

63

10 ERROR MESSAGLS

&CC Bad filename
This message appears if you enter a filename which is invalid - such as,
longer than 7 characters, etc.

&D6 Pile not found
The Disc filing system could not find the named file in the specified
drive/directories.

&C3 rile locked
Access to the named file is locked. This error message is displayed when
any attempt is made to overwrite or write to a locked file.

&C8 Disc changed
This error occurs if the computer detects that a disc has been changed
while files on it are still open.

&CD Bad drive
This error means that the (drv) part of the file specification was
incorrect, eg., ":" colon missing or drive number out of range 0 to 3.

&FE Bad command
This means that the * was omitted or that the command name was not recog-
nised as a Disc filing system command or utility.

&CE Bad directory
Means that the specified directory is not allowed, eg: More than one
character

&CF Bad attribute
This error occurs if you use anything other than the letter "L" with the
*ACCESS command

&CB Bad option
There are currently two "option” commands *OPT1 and *OPT4. The error
occurs if you type anything else besides 1 and 4 after *OPT

&C6 Disc full
This indicates that there is not enough space on the disc to open (OPEN-
OUT#) or save a file of the specified size.

&BE Catalogue full
The catalogue has enough space for 31 files. This error is produced if you
attempt to enter more than 31.

&C4 File exists
This occurs if you try to rename a file with an existing filename.

&C9 Disc read only

This error occurs if you attempt to write to a disc which has the write-
protection notch coveread.

64

&C1 file read only
This error occurs if you try to write to a file opened for reading only,
using OSFIND with A=40.

&C7 Disc fault MM at TT 8§

If this error message occurs it means that the computer cannot read the
disc. It implies that the disc is damaged, faulty, unformatted or of the
wrong type, like an 80 track drive. NN is the error number TT is the track
number SS is the sector number.

&C5 Drive fault NM at TT 88
This error means that the disc drive is probably faulty and needs attention.

&C0 Too many open files
This error occurs on attempting to open a sixth random access file. Pive
is the maximum allowed at once.

&CA Bad sum

Bad checksum. For each random access file opened a control block is held
in memory. This includes a checksum. A bad sum indicates corrupt data in
memory and possibly a memory fault.

&BP Can't extend
An attempt is made to extend a random access file when there is insuff-
icient space immediately after it to do so.

&BD Not enabled
An attempt is made to use a restricted command without typing *ENABLE
immediately preceding it.

&C2 Pile open

This error occurs if you attempt to open a file which is already open. An
intervening CLOSE is required between TWO OPEN referring to the same file.
This error is also produced if you try to delete an open file with the
commands *DELETE, ®SAVE, *BUILD etc.

65

11 TECHNICAL INFORMATION

18 BIT ADDRESSING

The BBC disc filing system uses 18 bit addressing giving a range from
&00000 to &IPFFF. This means that two bytes and two bits are required to
store a complete address, like this:

&3FPFF is 11 1111 1111 1111 111 in binary
High Middle Low
bits bits bits

Each full address therefore consists of high, middle and low order bits.
This is important to note because the bits of the address are not always
stored consecutively in the catalogue. This is clearly shown by the way
that the disc catalogue is loaded into memory.

Another important factor concerns the use of a second processor. If
the top two bits of an address are set, e.g: &3----, the address is assumed
to refer to the 1/0 processor.

DISC CATALOGUE

Sectors 00 and 01 on the discs are reserved for the catalogue. The format
of the catalogue is as follows:

Sector 00

&00 to &07 First 8 bytes of the 13 byte disc title
&08 to &OE First filename

&P Directory of first filename

&10 to &1E Second filename

&I1F Directory of second filename

Repeated up to 31 files

Sector 01
&00 to &04 Last 5 bytes of the disc title
&05 The number of catalogue entries multiplied by 8.

&06 (bits 0,1) Number of sectors on disc (2 high order bits of 10 bit
number)
(bits 4,5) {BOOT start-up option

&07 Number of sectors on disc (8 low order bits of
10 bit number)

66

&08 First file's load address, middle order bits

&09 First file's load address, low order bits

&0R First file's exec address, middle order bits
&0B First file's exec address, low order bits

&0C First file's length in bytes, middle order bits
&0D First file's length in bytes, low order bits

&0E (bits 0,1) First file's start sector, 2 high order bits of 10 bit
number.
(bits 2,3) First file's load address, high order bits
(bits 4,5) First file's length in bytes, high order bits
(bits 6,7) First file's exec address, high order bits
&OF First file's start sector, 8 low order bits of
10 bit number

o os e

repeated for up to 31 files.

Note that the first 8 bytes in each sector contain miscellaneous inform-
ation about the disc. Each subsequent block of 8 bytes contain information
about the files, repeated for up to 31 files. The complete information
about file 3 would be found in the fourth block of 8 bytes on sector 00
followed by the fourth block of 8 bytes on gector 01.

FILE SYSTEM INITIALISE AND !BOOT

On pressing BREAK the MOS (machine operating system) seeks and initialises
a filing system. It starts with the service ROM closest to the edge of the
main printed circuit board. The first one will be initialised if just
BREAK is pressed. If another key is held down while you press BREAK the
first file system which recognises the key will be initialised. 1If none
recognigse the key, the CFS (cassette filing system), is initialised.

Having initialised a filing system, if "link 5" (see below) is unmade
or if shift is not pressed and "link 5" is made, then the start-up option
of any associated device is examined. For options 1 to 3 the disc filing
system will search for a file named |BOOT on the device and act according
to the start-up option set.

In the case of the cassette filing system the start-up option of the
ROM cartridge is examined as no start-up options are provided on cassette
tapes.
LINK 5
There are 8 links at the right-hand front of the keyboard, inside the

machine. Numbering 1 to 8 from left to right, 5 determines the action of
the selected file system. The options are described above.

67

THE PLOPPY DISC DRIVE PARAMETERS

Several different disc drives may be used with the BBC computer. The same
links on the front of the computer's keyboard (as mentioned above) are used
to do this. Links three and four must be correctly set for each type.
Tandon disc drives with 4 msec. access require both links made.

Tandon and Shugart disc drives with 6 msec. access require 3 made 4 unmade.

MPI disc drives require link 4 made and 4 unmade.

Olivetti disc drives require both links unmade.

The Tandon disc drives momentarily "whirr" when you close the drive door,
80 as to centre the disc on the rotating cogs. Unfortunately they rotate
faster than normal, so that if writing is commenced the catalogue is
corrupted. Do not initiate a writing action. until the drive has settled.

68

12 FILING SYSTEM COMMAND SUMMARY

COMMAND (minimm abbreviation, full-stop required)

PURPOSE
*ACCESS (*A) Locks or unlocks a file
*BACKUP (*BAC.) Copies all information from one disc to .another.
*BUILD (*BU.) Causes all subsequent keyboard entries to be stored in

the named file.
CAT (.) Displays the disc catalogue.

*COMPACT (*COM.) Collects all files on a disc together into one
contiguous sequence leaving a single block of free

space.
*COPY (*COP.) Copies all specified files from one disc to another.
*DELETE Removes a single named file from the disc.

*DESTROY (*DES.) Removes specified files from a disc in a single action.

*DIR (*DI.) Changes the current set directory.

*DRIVE (*DR.) Changes the current set drive.

*pUMP (*DU.) Produces a hexadecimal listing of a file.

*ENABLE (*EN.) Allows the use of ®*BACKUP and *DESTROY

*RXRC (*E.) Reads a disc file byte by byte as if the bytes were being
being typed on the keyboard.

*HELP (*H.) Displays the file system commands with syntax guidelines.

*INFO (*1.) Displays information about specified files.

*LIB (°LIB) Selects the drive/directory for the library.

®LIST (*LIST) Displays a text file on the screen with line numbers.

®LOAD (*L.) Reads a file from disc to memory.

*OPT 1 (*0.1) Switches screen messages which accompany disc accesses
on or off.

*OPT 4 (*0.4) Specifies the auto-start option of a disc relating to a
file named :0.8$.1BOOY.

*RENAME (*RE.) Changes a filename.

*RON (*R.) Runs a machine code program.

69

*SAVE (*S.)

*8POOL (*8P.)

STITLE (*TX.)
STYPE (*TY.)
SVERIPFY (*V.)

*WIPE (*W.)

Saves a specific part of memory to the disc.

Transfers all text subsequently displayed on the screen
into a specified file.

Changes the title of a disc.
Displays a text file on screen with line numbers.
Checks legibility of every sector on a disc.

Removes specified files from the disc after confirm-
ation for each file meeting the given specification.

70

Abbreviations
*ACCESS
Addressing
afsp
Asgembler
Auto-start

*BACKUP
BGET#
BPUT#
*BUILD
Bytes

*CAT
Catalogue format
Changing filing system
Commands
Command abbreviations
Command summary
*COMPACT
*COPY
Copying- diagram
- master disc
- single drive

*DELETE

Demonstration programs
*DESTROY

*DIR

Directories

Disc drive

Disc drive parameters
Disc files

Disc filing system
Discs

*DRIVE

Drive numbers

*DUMP

*ENABLE

EOF#

Erasure Prevention
Error messages
JEXEC

EXT#

Filename

Files

File specifications

File system initialising
File types

Fitting a disc system

INDEX

71

Formatting
*FORM40
*FORMB0

Getting going

14,50 .51

50
51

7

Grandfather, father, son 11

*HELP

*INFO
INPUT#H
Integexr type

Library
*LIB
*LIST
*LOAD

Multi-file operations

OPENIN
OPENOUT
*OPT1
*OPT4

PRINT#

PTR$

Random access
*RENAME

Real type
*RUN

*SAVE

Sectors

Single drive copying
*SPOOL

String type

*TITLE
Tracks
*TYPE
Utilities
*VERIFY
"wildcard"

*WIPE
Write-protection

35

36
53
54

19
37
39
40

17

52

17
49
"

