lllllllll

BBC MASTER GUIDES

I\/\ASTERING =
ASSEMBLY CODE

Advanced techniques for the BBC Model B Micro

RICHARD VIALLS .-==~

T

BBC MASTER GUIDES

MASTERING
ASSEMBLY
CODE

RICHARD VIALLS

Throughout this book the letters '‘BBC' refer to the British Broad-
casting Corporation. The term 'BBC Micro' refers to the micro-
computer manufactured by Acorn Computer plc under licence
from the BBC. ‘'Tube’ and ‘Econet’ are registered trade marks of
Acorn Computer plc.

All rights reserved. No part of this book (except for brief
passages quoted for critical purposes) may be reproduced or
translated in any form or by any means, electronic, mechanical
or otherwise, without the prior written consent of the copyright
owner.

Disclaimer: Because neither the BBC nor the author have any
control over the circumstances of use of the book, no warranty is
given or implied as to its suitability for any particular applica-
tion. No liability can be accepted for any consequential loss or
damage, however caused, arising as a result of the information
and advice given in this book.

© Richard Vialls 1986

Edited by Meyer N. Solomon

Technical assistance by David Atherton
First published 1986

Published by the British Broadcasting Corporation
35 Marylebone High Street, London W1M 4AA

Typeset in 10/12pt. Rockwell Light by

August Filmsetting, Haydock.

Printed in England by R.J. Acford Ltd, Chichester.
Covers printed by The Malvern Press, London.
Bound by Dorstel Press Ltd, Harlow.

CONTENTS

Preface S
Assembly language programming 6
Number systems 7
The memory 13
The CPU 18
Commands 17
Addressing modes 21
Conditional branches 24
The index registers 36
Logical commands 39
Indexed indirect addressing 42
The operating system 45
Useful OS routines 45
Memory usage 51
Pure machine code 55
Addressing modes 56
A machine code monitor 60
Interrupts 84
The system VIA 87
Events 97
BRK 100

A few ways to protect your programs 103

Locked tapes files 104
Unlistable programs 105
Disc tricks 108
The keyboard 113
A BASIC input routine 114
A machine code input routine 114

The BREAK key 120

10

General graphics

The graphics registers

The video ULA

Screen splitting

Screen swapping

A BASIC swap
Three-dimensional graphics

Fill routines
A BASIC fill

A machine code fill
A faster fill

Screen dumps

A simple BASIC dump

A machine code equivalent
A colour-as-tone dump

A miniature dump

Sprite graphics

A BASIC sprite routine

A machine code sprite routine
Moving sprites

The flicker licker

Using the mover

Anyone for tennis?

Appendix A

Two's-complement table

Appendix B

Assembler commands and op-codes

Appendix C

Op-codes and assembler commands

123

123
127
128
135
139
143

149

150
159
167

180
180
184
188
199

216
217
222
230
239
252
255

216

218

2719

PREFACE

This book is aimed at the programmer who has
become proficient in BASIC and wants to explore
the realms of machine code. The first section of the
book sets out to give a detailed description of as-
sembly language programming. However, it is im-
possible to teach someone to program creatively
and professionally. The second section of the book
discusses techniques and gives a series of
examples of the uses of machine code. It is hoped
that, by examining these programs in detail, you
will begin to think in the ways that produce a good
machine-code programmer.

Don’tassume that the programs in this book are at
a height of perfection. There are probably a num-
ber of improvements that can be made to them.
Don't just use the programs in this book without
thought. If, for example, you write an arcade game
don'tjust use the sprite routine at the end of chapter
ten — study that routine and then either write your
own or adapt it to suit your particular needs. This
will not only produce better programs, but should
also help to make you a better programmer.

The overall message of this book is that a pro-
fessional programmer is a perfectionist and will do
everything within his power to improve a program
to its limits.

CHAPTER ONE

ASSEMBLY
LANGUAGE
PROGRAMMING

Assembly code is not much more difficult to learn
than BASIC. Machine code is the language the com-
puter really understands underneath all the flashy
BASIC commands. The heart of the BBC Micro is a
Central Processing Unit (CPU) called the 6502. This
CPU does all the 'thinking’ and machine code is the
language that this chip ‘thinks’ in.

BASIC is a ‘high level' language. This means,
simply, that it is far more sophisticated than ma-
chine code. For this reason, another chip is needed
to interpret the BASIC commands, on a line-by-line
basis, into machine code for the 6502 to understand.
This chip is a Read Only Memory (ROM) with a ma-
chine code program permanently programmed
into it. This program is called the BASIC interpre-
ter. This must not be confused with a BASIC com-
piler which takes a BASIC program and converts
this entirely into a machine code program so that
the original BASIC can be scrapped and the faster
machine code used instead.

Unfortunately, because BASIC has to be interpre-
ted, it is very slow. If, however, we could talk to the
6502 directly, in its own terms, we could run
programs much, much faster. The assembler is the
means we use to talk to the 6502 directly. It effect-
ively by-passes the BASIC interpreter. But before
we can learn to use 1t, it is important to understand
the terms Binary and Hexadecimal.

Number systems

In everyday life we use a number system that we
call decimal. This is based on the idea that we count
in tens. In decimal we have ten symbols that we use
to represent the numberszerotonine. To represent
larger numbers we put these symbols together in a
line with the furthest digit right representing the
number of ones; the next one to its left representing
the number of tens, then hundreds, and so on. So we
can look at a number as if it were in a series of
columns, each with a column heading saying what it
represents.

1000s 100s 10s 1s
5 6 31

The computer, however, uses a system based on
the idea of having only two symbols to count
with—'0"and '1’. Again we use headings, but as the
largest number the first column can represent is 1,
the second column must count twos, the third fours,
the fourth eights, etcetera. In other words, the
column headings are powers of two. This counting
system is called the binary system.

Binary Decimal Binary Decimal

0 0 110 6
1 1 1 7
10 2 1000 8
11 3 1001 9
100 4 1010 10
101 5

so 101011 in binary represents

1 times 1 = 1 (first coiumn)

1 times 2 = 2 (second column)
Otimes 4 = O (third column)

1 times 8 8 (fourth column)
0 times 16= 0 (fifth column)

1 times 32 =32 (sixth column)

|

43 in decimal

0111

"M

F

1010

A

We call each digit in binary a bit (binary digit). The
bit furthest left is called the most significant bit
(MSB) because it has the largest column heading,
and the bit furthest right is called the least signifi-
cant bit (LSB) because it has the smallest column
heading. This system is very long-winded but it
suits the computer well, as the computer can repre-
sent 1 by a circuit being on, and 0 by a circuit being
off.

Binary is not an ideal system for humans; for
example, if we wanted to represent the decimal
number 2141928901 in binary, it would be
1111111101010110011110111000101—quite an eye-
ful.

It is inconvenient to have the computer translate
into decimal for us, so we need a counting system,
half-way between binary and decimal, which is as
easy for us to read as it is for the computer. Such a
system is hexadecimal. To convert from binary to
hexadecimal (or Hex for short), we split the binary
number into groups of four bits (adding a few zeros
on the left, if necessary, to make up complete
groups of four bits). In each group there are sixteen
possible combinations of Os and 1s, so we assign
each combination a symbol. Then, by running the
symbolstogether, we have a means of representing
the number.

Binary Hex Binary Hex
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 110 D
0110 6 1110 E
0111 7 1M F

So if we were to take our binary example of
1111111101010110011110111000101 it would be
coded like this:

1011 0011 1101 1100 0101

B 3 D C 5

This may well seem very complicated, but hexa-
decimal is like decimal and binary; only, instead of
using base 10 or base 2, it uses base 16. In the deci-
mal system, you ‘carry’ | into the next column to the
left as soon as you reach ten in one column. In the
binary system, you ‘carry’ | into the next column to
the left as soon as you reach two in one column. In
the hexadecimal system, you ‘carry’ one into the
next column to the left as soon as you reach sixteen
in one column. Imagine you have two, ten or sixteen
fingers and you can't go wrong!

So that we don't get confused between decimal
and hexadecimal, we put an & at the beginning
of any hex number—thus decimal 2141928901 =
&TFAB3DCS.

Just in case you aren't confused already, there is
yet another system of counting used in computers —
binary coded decimal (BCD for short). In this sys-
tem, each digit of a decimal number is converted
into a four-bit binary number. Then the four-bit sec-
tions are run together to make a BCD number, e.g.

2 1 4 1 9 2 8 9 0 1

0010 0001 0100 0001 1001 0010 1000 1001 0000 0001
Thus 2141928901 in decimal is

0010000101000001100100101000100100000001 in
BCD. This number is slightly longer than its binary
equivalent, but BCD is occasionally useful. For
example, if you want to have a score in a game, you
will want it to appear in decimal. By keeping the
score stored in BCD it is then relatively easy to dis-
play it on the screen. If it is stored in binary it must
first be converted to BCD before being displayed.

Now for a bit of terminology. The processor in the
BBC Micro, the 6502, is an eight-bit processor. This
means that it works in groups of eight bits at a time.
With this system, the computer can only handle un-
signed numbers from 00000000to 11111111 (0 to 255
in decimal). This can be very annoying if you hap-
pen to want to use the number 256, but there are
ways around this, as we will see later. Each group of
eight bits is called a byte. Incidentally, each digit in

9

10

hex is called a nibble because it represents four
bits. Four bits are half a byte—think about it!
Maths in binary is, in principle, exactly the same
as maths in decimal.
Addition:
109 1101101
+ 38 + 100110 remembering thatl+1=10

147 10010011

Subtraction:
109 1101101
— 38 — 100110 remembering to borrow
71 1000111

However, what happens when we get a negative
number? To handle negative numbers, we use a
system called two’s complement. This method
needs a fixed number of bits to each number. In the
6502, we use eight bits or one byte. To make a
negative number, we take the positive value in
binary and ‘flip’ each bit (0 becomes 1 and 1
becomes 0). This then has the disadvantage that —0
and + 0 will have different codes, so we add 1 to our
negative number to make —O0 equal to 0.

Examples

—l is represented by 00000001 flipped to 11111110
and then adding 1=11111111

—0is represented by 00000000 flipped to 11111111
and then adding 1 =00000000

In the second example, when adding 1to 11111111,
we should have got 100000000, but as the computer
will only handle eight bits at a time, the ninth bit is
lost, leaving 00000000. Let’s try another example:

—39 = 11011001 (intwo's complement)
39 = 00100111
-39 +39=

11011001

+00100111

100000000 but we ignore the ninth bit,

SO
—39+39=0

With this system, we don't use the most significant
bit—the leftmost bit—as part of the number itself,
but use it instead to show whether the number is
positive (we set this bit to 0) or negative (we set this
bitto 1). This bit is often called the sign bit. Thus the
largest number we can store using the eight bits is
01111111, or 127, and the smallest number we can
store is 10000000 or — 128 (see Appendix A).

Of course, itis not very useful to have a computer
which can only count from — 128 to 127. However, if
we use {wo bytes to store a number, and again use
the most significant bit (the leftmost one) to show
whether the number is negative or positive, we can
count from 1000000000000000 (—32768) to
OI11111111111111 (+32767).

However, the computer only provides for the
adding of eight-bit numbers, and there could be a
ninth-bit ‘spill-over’ when adding the most signifi-
cant (leftmost) bits. So we need to use a thing called
a carry flag. This is a single bit in the CPU which can
either be set to 1 or cleared to 0. First we add the
least significant bytes (or low bytes as they are
sometimes called), and if we lose a ninth bit in the
answer because of ‘spill-over’, the computer sets
the carry flag to one to show this; otherwise, the
computer clears it to zero. Then we add the two
most significant bytes (or high bytes) and if the
carry flag has been set to one from the addition of
the low bytes then the computer adds one to the
result. As we shall see later, the add command does
most of this for us.

For example

High Bytes Low Bytes
01001001 01011010 (=18778)
+ 00100100 10110101 (= 9397)
01101101 [(1]00001111
+ /Carry

giioiiio a9

0110111000001111 (=28175)
11

12

Thus the answer is 0110111000001111. Convenient-
ly for us, when the computer adds two bytes to-
gether, it automatically adds in the carry flag and
then puts the ninth bit of the answer, whether O or 1,
back into the carry flag. This means that, if we want
to, we can add three-byte numbers or even larger
number to be taken away and flips all its bits. Then
clear the carry flag before we add the low bytes.
When we have just begun addition we have no
carry to consider, so the carry flag must be cleared
at the beginning of the addition.

Similarly, large numbers can be subtracted using
the carry flag. However, with the subtract com-
mand, the carry flag is used as a borrow flag.
Subtracting can be seen as adding the negative of a
number; thus 27 — 5 is the same as 27+ — 5.

The subtract command in machine code takes the
number to be taken away and flips all its bits. Then
1t adds the two numbers together. Remember that,
earlier, we said that we represented a negative
number by flipping all its bits and adding one. If, to
begin with, the carry is set to one, this provides the
addition of one needed to complete the negative
number in its two's-complement form. Thus the
carry flag must be set to one to produce proper
subtraction. As with the addition, the carry flag is
set to the ninth bit of the result after the subtraction.
Conveniently, this works out so that if a borrow
does occur during this operation, the flag is
cleared; otherwise it is set. This means that if we
then add a set of high bytes the carry flag will en-
sure that any necessary borrowing is done.

Let's try, as a simple example, working out 27— 5.

27—5 in decimal=00011011 —00000101 =22

The computer takes the 00000101 and flips each bit
to make the number 11111010. It then adds the
00011011:

11111010
+00011011

1 00010101

It then adds the carry already set to one.

The memory

100010101
+1 from carry flag

100010110

The ninth bit is transferred to the carry flag leaving
us with 00010110 which equals 22 in decimal.

Lets now try a two-byte example by subtracting
9397 from 18778.

The computer first takes the low byte of 9337
(10110101) and flips it to 01001010 then adds the low
byte of 18778 (01011010). It also adds one from the
carry flag (which we have previously set).

01001010
+01011010

10100100
+1 from carry

010100101 this is low byte of answer.

The ninth bit of this answer (0) is transferred to the
carry flag. The computer now takes the high byte of
9397 (00100100) and flipsitto 11011011. It then adds
the high byte of 18778 (01001001). It finally adds the
carry flag which is now zero.

11011011
+01001001

100100100
+0 from carry flag

100100100 this is high byte of answer.

The ninth bit is transferred to the carry flag. The
answer is formed from the results of the two
additions: 0010010010100101 or 9381 in decimal.

Let’s now look at the memory. The computer does
not know what any particular byte in its memory
means. It is up to the programmer to decide, by

13

14

The Model B
memory map

&FFFF 3
Operating
System
ROM
% ROM
&C000
Language
ROM
&8000 3
User
RAM
> RAM
&0EQD
System
Variables
&0100
Zero Page
&0000 ’

giving the appropriate instructions, whether a par-
ticular byte represents a character of text, a binary
number or a BCD number, the low or high byte of a
two-byte number; or whatever.

Each byte of memory is numbered and given an
address. An address is a number which, when
given to the computer, tells the computer which
byte of memory you are dealing with.

The 6502 uses two-byte numbers to represent
addresses. The maximum number of different com-
binations that can be made with sixteen bits is two to
the power of sixteen. Thus the 6502 can handle two

The CPU

to the power of sixteen, or 65536 locations. These
locations are each given an address number from 0
to 65535, and no two locations have the same
address.

On the BBC Micro, the memory is split into two
main sections. These are RAM (addresses 0 to
32767) and ROM (addresses 32768 to 65535). RAM is
memory which we can alter and store our
programs and data in; ROM is memory which can-
not be changed.

The memory is divided up into pages. A page is
all the memory locations that can be addressed with
the same high byte. Thus locations &1200 to &12FF
make up one page. These pages are numbered ac-
cording to the high byte of the address, thus &100 to
&1FF is page 1. The high byte is | and the low byte
goes from &00 to &FF which means that a page con-
sists of 256 bytes. Similarly, &0000 to &00FF is zero
page. Zero page is used a lot for the storage of
variables. This is because, as we shall see later, the
machine code command for looking at zero page is
shorter and faster than the normal commands.

Before we can start to look at commands in machine
code, we must look at the way in which the pro-
cessor 1s organised.

As far as we are concerned the CPU contains six
registers—very simple memories capable of stor-
ing one or two bytes. They are inside the proces-
sor, not part of the computer’s main memory.

The most important one is the accumulator, or A
register. This register is the one in which almost all
the work is done.

Two other important registers, the X register and
the Y register, are very useful for storing extra
numbers we may need at any time—these are
sometimes called the index registers.

Next is the stack pointer, which points into 256
bytes of memory, located from addresses &100 to
&1FF, called the stack. Thisisa firstin last outbuffer:
it behaves like a letter spike—the first thing you put
on it is always the last to come off.

15

6502 CPU programming

16

model

Accumulator

X Register

Y Register

Stack pointer

Program counter

Status register

N v - B D I z C
S o d o O O O O
> D & B D T D
00(5)0000;?’
¢ o 0§ ¥ 9 @ ©
S0 > O N &L
Yooy @ QO X A &
¥ & & EFTd
o
NS S«
g R
S
¢
X
§

Then there is the program counter. In machine
code each command is represented by either one,
two or three bytes of memory. These bytes must be
adjacent in the memory. The processor looks at the
first byte, which is always the command byte and
tells the computer what it is to do. The processor
then knows (by examining the first, command, byte)
how many bytes of data to expect after the com-
mand: some commands have no explicit data, some
have one byte of data, others have two bytes. The
next command must follow on straight after the data
of the previous command otherwise the processor
will not know where to look for it.

The program counter is a two-byte register

Commands

which holds the address of the memory location
where the current command is stored. As the
program runs, this register is automatically increm-
ented by one every time a new byte of the program
is loaded into the processor.

Finally, there is the status register. This register
contains eight one-bit flags, one of which is not
used. These flags can either be set (equal to 1) or
clear (equal to 0) and are affected by some com-
mands. Each shows that a particular circumstance
has occurred. We have already met the carry flag
which 1s affected by the ‘add’ and ‘subtract’
commands.

The accumulator is where all the work is done so we
need a command to load the contents of a particular
byte of memory into the accumulator. This com-
mand is called ‘'load accumulator’. It is stored in the
memory as a one-byte number. However, to save us
from having to remember the number that corre-
sponds to each of the many machine code com-
mands we use a program called an assembler to
allow us to type something a little more understand-
able. It would be very cumbersome to have to type
in a command like ‘load accumulator’ each time we
want to use 1t, so each command in machine code is
given a three-letter mnemonic which is easy to
remember. The mnemonic for 'LoaD Accumulator’
1s LDA. So if we wanted to load the accumulator with
the contents of memory address & 1EFA, we would
use the command:

LDA &1EFA

This command does not alter the contents of the
memory, but makes a copy of the byte which is
stored at &1EFA and places that in the accumulator.
The previous contents of the accumulator are lost,
having been replaced by the new byte.

Similarly, we need a command to store the con-
tents of the accumulator in a specific memory loca-
tion. This command is ‘STore Accumulator'—STA.
So, to store the contents of the accumulator at
&3F5D, we would use:

17

18

STA &3F5D

This time the contents of the accumulator are not
altered, but the previous contents of the memory
location (in this case the contents of &3F5D) are lost,
having been replaced by the byte from the
accumulator.

So now we have two assembly code commands,
but we need to know how to use them. They must be
used as a program and we need to know how to use
the assembler.

BBC BASIC contains a complete assembler which
1s very easy to use but you have to tell the BASIC
interpreter where the assembler commands begin
and end, and where in the memory to store the
program. The easiest way to store the machine
code program is to use the BASIC DIM command. If
you use DIM without brackets, it reserves some
memory which BASIC will keep totally free. This is
ideal for putting machine code routines in. All you
have to do is this:

10 DIM X% 100

Note that there are no brackets around the number.

This would reserve 100 bytes of memory. The
address of the first of these bytes is put into the
variable X%. Itis sensible to use an integer variable
for thisjob, as the address will always be an integer.
However, the computer still does not know that this
address is where we want the machine code to go.
The computer will automatically start putting ma-
chine code at the location stored in the variable P%.
So we ourselves have to set P% to the start of the
reserved space, which is already stored in X%.
Then we must tell the computer that from now on all
commands will be in assembly code. The command
to do this is [. So, before we can use the assembler,
we must have something like this:

10 DIM X% 100 \ Reserve memory and store
starting address in X%
20 P% = X% \ Tell the assembler to store

the program at X%
30 [\ Following code is in assembly
language.

Now we can write our assembly language
program. Once we have finished writing it, we must
put a closing square bracket] to show that we are
going back to BASIC. From now on, the shorter
examples in this book will ignore the BASIC part of
the assembler.

Look at the following program:

LDA &2000
CLC

ADC &2001
STA &2000

This program uses two commands we have not seen
before—CLC and ADC. CLC is the mnemonic for
‘CLear Carry’ and, as its name suggests, 1t clears
the carry flag. Remember that we have to do this
before we can add any numbers together. ADC is
‘ADd with Carry’. This command adds the contents
of the memory location specified after it to the ac-
cumulator, using the carry flag as explained above.
So this program takes the contents of address
&2000, adds the contents of address &2001, and
stores the result back at address &2000. However,
the computer will not know what to do when it has
done this, so we have to add one command, RTS,
'‘ReTurn from Subroutine’, which tells the processor
to go back to what it was doing before. So our small
program would look like this:

10 DIM X%15

20 P%=X%

30 [

40 LDA &2000
50 CLC

60 ADC &2001
70 STA &2000
80 RTS

90]

19

20

We have dimensioned X% to reserve 15 bytes of

memory. As the longest any command can be is 3

bytes, reserving three bytes for each command

should leave ample room for this program. If you
don't allow enough room, the program will very

likely crash. Another point is that locations &2000

and &2001 are right in the middle of the program

memory—ifthisroutine were partofalong program,
1t would wipe out a part of itself. For most of your
programming purposes, the BBC micro convenient-
lyreserves32bytesofmemoryforstoring variables.

These 32 bytes are at locations &70 to &8F, so it is

safest to use this memory where possible.

If we wanted the addition to be done in Binary
Coded Decimal, we could preface it by the SED
(‘SEt Decimal mode’) command which sets the deci-
mal flag in the status register. When this flag has
been set, all further addition and subtraction is
done in BCD. However remember to use the CLD
(‘CLear Decimal mode’) command afterwards to
take the computer back into binary mode.

An assembly code program does not run as it is
assembled. The assembler merely encodes the
program into machine code and stores it away for
future reference. To actually run the assembled
code, use the CALL command, equivalent to
GOSUB; only, you must specify the address of the
start of the program rather than giving a line
number. The RTS command at the end is the equiva-
lent of the BASIC command RETURN. Here are some
other commands:

DEC ‘DECrement memory by one'—This subtracts
one from the contents of the memory location
specified.

INC 'INCrement memory by one'—This adds one
to the contents of the memory location
specified.

LDX ‘LoaD X register from memory'—This copies
the contents of a memory location into the X
register.

LDY ‘LoaD Y register from memory'—This copies

the contents of a memory location into the Y
register.

Addressing modes

STX ‘STore X in memory —This copies the con-
tents of the X register into a memory location.

STY ‘STore Y in memory —This copies the con-
tents of the Y register into a memory location.

SBC ‘Subtract memory from accumulator with
carry’.

Remember that the carry flag must be set with SEC
(‘SEtCarry flag’) before using SBC, and that, as with
ADC, more than one byte may be subtracted.

So far, we have seen that the command LDA &1EFA
loads the accumulator with the contents of the mem-
ory location &lEFA. However, LDA can get a byte
from the memory in several different ways.

Most machine code commands can be used In
several different ways, called addressing modes,
as they are the methods by which the processor
finds the address of a byte to work on. The mode we
have used up to now is called absolute addressing.
However, there are thirteen different addressing
modes which we can use, though not all can be used
with each command. We have already seen one
example of another addressing mode. CLC is an
example of implied addressing. This mode is used
in commands that do not need any explicit data to
work upon. Other examples:

SEC ‘SEt Carry’
RTS ‘ReTurn from Subroutine’

INX ‘INcrement X register'—This increases the
contents of the X register by 1.

INY ‘INcrement Y register'—This increases the
contents of the Y register by 1.

DEX ‘DEcrement X register'—This decreases the
contents of the X register by 1.

DEY ‘DEcrement Y register'—This decreases the
contents of the Y register by 1.

(Note that if the X register contains &FF and the
command INX is used, the answer should be &100;
but, because the X register only has eight bits, the

21

22

largest number it can hold is &FF. Thus the ninth bit
1s lost (it is not transferred to the carry flag) so the
result left in the X register is 0. Similarly, if the X
register contains 0 and the DEX command is used,
the resultis 255. The same is true for INY and DEY.)

NOP ‘No OPeration’, just waste a tiny bit of time.

TAX ‘'Transfer Accumulator to X register'—The
contents of the accumulator remain the same,
X changes.

TAY 'Transfer Accumulator to Y register'—The
contents of the accumulator remain the same,
Y changes.

TXA 'Transfer X register to Accumulator'—The
contents of the X register remain the same, A
changes.

TYA 'Transfer Y register to Accumulator'—The
contents of the Y register remain the same, A
changes.

Notice that in implied addressing the mnemonic is
not followed by any explicit data. The processor
knows what the ‘implied’ data is.

Another useful addressing mode is immediate
addressing. Here the byte of data actually used for
the command to operate on is placed after the com-
mand with a ‘hash’ (#) mark to show that immediate
addressing has been used. For example LDA #&CA
would put the number &CA into the accumulator. If
you examined the accumulator after using this com-
mand you would find &CA (decimal 202) in it.

It is often the case that you want to load the ac-
cumulator with the contents of a location whose
address you don't actually know explicitly. Say, for
example, you wanted to load the accumulator with
the contents of the byte at PAGE. (PAGE is a
variable that contains the address of the first byte of
a BASIC program.) Normally this would be at &EO0O,
but on disc machines it is at &1900. The BBC's as-
sembler allows instructions such as LDA PACE.
This means that when the program is assembled,
the computer will take the address to be whatever
PAGE is currently set to. However, once assem-

bled, this cannot be changed. Similarly, compli-
cated expressions can be used as addresses in the
assembler, for example LDX PAGE + (A% — 1)*2.

Another command that is very useful is
JMP—JuMP to address’. This is the equivalent of the
BASIC command GOTO, but it refers to an address
In the memory rather thanto aline number. This can
be very inconvenient as we don't always know off-
hand the address of the command we want to jump
to. So the assembler provides another useful sys-
tem, called labels. A label is a variable set to equal
the address of a specific command. We precede the
command by a full stop, then a variable name
(something relevant, e.g. ‘start’, or ‘sounds’), then a
space. When the assembler comes across this, it
sets the variable to equal the address at which the
command 1s stored. This saves us the immense
trouble of calculating the address ourselves. Then
we can jump to the right address by simply using
the variable name after the JMP command, e.g.

.start LDA &2000
CLC
ADC &2001
STA &2000
JMP start

However, though easy to read, it need not be set out
like this. The assembler allows this sort of thing:

100.start LDA&2000:CLC:ADC&2001:STA&2000:JMPstart

This saves memory and is easier to type in.

The equivalent of the BASIC command GOSUB is
JSR (‘Jump to SubRoutine’) and is used like JMP. The
BASIC command CALL, in fact, uses the JSR com-
mand to jump to a machine-code subroutine.

As the processor looks at a command it advances
the program counter. Thus, by the time it has
looked at a command to see what it has to do, the
program counter will point to the beginning of the
next command. When the processor comes across
a JSR command, it takes the program counter
(which points to the beginning of the next com-

23

Conditional branches

24

mand, remember) and saves it on the stack as two
bytes: low first, then high. In doing so, it moves the
stack pointer to point to the next byte after the top of
the stack. Then, at the end of the subroutine, when
the processor meets an RTS command, it takes the
top two bytes off the stack again and puts them back
into the program counter. Thus the processor re-
turns to the command after the JSR command. As the
stack can hold 128 two-byte addresses, the max-
imumnumber of nested subroutines is 128. This de-
creases if the stack is also being used for other
purposes.

It is interesting to note that the stack is stored in
page one of the memory (&100 to &1FF) in such a
way that &1FF is the first byte of the stack and all
subsequent entries are stored in order backwards
through the stack. It might help to think of an upside-
down paper spike

It is also often useful to be able to save the con-
tents of the accumulator on the stack and retrieve
these contents again later; so two commands are
provided to do this.

PHA ‘PusH Accumulator onto stack’
PLA ‘PulLl Accumulator off stack’

There are also two useful commands for anyone
wanting to ‘edit’ the stack, and these are:

TSX ‘Transfer contents of Stack pointer to X
register’
TXS ‘Transfer X register to Stack pointer’

(Notice that it is the stack pointer not the stack area
that is transferred to the X register and vice versa.)

Itis useless to have a language without some form of
the IF... THEN ... conditional command. This is
provided by making use of the flags.

There are four flags which are used for con-
ditional jumps, or conditional branches as they are
called in machine code. These are ‘Carry’, ‘Zero’,
‘Negative' and ‘Overflow’.

The zero flag, as its name suggests, is set when the
result of some command is zero.

The negative flag is set if the result is negative—if
bitsevenis set (bit seven is the most significant bit of
a byte); zero is treated as positive.

The overflow flag is more complicated. It is set
either if there i1s a carry from bit 6 to bit 7 but the
carry flag is not set; or if there is no carry from bit 6
to 7 and the carry flag is set. Strangely enough,
there 1s a command CLV—'CLear oVerflow'—, but
no ‘set overflow' command. This flag is seldom
used.

Once we have a flag set or cleared, we can do a
conditional branch to another part of the program
depending on the state (whether it is zero or one) of
the flag. There are eight commands to do this:

BCC ‘Branch if Carry Clear’

BCS ‘Branch if Carry Set’

BEQ ‘Branch if EQual to zero’
BNE ‘Branch if Not Equal to zero’
BMI ‘Branch if MInus'

BPL ‘Branch if PLus'

BVC ‘Branch if oVerflow Clear’
BVS ‘Branch if oVerflow Set’

These commands are followed by a one-byte
positive or negative two's complement number.
This gives the number of bytes to go forward in the
program. If it is negative then the processor will go
backwards. Thus BEQ &67 would move on &67
bytes if the result were zero, and BNE &FD (which
could also be typed as BNE—3) would go back
three bytesif the result were not zero. Itis difficult to
calculate how many bytes to go forward to reach a
particular command; so, again, labels may be used.
However, because only one byte is used to contain
the offset, the furthest back you can go is 128 bytes

25

26

(negatively); the furthest forward is 127 bytes
(positively). Thus it is important to keep branches
short. If necessary, you can do the following:

BNE skip \ if not carry on
J"W equal \ if so jump to equal
oSKip ceee \ carry on

Here, the routine equalis a routine we want to jump
to if the zero flag is set. This routine is too far away
from this section of the program to use a simple
branch command. Instead we branch to skip if the
zero flag is not set. Otherwise we jump to equal as
JMP can reach anywhere in memory.

Conditional branches are very useful for delay
routines. We have not yet used the X and Y regis-
ters much but they are often used for delays. If we
want a very short delay, we can load the X register
(or the Y register) with O, then use the command
DEX (which subtracts one from the X register and
sets the negative and zero flags according to the
result thatis stored in the X register). This will leave
2551in the X register. The zero flag will therefore not
be set. So if we do a BNE back to the DEX command
(labelled as loop below), it will branch back.
However, this time, the X register will contain 255.
The result of all this is that the X register counts
down from 0, then 255, all the way down to 0 again.
When X finally reaches 0 again the zero flag is set
and the BNE command fails to branch so the
program carries on to the next command.

LDX #0

«loop DEX
BNE loop

This produces a delay of about 0.0006 of a second.
For a longer delay, we can create a nested loop
around this using the Y register:

LDY #0

.Yloop LDX #0

«Xloop DEX
BNE Xloop

DEY
BNE Yloop

This produces a delay of about 0.16 of a second. If
we want an even longer delay, we have to press the
A register into service as well. We don't have a
‘decrement A’ command so we have to use SEC and
SBC #1:

LDA #0

.Aloop LDY #0
.Yloop LDX #0O
.Xloop DEX

BNE Xloop

DEY

BNE Yloop

SEC
SBC #1
BNE Aloop

This produces a delay of about 42 seconds which
should be enough for most purposes. Different de-
lays can be obtained by changing the values initi-
ally loaded into each register.

A problem occurs when labels are used, whether
in jumps, subroutines or branches. As an example:

BNE skip

LDA #0

STA &70
.skip DEX

The assembler obviously assembles the code in the
order in which itis in the program. So, while assem-
bling the above program, it will not yet have de-
fined the variable skip when it gets to the command
BNE skip because it will not have come across the
label skip and so it gives the error '‘No such
variable’. To stop this happening, the BBC Micro's
assembler can be used as a two-pass assembler.

21

28

In a two-pass assembler, the code is assembled
twice. The first time, the assembler ignores any ref-
erence to labels it has not come across, at the same
time leaving a space to fill in their values later. By
the time it has finished the first pass it has found all
the labels and so will have defined all the variables.
Then, on the second pass, it assembles everything,
including the reference to labels, because it now
has all the addresses it needs stored in the
variables. The assembler on the BBC Micro does
not do this automatically, but it provides a useful
command, OPT. This can only be used within the
square brackets and is not assembled into machine
code. Itis thus known as a pseudo-operation. OPT is
followed by a number or variable. Here is what the
different numbers following OPT do:

0 Do not print assembled code
and ignore errors.

1 Print assembled code
and ignore errors.

2 Do not print assembled code
and take note of errors.

3 Print assembled code and
take note of errors.

If we set OPT to O or | on the first pass, and setit to 2
or 3onthe second pass, the errors that will naturally
occur wherever there are ‘forward’ references to
labels will be ignored on the first pass, while the
labels are calculated; then any other errors will
show up on the second pass. The easiest way to use
OPT is by putting a FOR ... NEXT ... loop around
the assembly code and setting OPT equal to the
loop variable. When the assembler is enabled with
the open brackets, OPT is automatically set to 3.
Thus the first command within the brackets should
be the OPT command. So the BASIC code to
precede a section of assembly code now becomes:

10 DIM mc% 100
20 FOR pass% = 0 TO 3 STEP 3
30 P% = mc%

40 [OPTpass% \ On first pass, OPT is set

. \ to 0, so ignore all errors.
. \ On second pass, OPT is set
. \ to 3, so report any errors

assembly code \ and print assembled code.

140]
150 NEXT
160 CALL mc%®

OPT is not needed if all the branches, jumps and so
on refer to earlier parts of the program—that is, if
the program does not have any ‘forward’ re-
ferences to labels. Note that P% must be reset to
mc% at the beginning of each pass, because P% is
incremented by the assembler as it assembles the
code. This is sometimes useful as, after the] com-
mand, P% will point to the first free byte of memory
after themachine code. For example, if you wish to
save a piece of assembled code directly using
*SAVE, P% will, after the code has been assem-
bled, give the end address of the code.

A command that goes with the branch command:

CMP ‘CoMPare memory with accumulator’

This needs a little explanation. CMP subtracts the
specified byte from the accumulator and sets the
carry, zero and negative flags in the normal way.
However, it doesn't store the result in the ac-
cumulator as SBC does, so the accumulator is not
altered. In fact the resultis lost completely; all thatis
altered are the flags. The contents of the memory
location are not altered either. Also, this command
automatically sets the carry flag at the beginning, so
you don't have to worry about that.

The result of all this is that if the two numbers are
equal, then taking one from the other leaves zero
and the zero flag is set. If the accumulator is greater
than the memory byte, then the carry will be set.
The negative flag will be set equal to bit 7 of the
result of the subtraction.

29

30

Probably the most common use of this command is
for checking if the accumulator is equal to a partic-
ular value. You can put as many of these tests one
after the other as you like because the accumulator
is not affected! This could be very useful if, for in-
stance, you are checking the GET command for the
keys in a game—you could use a routine like this:

CMP # AsC("z")
BEQ left

CMP # ASC("Xx")
BEQ right

There are also two equivalent commands for the
index registers:

CPX 'Compare memory with X register’
CPY ‘Compare memory with Y register’

Two other useful commands are:

PHP 'PusH Processor status register’'—Put contents
of status register on stack.

PLP 'Pulll Processor status register'—Pull byte
from stack and place in status register.

These push and pull the current flag states to and
from the stack and can be used to ‘save’ the results
of a CMP command.

An addressing mode that is used a lot in the BBC
Micro is indirect addressing. There is only one
command that uses this mode, and that is JMP.
Instead of jumping to the address specified after
JMP, the CPU takes the byte contained at that
address and the byte immediately following that
and uses these two bytes as the low and high bytes
respectively of the address the computer actually
jumps to.

For example, there is a very useful subroutine
stored in the Operating System ROM called
OSWRCH (short for 'Operating System WRite
CHaracter’). This is the routine BASIC uses for its
VDU command (remember when using this that, as

with VDU, a carriage return does notalso produce a
line feed, i.e. VDU13 returns to the beginning of the
same line). Thus if we wished to print a letter ‘A’
from the assembler, we would load the accumulator
with the ASCII code for ‘A’ and then JSR to location
&FFEE (where the routine starts). However, at this
location there is an indirect jump instruction with
the address &20E. The computer then jumps to the
address pointed to by locations &20E and &20F
(&20E contains is the low byte and &20F the high
byte)—and this is where the actual routine starts.
This system is sometimes called vectoring. In this
example, locations &20E and &20F make up a vec-
tor. As &20E and &20F are in the RAM, we can
change their contents so that, for example, the VDU
command will jump to our own subroutine instead
of the Operating System routine through our alter-
ing &20E and &20F to point to our own routine.
This JMP command is typed with the address in
brackets. e.g.

JMP (&20E)

One thing must be kept in mind when using this
command. When the computer adds one to the
address to fetch the high byte, it does not carry into
the high byte of the address. Thus if we were to use
the command JMP (&13FF), this would jump to the
address stored at &1 3FF (low byte) and &1300 (high
byte)! (&FF is incremented to &100 but the 1 isn't
carried over to the high byte and so the result is
&1300.) As an example of how to use the OSWRCH
vector, the following program makes the computer
always print a full stop instead of a space.

10 DIM X% 100
20 FOR A%=0 TO3 STEP3

30 P% = X%

40 [

50 OPTA%

60 .start CMP #ASC(" ") \ Check if char is
space

70 BNE print \ if not, print it

80 LDA #ASC(".") \ if so, load full
stop

31

32

80 .print JVP (&230) \ then go to main

routine
100]
110 NEXT
120 ?&230="7&20E :REM Copy vector into
130 ?&231=7&20F :REM &230 and &231

140 ?&20E= start MOD256 :REM then set to
150 ?&20F= start DIV256 :REM new routine.

The \ symbol is equivalent to the BASIC REM
statement—the computer ignores everything else
on that line.

Lines 120 and 130 make a copy of the VDU vector
in a spare vector (&230) that the operating system
does not use, so that we can jump to the original
OSWRCH routine to print a character.

This program can be very useful for checking for
spaces accidentally typed at the end of lines, but
remember to press BREAK to clear it before at-
tempting to edit lines, otherwise the spaces you re-
ally want will become full stops.

Although there are no proper multiplication and
division commands in machine code, there are two
commands for multiplication and division by 2:

ASL 'Arithmetic Shift Left memory’
LSR ‘Logical Shift Right memory’

Their names don't give much of a clue as to how
they work. ASL takes all the bits in a byte and shifts
them one place to the left. The least significant bit
(the rightmost one) becomes zero and the most sig-
nificant bit is placed in the carry flag. The original
contents of the carry flag are thus lost.

For example,

C 76543210
0 11010111

becomes, after ASL

C 76543210
1T 170101110

The result of this is to multiply the byte by two.

LSR does the opposite. It shifts all the bits to the
right, sets the most significant bit to zero and shifts
the least significant bit into the carry. Again, the
original contents of the carry are lost, e.g.
76543210 C
171010111 0O

becomes, after LSR

The result of this is to divide the byte by two.

Apart from absolute addressing, these two com-
mands can be used with another addressing mode
called accumulator addressing. As its name imp-
lies, in this mode the byte used and affected is the
one contained in the accumulator and not in a mem-
ory location. This mode is used from the assembler
by placing the letter A after the command.

ASL A (The spaces are not necessary)

LSR A b sary

The remaining two commands that can use ac-
cumulator addressing mode are:

ROL ‘ROtate Left memory’
ROR 'ROtate Right memory’

These commands are similar to ASL and LSR but
they do not lose the original carry contents entirely.
ROL shifts the byte left. As it does so the old contents
of the carry are shifted into bit zero and the old cont-
ents of bit 7 are shifted into the carry. Thus the
whole byte plus the carry flag—nine bits in total—is
rotated one bit to the left, e.g.

C 76543210
1 00101110

becomes, after ROL

33

34

C 76543210
0 01011101
ROR is the exact opposite, e.g.
76543210 C
00101110 1
becomes, after ROR

76543210 C
10010111 0

By combining ASL and ROL commands, a number of
two or more bytes can be multiplied by two.

1 The least significant byte of the number is multi-
plied using ASL. This leaves its most significant bit
in the carry.

2 The next byte up is multiplied with the ROL com-
mand. The carry resulting from step 1 is thus now
placed in bit zero of the second byte and bit seven
of the second byte is left in the carry, ready for ano-
ther ROL command on the next byte up (if any).

For example,

High byte Low byte
00110101 10101101 =13741 (decimal)
A% \4
ROL ASL
\4 \Y
C C

0 ¢ 01101011 ¢ 1 ¢ 01011010 =27482 (decimal)
The original number is doubled.

Similarly, numbers comprising two or more bytes
canbe divided by two by using LSR on the high byte
first then ROR on successive lower bytes, e.g.

High byte Low byte

01101011 01011010 = 27482 (decimal)
\% \Y%
LSR ROR
\Y \Y%
C C

00110101 > 1) 10101101 »0=13741 (decimal)
The original number is halved.

If the original number is odd, this method will lose
the ‘half’ atthe end of the answer into the carry flag,
1.e. the carry flag contains the remainder after divi-
sion by two. This can be used to test if a number is
even or odd by testing the carry flag.

As an example of what can be done with these
four commands, let’s write a short program that will
multiply the contents of the accumulator by 10 and
store the answer at &70 (low) and &71 (high).

To do this we must first multiply by five and then
multiply by two. To multiply by five we can multiply
the number by four and then add the original num-
ber to make five lots of the original number.

The first thing to do is this:

.mten STA &70
LDX #0
STX &71

The original number is now stored as a two-byte
number in &70 (low) and &71 (high). We willneed to
add the original number to the answer later, so we
can leave the original number in the accumulator.
Next, we can multiply the contents of &70 and &71
by 4 by multiplying them by 2 twice.

ASL &70
ROL &71
ASL &70
ROL &71

We now have four times the original number in &70
and &71. Tomake five times the original number we
must add the accumulator (which still contains the
original number) to &70 and &71.

CLC

ADC &70

STA &70

BCC skip

INC &7
.skip cee

35

36

The index registers

Note that because we are adding zero to the high
byte, it is quicker to use a branch and an INC com-
mand than to use a further ADC command.

We now have five times the original number in
&70 and &71. Finally, we need to multiply this by
two to get 10 times the original number.

.skip ASL &70
ROL &71
RTS

The index (X and Y) registers are used a lot for what
is known as absolute indexed addressing. This
mode is similar to absolute addressing, but an X or
Y is placed after the address (separated from it by a
comma). The contents of the register are added to
the address to form the actual address from which a
byte is fetched or saved. This is very useful for ar-
rays where the index register can be used to point
into a one-dimensional array up to 256 elements
long. Here is an example of this:

10 DIM mc% 30

20 FOR pass% = 0 TO 3 STEP 3
30 P% = mc%

40 [OPT pass%

50 .start LDX 40O

60 .loop LDA array ,X

70 JSR &FFE3

80 INX

30 CPX #8

100 BNE loop

110 RTS

120 .array EQUS CHR$13+"Hello."+CHR$13
130]

140 NEXT

150 CALL start

The command EQUS is one of four similar com-
mands available only with BASIC II which are for
storing data in the middle of assembly code.

The firstis EQUB. This must be followed by a one-
byte number. This byte is then inserted into the

middle of the assembly code. Make sure that the
processor will never try to run this byte as an
instruction—if it did, it would almost certainly
crash. This byte can then be used as a byte of data.

For example, if you have run out of room in the
variable space from &70 to &8F, you could put a
series of EQUB commands after the main program
each preceded by a label and then use the labels as
free memory locations.

The second command is EQUW which is identical
except that it uses a two-byte number. This number
is stored low-byte first.

The third is EQUD which uses a four-byte num-
ber. This is stored low-byte first.

The fourth is EQUS which uses a string. This is
stored in the order the characters appear in the
string.

In the program above, the string ‘Hello.” between
two carriage returns is placed at the label array
and can then be referred to by the program, a byte
atatime, using the X register to point into the string.

For those of you with BASIC I these four com-
mands are not available. To get around this you will
need to replace them with these pieces of code:

100 .temp EQUB &CA

is replaced by:

100 .temp]
102 ?P%=&CA
104 P%=P%+1
106 [OPTpass%

Because P% always points to the beginning of the
next machine code command we can exit the as-
sembler and place the correct byte in the memory
in the correct place. We then need to increment P%
to point to the next byte. Finally we can re-enter the
assembler (remembering to set OPT as this is
always reset to 3 on entry to the assembler).

Likewise for the other three commands:

37

38

100 .temp EQUU &1CA3

is replaced by:

100 .temp]

102 ?P%=&A3:P%?1=&1C
104 P%=P%+2

106 [OPTpass%

and

100 .temp EQUD &12345678

is replaced by:

100 .temp]

102 'P%=&12345678
104 PY=PY+4

106 [OPTpass%

100 .temp EQUS "HELLO"
is replaced by:

100 .temp]

102 $P%="HELLO"

104 P%=P%+LEN"HELLO"
106 [OPTpass%

The subroutine at &FFE3is a ready-made operating
system routine. It checks whether the accumulator
contains a carriage return and, if so, prints both a
carriage return and a line feed; if not, it jumps to
OSWRCH which prints the character in the ac-
cumnulator. This routine is called OSASCI.

Another example of a simple use of the index
registers is for filling a block of memory locations.
The next example clears a Mode 7 screen. By
changing the character the program uses, the
screen may be filled with any character.

10 MODE 7
20 DIM mc% 30
30 FOR A% = 0 TO 3 STEP 3

Logical commands

40 P% = mc%

50 [OPTA%

B0 .clear LDA #AsSC(™ ™)
70 LDX #0

80 .loop STA &7CO0,X
90 STA &7D00, X
100 STA &7E0Q,X
110 STA &7F0Q,X
120 DEX

130 BNE loop
140 RTS

150]

160 NEXT

170 CALL clear

In this program, because the screen takes up 1K
(which 1s 4 pages) starting at &7C00, one absolute
indexed X command can only clear one quarter of
the screen, as the X register can only go from 0 to
255; so four commands are used, one for each page.
Of course, this whole program could be replaced
by a call to OSWRCH with the accumulator contain-
ing 12. (This is the ASCII code for ‘Clear Screen'.)

A very useful command is:

ORA 'OR Accumulator with memory’

This works on each bit of the two bytes (one in the
accumulator, the other from the memory) separate-
ly. If either of the corresponding bits in the two
bytesis 1 or both are 1, then the corresponding bit
in the answer is 1. If, however, they are both 0, then
the answer will be 0. The result goes back into the
corresponding bit of the accumulator. This OR func-
tion can be used to set particular bits in a byte to 1
and leave the others untouched.

first bit second bit answer bit
0 0 0
0 1 1
1 0 1
1 1 1

39

40

E.g.
01010110

OR
00001111

01011111

A similar command is
AND 'AND accumulator with memory’

This command only sets the bit in the answer to 1 if
the corresponding bits in the first byte AND the sec-
ond byte are both 1. The AND function can be used
to set particular bits in a byte to 0 leaving the others
untouched. Both this and the OR command are
sometimes called MASK commands because they
mask particular bits to 1 or 0.

first bit second bit answer bit

0 0 0
0 1 0
1 0 0
1 1 1
E.g.
01010110
AND
11110000
01010000

The third and last command along these lines is the
EOR or Exclusive-OR command. This sets the
answer bitto 1 if one of the corresponding bitsin the
first byte OR the second byte is one, but not if they
are both one or both 0. This command can be used
to flip particular bits in a byte from 1 to 0 or 0 to 1
leaving the others untouched. This is how the pro-
cessor flips all the bits to make a negative number
when doing a subtract command.

first bit second bit answer bit
0 0 0

0 1 1
1 0 1
1 1 0

E.g.
01010110

EOR
00001111

01011001

01010110
EOR
1M1

10101001

Notice that, as using EOR with 255 flips all the bits, a
second use of EOR with 255 will flip them all back
again leaving the original number. This is very use-
ful in games graphics. A figure in a game can be
Exclusive-OR’ed with the screen to put it on and
then Exclusive-OR’ed again to remove it.

BIT does the same as AND but doesn't place the
answer back in the accumulator. It forgets the
answer, butit does set the status register flags. If the
answer is zero then the zero flag is set (otherwise it
is cleared). Also, bits 6 and 7 (the most-significant-
but-one and the most significant) of the byte taken
from the memory are placed in the overflow and
negative flags respectively. This can be used in a
variety of ways. By using BIT on a byte in the mem-
ory, bits 6 and 7 can be tested using the flags. But its
main use is that, by setting just one particular bit of
one of the numbers to 1, leaving the others at zero,
and using BIT on the two numbers, the zero flag will
then indicate whether the corresponding bit in the
other number is O or 1.

41

42

Indexed indirect
addressing

E.g.

00010000 (in accumulator)
BIT
01010101 (in memory)

00010000 which is not zero, so the zero
flag will be clear

00010000 (in accumulator)
BIT
10100101 (in memory)

00000000 which is zero, so the zero
flag will be set

The four remaining machine code commands are
concerned with interrupts, they are covered in
chapter four. There are still, however, two address-
ing modes to be covered.

The first of these is post-indexed indirect ad-
dressing. In this mode, a one-byte number is speci-
filed after the command, and this refers to an
address in zero page. The processor takes the byte
at this address and the byte at the address after it to
form a new address. As in indirect addressing, the
low byte is stored first followed by the high byte.
Also, if the address specified is &FF, the two bytes
used will be the ones at &FF (low byte) and &00
(high byte). Once the processor has this address, it
adds the contents of the Y register (this mode can
only be used with the Y register) to it. This now
forms the address of the byte the processor actually
works on. Within the assembler, the zero page
address is put in brackets with a comma and a Y
after the brackets, e.g.

LDA (&70),Y

If location &70 contains, say, &00 and location &71

contains &30, the address ‘pointed to' would be
&3000. If the command is used with Y ranging from 0
to 5, then locations &3000, &3001, &3002, &3003,
&3004 and &3005 would be successively
addressed.

This mode uses just two zero page locations to
hold a variable that itself points into the memory.
For example, if we wished to clear aMode 0 screen,
we place the address of the beginning of the screen
in, say, &70 and &71. Then we could use a loop of Y
to store zeros at 256 locations starting with that
address, then add 256 to the address and repeat the
procedure until the screen is fully cleared, e.g.

.clear LDA #0 \ Place start of
STA &70 \ screen address
LDA #&30 \ in &70 (low)
STA &7 \ and &71 (high)
LDA #0 \ Fill with O
LDY #0 \ start Y at O
.loop STA (&70),Y \ store on screen
INY \ next byte
BNE loop \ 'til 256 done
INC &7 \ then next 256
BIT &7 \ check bit 7 of &7
BPL loop \ if clear repeat
RTS \ if set, then &B8000
reached therefore
screen

cleared so end.

The last addressing mode is pre-indexed indir-
ect addressing. It uses the X register only. The X
register is added to the zero page address itself
rather than to the address stored at that zero page
address. In other words, the processor takes the
one-byte address after the command, adds the X
register (itignores any carry so that the resultis still
a zero page address). Then it takes the byte at that
address and the byte atthe address afteritto forma
two-byte address (as before, low then high) and this
isthe address of the byte that it uses. This command
is typed in the assembler like this:

43

44

STA (&70,X)

If X is 5, this instruction would form the actual
address from the contents of &75 (low) and &76
(high).

Note that the X is within the brackets this time.
The use of this is that a table of addresses can be
formed in zero page and perhaps contain the
addresses of a series of missiles on the screen in a
game. However, because only limited zero page
locations are usually available to you as a machine
code programmer, the applications for this mode
on the BBC Micro are very limited.

There are some commands that people assume
can be used but which the computer does not allow.
For instance, there is a command ORA for the ac-
cumulator, but there are no equivalent commands
for the X and Y registers. Another pointis thatnot all
commands support all addressing modes. For in-
stance, the command INC A is not valid—to do this
you will have to use the commands:

CLC
ADC #1

Useful OS routines

OSBYTE

CHAPTER TWO

THE OPERATING
SYSTEM

Assembly code is very difficult to use on its own
because it contains no specific input or output com-
mands. This means that, say, printing a character on
the screen requires a series of LDA and STA com-
mands to place the relevant bytes in the relevant
places in the memory. This would prove difficult
even in Mode 7 let alone in Mode 2! If, further, we
want to use one of the more complicated pieces of
the hardware on the machine such as the disc drive
then the machine code needed will become ridicu-
lously complicated. The operating system ROM in
the computer comprises just under 16K of machine
code routines which will handle virtually all the
input and output operations you are ever likely to
need. Not only does this ROM contain all the *FX
and other ‘star’ commands, but it also contains
routines for handling VDU commands and filing
commands, to name just a few.

Some of the operating system routines are rarely
used or are too complicated to cover completely in
this book. See The Advanced User Guide (Cam-
bridge Microcomputer Centre, 1983). If you are in
doubt, the rule is that any input or output command
that is available from BASIC can be accessed
through one of the operating system routines some-
how. Here, however, are some of the more useful
routines.

(Operating System BYTE operator routine)
Location: &FFF4

45

46

OSWORD

OSWRCH

This routine is used to set up any of a large number
of flags that the operating system uses to decide
what to do in particular situations. It is the equiva-
lent to the BASIC *FX command. There are over 150
of these commands though most of them are not par-
ticularly useful. There is a list of most of the useful
commands on pages 418-441 of the User Guide.
However, for a complete list of all the OSBYTE calls,
and what they do, see The Advanced User Guide.

To use the OSBYTE routine from machine code
the accumulator must be set to the number of the
specific command you wish to use and the X and Y
registers must be set to any parameters that the
routine needs for that particular command. OSBYTE
is at address &FFF4.

(Operating System WORD operator routine)
Location: &FFF1

This routine is similar to OSBYTE but it handles
operations that require larger amounts of data. This
dataisstored ina CONTROL BLOCK. Thisis a series
of bytes which contain the parameters needed for a
particular OSWORD call. To use OSWORD you
should set aside a block of memory (a parameter
block) long enough for the OSWORD command you
want to use, and then place the parameters in this
block. Then set the accumulator to the number of
the particular OSWORD command you want to use
and set the X and Y register to the low and high
bytes respectively of the address of the first byte of
the parameter block. Then call the routine, which
starts at &FFF1.

For a complete list of all the OSWORD calls, and
what they do, see The Advanced User Guide.

(Operating System WRite CHaracter).
Location: &FFEE

This is the routine that performs the equivalent of a
BASIC VDU command. By loading the accumulator
with a number and calling &FFEE the contents of the
accumnulator will be written to the screen. All output

to the screen can be directed through this routine.
For example, to clear the text screen the following
code should be used:

LDA #12
JSR &FFEE

To take another example, the BASIC PLOT com-
mand is accessed using the sequence VDU285, plot
number, low byte of X coordinate, high byte of X
coordinate, low byte of Y coordinate, high byte of Y
coordinate. Thus to enter graphics Mode 4 and
draw a line from the bottom left-hand corner of the
screen to the top right-hand corner of the screen,
the following piece of code could be used:

LDA #22 \ Change mode
JSR &FFEE \ to
LDA #4 \ mode 4
JSR &FFEE \

LDA #25 \ PLOT
JSR &FFEE \

LDA #4 \ 4,
JSR &FFEE \

LDA #0 \

JSR &FFEE \ O,
LDA #0 \

JSR &FFEE \

LDA #0 \

JSR &FFEE \ O

LDA #0 \

JSR &FFEE \

LDA #25 \ PLOT
JSR &FFEE \

LDA #5 \ 5,
JSR &FFEE \

LDA #&FC \

JSR &FFEE \ 1276,
LDA #4 \

JSR &FFEE \

LDA #&FC \

JSR &FFEE \ 1020
LDA #3 \

JSR &FFEE \

47

48

However, this would be somewhat tedious. A point
to note is that the OSWRCH routine exits with the A,
X and Y registers unchanged; which means that we
can do this:

LDX #0
.loop LDA table,X

JSR &FFEE

INX

CPX #14

BNE loop

RTS

We can then place, starting at the address pointed
to by table, a table containing the following bytes:

22,4,25,4,0,0,0,0,25,5,&FC,4,&FC,3

Make sure you understand this technique as it is
very useful!

For a complete list of what the VDU codes do, see
pages 377-389 of the User Guide.

One important thing to note about this routine is
that, as with the VDU command, a carriage return
(ASCII code 13) returns the cursor to the beginning
of the line it is already on—it does not move the
cursor down to the beginning of the next line. Todo
this you must send a carriage return followed by a
line feed (ASCII code 10). This can be a nuisance, so
the operating system provides another two
routines.

The first of these is OSNEWL (Operating System
NEW Line) which is at address &FFET. This routine
sends a carriage return and a line feed to OSWRCH.

The second is OSASCI (Operating System ASCII
output routine) which is at address &FFE3. This
routine is the same as OSWRCH except that, ifa car-
riage return is sent to it, it does both a carriage re-
turn and a line feed. Itis interesting to see how this is
actually done by the operating system. Here is the
relevant section:

<0SASCI CMP #13
BNE OSWRCH

OSRDCH

+OSNEWL LDA #10
JSR OSWRCH
LDA #13

.OSWRCH JMP (&20E)

Notice that OSWRCH jumps via the vector at &20E to
the routine that actually prints a character.

(Operating System ReaD CHaracter)—the GET
routine.
Location: &FFEQ

This is the routine that the BASIC interpreter uses to
get values for the BASIC GET command. After call-
ing the OSRDCH routine the carry flag will be set if
an error has occurred; the accumulator will then.
contain the error number. This will usually only
occur if the ESCAPE key has been pressed, in which
case the accumulator will contain 27. Here, the
program must acknowledge this by calling
OSBYTE with the accumulator set to &7E (see page
429 of the User Guide or page 149 of The Advanced
User Guide).

If the carry flag is clear then the accumulator will
contain a character that has been read from the
current input device. This will usually be the key-
board although, in some cases, it could be the RS423
interface; or a disc file if a *EXEC command has
been used, for example.

If no key has been pressed the routine will wait
until a key has been pressed before it returns a
value, so it cannot be used for ‘arcade’ games.
OSBYTE with the accumulator set to &81 should be
used (see page 153 of the Advanced User Guide).
So, if we want to get a key from the keyboard, the
following piece of code should be used:

JSR OSRDCH \ Get a key

BCC next \ if no error process key
CMP #27 \ if it isn't escape

BNE error \ goto error routine

LDA #&7E \ if escape

49

50

OSCLI

JSR OSBYTE \ acknowledge and
JMP escape \ goto escape routine
onext ee \ process key

If we are using the keyboard then the error can only
be an escape, so we can use this:

JSR OSRDCH \ Get a key

BCC next \ if no error process key

LDA #&7E \ if escape

JSR 0SBYTE \ acknowledge and

JWP escape \ goto escape routine
next e \ process key

If the escape key has been disabled then all that is
needed is a call to OSRDCH.

(Operating System Command Line Interpreter)
Location: &FFF7

This is the routine the operating system uses to pro-
cess * commands. If in BASIC you use a command
preceded by a * then the BASIC interpreter uses
this routine.

To use this routine you need to have the com-
mand you want to perform stored in memory as an
ASClIIstring. Atthe end of the string there should be
a carriage return (ASCII code 13). Then you should
set the X and Y registers to the low and high bytes
respectively of the address of the first character of
the string in the memory. Then you should call the
OSCLI routine, which starts at &FFFT.

Asan example, let us take a game program which
loads into the computer and then loads a Mode 2
graphics screen before running the game. If we as-
sume that the screen has been saved after the main
program on the tape or disc using *SAVE SCREEN
3000 8000 then the following code can be used:

LDA #22 \ Mode command:
JSR &FFEE \

LDA #2 \ Change to
JSR &FFEE \ Mode 2.

Memory usage

LDX #str MOD256 \ set X and Y to
LDY #str DIV256 \ start of string.
JSR &FFF7 \ call 0SCLI.

coe \ rest of game.

.str EQUS "LOAD SCREEN" \ string with carriage
EQUB 13 \ return at end.

Note that a * i1s not needed at the start of the string.
This routine can be used for all * commands.
However, as we have already seen, there is an
easler way to perform *FX commands.

Normally on the BBC Micro the user is allowed to
use the memory stretching from PAGE to HIMEM.
This can be used for BASIC programs, machine
code programs, variables, data, etcetera.
However, itis sometimes necessary to place a piece
of machine code somewhere where the BASIC can-
not affectit. For example, you might have a machine
code routine that was used by several different
BASIC programs that chain each other. This routine
must be kept clear of the BASIC or it will become
corrupted. There are several methods of doing
this. The most obvious method is to set HIMEM
lower, leaving room for the machine code to be
placed justabove it. However, if the screen mode is
changed, this resets HIMEM according to the new
mode and may clear the machine code. It is usually
better instead to set PAGE higher to leave room for
the machine code just below it, as PAGE is only
reset on BREAK. However, this means you need a
loader program that sets the value of PAGE, and
some programs may reset PAGE for other reasons
anyway.

However, there is a large amount of memory set
aside for the operating system and the BASIC. On a
tape machine PAGE is normally set to &EQQ leaving
3.5K for the ROMs to use. Now, since not all this
memory is likely to be in use at any one time, it is
usually possible to use some of it to place machine

51

52

Zero page

Page 1

Page 2

Page 3

Page 4

code routines in. This 3.5K is described below, a
page (256 bytes) at a time.

This page should be used for machine code
variables only, unless you are very short of mem-
ory. Locations &00-&8F are reserved for the curr-
ent language. However, BASIC itself does not use
locations &50-&8F of this so these locations are safe
to use. Locations &90-&9F are allocated to the
ECONET system, so, unless you are using
ECONET, these are safe. Locations &AO-&AT are
used by the NMI interrupt which is used by the disc
system. However, on tape machines this is not used
and is safe. On disc machines this MUST NOT be
used. The rest of zero page is used by the operating
system and should not normally be used.

This is the processor’s hardware stack. However,
the processor will not normally use more than the
top quarter of the stack so itis reasonably safe to use
&100-&1BF though I would recommend that you
only use &100-&17F and then only for temporary
storage of strings, etcetera.

This is the operating system’s main work area and
as such should not be used.

This contains some more operating system work-
space. Memory locations &300-&37F contain the
VDU command workspace; &380-&3DF are used
by the cassette system and &3E0-&3FF make up the
keyboard input buffer. None of this is particularly
safe to use.

This is used by BASIC for variable storage. Loc-
ations &400-&46B contain the values of the integer
variables @ %-7Z%. These are stored in order,
using four bytes for each. Each of these is stored
low byte to high byte, as a four-byte two's comple-
ment number. The integer variables can be useful
for passing variables between BASIC and machine
code. The rest of this page (&46C to &4FF) is used
for pointers which indicate where the other
variables are stored.

Page 5

Page 6

Page 7

Page 8

Page 9

If BASIC is going to be used, this page cannot be
used for machine code. If, however, you are going
to write a program—such as a game—which will not
use BASIC, and you are short of memory, this page
can be used.

This is used by BASIC as a stack for FOR, REPEAT
and GOSUB return addresses. Again, this can only
be used if BASIC is not needed.

This is used by BASIC for working on strings. So
long as BASIC is not working on strings at a parti-
cular time, this could be used as a temporary work
space. However, this page must be clear before re-
turning to BASIC from your machine code routine.
AsDbefore, if BASIC is not needed, this page is safe to
use for machine code.

This is the BASIC line input buffer. Again it can be
used safely if BASIC is not used.

This is laid out as follows:

&800-&83F Sound workspace
&840-&87F Sound buffers
&880-&8BF Printer Buffer
&B8CO0-&8FF Envelope storage

If any of these sections are not in use then they are
safe to use for machine code.

This is used in three different ways.

1)

&900-&9BF Extra sound envelopes
&9CO0-&9FF Speech buffer

2)

&900-&9BF RS423 output buffer
&9CO-&9FF Speech buffer

3)

&900-&9FF Cassette output buffer.

If none of these is in use then this page can be used.

53

54

Page 10

Page 11

Page 12

Page 13

This is either the cassette or the RS423 input buffer.
As before, this page can be used if the cassette and
RS423 systems are inactive.

This is used for soft key definitions. If you use this to
store your own code, the soft keys will produce
rubbish if pressed. This can be countered by disab-
ling the soft keys using *FX225.

This is used for the user-defined characters. This
page can be used so long as the user-defined char-
acters are not printed.

Memory block &D00-&DOE is used by the NMI sys-
tem. Cassette users may use this but disc users
must use *TAPE first. Memory block &D9F-&DEF is
the expanded vector set. This is used by some
paged ROMs and by the disc system to vector useful
calls. With care, tape users can use it. &DFO-&DFF
1s used by the ROMs for workspace allocation and
should not be used except with extreme caution.

All this means that, if you are writing a program
that uses none of the system's buffers and does not
use BASIC, you have available over 2K more than
usual for machine code commands. With great
care, even short BASIC programs can be placed in
pages 8-12 by setting PAGE accordingly.

CHAPTER 3

PURE MACHINE
CODE

We have seen iIn the last two chapters how to
program in assembly code. However, this lan-
guage 1s completely artificial; it is not one that the
computer understands directly. We have to con-
vertan assembly code program into machine code,
using an assembiler, before we can use it. For most
purposes this is ideal for us as it means we don't
have to understand pure machine code. If, how-
ever, you are looking at someone else’s program
you may not have the original assembly code but
only the machine code. In some circumstances it is
easler to write in pure machine code—if you can do
it! This chapter will show you how assembly code is
converted into pure machine code.

A machine code programis stored in the memory
as a series of consecutive bytes. Each instruction
takes up either one, two or three bytes depending
on what addressing mode it uses.

The first byte of an instruction tells the CPU which
command is being used and also which addressing
mode it is being used with.

There is a specific one-byte code for each
available combination of command and addressing
mode. This byte is called the op-code. Because not
all the addressing modes can be used with each
command the total number of legal op-codes is 151.
If you use a code that is not legal the computer will
usually ignore it, though some illegal codes pro-
duce strange results. This is because there are
some commands on the 6502 which are not docum-
ented because either they don't work properly or
are totally useless.

If your computer has a 65C02 processor, which is

55

Addressing modes

Implied addressing

Immediate addressing

Accumulator
addressing

Absolute addressing

Zero page addressing

56

a recent improvement on the old 6502 processor,
then it will have 59 extra legal op-codes. The stan-
dard BBC Micro, however, has only the 151 stan-
dard 6502 op-codes. There is a complete list of the
legal op-codes and what they do in Appendices B
and C.

Here is alist of all the addressing modes we can use
and what data (if any) is needed for each.

In this mode no explicit data is needed, so the com-
mand only uses the one byte for the op-code.

In this mode one byte of data is needed. Thus the
assembler command LDA #&7E becomes:

AS 7E

Note that the data is stored in the memory as the
byte directly after the command byte.

In this mode there is no explicit data involved. The
A (for accumulator) after the command in assembly
codeisinfactimplied by the op-code itself. The A is
only for our convenience. Thus LSR A becomes:

4A

In this mode two bytes are needed after the op-code
to specify the address of the byte the processor
must work on. These address bytes are always
stored with the low byte first, followed by the high
byte. Thus STA &FE62 becomes:

80 62 FE

If we wanted, for example, to store the accumulator
at zero page address &78 using absolute address-
ing we would need:

80 78 0O

Absolute X addressing

Absolute Y addressing

Zero page X
addressing

Zero page Y
addressing

However, there is an addressing mode for just this
sort of situation. By using zero page addressing the
processor knows we are using zero page and we
only have to send one byte of data to the processor.
Thus the example above becomes:

85 78

This means that if we store all our frequently used
variables in zero page we can access them slightly
faster and with a saving of one byte of program per
command. The assembler does this automati-
cally—if it is faced with an absolute addressing
command with an address in zero page, it automati-
cally uses zero page addressing.

In this mode the contents of the X register are added
to the address before itis used. In terms of machine
code the command is identical to absolute address-
ing but the op-code is different. Thus STA &6435,X
becomes:

9D 35 64

This uses the Y register but is otherwise identical to
absolute X addressing except that the op-code is
different. For example LDA &900,Y becomes:

B9 00 09

As with absolute addressing there is a zero page
version of absolute X addressing. This is zero page
X addressing and uses only one byte of data. This
command automatically works in zero page. Thus
LDA &78,X becomes:

B5 78

This is the same as zero page X addressing, only
with a different op-code. For example STX &90,Y
becomes:

96 390

57

Indirect addressing

Pre-indexed indirect
addressing

Post-indexed indirect

58

addressing

Relative addressing

This mode (which can only be used with the JMP
instruction) has two bytes after it which together
form the address in which the processor looks for
the actual address. Thus JMP (&230) becomes:

6C 30 02

In this mode a zero page address is specified so it
only uses one byte of data. Thus ADC (&70,X)
becomes:

61 70

This again only needs a one-byte zero page
address. Thus STA (&84),Y becomes:

91 84

This mode is the most complicated of all. It needs
one byte of data in the form of a positive or negative
number. This is the number that is added to the
program counter if the condition being tested is
true. The program counter, of course, determines
which command is being carried out or executed.
The way to calculate this offset, as it is called, is to
subtract the address of the first byte of the com-
mand you want to branch to, from the address of the
first byte of the next command after the branch
command.

For example, take the assembly code program:

LDX #&80
«loop DEX

BNE loop

RTS

If we assembled it at address &2000 onwards and
then looked at it we would find the following:

Address byte

2000 A2 \ LDX #
2001 B0 \ &80

2002
2003
2004
2005

CA
DO
FD
60

\ DEX

\ BNE relative

\ &2002-&2005=-3=&FD
\ RTS

(a branch backwards)

-nocarry RTS

becomes:

INC &70
BNE nocarry

INC

&7

Address byte

2000
2001
2002
2003
2004
2005
2006

EB
70
DO
02
E6
0l
60

\ INC
\ &70
\ BNE
\ &2006-&2004=2
\ INC
\ &71
\ RTS

(a branch forwards).

Notice that the assembler OPT command has an op-
tion so that you can see an assembled listing of the
code as it is assembled. This can be enabled by
using OPT3 for the second pass. Below is the second
of our example programs and the print-out it

produces.

10 HIMEM=&2000

20 FOR pass%=0T03 STEP3
30 P%=&2000

40 [OPT pass%

50
60
70

INC &70
BNE nocarry
INC &71

80 .nocarry RTS

90]

100 NEXT

2000

OPT pass%

59

60

A machine code
monitor

2000 E6 70 INC &70
2002 DO 02 BNE nocarry
2004 E6 ™M INC &7
2006 60 .nocarry RTS

Now that we have seen how pure machine code
works, we need a way of using it. On the BBC Micro
there is no quick way to look at a section of memory.
If we want to look at a machine code program or
write one, we need a 'window’ into the memory.
The program we need is called a machine code
monitor. It is relatively easy to write a simple moni-
tor in about 600 bytes, so that is exactly what we will
do.

In this and the following chapters we will discuss
each programin detail. Each section of the program
willbe, ingeneral, followed by numbersin brackets
that refer to line numbers in the full listing that fol-
lows the description.

This program will work in Mode 7. We need to be
able to look at a whole section of the memory, say
200 bytes, and not just one byte at a time. The best
way to do this is to display the contents of the mem-
ory in hexadecimal as a table on the screen. So as to
get a large number of bytes on the screen we will
need to have eight bytes on each line of this table.
We need to be able to see, at a glance, the address
of each byte, though we can make do with only dis-
playing the address of the first byte on each line. So
we will end up with a display looking like:

78A0 01 20 E3 FF 20 E3 FF AS
78A8 00 A2 07 20 E3 FF CA DO
78B0 FA AS 04 AC CO 4C F4 FF
7888 C9 30 90 33 C9 3A BO 06
78C0 38 ES 30 4C D1 78 C9 41
78C8 90 25 C9 47 BO 21 38 ES
7800 37 85 75 A4 74 B1 70 OA
7808 OA OA OA 05 75 91 70 31
78E0 70 20 C2 79 AS 08 20 E3
78E8 FF 20 E3 FF 4C 61 78 C9
78F0 S9F FO 19 C9 3C DO 63 20
78F8 23 7A C6 74 AS 74 CS FF
7900 FO 03 4C 61 78 AS 07 85

7908 74 4C OF 79 20 23 7R AS
7910 1F 20 E3 FF AQ 00 20 E3
7918 FF 20 E3 FF AS 0B 20 €3
7920 FF A5 70 38 ES 08 85 70
7928 A5 71 E9 00 85 71 AS 70
7930 38 EQ 60 85 72 A5 71 ES
7938 00 85 73 20 DE 79 A9 1F
7940 20 E3 FF AS 00 20 E3 FF
7948 A9 18 20 E3 FF A9 20 A2
7950 27 20 E3 FF CA DO FA 4C
7958 61 78 C9 SE FO 1D C9 32

We can also make the program more pleasant to
use by making the addresses (at the extreme left)
yellow and the data (the contents of the memory)
green. We can then highlight the byte we are curr-
ently working on by making it white.

We are going to use the cursor keys and the
shifted cursor keys for control of the cursor, so the
first thing we need to do is set up the cursor keys to
do this.

We could produce ASCII codes from the cursor
keys using *FX4,1 but this will not distinguish be-
tween normal and shifted cursor keys. The way
round this is to set up the cursor keys as soft keys
and set them to generate ASCII codes. We do this
with two commands. First, *FX4,2 sets up the cursor
keys as soft keys 12 to 15. The shifted cursor keys
will now automatically produce ASCII codes (from
&8C to &8F) but the normal cursor keys will not. So,
second, we make the normal cursor keys generate
ASCII codes by setting the ASCII base of the normal
function keys to &90 with *FX225,144. This means
that instead of producing strings the soft keys will
generate ASCII codes of &90 plus the key number,
so that the normal cursor keys will now generate
codes &9C to &9F. So the start of our machine code
routine looks like this:

.monitor LDA #4
LDX #2
LDY #0

61

62

JSR osbyte
LDA #&E1
LDX #&30
JSR osbyte

(80-140)

Notice that we have used osbyte instead of &FFF4.
To do this we must define the variable osbyte at the
beginning of the assembler program. We are also
going to use the OSASCI and OSRDCH routines so
we can define these at the same time. We also need
a place to put the machine code monitor program.
For our purposes let's put it at &7900 and move
HIMEM down to leave room for it. This will cause
problems if you are writing a graphics program but
it is easy, in that event, to change the program to
assemble the machine code elsewhere in the
memory.

So the beginning of the assembler routine looks
like this:

10 HIMEM=&7300

20 osasci=&FFE3

30 osbyte=&FFF4

40 osrdch=&FFEO

50 FORpass#%=0T02STEP2
60 P%=&7300

70 [OPTpass%

Now back to the machine code. Our next task is to
go into Mode 7 and turn the cursor off.

LDA #22

JSR osasci

LDA #7

JSR osasci

LDA #23

JSR osasci

LDA #1

JSR osasci

LDA #0

LDX #8
.1loop1 JSR osasci

DEX
BNE loop1

(150-270)

Notice that the simple BASIC command
VDU23,1,0,0;0;0; becomes quite complicated in
machine code. The eight zeros are easier to send
with a loop unlike in BASIC.

Next we must decide what memory address we
are interested in displaying. It is convenient to set
this to &0000 for the moment as it is easy to step
through the memory to the location we are interes-
ted in. Because of the way we are going to display
the table, we are going to be treating the memory as
an array eight bytes across by 8192 bytes down.

It will be easier if we keep the address of the first
byte on the line we are looking at separate from the
number of the byte (0-7) within that line.

Let’s say that &70 and &71 contain the address of
the first byte on the line where the cursor is at pre-
sent positioned and &74 contains the number of the
byte on that line which we are interested in (0-7).
Initially the address of the first byte of the line and
the number of the byte on the line will both be zero,
so we can add to our program:

LDA #0
STA &70
STA &1
STA &74

(280-310)

Next we must display a screenful of memory—24
lines of eight bytes each. It would be sensible to set
up a routine which just prints one line (eight bytes)
of memory, and use this repeatedly. However,
before we can even do this we need a routine that
will display the value of one byte as two hex digits.
For this routine let us specify that the byte to be
printed must initially be found in the accumulator.
We will have to work on one nibble (half a byte) ata
time, so we have to save the complete byte while we

63

64

work on the first nibble in the accumulator. We can
save the accumulator in &75. Next we can mask out
the least significant nibble, leaving the most signifi-
cant nibble in the accumulator (this will be the left-
hand digit of the hex byte). We will then have to shift
it right four times so that we get a number from zero
to fifteen in the low nibble of the accumulator.

.byte STA &75
AND #&FO
LSR A
LSR A
LSR A
LSR A

(1990-2040)

Next we need to display this digit on the screen. We
will need to do this twice (left-hand nibble and
right-hand nibble) for each byte so we need a sep-
arate routine called nibble to do this.

Having called this routine we must reload the ac-
cumulator with the original byte and this time mask
out the most significant nibble, leaving the right-
hand nibble in the least significant nibble of the
accumulator, and call the nibble routine again.
However, note there is little point in calling nibble
again as, once 1t is called, the byte routine will have
finished so the next command would be RTS. We
may as well ‘fall through' straight to nibble and let
the RTS at its end (supplied by the OS subroutine
OSASCI) do the job. This means that we have to
place nibble directly in place of the second JSR
nibble command. This leaves us with:

JSR nibble

LDA &75

AND #&F
.Nnibble ...

(2050-2080)

The nibble routine must add 48 (ASCII code for 0) to
the number in the accumulator before printing it

using OSASCI. However, if the number is 10 or
more (decimal) then we need first to add a further
seven to bring it to the corresponding ASCII codes
for the characters A, B, C, D, Eand F.

.nibble CLC
ADC #48
CMP #58
BCC print
CLC
ADC #7
.print JSR osasci
RTS

Notice that because the last-but-one command of
nibble is a JSR we can instead just jump to OSASCI
and the RTS command at its end will save us from
needing an extra RTS at the end of nibble. Thus the
end of nibble becomes:

.print JMP osasci

(2080-2140)

We now have the byte display routine; so, next, we
need to write the line display routine. For this we
need the address of the first byte on the line. This
may not necessarily be the line the cursor is on, so
we can't use &70 and &71. Instead we can specify
that the address of the first byte on the line must be
stored at &72 and &73. The routine must first of all
print a ‘yellow’ teletext code for the address. Then
it must print the two-byte address stored at &72 and
&73 (remember that &73 is the high byte).

.line LDA #&83
JSR osasci
LDA &73
JSR byte
LDA &72
JSR byte

(2160-2210)

65

66

Next we need a space to separate the address from
the data.

LDA #32
JSR osasci

(2220-2230)

We will next use post-indexed indirect addressing
to load the byte to be displayed into the ac-
curnulator; so we need to set Y to zero for the first
byte. Then, for each byte, we can print a ‘green’
teletext code to separate the byte from the previous
one; then load the byte into the accumulator and
display it; then increment Y; and repeat the process
until all eight bytes that make up the line have been
displayed. After that we only need a carriage re-
turn to complete this routine. As before, we can
save ourselves from putting an RTS at the end by
jumping to the OSASCI routine.

LDY #0
.loop3 LDA #&82

JSR osasci

LDA (&72),Y

JSR byte

INY

CPY #8

BNE loop3

LDA #13

JMP osasci

(2240-2330)

Having written a routine for displaying a line, we
can now go back to the main routine and display a
whole screenful of data. For this overall display, it
would be best if the byte we are currently examin-
ing or altering always appears half-way down the
screen as then we can see what we have done and
what is coming. For this reason the line the cursor is
on will always be the thirteenth line down. Thus to
print the block of memory above the cursor we
need to subtract 96 (12 times 8) from the contents of

&70 and &71. This we can put in &72 and &73 ready
to display a line. We also need to start at the top of
the screen (later we will jump back to this point so
the change of mode is not sufficient).

.display LDA #30
JSR osasci
LDA &70
SEC
SBC #96
STA &72
LDA &7
SBC #0
STA &73

(320-400)

We are going to print 24 lines in one go, so we can
use the X register to count down from 24 to 1. We
also need to add 8 to the contents of &72 and &73 to
move the address forward by eight bytes after each
line.

LDX #24
.loop2 JSR line
LDA &72
CLC
ADC #8
STA &72
LDA &73
ADC #0
STA &73
DEX
BNE loop2

(410-510)

We are now at the stage where we need a cursor to
appear. We are going to highlight the byte we are
interested in by making it white. To do this we need
to put a ‘white’ teletext code before itand a ‘green’
teletext code after it. As we are going to want to
remove this cursor again, it would be sensible to
use a subroutine to position the text cursor where

67

68

we are going to place the ‘white’ byte. We shall call
this routine cursorl. We know that the cursor will
always be on line 12 so we only have to calculate
how far across it will be. As each byte uses up three
screen characters for its display we need to multi-
ply the byte number by three. To do this we need to
load the accumulator with the contents of &74, shift
the accumulator left one bit to multiply it by two, and
then add the contents of &74 to the accumulator to
make three times the original number. We then
have to add six to the accumulator to shift the cursor
right past the address at the beginning of the line.
We can use VDUS31,x,y to move the text cursor
on the screen. So the routine looks like this:

.cursor] LDA #31
JSR osasci
LDA &74
ASL A
CLC
ADC &74
CLC
ADC #6
JSR osasci
LDA #12
JMP osasci

(2350-2450)

We can now go back to the main routine. Firstly we
need to call cursor! and then we need to print a
‘white’. As we have used ‘green’ codes to separate
the bytes we don’t need to put another one in. The
text cursor is then on the first nibble of the byte.

.start JSR cursor1
LDA #&87
JSR osasci

(520-540)
We now need to get a key from the keyboard using

OSRDCH. If ESCAPE has been pressed we must
acknowledge it with OSBYTE &7E and we then want

to turn the cursor back on with VDU23,1,1:0:0:0:;
reset the cursor keys to their normal functions with
*FX4,0 and move the cursor to the bottom of the
screen using VDUZ31, all before returning to BASIC.

key JSR osrdch
BCC key1
LDA H&TE
JSR osbyte
LDA #23
JSR osasci
LDA #1
JSR osasci
JSR osasci
LDA #0
LDX #7
.loop4 JSR osasci
DEX
BNE loop4 \ Note that X must now
LDA #4 \ be zero, so we don't
LDY #0 \ need to set it for
JSR osbyte \ the OSBYTE call.
LDA #31
JSR osasci
LDA 40
JSR osasci
LDA #24
JMP osasci

(550-770)

Having checked for the ESCAPE key we need to see
if the byte under the cursor is being altered. If the
key pressed is either 0 to 9 or A to F then we must
alter the byte accordingly. Firstly we can check if
the code is less than 48. If so, then we must check for
other keys.

keyl CMP #48
BCC key?2

(780-790)

Next we can look to see if the code is less than 58. If

69

70

so, then a number key has been pressed and we
need to subtract 48 to get the value of the new
nibble.

CMP #58
BCS letter
SEC

SBC #48
JMP hex

(800-840)

If not, we then want to look for a letter. If the code is
less than 65 we are not interested and must wait for
another key. Ifitislarger than or equal to 71 then we
must look to see if it is a cursor key. Otherwise we
want to subtract 55 to get the value of the new
nibble.

.letter CMP #B5
BCC key
CMP #71
BCS key?2
SEC
SBC #55

(850-900)

We now have to decide what to do with the nibble.
Probably the best way to input the byte is for each
new nibble to shift the old byte left one nibble. Thus
the high nibble is lost, the low nibble becomes the
high nibble and the nibble typed in replaces the
low nibble. To do this we have to temporarily store
the nibble we have typed in while we shift the mem-
ory byte left four bits. Then we can OR in the new
nibble and store the result back in the memory.

hex STA &75
LDY &74
LDA (&70),Y
ASL A
ASL A
ASL A
ASL A

ORA &75
STA (&70),Y

(910-990)

This program will allow us to look into the ROMs
but if we try to store an alteration back into a ROM
nothing will happen. To make sure that the user
doesn't think something has happened it would be
sensible to load the byte back again before storing
it on the screen. This way, if the byte hasn't been
altered then the displayed byte on the screen won't
change. As we have left the text cursor at the first
nibble on the screen we can just call the subroutine
byte to display the byte, move the text cursor back
again and go back to waiting for the next key.

LDA (&70),Y
JSR byte
LDA #8

JSR osasci
JSR osasci
JMP key

(1000-1050)

If the key pressed is not a number or a letter we
must check whether it is a cursor key and act ac-
cordingly. We shall check first of all for a cursor-up.
If this has been pressed we shall branch to the re-
levant routine. Otherwise we shall check for a
cursor-left.

key2 CMP #&SF
BEQ up
CMP #&9C
BNE key3

(1060-1090)

Having established that the cursor-left key has been
pressed we need to remove the highlight cursor.
We will have to do this several times so we need a
subroutine which we shall call cursor. This must

71

12

first call cursorl to position the text cursor and then
rub over the highlight teletext code with a ‘green’
code.

.cursor JSR cursori
LDA #&82
JMP osasci

(2470-2490)

So our cursor-left routine can now remove the cur-
sor. Next it must decrement &74 to move the
address of the byte being looked at, back by one. If
this is now 255 then we must set it to seven (the end
ofthe line)and do a cursor-up. Otherwise we can go
back to the start of the main routine. Notice that as
this last branch is more than 128 bytes we have to
use the ‘skip and jump’ technique.

JSR cursor
DEC &74
LDA &74
CMP #255
BEQ skip1
JMP start
.skipl LDA #7
STA &74
JMP up1

(1100-1180)

While we are at it, we can write the up routine as
well. This will be the same as up! but with a call to
cursor in front of it.

«up JSR cursor
upl oo

(1190)
Next we have to scroll the screen down one line.

We can do this by first moving the cursor to the top
of the screen using VDU30 and doing a cursor-up.

.upl LDA #30
JSR osasci
LDA #11
JSR osasci

(1200-1230)

Next we have to subtract eight from &70 and &71 to
move the cursor line back by one.

LDA &70
SEC

SBC #8

STA &70
LDA &71
SBC #0

STA &71

(1240-1300)

Next we must call line with the address of the top
line in &72 and &73. This will be the contents of &70
and &71 minus 96.

LDA &70
SEC

SBC #96
STA &72
LDA &71
SBC #0
STA &73
JSR line

(1310-1380)

Lastly we need to clear the bottom line of the screen
by moving to the bottom line and printing 31
spaces.

LDA #31
JSR osasci
LDA #0
JSR osasci
LDA #24

13

74

JSR osasci

LDA #32

LDX #31
.loop5 JSR osasci

DEX

BNE loop5

JMP start

(1390-1500)

Next we must check for cursor-down. If this has
been pressed then we must jump to the relevant
routine.

key3 CMP #&SE
BEQ douwn

(1510-1520)

Otherwise we must check for cursor-right. If you
are typing a long program it will be annoying to
have to find the cursor-right key between typing in
each byte, so we shall allow both the cursor-right
key and the space-bar to do the same job.

CMP #&3D
BEQ right
CMP #32
BNE key4

(1530-1560)

The right routine must first remove the old cursor
and then increment &74 to move the cursor right by
one byte. If the contents of &74 now equal eight then
we must set it back to zero and jump to the cursor-
down routine. Otherwise, we must use the ‘skip and
jump’ technique to branch back to start.

.right JSR cursor
INC &74
LDA &74
CMP #8
BEQ skip2

JMP start
.skip2 LDA #0

STA &74

JVMP down1

(1570-1650)

As with the up routine, we can insert the down
routine here.

.down JSR cursor
.douwn cee

(1660)

Next we have to scroll the screen up a line. We can
do this by moving to the bottom of the screen and
doing a cursor-down. However, at the same time
we can print the new bottom line. This is because
we are leaving a blank line at the bottom of the
screen. By printing the new line in this blank space
the carriage return at the end will scroll the screen
for us. First we need to move to this blank line.

.down1 LDA #31
JSR osasci
LDA #0
JSR osasci
LDA #24
JSR osasci

(1870-1720)

Now we add eight to the address of the cursor line.

LDA &70
CLC

ADC #8

STA &70
LDA &71
RDC #0

STA &7

(1730-1790)

Next we must store the address of the new bottom
line in &72 and &73 and call /ine. Then we can jump
back to start.

LDA &70
CLC

ADC #88
STA &72
LDA &7
ADC #0
STA &73
JSR line
JMP start

(1800-1880)

We now have all we need. However, if you want to
look at the contents of address &7F00 you will have
to scroll through from &0000 to &7F00 one line at a
time and this will be slightly tedious. To solve this
problem we shall make shifted cursor-up and
shifted cursor-down move a page at a time through
the memory. This we can do by incrementing or
decrementing the high byte of the address of the
cursor line (&71) and jumping back to display.

key4 CMP #&BE
BNE key5S
INC &71
JMP display
key5 CMP #&8F
BNE keyB
DEC &71
JMP display

(1890-1960)

Finally, if the key that has been pressed is not one
we are interested in then we must go back and wait
for another key to be pressed.

keyb JMP key
(1970)

76

This program is a very simple one. There are
several ROMs available that have more sophisti-
cated monitors in them. BBC Monitor (ROM based)
from BBC Publications (1985) is one such. Another
package from the same publishers is Toolbox 2 by
lan Trackman (1985), which comprises a book and
software tape. It has a particularly interesting im-
plementation of a monitor among its many utilities,
and complements this book.

Of course, you can improve our monitor
program. However, it will provide a useful tool for
those people who can’t be bothered to write a bet-
ter version or buy a ROM. It will also give you valu-
able experience in how assembly code programs
work.

Here, then, is a complete listing of the monitor
program. You might like to use the command
*SAVE MONITOR 7900 +20B 7900 to save the ma-
chine code once it is assembled. Then the monitor
can be used by typing *tMONITOR. This will take up
lessroom on a disc or tape and will be faster to load.
However, you should keep a copy of the source as-
sembly code program so that you can assemble the
program into different places, if necessary, by
changing P% at line 60.

You do not need to type in the comments on the
right-hand side of the listing.

10 HIMEM=&73900

20 osasci=&FFE3

30 osbyte=&FFF4

40 osrdch=&FFED

50 FORpass%=0T02STEP2

60 P%=&7900

70 [OPTpass%®

80 .monitor LDA #4 \ Main program
90 LDX #2 \ initialisation.
100 LDY #0

110 JSR osbyte

120 LDA #&E1

130 LDX #&390

140 JSR osbyte

150 LDA #22

160 JSR osasci

1

18

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
4770
480
490
500
510
520
530
540
550
560
570
580
590
600

.loopl

.display

«loop2

.start

key

LDA
JSR
LDA
JSR
LDA
JSR
LDA
LDX
JSR
DEX
BNE
LDA
STA
STA
STA
LDA
JSR
LDA
SEC
SBC
STA
LDA
SBC
STA
LDX
JSR
LDA
CLC
ADC
STA
LDA
ADC
STA
DEX
BNE
JSR
LDA
JSR
JSR
BCC
LDA
JSR
LDA
JSR

#7
osasci
#23
osasci
#1
osasci
#0

#8

osasci

loop1
#0
&70
&7
&4
#30 \ Display sect of
osasci \ memory as table 8
&70 \ bytes by 24
\ lines.
#96
&72
&7
#0
&73
#24
line
&72

#8
&72
&73
#0
&73

loop2

cursor! \ Start checking
#&87 \ keys.

osasci

osrdch

key1 \ Check for

#&TE \ ESCAPE.

osbyte

#23

osasci

610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
8390
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040

.loop4

keyl

.letter

-hex

LDA #1
JSR osasci
JSR osasci
LDA #0
LDX #7
JSR osasci
DEX
BNE loopé4
LDA #4
LDY #0
JSR osbyte
LDA #31
JSR osasci
LDA #0
JSR osasci
LDA #24
JMP osasci
CMP #48
BCC key?2
CMP #58
BCS letter
SEC
SBC
Jmp
cMmp
BCC
cmp
BCS
SEC
SBC
STA
LDY
LDA
ASL A
ASL A
ASL A
A
&
(

#48
hex
#65
key
#1
key?2

#55
&75
&4

ASL
ORA
STA
LDA
JSR
LDA #8

JSR osasci
JSR osasci

\ Check for byte
\ being altered.

79

80

1050
1060 .key?2
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160 «skip1
1170
1180
1180 .up
1200 .upl
1210
1220
1230
1240
1250
1260
1270
1280
1230
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470 .loop5S

Jmp
cmp
BEQ
CmP
BNE
JSR
DEC
LDA
cmp
BEQ
Jmp
LDA
STA
Jmp
JSR
LDA
JSR
LDA
JSR
LDA
SEC
SBC
STA
LDA
SBC
STA
LDA
SEC
SBC
STA
LDA
SBC
STA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
LDX
JSR

key

#&SF \ Check for
up \ cursor-up.
#&9C \ Check for
key3 \ cursor-left.
cursor

&74

&74

#255

skip1

start

#7

&74

upl

cursor

#30

osasci

#11

osasci

&70

#8
&70
&M
#0
&7
&70

#96
&72
&7

#0

&73
line
#31
osasci
#0
osasci
#24
osasci
#32
#31
osasci

1480
14390
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
18390
1900

key3

.Tight

.skip2

.down
.down

keyd

DEX
BNE
Jmp
cmp
BEQ
CMP
BEQ
CMmp
BNE
JSR
INC
LDA
Cmp
BEQ
Jmp
LDA
STA
JmP
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
CLC
ADC
STA
LDA
ADC
STA
LDA
CLC
ADC
STA
LDA
ADC
STA
JSR
Jmp
CmpP
BNE

loop5
start
#&9E
down
#&9D
right
#32
key4
cursor
&4
&74

#8
skip2
start
#0

&74
down1
cursor
#31
osasci
#0
osasci
#24
osasci
&70

#8
&70
&71
#0
&7
&70

#88
&72
&7
#0
&73
line
start
#38E
keyS

\ Check for
\ cursor-down.
\ Check for
\ cursor-right

\ Check for
\ shifted

81

82

1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340

key5

keyb

.byte

.nibble

.print

.line

.loop3

INC &71

JMP display
CMP #&8F
BNE key6
DEC &7

JMP display
JP key

STA &75
AND #&FO
LSR A

LSR A

LSR A

LSR A

JSR nibble
LDA &75
AND #&F
CLC

ADC #48
CMP #58
BCC print
CLC

ADC #7

JMP osasci

LDA #&83
JSR osasci
LDA &73
JSR byte
LDA &72
JSR byte
LDA #32
JSR osasci
LDY #0

LDA #&82
JSR osasci
LDA (&72),Y
JSR byte
INY

CPY #8

BNE loop3
LDA #13
JMP osasci

\ cursor-doun.

\ Check for
\ shifted
\ cursor-up.

\ Display byte
\ in hex.

\ Display nibble
\ in hex.

\ Display line
\ of table.

2350 .cursor1 LDA

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470 .cursor
2480

2490

2500]
2510 NEXT

JSR
LDA
ASL
CLC
ADC
CLC
ADC
JSR
LDA
Jmp

JSR
LDA
Jmp

2520 CALL monitor

#31 \ Move text cursor
osasci \ to position

&74 \ for editing

A \ cursor.

&4

#6

osasci
#12
osasci

cursor! \ Remove editing

#4882 \ cursor.
osasci

83

84

CHAPTER FOUR

INTERRUPTS

With a computer as sophisticated as the BBC Micro,
which supports a large number of software-driven
peripherals, there are a number of ‘housekeeping’
tasks the computer must perform regularly to keep
these peripherals ready for the user. The proces-
sor 1s not, unfortunately, able to do two jobs at once
so it must regularly stop what it's doing to check up
on the peripherals. However, there isno pointin the
processor doing this unless a peripheral actually
needs servicing.

To get around this problem the computer uses a
system called interrupts. What happens is that there
is a wire, connected to the processor, that is norm-
ally at a logic level of one (5 Volts). This wire is also
connected to all the peripherals that may need
servicing. When, say, the cassette system needs at-
tention it pulls this wire down to logic level zero (0
volts). This interrupts the processor in what it's
doing. The processor finishes the machine code
command it was processing at the time the interrupt
occurred and then pushes the contents of the
program counter (high then low) on the stack, and
then the status register. It then looks at two bytes at
the end of the memory (&FFFE and &FFFF). These
two bytes (low then high) make up the address of
the operating system routine which handles
interrupts.

There are two types of interrupts on the 6502 pro-
cessor. These are IRQ (Interrupt ReQuest) and NMI
(Non Maskable Interrupt). These are triggered by
two separate wires on the processor. The most used
form is the IRQ. When this occurs the processor
looks at bit 2 of the status register—the interrupt
disable flag. If this is setthen it ignoresthe interrupt,
otherwise it jumps to the address pointed to by

&FFFE (low) and &FFFF (high). In contrast, the NMI
1s not masked by the interrupt disable flag and so
cannot be ignored. It jumps to the routine pointed to
by &FFFA (low) and &FFFB (high).

Because the NMl is unstoppable it is only used for
very important peripherals such as the disc system
and the Econet interface which need fast service to
function properly. All the other peripherals are on
the IRQ. Inevitably, servicing their interrupts takes
time. If you are prepared to ignore all the hardware
that is interrupt-driven you can speed a program
up quite noticeably by disabling interrupts. To do
this you must set the interrupt disable flag in the
status register with the SEI command. It is important
to clear the flag again, when you have finished, by
using the CLI command.

The operating system now has a chance to
service the peripheral that generated the interrupt.
However, before it can do this it must save the
registers on the stack. This way the routine can re-
load them before returning execution to the main
program. If this is not done then the main program
will suddenly find its registers have changed and
will probably crash. To save the registers the
operating system uses the following commands:

PHA
TXA
PHA
TYA
PHA

When the operating system has finished servicing
the interrupt it must return to the main program.
First it must reload the registers.

PLA
TRY
PLA
TAX
PLA

Then it must use the command RTI. This reloads the
status register and program counter from the stack
and allows the processor to carry on from where it

85

86

left off before the interrupt occurred.

Next we need to look at the way the operating
system handles an interrupt. It only knows that an
interrupt has been generated somewhere in the
computer. It doesn’t know which piece of hardware
has generated it. To find out it must look at each
plece of hardware in turn until it finds which is the
culprit (it is possible, though unlikely, that two or
more devices may have generated interrupts
simultaneously).

Luckily, each piece of hardware that can gen-
erate an interrupt has a register stored in the mem-
ory which contains a flag bit which indicates
whether it has generated an interrupt or not. There
are more details on each piece of hardware in The
Advanced User Guide.

The devices which can cause interrupts on a BBC
Micro are:

NMI

1 Mhz bus
Econet interface
Disc interface

IRQ

TUBE interface
1 Mhz bus
Cassette | RS423
System VIA

The system VIA is the most interesting to us, as this
generates all the interrupts that keep the computer
working normally.

Because a device must have an interrupt flag in it
for the operating system to check, devices that
don't have such a flag cannot directly generate in-
terrupts. Instead their interrupt outputs are connec-
ted to some inputs on the system VIA. This has four
inputs that can generate interrupts; and it has regis-
ters in it with flags for each input. The four devices
in the ‘Beeb’ which can generate interrupts in this
way are the light pen input on the analogue connec-
tor, the analogue to digital converter, the video
controller and the keyboard.

The system VIA

We are most interested in the last two. The video
controller generates an interrupt every time a vert-
ical sync pulse is sent to the video monitor. This can
be used for generating flicker-free graphics (see
chapters 7 and 10). Here we will discuss the other
interrupts and will also discuss events.

The keyboard generates an interrupt each time a
key is pressed. When this happens the operating
system looks to see which key has been pressed
and updates the keyboard buffer. If you are writing
a game and you don't need to use the GET com-
mand then you can disable this interrupt to speed
up the game as this will not prevent you from using
INKEY with a negative number.

There are also two timers in each VIA (user and
system) which can be used either to generate an
interrupt on a regular basis or to provide a single
interrupt after a set amount of time.

The system VIA is memory mapped as sixteen
registers at addresses &FE40 to &FE4F. These are
regarded as registers zero to fifteen. (The user VIA
is mapped similarly but at addresses &FE60 to
&FE6F.) The VIAs are quite complicated to use and
a lot of their functions are not particularly useful.
There is a full description of them in The Advanced
User Guide.

Let's first look at the four interrupt inputs for the
system VIA. Its register 12 controls how these are
used. For all the interrupts to work correctly this
register must contain either 4 or 5. Normally it con-
tains 4. This causes an interrupt at the end of the
vertical sync pulse. By setting it to 5 the interrupt is
caused at the beginning of the sync pulse. This is
about two pixels earlier vertically. This may seem
pretty pointless, but if you are using *FX19 for
flicker-free graphics and the graphics flicker just at
the top two pixels then this should cure it.

Normally you would not have to alter register 12.

Actual control of interrupts is done using registers
13 and 14. Register 14 is used to enable and disable

87

88

the various interrupts that the VIA can produce and
can only be written to. When writing to register 14,
if bit 7 is set, then a one in any other of the bit po-
sitions will enable the corresponding interrupt; if
bit 7 is clear, then a one will disable the correspond-
ing interrupt. This means that any interrupt can be
enabled or disabled without affecting the other in-
terrupts. Bits O to 6 in the system VIA's register 14
represent the following interrupts:

BIT INTERRUPT
Keyboard
Vertical sync
Shift register
Light pen

A to D convertor
Timer 2

Timer 1

DO WD~ O

Register 13 contains the interrupt flags themselves
for each part of the VIA. Each of bits 0 to 6 repres-
ents an interrupt as in register 14. If a bit is set this
means that the relevant part of the VIA has caused
an interrupt. Also, bit 7 is set if any one of the other
bits 1s set. This provides a quick way for the pro-
cessor to check if the VIA is responsible for the
Interrupt—it looks at bit 7 first.

These bits will not clear themselves so the first
job the interrupt routine must do, once it has identi-
fied which interrupts have occurred, is to clear any
bits that are set, ready for the next interrupt. To do
this it must write to register 13 with the correspond-
ing bits of the flags to be cleared, set. Note that writ-
ing a one to bit 7 of this register has no effect—in
other words, to clear bit 7 you have to clear all the
other bits.

There are also anumber of jobs, such as updating
the TIME clock, that the computer must do regu-
larly. This is done using TIMER 1 in the system VIA.
This is set to produce an interrupt every hundredth
of a second. It is probably the most useful interrupt
to us as it can enable us to do a bit of extra process-
ing every hundredth of a second. This means that
we can run two programs simultaneously so long as

Interrupt-driven
music

one of them does not need much processing time
and breaks down into convenient short sections
which can be executed every hundredth of a
second.

Now that we have seen a bit about how interrupts
work we can look at an example. Because of the
nature of interrupts they can, to a limited extent, be
used to make the computer seemingly do two jobs
at once. In this example we are going to make the
computer play a tune, using interrupts. This will
leave the computer free to do almost anything else
(apart from using the sound port) in the meantime.

To make the program simple we will take a tune
that can be played on channels one to three without
envelopes. To make the program as 'transparent’ to
the user as possible we will not use any zero page
addresses but will use variables stored directly
after the program. The program itself can be
placed in page ten of the memory. The data for the
tune can be placed in page nine. We will need five
variables: time which will count interrupts to pro-
duce a regular beat; count which will count the
beats for an individual note; point which will point
into the note table; and tempx and tempy for tem-
porary storage of registers. The first three we can
set to their initial values for the start of the tune. We
will also need an eight-byte OSWORD command
block for the SOUND command. While we are sett-
ing this up we can set some of the eight bytes that
will not change throughout the program, so saving
a few bytes of program.

.time EQUB 1
.count EQUB 1
.point EQUB O
.tempx EQUB O
.tempy EQUB O
.cblock EQUD O
EQUD &FF0O00

(90-150)

89

90

The main IRQ intercept routine will start at irq so
first we need an initialisation routine to set up the
IRQ vector.

We must first set the interrupt disable flag to pre-
vent an interrupt occurring while we are changing
the vector.

Then we must make a copy of the contents of the
vector. This is so that when we have finished our
interrupt work we can pass the interrupt on to the
usual operating system routine.

Then we must reset the IRQ vector to point to our
own routine.

Finally, we need to clear the interrupt disable
flag and return.

.init SEI
LDA &204 \ Copy IRQ vector
STA &230 \ into spare vector.
LDA &205
STA &231
LDA #irqg MOD256 \ Set IRQ vector
STA &204 \ to irg.
LDA #irg DIV256
STA &205
CLI
RTS

(160-260)

Now we can write the main program. The first thing
this must do is set the interrupt disable flag. This
should stop any untimely interruptions. Next we
must save the registers on the stack. The ac-
cumulator has already been stored at &FC for us by
the operating system, so we need only save the X
and Y registers.

.irqg SEI
TXA
PHA
TYA
PHA

(270-310)

Next we need to check that TIMER 1 is responsible
for the interrupt. We examine bit 6 of register 13 of
the system VIA. If this is set then TIMER 1 is respon-
sible. We must not reset this flag as the operating
system also wants a chance to service this interrupt.
If TIMER 1 is not responsible then we can let the
operating system cope with the interrupt. First we
must reload the X and Y registers from the stack and
then jump back to the normal IRQ routine in the
operating system.

LDA #&40

BIT &FE4D

BNE irg?l
.exit PLA

TAY

PLA

TAX

P (&230)

(320-390)

We now have a routine that is called every hun-
dredth of a second. However, we only want to
change the notes of our tune every eight-
hundredths of a second, otherwise the tune would
be much too fast. To do this we decrement the
variable time every hundredth of a second and,
every time it reaches zero, reset it to eight and call
the music routine.

.irql DEC time
BNE exit
LDA #8
STA time

(400-430)

Now we have the problem that some notes are
longer than others. If we have the length of the pre-
vious note in eight-hundredths of a second stored in
count then we can decrement it each time until it
reaches zero; at which point we can play the next
note.

91

92

DEC count
BNE exit

(450-460)

Now we are almost ready to play a note. However,
before we do this we must look at the way the notes
are stored in the table. For this program they are
stored four bytes per note. The first byte is the
length of the note in eight-hundredths of a second
and the other three bytes are the pitches of the
three channels.

So the first thing we must do is to store the length
of the note in count. The pointer into the table
(which is less than 256 bytes long) is stored in point.
This pointer counts in bytes so we must load it into
the X register to use ABSOLUTE X addressing.

LDX point
LDA &300,X
STA count

Now we must play the three notes of the chord. We
can do this with a loop using the Y register to count
with.

LDY #3

(460-490)

Firstly we must increment X to point to the second
byte of the entry. Then we must set up the OSWORD
command block. The layout of the block for a
SOUND command is that the first two bytes are the
channel number, the next two bytes are the
amplitude, the next two bytes are the pitch and the
last two bytes are the duration.

Now we must set the channel number. We are
also going to use the flush control so that each note
wipes out the previous one. This is to make each
note start during the interrupt. We will also make
the duration 255 so that each note carries on until the
nextnote is played. We have the channel number in

Y—we only have to add &10 to set the flush control.
The high byte of the channel number is already
Zero.

.channel INX
TYA
ORA #&10
STA cblock

(500-530)

Next we have the volume. For this tune we need
some short rests to stop notes running into each
other (a sort of staccato effect). For these notes the
pitchnumber is zero. We must first set the volume to
zero and then look at the pitch. If the pitch is zero
then we have finished setting up the command
block, otherwise we must set the volume to —15
(&FFF1 in two's complement) and set the pitch ac-
cordingly (again, the high byte of the pitch is al-
ready zero).

LDA #0

STA cblock+2
STA cblock+3
LDA &3900,X
BEQ rest

LDA #&F1

STA cblock+2
LDA #&FF

STA cblock+3
LDA &300,X
STA cblock+4

(540-640)
Notice that the duration of the note is already set to
258.

Next we must save the X and Y registers and then
setthem to point to the command block. We must set
the accumulator to seven for a SOUND command
and call OSWORD.

.rest STX tempx
93

94

STY tempy

LDX #cblock MOD256
LDY #cblock DIV256
LDA #7

JSR &FFF1

(650-700)

Now we must reload the registers and if there is still
a channel to be done we must go back and do it.

LDX tempx
LDY tempy
DEY

BNE channel

(710-740)

The X register now points to the fourth byte of the
note in the table. By incrementing X it will point to
the first byte of the next note and we can save it in
point. If it has reached 168 then the whole tune has
been played and we need to go back to the begin-
ning by resetting point to zero. At this point we have
finished with the interrupt routine and can pass con-
trol back to the operating system.

INX

STX point
CPX #168
BNE exit
LDX #0
STX peint
JMP exit

(750-810)

We have finished the machine code now, so we only
have to set up the actual tune. The easiest way to do
this is to put it into DATA statements after the as-
sembly code (lines 850-1050). For convenience we
can set it up in lines of eight hexadecimal bytes run
into a string. For example:

1000 DATA 0B64544D01000000

To place this data in the memory we need a few
lines of BASIC. There are 21 lines of DATA for our
tune so we need to read each one in as a string.

10 FORA%=0T020
20 READA$

Next we need to extract the eight bytes from A$.
These will be placed from &900 onwards. We can
extract each byte using MID$. Then we precede the
string we have obtained with & and use EVAL to
find its value.

30 FORB%=0TQ7
40 B%?(&900+A%*8)=EVAL ("&"+MID$(A$,B%*2+1,2))
50 NEXT,

Notice that line 840 calls init.

The complete program with data looks like this:

10 FORA%=0T020

20 READA$

30 FORB%=0T07

40 B%?(&S00+A%*8)=EVAL ("&"+MID$(A$,BF*2+1,2))

50 NEXT,
60 FORpass%=0TO2STEP2
70 P%=&A00
80 [OPTpass%
90 .time EQUB 1
100 .count EQUB 1
110 .point EQUB O
120 .tempx EQUB O
130 .tempy EQUB O
140 .cblock EQUD O
150 EQUD &FF0OO0O0
160 .init SEI \ Set irq vector
170 LDA &204 \ to point to our
180 STA &230 \ routine.
190 LDA &205
200 STA &231
210 LDA #irg MOD256

95

96

220

230

240

250

260

270 .irq
280

290

300

310

320

330

340

350 .exit
360

370

380

390

400 .irqgl
410

420

430

440

450

460

470

480

4380

500 .channel
510

520

530

540

550

560

570

580

530

600

610

620

630

640

650 .rest

STA
LDA
STA
CLI
RTS
SEI
TXA
PHA
TYA
PHA
LDA
BIT
BNE
PLA
TAY
PLA
TAX
JmP
DEC
BNE
LDA
STA
DEC
BNE
LDX
LDA
STA
LDY
INX
TYA
ORA
STA
LDA
STA
STA
LDA
BEQ
LDA
STA
LDA
STA
LDA
STA
STX

&204
#irq DIV256
&205

#&40
&FE4D
irql

(&230)
time
exit
#8
time
count
exit
point
&900, X
count

#3

#&10
cblock
#0
cblock+2
cblock+3
&800,X
rest
#&F1
cblock+2
#&FF
cblock+3
&900,X
cblock+4
tempx

\ Main routine.

\ Centisecond
\ clock trapped.

\ Set up each
\ channel.

Events

660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
8390
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050

STY tempy

LDX #cblock MOD256
LDY #cblock DIV256

LDA #7

JSR &FFF1

LDX tempx

LDY tempy

DEY

BNE channel

INX

STX point

CPX #168

BNE exit

LDX #0

STX point

JMP exit
]
NEXT
CALLinit
DATAOBG64544D01000000
DATAO364544D01000000
DATAD368544801000000
DATA0668544802000000
DATA0364584801000000
DATADB685C4802645C48
DATAO35C483801000000
DATAD0354483801000000
DATAD250402C0240402C
DATA0248402C0250402C
DATAD254402C025C402C
DATAD0264402C0268402C
DATAO770645401000000
DATAO768504001000000
DATAD264544002545440
DATAD2685040025C5040
DATA0370544001000000
DATA03685C4801000000
DATAO764544001000000
DATAO75C403801000000
DATAQF54342401000000

There is, however, a simpler way to use interrupts:
an interrupt system called EVENTS. In this system
ten common events that can occur are offered to the

97

98

user for processing. These events are slightly
slower to respond than the interrupts. The events
available are:

Event no. Event

Output buffer empty.

Input buffer full.

Character entering input buffer.
ADC conversion complete.
Start of vertical sync.
Interval timer reaching zero.
ESCAPE has occurred.
RS423 error.

Econet event.

User event.

O© O0ON O U WD — O

There is a complete description of events in The
Advanced User Guide. If one of these events
occurs, the operating system jumps to the subrout-
ine pointed to by the vector at &220 and &221 (witha
JSR command) with the event number in the ac-
cumulator. The X and Y registers may contain extra
data according to the event.

Once an event routine has been set-up with the
vector, the relevant event must be enabled. If more
than one event is to be used, the event routine must
test the accumulator first to check which event has
occurred. If only one event has been enabled then
this is not necessary. To enable an event use *FX14
with the number of the event.

Event routines must save all three registers, as
with interrupts, and must not enable interrupts.

Probably the two most useful of these are events
four and six. The vertical sync event (four) can
either be used for flicker-free graphics (see chap-
ters 7 and 10) or can be used to provide a regular
interrupt every fiftieth of a second. For example,
in our Interrupt-driven sound program we could
re-write the program in the following ways. The
initialisation routine will need to be re-written.

160 .init LDA #event MOD256
170 STA &220

180 LDA #event DIV256

190 STA &221
200 LDA #14
210 LDX #4
220 LDY #0
230 JMP &FFF4

We will need to delete lines 240 to 260. And the
following lines must be changed in the main
routine.

270 .event PHA
320 DEC time
330 BEQ event1

Delete line 340

385 PLA
390 RTS

Delete lines 400 and 410

420 .event1 LDA #4

Notice that, as the vertical sync only occurs half as
often as the centisecond interrupt, the value stored
In time is halved.

The other event that is quite useful is the ESCAPE
event. When this is enabled the normal action of
ESCAPE is disabled—in fact, the ESCAPE key does
absolutely nothing except generate an event. In a
long machine code program such as a game this can
be very useful, as it stops the ESCAPE key from hav-
ing undesirable effects, but still enables it to be
used to stop the game, etcetera.

In fact, because the relative simplicity of events
makes them less versatile, they are not as useful as
interrupts. For instance you can't use the interval
timer in the system VIA using events. This timer is
useful for accurate timing, as we shall see in chap-
ters 7 and 10.

We will see in the next few chapters just how use-
ful interrupts can be.

99

100

BRK

Before we leave the subject of interrupts, there is
one other machine code command we must dis-
cuss—BRK (or BReaK). Probably the closest equiva-
lent to this in BASIC is the command STOP. BRK is
always used with implied addressing.

When the processor comes across a BRK com-
mand it sets the Break flag in the status register and
then carries on as if an IRQ has occurred. So, when
the operating system handles an IRQ, it first has to
check whether it is an IRQ or a BRK that has occur-
red. There is no machine code command that gives
direct access to the Break flag, so at first sight this
would seem to be a problem.

However, as with an IRQ, when the processor
comes across a BRK command, it pushes the
program counter then the status register, on the
stack. Thus the operating system only hasto pull the
top byte from the stack. This will be the contents of
the processor status register at the moment when
the BRK or IRQ occurred. By testing bit 4 of this, the
operating system can tell which of the two has
occurred.

On the BBC Micro BRK commands are used for
trapping errors. When a language ROM has found
an error (for instance a syntax error), it has a BRK
command followed by the error number, the error
message, and a zero. We can use this in our ma-
chine code programs if they are called from BASIC.

We can run the following program and BASIC will
assume that the error is an ordinary BASIC error
and will behave accordingly.

10 ONERRORGOTO120
20 DIMmc%25

30 P%=mc%

40 [OPT2

50.error BRK

60 EQUB 255

70 EQUS "An error has occurred"
80 EQUB O

%0]

100 CALLerror

110 END

120 REPORT:PRINT" at line ";ERL
130 PRINT"Error number ";ERR

What happens is that when the operating system
handles a BRK command it jumps to the Break vec-
tor at &202 and &203 (low, high). The A, X and Y
registers are unchanged from when the BRK occur-
red. Also, the operating system pushes the status
register from when the BRK occurred and the
address of the next-but-one byte from the BRK com-
mand on the stack. This means that if the Break vec-
tor is set to point to an RTI command the processor
returns to the next-byte-but-one from the BRK com-
mand, and carries on where it left off.

BASIC claims this vector and sets it to its own
error handling routine. This routine pulls the top
three bytes off the stack and discards them. Thus
the BRK command has much the same effect as a
jump to the error routine. It is this error routine that
expects the error number and string directly after
the BRK command.

Other languages may claim the BRK command for
themselves simply by changing the contents of the
Break vector.

Another example of the use of this vector is in
intercepting errors in BASIC. The following
program intercepts all BASIC errors. It must first
save the two registers it uses so that the routine is
‘transparent’. It then looks at the byte after the BRK
command. [t can do this because the operating sys-
tem makes a copy of this address in the zero page
locations &FD and &FE. If this error is an ‘escape’
(error number 17) then it ignores it, otherwise it
prints a message before returning to the normal
BASIC error routine.

10 FORpass%=0T02STEP2
20 P%=4A00

30 [OPTpass%

40.brk PHA

50 TYA

60 PHA

70 LDY #0

80 LDA (&FD),Y

101

30 CMP #17
100 BEQ exit
110.1loo0p LDA fool,Y
120 JSR &FFE3
130 INY
140 CPY #13
150 BNE loop
160.exit PLA
170 TAY
180 PLA
190 JmP (&230)
200.f ool EQUS CHR$13+"Silly Billy!"
210]

220 NEXT

230 ?&230=7&202
240 ?7&231=7&203
250 ?&202=0

260 ?&203=10

CHAPTER FIVE

A FEW WAYS TO
PROTECT YOUR
PROGRAMS

Piracy is a problem that is worrying many software
houses these days. It is impossible to produce a
commercial program that cannot be copied—how-
ever clever the protection is, someone will find a
way around it. However, it is possible to make it
very difficult for anyone to copy a program. Very
few people have the skill and patience to copy a
program which has been properly protected. Here
you will find a few of the many techniques that can
be used to make copying difficult.

Itis possible to write a program in such a way that,
once 1t is run, it cannot be stopped. To do this we
need to disable the ESCAPE key and the BREAK
key. The ESCAPE key is easy to disable but the
BREAK key cannot be disabled completely. It is,
however, possible to make the computer clear the
memory when the BREAK key is pressed. The
Operating System conveniently provides a *FX call
to deal with both the ESCAPE and BREAK keys. This
1s *FX200. This 1s used to change a flag byte within
which only bits 0 and 1 do anything. If bit O is set then
the ESCAPE key is completely disabled, and if bit 1
1s set the BREAK key causes the memory to be
cleared. Thus, by placing the command *FX200,3 at
the beginning of a program, it is impossible to get
out of the program without the memory being
cleared. (We will see in chapter 6 how to intercept
the BREAK key.)

103

Locked tape files This is all very well, but a program can still be
loaded and then saved. We need a way of stopping
people doing this. Acorn have kindly placed a pro-
tection system in the BBC Model B Operating
System for tape users. This system produces a file
ontape whichis ‘locked’. If you try to *LOAD such a
file you will get the message ‘file locked'. In fact, the
only command the operating system will allow you
to use on a locked file is *RUN. This means that only
machine code programs can be locked.

A locked file is produced by setting a particular
bitin the header of each block. This tells the operat-
ing system that the file is locked. The operating sys-
tem does not, unfortunately, provide a command
for saving locked files, so we need a program that
will do this. At first it would appear that we need to
write a complete save routine to do this. There is,
however, a beautifully simple way.

While the operating system is saving a file it
keeps a copy of the header for each block in loc-
ations &3B2-&3D0. The bit we are interested in is bit
0 of location &3CA. Because the tape hardware is
interrupt driven, not only does an interrupt occur
every time a byte is saved to tape, but also, the cen-
tisecond clock is left running. It is very simple to
redirect the main interrupt vector so that as each
byte is saved bit 0 of &3CA is set. The following
program does just this. Notice that the machine
code is stored in zero page where it can't get in the
way. Once this program is run all files saved will be
locked until BREAK is pressed.

10 P%=&50

20 [0PT3

30 .irg PHA

40 LDA &3CA
S0 ORA #1
60 STA &3CA
70 PLA

80 JvP (&230)
90 .init SEI

100 LDA &204
110 STA &230
120 LDA &205

104

Unlistable programs

130 STA &231

140 LDA #irq m0D256
150 STA &204

160 LDA #irq DIV256
170 STA &205

180 CLI

190 RTS

200]

210 CALLinit

We now would appear to have an uncopyable
program which can only be *RUN and, once run,
cannot be broken into. Of course, it would be naive
to think even this system infallible. It is possible to
crack a locked file but that technique will not be
revealed here.

It is sometimes useful to be able to write a BASIC
program which cannot be listed. This is done using
ASCII code 21 which disables the VDU drivers.
When this has been sent to the VDU drivers the
screen ignores everything that is sent to it until a
VDU6 command is used to re-enable the VDU
driversagain. By placing CHR$21 and CHR$6 codes
in a listing, part or all of a program can be made
unlistable.

Unfortunately, these codes cannot just be typed
into a program listing. If, however, two character
codes which are not used anywhere else in a
program are used—codes such as the ‘curly’
brackets—then it is quite easy to write a short
program that will convert these into CHR$21 and
CH$6 codes. So that the program will run properly
these characters should be placed in REM state-
ments. Other characters can be used, such asdelete
(CHR$127); or cursor controls, such as line-feed.
The obvious way to use this is to disable the whole
listing, but it is often much more effective to use it to
remove particular lines without which the program
appears to do something completely different. This
system can be used to great effect as the first part of
a game which prints instructions and then chains or
*RUNs the next section. Try typing-in this example
program:

105

106

10 REM ********************************{

70 REM } e e e e e e e e e e et sfe s sk sl s ek s ko e e e ik Aok K

20 REM }* *(
30 REM }* This program is copyright *{
40 REM }* *{
S0 REM }* It is illegal to copy it. *{
60 REM }* *(

{

80 REM REST OF PROGRAM

90 PRINT"THIS PROGRAM WILL STILL RUN"
100 GOTOS0
110 REM}

We want to change @ (line 10) to a clear screen
(code 12); {to CHR$21; and } to CHR$6 (lines 20 to 70
and 110). To do this you must first type the
commands:

PAGE=&2000
NEW

Then you must type in and run the following
program. Disc users will need to change the setting
of A% at line 10 to &1900.

10 A%=4E00

20 IFA%?1=4FF END

30 A%=A%+3

40 A%=A%+1:IF?A%=13 THEN20 ELSE IF?A%<>&F4
THEN4O

50 REPEATA%=A%+1:IF?A%=ASC"@" ?A%=12

B0 IF?A%=ASC"}" ?A%=6

70 IF?A%=ASC"{" ?2A%=21

80 UNTIL?A%=13:G0OT020

Notice thatin line 50 the REPEAT command does not
need a : after it. This is never needed after a
REPEAT statement.

Now set PAGE back to its usual value and try list-
ing the program. Note that the program still runs
normally.

This program first finds the start of each line of the
program then looks for the token (&F4) for a REM
statement. It then searches the rest of the line for the
characters we want to replace. This way the

program won't accidentally alter line numbers or
lines of BASIC.

Alternatively, you can use a machine code moni-
tor (such as the one in chapter 4) to look directly at
and modify the relevant characters in the BASIC
coding.

A very effective (and far more subtle) way of
using this technique is to double-bluff the pirate.
For instance, say that in the BASIC loader for a ma-
chine code game the last two commands are:

*_0OAD game 3000
CALL &3082

The pirate will look at this and will be able to
examine the machine code. If we can arrange for
him not to know the load and execution addresses
then his task is much harder. Even better, if we can
convince him that the load and execution addresses
are, say, &2800 and &293A respectively. . ..

The way to do this is to put a dummy set of com-
mands at the end of the program and then conceal
the real ones. The original program ending would
look like this:

320 REM * load machine code *{
322 *LOAD game 3000

324 CALL &3082

326 REM)

330 *LOAD game 2800

340 CALL &293A

Try typing this in and using the alteration program
as before, then listing the program.

Note that the line numbers that the pirate will see
are in steps of ten, leaving no clue to the missing
lines.

One word of warning before you use this tech-
nique. There is a major, very annoying bug in the
operating system! When the VDU drivers have
been disabled with VDU21 any carriage returns
sentto the VDU drivers are sent to the printer: even
if the printer hasn't been enabled—even if your
printer has been turned off—even if you don't have

107

108

Disc tricks

a printer! This irritating quirk means that every
time you list your program the printer spits paper at
you! Also, if your printer is not turned on, these car-
riage returns (and line-feeds if you have used
*FX6,10) accumulate in the printer buffer. If the
number of these reaches 63 the whole computer
seizes up until either ESCAPE or BREAK is pressed.
So don't fill your programs full of CHR$21's.

If you are writing a program with the VDU21 com-
mand in it you can get around this by using the com-
mand *FX3,64 before using VDU21. This disables
the printer driver completely except for characters
sent using the VDUl ,x command.

For those of you with disc drives the list of fiendish
tricks you can play on the pirate is endless. These
tricks all rely on knowing how to access the blocks
on a disc directly, using an OSWORD call. The DFS
adds a series of extra calls to the standard list of
OSWORD calls. We are going to use one of
these—OSWORD &T7F. This routine saves or loads a
section, or all, of a track.

On entry to this routine the X and Y registers must
point to a parameter block (Y high). This parameter
block consists of 10 bytes and should be laid out as
follows:

XY+ 0 Drive number.

XY+ 1

to Load / Save address.
XY+ 4
XY+ 5 Number of parameters (3)

XY+ 6 Command (&53 for load,
&4B for save).

XY + Track number.

XY+ Sector number.

XY+ 9 High nibble: sector length in 128-
byte groups. Low nibble: number of
sectors to be loaded/saved.

XY +10 Error number (0 if no error).

@ N

For example, if we wanted to read the contents of
the block at track 10 sector 5 we would need to re-
serve 256 bytes in the memory to store the block.

Then we would need to set up a parameter block.
The first byte of the parameter block would be zero
and the next four would point to the reserved block
of memory (the top two bytes would be set to zero).
The number of parameters refers to the number of
parameters after the command byte that are sent to
the routine (1.e. not including the error byte) and so
would be three. The command would be &53. The
track number would be 10 and the sector number 5.
The last (ninth) byte is more complicated. The size
of a block on a standard DFS disc is 256 bytes, so the
high nibble of the parameter byte needsto be 2. We
only want to load one block, so the low nibble is 1,
i.e. the ninth byte is &21.

For protection against piracy there are a number
of things we can do with this. The first is to save files
with names that include control codes. As with the
unlistable programs, we can apparently totally
eliminate files from the catalogue and yet still load
them. This means that unless the pirate tries every
name he can think of (quite a long job!) only a per-
son who knows the filename can load the file. Thisis
not much use if you want to sell the program, but if
you write a well-protected loader which then
chains the main program then only the loader’s
filename need appear on the catalogue.

If you have the old DFS then saving control codes
in filenames is easy. For example, to save a file that
appears on the catalogue as TEST but actually has a
different filename, try:

SAVE "TESS|HT"

The problem with this is that the catalogue and com-
pact routines use the length of the filename to set out
the catalogue on the screen. So, if you are not care-
ful, filenames will tend to be shifted left if they are
printed on the same line as, but further right than, a
doctored filename. This is where the subtle ap-
proach is not necessarily the best. Very good ef-
fects can be obtained by titling the disc with a clear
screen, a suitable message, and a CHR$21! You can
then add a CHR$6 to the end of the last file on the
catalogue. If your disc boots then you don't even

109

110

have to let the user catalogue the disc at all!

If youdon't have the old DFS you will need to load
the first block on the disc (track zero, sector zero)
into the memory, alter it accordingly, and save it
back again—a somewhat more cumbersome
method.

However, all this is child’s play next to what can
be achieved. It is not very useful to stop the pirate
loading the program and looking at it if he can just
‘backup’ to a new disc. Here's how to stop him:
The second block on the disc contains the load and
execution addresses, the lengths, and the locations
on the disc, of all the files. It also contains eight bytes
at the very start of the block. The first four of these
are the last four bytes of the title (the first eight bytes
of the title are the first eight bytes of block zero).
Then comes one byte which stores the number of
times the disc has been written to since formatting
(this number appears in brackets after the title in
the catalogue). Then comes a byte which gives the
number of files in the catalogue, times eight. And
finally, two bytes that give the total number of
blocks on the disc. These are stored high byte first
(yes, this is unusual). Also, the high nibble of the
high byte is used to store the OPT number.

You may wonder of what use all this is. The
answer is that we can set the total number of blocks
on the disc to zero! This may seem foolish but it
doesn't affect the way the DFS loads from disc. It
only has an effect when you start saving on the disc
or when you back-up the disc. When backing-up,
the computer copies on to the new disc the number
of blocks specified in block one of the source disc.
This means that, by setting this to zero, the back-up
command will copy precisely no blocks. If you want
to be even more cruel to the poor, defenceless
pirate, you could arrange for just enough blocks to
be copied to copy the loader from disc but not the
main program. The loader could then check a block
at the end of the disc to see if it contains a specific
string—which, of course, you will have put there on
the original disc; and, if it is not there, then it would
print a suitable message, such as ‘This is an illegal
copy’ and crash!

Track O
Sector O

First 8 bytes of title

N

| | Filenames from catalogue. 8

| | bytes each. Stored in reverse
| | order to that which files are
stored on disc

J

N — D) T
7 bytes 1 byte for
file name directory. Bit 7
set if file locked

Sector 1 Hi Lo

v ;w_/
Last 4 bytes 1 byte - 1 byte - Total no. of sectors
of title no. of no. of on disc. OPT 4
accesses files on setting stored in
to disc disc x 8 high nibble of high
byte

File data - 8 bytes/file
in same order as filenames
in Sector O

Lo Hi Lo Hi Lo Hi Lo Hi

2 bytes | 2 bytes | 2 bytes | 2 bytes

High nibble is

Load Exec Length Sector no /////Z high nibble of
Address Address of file start length.

111

112

Note that if the length has been set to zero you can't
save any more programs on the disc. It also fools
certain utilities’ commands for looking at the disc
directly—pirates occasionally use this for breaking
into discs.

A useful side effect is that *COPYing all the files
on the disc will not copy the string at the end and so
the copy won't work. This leads me to another sug-
gestion for disc protection: have a well-protected
loader which loads the main program off the disc
directly using OSWORD &7F. This way you need
not even put the main program on the catalogue.
You might even like to store the program on disc in
some personal encryption code!

Another interesting point is that, if you add 128 to
all the bytes that make up a filename in block zero,
that filename will promptly vanish from the cata-
logue completely! It will, however, still load and run
perfectly normally—ifyou know the filename!

Yet another thing that you can do if you have a
utility such as DISC DOCTOR which allows you to
format sections of a disc, is take an unformatted disc
and formatitleaving some tracks unformatted. If the
pirate tries to make a back-up of this he will get a
load error! To cover these tracks set up a dummy
file in the catalogue that occupies the space.

There are plenty of other ways of confounding
the pirate. You could try coding (that is, encrypting)
your program and placing a decoding routine at the
start. This won't stop a determined pirate as he can
deduce the code from the decoding program, but it
will slow him down. In fact, you will find it very
difficult to stop a determined pirate. You can only
protect against the person who casually copies
programs. By combining a large number of protec-
tion methods you can make the pirate’s job difficult
enough so that he will think twice before attempting
anything. What you must decide is whether all this
1s worth it.

A companion book in the Master Guide series,
Mastering the Disc Drive (BBC Publications, 1985)
goes into the disc system in great detail.

CHAPTER SIX

THE KEYBOARD

At first sight there is not a lot that can be said about
the keyboard except that it is the most important
means of input the computer has.

The first thing that must be said is that programs
of a 'professional’ standard must be fool-proof.
Probably the most common problem with commer-
cial software is that particular keys on the keyboard
have not been disabled properly. As a general
rule, at any point in a program all keys except the
ones that can be used legally should be disabled.
This applies in BASIC and in machine code.

With this in mind we should take a look at all the
keys and the methods of disabling them.

When you need to input data from the keyboard
In a program you should check it to ensure that it is
made up of legal key presses. In BASIC the easiest
way to do this is to compare each character of the
string with a string containing all the legal charac-
ters. This can be done with the command INSTR.

For example, suppose you want the user to input
his first name. You want letters, upper or lower
case, and nothing else.

The BASIC to check for this would be:

1000 CLS

1010 INPUT"Your first name";A$

1020 E%=0

1030 FORA%=1TOLENA$

1040 IFINSTR("ABCDEFGHIJKLMNOPQRSTUVWXYZabcde
fghi jklmnopgrstuvuxyz" ,MID$(A$,A%,1))=0
THENE%=1

1050 NEXT

1060 IFE%THEN1000

1070 PRINTA$

113

A BASIC input This method of solving the problem still allows the
routine user to type the wrong letters in the first place and a
name of up to 250 characters, which would be a little
silly! Better to write an input function which uses the
GET command and checks each character as it is
typed. If a character (such as a %, say) is illegally
typed it ignores it and waits for another key to be
pressed. Also, a maximum number of characters
can be imposed. If thisis done itis a good idea to set
out a row of full stops, over which the user types, to
show him how much he is allowed to type.

10 CLS:VDU23,1,030303;03

20 PRINT"Your first name?":A$=FNinput
(20, "ABCDEFGHIJKLMNOPQRSTUVWXYZabc
defghi jklmnopgrstuvwxyz")

30 PRINTA$

40 END

1000 DEFFNinput(N%,I$):LOCALAS,CS

1010 PRINTSTRING$(N%,".");STRING$ (N%,CHR$8) ;

1020 A$="":VDU23,1,1;0;0;0;

1030 G$=GET$:IFG$=CHR$13VDU13,10,23,1,03030;0;
=A%

1040 IFG$<>CHR$127THEN1070

1050 IFLENA$=0VDU7:GOT01030

1060 VDUB,46,8:A$=LEFT$(A$,LENA$-1):G0OTO1030
1070 IFINSTR(I$,G$)=0vDU7:G0OTO1030

1080 IFLENA$=NZTHENVDU7:GOTO1030

1080 A$=A$+G$:PRINTGS;:GOTO1030

Note also that this program only turns the cursor on
(line 1020) when an input is expected. This is good
practice as it helps to give the user a clue as to when
he is expected to type something.

A machine code A like method can be used from machine code.
input routine Here we need a place to put the string. As BASIC is
not being used we can use the space taken up by the
BASIC string input buffer (appropriately enough).

This is the whole of page seven of the memory.

114

Let's specify that the routine is entered with the
maximum length of the string in X. We also need a
string containing all the legal characters. This we
can place at the end of the machine code program
with the EQUS command. We can then say that the
routine must be entered with the length of this
string minus one in Y. This way we can allow differ-
ent amounts of this string to be legal by changing Y.
For instance, if you wanted to use the routine
twice—the first time allowing the letters A to Z and
the second time allowing only the letters A to
F—then you could set out the legal string as
‘ABCDEFGHIJKLMNOPQRSTUVWXYZ'. The first
time you called the routine, Y would be 25 to allow
all the string to be legal, the second time, Y would
be 5 so as to only allow the first six letters of the
string to be legal.

The routine will exit with the string stored from
&700 onwards, and followed by a carriage return.
Thus the example would be:

10 PROCass

20 CLS:VDU23,1,03;030303

30 PRINT"Your first name?"
40 X%=20:Y%=51:CALLinput
50 PRINT$&700:END

Now we must write the routine.

The first job is to store the contents of the X register
at &70 and the Y register at &72 temporarily.

1000 DEFPROCass

1010 DIMmc%250

1020 FORpass%=0T02STEP?2
1030 P%=mc%

1040 [OPTpass$%

1050 .input STY &72
1060 STX &70

The next job is to print the row of dots over which
the user will type. The number is already conve-
niently in the X register for us.

115

116

1070 .loop1 LDA #46

1080 JSR &FFE3
1090 DEX
1100 BNE loop1

Next we have to move back the same number of
spaces to allow the user to start typing over the top
of the dots. This time the X register will have to be
reloaded from &70.

1110 LDX &70
1120 .loop2 LDA #8
1130 JSR &FFE3
1140 DEX

1150 BNE loop2

While we are at it we need a variable to count how
many characters the user has typed in. This we can
store at &71; it will initially need to be zero. As we
have just finished a loop in X, the X register will
contain zero; so we can store this at &71.

Then we must turn on the cursor with
VvDU23,1,1,0;0;0;

1160 STX &71
1170 LDA #23
1180 JSR &FFE3
1190 LDA #1
1200 JSR &FFE3
1210 JSR &FFE3
1220 LDX #7
1230 .loop3 LDA #0
1240 JSR &FFE3
1250 DEX

1260 BNE loop3

Now we are ready to get a key from the keyboard
using OSRDCH. If this routine exits with the carry
flag set then the ESCAPE key has been pressed and
we need to acknowledge this and exit the routine
with a null string stored at &700.

As we do this we will need to put a carriage re-
turn at the end of the string and turn the cursor off.

This part of the program we can use as an exit once
we have obtained a valid string, so we must give it

the label exit.

1270 .key
1280

1290

1300

1310

1320

1330 .exit
1340

1350

1360

1370

1380

1390

1400

1410

1420

1430 +loop4
1440

1450

1460

1470

JSR &FFEO
BCC noerror
LDA #&7E
JSR &FFF4
LDA #0
STA &7
LDX &71
LDA #13
STA &700,X
LDA #13
JSR &FFE3
LDA #23
JSR &FFE3
LDA #1
JSR &FFE3
LDX #8
LDA #0
JSR &FFE3
DEX

BNE loop4
RTS

Next we must check to see if the key pressed is the
RETURN key. If so, then we can branch to exit.

1480 .noerror CMP #13

1490

BEQ exit

Next we check for DELETE. If this has been pressed
then we check whether there is any string to be
deleted. If &71 is zero then there is no string so we
output a 'beep’ before jumping back to key.

1500
1510
1520
1530
1540 .error
1550
1560

CMP #127
BNE notdel
LDA &7
BNE del
LDA #7

JSR &FFE3
JMP key

117

118

If there is something to delete then we need to go
back a space, print a dot and back-space again to
leave the cursor over the dot. We also need to
decrement the length of the string stored at &71.

1570 .del LDA #8

1580 JSR &FFE3
1590 LDA #46
1600 JSR &FFE3
1610 LDA #8
1620 JSR &FFE3
1630 DEC &71
1640 JMP key

If DELETE is not pressed then we need to check for
a legal key. The string of legal characters starts at
legstr and the length of this string minus one is
stored at &72. We need to compare all the charac-
ters in this string with the accumulator. We can do
this with a loop in X, carefully preserving A
throughout the loop. If the contents of the ac-
cumulator match with one character of the string
then the key is legal; otherwise, if we get to the end
of the string without finding a match then we must
cause a ‘beep’ and go back for another key.

1650 .notdel LDX &72
1660 .loopS CMP legstr,X

1670 BEQ legal
1680 DEX

1690 BPL loop5
1700 JMP error

If the key is legal then we must check that there is
still space left to place this key. If the length of the
string has already reached the maximum allowed
length then we must branch to error. If not then we
can store the character at the relevant place in page
7, increment the length of the string, print the char-
acter on the screen and go back for the next key.

1710 .legal LDX &71
1720 CPX &70
1730 BEQ error

1740 STA &700,X

1750 INC &71

1760 JSR &FFE3

1770 P key

1780 .legstr EQUS "ABCDEFGHIJKLMNOPQRS
TUVWXYZabcdefghi jk1
mnopgrstuvuxyz"

1790]:NEXT
1800 ENDPROC

We have now dealt with all the standard ASCII keys.
The next thing to look at is the cursor keys. Ifa GET,
INPUT, or INKEY (with a positive parameter) com-
mand 1s used during a program then the cursor
keys become enabled. Pressing them will cause the
copy cursor to move around the screen. This also
leaves a block cursor on the screen. In most cases
this is not desirable. There is an easy way to
overcome this problem but not many people seem
to even realise that there is a problem. For
example, many games leave the cursor keys
enabled—pressing them during the game will
leave ‘flying blobs' on the screen.

The way around the problem is to set the cursor
keys to generate ASCII codes with the command
*FX4,1. This way they can be used as ordinary keys.
This command also causes the COPY key to gen-
erate an ASCII code.

The next keys we need to look at are the SHIFT
LOCK and CAPS LOCK keys. These keys cannot be
disabled easily but the state of the keyboard (and
the LEDs) can be changed from software. This is
done using a *FX202 call. This command needs one
number after it. If bit 4 of this number is zero then
the CAPS LOCK is engaged. If bit 5 is zero then the
SHIFT LOCK is engaged. If bit 7 is set then the shift
key's action is reversed.

For example, if *FX202,160 were used this would
set the keyboard so that it would normally produce
capitals and numbers, etcetera, but with the shift
key pressed it would produce lower case and the
exclamation mark, and so on.

This command also changes the state of the key-
board LEDs. An example of where it could be used

119

120

The BREAK key

is in a word processor to turn the CAPS LOCK and
SHIFT LOCK off at the beginning of the program.

The next key we must look at is the ESCAPE key.
In machine code this key has little effect until
OSRDCH is called. In this case the escape condition
must be acknowledged with an OSBYTE &7E call. If
this is done then the ESCAPE key is effectively dis-
abled. However, if a more complete form of dis-
ablement is needed, say for a BASIC program, then
*FX229,1 should be used. This simply causes the
ESCAPE key to generate ASCII code 27. Another
useful trick is that any key on the keyboard can be
made the ESCAPE key. This is done by using the
command *FX220 followed by the ASCII code for
the key. For instance, if you wanted (CTRL @) to be
the ESCAPE key then you would use the command
*FX220,0.

One final method is to use *FX200. This has two
functions. If bit O of the byte following it is 1 then
ESCAPE completely disabled (it won't even gen-
erate an ASCII code) and if bit 1 is set then the entire
contents of the memory will be cleared the next
time the BREAK key is pressed! Even (CTRL
BREAK) cannot get around this command. This is
very useful for protecting programs as it means that
once a program has been run it is impossible to get
out of itagain without losing the program (see chap-
ter 5).

The BREAK key is probably the most difficult key to
disable. In fact, it i1s impossible to disable it.
However, it can be intercepted. Many programs
define the BREAK key like a soft key to produce a
string that runs the program. This means that if you
accidentally press BREAK in the middle of typing in
a letter on your word processor, you won't lose
your text. However, this doesn'’t solve the problem
of (CTRL BREAK). It would be nice if we could stop
the computer every time the BREAK key is pressed
and check whether a (CTRL BREAK) has occurred.
If so, we could then convince the computer that it is
imagining things and that the BREAK was really a
normal one! Well, here's how to do it.

When a BREAK occurs, the operating system looks
atlocation &287. If &287 contains zero then it carries
on asusual; and, if the machine has just been turned
on then it must be a zero! However, if this byte con-
tains a machine code JUMP instruction (&4C) in-
stead, then it will jump to the address pointed to by
the contents of locations &288 and &289. In fact, it
does this twice after a BREAK occurs. The first time
the carry flag is clear, and this occurs before the
message 'BBC Computer’ appears; the second time
1s after this message appears but this time with the
carry flag set. Locations &287 to &289 can be set
using *FX247 to *FX249.

Those of you with fevered imaginations will al-
ready have seen some of the possibilities this opens
up. For example, it is possible to change the ‘BBC
Computer’ message, which is normally printed, to
something completely different. For those of you
who like the idea, here is the program:

10 FORA%=0TO3STEP3

20 P%=&3900

30 [OPTA%

40.break BCC exit

50 LDX #0
60.1o00p LDA string,X
70 JSR &FFE3

80 INX

a0 CPX #24

100 BNE loop

110.exit RTS

120.string EQUS CHR$12+"Beware of the
hacker ! "+CHR$13+CHR$13

130] :NEXT

140 *FX247,76

150 *FX248,0

160 *FX249,9

Notice that this is put in the cassette output buffer
(&900). This is totally safe for disc users but cassette
users will find that, if they save a program, the next
time they press BREAK the computer will crash.
However, the object of all this was to disable
(CTRL BREAK). When a break occurs one of the

121

122

first things the computer does is to check whether it
is a soft reset, a hard reset or a power-on reset.
When it has done this it sets up a variable at &28D.
This has the value zero for a soft reset, one for a
power- on reset and two for a hard reset. By chang-
ing the contents of &28D to zero in our break inter-
cept routine we will fool the computer into believ-
ing that a soft reset has occurred. Unfortunately,
before we get to do this the computer has already
reset the clock and cleared the function keys.
However, if we set &28D to zero in the firstintercept
we can redefine the break key to do whatever we
want in the second intercept. Here is an example
program:

10 FORA%=0TO3STEP3

20 P%=&900

30 [OPTA%

40 .break BCS second

50 LDA #0

60 STA &28D

70 RTS

80.second LDX #string MOD256
0 LDY #string DIV256
100 JSR &FFF7

110 RTS

120.string EQUS™*KEY100LD | MRUN |M"+CHR$13
130 JsNEXT

140 *FX247,76

150 *FX248,0

160 *FX249,9

This clears &28D during the first intercept and uses
OSCLI to perform a *KEY10 command during the
second intercept.

Once this is run neither BREAK nor (CTRL
BREAK) can stop the computer from ‘olding’ and
running the current program!

The graphics registers

CHAPTER SEVEN

GENERAL
GRAPHICS

The graphics system on the BBC Micro is based on
two chips. These are the 6845 Cathode Ray Tube
Controller (CRTC for short) and the Video ULA.
Between them, these two chips are responsible for
the flexibility that allows the BBC Micro to have
eight different screen modes.

To understand how to use these chips we must
first look at the way in which a TV monitor works.
Inside a TV is a tube with the screen at one end of it.
In this tube a narrow beam of electrons s fired at the
screen. The screen is covered on the inside with a
substance which glows where the beam hits it. The
beam can obviously only illuminate one dot on the
screen at once and yet we need large amounts of
screen to be lit, seemingly continuously. What hap-
pens is that the beam is scanned across the screen
in a series of horizontal lines from left to right start-
ing at the top and working down. At the same time
the beam is switched on and off to produce light and
dark areas on the screen. The beam completes one
vertical scan of the screen every fiftieth of a second,
so the eye is fooled into seeing a coherent picture.

The 6845 CRTC contains 18 registers that we can
use. To write to them, the number of the register we
want to access (from 0 to 17) must be placed at
address &FEOO and the data can then be written
through location &FEO1. The legal way to write to a
register is through the operating system, using
VDU23. The format is like this:

VDu23,0,reg_no,data;0;0;0

123

124

There is no way to read from any register. There is
a complete description of all these registers in The
Advanced User Guide. For the purposes of this
book we will only look at some of the more useful
registers.

Register 1 gives the total number of displayed char-
acters per line.

However, although we would assume that in
Mode 2, say, it would contain 20, this is not so. The
6845 CRTC was not designed to be used for high-
resolution graphics—it was originally designed as
a straightforward text VDU controller, for text like
that of Mode 7, with only one byte needed to store
each character, though it is very simple to use it for
black-and-white graphics where each character
takes up eight bytes. So to use it as the heart of a
colour display as required by the BBC Micro, it must
be made to address and fetch the right number of
bytes of data for each text character in that mode.
For Mode 2 each text character takes up all of 32
bytes—not the eight bytes that a normal black-and-
white display would need to store a character. The
result is that for each text character on the Mode 2
colour screen the 6845 needs to fetch four of its
eight-byte characters. This means that, in the 20-
character Mode 2, the CRTC is made to think that
there are 80 of its characters per line. Thus, for
Modes0to 3, Register 1 contains 80, and for Modes 4
to 7 it contains 40.

By changing Register 1 you can make narrower
screens. For instance, suppose you have a game
that needs Mode 4 but is very long. If you are pre-
pared to only use 256 pixels across then you can set
Register 1 to 32. This will mean that the screen only
takes up 8K instead of 10K. This technique is used by
Acornsoft to fit Elite into the computer.

Register 2 contains the position of the horizontal
sync pulse.

This is effectively used to position the screen on
your monitor, left and right. In different modes it
contains these values:

Mode o 1 2 3 4 5 6 1
Register2 98 98 98 98 49 49 49 51

If you are using the narrow 8K Mode 4 you will need
to set this register to 45 instead of 49.

Register 6 is the vertical equivalent of Register 1.
It gives the number of vertical text lines to a
screen. Its normal values for the modes are:

Mode o 1 2 3 4 5 6 1
Register6 32 32 32 25 32 32 25 25

This can be used together with Register 1 to pro-
duce smaller modes.

Register 7 contains the vertical sync position.

Itisused by the *TV command to move the screen
up and down to accommodate different monitors.
As before, for smaller modes you may have to
change this register.

Registers 12 and 13 give the start of screen address
in RAM.

Notice that Register 12 is high and Register 13 is
low! These two registers form the address of the
top-left hand corner of the screen in RAM, but div-
i1ded by eight. For example, in Mode 2, where the
top left-hand corner is stored at &3000, these regis-
ters contain &600. By changing these registers you
can make any part of the RAM the screen. Also, the
registers can be used for scrolling. If the registers
are set so that there is not enough addressed RAM
after the top left-hand corner to display a complete
screen—that is, the address of the bottom of the
screen will occur after &TFFF—then the hardware
wraps the screen back to before the top left-hand
corner.

For example, if in Mode 2 we set Registers 12 and
13 to &B00, 1.e. pointing to &5800—exactly half way
down the screen—then, when the top half of the
screen has been displayed the VDU will go back to
&3000 to display the bottom half. This is how scroll-
ing is done in all the modes, as this saves moving

125

126

large amounts of memory around. The point in the
memory to which the screen scrolls back toisnorm-
ally dependent on the mode and is set to the normal
top-of-screen address. However, this is set as part
of changing mode through the system VIA.

Bits 0 to 3 of port B on the system VIA are used as
an addressable latch to control several functions of
the BBC Micro. We are interested in controlling the
scroll wrap-around. This control is achieved by
altering the settings of two bits. The explanation of
these isa bit (sic) complicated, soIshall just give the
four relevant commands:

?&FE40=&4 clears low bit.
?&FE40=&C sets low bit.
?&FE40=&5 clears high bit.
?&FE40=&D sets high bit.

These two bits in their four combinations set the
start of screen RAM for scrolling, as follows:

high low address
0 0 &4000

0 1 &6000
1 0 &5800
1 1 &3000

So we now have all we need to set up an 8K ‘narrow’
Mode 4.

10 MODE4

20 vDU23,0,1,32303030
30 vbu23,0,2,45303030
40 \VDU23,0,12,12;0;030
50 7&FE40=&5:7&FE40=4C
B0 ?&34E=460:7&351=&60
70 VDU30

80 HIMEM=&6000

This first adjusts Register 1 to set the number of
characters per line to 32 (line 20). Line 30 then ad-
justs Register 2 to shift the whole screen right four
characters to centre it. Next the top-of-screen is set
to &6000 (Line 40) and the scrolling is set to wrap

The Video ULA

around to &6000 (line 50). Finally, printing to the
screen is set to start at &6000 (line 60) by setting the
operating system's top-of-screen variables suitably
and homing the cursor (line 70). We can now claim
the extra 2K of memory by moving HIMEM up to
&6000 (line 80).

However, this technique leaves the operating
system somewhat confused. It continues trying to
print the normal Mode 4 40-column text and 320-
pixel-wide graphics. To use the system you will
have to use the PRINT and PLOT commands very
carefully!

The Video ULA is accessed through two write-only
locations. The Video Control Register at &FE20 con-
trols a number of factors to do with the current
mode. Complete details are given in The Advanced
User Guide. As far as we are concerned it just sets
which mode we are in.

Much more difficult to explain is the second regis-
ter at &FE21 which gives us access to the palette.
The high nibble of the location is the logical colour
and the low nibble is the actual colour. By sending
one byte to this location we can change one entry in
the palette. So far, so good, but here comes the
crunch. Just to make things more difficult, there are
two complications. The first is that the actual colour
nibble should contain the actual colour
EXCLUSIVE-ORed with 7! The second is that to
change all the coloursin anymode you have to alter
16 entries in the palette.

For the 16-colour Mode 2 this is obvious. Each
logical colour has one entry in the palette.

For the one-colour modes, entries 0 to 7 in the
palette must all be set according to logical colour 0
and entries 8 to 15 must be set according to logical
colour 1.

For four-colour modes, it is worse. To set each
logical colour you need to set four entries as
follows:

127

128

Screen splitting

Logical colour Entries to be changed
0 0

O N wDND U s

For example, in Mode 1, to do the equivalent of
VDU19,2,3,;0; we would have to do:

?&FE21=484
?&FE21=494
?&FE21=4C4
?7&FE21=4D4

The reasons for all this are so involved that they are
virtually unexplainable. However, I can assure you
that there are very good reasons—I think! As far as
we are concerned it is usually easier to use VDU19.
However, we will see, later in this chapter, one
example of where the added speed of the direct
method is necessary. Notice that this method won't
alter the copy of the palette that the operating sys-
tem keeps, so that using OSWORD 11 to read the
palette will give false answers.

It would be very useful to be able to split the screen
into two halves and have one half, say, in Mode 0
and the other halfin Mode 1. This may seem impos-
sible; but, using interrupts, it can be done! What we

need to do isto use the vertical sync interrupt to put
the screen inMode O and then seta timer to produce
an interrupt, half-way down the screen, which we
can use to put the screen in Mode 1. Because both
are 20K modes it shouldn’t be too difficult to change
mode in the middle. The contents of the 6845
shouldn’t need any changes, so all we need to
change is the contents of the ULA.

Let’'s write two routines that will put the screen in
Mode 1 from Mode 0 and Mode 0 from Mode | with-
out clearing the screen. First of all, let us assume
that the screen is already in Mode 0. To change to
Mode 1, the first thing we need to do is change the
video control register at &FE20 to set up the mode
we are using. We also need to update the operating
system'’s copy of this register at &248.

.model LDA #&D8
STA &FE20
STA &248

(320-340)

Next we need to change the palette by writing to the
register at &FE21. Colours 0 and 3 will already be
correctly set so we only need to change 1 and 2. We
need to change four bytes for each logical colour in
Mode 1.

LDX #7
.11 LDA m1,X
STA &FE21
DEX
BPL 11
RTS
om1 EQUD &26366676
EQUD &B4394C4D4

(350-420)
We can do likewise for Mode 0.

.mode0 LDA #&SC
STA &FE20

129

STA &248
LDX #7
.10 LDA mQO,X
STA &FE21
DEX
BPL 10
RTS
.m0 EQUD &27376777
EQUD &80S0CODO

(200-300)

Next we need to set up an interrupt routine in the
interrupt vector (&204 and &205).

.init SEI
LDA &204
STA &230
LDA &205
STA &231
LDA #irq MOD256
STA &204
LDA #irq DIV256
STA &205

(440-520)

We will also need to disable the centisecond clock
interrupt and the analogue-to-digital converter in-
terrupt, as these will tend to interfere with the
program. If you need to leave these enabled, then
you will have to put up with some flickering on the

screen.
LDA #&50
STA &FE4LE
CLI
RTS
(530-560)

The interrupt routine will first need to save the
registers.

130

.irqg LDA &FC
PHA
TXA
PHA
TYA
PHA

(580-630)

Next we need to check that the vertical sync caused
the interrupt. If so, we need to switch to Mode 0.

LDA #2

BIT &FE4D
BEQ notsync
JSR modeO

(640-670)

We then need to set Timer 2 in the system VIA to
count for half a screen and then produce an inter-
rupt. So that we can move the boundary between
the two modes easily, we put the boundary position
In &70 and &71.

LDA &FE4B
AND #&DF
STA &FE4B
LDA &FE4E
ORA #&20
STA &FE4E
LDA &70
STA &FE48
LDA &71
STA &FE4S

(680-770)

Finally we need to exit the interrupt routine by rest-
oring the registers and jumping to the spare vector.

exit PLA
TRY
PLA

131

132

TAX
PLA

STA &FC
P (&230)

(780-840)

If the interrupt is not caused by the vertical sync
then we need to check whether it is the timer inter-
rupt. If so, we must clear the interrupt flag and
switch to Mode 1.

.notsync LDA #&20
BIT &FE4D
BEQ exit
STA &FE4D
JSR mode1
JVP exit

(850-300)
Now all that remains is to try an example.

10 *TV0,1
20 MODEO
30 MOVED,512:DRAW1279,512

Notice that, because the change of modes itself
takes some time, about one line of pixels on the
screen will be garbled. To overcome this we must
make this line white so that it is the same in both
modes. This way, the transition should be invisible.

40 PROCass
50 '&70=93800

This sets up the position of the border. It may vary
from machine to machine, so you may have to ex-
periment to find the best value.

60 CALLinit

Finally we can draw a pattern on the screen as a
demonstration.

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

FORA%=0T01:VDU29,A%*64035123
FORB%=0T0511STEP16
MOVEB%*1.25,0:DRAW639,B%
DRAWB39-B%*1.25,511 :DRAWO,511-B%
DRAWB%*1.25,0:NEXT,
VDU26 :FORA%=0T01279STEP2
IFRND(2)=2MOVEA%,0:DRAWA%,508
NEXT
GOT0150
DEFPROCass
FORpass%=0T02STEP2
P%=&A00
[OPTpass%®
.mode0 LDA #&9C \ Change to
STA &FE20 \ Mode O.
STA &248
LDX #7
.10 LDA mO,X
STA &FE21
DEX
BPL 10
RTS
-m0 EQUD &B090CODO \ Colour data
EQUD &27376777 \ for Mode O.

.model LDA #&D8 \ Change to
STA &FE20 \ Mode 1.
STA &248
LDX #7
.11 LDA m1,X
STA &FE21
DEX
BPL 11
RTS
.mi EQUD &26366676 \ Colour data
EQUD &8494C4D4 \ for Mode 1.

.init SEI \ Initialise
LDA &204 \ interrupts.
STA &230
LDA &205
STA &231
LDA #irq MOD256
STA &204

133

134

510

520

530

540

550

560

570

580 .irqg
590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780 .exit
790

800

810

820

830

840

850 .notsync
860

870

880

830

900

910]
8920 NEXT
930 ENDPROC

LDA #irq DIV256

STA
LDA
STA
CLI
RTS

LDA
PHA
TXA
PHA
TYA
PHA
LDA
BIT
BEQ
JSR
LDA
AND
STA
LDA
ORA
STA
LDA
STA
LDA
STA
PLA
TAY
PLA
TAX
PLA
STA
Jmp
LDA
BIT
BEQ
STA
JSR
JMp

&205
#&50
&FE4E

&FC

#2
&FE4D
notsync
modeO
&FE4B
#&DF
&FE4B
&FE4E
#&20
&FE4E
&70
&FE4B
&7
&FE49

&FC
(&230)
#&20
&FE4D
exit
&FEA4D
mode’
exit

\ Trap ints.

\ Check for
\ vesync.

\ Change to

\ Mode O

\ and start

\ counter for
\ boundary.

\ Check for
\ Timer.

\ Change to
\ Mode 1.

Screen swapping

Beware of using VDU19. You will also find that plot-
ting lines in the bottom half of the screen has inter-
esting effects.

Some expensive computers nowadays have a sys-
tem which allows for totally flicker-free animation.
This system has two completely separate blocks of
memory for graphics. While one image is being
displayed the other, concealed, image is being re-
drawn. When the new image is complete the VDU
switches cleanly between the two pages so that the
new image is displayed, while the first is redrawn.
By repeating this process the image need never be
seen being redrawn.

By now you will have guessed that there is a
method for doing this on the BBC Micro. Because
two complete blocks of memory are needed, we
can’'tuse a 20K mode. For our purposes let's try and
animate two Mode 4 screens. The two blocks of
memory, each 10K long, will start at &3000 and
&5800 respectively.

The first problem we need to look at is that before
we can redraw on the concealed screen we must
clear its 10K block. All we have to do is to set 10K of
memory to zero. This sounds like a simple task
using post-indexed indirect addressing. However,
for clearing such a large amount of memory this
addressing mode is too slow. We will need to sac-
rifice the short, neat but slow solution for the long
but fast solution. By using absolute indexed ad-
dressing we can clear one 256-byte page very fast,
like this:

.clear LDA #0
TAX

.loop STA &3000,X
INX
BNE loop
RTS

To clear 10K of memory we need to add an STA
command for each page of memory we wish to
clear—here, thismeans 40 STA commands. To save

135

136

typing each of these separately, we can use the
power of the assembler. To start with, we need the
first few commands. Notice that we disable inter-
rupts first, to increase speed that extra little bit.

1000 DEFPROCass

1010 DIMmc%500

1020 FORpass%$=0T02STEP2
1030 PS=mc¥

1040 [OPTpass%

1050 .lclear SEI

1060 LDA #0
1070 TAX
1080 .lloop

1090]

Next we set A% to a loop from &3000 to &5700 in
steps of 256. Then we re-enter the assembler where
we left off, reset the option, and set up the STA com-
mand with the variable A%. Then we exit the as-
sembler again and end the loop.

1100 FORA%=43000T0&5700STEP256
1110 [OPTpass$

1120 STA A%,X

1130]:NEXT

The result of all this is that we have assembled all 40
commands as required. This has shortened the as-
sembly code considerably and shows the ad-
vantages of a powerful assembler! Finally we must
end the machine code loop, and re-enable
interrupts.

1140 [OPTpass$%

1150 INX
1160 BNE 1lloop
1170 CLI
1180 RTS

We can write a similar routine for clearing the
second 10K block.

1190 .hclear SEI
1200 LDA #0

1210 TAX

1220 .hloop

1230]

1240 FORA%=45800T0&7FO0OSTEP256
1250 [OPTpass¥

1260 STA A%, X

1270]:NEXT

1280 [OPTpass$

1290 INX
1300 BNE hloop
1310 CLI
1320 RTS

Now we can write a routine which, swaps the two
screens around. The obvious way to do this is to
swap the two sections of memory. However, this
would be ridiculously slow. Instead, we will switch
the start-of-screen RAM address register in the
6845 between the two blocks, so altering which
block is being displayed.

We will need a variable as a flag that will tell us
which of the two blocks is currently being dis-
played. We can use &70 for this—if it contains zero
then the low block is currently being displayed;
otherwise, it contains 255.

The first job the routine must do is to wait for the
vertical sync so that the screens swap cleanly dur-
ing the vertical sync period.

1330 .swap LDA #19
1340 JSR &FFF4

Next we need to invert the contents of &70 by
EORing it with 258. If it is now 255 then we want to
swap to displaying the high block.

1350 LDA &70
1360 EOR #255
1370 STA &70
1380 BNE high

We now want to display the low block. To do this we
must alter the start-of-display RAM register to point
to the low block (we need only change the high byte

137

as the low byte is zero in both cases).

1390 LDA #12
1400 STA &FEOQO
1410 LDA #6
1420 STA &FED1

Next we need to ensure that any plotting or printing
will be placed where it can’'t be seen in the high
block. To do this we need to alter two bytes in the
operating system work-space to the high byte of the
address of the top left-hand corner of the screen on
which we are plotting—here, &58. We also need to
do a cursor-home to move all the cursors, etcetera.
At this point all that remains is to clear the con-
cealed screen ready for plotting.

1430 LDA #&58
1440 STA &34E
1450 STA &351
1460 LDA #30
1470 JSR &FFEE
1480 JMP hclear

Now we can use the same method to swap back
again.

1490 .high LDA #12

1500 STA &FEQO
1510 LDA #11
1520 STA &FED1
1530 LDA #&30
1540 STA &34E
1550 STA &351
1560 LDA #30
1570 JSR &FFEE
1580 JMP 1clear
1590]

1600 NEXT

1610 ENDPROC

Now all that we need is an example of how to use the
program.

138

A BASIC swap

10 MODE4:VDU23,1,03030;503

20 HIMEM=&3000

30 PROCass

40 CALLlclear:?&70=255:CALLswap

Notice that we need to set HIMEM to reserve 20K of
screen memory, the lower 10K of which we need to
clear. Note also that we need to call swap once just
to get everything running smoothly—this saves
having an initialisation routine.

50 FORA%=0T01019STEP16:MOVEA%,0
60 DRAW1023,A%:DRAW1023-A%,1023
70 DRAWO,1023-A%:DRAWA%,0

80 CALLswap:NEXT

90 GOTOSO0

Of course, if you don't need to redraw the image
completely each time, and hence don't need to
clear the screen, you don't necessarily need to use
machine code. So, just to show that good results
don’t always need machine code (though it helps),
here is an analogue clock entirely in BASIC.

The program works, as before, in two Mode 4
screens. The first job is to write a procedure to
draw a face without the hands.

1000 DEFPROCface

1010 GCOLO,1:P%=4

1020 FORA=0TOPI*2STEPPI/24

1030 MOVED,O0:PLOTP%,512%SINA,512*COSA
1040 P%=85:NEXT

1050 GCOLO,0:P%=4

1060 FORA=0TOPI*2STEPPI/24

1070 MOVED,O:PLOTP%,492*SINA,492%COSA
1080 P%=85:NEXT

This draws the rim of the face. Next we need the
dots for the hours and a dot at the centre. For speed
it is better to use a defined character for this and
position it with the VDU 5 ‘text at graphics cursor’
mode.

139

1090 VDU23,224,0,&1C,&3E,&7F ,&7F ,&7F,
&3E,&1C,5

1100 GCOLO,1:FORA=0TOPI*2STEPPI/6

1110 MOVE4SO*SINA-16,450%C0OSA+16:VDU224

1120 NEXT:MOVE-16,16

1130 VDU224,4,23,1,03030;0;

1140 ENDPROC

Next we need a procedure that will draw the three
hands in their correct positions. Notice that we have
not specified the colour in this procedure, so it can
be used both to draw the hands and remove them.

2000 DEFPROChands(hours,minutes,seconds)
2010 A=seconds*PI1/30:X=SINA:Y=COSA
2020 MOVEX*32,Y*32:DRAWX*420,Y*420
2030 A=minutes*PI/30:X=SINA:Y=COSA
2040 MOVEX*32+Y*5,Y*32-X*5

2050 MOVEX*32-Y*5,Y*32+X*5

2060 PLOTB5,X*370+Y*5,Y*370-X*5
2070 PLOT85,X*370-Y*5,Y*370+X*5
2080 A=hours*PI/6:X=SINA:Y=COSA
2090 MOVEX*32+Y*12,Y*32-X*12

2100 MOVEX*32-Y*12,Y*32+X*12

2110 PLOT85,X*300+Y*12,Y*300-X*12
2120 PLOT85,X*300-Y*12,Y*300+X*12
2130 ENDPROC

Now we need the BASIC equivalent of the swap
routine from the machine code program, but with-
out the clear routines. We can use the variable S%
instead of &70.

3000 DEFPROCswap

3010 *FX19

3020 S%=S%EOR1

3030 IFS%THEN?&FEO0=12:7&FEQ1=6:
?&34E=&5827&351=&58:\VDU30:ENDPROC

3040 ?&FE00=12:7&FE01=113:7&34E=4&30s
?&351=&30:VDU30:ENDPROC

Now we can write the main routine. The firstjobisto
input the start time.

140

10 MODE7:INPUT"Hours, Minutes,
Seconds" ,hours,minutes,seconds

Next we need to clear both screens. As we have no
machine-code clearing routines the easiest way to
do this is to go into Mode 0. Next we need to go into
Mode 4 and set HIMEM to reserve the 20K of screen
memory.

20 MODEO:MODE4 sHIMEM=& 3000

Now we must turn off the cursor and set the
graphics origin to the middle of the screen. We
must also set S% suitably.

30 S%=0:VDU23,1,0303030329,6403512;

Next we need to draw the face on each of the two
pages, having first called swap to set the paged
graphics working.

40 PROCswap:PROCface:PROCswap:PROCface

Now we need to set T to the number of centiseconds
that have elapsed since 12 o’clock. We also need to
set hours so that it is the relevant distance between
the hours. The minute and second hands will jump a
minute and a second at a time, respectively.

50 T=seconds*100+minutes*6000+hours*360000
60 hours=T/360000

Next we need to draw the hands in. We also need to
keep a copy of where they are so that we can re-
move them later. We can then swap so that the face
plus hands is visible and wait for the user to pressa
key to synchronise the clock.

70 GCOLQ,1:PROChands(hours,minutes,seconds)
80 s=seconds:m=minutes:h=hours
90 PROCswap:A=GET

Now we must start the clock by setting TIME to T.
For timing we will wait until TIME crosses the

141

142

hundred border. For this purpose we need to keep
a copy of what TIME DIV 100 equals at this point in ¢,
so that when we are waiting to display the next sec-
ond we can wait until TIME DIV100 doesn't equal t.

100 TIME=T
110 t=TIME DIV100

Now as we are displaying the time given by t we
need to set up the time given by ¢+ ! in the other
block. To do this we must first remove the previous
hands which are located at s, mand h. Then we must
set these variables to the current hand positions
ready for the next move.

120 GCOLO,0:PROChands(hymys)
130 s=seconds:m=minutes:h=hours

If TIME has passed 4320000 (12 hours in centisec-
onds) then we need to set it back 12 hours.

140 IFTIME>431993S TIME=TIME-4320000

Next we must set up the new hands.

150 seconds=(t+1)MODE0
160 minutes=(t+1)DIVE0 MODEO
170 hours=(t+1)/3600

However, the + 1 for the hours makes practically no
difference (it moves the hour hand on by 0.00027 of
an hour) so we can ignore it. We are now ready to
draw the new hands on the concealed screen.

170 hours=t/3600
180 GCOLO,1:PROChands(hours,minutes,seconds)

Now all we need to do is wait until the second 1is
up and swap screens before repeating the whole
process.

190 REPEATUNTILTIME DIV100<>t
200 PROCswap:GOT0110

Three-dimensional
graphics

One word of warning—because all printing is con-
cealed, any error messages will never appear. If
thereisanerror the machine will justappear to stop
working. To get around this while you are typing in
and debugging the program, try adding this line:

1 ONERRORMODE7:REPORT:PRINT" at line
"sERL:END

Computers are being used increasingly now for
producing three-dimensional graphics, particular-
ly on television. In the home micro market there are
an increasing number of three-dimensional games.
In passing, it would be useful to take a look at some
of the simple mathematics behind this subject.

We are faced with the problem of converting
a set of three-dimensional coordinates into two-
dimensional ones for plotting on the screen. We
know from experience that an object further away
appears smaller and we would probably guess
(correctly, as it happens) that if an object goes twice
as far away itlooks half the size. Thus we could form
arule thatapparentsize is inversely proportional to
distance.

Let's assume that we have three-dimensional
axes X, Y and Z, where X and Y are horizontal and Z
1s vertical. Let's imagine that the origin is about 2
metres off the ground and that we place a camera at
this point looking vertically downwards. Let’s fur-
ther assume that we have a square of cardboard.
We place this horizontally at different levels with its
centre always on the Z axis, photographing each
position. Can we make a rule about where the cor-
ners will appear in each photograph? We can as-
sume that the image on the photograph will still be a
square. If we place a drawing horizontally under
the camera and photograph it we would expect to
get a precise copy of the original drawing. It might
be bigger or smaller depending on what level we
placed the drawing at.

From this we can guess that for one value of Z
coordinate, given the X and Y coordinates of a point
on that Z plane, the X and Y coordinates of the

143

144

point’s image on the photograph, A and B, would be
given by:

A=kX
B=kY

We already know that the apparent size is inversely
proportional to the distance from the camera to the
point, so, as the camera is at the origin and we can
take the Z coordinate of the plane as this distance,
this suggests that A and B are given by:

A=k X/Z
B=kY/Z

The constant k will be a scale factor—the power of
lens we use, perhaps. As any point under the
camera can be described as a point on a horizontal
plane, we have here the equations for converting
the 3D point into a 2D image.

If you didn't follow all that, don't worry. All you
need remember is that by looking along the Z axis
from the origin you can find the image of a point by
using these equations.

As an example, let's try drawing a cube on the
screen. The coordinates of the corners of this cube
will be (10,10,40), (—10,10,40), (—10,—10,40),
(10,-10,40), (10,10,60), (—10,10,60), (—10,—10,60)
and (10,—10,60). First we need a procedure that
will do the job of the PLOT command, but in 3D.

10000 DEFPROCplot(P%,X,Y,Z)
10010 PLOTP%,X*S/Z,Y*S/Z
10020 ENDPROC

Notice that the scale factor S will need to be defined
at the beginning of the program. We can now draw
our cube by drawing the nearest surface, then the
four edges joining the front surface to the back sur-
face, then the back surface itself.

10 MODE4:VDU23,1,0303030329,6403512;
20 S=1000
30 PROCplot(4,10,10,40)

40 PROCplot(5,-10,10,40)
50 PROCplot(5,-10,-10,40)
60 PROCplot(5,10,-10,40)
70 PROCplot(5,10,10,40)
80 PROCplot(5,10,10,60)
90 PROCplot(4,-10,10,40)
100 PROCplot(5,-10,10,60)
110 PROCplot(4,-10,-10,40)
120 PROCplot(5,-10,-10,60)
130 PROCplot(4,10,-10,40)
140 PROCplot(5,10,-10,60)
150 PROCplot(S,-10,-10,60)
160 PROCplot(5,-10,10,60)
170 PROCplot(5,10,10,60)
180 PROCplot(5,10,-10,60)
190 END

This produces a recognisable cube but it is not the
most exciting piece of art. It would be better if we
could look at the cube from a different angle.
However, our 3D equations will not let us do this.
The solution, of course, is that if the mountain can'’t
come to Mohammed then Mohammed must go to the
mountain—we have to rotate the cube.

To do this we need to look at the method of rotat-
ing a 2D point about the origin. Those of you who
have dabbled at all in matrices will know that the
general rotation matrix about the origin, by an
angle A, 1s:

COSA —SINA

SIN A COS A
For those of you who have not experienced the joys
of matrices this will mean precisely nothing! But all
you need to know is that if we have coordinates
(X,Y) and we wish to rotate them about the origin by
an angle A anti-clockwise, to new coordinates

(P,Q), then P and Q can be calculated using the two
formulae:

=X+ COSA—Y » SINA
Q=X =*SINA+Y * COSA

145

146

In three dimensions we can adapt these formulae by
rotating about, say, the X axis. This means that the X
coordinate of the point stays the same and we can
use the two formulae above, except that we use Y
and Z, to rotate the other two coordinates. So for our
example program the PLOT routine becomes:

10000 DEFPROCplot(P%,X,Y,Z)
10010 Q=Y*COSA-Z*SINA
10020 R=Y*SINA+Z*COSA
10030 PLOTP%,X*S/R,Q*S/R
10040 ENDPROC

However, this rotates around our viewpoint. This
doesn’t help much. We really need to shift the co-
ordinates so that the centre of the cube is over the
origin, then rotate the cube about the X axis, and
then shift the cube back again so that we can view it.

10000 DEFPROCplot(P%,X,Y,Z)
10010 Z=Z-DR

10020 Q=Y*COSA-Z*SINA
10030 R=Y*SINA+Z*COSA
10040 R=R+DR

10050 PLOTP%,X*S/R,Q%S/R
10060 ENDPROC

We also need to set the values of A and DR at line 20.

20 S=1000:A=-PI/5:DR=40

Let's now look at a more complicated example
—drawing a cup or wine glass. This is not as difficult
as it sounds, as a cup has rotational symmetry. This
means that we need only store data for half of a slice
through the axis of symmetry of the cup. We can
then rotate this a number of times about the axis of
symmetry and join all the adjacent points.

The first thing is our 3D procedure.
1000 DEFPROCplot(P%,X,Y,Z)

1010 P=Y*C-Z*I
1020 Q=Y*I+Z*C+D

1030 PLOTP%,X*S/Q,P*5/Q
1040 ENDPROC

Notice that, because the sine and cosine of the angle
of rotation about the X axis remain constant as the
angle remains constant, we can define these at the
start of the program asand C, and hence save a lot
of calculation. Also, the initial coordinates will be
centred on the origin so we can rotate these straight
away. We then need to add a constant to the Z co-
ordinate to shift the point away from the origin
before we can view it.

The beginning of the program will need to look
like this:

10 MODE1:VDU23,1,030503
20 VDU29,6403195319,3,2
30 D=300:5=2400

40 I=SINRAD240:C=COSRAD240

03
303

The first piece of data for the cross-section of the
cup will need to be the number of points used to
describe it. Because we will be joining the first point
in this description to the second, we will need to
keep two adjacent points in variables at one time.
We can read in the number of points and the first
point. The number of lines will be one less than the
number of points. Each line will need a colour as-
sociated with it.

50 READN,R,Z:FORM=2TON
60 READR1,21,C%:GCOLO,CH

Before repeating the loop we will need to copy RI
and Z1 into R and Z. Now we are ready to rotate the
line formed by these two points around the Z axis.
Ateach step we must join the previous second point
to the new second point and join the two new points
together.

70 P%=4:FORA=0TOPI*2.01STEPPI/20
80 PROCplot(P%,R1*COSA,R1*SINA,Z1)
90 PROCplot(5,R*COSA,R*SINA,Z)
100 PROCplot(4,R1*COSA,R1*SINA,Z1)

147

110 P%=5:NEXT
120 R=R1:Z=21
130 NEXT
140 END

Finally we need the data.

150DATA7,0,-5,32,-5,3,32,0,2,8,10,2,8,
35,1,24,40,1,24,85,3

This is, of course, only a simple example of 3D
graphics.

148

8.1 A sample shape

CHAPTER EIGHT

FILL ROUTINES

Although the operating system contains a very
good selection of graphics routines it lacks several
useful sets of commands such as a sprite routine.
Another thing the operating system lacks is an effi-
cient method of filling shapes with colour. In fact the
only command the operating system provides for
producing blocks of colour is the PLOT85 triangle
fill routine. This command can be used to very good
affect for producing solid circles, etcetera, by ap-
proximating the shape in question by a series of
overlapping triangles. A time comes, however,
when there is a need for a routine that will fill all the
area within a boundary. Take the following shape
for example:

This could be drawn using triangles but that would
be very complicated. What we want to be able todo
is to draw the outline and then call a machine code
routine, first specifying a starting point inside the
outline, that will fill the shape for us. The first thing
we need is a program that will produce the outline
of the shape we want to fill.

149

1580

8.2 A sample outline

A BASIC fill

10 REM Program to draw outline.
20 MODEOD
30 vDbU23,1,0303030;
40 P%=4
50 FORA=0TOPI*2STEPPI/100
60 R%=COS(A*10)*200+300
7C PLOTP%,B640+SIN(A)*R%,512+C0OS(A)*R%
80 P%=5
90 NEXT
100 P%=4
110 FORA=0TOPI*2STEPPI/80
120 R%=COS(A*10)*50+130
130 PLOTP%,640+SIN(A)*R%,512+C0OS(R)*R%
140 P%=5
150 NEXT
160 FORA=0TOPI*2STEPPI/S
170 P%=4
180 FORB=0TOPI*2STEPPI/30
190 C=A+SIN(B)*PI/32
200 R%=325+125*C0S(B)
210 PLOTP%,SIN(C)*R%+640,C0S(C)*R%E+512
220 P%=5
230 NEXT,

Next we need a fill routine. Instead of writing the
machine code program straightaway we will write
an experimental BASIC one first. This is often a
good 1idea with complicated machine code
programs as it is easler to debug a BASIC program
than a machine code one. Once the BASIC program

works 1t is relatively easy to convert it to machine
code. For our BASIC fill program we will use a pro-
cedure. The parameters we will need are the X and
Y coordinates of a point within the outline which
we've already drawn, and a definition of what the
routine is to consider as the outline. The easiest way
to do thisis to specify a colour and say that any point
of a different colour is part of the outline. The colour
we specify, then, is the background colour of the
shape. Here we can use the X and Y coordinates 640
and 32 for the point within the outline; the back-
ground colour is zero. So our example will need the
lines:

500 PROCfill(640,32,0)
510 END

We are going touse X% and Y % for the coordinates
of the point we are looking at any one time—the fill
‘cursor’. For convenience, then, we can define pro-
cedures for moving this cursor up, down, left and
right one pixel at a time, which is necessary as we
are exploring the area just around the current
point. So that we can use these procedures in differ-
ent graphics modes we need to specify a variable
M%, which will differ for different modes, which is
the amount by which we have to alter X% to move
one pixel left or right. This variable should be de-
fined at the beginning of the program (line 20) when
we change mode. We replace the old line 20 by:

20 MODEO:M%=2

Our up, down, left and right procedures are:

2000 DEFPROCup:Y%=Y%+4:ENDPROC
2010 DEFPROCdownsY%=Y%-4 :ENDPROC
2020 DEFPROCleft:X%=X%-M%:ENDPROC
2030 DEFPROCright :X%=X%+M%:ENDPROC

We must also define a function that will return ‘true’
only if X% and Y% point to a pixel whose colour is
the background colour (C%).

151

152

2040 DEFFNbackground=(POINT(X%,Y%)=C%)

Here, (POINT(X%,Y%)=C%) is true only if both
sides of the = sign agree.

Now we can start to try and write the fill pro-
cedure itself. For this purpose let's take a simple
example shape which we can use to work out the
program. The cross represents the cursor position
(though in the real program this will be invisible).
The cursor is initially positioned at the point we
have used to define the inside of the outline.

See diagram 8.3 on page 153.

We are going to fill the shape with a series of horiz-
ontal lines, each one pixel thick. We will start from
the bottom of the outline and work up. For this rea-
son, we must first find a bottom point to start at.
Imagine the outline as holding water: we need a
place where water will collect—a hollow of some
kind.

The first thing we can do is go vertically down
until we hit the boundary.

1000 DEFPROCFill(X%,Y%,C%)
1010 PROCdown:IFFNbackground THEN1010
ELSE PROCup

This moves the cursor down until the boundary is
reached and then moves it up one pixel so that the
cursor is on the bottom background pixel.

See diagram 8.4 on page 153.

Next we can go left in a horizontal line until we hit
the boundary. We then need to move right and, for
reasons we shall see later, we need to make a copy
of these coordinates in X1% and Y1%.

1020 PROCleft:IFFNbackground THEN1020
1030 PROCright:X1%=X%:Y1%=Y%

However, at this point (diagram 8.5, page 153) we
can still go down. We need to check whether there

I

8.3

|84

|
|
I

[T

[

HgMELIIIIITiill¥

LTI

LTI

ITTITT]

I

I

|

8.5

T [T T TT17

I

I

[

186

11188

T 1

- - - | |

- 1 e I

L LT T | | | 1 I 1

T T I T T I T T 11187 [T _
LT T T1 |

+

T

LT TTT

|
L

T 1111

I

I

[

8.11

[TT1T

11812

TT T T T

154

is still background below the cursor, and, if so, go
back to line 1010 to find the bottom of the section.

1040 PROCdown:IFFNbackground THEN1010

By the time we get back to line 1020 again we have
reached a new position.

See diagram 8.6 on page 153.

At line 1020 we cannot go further left. At line 1040
there is no background below. We now have to go
right in a horizontal line until we reach the bound-
ary on the other side. As we go, we can check below
for any background. If this is found then we go back
to line 1010 yet again to find the bottom.

1050 PROCup:PROCright:sIFFNbackground THEN1040

By the time we get back to this point again we have
found the bottom of the shape. The coordinates of
the leftmost point of the bottom line are stored in
X1% and Y1%. We must place the cursor back at
this position.

1060 X%=X1%:Y%=Y1%
See diagram 8.7 on page 153.

The obvious thing to do now is to fill this bottom line.
However, as we do this we must check to see if we
have finished filling the outline. As we fill each pixel
of this line we must check the pixel above to see if it
is background. If no background is found above
then we have finished filling the shape. If some
background is found then we must make a note in
X1% and Y1% of the first pixel of background we
find and set a flag to tell us that there is more to be
filled above. What we will do is use the variable F%
asaflag. Atthe start of filling the line, we set this to 0.

1060 X%=X1%:Y%=Y1%:F%=0

Then, when the first background pixel is found

above, we set F% to 1 and store the coordinates in
X1% and Y1%. Any further background points we
find, F% will already be set to 1 and we will know
not to alter X1% and Y1%. Then when the line is
filled, if F% is still zero, no background has been
found on the next line up and we have finished.
Otherwise, we can move the cursor to the coor-
dinates in X1% and Y1% and start to fill the next
line.

So the first job to do, before we fill each pixel on
the current line, is to move up and check whether
there is background above.

1070 PROCup:IFNOTFNbackground THEN10390

If background has been found and F% is still 0, then
we must set F% to 1 and copy the cursor coor-
dinates into X1% and Y1%.

1080 IFF%=0 F%=1:X1%=X%:Y1%=Y%
Next we can fill the pixel on the line we are curr-

ently working on.

1090 PROCdown:PLOTE9,X%,Y%

Next we move right a pixel and, unless the bound-
ary has been reached, go back and fill the next
pixel.

1100 PROCright:IFFNbackground THEN1070

IfF% isnow 1 then we can go back and fill the next
line up. We need to go back to line 1020 for this, to
find the left-hand end of the line.

1110 IFF%=1 X%=X1%:Y%=Y1%:G0OT01020

Otherwise, we have finished and can return from
the procedure.

1120 ENDPROC

This would appear to be a perfectly good fill
185

156

routine. However, it will only work until it reaches
this point:

See diagram 8.8 on page 153.

Atline 1080 onwards, it will have reached this point:
See diagram 8.9 on page 153.

It will then keep a copy of this pointin X1% and Y1%
and set F% to 1. It will then ignore any other back-
ground that it finds on the line above. Thus when it
fills the nextline up, it will only fill the left-hand area
of the shape. The final result, when the computer
thinks it has finished, will be this:

See diagram 8.10 on page 153.

To solve this problem we need to re-write lines
1070 to 1120 leaving gaps for the lines we need to
add.

1070 PROCup:IFFNbackground THEN1100
1030 GOTO1120

1100 IFF%=0 F%=1:X1%=X%:Y1%=Y%

1120 PROCdown:PLOTE3,X%,Y%

1130 PROCright:IFFNbackground THEN1070

See diagram 8.11 on page 153.

When the cursor reaches this point we need to set
F% to 2. This shows that we have found the entire
width of the first area. Thus if boundary is detected
and F% is already 1, then we need to set F% to 2.

1080 IFF%=1 F%=2

See diagram 8.12 on page 153.

When the cursor reaches this point, F% will be 2.
Thus we know that the program must make a deci-
sion about which area to fill first. We will say that the
program will keep a note of the position of the first

area (already storedin X1% and Y1 %) and carry on
filling from where the cursor is, as if it is starting a
new horizontal line.

1110 IFF%=2THEN1170

However, in filling the second area, the program
might come across another decision point and have
to keep a note of a second set of coordinates.
What we need is a buffer in which we can place a
whole list of coordinates. We can use an array for
this. We are unlikely to need to keep a note of more
than 64 sets of coordinates so we can dimension an
array 64 by 2. Because we can use entry zero in an
array, the following command will be sufficient.

5 DIM S%(B3,1)

We can then say that the first point saved on this
buffer will have X and Y coordinates stored in
S5%(0,0) and S%(0,1), and so on.

We alsoneed a pointer to keep track of how many
points we have kepta note of atany time. For this we
can use the variable P%. Thisneedsto be setto zero
on entry to the procedure.

1000 DEFPROCFfill(X%,Y%,C%):P%=0

When we reach a decision point, we must place the
coordinates of the first area (currently in X1% and
Y1%) in the first clear entry of the buffer and add
one to the pointer P%. Then we can move down a
pixel, back to the line we were originally filling. We
need to set F% to O, so that the program carries on
looking for areas above the current line that need
filling, and then go back to line 1070.

1170 S%(P%,0)=X1%:5%(P%,1)=Y1%:PE=P%+1
1180 PROCdown:F%=0:G0T01070

If the program does not reach a decision point then
it will finish filling the line it is on. At this stage, if
thereismore to be filled on the nextline up, F% will
be either 1 or 2 and the coordinates of the area to be

157

158

filled will be in X1% and Y1%.

1140 IFF%>0 X%=X1%:Y%=Y1%:G0TO1020

If not then the program has reached a dead-end.
However, there may still be some points stored in
the buffer that need to be explored. If P% is O then
we have finished the entire job and can return from

the procedure.

1150 IFP%=0 ENDPROC

If P% isnot 0, then we need to subtract one from the
pointer, P%; remove the most recent point from the

stack; and start filling from this point.

1160 P%=P%-1:X%=5%(P%,0):Y%=5%(P%,1):G0T01020

This completes the fill program. To make it easier to

type in, here is the complete program.

5
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

DIM S%(63,1)

REM Program to draw outline.

MODEQ :M%=2

VbU23,1,03030;03

PE=4

FORA=0TOPI*2STEPPI/100

R%=C0OS (A*10)*200+300
PLOTP%,640+SIN(A)*R%,512+C0S(A)*R%E
P%=5

NEXT

PE=4

FORA=0TOPI*2STEPPI/80
R%=COS(A*10)*50+130
PLOTP%,640+SIN(A)*R%,512+COS(A)*R%
P%=5

NEXT

FORA=0TOPI*2STEPPI/S

PE=4

FORB=0TOPI*2STEPPI/30
C=A+SIN(B)*PI/32

R%=325+125%C0S(B)
PLOTP%,SIN(C)*R%+640,C0S(C)*R%+512
P%=5

A machine code fill

230
500
510
1000
1010

1020
1030
1040
1050
1060
1070
1080
1080
1100
1110
1120
1130

1140
1150
1160
1170
1180
2000
2010
2020
2030
2040

NEXT,

PROCFill(640,32,0)

END

DEFPROCFill(X%,Y%,C%):P%=0

PROCdown: IFFNbackground THEN1010

ELSE PROCup

PROCleft:IFFNbackground THEN1020
PROCright sX1%=X%:Y1%=Y%
PROCdown s IFFNbackground THEN1010
PROCup:PROCright: IFFNbackground THEN1040
X%=X1%:Y%=Y1%:F%=0 '
PROCup:IFFNbackground THEN1100

IFF%=1 F%=2

GOT01120

IFF%=0 F%=1:X1%=X%:Y1%=Y%
IFF%=2THEN1170

PROCdown:PLOT69,X%,Y%
PROCright ¢ IFFNbackground THEN1070
IFF%>0 X%=X1%:Y%=Y1%:GOTO1020

IFP%=0 ENDPROC
P%=P%-1:X%=5%(P%,0):Y%=S%(P%,1):G0T01020
SEH(P%,0)=X1%:S%(P%,1)=Y1%:P%E=P%+1
PROCdown:F%=0:G0T01070
DEFPROCup:Y%=Y%+4 :ENDPROC
DEFPROCdown:Y%=Y %-4 s ENDPROC
DEFPROC1eft s X%=X%-M%:ENDPROC
DEFPROCright : X%=X%+M% : ENDPROC
DEFFNbackground=(POINT(X%,Y%)=C%)

If you run the BASIC program you will find that it
takes about eight minutes to fill our outline. This is
clearly impracticable for serious use so we need to
re-write the routine in machine code. The quickest
way to do this is to simply convert the program, line

for line,

into machine code.

First we must define the zero page locations we
will use to replace each of the BASIC variables.

&70 and &71 X% low and high
&72 and &73 Y% low and high

&74
&15
&16

colour of current pixel
C%—background colour
P%—stack pointer

159

160

&17 F%—decision flag
&78 and &79 X1% low and high
&7A and &7B Y1% low and high

We need a procedure to assemble the machine
code.

1000 DEFPROCass

1010 DIMmc%350

1020 FORpass#=0T02STEP2
1030 P%=mc%

1040 [OPTpass%

Now we can start writing the routine. We can im-
prove the speed by disabling interrupts during the
fill. Then we can look at the first line of the BASIC
which defined the procedure and set P% to zero.
This becomes:

1050 .fill SEI
1060 LDA #0
1070 STA &76

Where we used procedures in the BASIC example
for left, right, up and down, we can use subroutines
in machine code with the same labels. For the func-
tion background we can write a subroutine called
backgr which sets the zero flag only if the pixel
under the cursor is of the background colour.

The next line of the BASIC was:

1010 PROCdown:IFFNbackground THEN1010
ELSE PROCup

This, then, becomes the following piece of machine
code.

1080 «loop1 JSR douwn

1090 JSR backgr
1100 BEQ loop1
1110 JSR up

Next we had the lines:

1020 PROCleftsIFFNbackground THEN1020
1030 PROCright:X1%=X%:Y1%=Y%

This becomes:

1120 .loop2
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230

Then the lines:

1040 PROCdown:IFFNbackground THEN1010

JSR
JSR
BEQ
JSR
LDR
STA
LDA
STA
LDA
STRA
LDA
STA

left
backgr
loop2
right
&70
&78
&M
&79
872
&7A
&73
&78

1050 PROCup:PROCright:IFFNbackground THEN1040
1060 X%=X1%:Y%=Y1%:F%=0

This becomes:

1240 .loop3
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390 .loop4
1400

JSR
JSR
BEQ
JSR
JSR
JSR
BEQ
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA

douwn
backgr
loop1
up
right
backgr
loop3
&78
&70
&79
&N
&7A
&72
&78
&73

#0
&77

161

Note the label Joop4. By jumping to here when we
reach the equivalent of line 1180 of the BASIC, we
can save two commands.

Next we had:

1070 PROCup:IFFNbackground THEN1100
1080 IFF%=1 F%=2

1090 GOTO01120

1100 IFF%=0 F%=1:X1%=X%:Y1%=Y%

1110 IFF%=2THEN1170

This becomes:

1410 .loop5 JSR up

1420 JSR backgr
1430 BEQ skip1
1440 LDA &77
1450 CMP #1
1460 BNE point
1470 LDA #2
1480 STA &77
1490 BNE point
1500 .skip1 LDA &77
1510 BNE skip2
1520 LDA #1
1530 STA &77
1540 LDA &70
1550 STA &78
1560 LDA &71
1570 STA &739
1580 LDA &72
1580 STA &7A
1600 LDA &73
1610 STA &7B
1620 .skip2 LDA &77
1630 CMP #2
1640 BEQ skip5

We then had the line:

1120 PROCdown:PLOTE9,X%,Y%

This codes into machine code using the VDU25
equivalent of the PLOT command.

162

1650 .point

1660
1670
1680
1690
1700
170
1720
1730
1740
1750
1760
1770

JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR

down
#25
&FFEE
#69
&FFEE
&70
&FFEE
&7
&FFEE
&72
&FFEE
&73
&FFEE

1130 PROCright:IFFNbackground THEN1070

Becomes:

1780
1790
1800

JSR
JSR
BEQ

right
backgr
loop5

Then we had the lines:

1140 IFF%>0 X%=X1%:Y%=Y1%:G0T01020
1150 IFP%=0 ENDPROC

This becomes:

1810
1820
1830
1840
1850
1860
1870
1880
1890
1800
1910
1920
1830
13940
13950

.skip3

LDA
BEQ
LDA
STA
LDA
STA
LDA
STA
LDA
STA
Jmp
LDA
BNE
CLI
RTS

&77
skip3
&78
&70
&79
&7
&7A
&72
&78B
&73
loop2
&76
skip4

163

Next we have the first mention of the buffer. For this

we can use the stack. The points can be pushed on

the stack, four bytes each, and pulled offagainin the

reverse order. Location &76 can be used to keep

track of how many points are on the stack, as before.
The next line from the BASIC was:

1160 P%=P%-1:X%=5%(P%,0):Y%=S%(P%,1):60T01020

This, then, becomes:

1960 .skip4 DEC &76

1970 PLA

1980 STA &73
1930 PLA

2000 STA &72
2010 PLA

2020 STA &7
2030 PLA

2040 STA &70
2050 JMP loop2

The next two lines from the BASIC were:
1170 S%(P%,0)=X1%:5%(P%,1)=Y1%:P%=P%+1
1180 PROCdown:F%=0:G0T01070

These become:

2060 .skipS LDA &78

2070 PHA

2080 LDA &79
2090 PHA

2100 LDA &7A
2110 PHA

2120 LDA &78B
2130 PHA

2140 INC &76
2150 JSR down
2160 JMP loop4

Finally we have the five subroutines. The four move
routines code rather obviously.

164

2000 DEFPROCup:Y%=Y%+4:ENDPROC
2010 DEFPROCdown:Y%=Y%-4 :ENDPROC
2020 DEFPROCleft:X%=X%-M%:ENDPROC
2030 DEFPROCrights:X%=X%+M%:ENDPROC

These become:

2170 oup LDA &72
2180 CLC

2190 ADC #4
2200 STA &72
2210 BCC uskip
2220 INC &73

2230 .uskip RTS

2240 .douwn LDA &72

2250 SEC

2260 SBC #4
2270 STA &72
2280 BCS dskip
2290 DEC &73

2300 .dskip RTS

2310 .left LDA &70

2320 SEC

2330 SBC #M%
2340 STA &70
2350 BCS 1lskip
2360 DEC &71

2370 .1skip RTS

2380 .right LDA &70

2390 CLC

2400 ADC #m%
2410 STA &70
2420 BCC rskip
2430 INC &71

2440 .rskip RTS

For the last routine, we need to use OSWORD 9 (the
machine code equivalent of POINT). For this, a
parameter block must be set-up with the X coor-
dinate in the first two bytes (low then high)and the Y
coordinate in the next two bytes (low then high).

165

166

The OSWORD routine then places the colour of the
pixel in the fifth byte of the parameter block.

We already have the X coordinate in &70 and &71,
and the Y coordinate in &72 and &73; we also want
the colour returned in &74. So, all we need to do is
set the X and Y registers (low, high) to point to loc-
ation &70, set the accumulator to 9 and call
OSWORD. We can then compare the colour re-
turned in &74 with the background colour in &75. If
they are the same then the zero flag will be set as
required.

2450 .backgr LDA #9

2460 LDX #&70
2470 LDY #0
2480 ISR &FFF1
2490 LDA &74
2500 CMP &75
2510 RTS

2520]

2530 NEXT

2540 ENDPROC

This finishes the machine code but we still need a
BASIC procedure that calls the routine.

950 DEFPROCFill(X%,Y%,C%)
960 !1&70=X%+Y%*&10000
970 ?&75=C%

980 CALLfill

990 ENDPROC

As an example try adding the BASIC example sec-
tion (lines 10to 510) from the previous program. We
don’t now need line 5 as we are using the machine
stack; but we need to call the assembly procedure
once M% has been set.

25 PROCass

If you run this you will find that it is about eight times
faster than the BASIC version. This routine will work
in any mode so long as M% is set correctly before
the assembler procedure is called.

A faster fill

For most purposes this routine is fast enough.
However, there will be occasions when a still faster
routine is needed. The things which slow down this
routine are the operating system calls. The routines
we have used are all written so as to be as flexible as
possible. However, this slows them down consider-
ably. If we are prepared to limit the fill routine to
working in only one mode then we can write our
own versions of the operating system routines
which will be much faster.

To do this we need to use a different method of
storing the coordinates of a point.

As an example of what is possible we can write a
Mode 0 fill routine that will fill our example shape.
As Mode 0 is a two-colour mode this shouldn't be
too difficult. To simplify the program further still,
we will assume that the background colour is zero.

Each pixelin Mode O is represented by one bit in
the memory. So, instead of X% and Y% from our
BASIC example, we need a different method of de-
scribing which pixel we are looking at. The best
way to do this is to use &70 and &T71 to store the
address of the byte in the memory; and another
byte, at &72, to describe which bit of that byte we
are interested in. This byte will contain a one in the
bit corresponding to the bit we are interested in
and zeros in all the other bits. The reason for this is
that we can then load the byte from the memory into
the accumulator and AND it with the contents of &72
to leave either zero if the pixel was black or not zero
if the pixel was white. This technique is sometimes
called 'bit masking’.

For convenience and speed we will also keep the
character column position (that is, the number of
pixels along divided by eight) in &73. This will
make it easier to check whether we have moved off
the edge of the screen.

The first change we need to make to our machine
code program is to add a routine at the beginning to
convert the X and Y coordinates into an address, a
bit mask, and a column number. On entry to the
routine we must specify that &78 and &79 contain the
X coordinate, and &7A and &7B contain the Y co-
ordinate, in pixels, where the top left-hand corner

167

168

of the screen is (0,0). This means that the BASIC pro-
cedure for calling the fill routine now becomes:

960 DEFPROCFill(Xx%,Y$%)

970 1478=X%DIV2+&10000*(255-YSDIV4)
980 CALLfill

930 ENDPROC

The first job for the machine code (after disabling
Interrupts and setting P% to zero) is to work out the
address of the byte. This will be:

&3000 + 640*Y % DIV8 + X% AND&FFF8 + Y %MOD8.

So the first section of the routine looks like this:

fill SEI \ Disable interrupts.
LDA #0 \ Set P% to O
STA &76 \
LDA &7A \ Find
AND #&F8 \ Y% DIV 8
LSR A \ times 2
LSR A \ for look 0.S.
TAX \ ROM table.
LDA &7A \ YS mOD 8
AND #7 \
CLC \
ADC &C376,X \ look up 640
STA &70 \ times table
LDA &C375,x \
CLC \
ADC #&30 \ add &3000
STA &7 \
LDA &78 \ add X% AND
AND #&F8 \ &FFF8
CLC \
ADC &70 \
STA &70 \
LDA &7 \
ADC &739 \
STA &7 \

(1050-1290)

If youare not sure how this works, look at chapter 10
on sprites, as this routine uses a similar section.

Next we must calculate the ‘'bit mask'. This must
have the value &80 if X% AND? is zero and &01 if it is
seven. To calculate it we can place the value &80 in
location &72 and then shift it right the number of
times specified by X%AND7.

LDA #&80

STA &72

LDA &78

AND #7

TAX

BEQ skipA
.loopA LSR &72

DEX

BNE loopA
.skipA ...

(1300-1380)

Lastly we need to calculate the column number.
This will be the X coordinate divided by eight. As
the X coordinate cannot be larger than 639 we can
divide it by two, twice, to get a number that cannot
be larger than 159. Then we only need to shift the
low byte for the last division by two. This saves one
command.

.skipA LSR &79
ROR &78
LSR &79
ROR &78
LSR &78
LDA &78
STA &73

(1390-1450)

From here on the program is similar to the previous
machine code version. As the X and Y coordinates
are still stored as four bytes from &70 to &73 the
commands X1% =X%:Y1% =Y % etcetera, will still
be the same. The next thing we need to change is
where a point is actually plotted. As we have as-
sumed that the background colour is zero, the fore-

169

170

ground colour must be one. This means that to plota
point we need to set the relevant bit in the memory
to one. To do this we can simply load the byte into
the memory, OR it with the bit mask and store it
back in the memory. So the code after the label
point becomes:

.point JSR douwn
LDY #0
LDA (&70),Y
ORA &72
STA (&70),Y
JSR right

Finally we need to rewrite the routines up, down,
left, right and backgr. Here, up must first check if
the point is off the top of the screen. If so, then it must
exit the routine. If not, then it must check the least
significant three bits of the address. If these are zero
then we need to go up a whole character line.
Otherwise we need to take one away from the
address.

.up LDA &71
CMP #&30
BCC up2
LDA &70
AND #7
BNE up1
LDA &70
SEC
SBC #&79
STA &70
LDA &7
SBC #2
STA &7
RTS

.upl DEC &70

~up2 RTS

(2480-2630)

down is similar.

«down LDA &71
BMI down?2
LDA &70
AND #7
CmP #7
BNE down1
LDA &70
CLC
ADC #&79
STA &70
LDA &71
ADC #2
STA &71
RTS

.down1 INC &70

.down2 RTS

(2650-2800)

left needs to check that the pixel is on the screen
and, if so, shift the bit mask left a bit; if the carry 1s
then set, it needs to subtract eight from the address,
decrement the column number and set the bit mask
to one; rightis similar.

.left LDA &73
BMI left1
ASL &72
BCC left1
LDA #1
STA &72
DEC &73
LDA &70
SEC
SBC #8
STA &70
LDA &71
SBC #0
STA &71

.left1 RTS

.right LDA &73
CMP #80
BEQ right1

171

LSR &72
BCC right1
LDA #128
STA &72
INC &73
LDA &70
CLC
ADC #8
STA &70
LDA &71
ADC #0
STA &71
.Tight1 RTS

(2820-3130)

Lastly we need to deal with backgr. This must first
check that the pointis on the screen. If so, then it can
load the byte from the memory, AND it with the bit
mask and return to the main program with zero in
the accumulator only if the pixel is background.

.backgr LDA &73
BMI off
CMP #80
BEQ off
LDA &7
BMI off
CMP #&30
BCC off
LDY #0
LDA (&70),Y
AND &72
BNE off
LDA #0
RTS

.off LDA #1
RTS

(3150-3300)

We now have an effective routine. Here is a
complete listing of it:

172

5PROCass
10REM Program to draw outline.
20MODED
30vDbu23,1,0303030;
40P%=4
50FORA=0TOPI*2STEPPI /100
BOR%=C0S (A*10)*200+300
70PLOTP%,640+SIN(A)*R%,512+COS(A)*R%
80P%=5
9ONEXT
100P%=4
110FORA=0TOPI*2STEPPI/B0
120R%=COS(A*10)*50+130
130PLOTP%,640+SIN(A)*R%,512+COS(A)*R%
140P%=5
150NEXT
160FORA=0TOPI*2STEPPI/S
170P%=4
180FORB=0TOPI*2STEPPI/30
190C=A+SIN(B)*PI/32
200R%=325+125*C0S(B)
210PLOTP%,SIN(C)*R%+640,C0S(C)*R%E+512
220P%=5
230NEXT,
S00PROCF111(640,32)
510END
9B0DEFPROCFill(X%,Y%)
970!4&78=X%DIV2+&10000*(255-Y%DIV4)
980CALLfill

930ENDPROC
1000DEFPROCass
1010DIMmc %450

1020F ORpass¥%=0T02STEP2
1030P%=mc%
1040[0PTpass%
1050.fill SEI

1060 LDA #0
1070 STA &76
1080 LDA &7A
1090 AND #&F8
1100 LSR A
1110 LSR A
1120 TAX

1130 LDA &7A

173

174

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360.1o00pA
1370
1380
1390.skipA
1400
1410
1420
1430
1440
1450
1460.1o0p1
1470
1480
1480
1500.1lo0p2
1510
1520
1530
1540
1550
1560
1570

AND
CLC
ADC
STA
LDA
CLC
ADC
STA
LDA
AND
CLC
ADC
STA
LDA
ADC
STA
LDA
STA
LDA
AND
TAX
BEQ
LSR
DEX
BNE
LSR
ROR
LSR
ROR
LSR
LDA
STA
JSR
JSR
BEQ
JSR
JSR
JSR
BEQ
JSR
LDA
STA
LDA
STA

#7

&C376,X
&70
&C375,X

#&30
&71
&78
#&F8

%70
&70
&M
&79
&7
#&80
&72
&78
#7

skipA
&72

loopA
&7
&78
&79
&78
&78
&78
&73
down
backgr
loop1
up
left
backgr
loop2
right
&70
&78
&7
&79

1580 LDA &72

15390 STA &7A
1600 LDA &73
1610 STA &7B
1620.100p3 JSR down
1630 JSR backgr
1640 BEQ loop1
1650 JSR up
1660 JSR right
1670 JSR backgr
1680 BEQ loop3
16390 LDA &78
1700 STA &70
1710 LDA &79
1720 STA &7
1730 LDA &7A
1740 STA &72
1750 LDA &7B
1760 STA &73
1770.1oop4 LDA #0
1780 STA &77
1790.1o0pS JSR up
1800 JSR backgr
1810 BEQ skip1
1820 LDA &77
1830 CMP #1
1840 BNE point
1850 LDA #2
1860 STA &77
1870 BNE point
1880.skip1 LDA &77
18390 BNE skip2
1900 LDA #1
1910 STA &77
1920 LDA &70
1830 STA &78
1940 LDA &7
1950 STA &79
1960 LDA &72
1970 STA &7A
1980 LDA &73
1930 STA &7B
2000.skip2 LDA &77
2010 CMmP #2

175

176

2020
2030.point
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220.skip3
2230
2240
2250
2260.skipd
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360.skip5S
2370
2380
2330
2400
2410
2420
2430
2440
2450

BEQ
JSR
LDY
LDA
ORA
STA
JSR
JSR
BEQ
LDA
BEQ
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JmP
LDA
BNE
CLI
RTS
DEC
PLA
STA
PLA
STA
PLA
STA
PLA
STA
Jmp
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
INC
JSR

skip5
down
#0
(&70),Y
&72
(&70),Y
right
backgr
loopS
&7
skip3
&78
&70
&79
&M
&7A
872
&78
&73
loop2
&76
skip4

&76
&73
&72
&M
&70
loop2
&78
&79
&7A
&78

&76
down

2460
2470
2480.up
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620.up
2630.up2
2640
2650.down
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790 .down
2800.down?2
2810
2820.1left
2830
2840
2850
2860
2870
2880
28390

Jmp

LDA
cmp
BCC
LDA
AND
BNE
LDA
SEC
SBC
STA
LDA
SBC
STA
RTS
DEC
RTS

LDA
BMI
LDA
AND
cmp
BNE
LDA
CLC
ADC
STA
LDA
ADC
STA
RTS
INC
RTS

LDA
BMI
ASL
BCC
LDA
STA
DEC
LDA

loop4

&7
#&30
up2
&70
#7
up
&70

#&79
&70
&7
#2
&71

&70

&7
down?2
&70
#7

#7
down
&70

#&79
&70
&7
#2
&7

&70

&73
left1
&72
left1
#1
&72
&73
&70

177

178

2900

2910

2920

2930

2940

2950
2960.1eft1
2970
2980.right
2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120
3130.right1
3140
3150.backgr
3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280
3290.0f f
3300

3310]
3320NEXT
3330ENDPROC

SEC
SBC
STA
LDA
SBC
STA
RTS

LDA
cmP
BEQ
LSR
BCC
LDA
STA
INC
LDA
CLC
ADC
STA
LDA
ADC
STA
RTS

LDA
BMI
Ccmp
BEQ
LDA
BMI
CMP
BCC
LDY
LDA
AND
BNE
LDA
RTS
LDA
RTS

#8
&70
&M
#0
&7

&73
#80
right1
&72
right1
#128
&72
&73
&70

#8
&70
&7
#0
&7

&73
of f
#80
of f
&7
of f
#&30
off
#0
(&70),Y
&72
of f
#0

#1

Notice that in this form this program takes up nearly
5K of memory. Disc users, in particular, may have
trouble using this routine (though if it is typed in
exactly as above it should just fit). If you need a
shorter version you can just take out all the spaces
and put more than one command per line and this
should approximately halve the length of the as-
sembly code.

Fill routines are not the most efficient way of fill-
ing large areas with colour. Where possible use the
triangle plot command for large areas and keep the
fill routine for filling small areas. If used to fill the
whole screen, the routine above will take just over
30 seconds. However, for our example shape it only
takes about four seconds.

179

A simple BASIC dump

CHAPTER NINE

SCREEN DUMPS

Modern dot-matrix printers can produce high-
resolution graphics far in excess of the maximum
resolution of the BBC Micro. It would seem sensible
then to have a means of making a ‘hard copy’ of the
entire contents of the screen. Such a copy of the
screen is called a screen dump.

There are a number of screen dump programs
around for various printers; however, they all tend
to be slow. Many of them claim to be able to handle
dumps of any size and of any mode with one
program. This is fine, but to geta program to do this
means sacrificing speed and performance. In this
chapter we are going to look at a few examples of
specialised screen dump programs. The ad-
vantage of these is that the top speed of the printer
can be used.

The programs in this chapter are designed to be
used with an Epson dot-matrix printer such as the
FX80 or RX80. The MX range of printers will not
handle the very-high-resolution dumps, but will
handle, with only very slight modifications, the first
few programs in this chapter. It should be possible
to adapt some of the programs to run on other
makes of printer. Before reading on, you might like
to read the relevant section of your printer manual.

The first thing we should look at is a simple
example—a Mode 4 screen dump about 4.5in by
3.51n.

We can consider the printer head as a vertical
column of eight dots. The head is moved from left to
right across the paper to produce eight rows of dots
which make up a horizontal band. To print this band
of dots, we need to send a series of codes to the

180

printer to tell it what vertical spacing between each
band to use and how many dots make up a horiz-
ontal row. Then we send one byte for each vertical
column of eight dots where each bit of that byte re-
presents a dot (bit 7 is at the top, bit O is at the bot-
tom). But this immediately presents us with a pro-
blem as the Mode 4 screen is stored with each byte
representing a horizontal row of eight pixels (one
bit represents one pixel in Mode 4).

To solve this; let's consider how we would dump
one character (eight-by-eight pixels) to the printer.
Let's assume that the character is placed at the top
left-hand corner of the screen. We can use a BASIC
program for this as it is only an experiment.

First we need to go into Mode 4 and turn off the
cursor. Next we need to print the character (say, an
A) at the top left-hand corner of the screen.

10 MODE4
20 vDU23,1,03;030303
30 P."A"

Now we must set-up the printer. The first thing is
that we don't want the printer to automatically print
a line-feed after every carriage return. This is
because line-feed feeds the paper upwards by
more than eight dots and we want each band (eight
dots high) to butt up against the previous one. To do
this we use *FX6,10 to disable the printer line-feed.
Note that some printers are set-up so that they auto-
matically print a line-feed whenever a carriage re-
turn is sent. If your printer is set-up to do this then
the setting must be altered. This is done on Epson
printers by changing the position of a small switch
inside the printer. The printer manual gives details
of how to do this. If you don’t do this then the printer
will split up your screen dumps into bands with
gaps between them.

We then need to turn the printer on with VDU2.
While we are doing this we can also tell the printer
to go into a graphics mode where dots are printed
horizontally g of an inch apart. As the dots are auto-
matically printed 4 of an inch apart vertically in all
graphics modes this will make our eight-by-eight

181

182

The pattern for A

pixel character come out approximately square.
We also need to tell the printer that we are going to
send it eight bytes of graphics. The codes to do this
are 27,42,4,8,0. Here, the first three numbers put the
printer into the desired graphics mode and the last
two are the number of bytes of graphics that we are
sending to it. Remember that it is up to you to find
out the correct control sequences for your make,
model and mark of printer. To resume:

40 *FX6,10
50 VDU2,1,27,1,42,1,4,1,8,1,0

Notice that we use VDUl ,X so that the data
doesn't appear on the screen. Now we are ready to
dump the character. Our letter A is stored on the
screen as eight horizontal bytes (stored in
addresses &5800 to &5807).

Bit 7 6 S5 4 3 2 1 0
£5800)

£5801 oo ® e
45802 ® e e
£5803 ® e e e e e
45804 L JL L JL
45805 e ® ® e
45806 L JL ®e
45807

To suit the printer, we need to code the A into eight
vertical bytes. To do this we must set-up a bit mask
which, using AND, will first mask out everything but
bit 7, the leftmost bit, of each byte; then bit 6; and so
on until all eight columns have been printed. We
can store the current value of this mask in the
variable A%—the initial value must be 128 to mask
out everything but bit 7. We can use this mask on
each of the eight bytes of the character in turn, to
extract all the leftmost bits, making these into a
vertical byte to send to the printer. Then we can set
the mask to 64 to extract the next column, and so on
until all eight columns have been printed.

For each column we first seta variable, say B%, to

zero. We then check the relevant bit of &5800 using
the mask. If it is set then we add 1 to B%. We can
then check the relevant bit of &5801, and so on. We
want the top bit of the column (from &5800) to be
stored in bit 7 of B%, and so on. If, before each byte
is checked with the mask, we shift B% left one bit by
multiplying it by two, and then we add 1 if the bit is
set, then, after all the eight bytes have been
checked the first bit we extracted (from &5800) will
be in bit 7, the next bit (from &5801) will be in bit 6;
and so on.

When we have done this to get the first column,
we send B% to the printer and divide A% by two to
move the mask right one pixel for the next column.
We go on doing this until A% has reached zero and
we have thus printed eight columns. Finally, we
must send a carriage return to the printer and turn
the printer off.

45 P%=4&5800

60 A%=128

70 B%=0

80 FORY%=0T07
90 B%=BE*2

100 IFP%?Y%ANDA%THENB%=B%+1
110 NEXT

120 VDU1,B%

130 A%=A%/2

140 IFA%>OTHEN7O
150 VDU1,13,3

This will dump one character from the screen.
Notice that, because we have used a separate
variable P% to store the address of the first byte of
the character (line 45), we can print any character
anywhere on the screen by simply changing P%.
So, to print a whole band (which corresponds to a
line of text on the screen) we need only alter the
Initial setting of the printer to say that we are going
to send 40 characters of eight bytes each, or &140
bytes (line 50 below), add eight to P% after each
character has been sent, and repeat this 40 times.

50 VUDU2,1,27,1,42,1444,1,&40,1,&1
183

184

A machine code
equivalent

55 FORX%=1T040
143 P%=P%+8
147 NEXT

To make a complete screen dump we now need to
feed the paper upwards by eight dots (each dot
takes up 4 of an inch vertically) to print the next
band. The Epson printers provide a command that
will feed the paper upwards by 575 of an inch. We
want to feed by £ so n has to be 24. Because of the
way the screen is laid out, P% already points to the
start of the next band when we get to line 150; so, if
P% is less than &8000 (the end of the screen), then
we can go back to line 50 and print the next band
down.

150 VDU1,13,1,27,1,74,1,24
160 IFP%<&BOOOTHENSO
170 vDU3

This program can then be added to an existing
program, or a screen can be *SAVEd on disc and
this routine can be used as a separate dump
program by *LOADIng the screen at the beginning.

The next thing we need to do is to convert this
BASIC into machine code. As in previous chapters,
the above program has been purposely written to
code into machine code easily.

The first thing we should do in the machine code
version is disable all interrupts. This will help to
speed up the program slightly. We can then disable
the line-feeds.

10000 DEFPROCass

10010 DIMmc%150

10020 oswrch=&FFEE

10030 osbyte=&FFF4

10040 FORpass%=0T02STEP2
10050 P%=mc%

10060 [OPTpass%

10070 «dump SEI

10080 LDA #6

10080
10100
10110

LDX #10
LDY #0
JSR osbyte

Before we carry on any further, we should notice
that almost every VDU command in the BASIC
program was in the form VDU1,X. To save space it
would be sensible to write a subroutine which out-
puts first a 1 then the byte we want to send to the

printer.

20000
20010
20020
20030
20040

out

PHA

LDA #1

JSR oswrch
PLA

JMP oswrch

This routine should be entered with the byte to be
sent to the printer in the accumulator.

Going back to the main routine, we can setup P%
in &70 and &71 and turn on the printer.

10120
10130
10140
10150
10160
10170

LDA #0

STA &70
LDA #&58
STA &71
LDA #2

JSR oswrch

Now we must initialise the printer for each band.

10180
10190
10200
10210
10220
10230
10240
10250
10260
10270

.band

LDA #27
JSR out
LDA #42

JSR out
LDA #4

JSR out
LDA #&40
JSR out
LDA #&1

JSR out

We can use the X register to count the 40 characters
that make up a horizontal band. We can use &72 to

185

186

store the bit mask, A%; &73 to store the byte sent to
the printer, B%; and the Y register for the loop, Y%.

10280 LDX #40
10290 .char LDA #128
10300 STA &72
10310 .column LDA #0
10320 STA &73
10330 LDY #0

Next we need to shift &73 (B%) left. Then we must
load a byte from the screen and mask it with &72. If
there is a pixel in this position then we must set bit
zero of &73. Then we can repeat the loop until Y is
eight.

10340 .pixel ASL &73

10350 LDA (&70),Y
10360 AND &72
10370 BEQ not
10380 LDA &73
103390 ORA #1
10400 STA &73
10410 «not INY

10420 CPY #8
10430 BNE pixel

We can then send the column of eight pixels stored
at &73 to the printer.

10440 LDA &73
10450 JSR out

Next we must shift the mask right one bitand repeat
until we have dumped eight columns or a complete
text character.

10460 LSR &72
10470 BNE column

Now we must add eight to &70 and &71 for the next
character position and repeat back to the character
routine 40 times to print one complete band.

10480 LDA &70

10490 CLC
10500 ADC #8
10510 STA &70
10520 BCC skip
10530 INC &71
10540 .skip DEX
10550 BNE char

Lastly we need to feed the paper upwards and re-
peat the band routine until the content of &71 is &80
or bigger. Then we can turn the printer off, enable
interrupts and end the subroutine

10560 LDA #13
10570 JSR out
10580 LDA #27
10580 JSR out
10600 LDA #74
10610 JSR out
10620 LDA #24
10630 JSR out
10640 LDA &71
10650 BPL band
10660 LDA #3
10670 JSR oswrch
10680 CLI
10630 RTS
20050]

20060 NEXT

20070 ENDPROC

And that's it.

As an example, try adding the following lines at the
beginning of the assembly code.

10 MODE4

20 vDU23,1,03;0;030329,64035123

30 PROCass

40 S=1.1

50 P%=4

60 FORA=0TOPI*21STEPPI/20

70 PLOTP%,636%SIN(A),508*COS(A*S)

187

A colour-as-tone dump

188

80 P%=5
90 NEXT
100 CALLdump
110 END

Mode 4 is very similar to Mode 0. To convert this
program to run in Mode 0 only six lines need be
changed.

10 MODEO
10140 LDA #&30
10220 LDA #1
10240 LDA #&80
10260 LDA #2
10280 LDX #80

Notice that the Epson does not provide a graphics
mode that has 160 pixels to the inch horizontally, so
we have to use the closest mode; this gives only 120
pixels to the inch. This has the effect of stretching
the screen dump slightly horizontally.

So far we have only looked at two-colour dumps.
What happens if we want to dump a 16-colour,
Mode 2 screen? Most people don't own expensive
colour printers, so let’s find a way of representing
colours on a black-and-white printer. It is easiest to
do this with shades. Unfortunately, a dot-matrix
printer won't automatically print greys for us. To
get the illusion of shades we need to print a pattern
of dots with more dots per square inch for the dar-
ker colours than for the lighter ones. For dumping
in Mode 2 we will first ignore flashing colours and
then represent each pixel by an imaginary box con-
taining 12 dots arranged as two rows (height) of six
columns (width). This arrangement is chosen
because the pixels in Mode 2 are not square but
rectangular—they are thin horizontal dashes rather
than dots—so the printer must represent each pixel
by a pattern of dots that is rectangular.

The pattern of dots for each colour (chosen to
look as close to a solid block of colour as possible) is
as follows.

Black

Blue

Red
Magenta [y
Green
Cyan

Yellou

JHUN

Uhite

‘Colour dot patterns’

This means that, as a Mode 2 screen is 160 pixels by
256 pixels, we will dump 960 (=6%160) by 512
(=2+256) dots on the printer.

Before we can do anything, we must know how a
Mode 2 screen is laid out in the memory. As Mode 2
is a 16-colour mode, the computer must use four bits
to store the colour of each pixel of the screen. Thus
1t can store two pixels (2 X 4 =8 bits) in one byte. If
there are 40960 (160 x 256) pixels on the screen, this
means that to store the complete screen we need
20480 bytes or 20K.

The two pixels stored in each byte are always
adjacent to each other and appear in a horizontal
line on the screen. We would expect to find that the
first 80 consecutive bytes (=160 pixels) of the
screen memory make up the top row of pixels.
However, this unfortunately is not so. The screen
memory is organised in terms of character po-
sitions. One character is made up of 64 (8x8)
pixels. This means that 32 bytes of screen memory
are needed to make up each character. Horizont-
ally, these are split up into four columns, each two
pixels (or one byte) wide. Each column is then
made up vertically of eight consecutive bytes.

8 16 24
9 17 25
10 1 26 The order of the
11 18 27 bytes that make

12 20 28 up one text
13 21 29 character.

14 22 30
15 23 31

EGE Kol K020 BN ION) hS] B)

The set of 32-byte charactersis laid out, as would be
expected, in 32 rows of 20 characters. So, for our
purposes we can look at the screen as divided into
32 rows. Each row is stored as 640 bytes and con-
sists of 80 columns, each column being eight bytes
tall. The first byte of the screen is stored at &3000
and the last at &7FFF.

189

190

Mode 2 screen

Of course, all this changes for different modes.

organisation
&3000 | &3008 | T T 7 43270 | &3278
43001 | 43009 T 83271 | &3279
&3002 | &300A | T T T 7 §3272 | &327A
43003 | 43008 - 83273 | 43278
%3004 | &300C | — — — — — — — — 83274 | &327C
%3005 | &300D - §3275 | &327D
%3006 | &3006 | — _ _ — — — _ — §3276 | &327EF
&3007 | &300F o T __ &3277 | &327F
23280 | 43288 - - &34F0 | &34F8B
&3281 | &3289 | 7 &34F1 | &34F9
33282 | &328A - - &34F2 | &34FA
43283 | &3288 | — — — — — — —— &34F3 | &34FB
33284 | 8328C | — — — — — — —— &34F4 | &34FC
%3285 | &3280 | — — — — — — —— &34F5 | &34FD
33286 | 83286 | _ _ — — ~ — ~ &34F6 | &34FE
53287 | &326F | ~ "~~~ &34F7 | &34FF

Finally, we must examine how the two Mode 2
pixels are stored in each screen memory byte.
Again, we would expect the most significant four
bits of the byte to hold the colour of the first pixel
and the least significant four bits to hold the colour
of the second pixel. Yet again, things are slightly
more complex. The two four-bit numbers which re-
present the colours of the two pixels are
‘interleaved’'—first a bit from pixel one (the left-
hand pixel) then a bit from pixel two (the right-hand

pixel) then a bit from pixel one again, and so on.

Mode 2 pixels:
layout

Left hand pixel (white)
0111

AN

msB [0JoJ1]oJ1]1]1]0] LsB

NV

0010
Right hand pixel (green)

It is obvious from this diagram that ours is not an
easy task. Remember that we need to send graphics
to the printer in bands of eight vertical dots (corre-
sponding to the eight vertical dots on the printer
head). This means that we need to group four
screen pixels (each two dots high) above each
other. Let's first of all assume that we have found the
colours of each of these pixels (ignoring the most
significant bit to exclude flashing colours) and we
have stored the four of them, from top to bottom, in
addresses &74 to &77. Now let's try and write a
routine to dump these four pixels to the printer.

As often with machine code, the easiest way to do
this is with a look-up table. This will contain data on
the pattern of dots for each colour. However, we
need to think carefully about how to arrange this
information in a table. As the printer deals in vert-
ical columns, the sensible way to split up the 12 dots
per pixel is into six columns, devoting one byte of
table for each column. Although we are wasting
memory by only using two bits in each byte of the
table, it will speed up the program if we use one
byte of table for each column.

We now have to decide how to order these
columns. The obvious way is to store them as six
bytes for black followed by six bytes for red, et-
cetera. However, we must consider how we are
going to address this table. To print the four vertical
pixels we are going to send six bytes to the printer.
The first byte will be made up of the first columns of
each of the relevant colour patterns, the second
byte will be made up of the second columns of the
patterns, and so on. So, to send the first byte to the

191

printer we are going to need access to the eight
bytes that contain the first columns of each of the
eight colour patterns. Then for the second byte we
will need the eight bytes of the second columns and
so on. Thus it makes sense to store the eight bytes
that contain the first columns of each of the colour
patterns, grouped together In the table.

To make the program easier we can store the
data in groups according to the colours but just
read them into the table in our preferred order.

10000 DEFPROCass
10010 DIMmc%300,0%47
10020 RESTORE20000
10030 FORA%=0TO7
10040 FORB%=0TOS
10050 READD®?(A%+B%*8)
10060 NEXT,

20000 DATA3,3,3,3,3,3sREM Black
20010 DATA3,2,1,3,1,2:REM Red
20020 DATAO,1,1,0,2,2:REM Green
20030 DATAO,0,1,0,0,0:REM Yellow
20040 DATA3,3,1,3,3,2:REM Blue
20050 DATA1,2,1,2,1,2:REM Magenta
20060 DATAC,1,0,0,2,0:REM Cyan
20070 DATAO,0,0,0,0,0:REM White

Now the routine to print four vertical pixels should
be relatively easy. First we are going to need, from
the previous program, the routine for sending a
byte to the printer.

10070 oswrch=&FFEE

14000 .out PHA

14010 LDA #1
14020 JSR oswrch
14030 PLA

14040 JMP oswrch

Now we can start. The first job is to set up the
address of the start of the table in &7A and &7B.
Then we can use post-indexed indirect addressing
192

to look up the bytes for the first column of each pixel
by setting the Y register to the colour number. Then
when we have sent this byte to the printer we can
add eight to the contents of &7A and &7B so that,
taken together, they point to the address of the eight
second-column bytes. We can use the X register to
count the number of bytes we have sent to the
printer.

13000 .print LDA #D%MOD256

13010 STA &7A
13020 LDA #D%DIV256
13030 STA &78B
13040 LDX #6

Next we can set Y to the contents of &74 (the top
pixel colour) and load in the two bits for the top two
dots of the first column. These must eventually be
the most significant two bits of the byte so we must
shift them left. We shift left the bytes we are calculat-
ing, by two bits each time a pixel has been cal-
culated, and so save a lot of effort.

13050 .prloop LDY &74

13060 LDA (&7A),Y
13070 ASL A

13080 ASL A

13090 STA &79
13100 LDY &75
13110 LDA (&7R),Y
13120 ORA &79
13130 ASL A

13140 ASL A

13150 STA &79
13160 LDY &76
13170 LDA (&7A),Y
13180 ORA &79
13190 ASL A

13200 ASL A
13210 STA &79
13220 LDY &77
13230 LDA (&7A),Y
13240 ORA &79
13250 JSR out

193

194

We have now sent the first of our six bytes to the
printer and all that remains is to add eight to &7A
and &7B and go back for the next byte.

13260 LDA &7A
13270 CLC

13280 ADC #8
13290 STA &7A
13300 BCC skip2
13310 INC &78B
13320 .skip2 DEX

13330 BNE prloop
13340 RTS

This is all very well, but we still need to find out the
four colours from the screen. We could use the
operating system command that is equivalent to the
BASIC function POINT, but this is slow and it is faster
to work it out ourselves.

Let's now look at the main program and let’s as-
sume that we have already written a routine that will
dump a whole band of Mode 2 graphics, four pixels
high, given the address of the top left-hand corner
of the line on the screen stored in &70 and &71.

Firstly, we need to disable interrupts and the
printer line-feed, and turn the printer on.

10080 FORpass%=0T02STEP2
10090 P%=mc%

10100 [OPTpass$%

10110 .dump SEI

10120 LDA #6
10130 LDX #10
10140 LDY #0
10150 JSR &FFF4
10160 LDA #2
10170 JSR oswrch

Next, we need to store the address of the top left-
hand corner of the screen in &70 and &71. Then to
print the top half of a text line we need only call our
band routine.

10180 LDA #0

10130 STA &70
10200 LDA #&30
10210 STA &7

10220 .textlin JSR band

To print the bottom half we need to add four to the
start address and call line again.

10230 LDA &70
10240 CLC
10250 ADC #4
10260 STA &70
10270 BCC skip
10280 INC &71

10290 .skip JSR band

To move on to the next line we need to add &280 to
the address of the previous line, but we have al-
ready added four so we only need add &27C. If the
answer is less than &8000 then we can go back and
dump the next text line. Otherwise we must turn off
the printer, re-enable the interrupts and end the
routine.

10300 LDA &70
10310 CLC

10320 ADC #&7C
10330 STA &70
10340 LDA &71
10350 ADC #2
10360 STA &7
10370 BPL textlin
10380 LDA #3
103390 JSR oswrch
10400 CLI

10410 RTS

Now all we have to do is make our assumptions
concrete and actually write band.

Firstly, we need to make a copy of &70 and &71 in
&72 and &73. Then we need to initialise the printer
to accept a 960-column band of graphics.

195

196

11000 .band LDA &70

11010 STA &72
11020 LDA &7
11030 STA &73
11040 LDA #27
11050 JSR out
11060 LDA #42
11070 JSR out
11080 LDA #1
11090 JSR out
11100 LDA #&CO
11110 JSR out
11120 LDA #3
11130 JSR out

Now we need to count the 80 groups of pixels that
we must send to the printer (160 pixels per line and
two pixels per byte). As we need both the X and Y
registers we use location &78 to hold a count.

11140 LDA #80
11150 STA &78

Before we carry on, we need two routines that will
extract the colours of the two pixels from a byte. Let
us deal first with the left-hand pixel stored in the
odd-numbered bits. We can arrange for the three
bits of interest to us to be in bits 2, 4 and 6 (least
significant to most significant) of the accumulator,
using ASL once; then we can do two left-shifts to
transfer the most significant bit in bit 6 into the carry
flag. Then we can ROL the carry flag into a memory
byte previously set to zero (&79). This leaves the
next bit in bit 6 of the accumulator so we can repeat
this a further two times to leave our three bits in bits
0-2 of location &79. If this sounds complicated, try
following the code through.

12000 .colourl LDA (&72),Y
12010 .colour ASL A

12020 INY
12030 LDX #0
12040 STX &79
12050 LDX #3

12060 .coloop ASL A

12070 ASL A

12080 ROL &79
12090 DEX

12100 BNE coloop
12110 LDA &79
12120 RTS

The INY command loads the next byte down on the
next call of this routine. If we want to extract the
colour of the other pixel we need only load the byte
into the accumulator and shift it left one bit so that
the bits we want occupy the same positions as for
the other pixel. Then we can jump to the label
colour, conveniently placed in the previous
routine, to finish the job.

12130 .colour2 LDA (&72),Y
12140 ASL A
12150 JMP colour

Now we can go back to band where we were just
about to dump a line of graphics.

Firstly, we must set Y to zero so that we are ready
to load the top byte. We can then call colour! to find
the colour of the left-hand pixel and store this in-
formation in &74 ready for print. We can then do the
same for the other four pixels and call print.

11160 .column LDY #0

11170 JSR colour1
11180 STA &74
11190 JSR colour1
11200 STA &75
11210 JSR colour1
11220 STA &76
11230 JSR colour1
11240 STA &77
11250 JSR print

We do the same for the four right-hand pixels.

11260 LDY #0
11270 JSR colour?2
11280 STA &74

197

198

11290
11300
11310
11320
11330
11340
11350

JSR colour2
STA &75

JSR colour?
STA &76

JSR colour?2
STA &77

JSR print

Now, to print the next set of four bytes, we need to
add eight to &72 and &73 and repeat until we have
printed all 80 groups of pixels.

11360
11370
11380
11390
11400
11410
11420 .skip1
11430

LDA &72
CLC

ADC #8

STA &72
BCC skip1
INC &73
DEC &78
BNE column

Lastly we need to feed the paper and return.

11440
11450
11460
11470
11480
11490
11500
11510

15000]
15010 NEXT
15020 ENDPROC

LDA #13
JSR out
LDA #27
JSR out
LDA #74
JSR out
LDA #24
JMP out

At last we have finished. Try the following example
to check that the routine works.

10 MODE2

20 vDu23,1,0;0;0;03

30 PROCass
40 COLOUR135
50 CLS

A miniature
dump

60 COLOUR128
70 RESTORE180

80 P%=4

80 FORA%=0T08

100 READB%

110 GCOLO,B%

120 MOVEQ,O0

130 PLOTP%,1000*SIN(A%*PI/16),1000%C0S

(R%*P1/16)

140 P%=85

150 NEXT

160 CALLdump

170 END
180 DATAD,0,4,1,5,2,6,3,7

So far, we have not printed anything particularly
revolutionary. However, with many modern print-
ers it is possible to produce screen dumps that put
to shame what we have looked at so far.

Some Epson and compatible printers have a
graphics mode in which 240 dots to the inch can be
printed horizontally. Unfortunately, adjacent dots
cannot be printed as the print head needs time to
recover after each dot has been printed. To
overcome this we can print each line twice, first
printing all the even—-numbered dots then all the
odd-numbered dots. This still leaves us with the
vertical resolution—fixed by the spacing of the
print wires in the print head—of 72 dots to the inch.
This is more difficult to overcome.

To solve this problem we use another special fea-
ture of Epson and compatible printers—they can
feed the paper relatively accurately by down to
s of an inch! This means that we can inter-leave
three columns of dots at a spacing of of an inch.
The diagram on page 200 shows this. The pixels
printed on the first pass are numbered 1, etcetera.
This means that the maximum resolution of the prin-
ter is 240 dots per inch horizontally and 216 dots per
inch vertically. This makes a staggering 51840 dots
per square inch! At this resolution we should be
able to dump a full Mode 4 screen in about 1.6
square inches—so that's what we are going to do!

199

200

Dot interleaving

(AR O B R R @ L R N CA BN OV € B OV IR 6) I OVIRE N S B OVERE & s B SR
DENOOOENOOENDDENDENDDENDDESEND SN
O W -2 0NN 00N 0N, 0D DW=, 0=
OEFENOOOENDOODENOOOENOODENODDENEND SN
O W -2 00 W2 00 WH2, DN 0N DWW, DW= 0=
O FNOOOENDOODENOOOENOODENDDENOEND SN
O WN -2 00N, 00,0202 0D WN-2 0NDWN=2 0=
OFNOOENOOOENOOENODODENOOOENOENO BN
O W =2 0NN 00N, OO 002,002 00W =2 00—
O N OEeENDNOOENOENOOENOOOENOOOEND N

It is very difficult to try and use direct screen
access to dump the screen in this example (though
you are welcome to try if you are feeling masoch-
istic) so we will use OSWORD call 9 (the operating
system equivalent of POINT).

The first thing we need, then, is a routine to set-
up a parameter block and call OSWORD 9. Let us
state that the X coordinate should be stored in &70
and &71 and the Y coordinate in &72 and &73. This
means that our OSWORD parameter block can be
taken as starting at &70 and the colour will be re-
turned at &74. The first job is to save the X and Y
registers and set-up the three registers for the
call.

20000 .point STX &76
20010 STY &77
20020 LDA #9

20030 LDY #0
20040 LDX #&70
20050 JSR &FFF1

Now we can reload the X and Y registers with their
original values (saved at &76 and &77). We also
need to check if the point was on the screen. This is
because there are 256 pixels vertically on the
screen and we are printing in lots of 24. Now, 24 into
256 doesn't go, so the last line is going to drop off
the bottom and when this happens pointmust return
black. The OSWORD call we're using will return
255 so we need only check that the colour is
positive; and, if not, return zero.

20060 LDX &76
20070 LDY &77
20080 LDA &74
20090 BPL point1
20100 LDA #0

20110 .point1 RTS

We also need our old faithful routine, out.

20120 .out PHA

20130 LDA #1
20140 JSR oswrch
20150 PLA

20160 JMP oswrch

Now, the main routine. We reset the graphics
windows and origin, as we are using POINT;
otherwise, we might end up dumping the wrong
part of the screen. Also, we can disable interrupts.

10000 DEFPROCass

10010 DIMmc%300

10020 oswrch=&FFEE

10030 FORpass%=0T02STEP2
10040 P%=mc%

10050 [OPTpass%

10060 +dump SEI

10070 LDA #26
10080 JSR oswrch

201

202

Next we must disable printer line-feeds and turn on
the printer.

10030 LDA #6
10100 LDX #10
10110 LDY #0
10120 JSR &FFF4
10130 LDA #2
10140 JSR oswrch

Now we must set the Y coordinate of the top pixel of
the screen in &78 and &79 ready to work down the
screen.

10150 LDA #&FC
10160 STA &78
10170 LDA #3

10180 STA &78

For the moment let's assume we already have a
routine band that prints one pass of the print head,
1.e. given the coordinates of the top left-hand pixel
of aband (320 pixels by 24 pixels) it prints one sixth
ofthedotsonthatband. The X coordinate needstobe
In &70and &71 and the Y coordinate in &78 and &79.
Also, we need to tell the routine whether it is print-
ing odd-numbered or even-numbered dots, horiz-
ontally, on that pass. We can do that by supplying a
mask in &7A—either 255 for the even dots or zero
for the odd ones. The reason for this will become
obvious in a moment. Armed with this routine, we
can finish the main routine.

The first job, as we are going to print three inter-
laced passes vertically, is to set the X register to
count these.

10190 .loop1 LDX #3

Next, we need to setup the X coordinate as zero and
the mask as 255 for the even pixels.

10200 .loop2 LDA #0
10210 STA &70
10220 STA &7

10230 LDA #255
10240 STA &7A
10250 JSR band

Next, for the odd pixels we need to set the X co-
ordinate to four and the mask to zero.

10260 LDA #4
10270 STA &70
10280 LDA #0
10290 STA &7
10300 STA &7A
10310 JSR band

Now we must feed the paper 5}z of an inch ready for
the next interleaved set of pixels. We also need to
move the Y coordinate down one pixel and then
repeat the whole process.

10320 LDA #27
10330 JSR out
10340 LDA #74
10350 JSR out
10360 LDA #1
10370 JSR out
10380 LDA &78
10330 SEC

10400 SBC #4
10410 STA &78
10420 BCS skip3
10440 DEC &79
10450 .skip3 DEX

10460 BNE loop2

We have now printed a whole band 24 dots high
and need to feed the paper onward 24 dots (less the
three we have already fed it).

10470 LDA #27
10480 JSR out
10490 LDA #74
10500 JSR out
10510 LDA #21
10520 JSR out

203

204

We then need to move the Y coordinate down 24
pixels (less the three we have already moved it);
and, if the Y coordinate is still on the screen, we
must go back to dump the next band.

10530
10540
10550
10560
10570
10580
10580
10600

LDA &78
SEC

SBC #84
STA &78
LDA &79
SBC #0
STA &79
BPL loop1

All that remains is to disable the printer, re-enable
the interrupts again and exit.

10610
10620
10630
10640

LDA #3

JSR oswrch
CLI

RTS

Now we need to write band. The first thing this
routine needs to do is to set-up the printer to re-
celve 320 bytes of graphics.

11000 .band
11010
11020
11030
11040
11050
11060
11070
11080
11090

LDA #27
JSR out
LDA #42
JSR out
LDA #3
JSR out
LDA #&40
JSR out
LDA #1
JSR out

Next we need to make a temporary working copy of
the Y coordinate in &72 and &73 for pointto use.

11100 .linel
11110
11120
11130

LDA &78
STA &72
LDA &79
STA &73

We now need to work out a byte. Again, we are
going to use the technique of shifting a byte of mem-
ory left while setting bit one to the colour of a pixel
and repeating this eight times. So first we need to
setthe byte (&75) to zero. Then we need the Y regis-
ter to count the eight times. The first job inside the
loop is to shift &75 left a bit. Then we can use pointto
return the colour of the pixel. Ifitis zero then we can
leave &75 alone as we have already set all the bits to
zero. Otherwise, we need to set bit zero to one. As
this will always be zero to start with we can simply
use the command INC to set it to one.

11140 LDA #0
11150 STA &75
11160 LDY #8
11170 .line2 ASL &75
11180 JSR point
11190 BEQ skip1
11200 INC &75

11210 .skip1

Next we need to move down three pixels to allow
for the interleave, and repeat the process.

11210 .skip1 LDA &72

11220 SEC

11230 SBC #12
11240 STA &72
11250 BCS skip2
11260 DEC &73
11270 .skip2 DEY

11280 BNE line2

We are now ready to send a byte to the printer.
However, if &7A is set to 255, then we want to send
the byte followed by a zero; if it is set to zero, then
we want to send a zero followed by the byte. So, as
the first byte to send to the printer, we can use (&75
AND &7A). For the second byte we can use (&75
AND (&7A EOR 258)).

11290 LDA &7A
11300 AND &75

205

206

11310 JSR out

11320 LDA &7A
11330 EOR #255
11340 AND &75
11350 JSR out

Now all that remains to do is move on to the
next-pixel-but-one horizontally by adding eight to
the X coordinate; and then, if the answer is less than
1280 or &500, go back and send the next pair of
bytes. If the end of the line has been reached then
we must send a carriage return and exit from the
routine.

11360 LDA &70
11370 CLC
11380 ADC #8
11390 STA &70
11400 LDA &7
11410 ADC #0
11420 STA &71
11430 CMP #5
11440 BNE linet
11450 LDA #13
11460 JVP out
25000]

25010 NEXT

25020 ENDPROC

We now have a finished program. To try it out you
can use the example program from the large Mode
4 dump routine.

Now that we have discovered the maximum reso-
lution of the printer itis well worth going back to the
Mode 2 dump. Let us consider using pixels repre-
sented as six dots by three dots. If we dump a Mode
2 screen at the highest resolution using this system
then it will be about 4 inches by 3.5 inches. Also, we
should be able to make a grey scale that will handle
16 levels of brightness. This means that we can use
each of the 16 colours that the BBC Micro will handle
in Mode 2. Obviously we can't represent flashing
colours so the best way to make use of this is not to

try and print exactly what is on the screen but to
represent each colour from O to 15 as a shade with 0
darkest and 15 brightest.

It turns out that with six-by-three dots at the high-
est resolution the third row can always be left blank
and we still get a good range of colours. This
speeds printing up as we will only have to print four
interleaved lines. But if we try to print the same pat-
terns for each pixel, one above the other, they will
tend to produce visible vertical lines. So we will use
two sets of patterns and use alternate sets for alter-
nate rows of pixels. The patterns we will use are as
below:

Set 1 Set 2
Colour O D Colour O [N
Colour 1 M colour 1 M
Colour 2 RS Colour 2 IS
Colour 3 m Colour 3 |uama™
Colour 4 U4 Colour 4 ™a®m]
Colour 5 ™51 Colour S ™™y
Colour 6 [] Colour 6]
Colour 7 g W] Colour 7 Mg W]
Colour 8 Mg ™] Colour 8 F_g 1]
Colour 8 E] Colour S [g1
Colour 10 [™] Colour 10 g "]
Colour 11 [™) Colour 11 []
Colour 12 [__"™] Colour 12 []
Colour 13 [_] Colour 13 [W]
Colour 14 [Colour 14 [™]
Colour 15 [Colour 15 []

As we are going to dump all the top rows then all the
bottom rows, it would seem sensible to block all the
top rows in one group and all the bottom rows in
one group. Within each group we can group the
entries into all the column ones then all the column
twos, etcetera. We can store the two alternate sets
of patterns, in this format, one after the other. We
are going to build up the bytes to send to the printer
by shifting them left and ORing them with 1 or 0. For
this reason it will be easiest if we use one whole
byte ofatableto store each dot of the patterns. These
bytes will either be 1 for a dot or O for no dot. The
data looks as set out below.

207

208

20000
20010
20020
20030
20040
20050
20060
20070
20080
20090
20100
20110
20120
20130
20140
20150
20160
20170
20180
20190
20200
20210
20220
20230
20240
20250
20260
20270
20280
20290
20300
20310
20320
20330
20340
20350
20360
20370
20380
203390
20400
20410
20420
20430

DATA1,1,1,0,0,0,1,1
DATA1,1,0,0,0,0,0,0
DATA1,1,1,1,1,1,1,0
DATAO,0,0,0,0,0,0,0
DATA1,0,0,0,0,0,0,0
DATAO,0,1,0,0,0,0,0
DATA1,1,1,1,1,1,0,0
DATAO,0,0,1,0,0,0,0
DATA1,1,0,0,0,0,0,1
DATA1,0,0,1,1,0,0,0
DATA1,1,1,1,1,0,0,0
DATAO,0,0,0,0,0,0,0
DATA1,1,1,1,1,1,0,0
DATAO,0,0,0,0,0,0,0
DATA1,1,0,0,0,0,0,0
DATAO,0,0,0,0,0,0,0
DATA1,1,1,1,0,0,0,1
DATA1,0,0,0,0,0,0,0
DATA1,1,1,0,0,0,1,0
DATAO,1,0,0,0,0,0,0
DATA1T,1,1,1,1,1,1,0
DATAO,0,0,0,0,0,0,0
DATA1,0,0,0,0,0,0,0
DATAO,0,0,0,0,0,0,0
DATA1,1,1,0,0,0,1,1
DATA1,1,0,0,0,0,0,0
DATAT,1,1,1,1,1,1,0
DATAO,0,0,1,1,0,0,0
DATA1,0,0,0,0,0,0,0
DATAO,0,0,0,0,1,1,0
DATA1,1,1,1,1,1,0,0
DATAO,0,0,0,0,1,0,0
DATA1,1,0,0,0,0,0,1
DATAO,0,1,0,0,0,0,0
DATA1,1,1,1,0,0,0,0
DATA0,0,0,0,0,0,0,0
DATA1,1,1,1,1,1,0,0
DATA0,0,1,0,0,0,0,0
DATA1,1,0,0,0,0,0,0
DATAO,0,0,0,0,0,0,0
DATA1,1,1,1,1,0,0,1
DATAO,0,0,0,0,0,0,0
DATA1,1,1,0,0,0,1,0
DATA1,1,0,0,0,0,0,0

20440 DATA1,1,1,1,1,1,1,0
20450 DATAO,0,0,0,0,0,0,0
20460 DATAM,0,0,0,0,0,0,0
20470 DATAO,0,0,0,0,0,0,0

So our first job is to read this into a reserved area of
memory.

10000 DEFPROCass

10010 DIMmc%1000,0%383
10020 oswrch=&FFEE

10030 FORA%=0T0383

10040 READD%?A%

10050 NEXT

10060 FORpass%=0T02STEP2
10070 P%=mc%

10080 [OPTpass%

We will again need our trusty routines, point and
out. This time we don't need to worry about the
point being off the screen as we are printing at eight
pixels per band and eight goes into 256 exactly.

18000 .point STX &76

18010 STY &77
18020 LDA #3
18030 LDY #0
18040 LDX #&70
18050 JSR &FFF1
18060 LDX &76
18070 LDY &77
18080 LDA &74
18090 RTS

19000 .out PHA

18010 LDA #1
19020 JSR oswrch
19030 PLA

18040 JMP oswrch
19050]

18060 NEXT

18070 ENDPROC

Now for the main routine. As with the previous
routine we need first of all to disable interrupts,

209

210

reset windows, disable printer line-feeds and turn
the printer on.

10090 «dump SEI

10100 LDA #26
10110 JSR oswrch
10120 LDA #6
10130 LDX #10
10140 LDY #0
10150 JSR &FFF4
10160 LDA #2
10170 JSR oswrch

Next we need to set up the Y coordinate of the top of
the screen in &78 and &79.

10180 LDA #&FC
10190 STA &78
10200 LDA #3

10210 STA &79

Before we carry on, we need a routine to print one
pass of the printer head. We can specify that on
entry the Y coordinate of the top left-hand corner of
the band is in &78 and &79; that the contents of &7B
are zero for the top row and 96 for the bottom row
(thisallows us to add this to the table address to take
care of which row we are printing); and that &7A
contains a mask which is 255 for the even-
numbered dots and zero for the odd-numbered
ones.

The first job, as always, is to set the printer to the
right graphics mode—here, quadruple-density
with 960 (&3CQ0) dots across.

15000 .band LDA #27

15010 JSR out
15020 LDA #42
15030 JSR out
15040 LDA #3
15050 JSR out
15060 LDA #&CO
15070 JSR out
15080 LDA #3
15090 JSR out

Next we must set the X coordinate to zero.

15100 LDA #0
15110 STA &70
15120 STA &7

Next, for each column of pixels we send to the
printer, we need to set-up the address of the table
in &7Cand &7D. This will be D% plus the contents of
&TB.

15130 .column LDA #D%MOD256

15140 CLC

15150 ADC &7B

15160 STA &7C

15170 LDA #D%DIV256
15180 ADC #0

15190 STA &7D

Now we are ready to send six bytes to the printer.
We can use the X register to count the bytes. For
each byte we need to make a temporary working
copy of the contents of &78 and &79 in &72 and &73.

15200 LDX #6

15210 .byte LDA &78
15220 STA &72
15230 LDA &79
15240 STA &73

We are going to work on the byte in &75 so we need
to set it to zero for starters. Then we can count the
bits we have worked on, with the Y register.

15250 LDA #0
15260 STA &75
15270 LDY #8

Now for every bit we calculate we first need to shift
&75 left a bit. Then we must find out the colour of the
pixel.

15280 .bit ASL &75
15290 JSR point

211

We are going to use the Y register to point into the
table so we need save the Y register at &76 until we
have finished with the table. We have the colour of
the pixel in the accumulator, so, by transferringit to
the Y register we can use it directly to point into the
table. However, if we are calculating an odd-
numbered bit then we need to use the second set of
shade patterns; these are 192 bytes further onin the
table. We need to check bit O of the bit count which
we have temporarily stored at &76; if it is one, we
must add 192 to the Y register. Then we can load a
byte from the table. At this point we have finished
with the Y register and can reload its original bit
count value.

15300 STY &76
15310 TRY
15320 LDA #1
15330 BIT &76
15340 BEQ skip1
15350 TYA
15360 CLC
15370 ADC #1892
15380 TAY
15390 .skip1 LDA (&7C),Y
15400 LDY &76

This byte we need to OR with the byte we are cal-
culating. We then need to move down a pixel and, if
we haven't already finished the byte, go back and
calculate the next bit.

15410 ORA &75
15420 STA &75
15430 LDA &72
15440 SEC

15450 SBC #4
15460 STA &72
15470 BCS skip2
15480 DEC &73
15490 .skip2 DEY

15500 BNE bit

Now we can send the byte to the printer. However,

212

we must only send alternate bytes so we must mask
it with &7A and reverse the mask in &7A ready for
the next byte.

15510
15520
15530
15540
15550
15560

LDA &75
AND &7A
JSR out
LDA &7A
EOR #255
STA &7A

Next we must move the start of the table to the next
column. Then, unless we have printed all six, we
must go back and print the next column.

15570
15580
15580
15600
15610
15620
15630
15640

.skip3

LDA
CLC
ADC
STA
BCC
INC
DEX
BNE

&7C

#16
&7C
skip3
&7D

byte

We have now dumped a column of eight pixels and
canmove on to the next column. If we have printed a
whole line then we can send a carriage return and
exit the routine.

15650
15660
15670
15680
15690
15700
15710
15720
15730
15740
15750

LDA
CLC
ADC
STA
LDA
ADC
STA
cmp
BNE
LDA
Jmp

&70

#8

&70
&71

#0

&7

#5
column
#13
out

We can now finish off the main routine. For every
text line, we must first set &7B to zero for the top
row. Then, for each row, we must make two passes:

213

214

first with the mask set to 255, then with the mask set
to zero.

10220 .textlin LDA #0

10230 STA &7B
10240 .Tow LDA #255
10250 STA &7A
10260 JSR band
10270 LDA #0
10280 STA &7A
10290 JSR band

Next we must feed the paper a fraction and set &7B
to 96 for the second row. By EXCLUSIVE ORing &7B
with 96 we can use this to count the two rows.

10300 LDA #27
10310 JSR out
10320 LDA #74
10330 JSR out
10340 LDA #1

10350 JSR out
10360 LDA &7B
10370 EOR #96
10380 STA &78B
10390 BNE row

Now we can feed the paper up the rest of the line.
Because the printer will not feed accurately at 5}z of
an inch it tends to feed more than this, so the two
feeds we have performed will have fed closer to 55
ofaninch. To correct for this we need to feed only a
further £L- of an inch. This may not be necessary on
some printers, so you should experiment.

10400 LDA #27
10410 JSR out
10420 LDA #74
10430 JSR out
10440 LDA #21
10450 JSR out

All that remains is to move down to the next text line
and repeat until we have dumped the whole screen;

then we turn off the printer, re-enable the inter-
rupts, and exit in the usual fashion.

10460 LDA &78
10470 SEC

10480 SBC #32
10490 STA &78
10500 LDA &79
10510 SBC #0
10520 STA &79
10530 BPL textlin
10540 LDA #3
10550 JSR oswrch
10560 CLI

10570 RTS

To try out the dump routine, add the following lines
to the assembly code:

10
20
30
40
50
60
70
80
90
100
110

120
130
140
150

MODE?2
VDU23,1,03030303
PROCass
COLOUR143

CLS

COLOUR128

PR=4

FORA%=0T016
GCOLO,A%-1
MOVED,O
PLOTP%,1000*SIN(A%*PI/32),1000%C0S
(A%*PI/32)

P%=85

NEXT

CALLdump

END

If you want to produce larger picturesitis relatively
easy to join two or more dumps together. We have
only looked at a selection of the screen dumps that
can be written but these should give you an idea of
how to go about writing any others you may need.

215

216

CHAPTER TEN

SPRITE GRAPHICS

Most arcade games feature a series of animated
characters which move around the screen. One or
more of the characters are controlled by the player.
On the BBC Micro, the only help the operating sy-
stem gives to anyone trying to produce such
graphics is in the provision of the user-definable
character set. Using VDU23 itiseasy to produce
eight-by-eight pixel shapes which can be moved
around the screen.

However, this system has its limitations. Firstly,
the shape produced can only be in two colours,
background and foreground; secondly, eight-by-
eightistoo small for most purposes; and thirdly, this
method is far to slow for a fast action-packed arcade
game.

The first and second problems can be solved by
combining more than one character to make up an
object, but this makes the animation even slower. It
1s slow because time is taken up by the characters
having to be converted from the eight-byte format
of the user-defined character to the form in which
they are actually stored in the screen memory.
Worse still, the way a character is stored varies be-
tween the different screen modes.

However, as most games will only use one
graphics mode, it should be possible to code the
character into the relevant format for that particular
mode when writing the program. This ready-
defined character would be able to contain all the
colours available in the mode and could be any size.
This shape could then be stored directly on the
screen in a fraction of the time taken by the operat-
Ing system to do the same job. These pre-defined
characters are called SPRITES. As most arcade
games work in Mode 2, [am going to show how to

A sample sprite

A BASIC sprite
routine

use a complete sprite system from machine code in
this mode.

Remember that the methods about to be detailed
will not work across the Tube.

Before we embark on a complex machine code
routine, we should try an experiment in
BASIC—this, as we have seen, isalways a good idea
when writing machine code routines.

&0C &00 &00 &OC
&04 &08 &04 &08
&00 &0C &0OC &00
&00 &08 &06 &00
&01 &03 &03 &02
&03 &03 &03 &03
&17 &2B &17 &2B
&17 &21 &12 &28B
&17 &21 &12 &2B
&03 &03 &03 &03
&03 &03 &03 &03
&01 &03 &03 &02
&00 &21 &12 &00
&00 &20 &10 &00
&30 &20 &10 &30
&30 &20 &10 &30

We are going to use the sprite shown above as an
example. The coding for its storage as a Mode 2
sprite is shown. Because of the way in which the

217

218

screen is laid out this coding will only work if the
sprite starts on the first pixel of a screen memory
byte. That is, the furthest-left pixel of the sprite
must be on an even-numbered pixel horizontally.
If we wanted to place it a single pixel to the right or
left, we would have to totally re-code it.

However, we can easily move the sprite left and
right two pixels at a time; that way, we are moving it
one byte at a time. If we made the sprite move this
distance every fiftieth of a second (which is the rate
at which the image on a TV or monitor is updated),
the image would appear to be moving smoothly.

However, if we wanted the sprite to move slower
than that, we would either have to put up with notic-
ing that the sprite jumps two pixels at a time, or we
would have to define two sprites, one in each po-
sition, and alternate between them. This is common
practice in arcade games and very often the two
sprites are slightly different. For example, itis quite
effective to use two sprites of a man with his legs in
different positions. This will make him appear to
walk when the sprites are placed alternately on the
screen.

For movement up and down, we need to place the
bytes from the shape table into the screen memory
in different positions. As we shall see, this is not too
difficult. We can move the sprite up and down a
pixel at a time without having to recode the sprite
shape table.

The BASIC program below will place our
example sprite in the top left-hand corner of the
screen. The data statements at the end contain the
coded data for the sprite laid out as above.
Remember, thisisan 8-by-16 sprite, so itis stored as
4 bytes (= 8 pixels) wide and 16 bytes high.

10 MODE2

20 vDU23,1,03030;03

30 FOR A% = 0 TO 1

40 FOR B = 0 TO 7

50 FORC% =0 T0 3

60 READ D%

70 '?(&3DGD+A%*640+B%+C%*8)=D%

80 NEXT,,

90 GOTOSO
20000 DATA&OC,&00,&00,&0C
20010 DATA&04,&08,&04,&08
20020 DATA&00,&0C,&0C,&00
20030 DATA&00,&08,&06,&00
20040 DATA&01,&03,&03,&02
20050 DATA&03,&03,&03,&03
20060 DATA&17,&2B,&17,&2B
20070 DATA&17,&21,&12,428
20080 DATA&17,&21,&12,&2B
20080 DATA&03,&03,&03,&03
20100 DATA&03,&03,403,403
20110 DATA&01,&03,403,402
20120 DATA&00,&21,&12,&00
20130 DATA&00,&20,&10,&00
20140 DATA&30,&20,410,&30
20150 DATA&30,&20,&10,&30

Notice in line 70 that the first eight rows of the sprite
are placed from address &3000 onwards and the
second eight rows are placed 640 bytes further on
because they are on the next text line. Notice also
that the position along a row, C%, is multiplied by
eight in the line 70 because the columns take up
eight bytes each. All this is to get around the prob-
lems caused by the complex way in which the
screen is laid out. If we want to be able to move the
sprite up and down a pixel at a time we are going to
have to find a way of knowing when to add 640 to the
address to get us to the next text line.

For our final sprite routine, we are going to as-
sume that the data for the shape of the sprite is al-
ready stored in a section of memory (perhaps in an
array) in the format we used in the BASIC example.
We can then copy this sprite table into the screen
memory at whatever screen position we want the
sprite.

Before we can write a complete sprite routine, we
should write an experimental version in BASIC. The
easiest way to do this is as a procedure.

1000 DEF PROCsprite(L%,X%,Y%,U%,H%)
219

220

Here L% is the location of the first byte of the sprite
shape table, X% and Y% are, respectively, the X
and Y coordinates of the top left-hand corner of
where we want the sprite to appear on the screen,
and W% and H% are the width and height of the
sprite. To make the program simpler, we will take
the X coordinate and the width W% as being in
bytes (i.e. they give the number of pixels divided
by two). Thus the X coordinate can take values from
0to 79. The Y coordinate and height H% will be in
pixels.

First we need to find the screen memory address
of the top left-hand corner of where we want the
sprite to appear. We need to split the Y coordinate
up into the text row number (from O to 31) and the
number of pixels down within that row (from O to 7).
Because each row contains eight pixels vertically,
bits 0 to 2 of the Y coordinate will be the number of
pixels down within the row and the other five bits
will be eight times the row number. So, if we take
Y% DIV 8, this will give us the text row number. As
one row takes up 640 bytes of memory, we must
multiply this by 640 then add &3000 (which is the
address of the start of the screen). Then we add
eight times the X coordinate and finally the least
significant three bits of the Y coordinate (Y% MOD
8). This will give us the address of the first byte of
the screen memory that we will need to change to
place the sprite on the screen. We will, however,
need to keep the Y% MOD 8 part of the address
separate as it will tell us how far down within the text
row we are. So we end up with something like this:

1010 A%=&3000+(Y%DIVB)*640+X%*8
1020 Y%=Y%MOD8

Notice that in line 1020 we have altered Y % so that,
instead of containing the complete Y coordinate, it
now only holds the Y coordinate within the text row.

We now have all the information we need to fix
the address of the top left-hand corner of the
sprite’s intended position on the screen and so
place the first row of pixels of the sprite on the
screen. By adding eight to the current address (in

A% +Y%) each time, we will move two pixels
(=one byte in Mode 2) to the right. We can continue
to copy the table into every eighth byte of the
screen memory, moving one byte through the table
each time, until we have copied the number of bytes
specified by the width W%. We won't need the X
coordinate again so we can use X% to count bytes.

1030 FOR X% = 0 TO W%-1
1040 ?(A%+Y%+X%*8)=7L%
1050 L%=L%+1

1060 NEXT

We have now placed the first row of pixels of the
sprite on the screen. Now we need to go to the next
row of pixels. We can do this by adding 1 to Y%.
However, 1f Y % then equals eight, we need to move
to the next text row by adding 640 to A%. At the
same time we can check to see if the address has
passed through &8000. If so, the sprite has dropped
off the bottom of the screen and we want the remain-
der of itto appear at the top of the screen to produce
a ‘wrap around’ effect. To do this we need only sub-
tract &5000 from A% to move back to the corre-
sponding position at the top of the screen.

1070 Y%=Y%+1
1080 IF Y%=8 THEN Y%=0:A%=A%+640:IF
A%>&7FFF THENA%=A%-&5000

Next we need to check whether we have finished
drawing the sprite. The easiest way to do this is to
subtract one from the height (H%) after each row
until H% is O.

1090 H%=H%-1
1100 IF H%>0 THEN 1030
1110 ENDPROC

We now have a complete BASIC sprite routine.
However, this routine would be very awkward

for realistic animation as it provides no means of

removing the sprite again. To do this, we need to

221

222

A machine code
sprite routine

Exclusive-Or the sprite with the screen to put it on
and then do the same again to remove it. This is the
same technique that can be used from BASIC with
the VDU23 user-defined characters. For this we
need to alter our program. Line 1040 should now
read:

1040 ?(A%+YF+X%*8)=?(A%+YH+X%*8) EOR 2L%

Here again, then, is the complete BASIC sprite
routine.

1000 DEF PROCsprite(L%,X%,Y%,u%,H%)

1010 A%=&3000+(Y%DIVB)*640+X%*8

1020 Y%=Y%MOD8

1030 FOR X% = 0 TO W%-1

1040 ?(A%+YF+XT*B)=?(A%+Y%+X%*8) EOR 7L%

1050 L%=L%+1

1060 NEXT

1070 Y%=Y%+1

1080 IF Y%=8 THEN Y%=0:A%=A%+640:IF
A%>&TFFF THENA%=A%-&5000

1080 H%=H%-1

1100 IF H%>0 THEN 1030

1110 ENDPROC

You may have noticed that this BASIC program is a
little awkwardly written. Even so, it has been spec-
ifically written to be easy to code into machine code.

At this stage in our exploration it is hardly nece-
ssary to give the corresponding line numbers of the
sections discussed. You may find it useful to refer to
the above listing for the next section.

For our machine code version we must use a sub-
routine instead of a procedure. We need a way to
pass the parameters (such as the location of the
table, X and Y coordinates, etcetera) to the routine.
We can use the X and Y registers and some zero
page locations to hold these parameters. On entry
to the subroutine let’s specify that the X and Y regis-
ters should initially contain the X and Y coordinates

at which we want to place the sprite; that &72 should
contain the width (W%) of the sprite; &73 should
contain the height (H%) of the sprite; and that &75
and &76 should contain the start address of the area
of memory where we have stored the sprite shape
table.

The first thing we need to do is to calculate the
screen memory address (A% in our BASIC
example). In the BASIC example this was calculated
like this:

1010 A%=&3000+(Y¥DIVB)*640+X%*8

Let's deal with this in reverse order. The first task,
then, is to calculate X%=8. The answer to this could
be larger than 255 (since X% can go up to 79) so we
will need two bytes to hold the answer. We are
going to store the final answer to A% at &70 and &71
so let’s start by putting X% in &70 and zero in &71.
Thus we can treat X% as a two-byte number and
multiply it by two, three times, so as to finally multi-
ply it by eight. X% is initially contained in the X
register, so the code for the multiplication by eight
looks like this:

STX &70
LDX #0

STX &7
ASL &70
ROL &71
ASL &70
ROL &71
ASL &70
ROL &71

Notice that as we don't need the X coordinate again
the X register is free for other use.

We have now calculated the X%=*8 part of A%, so
our next task is the multiplication by 640. Conve-
niently, the 1.2 Operating System ROM contains a
‘times 640’ table. This is stored starting at address
&C318. Itis stored as 32 entries each two bytes long
(high byte then low byte). So the contents of &C375
and &C376 are O (for 640 x 0), the contents of &C377

223

224

and &C3178 are 640 (for 640 x 1) and so on. (If you
don't have a 1.2 Operating System then it is relat-
ively easy to write a BASIC program that calculates
such a table and stores itin an array.) So, to add the
result of (Y%DIV8)%640 to A% (stored at &70 and
&T1) we do this:

TYA

AND #&F8
LSR A

LSR A

TAX

LDA &C376,X
CLC

ADC &70

STA &70

LDA &C375,X
ADC &7

CLC

ADC #&30
STA &71

The first section masks off the bottom three
bits of Y% then divides by four. This leaves
the accummulator containing the equivalent of
(Y%DIV8)*2. This is because each byte in the times
640 table takes up two bytes. Thus the result of
(Y%DIV8)*640 can be looked up using the X regis-
ter as a pointer and added to the rest of A% in &70
and &71. Notice that, in the last three commands, we
have added &30 to the high byte. This is the equiva-
lent of adding &3000 to the whole number. So now
we have the equivalent of A% in &70 and &T71.
Notice that this is only the address in the screen
memory of the first character position at which the
sprite is to be placed, not the actual byte within that
character position.

The next line in our BASIC example was:

1020 Y%=Y%MOD8

This represents how far down the character po-
sition the sprite is to be placed. Converting this to

machine code is very easy. We want only the least
significant three bits of the Y register, so we do:

TYA
AND #7
STA &74

We have copied this answer into &74 as we are
going to need to use it again. The next section of the
BASIC program was a loop from 0 to W%-1 for the
width of the sprite. Notice that in line 1040 we have
toadd to A% (now in &70 and &71) the current cont-
ents of &74 (Y %) and X%=*8. The easiest way to do
this in machine code is to first load the Y register
with the contents of &74, then add eight to it each
time around the loop. If we do this, then the values
the loop takes do not matter so long as it is executed
the correct number of times.

1040 ?(A%+Y%+X%*8)=7(A%+YR+X%*8) EOR ?L%

So, we can load the X register with the width (W %)
and decrement it each time round the loop until it is
zero. Because we have A% in &70 and &71 and the
rest of the expression in the Y register, we can use
post-indexed indirect addressing to access the
screen, l.e. LDA (&70),Y will be the equivalent of
?(A% + Y% + X%*8).

Next we need to load a byte from the sprite shape
table into the accumulator. Because at this stage we
are using both the X and Y registers, we cannot
easily use any form of indexed addressing. What
we do instead is use absolute addressing. In this
addressing mode the address is stored as two bytes
after the command byte. The first byte is the low
byte, the second is the high byte. By changing these
two bytes, we can use this addressing mode for
looking into tables. This method is not, strictly
speaking, ‘legal’ as it would not work if the routine
were in ROM; but it does save on memory and
speed.

The next section of our program will look like:

oW LDY &74
LDX &72

225

226

This sets the Y register to the position of the first
pixel of the sprite row and puts the width W% in the
X register. Because we jump back to here at the
start of each new row of the sprite, we need the
label row.

.byte LDA &FFFF

Above is the command that looks into the sprite
shape table; the two bytes after it will be modified
by the program as it runs, so the number &FFFF is
unimportant. After each byte of the sprite is placed
on the screen we will need to jump back to this com-
mand; so again a label, byte, is needed. However,
before we can carry on we need to backtrack to the
very beginning of the routine because we need to
place the address of the first byte of the sprite shape
table at byte+! and byte+2 (low, high) in
place of the ‘dummy’ address we have specified in
the assembly code. Thus the program will start by
copying the first byte of the table into the screen
memory.

We have specified that when calling this routine
the address of the first byte of the table should be
stored at &75 and &76, so the first four lines of the
program need to be:

.sprite LDA &75
STA byte+1
LDA &76
STA byte+2

Going back to where we left off, we have just loaded
a byte from the sprite shape table. So now we will
need to EOR this byte with the relevant byte of the
screen memory and place the result back on the
screen:

EOR (&70),Y
STA (&70),Y

Then we must add eight to the Y register to move
one byte (two pixels) to the right:

TYA
CLC
ADC #8
TAY

The next line of the BASIC program was:

1050 L%=L%+1

So we need to add one to the sprite shape table
pointer. This is held, remember, in the two bytes
after the LDA command at byte so we can do this:

INC byte+1

BNE nocarry

INC byte+2
.nocarry DEX

BNE byte

Notice that we then carry on doing one row of the
sprite, moving from left to right, until X has reached
zero and we have completed a row.

The next two lines of the BASIC program were:

1070 Y%=Y%+1
1080 IF Y%=8 THEN Y%=0:A%=A%+640:IF
A%>&7FFF THEN A%=A%-&5000

See if you can spot how this relates to the following
machine code.

INC &74
LDA &74
CMP #8
BNE notline
LDA #0
STA &74
LDA &70
CLC

ADC #&80
STA &70
LDA &71
ADC #2
STA &71

221

228

Listing 1

cMmp
BCC
SEC
SBC
STA
.notline ...

#&80
notline

#&50
&71

Lastly we need to subtract one from H% and branch
back to the label row if H% is larger than zero, or
return from the subroutine, with the sprite com-

pleted, if not.

.notline DEC &73
BNE row

RTS

We now have a complete assembly language sprite
drawing routine.

.sprite LDA

STA
LDA
STA
STX
LDX
STX
ASL
ROL
ASL
ROL
ASL
ROL
TYA
AND
LSR
LSR
TAX
LDA
CLC
ADC
STA
LDA
ADC

&75 DEFPROCsprite
(L%, X%,Y%,WH,HE)

byte+1

&76

byte+2

&70 A% =

#0

&7

&70 X% * 8

&7

&70

&71

&70

&7
+ (Y¥DIVB)

#&F8

A

A

&C376,X * 640

&70
&'70
&C375,X
&7

CLC
ADC
STA
TYA
AND
STA
«TOW LDY
LDX
.byte LDA

EOR
STA
TYA
CLC
ADC
TAY
INC
BNE
INC
.nocarry DEX
BNE
INC
LDA
cMp
BNE
LDA
STA
LDA
CLC
ADC
STA
LDA
ADC
STA
cmp
BCC
SEC
SBC
STA
.notline DEC
BNE
RTS

#&30 + &3000

&71

#7 Y%=Y%MODS8

&74

&74

&72 FOR X% = 0 TO W%-1

&FFFF 2(AZ+YR+X%*8)=
2(A%+Y%+X%*8) EOR 7L%

(&70),Y

(&70),Y

#8

byte+1 L%=L%+1

nocarry

byte+2
NEXT

byte

&74 Y%=Y%+1

&74 IF Y%<>8

#8

notline THEN 'notline'

#0 Y%=0

&74

&70 A%=A%+640

#8480

&70

&7

#2

&7

#&80 IF A%<&8000

notline THEN 'notline'
ELSE A%=A%-&5000

#&50

&7

&73 HE=H%-1

Tow IF H%>0 THEN 'rouw'
ENDPROC

This routine will only Exclusive-Or a sprite with the

229

230

Moving sprites

screen memory; it will not move it for us.

To move a sprite we have to use the routine twice:
first to remove the old image and then to replace it
with the new image. It would make the routine
easier to use if it would do all this for us. Another
point is that, to make a man walk, for example, we
would have to replace the previous image with a
different image. Ideally our routine should be able
to handle this also. Further, we should not have to
tell the routine the dimensions and location of the
shape table for each sprite every time we want to
use it.

The last problem is solved relatively easily by
assigning each sprite shape table an arbitrary num-
ber by which we can refer to it. First we reserve a
section of memory in which to place a table, distinct
from the sprite shape table itself, containing all the
information on each sprite—an information table.
The easiest way to do this is with a DIM
statement— DIM sprites 255 . We will need four
bytes of information for each sprite—two bytes for
the addressofits shape table; where the data for the
actual sprite shape is stored, and one byte each
for heightand width of the sprite—so this command
will reserve a table large enough for the inform-
ation on 64 sprites. If you are not going to use this
many sprites, the information table can be
smaller.(Notice that we are using one table to point
to a series of other tables. This is a very useful
technique.)

For convenience let's assume that each sprite
takes up four consecutive bytes in this information
table: its two-byte shape table address (low-high)
followed by its width and then its height (two sep-
arate bytes). We can now assign each sprite a num-
ber from 0 to 63 where sprite 0 is the one whose data
is in the first four bytes of the information table,
sprite 1 is the one whose data is in the next four
bytes of the information table, and so on.

Now we can enter our new, improved sprite
drawing routine with just three parameters—the
sprite’s X and Y coordinates on the screen in the X

and Y registers, and the sprite’'s number in the ac-
cumulator. Therefore we must now alter the
beginning of our sprite routine to handle this.

We will need the X register to point into the sprite
information table so we need to save the current
contents of the X register. We might as well save
this as a two-byte number at &70 and &71 ready for
the multiplication by 8. So the modified beginning
of the sprite routine starts like this:

.sprite STX &70
LDX #0
STX &7

Next we need to use the sprite number (which we
have said must be in the accumulator when the
routine is called) as a pointer for the information
table. As each entry takes up four bytes we need to
multiply the accumulator by four then transfer it to
the X register ready to point into the information
table.

ASL A
ASL A
TAX

Now we can transfer the four bytes of information
about the sprite (sprite shape table address, width
and height) from the information table into the re-
levant locations ready for the rest of the program.

LDA sprites,X
STA byte+1

LDA sprites+1,X
STA byte+2

LDA sprites+2,X
STA &72

LDA sprites+3,X
STA &73

Notice that, by taking the address of the sprite
shape table directly from the sprite information
table and placing it in byte we don’t need to use
locations &75 and &76 any more.

The rest of the routine is the same as before (List-

231

232

Ing 1 on page 228), starting with:

ASL &70
ROL &71
ASL &70

We now only have to give the number of the sprite
we want to place on the screen, but we still have to
move the sprites by putting them on the screen and
then taking them off again. This problem can be
solved by keeping track of which of the sprites are
being shown on the screen atany one time. The best
way to do this is to have a number assigned to each
moving sprite (or ‘film’) on the screen. This number
should not be confused with the number we assig-
ned to each sprite shape table. If, for example, we
had a game with a user-controlled man and eight
monsters, the man could be film 0 and the monsters
could be films 1 to 8. Any of these nine films (0 to 8)
could actually appear as any of the sprites we have
shape tables for. And the man would probably
alternate between two different sprite shapes so
that he would appear to walk.

What we will do is keep a further set of tables that
contain the number of the sprite shape that was last
used for each film and where on the screen it was
placed. To do this we will have three tables.

The table olds will contain the number of the last
sprite used and oldx and oldy will contain the last X
and Y coordinates for each of the films. Each film
will use one byte of each of these three tables. Thus
the details for film 0 will be at the first byte of each
table, the details for film 1 will be at the second byte
of each table, etcetera. So at the beginning of our
program we will need:

DIM olds 255, oldx 255, oldy 255

If fewer films are needed then the size of the arrays
can be reduced accordingly. So that we know that
none of the films are in use at the start of the
program, let's set all the entries in olds to 255. So a

255 in oldstells the program that the relevant film is
notyetactive. This means that we can’thave a sprite
shape numbered 2585.

FORA%=0T0255
0l1ds?A%=255
NEXT

We can now write a new routine, which will use the
subroutine sprite, that will move a film on the
screen. We can enter this routine with just the num-
ber of the film we want to move, the number of the
new sprite shape we want to use for the film, and the
X and Y coordinates to which we want to move the
film. For convenience let's keep the sprite number
in the accumulator, the X and Y coordinates in the X
and Y registers, and store the film number in &75.
The first job the new routine must do is to save the
contents of the three registers as they will not be
needed immediately. We could push these on the
stack but this is slow. It is quicker to store them in
Zero page:

.move STA &76
STX &77
STY &78

Next we need to load the X register with the film
number so that we can look into the film tables. We
then need to check if this is a new film (whether the
relevant entry in olds contains 255). If so, we don't
need to remove an old image and can go straight to
the new image routine.

LDX &75

LDA olds,X
CMP #255
BEQ newfilm

If we find that we need to remove an old image we
can load the data about the old image from the film
tables. Note that because of a shortage of registers
we have to temporarily save the contents of the ac-
cumulator (which contains the byte from olds) in yet

233

234

another zero page location.

STA &79
LDA oldy,X
TAY

LDA oldx,X
TAX

LDA &79

We can now call sprite to remove the old image.
Notice that we then need to reload the X register
with the current film number, as this has been lost.

JSR sprite
LDX &75

We now have to place the new sprite on the screen
and at the same time place the data on the new
sprite back in the film tables ready for the next
animation. Note that the new sprite shape number
and the new X and Y coordinates have to be re-
loaded from zero page where we stored them
temporarily.

.newfilm LDA &78
STA oldy,X
TAY
LDA &77
STA oldx,X
LDA &76
STA olds,X
LDX &77

Note again the problems caused by the lack of
registers.

Next we need to call sprite again. In fact, it is better
to place the whole film move routine directly before
the sprite routine so that the next command will be
the start of the sprite routine. This saves a JSR com-
mand and an RTS command (see full listing below).

We now have a complete sprite routine. For clarity
here is a complete assembler listing of it. To use it

Listing 2

from BASIC use the command PROCassemble at
the beginning of the program to initialise it and then
call move with A%, X%, Y% and &75 set correctly,
as explained earlier. (Listing two below.)

10000
10010

10020
10030
10040
10050
10060
10070
10080
10080
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320

10330
10340
10350
10360

DEFPROCassemble
DIMsprites 255,0lds 255,0ldx 255,

oldy 255
FORA%=0T0255
01ds?A%=255
NEXT
DIMZ%200

FORpass$%=0T02STEP2

P%=1%
[0PTpass%
.move STA
STX
STY
LDX
LDA
CMP
BEQ
STA
LDA
TRY
LDA
TAX
LDA
JSR
LDX
.newfilm LDA
STA
TAY
LDA
STA
LDA
STA
LDX
.sprite STX

LDX
STX
ASL
ASL

&76

&7

&78

&75
o0lds,X
#255
newfilm
&79
oldy,X

0ldx,X

&79
sprite
&75
&8
oldy,X

&7
0ldx,X
&76
olds,X
&77
&70

#0
&7
A
A

\ Store info

\ on new sprite
\ temporarily

\ in zero page

\ Remove old
\ sprite if nec.

\ Replace

\ with

\

\ new sprite

\ and store

\ new sprite in
\ arrays

\ Main sprite
\ routine.

235

236

10370
10380
10390
10400
10410
10420
10430
10440
10450
10460
10470
10480
10490
10500

10510
10520
10530
10540
10550
10560
10570
10580
10590
10600
10610
10620
10630
10640
10650
10660
10670
10680
10690
10700
10710
10720
10730
10740
10750
10760
10770
10780
10730

«TOW

.byte

TAX
LDA
STA
LDA
STA
LDA
STA
LDA
STA
ASL
ROL
ASL
ROL
ASL
ROL
TYA
AND
LSR
LSR
TAX
LDA
CLC
ADC
STA
LDA
ADC
CLC
ADC
STA
TYA
AND
STA
LDY
LDX
LDA
EOR
STA
TYA
CLC
ADC
TAY
INC
BNE

\ Get info
sprites,X \ on sprite shape
byte+1 \ from info
sprites+1,X \ table
byte+2
sprites+2,X
&72
sprites+3,X
&73 \ Calculate screen
&70 \ addr of top
&M \ LH corner
&70 \ of sprite
&7
&70

&7

#&F8
A
A

&C376,X

&70
&70
&C375,X
&7

#&30
&7

#7

&74

&74 \ Plot row

&72 \ of pixels
&FFFF \ Plot 1 pair of
(&70),Y \ pixels (1 byte)
(&70),Y

\ move right to
\ next pair of
#8 \ pixels
byte+1 \ set shape table

nocarry \ pointer to

10800 INC byte+2 \ next byte

10810 .nocarry DEX \ next pair of

10820 BNE byte \ pixels until
\ rouw complete.

10830 INC &74 \ move down to

10840 LDA &74 \ next row of

10850 CMP #8 \ pixels

10860 BNE notline \ If nec. move

10870 LDA #0 \ down to

10880 STA &74 \ next text rou

10830 LDA &70

10800 CLC

10910 ADC #&80

10820 STA &70

10930 LDA &7

10940 ADC #2

10850 STA &7

10860 CMP #&80

10970 BCC notline \ If nec. 'wrap'

10980 SEC \ back to top

10990 SBC #&50 \ of screen

11000 STA &7

11010 .notline DEC &73 \ Move down a row

11020 BNE row \ until sprite

11030 RTS \ complete

11040]

11050 NEXT

11060 ENDPROC

This routine has several limitations. Firstly, it cannot
be used from a second processor because it uses
direct screen access rather than the official Acorn
commands. For a routine to work with the second
processor, only the operating system commands
must be used for input and output, but this slows
down a machine code program considerably. For
most purposes it is better to leave this routine in the
main processor and call it from the second
processor

Secondly, notice that as the Y register is used to
hold 8 times the X coordinate within the sprite, the
largest width of sprite the routine will handle is 32
bytes. Vertically there is no limit. Also note that by
using a differently coded sprite shape table, this

231

238

routine may be used inany 20K mode. However, the
number of horizontal positions the sprite may be
positioned at will still only be 80.

Now that we have our sprite routine we must see
how it can be used. Let’s write a routine to animate a
small man around the screen under the control of
the Z, X, /, and : keys. We will use the man we used
for the BASIC example. First we must have the
sprite shape table as data.

20000 DATA&OC,&00,400,40C
20010 DATA&04,408,404,408
20020 DATA&00,&0C,40C,400
20030 DATA&00,&08,8&06,&00
20040 DATA&01,403,&03,402
20050 DATA&03,&03,403,&03
20060 DATA&17,&2B,&17,&2B
20070 DATR&17,&21,&12,&28B
20080 DATA&17,&21,412,&28B
20090 DATA&03,4&03,403,403
20100 DATA&03,4&03,&03,&03
20110 DATA&D1,&03,&03,&02
20120 DATA&00,&21,&12,&00
20130 DATA&00,4&20,4&10,&00
20140 DATA&30,&20,&10,&30
20150 DATA&30,&20,&10,&30

Our main program must first go into Mode 2 and
turn off the cursor then assemble the machine code.
Next it must load the sprite shape table into a re-
served block of memory (in this case an array) and
place the information about the size of the sprite and
location of the shape table in the memory, in sprites.
We are only going to use one film (film zero) so we
can set the film number stored at &75 permanently
to zero.

10 MODE2

20 VDU23,1,0303030;
30 PROCassemble

40 DIM man% B3

50 FOR A% = 0 T0 63
60 READ man%?A%

70 NEXT

The flicker licker

80 !sprites = man%
90 sprites?2 = 4
100 sprites?3 = 16

110 ?&75 = 0

Notice that the command READ man®% ?A% 1s
legal. This 1s because expressions using the
operators ?, | and $ are treated as variable names.
Next we set the starting position of the man into X%
and Y % and set the sprite shape number in A% to 0.

120 X% = 0
130 Y% = O
140 A% = 0

Next we must place the man on the screen.
150 CALL move

Next we need to alter X% and Y% according to
which keys are being pressed.

160 IF INKEY-98 AND X%>0 X%=X%-1
170 IF INKEY-67 AND X%<76 X%=X%+1
180 IF INKEY-105 AND Y%<240 Y%=Y%+4
190 IF INKEY-73 AND Y%>0 Y%=Y%-4

Notice the checks to prevent our man from wander-
ing off the edge of the screen. Next we need to go
back to line 150 to remove his old image and plot his
new one.

200 GOTO 150

If we now add in the main sprite routine assembly
code (Listing 2 page 235) the program should work.

If you try the program just given, however, you will
find that although it is very fast it is also very
flickery.

To understand why this is we must first look at the
way in which a monitor or TV works. A TV set works
on the principle of a beam of electrons which are

239

240

fired ata screen. The screen is covered with a sub-
stance that glows where the beam hits it. The beam
obviously cannot be aimed at the whole screen at
one time yet we need the whole screen to appear to
glow all the time. In fact what happens is that the
beam scans the screen in a series of horizontal lines
starting at the top and working down. It completes a
full screen (or ‘frame’) every fiftieth of a second.
The result is that the eye is fooled into seeing a per-
manent picture. This means that if part of our
computer’s copy of a picture changes it does not
appear to change on the screen itself until the beam
reaches that point on the screen. So the fastest you
can animate a computer image without jarring the
eye 1s 50 times a second. This, however, is also fast
enough to fool the eye into seeing continuous
motion.

So, our program needs to move the man exactly
50 times a second for him to move smoothly. To
move the man we are taking him off the screen and
then putting him back on again near where he was.
This, of course, means that there is a short space of
time when the man is not on the screen at all. If this
blank period happens to coincide with the beam'’s
scanning that point the man will just disappear from
a whole frame. This results in the flicker that our
example program suffers from.

We need, then, a method of synchronising our
program with the scanning of the beam in the VDU.

When the beam reaches the bottom of the screen
it has to move back to the top again ready for the
next frame. While this is happening the screen is
‘blanked’. This vertical blanking takes about a fifth
of the fiftieth-of-a-second frame cycle.

We should update the screen only during this
blanking period. The computer sends a signal
(called a synchronisation pulse) to the VDU appro-
ximately in the middle of this blanking to tell the
VDU to move the beam back to the top again. At the
same time as this occurs an interrupt is generated
by the computer. When the operating system pro-
cesses this it subtracts one from the contents of loc-
ation &240. If we wait until the contents of location
&?240 change we wait until the synchronisation pulse

occurs, and we can then redraw our picture which
will be ready to be 'looked at’ when the scanning
beam reaches it. *FX19 conveniently does this for
us. So we can improve our program by inserting
the line:

195 *FX18

If you try this, however, you will find that now there
1s a region at the top of the screen where the sprite
disappears completely. This is because the synch-
ronisation produced by *FX19 occurs roughly in
the middle of the blanking period. The time be-
tween this and the beam's starting to draw the top of
the screen is too small to move the sprite in. If the
sprite is at the top of the screen the beam arrives at
the sprite position before it has been replaced; so
the sprite vanishes.

Unfortunately there is no simple solution to this
problem. In many cases it is easlest to ignore flicker
completely. In most slow-moving games, such as
PACMAN or DONKEY KONG, where the sprites
move only every other frame the flicker will not be
much of a problem. Some games, however, could
be improved considerably by the removal of
flicker.

To do this we need some means of synchronising
the sprite movement with the beginning of the
blanking period rather than the middle as pro-
duced by *FX19. We need an interrupt to occur at
the very beginning of the blanking period.

To do this we can use *FX19 to start an interrupt
timer in one of the VIA's which will count for just
long enough for it to create an interrupt when we
need it. Before we can get into the details of this,
however, we need to solve another problem. If we
are using several films they must all move at the
same time—during the blanking period, not when
the commands for each of them to move is sent. For
this reason we will need a buffer, for each film,
which contains the new X and Y coordinates and the
new sprite shape number for the next move of that
film.

The easiest way to do this is to have three tables
newx, newy and news. As with the three tables for

241

242

the old positions each film uses one byte of each
table. The main program can then set these tables to
hold the movements required. When the interrupt
occurs, the movements can be processed in one go.
We may not want to move all the films every 50th of a
second, so any one we don't want to move will have
255initscorrespondingbyte of news. Once each film
has been moved its entry in news will be set to 255
ready for the nextmove.

We could use the move routine we already have
for this and add to it, but it is easler to rewrite 1t to
handle all the sprites. Firstly we will need the actual
sprite routine from LISTING 2, starting at the label
sprite. Next we need to know how many films are in
use at any moment. This can be stored at &77.
(Remember that the sprite routine only uses loc-
ations &70 to &74.) Now we can start.

If the contents of &77 are, say, 7, then we will refer
to bytes 0 to 6 in each of the tables, so we need to
load the contents of &77 into the X register and
decrement them. While we are at it we need to
check whether X was 0 and, if so, end the routine. So
the start of the routine will look like this:

o.Tts RTS
.films LDX &77
.next DEX
CPX #255
BEQ rts

Notice that it is more efficient to place the RTS com-
mand before the start of the routine as this ensures
that even if the rest of the routine is long the branch
range won't be exceeded. The label next can be
jumped to, to process the next film.

Next we need to check whether this film needs
moving. Remember we said that static films would
have 255 in news (the table holding the new sprite
shape number for each film).

LDA news,X
CMP #255
BEQ next

We now check whether there is an old sprite to re-
move from the screen and, if so, remove it.

LDA olds,X
CvP #255
BEQ newfilm
STA &76
LDA oldy,X
TAY

LDA oldx,X
STX &75
TAX

LDA &76
JSR sprite
LDOX &75

Now we have to place the new sprite on the screen
and store the data on it in the relevant bytes of olds,
oldx and oldy.

.newfilm LDA news,X
STA olds,X
STA &76
LDA newy,X
STA oldy,X
TAY
LDA newx,X
STA oldx,X
STX &75
TAX
LDA &76
JSR sprite

Finally we have to store 255 in the relevant byte of
news (so that the program does not repeat this
move in the next frame), and go back for the next
film.

LDX &75
LDA #255
STA news,X
JMP next

Notice the similarities between this version of move

243

244

and the previous one.

Next we need a routine that will place a command
into the buffer. For this purpose we will use &78 to
hold the current film number; and the accumulator
and the X and Y registers to hold the sprite number
and X and Y coordinates respectively, as before.
Thus, to instruct the sprite routine to move a film,
you must place the film number in &78, the number
of the sprite shape you want to use in the ac-
cumulator, and the new X and Y coordinates in the X
and Y registers. Then you must call the routine
move.

.move STX &76
LDX &78
STA news,X
TYA
STA newy,X
LDA &76
STA newx X
RTS

Now we have come to the difficult bit. We need to
intercept the interrupt which *FX19 uses and use it
to start an interrupt timer in the system VIA. We will
need an initialisation routine—first, to copy the
IRQI1 vector into a spare vector, and second, to alter
it to point to our own interrupt routine. While doing
this we need to disable the interrupts so that no in-
terrupt can occur when the vector is half changed.

.init SEI
LDA &204
STA &230
LDA &205
STA &231
LDA #irg MOD256
STA &204
LDA #irq DIV256
STA &205

We also need to disable the TIMER 1 interrupts and
the analogue-to-digital converter interrupts in
the system VIA. These tend to cause trouble by in-
terrupting at awkward moments. Doing this means

the analogue-to-digital converter interrupts and the
centisecond clock will not work. However, if you
want a clock, say for a game, itis easy to add into the
irg routine a section which counts video sync inter-
rupts (which occur 50 times a second) and incre-
ments a location every fiftieth interrupt so that it
counts in seconds. It also means that though INKEY
will work GET will not.

LDA #&50
STA &FE4E
CLI

RTS

(See chapter 4 for more information on the registers
in the VIA))

Now that we have initialised the interrupts we need
a routine to handle them. This routine must appear
totally ‘transparent’ to the operating system—it
mustn't interfere with the operating system at all.
For this reason it must not change any of the regis-
ters (A, X or Y). When the operating system pro-
cesses an interrupt it stores the accumulator in
location &FC and leaves the other two registers as
they were when the interrupt occurred. It then
jumps to the vector IRQ1.

We also have the problem that if another inter-
rupt occurs while we are processing the current
one, the routine will be entered again. This must not
disturb the first entry. For these reasons both the
contents of location &FC and the X and Y registers
must be pushed on the stack. This saves them so that
they can be recovered before returning control to
the operating system.

.irq LDA &FC
PHA
TXA
PHA
TYRA
PHA

Next we must check that the interrupt that has

245

246

occurred is the one we want. We can look at the VIA
for the answer to this.

LDA #2
BIT &FE4D
BEQ notsync

We now have to deal with the occurrence of a video
sync interrupt. We must set TIMER 2 in the system
VIA to count for just long enough for the scanning
beam in the monitor to reach the vertical blanking
period, and then produce an interrupt. So that we
can make the fine adjustments later, we use the
variable T% to set the time. T% can then be tuned
by trial and error to get the best flicker-free
picture.

LDA &FE4B
AND #&DF

STA &FE4B

LDA &FE4E

ORA #&20

STA &FE4E

LDA #TEMOD256
STA &FE48

LDA #T%DIV256
STA &FE49

Lastly we can exit from the routine, remembering to
replace all the registers as they were. It is vital that,
when dealing with interrupts, the registers A, X and
Y (and any variables or locations in memory that the
main program may be using) hold the same values
that they did when the interrupt occurred, before
the interrupt-servicing routine passes control back
to the operating system.

.exit PLA
TAY
PLA
TAX
PLA
STA &FC
JMP (&230)

Now we must check to see ifa TIMER 2 interrupt has
occurred.

.notsync LDA #&20
BIT &FE4D
BEQ exit

Then, when a TIMER 2 interrupt occurs we must
clear the interrupt status in the VIA ready for the
next interrupt.

STA &FE4D

We are now ready to move the films. Moving the
films will take most of the blanking period so the
synchronisation interrupt will happen right in the
middle of moving the films. For this reason we must
ensure that the interrupts are enabled while the
films are moved. However, we must not have
changed the state of the interrupts when we exit the
routine. The easiest way to ensure this is to push the
processor status register on the stack before
changing the interrupt status and then pull it back
off again just before we exit the routine.

PHP
CLI
JSR films
pLP
JMP exit

We now have the complete routine. For simplicity
of use we can dimension all the arrays inside the
procedure that assembles the machine code. These
arrays need not be longer than the maximum num-
ber of sprite shape tables and films that we are
going to use, so we might as well specify these two
numbers as procedure parameters. At the same
time we can set the number of films in use (stored at
&717) to the maximum number of films. If, at some
point, we want to use fewer films than this number,
then we can alter the contents of &77 after using the
procedure. While we are about it we may as well
clear olds and news, ready for use, by filling them

2471

with 255. We also need to set T% to a suitable value.
This value you can experiment with to get the best
results.

Here, then, is the complete sprite routine with
films and flicker-prevention.

Listing 3 10000 DEFPROCassemble(NF%,NS%)
10010 ?&77=NF%
10020 NF%=NF%-1
10030 NS%=NS%*4-1
10040 T%=18000
10050 DIMsprites NS%,0lds NF%,0ldx NF%,
oldy NF%,news NF%,newx NF%,newy NF%
10060 FORA%=0TONF%
10070 o0lds?A%=255
10080 news?A%=255
10090 NEXT
10100 DIMZ%400
10110 FORpass%=0T02STEP2

10120 P%=2%

10130 [OPTpass%

10140 .sprite STX &70 \ draw a sprite
10150 LDX #0 \ given sprite
10160 STX &71 \ no. & XY
10170 ASL A \ coordinates
10180 ASL A

10190 TAX

10200 LDA sprites,X

10210 STA byte+1

10220 LDA sprites+1,X

10230 STA byte+2

10240 LDA sprites+2,X

10250 STA &72

10260 LDA sprites+3,X

10270 STA &73

10280 ASL &70

10290 ROL &71

10300 ASL &70

10310 ROL &71

10320 ASL &70

10330 ROL &71

10340 TYA

10350 AND #&F8

10360 LSR A

248

10370
10380
10330
10400
10410
10420
10430
10440
10450
10460
10470
10480
10490
10500
10510 .row
10520
10530 .byte
10540
10550
10560
10570
10580
10530
10600
10610
10620
10630 .nocarry
10640
10650
10660
10670
10680
10630
10700
10710
10720
10730
10740
10750
10760
10770
10780
10790

LSR
TAX
LDA
CLC
ADC
STA
LDA
ADC
CLC
ADC
STA
TYA
AND
STA
LDY
LDX
LDA
EOR
STA
TYA
CLC
ADC
TAY
INC
BNE
INC
DEX
BNE
INC
LDA
cmp
BNE
LDA
STA
LDA
CLC
ADC
STA
LDA
ADC
STA
Cmp
BCC

A
&C376,X

&70
&70
&C375,X
&M

#8&30
&7

#7

&4

&4

&72
&FFFF
(&70),Y
(&70),Y

#8

byte+1
nocarry
byte+2

byte
&4

&74

#8
notline
#0

&74

&70

#&80
&70

&7

#2

&7
#3880
notline

249

250

10800
10810
10820
10830
10840
10850
10860
10870
10880
10830
10800
10910
10920
10930
10940
10950
10860
10970
10980
10930
11000
11010
11020
11030
11040
11050
11060
11070
11080
11090
11100
11110
11120
11130
11140
11150
11160
11170
11180
11190
11200
11210
11220

.notline

.Tts

.films
.next

newfilm

SEC
SBC
STA
DEC
BNE
RTS

LDX
DEX
CPX
BEQ
LDA
cmp
BEQ
LDA
cmp
BEQ
STA
LDA
TAY
LDA
STX
TAX
LDA
JSR
LDX
LDA
STA
STA
LDA
STA
TAY
LDA
STA
STX
TAX
LDA
JSR
LDX
LDA
STA
Jmp

#&50
&7
&73
row

&77 \ Move all films
\ currrently

#255 \ active

rts

news, X

#255

next

o0lds,X

#255

newfilm

&76

oldy,X

oldx,X
&75

&76
sprite
&75
News , X
olds,X
&76
newy , X
oldy,X

newx 4 X
0ldx,X
&75

&76
sprite
&75
#255
news, X
next

11230 .move
11240
11250
11260
11270
11280
11290
11300
11310
11320
11330
11340
11350
11360
11370
11380
11390
11400
11410
11420
11430
11440
11450
11460
11470
11480
114380
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
11600
11610
11620
11630
11640
11650 .exit

.init

.irq

STX
LDX
STA
TYA
STA
LDA
STA
RTS

SEI
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
CLI
RTS

LDA
PHA
TXA
PHA
TYA
PHA
LDA
BIT
BEQ
LDA
AND
STA
LDA
ORA
STA
LDA
STA
LDA
STA
PLA

&76 \ Now

&78 \ move a film in

news,X \ next blanking

\ period given

newy,X \ film no in &78

&76 \ shape in A

newx,X \ coords in X & Y

\ Init. all

&204 \ interrupts

&230 \ needed for

&205 \ sprite routines

&231

#irq MOD256

&204

#irq DIV256

&205

#&50

&FE4E

&FC \ Handle any
\ interrupts
\ that occur

#2

&FE4D

notsync

&FE4B

#&DF

&FE4B

&FE4E

#820

&FE4E

#T9M0OD256

&FE48

#TEDIV256

&FE49

251

252

Using the mover

11660 TRY

11670 PLA

11680 TAX

11690 PLA

11700 STA &FC
11710 JmP (&230)
11720 .notsync LDA #&20
11730 BIT &FE4D
11740 BEQ exit
11750 STA &FE4D
11760 PHP

11770 CLI

11780 JSR films
11790 PLP

11800 JMP exit
11810]

11820 NEXT

11830 ENDPROC

Now we can write a program to show how the
routine is used. Firstly we will need this sprite
routine and the sprite shape table data from the last
example. Then we need a program that will move
the sprite around the screen under control of the Z,
X,: and / keys as with the last example program.

First we go into Mode 2 and remove the cursor.

10 MODE2
20 VDU23,1,030;030;

Then we need to assemble the machine code. We
are only going to use one film and one sprite so
these are the parameters we specify.

30 PROCassemble(1,1)

Now we need to set up the sprite table.

40 DIM man% 63

50 FOR A% = 0 TO 63
60 READ man%?A%

70 NEXT

Now we have to set up the parameters of this sprite
shape (start of sprite shape table, width and height)
in the right table.

80 !sprites = man%
90 sprites?2 = 4
100 sprites?3 = 16

We can now initialise the interrupts.

110 CALL init

Next we need to put the man on the screen. We can
set both the film number and the sprite number per-
manently to 0. And we can set-up the initial X and Y
coordinates. Then we can call the sprite routine to
place the man on the screen.

120 ?7&78
130 A% =
140 X% =
150 Y% =
160 CALL move

0

oo ooun

Next we want to check to see if any keys are being
pressed, and alter the X and Y coordinates accord-

ingly.

170 IF INKEY-98 AND X%>0 X%=X%-1
180 IF INKEY-67 AND X%<76 X%=X%+1
190 IF INKEY-105 AND Y%<240 Y%=Y%+4
200 IF INKEY-73 AND Y%#>0 Y%=Y%-4

Now we can go back and place the film in its new
position.

This sprite routine will only move the film every
fiftieth of a second. If we try to move it more often
than this, some positions will just be ignored and so
the sprite will sometimes jump more than one po-
sition at a go. This means, of course, that we can
move the film as fast or as slowly as we like and the
sprite will still appear flicker free. For our pur-
poses we want the sprite to move one jump every
fiftieth of a second. To do this we can use *FX19 to

253

254

synchronise the BASIC program with the screen.

210 *FX19
220 GOTO 160

If you try this program you will find that unlike the
last program it is totally flicker-free and smooth.

Try deleting line 210. You will find that although
the man moves a lot faster he appears to move jerk-
ily. There is no flicker but the movement is not
smooth. In fact the smoothest speeds at which to
move the man turn out to be multiples of 50 moves a
second. This means that the man moves exactly the
same distance between each frame. So if you want
to make a film move faster it is better to increase the
distance it moves each time rather than to try and
make more moves per second.

This program seems to be perfect for our needs.
However, if you use this routine to move more than
two or three films you will find that the flicker pre-
vention begins to fail. There is no practical solution
to this problem that also allows fifty moves a second
for all the films over a full screen. The only way to
beat it is to use a smaller amount of the screen. You
will find that when flicker occurs it usually occurs
only at the top or bottom of the screen. If you ensure
that your sprites never move into these areas then
your problems are solved. Obviously, this is not
always practicable; but if, for instance, you have a
‘space Invaders’ type base at the bottom of the
screen 1t would make sense to make this film zero.
This is because lower-number films are processed
later (film O is processed last) and these will be the
ones that are still being processed when the scan
starts at the top of the screen so causing possible
flicker. By ensuring that film O never goes any-
where near the top of the screen you can ensure that
it will not flicker. If you do have trouble, try altering
the value of T% set at the beginning of the pro-
cedure as the best value for this will depend on
your program. Beyond this the only advice I can
give is to experiment. Do not take these routines as
perfect—feel free to customise them to your needs.

Anyone for tennis?

Let's now look at an example of how to use our
sprite routine in a simple two-player tennis game.
We will use the complete flicker-free sprite routine
with films, etcetera. We will need two sprites—a
ball and a bat; and three films—one for the ball and
one for each bat. We will also need an extra section
of assembly code specific to the game.

Because of the length of the assembly code the
program will have to be splitinto three sections that
chain each other.

The machine code will take up about 700 bytes;
so, as we are using Mode 2 we can place this at
addresses &2D00 to &2FFF. Unfortunately, not even
the assembly code, let alone the BASIC section of
the program, will fit in the space between PAGE
and &2D00 on a disc machine. This means that to
make the program work on both types of machine
we will need to Joad the assembly code in at &3000,
assemble it to &2D00 and then chain the BASIC part
of the program in to &1900 or &EQO, depending on
the filing system. Thus the complete program con-
sists of three sections.

The first section simply loads in the assembly
code at &3000.

10 MODE?
20 PAGE=&3000
30 CHAIN"TENNIST"

Save this 'loader’ first as TENNIS.

Now we must write the assembly code. Because we
are using the sprite routine for a specific purpose
we can simplify it a bit. This is important to
remember—when using a general routine for a
specific purpose always try and simplify it so that it
only does what 1s needed of it.

Because we know how many sprites and films we
need we can set-up the seven tables that the routine
uses as part of the assembly code. The table sprites
will need to be eight byteslong to accommodate the
two sprites. Each of the other six tables will need to
be three bytes long to accommodate the three films.
We can also initialise the routine with no films ac-

255

256

tive, by setting all the bytes of oldsand newsto &FF.
All this data can be added to the end of the assembly
code.

.sprites EQUD O

EQUD O
.0lds EQUW &FFFF
EQUB &FF
.0ldx EQUU O
EQUB O
.0ldy EQUW O
EQUB O
«News EQUW &FFFF
EQUB &FF
«Newx EQUW O
EQUB O
«Newy EQUW O
EQUB O

This simplifies the first few lines of the assembler
section of the program to:

10 ?2&77=3

20 T%=18000

30 FORpass%=0T02STEP2
40 P%=&2D00

50 [OPTpass#

60 .sprite STX &70

The assembly code part of the routine is as before.
(see LISTING 3).

One problem is that the third section—the BASIC
part of the game—will need to refer to some of the
labels in the assembly code, but CHAIN clears all
normal variables. The answer to this problem is to
copy the four labels we are going to need into in-
teger variables A%, B%, C% and D% which are
only cleared on CTRL BREAK. Then the first four
lines of the BASIC section can copy them back into
the normal variables for easy use.

Let’s now look at the beginning of the BASIC sec-
tion of the program and ignore the rest of the as-

sembly code for a moment. As we have said, the
first four lines must be:

10 sprites=A%
20 init=B%
30 move=C%
40 tennis=D%

Note that tennis is the extra assembly code routine
we still have to write. Before we write this we should
look at the main, BASIC, part of the program.

The next thing we need to do is set the PRINT
format for printing the score (see page 325 of the
User Guide).

50 @%=3

Now we can go into Mode 2 and set HIMEM so as to
safeguard the machine code that the second section
of the program has placed from &2D00 to &2FFF.
We can turn off the cursor and disable the copy
cursor. (This otherwise tends to produce annoying
results if the cursor keys are pressed while the
game is being played.)

60 MODE2

70 HIMEM=&2D00

80 VDU23,1,03;0;0303
90 *FX4,1

The next job is to print the scores at the top of the
screen in appropriate colours.

100 COLOUR1T:COLOUR130
110 PRINT"SCORE:0 SCORE:0 "

Now we must draw the tennis court.

120 GCOLO,2:MOVEOD,O0:MOVE127S,0
130 PLOT8S,0,12:PLOT85,1279,12
140 MOVEOD,988:MOVE1279,388

150 PLOT85,0,976:PLOT85,1279,976
160 GCOLO,3:FORA%=24T0S72STEP32
170 MOVEB32,A%:DRAWE32,A%+12

257

258

180 MOVEG40,A%:DRAWE40,A%+12
190 NEXT

We have two players, so we need two variables to
store their scores. The best way to do this is with an
array.

200 DIMscore(1)

Next we must set-up the designs for the two
sprites. For this game we only need very simple
sprites. The bat can be made of a red rectangle two
pixels (one byte) by 24 pixels (24 bytes). The ball
will be a cyan square 2 pixels (1 byte) by four pixels
(4 bytes). This means that between them the two
sprites need 28 bytes of storage. We can reserve
these with the DIM command and set-up the sprite
with some simple BASIC.

210 DIMsp%28
220 FORA%=0T023:sp%?A%=3:NEXT
230 sp%!24=&3C3C3C3C

Next we need to put the data on the sizes, and
addresses, of these two sprite shapes in sprites.

240 !sprites=sp%+&18010000
250 sprites!4=sp%+24+&4010000

This makes the bat sprite 0 and the ball sprite 1. We
can now Initialise the sprite routine (the films have
already been turned off in the assembler section).

260 CALLinit

We are now into the main section of the game. Let's
specify some of the zero page locations we will use.

Locations &70 to &78 are used by the sprite
routine. Let's say the &7E and &7F give the current
Xand Y coordinates of the ball. We can then say that
&T9 contains the current direction of the ball
horizontally—if it is 1, then the ball is travelling to
the right, if it is 255 the ball is travelling to the left.
Location &7A can contain the vertical speed of the

ball. Because we can position the ball more ac-
curately vertically than horizontally we will make
the ball travel left and right at a constant speed
while travelling up and down at a variable speed.
This will give a range of speeds and directions the
ball can take. Location &7A will contain the number
of pixels moved down for each position moved
along. Positive numbers will be moving down,
negative numbers will be moving up.

We now need to initialise these ready for a serve.
We shall say that the end that the ball appears at is
random and that if it appears on the left it will sub-
sequently travel right, and vice versa. So we now
have to decide which end the ball starts. We can set
the horizontal direction to either 1 or —1 first and
use this to set the X coordinate of the ball either to 0
or 79. The Y coordinate will always be 12 so that the
ball starts at the top.

270 ?&73=RND(2)*2-3
280 7&7E=(?&79=255)*-79
290 ?&7F=12

We can now set the vertical speed of the ball ran-
domly between 0 and 3. Having done this we must
place the ball on the screen for the players to see.
The ball is film 0.

300 ?&7A=RND(4)-1
310 2&78=0

320 A%=1

330 X$=2&7E

340 Y%=287F

350 CALLmove

The bats will be at either side of the screen and will
only move up and down. We can say that the Y co-
ordinate for the left-hand bat is in &7C and for the
right-hand batis in &7D. We will start both bats half-
way up the screen and, again, we need to place
them on the screen. The left-hand bat is film 1 and
the right-hand bat is film 2.

360 ?&7C=124
370 ?&7D=124

259

380 ?&78=1
390 A%=0

400 X%=0

410 Y%=2&7C
420 CALLmove
430 ?&78=2
440 X%=79
450 CALLmove

Now we have to start the game. We are going to do
all the movement of the sprites from machine code.
We still have to write the routine (tennis) which
handles all