THE BBC MICRO &

1

0
B 0 X
L

Aids to more efficient programming

THE BBC MICRO

1

B O X

0
0
L

Aids to more efficient programming

lan Trackman

BRITISH BROADCASTING CORPORATION

CONTENTS

Introduction 4
Using the Programming Ultilities 6
The Programs Name BASIC or
machine-code

Character generator CHARGEN B 13
Circle fill CIRCLE B 26
Cross-referencer XREF ™M 30
Disassembler DISASS B 43
Double-size characters GIANT I and GIANT2 B/M 51
Graphics dump GRAFPRT M 59
Packer PACKER ™M 65
RAM test RAMTEST ™M 76
REM stripper REMSTRP M 80
Replacer REPLACE ™M 93
Resequencer RESEQ ™M 107
Shape maker SHAPER B 126
Sideways characters TWIST B/M 132
Sorting routines

Bubble sort BUBLSRT B 145
Selection sort SLCTSRT B 148
Index sort INDXSRT B 150
Shell sort SHELSRT and SHL2SRT B 152
Quick sort QUIKSRT B |57
Heap sort HEAPSRT B 160
Spacer SPACER ™M 164
Space remover CRUNCH ™M 176
Speech chip number generator SPEAK B 185
Unpacker UNPACK ™M 188
Variable dump VARDUMP ™ 202

INTRODUCTION

The BBC Microcomputer Programmer's Toolbox is a collection of 25 utility
routines, divided into two main groups.

The first group consists of routines, either written in BASIC or as assembly
language listings, which are intended to be incorporated into your own programs
in order to make them more efficient or versatile. The routines are:

Circle draw and fill

Double-size characters

Graphics dump

Shape maker

Sideways characters

Sorting routines

Speech chip number generator.

The second group of utilities are complete programs in their own right. They will
help you to write, test and debug your own application programs. Most of them
are loaded into the computer independently of any BASIC program which is
already installed. The programs are:

Character generator

Cross referencer

Disassembler

Global replacer

Packer

RAM test

REM stripper

Resequencer

Spacer

Space remover

Unpacker

Variable dump

All of the utilities are recorded on the accompanying tape. Machine-code
programs are in the form of object code. This manual describes how to load and
use all of the routines. In addition, an annotated and commented source listing is
printed at the end of each section so that you can relate the operating
instructions to the code itself.

This manual is not intended to be a ‘How to Write Programs’ guide. We
assume that you are reasonably competent in BASIC, so that we do not go into
explanations of elementary principles, nor do we repeat information which is set

4

out in detail in the User Guide. On the other hand, we do not expect you to be
able to program in assembly language. You can use all of the routines in the
Toolbox knowing only BASIC.

Nevertheless, we have included the assembly language source listings for a
number of reasons. If you can write in machine-code, we hope that you will be
interested in studying how we have used the computer’s facilities to produce the
desired results. The programs also contain some subroutines which may be
useful to you in their own right.

Murphy's Third Law of computer programming - ‘There’s always one more
bug' - probably also applies to the Toolbox. Although we 've tested the
programs extensively, there's always one situation that we may have
overlooked and which will cause a program to fail. If this happens to you, please
accept our apologies in advance. However, we hope that after you have
roundly cursed us, you might care to spend a few moments in trying to identify
and cure the bug by examining the listings. If you do, we'd be very grateful to
hear from you. Please write to:

The Software Editor

BBC Publications

35 Marylebone High Street

London WIM 4AA
and he will forward your comments to the author.

One other reason for giving you the source listings is that you might want to use
more than one of the programming utilities at the same time. For those of you
who can already program in assembly language, all we need say is that you
should use the disassembler to create a source listing from the object code,
re-set the origin address and re-assemble it. For those of you for whom the last
sentence might just as well have been written in Mongolian, there is a step-by-
step explanation in the ‘Using the Programming Ultilities’ section.

Finally, a few words about copyright. All of the programs in the Toolbox are
copyrighted. However, we have no objection to your including the first group of
programs (listed above) in your own programs. If your programs are distributed
commercially, all that we require is for you to credit the source of the routines.
The programs in the second group are another matter. Since they are not
intended to be incorporated into larger programs, if you copy and re-distribute
any of them, you are in breach of copyright. Just as ‘shop-lifting’ is sometimes
used as a euphemism for stealing, ‘software piracy’ perhaps suggests that there
is something daring and swashbuckling about it. There isn't - it is just plain theft
and we will have no hesitation in bringing legal proceedings against anyone
discovered committing the crime.

And after the heavyweight warning - a request. A second Toolbox is already in
the planning stage. If you can suggest ways in which the present utilities could be
enhanced or some further utilities which you would like us to include or if you
have already written a utility that you would like us to consider for publication as
part of a future Toolbox, please write to us c/o the Software Editor (address as
before).

Some of the programs make calls to the Operating System and make use of
facilities available from O.S. 1.0 and above.

USING THE PROGRAMMING UTILITIES

The Programming Ultilities are:

Tape name Size (bytes)
Cross referencer XREF &200
Packer PACKER &200
REM stripper REMSTRP &300
Replacer REPLACE &200
Resequencer RESEQ &300
Spacer SPACER &200
Space remover CRUNCH &100
Unpacker UNPACK &300
Variable dump VARDUMP &100

INSTALLING THE PROGRAMMING UTILITIES

The Programming Utilities are the programs in the Toolbox which, in some way,
operate on a BASIC program or its variables but remain independent of it.
XREF and VARDUMP simply scan the memory and report on what has been
found, whereas the others make actual changes to the BASIC program. All of
them are in machine-code.

Since the BASIC program must be in the computer’'s memory (‘co-resident’) in
order for the utilities to work, they cannot be loaded into the area of RAM
normally occupied by the BASIC program. We have to find some other space
for them.

Tape-based Systems

In a tape-based system, there are |28 free bytes between locations &D00 and
&D7F, which, regrettably, are not enough for our utilities. On a 32K computer,
that really only leaves the BASIC workspace between &00 and the bottom of
the display area (HIMEM). You can move HIMEM down and BASIC will then not
use the area of memory above it. However, HIMEM is reset whenever the
Mode is changed. If you change from a low-resolution Mode to a higher-
resolution Mode (e.g. Mode 5 to Mode 1), you will also over-write anything that
was stored in the memory which now forms part of the enlarged screen display
RAM (e.g. between locations &3000 and &57FF). It is therefore impractical to
store a co-resident utility above HIMEM.

The alternative is to store it where the BASIC program would normally reside
and force the BASIC program to move elsewhere. PAGE is the pseudo-variable
which controls where a BASIC program is loaded and is normally automatically
set by a tape-based system to location &EQO.

The utilities need & 100, &200 or &300 bytes of memory - the table above and
the utility's instruction notes will tell you its particular memory requirements. If
you set PAGE = &F00, you can use the &100-byte utilities. PAGE =&1000 will
give you room for both the &100- and &200-byte utilities and PAGE = &1 100
will let you use all of them.

You must set PAGE before you load or enter a BASIC program. If you set it
after the program is in memory, you'll get a ‘Bad program’ error message.
Once set, PAGE remains fixed until you alter it or until you press the Break
key, even if you load, run or save several BASIC programs. Therefore, set PAGE
to the required value at the very start of a programming session. Of course,
you'll lose &100 to &300 bytes of otherwise free memory, but this should not
be too much of a problem unless you are running a very big program with many
variables or large arrays in a high-resolution Mode.

Disk-based Systems

We explain below how to transfer the programs from tape to disk. The tape
includes versions of all the programming utilities suitable for use with disk-based
systems.

The Disk Filing System has already grabbed a large chunk of memory from &EQO
to &I8FF but we can, with care, borrow some of it back.

There are five file buffers between &1400 and & |8FF. Provided that your
program doesn't open any files, this area should be a reasonably safe place to
install one or more Toolbox utilities. We have assembled the disk versions of

the &300-byte programs at & 1600, the &200-byte programs at & 1700 and the
&100 programs at &1800. Disk-users will be only too well aware of the
problems of the additional memory constraints imposed by the DFS. You may
already have been forced to write or run programs which borrow the disk
buffers for variable storage (e.g. LOMEM = &1400 : HIMEM = &1900).
Running such a program will, of course, over-write any utility stored in the same
work-space.

Since we are not using the cassette filing system, we can also take over the two
&100-byte buffers that are normally reserved for it. The two pages of memory
from &900 to &AFF can be used to store all of the &100- and &200-byte
programs. These buffers are also the RS423 input and output buffers and if, for
instance, you use a serial printer, you should be aware that you will over-write
any utilities stored there. It would be convenient to take over the next &100
bytes for our &300-byte utilities but the next page at &B0O contains the function
key definitions and putting bytes in there creates unexpected results.

In fact, when using the utilities ourselves, we keep more than one in memory at
the same time by moving one of them into the tape buffers, moving another to
&1400 and loading a third utility at &1600. For example, a most useful
combination when working on a BASIC program is XREF at &300, REPLACE at
&1400 and RESEQ at &1600. We explain below how to move the programs
around in the computer’s memory.

As you now appreciate that we are taking over Operating System buffers for
the utilities, you will see why we cannot unconditionally guarantee that they will
work there properly. If you want to be absolutely safe, you must relocate the
programs to &1900 (as described below), change PAGE and move your BASIC
programs even higher up the memory.

BACK-UP COPIES AND TAPE-TO-DISK TRANSFERS

You should always make back-up copies of your programs.

First, we remind you that most of the programming utilities alter your BASIC
programs. Always save a copy of your own program before you start making
changes to it, in case you want to back-track or in the unlikely (we hopel!) event
of the utility crashing and damaging your program.

Secondly, you should make back-up copies of the Toolbox programs - as we
said in the Introduction, not so that you can start up an illegal software factory,
but to protect yourself against accidental damage to your tapes.

8

To copy a machine-code program, you need to know its size. You can find this
out by using the *OPT 1,2 command. (See page 398 of the User Guide.) When
you load the program (as described in the next section), the computer will
display the start and end addresses of the program. You can then re-save it,
using these addresses, in accordance with the details on page 392 of the User
Guide.

To transfer the programs to disk, change to tape with a *TAPE command, load
the programs as described in the next section, change back to disk with *DISK,
then save the programs with the *SAVE command as detailed on page 53 of the
Disk System User Guide. Do not re-define the re-oad or execution addresses.
You will also need to use short file names - the tape names will usually do. For
example, here are the steps that you would follow to transfer XREFDISK from

tape to disk:
*TAPE
«OPT I,2

+*LOAD XREFDISK (the display will inform you that the start address is &1700
and the length is & |E4)

*Press BREAK (to reset to DISK and to clear the Disk Control Block)

«SAVE XREF 1700 |8E4

LOADING THE UTILITIES

With tape-based systems, remember to set PAGE as necessary - see above.

If you are loading a program from tape in order to copy or disassemble it, type
«OPT 1,2

The command to load a machine-code program (for both tape- and disk-based
systems) is

«LOAD filename

If you want to load-and-run it, type

*RUN filename

(Don't try CHAIN - it won't work and it will splatter the utility all over your
BASIC program.)

With disk-based systems instead of xRUN filename, you can type

*filename
provided that, with two drives, the utility is on the library disk (see page 45 of
the Disk System User Guide).

Also with disks, you can make use of the *EXEC command. For example, you

could create a SQUEEZE file which contains the commands:

*REMSTRP

Y

*CRUNCH

*PACKER

REN.

This would give you an automated link between the three program-squeezing
utilities. (Please refer further to page 30 of the DFS Manual.)

RE-LOCATING THE PROGRAMS

You may decide that you would like to have two (or more) of the utilities in
memory at the same time, so that you can use them together on a BASIC
program, instead of having to use one, then load the second, use it, and so on.

This section assumes that even if you cannot program fluently in assembly
language, you have at least read the relevant section of the User Guide (pages
442-9) and understand the principles of the use of the BBC assembler.

As mentioned above and subject to the limitations referred to there, disk users
can put the re-ocated utilities into the areas of memory between &900 and
&AFF and between &1400 and & |8FF. Tape users will have to raise the position
of PAGE to give themselves more memory for the extra utilities, as will disk
users who want to install, say, two &300-byte programs.

Unless a machine-code program is written in what is known as ‘relocatable’
code, it must be loaded into the same addresses in memory for which it was
written. This means that if you want to load one of the utilities somewhere
other than at its original location, you will need to re-assemble it with a new
starting address.

Begin by resetting PAGE if necessary. Otherwise, when you re-assemble the
machine-code program, you could find it writing all over your source code!

Secondly, disassemble the object code (the actual program on tape), using the
Toolbox Disassembler. You should now have an assembly language listing in the
form of a BASIC program. It should resemble the source listing printed in this
manual, but without the variable names. Add these with the help of Replacer.
You needn't add anything starting with a reverse oblique (\"), since those are
only comment statements.

Next, add the FOR . . . NEXT loop commands and, if applicable, the
procedures for adding strings to the end of the programs. You can test the

10

assembly at this stage by running the BASIC program. It should assemble
without error messages, simply displaying the start address twice on the screen.
Now find the line near the start of the listing:

org=&. ...
This is where to set the new starting address of your program. If you re-run the
program with a new address assigned to the variable org, the machine-code
will be assembled there. For example, if you want to locate the program at
&1100, you would change the line to:

org=&1100

All that remains is to save the new object code with the *SAVE command. The
starting address is, of course, set by org and the end address is the value of the
variable P% after assembly. (Remember to use hexadecimal numbers - PRINT
“P%.)

Here are the steps that you would go through in order to re-locate the tape
version of VARDUMP to a new location at &1000:

PAGE = &1 100 (& 1000+ &100 bytes for the machine-code program)

«OPT 1,2 (to display the start address and length of the machine-code)
RUN “‘DISASS’" (with the ‘SPOOL" option on - see DISASS instructions) and
disassemble the machine-code

NEW

«EXEC DUMP

Add assembly instructions and variable names (copy them from VARDUMP's
source listing)

Edit ‘org=&1000

RUN (to assemble the code)

PRINT T P%

+SAVE VARDUMP 1000 aaaa (where aaaa is the address obtained from the last
step)

‘TACKED-ON’BYTES

All of the utilities which scan BASIC programs check whether they have reached
the end by looking for the ‘end-of-program’ byte &FF. There are techniques for
adding extra bytes to the end of a BASIC program to hold, perhaps, a machine-
code subroutine or some data. These involve moving the &FF byte to beyond
the extra items to be added to the BASIC program. When the Toolbox utilities
reach these extra bytes, they are treated just as if they are lines of a BASIC
program. Since they aren't, the utilities will be unable to interpret them properly
and will probably crash.

Unless you understand how to decode the raw bytes of a BASIC program, we
are sorry that we cannot offer you much help if you are trying to cope with such
a BASIC program.

HIDDEN CONTROL CHARACTERS

A BASIC program, in the form that is stored in the computer's memory,
contains single ‘token’ bytes which correspond to the BASIC keywords. There is
a table of the keywords and tokens in the SPACER utility instructions.

Normally, these tokens are unique and do not appear elsewhere in a BASIC
program. For example, line-number references are encoded into three bytes,
preceded by the token &8D (141 in decimal). In order to check line-references,
some of the utilities scan the BASIC program, looking for &8D tokens. You may
recognise CHR$ 141 as the Mode 7 control code for double-height characters.
There will not be a problem with a line containing a command such as:

PRINT CHR$ 141 “HELLO"

However, if you include the actual code within a string, as in :

PRINT “cHELLO"

where ¢ represents the (invisible) ASCII character 141, the utilities will be unable
to decode the following three bytes and might crash.

ESCAPE AND BREAK

You cannot interrupt the programming utilities with the Escape key, only the
Break key. If you do stop, say, PACKER in the middle of its run, you will
probably corrupt the BASIC program on which it is working. That is another
reason why we recommend that you should always make back-up copies of
your BASIC programs before using the programming utilities on them.

THE INSTRUCTIONS

When you read through the instructions, you'll notice that we keep repeating
sections of the notes. We make no excuse for failing to be creatively original!
Our aim was to try to make the method of using the Toolbox utilities as similar
as possible, so you can move easily from one to the other.

Character generator

USER-DEFINABLE CHARACTER GENERATOR

The purpose of this program is to provide you with a simple way of creating
your own character set and to edit individual character shapes without the need
to carry out any of the calculations described on pages 170-1 of the User Guide.

The program is called CHARGEN. It is written in BASIC, so CHAIN or LOAD-
and-RUN it.

When the program starts, you'll see a grid on the left of the screen. This is used
to display an enlarged 8 x 8 pattern of your selected character.

Below it is the prompt CHR$?.

Type in the ASCIl number (in decimal) of the character that you want to create
or edit. The program will only accept numbers in the range 32 to 255.

When you enter a number, the program will display a ‘magnified’ view of the
corresponding character in the large grid. It will also display the character, at
normal size, in the small red box below the prompt line. The normal-sized
character is re-displayed whenever you make an editing change in the large grid
5o that you can constantly review the effect of the alterations that you are
making.

In the bottom left-hand corner of the screen are the eight hexadecimal double-
byte numbers which represent the bit pattern of the current shape, preceded
by "VDU 23" and the character’'s ASCIl number. This command line is what you
will need to insert into your own program in order to re-create the character.

On the right-hand half of the screen is a display of 48 characters as currently
defined together with their ASCIl numbers. When the program starts, ASCII
characters 208 to 255 will be shown.

Characters 224 to 255 will probably be the characters that you will use the
most, since they are not pre-defined within the Operating System. Furthermore,
you do not need any extra memory to use them.

With Operating System 1.0 and above, if you re-define characters 32 to 127,
you will change the characters which you can type on the keyboard. You can
also re-define characters 128 to 223. If you want to do so, you'll first need to
reset PAGE in order to make room for the new character definitions. You
should refer to pages 427 and 428 of the User Guide for full details. Note,
however, that there is a printing error at the beginning of the seventh paragraph
on page 427. It should read ‘After a *FX 20,6 command’ instead of 'After a *FX
20,1 command’. The second parameter of the xFX 20 command depends on
how many extra character blocks you want to use. The table, which you could

13

Character generator

incorporate into the table at the bottom of page 427, is as follows:

ASCIl code

&80 to &F +FX 20,0
&A0to &BF +FX 20,1
&C0to &DF +FX20,2
&EOto &FF *FX 20,3
8&20to &3F «FX 20,4
840 to &5F #FX 20,5
&60to &7F +FX 20,6

Remember that if you leave the character set in its normal, ‘imploded" form,
any new characters created by you will be automatically mapped on to four
other characters at 32-byte intervals below it (please see the preceding
paragraph on page 427 of the User Guide).

Here are the editing and other commands that the program uses:

The cursor move keys (up, down, left and right) will move the cursor around
the grid. The cursor wraps around at the end of each line and at the top and
bottom of the grid.

The space bar fills one small square in the grid at the current position of the
cursor.

X clears the bit at the cursor’s position.

N signifies acceptance of the current shape and the start of a new character
definition.

C cancels any editing done on the current character and restores the bit pattern
as it was when the character was first loaded into the grid, even if another
character has been subsequently ‘copied’ into the grid (as explained below).

I inverts the bit pattern of the character. It effectively transforms the character
from white-on-black to black-on-white.

R rotates the character shape 90 degrees in a clockwise direction.
M creates a mirror image of the character.

F causes the ASCII character display on the right of the screen to scroll forward.
B causes it to scroll back. These two commands will not work until you have
specified an ASCII number in response to the command line prompt. You
cannot scroll below 32 or above 255.

14

Character generator

The COPY key will copy the next character typed into the editing grid. For
example, if you wanted to make up, say, a lower-case ‘a’ with a German umlaut
(two dots) over it as ASCI| character 224, you would first enter 224 in response
to the CHR$? prompt. Then press the COPY key followed by a lower-case
letter ‘a’. You can now add the dots. The original lower-case ‘a’ will not be
affected.

You can also use the COPY key facility to create a whole series of similar
characters. On Operating System 1.0, the command +FX 225,224 in the
program causes the red function keys, when pressed at the same time as the
CTRL key, to produce ASCIl characters 224 to 233. So, you can create
character 224, type N for a new character, specify 225 as the next character to
be defined, then press COPY followed by CNTRL and red key fO (pressed
together). In that way, you can bring copies of characters 224 to 233 back into
the editing grid without re-defining the original shape.

P causes the VDU 23 . . . command displayed in the bottom left-hand corner of
the screen to be sent to a printer (as a single line). The program assumes that a
parallel printer is connected. You will need to insert appropriate commands into
the program for a serial printer (xFX 5 and «FX 8) or to enable line-feeds

(xFX 6). Thereis a bug in some early versions of the Operating System. VDU 21,
which causes output to be sent to the printer without being echoed on the
screen, inhibits line-feeds on the bugged versions. If you have this problem, you'll
need to patch PROCvdu23 and use the VDU | command inside of the printing
loop to send output, one character at a time, to the printer.

Exit the program by pressing Escape. The effect of your editing will remain in
memory. However, you should now type into your program the VDU 23
commands to re-create the new character shapes, in case they get over-written
by another program. You can try the shapes out in your program and then
return to CHARGEN to edit them further.

There are several techniques that you can use to join characters together in
order to make up larger shapes for animation. Some of these ideas are
contained in programs which form part of the ‘Making the Most of the Micro’
package.

Character generator

10

20
30
40
50
&0

-y
e

&gao
20

Loo

410

LEn
130
140
150
L&0
170

180
190

200
a1
220
230
240
250
240
&rn
280
290

a0o
a1
a0

REM USER-

GENEHQ

FiEM (o

i

TOR

DEFIMAELE

YoXan Trackman

O ERROR GOTD 240

MODE 1

REM &h

CHR$ZZ4 /83!

)4

*} X 225

o
FX 4,

oo*"'@

@x = &

*
4

I

i

'9&;

M Cursor-move
¥

1

A04

g

BLTECT 70

EYTEX

+
+

REM Se

(7)

oo

function keys

a4 008 1)

POoREM Frint

s HMOLDE A7)

foevs off

CHARACTER

1987

oy

Foaelad wioth

s TEMPRCT 70

XY registers For

osworc osll

A)
I X

il
8

Yao= X¥ DIV &L00

TEiL. s

REFEAT

224

POREM Table pointer

FROCTr ame
FWQ()[‘T<3111L (TEL~1&)

LRI
CLIT S

wre 3
oar

&7ﬂﬁ¢U’UIU,

VDU 23, 1,15080503

WEFX

*
L]

18,1

¢
<

Character generator

330 REFEAT

340 FRINT TaBRCLL, 21 SFC3 3 REM
Wipe previous number

3E0 FRINT TaBA, 21 “CHR$? "}

3460 N = FNinput

370 IF N = 31 AND N < 256 THEN O =
TRUE ELSE OH = FALSE § UDU 7

380 UNTIL OK

390 :

400 FRIMNT TAB(Y,21) i "IN

410 VDL Z23,1,0503080¢

430 FROCohar (N)

4410 FROCwaZES CTRUED

450 i

460 REM Save starting pattern

470 FOR T% = 0 70 7

480 FOR J% = 0 TO 7

490 HOLDZ (L, J%) = BITH(IY,J %)
S00 NEXT

510 NEXT

=)
=)
DU 23, 0:,130:80503

s
f
o 0 =l 2 wae

H570 FEFEAT

anan FRINT TaBRXE + 1,YXE + 4)3

a90 UDL Z358&650AZ050503 ¢ REM Fat
CLUT SO

&00 ®¥EX 18,1

&0 b= GET

&20 VDU 23, 1,030303038

640 IF K = &87 THEN FROCochar (GET)
PFROCereate ¢ REM Copy

&5 IF K o= &88 THEN X = X-1 § REM
Left

&40 IF K o= &89 THEN X = X+1 { REM
FRiaht

Character generator

&7 0

&80

&20
00

710

720
730
740
FE0
740
770

780

790

800
8210
Ha0

830

840
850
840
870
80
B0
Faut
210
PEn
S0
240
GE0

Q40
Q70

<+

IF K = &8& THEN Y = Y+1 § REM
Down
IF K o= &8F THEMN Y = Y-1 § REHM

Up

IF K o= 32 THEN FROCbit_on § REHM
Space

FE = CHR$(H AND EDF) 1 REWM Mashk
input to upper-case

IF KE = "X THEN PROChHILtL off

IF K = "C" THEN FROCcancel

IF H$ = "I" THEN FROCinvert

IF KE = "M" THEN FROCmivror

IF K#$ = "R" THEM FROCrotate

TF OKE = “F" AND TBEL < 224 THEN
FROCtLahle (TELD

TF OHE = "™ AND TEL = 63 THEN
FROCLab e (TEL -~ 38

IF Kg = "PY THEN FPROCwcuZ3
(FalSE D

FROCVEWZR CTRUED

IF X 7 THEM X = 0 I Y = Y +
1

IF X < 0 THEM X = 7§ = Y

1
IF Y = 7 THEM Y = 0
IF Y =0 0 THEMN Y =
UNTIL Kg o= UND

i

UNTIL Fél s

% oae

v e

N

FEM BError Lyap
MODE &

@

WF K
#FX

= REOA
.({

e
ahoalad g 1

QH0

20
1000
1010
10D
1030
1040
1050
lnén
Lo7a
1080
1090
1100
liia
L1#E0
1130
Li40
1150

11460
1170
Liac
1ien
1E00
1216
1220
1230
1240

1250
160
1870
1280
1290
1300
13140

1320

IF
at
END

ERR <

Lime "§ ERL

-

Q

DEF
VDL

FROCalter
o‘")‘3 N

FOR I% = 0 TO 7
VDL BYTEX (LX)
MEXT

ENDFROC

Y”’FlﬁchthFf

ITHR K.Y Y = FalsE
Uﬂbluak (X5 Y)

EBYTEZCYY = BEYTEX(Y)

ENCT-KYY %

FROCaLter

Xo= X o+ 1

EMRFROC

[
[T
FF

- ww

GEF FROChLL on
BITACK, Y)Y = TRUE
FROCHLook (X, YD
EYTEX(YY = BYTEX{Y)
FREM Mask bit on
FROCa1 ter

EOE S !

EMLFROC

-

e

DEF PROCDlock
IF BITZL,Y
GUOL 0,128

(XY

VDL 24, Xx&40 3 -YHEAD § Xx&40

- YHEADS

17 THEN REFORT 3

REM Mask

THEN "GCOL

Character generator

FRINT ¢

AND C&FF -~
it off

ORr 2207-¥) &

0,131 ELSE

+ &383 &3

19

Character generator

1330 CLG

1340 COLOUR 128

1350 ENDFROC

13460 32

1370 2

1380 DEF FROCcancel

1390 3

1400 FOR IZ = 0 TO 7

1410 FOR JZ = 0 TQ 7

1420 ELTH L%, 0%

1430 NEXT

1440 MEXT

L4s0 3

14460 PFROCoreste

1470 FROCFLLL

1480 PROCYau23 (TRUED

1490 ENDFROC

raoan 8

1510

LEZ0 REM Explode the charascter’s bhits

irto an srreay

L3330 DEF PROCohar (M)

L340 ?X% = N

LSS0 CalLl, &FFF1

1S40 3

1570 FOR XX = 0 TO 7

13580 EYTEZCLHY = XEP(LH+1)

135920 ME o= &80

14600 FOR J% = 0 T0 7

14610 TF (XE?CL%+1) AND MEY THEN
BEITHACIE, TRy = TRUE ELSE
EXTHCIE, T4 = FALSE

L&Z0 Mao o= MZ DIV Z

1&30 MEXT

1640 MEXT

L&G0

La&AD

1&70

1480

L&%0

20

HOLDZ CTE J720

v @

TP e

FROCFLLL
CMDFROC

™

v e

Character generator

1700 REM Creste VDU 23 limne from array

L7410 DEF PROCoreaste

TAZ0 VDU 235N

1730 %

1740 FOR IH = 0 TO 7

1750 o= 0

1740 ME o= &80

LF70 FOR J% = 0 70 7

1780 TF BITACIL,THY THEN BY = [BY +
M

1790 MEo= ME DIV 2

Lean MEXT

1TE10 VDL B

1820 EYTEZCIRY = ¥

1830 HEXT

T840 2

L850 ENDFROC

18a0 3

La7a 2

1880 DEF PROCFLLL

1870 3

1900 FOR LX = 0 TO 7

1Lsln FOR JE = 0 TQ 7

1920 FROCO Look (1%, U7

1930 MNEXT

1540 MEXT

1950

1840

Le7n

1980 @

19l DEF FROCTTsme

000 VDU Z23:1,0503050%

2010 CLS

S0E0 3

030 REM Big bowx

2040 COLOUR 129

2050 VDU 28,0,8,17,2

2040 CLS

2070 VDU Z28,17,19,17,2

2080 CLS

Mo

EMDFROC

e e

2|

Character generator

2090 VDU Z28,0,19,17,19
2100 CLS

2100 VDU Z28,0,19,0,8
2180 CLS

2130 VDU 26

2140 ¢

2150 COLOUR LZE

21460 GCOL 0,2

2170 3

180 VDU Z9, 0584018
190 3

2200 REM Moviz. arid
ZEL0OFOR XH = 40 TO E1E0 STERF E40
FEZ0 MOVE T%, &30DF
SEB0 DRaw T3, &1E0
SE40 MEXT

Ly Xop 2 4 *
Fapuae | @

ZEH0 REM Vert. gorid

ZEZ0 OFOR TH = EZ20 TO &340 STERF &£40
2280 MOVE EZ0,1%

ZEF0 DREAW E8Z1F, 1%

2300 MEXT

Zal0 3

2320 REM Small bhox

SA30 GCOL 0,1

240 MOVE E110,&130

2350 PLOT 1,840:0

2360 FLOT 1,0,-&40

2370 PLOT 1,-840,0

2380 PLOT 1,0, ,“U

2390 VDU 29,8241 83464

2400 EMDFROC

2410
a420 3

2430 DEF FNinput
2440 TME o= M
EAG0 SYTZE = 0
2460 %

X

22

Character generator

EAF0 REFEAT

2480 K& = GETH

2490 O = FalSE

2500 TF OINSTRO"T01234546789" ,HE)Y AND
STEE < 3 THEM STIE = STZE + 1 ¢
INE = IN$ + K& ¢ O = TRUE

AvRRL ITF HE = CHR$1Z7 AND STZE > 0 THEN
STIE = GIZE 18 INg =
LEFTHCINS , 5TZE) 3 0K = TRUE

25E0 IF STZE AND K% = CHR$13 THEN OK =

TRUE

IF O THEN PRINT K#§ ELSE UDU 7

UNMTIL K$ = CHR$13

Ul TiN%

DEF FPROCinvert

FORCTE o= 0 TO

FOR J% = 0 TO 7
EITACTE, JEY = NOT BITXHCLE,)
MEXT

MEXT

SAE70 PROCoreasts

ZAHB0 FROCTLLL

”6' EMDFROC
s700 i

??1“ ¢

0 DEF PRACMiIrror
hnflnmp

FUH L= 0 T0O 7
T#4 = 7 — T&
!70 FOR J&5 = 0 TO 7
L?du EXTH LA, 8 = TEMPXOTH, JED
27910 MEXT
2800 MEXT
2810

S

23

Character generator

2820 PROCoreate

28530 FROCTLLL

28040 ENDPFROC

2850 1

2860 1

2870 D

2880 FPROCLemp

2890 3

2900 FOR XX = 0 TO 7

29110 TH = 7 - 1%

2920 FOr J2 o= 0 70 7

£930 BLT#CL%, J%) = TEMPR UL, TE)

2940 MEXT

29850 MEXT

29460 %

970 FPROCoreste

2980 PROCTLLL

2990 ENDPROC

3000 ¢

JoLo 3

3020 DI

3030 RE

3040 ¢

080 FOR X% = 0 TO 18 STEF &

30460 FOR J% = 0 TO 30 STER 2

3070 FRINT TaBole + Tx,J%y N oo
CHREM S

A080 Moo= N+]

3090 NEXT

3100 NEXT

ario

J1Z20 TEL = N - 372

3130 ENDPROC

3140 3

3180 ¢

31460 DEF FROCtemp

3170 ¢

FROCLatble (N)
i Show 48 charscoters

—

24

aleo
3190
3200
aZio
aEE0
3E30
2EA0
aEE0
AELD
SETO
280

JE0
3300
a0
3320
3330
a340
3350

3340
AAT0
3E80
3590
SA00
a4 0
:: AL TE

Tal b

aA30

FOR IX = 0 TO 7
FOR J% = 0 TO 7

Character generator

TEMPZOLZ, JX) = BITH(IZ, %)

MEXT
MEXT

TP e

NP ROC

v e

REF FROCwvdWZ3 (SCRND

IF SCRM THEN FRIMT TAER(Y,Z5) CHREN

TaEch, 28§ ELSE VDU 2
FRINMT "UDL 23,"5M ",
TF SCRN THEM FRINT

&
-

FOR 1% =
FRINT "&"3

FOR B2 = 1 T0 0 SBTEF
= E10 THEM

TF O BYTEX(TE+E
FRINTS 03

0710 7 STEF 2

4
*

VDU 2L

FRINTS ~BYTEX LS+ 0E) 8

MEXT
fRIMT i
IE TH = 2
MEXT

TFOMOT SCRN O THEN PRINT
Wl 3

ELN P R L

*
¢

vk

i

&

ANk SBORM O THEN FRINT

+
+

25

Circle fill

CIRCLE DRAW AND FILL

This is a short BASIC program which demonstrates two ways in which to draw
circles quickly and then fill them with solid colour.

So as not to slow the program down unnecessarily, we have not added any
REM statements to the code itself and we have used one- and two-character
integer variable names.

The radius of the circles is set by the variable R% in line 80.

PROCcirclel uses trigonometry to calculate the x,y co-ordinates of one
quadrant of the circle. If the x,y graphics origin is set to the centre of the circle
with a VDU 29 command, it is very easy to plot the other three quadrants at
the same time, since they are all reflected images of the first quadrant.

PROCcircle2 uses Pythagoras to calculate the circumference. Again, the idea of
mirroring the quadrants is used. Notice that R% = R% only needs to be
evaluated once and so a new variable R2% is created outside of the drawing
loop.

Sines and cosines produce the best-shaped circles, but the calculation time is
longer than with the Pythagoras algorithm. (Compare the displayed times and
the circumference lines, particularly around the ends of the horizontal diameter.)
One way of reducing the drawing time is to carry out the calculations in advance
of the drawing. Create two arrays X%() and Y %() and store the values of the
X,y co-ordinates in them. Then, when it is time to draw the circles, a loop
containing the single command DRAW X%(1%),Y %(1%) will show a noticeable
increase in speed. As before, you could use the ‘mirror’ idea to save having to
calculate more than one quadrant. It would also cut down the amount of
memory that you would need for the array, although it will mean that you will
still need the two nested loops for the plus and minus multiplications.

What you are effectively doing is creating a so-called ‘look-up table’. BBC
BASIC, in common with almost all other microcomputer BASICs, calculates
trigonometric values whenever they are called for by the user’s program.
However, if you know that you are going to use a limited number of such values
(such as for angles between 0 and 90 degrees in 5-degree steps) several times
over in your program, you could effect a significant saving in drawing time by
creating a look-up table. If your circles (or arcs or quadrants for that matter)
have different radii, only store the sine and cosine values in the arrays. Since the
values will be floating point numbers, you mustn't use integer arrays in this
instance. When the program needs to do the drawing, do a simple multiplication
of the radius against the array values inside of your drawing loop, e.g. DRAW

26

Circle fill

R% = X(1%), R% = Y(I%). If you experiment with a series of concentric circles,
you'll soon see the improvement! We have used this technique in the SHAPER
utility.

Both of our circle-drawing procedures end with a call to PROCHill. It utilises a
facility available in O.S 1.2, the line-fill PLOT option. PLOT commands in the
range 72 to 79 will cause a horizontal line to be drawn outwards in both
directions from the x,y co-ordinate specified until there is a collision with a pixel
of a different colour. One special requirement of the command is that the
current foreground and background colours set by GCOL must be different,
even if the area to be filled is already a different colour from the filling colour.
The seven variations in the command are the same as for other PLOT
commands (see page 319 of the User Guide).

10 REM xxxx CIRCLE FILL xMxxx
20 3
a0 REM (o) Yan Trackman 1983

40 3

S0 MODE 1

&0 VDU Z3,1,03030303

70 @

80 RY = K100

0 3

100 TIME = 0

110 FROCoircle 1l (RZ,&140,8200,172
120 PRINT TapR(?,0)3: TIME

130 3

140 TIME = 0

150 FPROCoircle 2 (REZ,&3C0,&8200,2)
1460 FRINT TARdZ8,00: TIME

170 END

180 §

120 3

200 DEF FROCeoircle_ l (RZ,XAYZ.CX)
210 LOCAL A, xX,uZ

220 3

ZH0 VDU Z9.XAIYES

240 GCOL 0,0%

250wk o= 0

27

Circle fill

28

2460
270
280
290
300
310
320
330
340
350
360
370
380
a%0
400
410
420
430
440
450
460
470
480
420
S00
G910
9520
530
G540
G50
a0
G70
G810
590
600
610
4620
630
640
650

YA
+
+

= R

FOR A

+
+

X%

Y%

FOR
FO

I

e
) % o=
NEXT

%

N o=

N
N
QX%
R QY
MOVE

=

T
X
X

A

0 RAD 91 STEF RAD 2
SIN A

cos A

-1 TO 1 STEF 2

= -1 TO 1 STEF 2
A K QXX ,uZ X QYZ

DRAW X7 x QXZ,YZ x QYZ

FROCFi111
ENDFROC

*e ve

DEF FROCcirole 2 (RZ,XZ,Y%,0CH)

L.OCAL.

*
+

Y4 $ ‘5% 3 RZ7%

UDU 29, X%3Y% 3
GCOL. 0
RZ% =
YA
wh o= R

=0

» 0K

R7Z % RZ

FOR X% = 0 TO RZ STEF 4

*e

Yk =
FOR

NE
M
Yo
NEXT

SARCRZ2% -

(X% =
FOR QY%

MOVE

X7xXA)

=1 70O 1 STEF 2

= =1 TO 1 STEF 2
AKX QX ,uih X QY

DRAW XZ x QXZ,YZ% X QYZ

NEXT

XT
X7
Y7

Circle fill

660 FROCFiILL
670 ENDFROC

680 ¢

690 ¢

700 DEF FROCFill

710 ¢

720 FOR YZ = -RZ TO RX STEF 4
730 FLOT 77,0,Y%

740 NEXT

750 3

760 ENDFROC

29

Cross referencer

PROGRAM CROSS-REFERENCER

XREF is a machine-code utility which will produce a list of all the line-numbers of
lines in a BASIC program which contain a variable, a keyword or text designated
by you. Alternatively, instead of displaying the line numbers, it will list out the
lines themselves.

There are two versions of the program on the tape, XREF is the version for use
with tape-based computers. It resides between &E00 and &FFF. XREFDISK is
for use with disks and is loaded between &1700 and &|8FF. Please refer to
‘Using the Programming Ultilities’ for installation instructions. Other than the
addresses at which, the tape and disk versions of the programs operate identically.

The utility is co-resident, that is, it will remain in the computer’s memory whilst
you load, run and save BASIC programs, until you over-write it.

Before you use XREF, you'll need to set up three function keys -any keys will do.

Program the keys:

+KEY 1 OjHFind?

+KEY 2 CALL&EOOK{KiM

+KEY 3 CALL&E06/KM

If you like, you can add a space after the question mark at the end of the first
key's string. If you want to use keys other than |, 2 and 3, you'll obviously use
different key numbers when setting them up. If you are using the disk version of
the program, the second and third key strings will be

+KEY 2 CALL&1700iK|KiM

+KEY 3 CALL&I706/KiM

The utility temporarily adds a new line 0 to your BASIC program (which it
subsequently deletes) and so your program must not already contain a line 0. If
it does, it will be lost.

To use the utllity, press the first function key and the message Find ? will appear
on the screen. Type in what you want to find (let’s call it the ‘target’ from now
on) followed by Return. Subject to what we have to say below about specifying
numbers and keywords, you can enter whatever you want - variable names,
keywords, text or any combination of them. The target is stored by the utility in
half of the computer’s keyboard input buffer, so don't enter more than |27
characters at a time or you'll start to over-write other buffers with undefined
results.

What you have done at this point is to cause a new line 0 to be added to the
program in memory, containing the target. (If you wonder why this is necessary,

30

Cross-referencer

the reason is in order to use the parser in ROM to create tokens from BASIC
keywords.)

There are a number of points to bear in mind from this process.

Be careful if your target might appear in different contexts in the program. For
example, if you want to find the variable ABZ, and you give just the letter A as
your target, every occurrence of that character in your program will be listed.

If you do not proceed to the second stage of the utility (by pressing the second
function key), you will be left with an unwanted line O, which will probably cause
a syntax error unless you delete it before running the program.

The utility will search for the target in the exact form in which you have typed it.
Therefore, be accurate - particularly with spaces.

One advantage of using the parser is that you can type in the truncated form of
BASIC keywords. If you are looking for, say, PRINT “HELLO’’, you can type:
P. “HELLO"”

Because your target is tokenised, you must include the full word (don't type
SUB 1000 instead of GOSUB 1000) and all necessary brackets in accordance
with the list of tokens on pages 483-4 of the User Guide. For instance, if you
want to find LEFT$, you must type LEFT$(and not just LEFTS.

The final point is that you must not begin your target with a number, since it will
be parsed as part of the line number and you will add a new and unwanted line
somewhere else in the program! Since numbers within a line can almost always
be related to another command, e.g. GOSUB, or a mathematical symbol,
include that as the start of the target.

Having entered your target, press the second function key if you want a ‘full’
listing or the third function key if you only want a line-number list.

If the utility cannot find your target anywhere in the BASIC program, it will
respond with Not Found. (It will also give this message if you don't enter a
target in the first place.) Otherwise, it will either list out the individual lines or
produce a single list of line-numbers in which your target occurs.

If you are using the full listing option, XREF will stop after every line and wait for
a key-press. We suggest that you use the space-bar. Do not use the function
keys for these key-presses, since they will send a command line into the input
buffer and create havoc. If you incorrectly use the function keys, you may see
the message Mistake on the screen. However, a few more key-presses will
make XREF crash and you'll have to press the Break key to recover.

31

Crossreferencer

XREF is not intended to be used with a printer. The reason is that it generates
BASIC commands (which you may see flash on to the screen before a reverse
line-feed obscures them) and these would be displayed in a print-out.

Please refer to ‘Using the Programming Ultilities' for notes on tacked-on bytes,
hidden control characters and other general hints.

The utility contains routines which demonstrate how to generate BASIC
commands from within a machine-code program. We decided to take this
approach rather than to access the BASIC ROM directly, so that the utility
would not be dependent on the existence of code at specific addresses in the
BASIC ROM. There are also useful routines in XREF for hex to decimal number
conversion and string searching.

10 REM LISTER & CROSS REFERENCER

20

30 REM (¢) Ian Trackman 1982
40 ¢
50 DIM msa(4),08CL 21
40 fimdd = “"Fing ? ¢
70 FROQCoscli (U"KEY 1 0JH" + fincd$)
80 ¢
20 page = &18
100 @
110 memloc = K70 t REM &71
120 limernum = &72 ¢ REM &73
130 ruamber = K74 ! REM &79
140 modll = &7& 1 REM &77
150 temp = &78 § REM &79
160 lerngth = &80
170 lenfake = &81
180 size = &B2
1920 ysave = B3
200 flag = K84
210 chars = &8H
220 3
230 buffer = &780 ! REM In kegboard
buffer
240 3

32

Cross referencer

250 osrdoh o= &FFE

2680 osnewl = &FFE

270 oswroh = &FFE

280 ostbyte = &FFF

290 3

200 eol = &O0D

310 space = Ah0 "

320 rmumsize = 5 ¢ REM For output
formstting

330 3

340 ova = &E00

350 PROCoscli (MEEY 2 CaALL&" + STR$~orq
+ UTETE M)

3460 PROCoscli ("KEY 3 CALL&" +
STRE~(org + &) + "KM

370 3

380 opt = 2

400 FOR XX = 0 TO opt STEF opt

410 P4 o= org

420 ¢

430 OFT I%

440 3

450 JMP oentryl N List wref

4460 JMF entryd N - " - re-rentry

470 JMFP o entrue3 N Number sref

480 @

4920 serntrwl LDY #45C "0" N Delete line
]

HS00 0 JSRE bofohar

5100 LDY #eol

e JER bofohasr

=3 JER osnewl

rn

3 Lt
rn
Pl el
o

=

wn

ISR setup

Colook N OK
fimisty N Null stying
Erg of first erntry roubine

-

e S

33

Cross referencer

H10 N Subseguent passes start here

420 sentrywyd LDY #0

H30 smsalloop LA msgdl):,¥Y N Delete
“CallLy

&40 BEQ look

440 JSKR aswroh

H60 TNY

H70 BNE wmsalloop

&H80 3

490 look JSKE search

A00 BCHS fimdsth N End of proaram

710 3

FEO JSKR maton N I o carry From
SeETCN

730 RTS N Temporary exit to Basic
interpreter

740 3

ZE0 JFindsth LDY flag N\ Terget ever
foumag 7

760 BEQ exit N XIF not

770 RTS

780 1§

790 sexit JER notfound

00 JMF o exil3

810 @

LI

830 N xxux Line number
cross-referencer

840 ¢

8530 sentryd JSR setup

Ba0 2

870 sxref JSR search

aa BCS finmisth2 N No matoh

g890 3

200 LDY Fflaa N Fivst findg 7

0 BENE msgddone N Else Y = 0

+
*

]
P30 smnedloop LA mesodd),Y N "Line!
P40 SEQ msagfdone
Qa0 JER osweoh

34

&1
Q70

YO
o8

@0
1000
1010
LaZn
1030
1440
1050
1040
1070
1080
1020
1100
1110
1120
1130
1140

ﬂ
1»00
1310

132

1330
1340

Cross-referencer

INY

ENE msadloop

smsadcdons LDA #0 N eol delimiter
Fiid

LDY #rnumsize

ST chars N ASCIY dieit cournter
DEC flag N Set it

JER convert

LY ohars

BEQ display N No padding needed

N oPad to right justify
LA #space

lank FH&

DEX

BNE blank

.

e

-

ciieplay PLA N Unstack ASCIL

BEQ wref N Contirnue looking after
eof

JER oswroh

JMF display

<
sPimdsnd LDY flag N Success 7

ENE exit?
JER motfound

e

exit? LDE 21 N VDU off

JER oswroh

LDY O EASC 0T N Delete line 0
JSR bafohar

-

BT

exit3 LDY #6 N VDU on

JER bofohare

LDY #eol

JMP bofohar N Exit to Basic

>

-

35

Cross referencer

36

1350
1340
13270
1380

13940
1400
1410
1420
1430
1440
1450

14460
1470

1480
1490
1500
1510
1852

1530
1540
1850
1540
1570

1580
590
1&00
14610
162
1430
1&410

14650
14660
14670
1480

¢
<+
NOMEKRN Subveeroutines KKEX
H
N\

¥EK¥ Fult Y into keybhosrd
buffer

storfoher LDA FREA

LIDX 40

JMFP osite

e se

Noxxxx Convert Z2-byte hex
Line-rmumber to decimsl ASCIX

£

<

seonvert FLA N Save return

aciciress
STH temp
FL.é

STéH temp+l

L3
*

LDA lineroam
STa rnumber
LDA Linernum+l
STéH rmumber+1

¢
L3

sconvert? DEC chars N Only used in
Mumber sref

LA 40

STa modlld

ST mocll+l

LDX #&10 N Double byte

CLC

+
+

sdivioop ROL number N BEit 0
(oarry) becomes quobient
FOL romber+1
ROL mocdld
ROL moal0+]

*
*

1490
1700
1710
1720
1730
1740
1780

1740
1770

1780

1790
1800
1810
1820
1830

1640
1650

Ifién

1870
1880

1920
1930
1940
1950
19240
1970
1980
1290
2000
20010
2020

LA
SEC
SEC
TaY
LA
SEC 40

BECC deccount
cdivisor

il O

#10

Mool 0+

-

STY

1.

5TA modli+l
divisor

Mol N

e

ciecoournt DEX
BENE divioop

-

£

ROL.
for
ROL.

rmumbher \
aquotient
mumiper -+l

LD& modl
OR& #EA5C "ov
FHA N Stack

riant-hand

£

LD#&
0

QR A
ErNE

mumMner N

rdEmner -+l
convert?

e

YW temp+l N\

>:>_>

tLamp

D
!
2
i

T

L.
FI
LD
Fi
feTé

P
(o3

¥EXEXK Update

v P va e

Mot

it
ciait)

Cross-referencer

NoLow bhyte

Nodf dividend

it of dividernd

Dividernd Divicernd

Shift im last carry

NOASCIY mask
{atarts at

Comtinue 1if value

Restore stack

line pointers

37

Cross referencer

38

20320
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
21460
2170

2180
2190
2200
2210
2220

ry ey
2230

2240
2250
2260

oy
227

2280
2290
2300
2310
2320
£330
2340
2350

2340

2370
2380
2390
2400

serciline LDA memloc

CL.c

AR length
8Th memloo
BCC mosdd
IMC memloctl
smoacid RTS

¥ExE Matoh found

e o e as

statoh BIT flag
BMI getley

<

N Prepare for deleted
second entry (shorter

LDA memloo

SEC

SBEC lenfake

STH memloo

LDA memlooc+l

SEC &0

ST memloctl

DEC flag N Set it
ENE kewdone
saetkey JSKR osrdoh
CMF #&1EB N escape
ENE kevydone

+

FLA N Fop the stack

FL.&

BETS N and exit to BASIC

*
<
*

Line-feed

JER oswroh

LDA& #21 N VDU off
JER oswroh

lime 0 on

PTOogram)

kavydorne LDA $#11 N\ Reverse

2410
ZR20
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
25490
2EE0
2540
2H70
pEnn
mE e

24600
£610
2HE0
263
2640
2650
2H60
2670
24680

2690
700
2710
2720
F7A0
27440
27HG
2740
2770
2780
2790

2
¢

N o Set wup engd of

LDa 40
FHa

LA #eol
FHA

LD& #6 N VDU

FHA

*
<+

JER convert

LDA #aA50
FHA
LA #4550
FH&
L& #ASC
FH&
LA #ASC
FHA

L3
*

Il'rll

IISII

IIIIl

1" L'H

(u1n]

"LIST"

Cross-referencer

COoMMEBNG

coutnum FLA N Unstack ASCII
BEQ numdone

TéY
JER pbufoh

T

JMF outinum

<
+

srmcione LY &0
meal{d),Y N CALL

smaadloop

CLISTERY

LDA

BEQ msqalcdone

STY wsave
Tay

JER bafohar

LY wsave
TNY
ENE msa3l

o

oop

mesaddone RTS

39

Cross referencer

40

2800
2810
2870
2830
2840
2850
2860
2870
2880
28910
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
aeoo
anto
30720
3030
3040

a050

3040
3070
308

J0%0
3100
3110
3120
3130
3140
3150
3140
3170
3180

NOXEXK Not found message
*
<+

Jnotfound LDA mesg(Z),Y
BEQ msgldones

JER oswroh

IMY

BNE mot found

-y

mesgdodone RTSH

KEXE Mzain search loop

M e e

ssearch JHER endline

LDY &0

LD& (memloc),Y

CMP #&FF N End of program
BEQ encdprog

e

STa linenumtl
INY

LA (memloc),Y
STa linenum
INY

LA (memloc),Y

flag

S5TH lermgtn N O0ffset to start of

mext Lirne
STY wsave

e

shrvyagain LDY size
IMNC vsave
LY vsave

ve

mextihwte LDA (memloc) .Y
CMF fFeol
BEQ searoh

@

ET

CHMP bt fer, X
EE trvyaasin
INY

210
3260
3210
373

"”60
IL70
2280

3Z¥0

3300
3310
3320
3330

3410

&0
3430
3440
3450

34460
3470

3480

3490

3500
3510

mlc":[l

DEX

BNE mertibyte

CLC N fs "matoh" flasg
RTH

+

*

sarnmiprog SEC N As flag
RTE

e wo

-

our bffer
saetup DA #3 + LEN finds
STH memloo
LDE page
STH memloctl
LY #0
a2TY flaa
DEY
s loop INY
LD&A (memloc);Y
CMF feol
BNE Loop
aTY size
TYéH N For Z-flag
BEEQ roall N Null input
DEC size
LY #0 N Buffer,0 is never
a0 drop ol in it
sawap LDA (memloc),Y
STH bwffer, X
TNX
DEY
BNE swap

INY

v KKK Transfer usey s dnput

Cross-referencer

to

reached

41

Cross referencer

3570
3580
aE90
3400
ﬁéJU
'1...' Ll ‘.- ﬂ
3430
344

3450

Séﬁﬂ

3670

3480
]

£
5,

4 3
51
fmnd

“
e,
= -
=]

LY G

3710
3720
3730
3740
2750
a74

a7y

37840
3790

Q?UU
3910
rm Paledi!

YO
m,aﬁ

42

STY memloo

$

IHY N fAluwsys skip fake line 0
L& (memlooc),Y

STéH lemnagth

5TéH lenfske

CLE N O flag

RTS

Ldll O SEC N fAs Tlag

RTE

|
FROCtext (L,CHR$11 + STRINGECLO,"M
Y o+ CHR$eol)
FROCLe=t (2, "MNot fourndg " + CHR$EZ1?
PRﬂth”t (3,"CH." + STR+(org+d) +
CHR$eol

Fhu&thw (A, "dme ")

«e

M
ey
¥
-

=
i

W ww T e

DEF FPROCoscli (A%
¥x o= Q0L HMOD 100
Yo o= 08CL DIV &100
I[zll = %

Cabl. EFFF7

[lIFxUF

DEF PROCLest (N, &%)
magiMN) = PX

Fmaagii) = A%

Fa = P% + LENGAE) + 1
gl = 0

EMNDPROC

Disassembler

DISASSEMBLER

The program, called DISASS on the tape, is written in BASIC, so CHAIN or
LOAD-and-RUN it.

The program sets the screen to Mode 6 with a blue background. (If you prefer a
different Mode or a different background colour, you can easily make the
changes at the beginning of the program and at the start of PROCsetup.)

The program asks you to enter the start and end addresses of the area of
memory that you want disassembled. The addresses must be given in
hexadecimal and may be anywhere in the range O to &FFFF (use upper-case
letters for A to F). You can - but don't have to - type in leading zeros (&EQO is
as valid as &0E00). The program will reject invalid addresses.

You can find out the start and end addresses of a machine-code program by
using the *OPT 1,2 option when loading it from tape (see page 398 of the User
Guide) or with the *INFO command for disk (see page 44 of the Disk System
User Guide).

Bear in mind that the /O areas are located between addresses &FCO0 and
&FEQO. If you have certain input/output devices connected to your computer,
accessing these addresses by disassembling their contents may cause unexpected
results.

The disassembler will decode the contents of the memory, starting at the
address that you have specified, and will display the results in up to five columns
across the screen. The first column is the address (in hex) and the second
column contains one, two or three bytes making up an opcode and any
associated operand. The third column holds the opcode itself and any operand is
shown in the fourth column. These columns correspond to the four columns
that will be displayed if you assemble a listing with OPT set to | or 3 (see page
314 of the User Guide). For example:

1000 20 EEFF JSR &FFEE
Column | Column 2 Column 3 Column 4
Address Hex bytes Opcode Operand

Relative addresses are resolved and shown as absolute, not offset, addresses.

If an address contains a byte that cannot be decoded - it may be data or an
invalid opcode - the third column will contain three question marks. If the byte
is in the range &20 to &7F, its ASCII character will also be printed out in the fifth
column of the display.

43

Disassembler

The display is set to ‘page mode’ with a VDU 14 command and so will stop and
wait for the Shift key to be pressed at the end of each screen page. Disassembly
will continue until your specified end address is reached or until you leave the
program by pressing Escape. You can re-start simply by typing RUN.

If you want to print out the results of the disassembly on your printer, enable
the printer with the usual VDU 2 (or Control B) command before you run the
program. You may also want to delete the Page Mode command which appears
at the start of PROCsetup.

At the start of the program is a variable SPOOL, which is normally set to
FALSE. If you set it to TRUE, the program will make use of the Operating
System's *SPOOL facility in order to save the disassembly to disk or to tape in
a file called DUMP. This time, the disassembly will start with the word AUTO in
order to generate line-numbers when the listing is subsequently EXEC'd. The
first two columns of the disassembly will not be saved.

Once the disassembly has been saved, you can create a BASIC program from it,
ready for you to examine and/or edit, with the following steps:

Type NEW (to remove the Disassembler)

Rewind the tape

Type «EXEC “DUMP”’

When no more lines appear on the screen, press Escape to leave AUTO Mode.
Add the usual square brackets around the listing and save the new program.

You can now start to add labels to the listings and to convert the absolute
addresses to symbolic addresses by using the REPLACE program in the
Toolbox.

Please refer to pages 402-3 and pages 442-9 of the User Guide for further
details of the *SPOOL and *EXEC commands and of the creation of assembly
language listings.

If you are using disks, remember that you need at least 64 free sectors on your
disk (see page 64 of the Disk System User Guide). We suggest that you delete
the DUMP file as soon as you have created the BASIC program in order to
avoid any subsequent Can’t extend errors.

Disassembler

REM ®xxxx 4502 DISASSEMBLER ®xuKX
a0 3
30 REM (o) Isn Trackman 1982
40 3
S50 REM A% = address pointer
HO0 REM BX = address contents (bhyte)
70 REM D¥ = input digit counter
80 REM NZ = opcode index
Q0 REM T# = opcode addressing type
100 3
110 SPOOL = FaLSE
1Z0 3
130 MODRE &
140 FROCse
150

tREM Get valid hewy

address

160 ON ERROR GOTO 280

170 3

180 IF SFO0L THEN xSF0OO0L "DUMPY

190 IF SFOOL THEN FRINT "aurTo®

200 3

210 REFEAT

220 FROCodecode

230 IF T# < 3 THEN A% = A% + 1

240 IF T® = 2 AND T < 9 OR T¥% = 13
THEN A% = &% + 2

250 IF T#% = 8 AND T% < 13 THEN &% =
fx o+ 3

2610 UNTIL. FAaLSE

270 1%

280 ON ERROR OFF

290 IF SPOOL THEN =xS5F0OO0L

300 REFORT

310 PRINT " at line "§i ERL

320 END

3340

340

b be

45

Disassembler

46

350
360
370
aao
390
400
410
420

4340

440

460

470

480

490

ao0
alo
9

530
a4q0

iy
bt

H40
a7
o8

970
&00
410
HEQ
630

DE
A
D7

FR
*

RE

FR
EN

[
B

Mo
R A

(2%
B
Al
AL

F FROCzddress
=)
=)
INT "Start address § &3

FEAT

K& = GET%

IF DX < 1 AND (K$ = CHR$13 OR H$
= CHR$127) THEN VDU 7

IF D% o= 4 AND H$ < CHR$13 AND K$
e CHR$ 127 THEN VDU 7

IF K$¢ = CHR$127 aAND DX > 0 THEN
FRIMT K$3 ¢ A% = AX DIV &10 ¢ DX
= DE - 1

TF K$ <> CHR$ 13 AND K¢ < "oV
THEM VDU 7

IF K < CHR$ 127 AND K$ = "F"
THEN VDU 7

IF K$ = "9" AND K$ < "aA" THEN VDU
7

IF Dn < 4 AND K = "0" AND K$ <=
HONOTHEN AX = AXX&L10 + VAL K$ 3
FRINT H$; § D& = D¥ + 1

IF D% < 4 AND HE == A" AND K$ =
UEMOTHEN AX = AXXELD + ABC(K$)Y -~
B3 PRINT K3 ¢ DY o= D¥ + 1
UNTIL AX AND HE = CHR$13

IMT
DEROC

F FROCdecods

= T

OFZCEZY DIV 100

OFZCEZy MOD 100

= RIGHTE"000" + STRE~AX,4)
= RIGHTE (0" + STR$~EZ 20

$ o= RIGHTH 0" + STREASAXL?L,)
o= RIGHTEU0Y + STRENALPZ, 2D

&40
A5G0
&H60
&7 0
&H810

490

700

710
720

LO%E = Al
HI$ = AZ$
AldE = Alde + ov

*
*

IF SPOOL THEN ALd = "' 1 AZ¢ =
ELSE FRINT A$ " 3 ' Eg " "g

IF N = 0 THEN FRINT TAE(XX)
OF¢ENE S

TF NZ = 0 AND BZ > &20 AND BX
THEM FRINT, CHR$EZ:

IF NZ = 0 THEN FRINT { EMNDFROC
IF T# = 1 THEN FRINT TaEIXE)
OFEONZY 3 ENDFROC

IF TZ = 2 THEN FRINT TaAE(XZ)
OF¢ N2 " A" 3 ENDPFROC

Disassembler

= &80

IF TX = 3 THEN FRINT Al$ TABOXD)

OFENZY " E&" LO% ¢ ENDPROC

IF T#Z = 4 THEMN FRINT Al$ TakR(XZ)

OF$ MY " &Y LO% ¢ ENDFROC

IF T# = & THEN FPRINT Ald TabB{XZ)

OFENZY " &" LO% VXY ENDPROC

IF T# = & THEWN FRINT Al$d TAR(XI)

OF MY " &Y 0% ", YY" ¢ ENDFROC

IF T# = 7 THEM FRINT Al$ TaBEOXE)
OFgOMAY " (& LO$ X" 1 ENDFROC
TIF TH = 8 THEN FPRINT &ls Tak XX
OF$ONZDY " C&" LO%E "), ¥Y" § ENDFROC

IF T# = 9 THEN FRIMNT: Al$s AZ4$
TaBROKEY DP$NZEY " &Y HI$ LO% 2
EMDFROC

IF Tx = 10 THEM FRINT Al$ AZ$
TaBKE) OF$NZY " &Y HI4 LOs ¢
EMDFROC

TF Tx o= 11 THEN FRINT Al$ AZ%

TaBE (X% OPHNZKY " & HI$ LOs ", Y"

EMDFROC
IF T# = 12 THEN FRINT Al$ AZ%
TaB (XX OP$ONEY " (&Y HI+ LO%
EMDFROC

LVaT]
A

Exy

e

] i @
¥) 1 H

47

Disassembler

840 PRINT ALl$s TaBREXX) OF$NZY " &3

8u0 IF AX7?1 < &80 THEMN FRINT
RIGHTE' 000" + STR$A~AX + AZ?L +
23,4 ELSE PRINT RIGHTHC"0O00" +
STRE~X(AX + AX?L - EFEDY4) ¢ REM
Relative addressing

8460 ENMDFROC

a70 @

ag80 3

820 DEF FROCsetup

200 VDU 19,0,4503

210 VDU 14

GE0 DIM OP$(546),0FZ(Z255)

30 TF SPOOL THEN X% = 0 FELSE X% = 18 2
REM Qpcode column btabh setting

@40 3

QR0 FOR IZ = 0 TO %9é

@460 READ OF$ (X%

@7 NEXT

g0 3

290 FOR IZ = 0 TO 25%

1000 READ OFZCIXE

1010 NEXT

Lozo

L0330 ENDFROC

1040 ¢

1050 3

1040 DATH 277, aADC, AND, ASL, BCC, BCS,
BEQ, BIT, BMI, BNE, EBEPFL, BRE, BUC,
BVE, CLC, CLD, CLI, CLY, CMF, CFX,
CPY, DEC, DEX, DEY, EQR, INCG

1070 DATA THNX, INY, JMF, JSR, LDA, LDX,
LDY, LSRR, NOF, ORA, FHA; FHF, FLA,
FLFy ROL, ROR, RTI, RTS, SEC, SEC,
SED, BET, 8Té, 8T, 8TY, TaX, TAY,
THX, THA, TXS, TYA

1080 3

48

Disassembler

1090 REM Opcode indes
1100 REM m DIV 100 = opcode index P n
MOD 100 = opcode addressing mode

py

A R L
1120 DATA 1101, 3507, 0, 0, 0, 3504,
0304, 0, 3701, 3503, 0302, 0, 0,
3509, 0309, 0, 1013, 33508, 0, 0, 0,
A505, 0305, 0, 1401, 3511, 0, 0, 0,
310, 0310, 0
1130 DATA 2909, 0207, 0, 0, 0704, 0204,
4004, 0, 3901, 0203, 4002, 0, 0709,
0209, 4009, 0, 0813, 0208, 0, 0, 0,
0Z0%5, 4005, 0, 4501, 0211, 0, 0,0,
0210, 4010, 0
1140 DATA 4201, 2407, 0, 0, 0, 2404,
a304, 0, 34601, 2403, 3302, 0, 2809,
2409, 3309, 0, 1213, 2408, 0, 0, 0,
2410, 3310, 0, 1&01, 2411, 0, 0, 0,
2410, 3310, 0
1150 DATA 4301, 0107, 0, 0, 0, 0104,
4104, 0, 3801, 0103, 4102, 0, 2812,
0109, 4109, 0, 1313, 0108, 0, 0, 0,
010%, 410G, 0, 4701, 0111, 0, 0, 0,
0110, 4110, 0
1140 DATA 0, 4807, 0, 0, 5004, 4804,
4904, 0, 2301, 0, 5401, 0, 5009,
4809, 4902, 0, 0413, 4808, 0, 0,
5005, 4805, 4906, 0, 5601, 4811,
S501, 0, 0, 4810, 0, 0
1170 DATA 3203, 4807, 3103, 0, 3204,
3004, 3104, 0, HZ201, 3003, 5101, O,
3209, 3009, 3109, 0, 0513, 3008, 0,
0, 3205, 3005, 3106, 0, 1701, 3011,
5301, 0, 3210, 3010, 3111, 0
1180 DATA 2003, 1807, 0, 0, 2004, 1804,
2104, 0, 2701, 1803, 2201, 0, 2009,
1809, 2109, 0, 0913, 1808, 0, 0, O,
1805, 210%, 0, 1301, 1811, 0, 0, O,
1810, 2110, 0

3

49

Disassembler

11920 DATA
2504,
4409,
4405,
4410,

50

1903, 4407, 0,
b, 24601, 4403,
2009, 0, 04813,
2005, D, 4401,
2910, 0, D

0,

3401,
4408,
4411

1904,

0
0,
0,

4404,
1209,
sy 05
09 09

Double-size characters

DOUBLE-SIZE CHARACTERS

Two routines give you the ability to print double-height characters in Modes | to
5in the same way as you can in Teletext Mode 7 by using CHR$ 141. You can't
usefully use them in Modes 3 or 6, since there will be a horizontal gap in the
middle of each enlarged letter.

The routines themselves are in machine-code, but they are embodied in two
demonstration programs which are written in BASIC. The idea is for you to be
able to see how the routines operate and then incorporate them into your own
programs.

The first program is called GIANT | and is intended for use with Modes 0, | and 4.

It needs four user-definable characters. In the demonstration, we have selected
characters 224 to 227, but you can set the variable ascii at the beginning of the
program to use any four free characters.

100 bytes are reserved for the machine-code. (It actually assembles in 94 bytes.)
The routine uses a number of locations in zero-page as detailed at the start of
the assembly language listing.

The character to be printed could be passed to the machine-code in the form of
a parameter to the CALL but, since it is a single byte, we think that it is just as
easy to ‘poke’ it into a defined location, char, which is set up during the
assembly process.

We imagine that you will want to use the routine most of the time to display
strings which are pre-defined in your program and so the demonstration begins
by doing just that.

We call the machine-code subroutine to set up the new user-definable
characters which we then print out, with connecting cursor-move control
characters, by using BASIC's VDU command. We could have added the printing
commands into the machine-code, but we thought that by leaving the four
‘quarter’ characters defined (but not yet printed), this would give you more
flexibility, e.g. to change colours between each quarter.

Notice in particular that the first item in the VDU string moves the cursor up a
line. The reason for this is that we want to leave the cursor in its ‘correct’
position after printing, which is one line too low for the next character. That
means that you must always start at the top of the screen with a line-feed or
PRINT command (see line 140) in order to cancel out the effect of the very first
VDU I 1.

51

Double-size characters

In case you should want to print double-size characters in response to keyboard
input, the demonstration continues by taking individual characters from the
keyboard and displaying them in double size on the screen. Since GET is used
for this, we need to deal specially with Return (CHR$ 13). We have also partly
simulated the 'Delete’ key, although you will have to develop the demonstration
routine further to handle back-spacing beyond the left-hand edge of a line. If you
want to use double-size characters for a full display of keyboard entry, you will
also have to add program lines to handle the cursor-move and copy keys, since
they do not work at double-spaced line intervals.

The second program, which is called GIANT2, works in Modes 2 and 5 on the
same principles as the first program.

Since characters in these Modes are already double-width, only two characters
are needed in order to make up a new double-height character and so the
machine-code and VDU commands are correspondingly different. The machine-
code is shorter and takes up only 45 bytes.

As before, if you want to use the routine in response to keyboard input, you'll
have to write code to cope with the cursor-move and edit keys.

Of course, there is no reason why you shouldn't use either of the two routines
in the ‘wrong’ Mode to produce extra-fat or tall, thin characters.

FOOREM DOUELE HETGHT OHeaRsOTERS

a0 3

S0 EEM (o) Tan Treaooibsasn 1983

40 3

S0 REM Frarmts double heiaont coharvacters
in Modes 0 - 5

&0 3

0 MODE 1

a0 3

Y0 ascid = 224 3 REM Any four free
ASCTIT characters

Lod C o= sscii

110 ¢

120 FPROCzssemble

130 3

140 FRINT TABC(H,Z) 3

150 FROCdemo ("BIG CHARACTERS")

160 FRINT 77

170 3

52

1aa

250
260

270
280
290
300
a1
a0
33

340
350
340
370
a0
390
400
410
420
430
4410
450
460
470

480

Doublesize characters

FEFEMST
o= GET
TF R = 13 THEM FRINT & K = FALSE
POREM Return
IF K= 1E7 THEN VDU 8,8 ¢ K = ABC
o DREL = TRUE ELSE DEL = FALSE
¢REM delete
Pohar ow K
Call, Moode
IF B OTHEN WU
Pl C0ed,8,8,10,0+1,0+3 § REM
Frimt the 4 charascters with
CUTS0T MOves
TF DEL THEN VDU 8.8
IF PO = 0 THEN FRINT § REM New
couble Line
UNTIL FaALSE

DEF FPROCassemble

DIM Moode 100

char = &70 REM to &78
temp = &7%9 § REM to &80
vioduehar o= 81

®
+

oswreh = &FFEE
oswora = EFFFL

¢+
+

opt o= 200 REM No display
FOR T3 = 0 TO opt STEF opt
Fa o= Moode
COFT I%

N Call 08 “read character
definition’ routine with ASCIT
i ‘ohar
LDA HE&A
53

Doublesize characters

490 LDY fonar

H00 LDY $fohar DIV E100

510 JER osword

520 ¢

a0 LDA fsscid N First character

540 STé vadu_ohar

550 :

H&0 JER create

570 JER w3

Han IHC vdu_ ochar

590 JER vaud 3

&H00 TN vou_char

&H10 JER creaste

&HE0 JER vidnd3

&30 IHC vau_ohar

&40 JER S vouZ 3

&H50 RTE

&0 :

H70 soreste LDX #8 N B bhybtes ...

&H80 sloopl LDY #4 N .. i two
PEsass

AH90 LDé&E &0

Z00 :

710 sloopd ROL char,X N Examine each
it

720 BECS carry N L bit 7

730 :

740 ROL &

750 CLC N Repeat 0 bit

7460 BECC mext N Always

770 :

a0 «Carry ROL A

720 SEC N Repeat 1 bhit

800 §

810 smext ROL A N Save it

820 DEY

830 ENE loop?

840 §

850 5ThH temp-1,%X N Store new byte in
temp arvay (X = 1 to 8 so ~1)

54

840
870
g8e0
390
Qoo
Y10
QEN
Q30
G40
QLo
Qa0

Q70

80

Qo0
1La00
1010
L1020
1030
1040
1050
10460
1070
1080
1090
1100
L1ig
LLE0
1130
L1140
L1150
LL&0

1190
1200

+

Double-size characters

DEX
BEME loopl
RTE

-
*

sNVOLESR DA HES

JER oswroh

LA vau_char

JER oswroh

LDY #2 N Frint 8 byles ..
JER print

LDY %2 N Fall in for second
print

sprint LDA temp,X

JER oswreh N double easch byte
JER oswroh

INX

DEY

BNE print

RTS

e L3 we

MEXT

ENDFROC

EF FROCHsMmo (A

FOR X% = 1 TO LEN A%

+
¢

Pohar = ASC MIDEAS,TX,1) 3 REM
Fass ASCII to the machine code
via this bhyte

Call. Moode

Upuw 11,0, 0+2,8,8,10,0+1,C+3 ¢ REM
Frimt the 4 charascters with
CUTSOT MOVES

MEXT

1210 ENDFROC 6

Double-size characters

56

10
20
30
40
30

&0
70
a0

G0

100
110
120
130
140
150
1460
170
180
190
200

210
220
230

240

250

2460

270
280
290
300
310
320
330
340

FREM xxxx CHARACTER EXFANDER XXX

FEM (o) Tan Traclkman 1983

]

REM Frints double heiaht characters
i Modes & and 5

:

MODE 2

¢+

L3

aescii = 224 ! REM aAny two free
ASCIT characters
+

FROCassembhle

FRINT TAEC3) 3
FROCAemo ("BEIG CHARACTERS™)
FRINT 77

REFEAT
Ko= GET
IF Ko o= 13 THEN FRINT § K = FALSE
IF K o= 127 THEN FRINT CHR#8: ¢ K
= A& " " DEL = TRUE ELSE DEL =
FALSE
Pohar = K
Call Moode
COLOUR RNDC7)
IF K OTHEN VDU
Llyascii,B,10,ascii+l
IF DEL THEN FRINT CHR$8:
IF FOS = 0 THEN FRINT { REM New
doutile line
UNTIXL, FALSE

ND

vs 2o Tl oo

DEF FROCassemble
DIM Moode 50
char = &70 1 REM to &78

350
340
370
380
390
400
410
420
430
440
4%0
460

470
480
490
500
510
520
Ga30
G40
S50
G460
a7a

580
H90
400
410
4620
4630
&40
&5

&G0
470
480
490
700
710

vidu_char = &79

+
*

agawren = &FF
osworc = &FF

¢
+

E.

EE
F1

Doublesize characters

opt = 2 ¢ REM No display

+
+

FOR TZ =
F% = Moode
COFT IZ

¢
L4

N Call 0%
definition’
in ‘char’

LDA #&A
LDX dfchar

LY #char DIV &100

JER osword

Ll
?

0 TO opt STER

opt

‘vead character
routine with ASCIX

LDA #ascii N\ First character

STA vdu_char
LDX &1
JER o vaduid3

INC vau_char N Fall

sECONd pass

*
*

SvonZd3 LA EFE3
JSR o oswroh
LDA vau_char
JER oswroh
LDY 44

+
+

sprint LDA ochar,X

JER oswreh N double
JER oswroeh N double

TNX
DEY
EMNE print

RTS

Lhrouagh on

easch twhe
each bwte

57

Double size characters

58

720
730
740
750
760
770
780
790
800
810
820

830
840
850
840
870

1

MEXT
ENDFROC
DEF FROCdemo (&%)
FOR Tx = 1 TO LEM A%

Pohar o= ASC MIDSA$,X%:1) ¢ REM
Fass ASCIY to the machine code
via this byte
CALL Moode
Uil 11985Ci198,10985011+1
NEXT

ENDFRQOC

Graphics dump

GRAPHICS DUMP

GRAFPRT is a machine-code utility which enables you to ‘dump’ the contents of
the screen to a graphics printer. As written, it works with the Epson MX80, but
if you can program reasonably well in assembly language, you should have little
difficulty in adapting the program to work with a different printer.

The program resides at &00 and takes up less than & 100 bytes. Once you have
loaded it into memory (+LOAD GRAFPRT), a CALL &EQ0 command will start
it working, assuming, of course, that your printer is connected and running and
that you have already set up any necessary output protocols (e.g. *FX 6 to
enable line-feeds).

GRAFPRTDSK is the disk version of the program and loads at &1800.

Since the program copies whatever is on the screen, you cannot produce your
picture then type CALL &E00, since the command line will appear on the
screen. There are a number of ways around this. The simplest is to call the
routine from within the program which creates the screen image, immediately
after it has been drawn. Another idea is to add something like ON ERROR
CALL &E00 to your program so that, by pressing Escape, you can take a
‘snapshot’ of the screen when you want. However, you might not want a
graphics dump every time that you press Escape and a slightly more
sophisticated approach would be to create an error trap, to which the program
is directed by an ON ERROR command. Having jumped to the error trap, you
could then test whether a graphics dump is really required with a line like:

IF GET$ = “G” THEN CALL &E00

So that you can adapt the program, here is a description of how it works. The
program starts by calling OSBYTE &BA. This is ‘officially” intended to return the
position of the text cursor, but it also has the very useful side effect of setting
the Y register to the Mode number. The Y register is tested to see whether we
are in a non-text Mode (3, 6 or 7), in which case the routine exits with a ‘beep’.

If we have a graphics Mode, we do a VDU 2 to send output to the printer.

Our next task is to differentiate between Mode 0 and all of the other Modes,
since the printer must be set to ‘double-density” in order to handle Mode 0's
high resolution. We also have to work out the pixel spacing of the different
Modes. Both conversions are done by machine-code ‘compares’ and using the
carry bit to set appropriate flag bytes.

We next send set-up commands to the printer and this is where you might need
to start making changes for other printers.

59

Graphics dump

The body of the program consists of a loop, in which the program reads the
screen pixels one at a time, starting at co-ordinate 0,0 and working its way
through to co-ordinate &4FF, &3FF.

Any pixel which is not black (i.e. 0) is added to an eight-bit byte for transmission
to the printer. You could easily change the test in order to print dots of only one
screen colour.

At the end of each line, we send a line-feed followed by the commands to reset
graphics Mode on the printer. Here again, you will need to make changes for
other printers.

At the end of the dump, the printer is disconnected with a VDU 3 command
and the routine ends. If you want to stop the print-out before it has been
completed, you'll have to press Break, since the routine does not slow down to
test whether Escape has been pressed.

10 FREM Hxxx A
20 REM FOR

a0

40 REM (o

5o

A0 REM MNext U obhyltes zre slso bhe Dlook
for oswora ocall

0 owlo = 703 L7l

80 wloo = EFE T OREM &R

Q0 piwmvasl = &74
oo 3

LLO moche = &0
120 step = 81
120 bhits = &RZ
140 bwte = 83
150 3

L& ese = 27
170 3

180 oswroh
190 oswora
200 osbhyte
210 3
2E0 whop = E3FF

230 3

60

420
430
4410
450
440
4710
480
490
S00
ail0

G20
530

G40
G550

5460

Graphics dump

T ELE00
¢

op et 2

&

L]

FOR TxE= 0 TO opt STEF opt

Fa o= orag

[
OFT Ix

H

eciamp LDA& HREB7 N Gel text cursor
position ..

JER osbhyte

TYH N s e bhen Y has Mode
P e T

CRY #3 N Tewt omly Mode 307
EEQ error N I so, error

+

CRY #6 N Mode & ov 707

ECC setup N Carry on if less

*
<

serror LDA 7 N Beep ard ..
JMF oswrott N oexit

?
*

sambup LDA 40

STé mode N Assume Mode 0

D6 #2

SThH step

JER oswroh N VDU 2

CFY #1 N Clesrs carry if Mode 0
ECC save_mode N Yes, reaslly Mode
0

ALL step N Otherwise, double
step value to 4

SEC N and reselt the carry

*
¢

save_mode ROR mode N Save the
carry status as Mode flag

6l

Graphics dump

62

WEEa)
SR
AH00
H10
&2
&A1
&40
&0
&H&0
&7 0
&80
&0
00
Z10
FE
Z30
740

7a0
760
770
780
780
goo
gln
820
330
240
a8

840

870
880
890
00
1a
Q70

*
b

N Set line spacing
LDa fesc
JER print
LA 650 A
JER print
LD 48
JER print
:

“oStart st top of sorveen
LD dytop MOD EL00
5Té yloo
DA dytop DIV &100
STéH wloo+l

L3
L3
“NoMain loop starts here
<

N oGerd printer graphics
commMman

smEwline LDA desc

JER print

BELIT mode

EMY over 0

NoMode 0 only

LDA& #4SC "L N Dual density
LDX R&EB0 N Charscters per line
BME setlern N Always

N Freimter commands for other
Moddes

sover 0 LDA $#ASC "H" N Single
cleris ity

LY #&40 N Characters per line

ssetlen JSR print

TX& N Characters (&40 or &80
JER print

*
*

1010
1020
1030
1040
1050
1040

1070
1080
1090
1100
1110

Y
y

£

-

1
1130

o

1
1

1140
1180
1140
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

Graphics dump

N oResel to lefl-hanod edge

LIy Ak

STéH wloo

ST8 wlooel

M

stigwoolomr LD $7 N Bits 0 to 7
STa bits N Counter
H

sreacip iyel LA Y N Read pisel
LY #xloc N Foint to 4 XY hwtes
LY 40

JER osworad

LA pisval

CMF L N Sets cavrey 4f mot 0
{(hlasck)

®
*

saetbhwte ROL byte

L& vyloo

SELC

SEC 44 N All modes descerndc 4
pimels

STa wloo

BCS dechits N Test page
roll-over

DEC wloo+l

<+
¢

soeetits DEC bits N Counter — 1
EFL readpixel N Done 8 bits 7
LDA byte N Prict 8 bits

JER print

e

Next column
LDA mloc

CLC

Abe step

ST wloco

LDA wloc+l
ARG #0

63

Graphics dump

5T wloo+l
CHMF #5 S Owver E4FF 7
BED encline N XF so, end of

L
&
+

YNoMove slong bo mest coloumn
sCcobummtop LDA yloo
LG
ARG F&Z0 N 4 steps % 8 bhits
STé wloo
BECC mewocolumn
IMNC wloo+l
A\

BECS mewecolummn N Alusys

0

P

p— g
oo e}

P
:

P

HER RS RS S I i

el — BN B A5 S S

et
]

] :

1420 sencdlime LDA& #10 N Line-fesd

1430 JER primt

1440 BIT wloc+l N Test msh

1450 EFL mewline N Urndder 0000 2

1440 3

14710 N Switoh off printer

1480 LD& 3 N UDly 3

1490 JMF oswreeth N oand exit

1500 H

La10 NoFrint subroutine

13520 sPTAnt FHE& N Save value sent
here

1530 LA EL N v

1540 JER oswroh

1550 FL.A N Recover original bhyte

1540 JMF oswroh N JSR 4+ RTS

1570 1

1580 H

1590 NEXT

14600 3

L&10 0 END

64

Packer

MULTI-STATEMENT LINE PACKER

This is one of the three 'squeeze’ utilities which will help to shorten a BASIC
program and so make it run faster. It packs as many statements as possible on
to multi-statement lines, whilst ensuring that the program remains grammatically
correct.

There are two versions of the program on the tape. PACKER is the version for
use with tape-based computers and resides between &E00 and &FFF.
PACKERDISK is for use with disks and is loaded between & 1700 and &I 8FF.
Please refer to ‘Using the Programming Utilities' for installation instructions.
Other than the addresses at which they start, the two programs operate
identically.

As the utility is co-resident, you can load it before or after you get your BASIC
program into memory. Once the utility is in memory, start it working with
CALL &E00 (tape version) or CALL &1700 (disk version). On disk-based
systems, it is the last of the utilities used in the xEXEC SQUEEZE routine.

The routine begins by setting Mode 7 and displaying the message Packing
After a short while - just how long depends on the length of your program and
how much packing needs to be done - the prompt will return, leaving the
packed BASIC program in memory.

If you are squeezing a program to its smallest size, PACKER should be the last
utility that you use, following after REMSTRP and CRUNCH. When you use
REMSTRP, remove single-colon lines, otherwise they will be included in the
packing process.

PACKER will put a maximum of 237 bytes into a line of BASIC. It calculates the
length of the first line, adds the length of the next line to it, and tests whether
the limit has been reached. If not, it adds the two lines together and tries to add
on another line, progressing in this way through the program. Since it deals in
complete lines, rather than in statements separated by colons, it will achieve the
optimum result if you start off with a fully unpacked program, consisting of
single-statement lines (except for multiple statements following an IF or ELSE).
We recommend that you should always program this way, for ease of editing
and debugging. If your program does contain multi-statement lines, use
UNPACK before you use PACKER.

There are certain situations when lines must not be packed and PACKER
handles these properly. Nothing further will be added to a line after an IF, REM,
DATA or ON ERROR statement. DEF statements will always be retained at
the start of a new line.

65

Packer

PACKER will start a new line after a line starting with an asterisk (indicating a call
to the Operating System). To prevent packing, the asterisk must be the first
byte of the line (with no spaces in front of it). If you start with a multi-statement
line, such as:

VDU 7 : «FX 15,1

(beep and clear the keyboard buffer), the asterisk will not be at the start of the
line and another line could be added, so causing a syntax error when the
programis run.

Line-references are also checked. If the program refers to a line-number (e.g.
witha GOTO, GOSUB or THEN), PACKER will ensure that the line in
question is not joined up into an,earlier line, as this would otherwise cause a No
such line error. Of course, if you write well-structured programs using
procedures, you won't have GOTOs and GOSUBs in your programs in the first
place, will you? One case which PACKER cannot handle is that of the computed
line-reference - GOTO line - where line is a variable computed at run-time. If
you use computed line-references, you are asking for trouble!

Please refer to ‘Using the Programming Utilities’ for notes on tacked-on bytes,
hidden control codes and other general hints.

10 REM xxxx FACKER XXXX

20 3
30 REM (o) Tan Trackman 1982
40 3

460 REM Re-referencing fails on
untokenized line number e.aq. ON A
GOTO 10,X,:20

70 REM Assumes no hidden &8Ds embedded

i hext
a0
110 DIM msq(l)
120 ¢

66

130
140
150
1&0
170
180
120
200
210
220
230
240
250

2610

iy
27

2810
290
300
314
320
330
340
350
3460
370
380
390
400
410
4Z0
430
4410
450
460
470
4810
4210
485
S500
510

REM Basic pointers
lomem = &0

fimem = &4

vartop = &2

top = R12

page = 8§18

*
@

memloc = &70
Limenum = &72
sronloc = &74
bimmuem = &74
source = &7C
destin = &7E
flag &80
length = &81
arehnlen = K82
newlength = &83
count = KB4
YUEBVE 885
offset &846
oswrch = &FFEE
osnewl = &FFE7
REM Constants
ol 0D
BRHCEe Asc v on
colon asc "
star Aasc txv
rem
if = RE7
data = &DO
Brror &85
ifef = G0

FEM
FEM
FEM
REM
REM
REM

&71
&73
&75
877,
&70
&7F

EE A N R

eSS SH Hb S &b

i

HI

HIE I I

i

&78

&F4 ! REM Basic tokens

maxesize = &70C 1 REM for Mode 7

<*
2

ora = KEQG
<+
*

opt = 2
+*

¢

Packer

67

Packer

68

G20
530
5S40
S50
G460
a70
ago

50
&00
6410
620
&30
4410
46510
6610
670
46810
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850

8460

FOR X% = 0 TO opt STEF opt
F# = org

[

OFT XX

LDY #0

smualloop LDA msadll:Y N Mode 7
and title

BEQ msgldone

JER oswroh

Iy

ENE msalloop

N Himem under Mode 7
smsaldorne LDA #Fmaxsize
STA himem+l

LDX 40

STX himem

-

INX N Start at PACE + 1
STX memloo

L& page

STA memloo+]

£

nextline LDY #0

LDA (memloc),¥Y

CHMF #&FF N Ernd of program flag
ENE morelines

JMF Fimdiah

@

e

morelines INY

INY

STY offaset

LDA (memloc) .Y

8Ta lenath N Offset to start of
next Line

*
¢

-

870
sao
870
200
210
QL0
Y30
?40
@0
P40
@70
280
250
1000
1010
1020
1030
1040
1050
1040
1070
1080
1090
1100

o
=

S B NE L

-4 &

[o o [coun Y e S o Y e

£ .,
a4

fary
o
foe]

1200
1210

1220

siesbivgte

+
+

+
+

+
®

®
¢

+
¢

¢
+

N

LDA
CMF
B

CMF
EEQ

CHF
EEQ

CMF
EEQ

CMF
EEQ

CMF
ENE

Is
STY

INY
(memloc),; Y
Feol
MBS @

fif
endline

Frem
andline

Fointa
endline

ferror
endline

Fatar
mesbihyte
it 08 call @
Y& EVE

testestar DEY

CPY

lime

offset N Start of

BEQ endline

+

+
+

+
*

4
+

L.DA
CMF
EEQ

CMFP
BEQ

LDY
ErNE

(memloo),Y
fapace
teststar

foolon
testatar

YHaave

nexthyte N Always

originsl

Packer

69

Packer

1230 sendline LDA memloo

1240 CLC

1250 &bl length

12460 STAH memloco

1270 LDA memloct+l

1280 abC #0

1290 8TéH memloo+l

1300 ENE nextline N\ Alwavs

1310

1320 smeasure LDY length

1330 LDA (memloc),Y

1340 OCMP #&FF

1350 EBNE meassure?

1340 JMF fimish

1270

1380 .measured INY

1390 INY

1400 LDA (memloc),Y \ Next line’s
length

1410 CLC

1420 ADRC length

1430 BCS endline N Too big to pack

1440 CMF #&F0

1450 EBECS endline \ Too big to pack

14460

1470 SEC

1480 SBC #3 \ Lose start of mnext line

14920 STA rnewlenath

1500 3

1510 N Ts next lime DEF or DATA 7

1520 sdefohek INY

1530 LDA (memloc),Y

1540 OCMF fespace

155 BEQ defohel

15460 3

1370 CMP #Fcolon

15380 BEQ defohelk

1590 @

e

Y

T

“

“e

70

14600
1610
14620
14310
1640
1450
14460
1470
1480
16720
1700
1710
1720
1730
1740
1750
17460
1770
1780
1790
1800
1810
1820
1830
1840
1650
1840
1870
1880
1820
1900
1910
1920
193¢0
1940
1880

19610
1970
1980

Fodef
erndline \

Fodata
erndline \ Mustn’t pachk
N Is
L.DY
L.DA
STh
IHNY
D&
SThA
N Convert limenum to 3-byte
sconvert LDA linernumtl

(ORé& #E40

STa binmum+?

LDA limenum

AND #&3F

ORA #8410

STa binnum+l

LDA linernum

AND #&C0

STA linerum

LDA limerumtl

AND #&C0

LER A

LSRR A

ORA linernum

LS5FR A

LER A

EOR #&54

STéH Dinrmuam

next line referred
length

(meamloc),Y
limernum+l

(memloc), Y
limerum

N

v Look for
PTOGQrEM
LDA& #1

8Th srohloc

LDA page

that number in

Mustn’t pachk

to ?

Packer

code

71

Packer

72

1990
2000
2010
2020
2030
2040
2080
2060
2070
2080
2090
2100
2110
2120
2130
2140
2145

2160
2170
2180
2190
2200
2410
2E20
2230
2240
2250
2240
2270
2280
2290
2300
2310
2320
2330

+
kS

5T

srohloc+l

smExtasrot LDY &0

+
*

LA
CMF
ErNE
JMF

(srothlon),Y
F&FF
shodpram
pack N Not

saliprium INY

<+
+

INY
L.DA
a8Th

(arohiloc), Y

srohlen

staresrett INY

+
+

L.D#&
CMF
EEQ

CMF
ENE

Feol
srohldre

FEBD N Line
MOT @5 N

referred

M E

to

token

+
<+
N Compare with 3 coded bytes

+
+

LIYX
GTX

#0
flag

strymatonh IMY

L4
¢

LDA
CMF
EEQ
DEC

(asrchloc),Y
brirram g X
Morematoh
Tlag

stmoremastoh THX

+
®

CHFX
EME

#3
trymatoh

Packer

2340 LDA flag

2350 BNE srohline

2360 JMF endline N Match, so can’t
pach

2370 1@

2380 serchline LDA srohloc

Z2390 CLC

2400 ADC srohlen

2410 8TH srohloc

2420 LDA srcohloctl

2430 ADC #0

2440 8TA srohloo+l

2450 BNE rmnextsroeh N Always

2460

2470

2480 N Packing rouwtine

2490 .pack LDY lenath \ Overlay eol
with colon

2500 DEY

2910 LDA #colon

2920 85TA (memloc),Y

2530

2540 LDA memloo

2950 CLC

2560 ADC length

2970 8TA destin

2580 LDA memloctl

2590 ADC #0

2600 STAH destintl

24610

2620 LDA destin

2630 CLC

2640 ADC #3

2650 8TH source

Z&60 DA destintl

2670 ADC &0

2680 STA sourcetl

2690

e S

e

*e

-e

73

Packer

74

2700
2710
2720
2730
27410
2750
2760
2770
2780
2790
2800
2810
2820

ey
283

2840
2850
£8460
2870
2880
2890
2900

2210
2920
2930
2940
2250
29610
29710
2980
2990
3000
3010
2020

3030

3040
3080

LDA top

SEC

SEC source

STA count

LDA top+l

SEC

SEC sourcetl

LDY #0

TaX N Fages Lo move
BEQ shift?

e

ahiiftl LDA (sourced,Y
ST (destind,Y

INY

BNE shiftl

INC sourcet+]

ING destintl

DEX

ENE shiftl

-

e

sanift?2 LDY count N Move odd
hrtes
BEQ shiftdone

ETY

shiftd LDA (source),Y

ST (deastin), Y

INY

DEX

ENE shiftd

N Reset pointers

sahiftodone LDY #2

LDA mewlength

STa (memloc),Y

LDY length N Foint where we
stoppad

DEY N Look at first new buyte
STY offset

-

3060

2070
3080
3090
3100
3110
3120
3130
3140
3150
31460
3170
3180
31%0
3200
3210
A220

2230

3290
N0
WAL

3300
3310
3320
3330
2240
3350

Packer

8TaA length N Now updste length for
endline’s use

LDA top

SEC

SEC 43

STA tap

SThA lomem

STh vartop

LA top+l

SEC 40

STA top+l

8T lomemtl

STé vartoptl

JMP mebbhyte

sfimish JSR osnewl

JMF osnewl N & exit to caller

e L3

FROCtext (1, CHR$ZZ + CHR$Z +
CHRE$31 + CHR$13 + CHR$13 + "Facking

L2 B l')
?

MEXT

END

e A

YEF FPROCtext (M, 64
mag(N) = P¥

Spmoo(NY = A%

Py PYOo+ LENCGASY + 1
Fa?-1 = 0

ENDFROC

™

75

RAM test

RAM TEST

The program is written in machine-code.

It is less than & 100 bytes long and so there is room for it in the stack! Although
that is a most unusual place to store a program, we have done so in order that
the program can test as much RAM as possible without over-writing itself.

Call the program either by *LOAD RAMTEST followed by CALL &100 or by
«RUN RAMTEST. On disk-based systems, you can type *RAMTEST.

Mode 7 will be set and you will see an asterisk progressing across the screen. In
a short while, small coloured squares will appear and then the whole screen will
fill with changing characters in ASCIl order. The display will continue to cycle in

this manner until you stop the program by pressing Break (Escape won't work).

What is happening is that the entire RAM from &900 to &7FFF is being filled by
bytes from O to &FF. After each new number is used, the entire memory is
checked to see whether the contents of any byte have changed. What you are
seeing on the screen is the Mode 7 display area (between &7C00 and &7FFF)
being filled with these values, some of which correspond to control codes and
some to ASCII characters.

At the end of every complete cycle, the speaker will beep to indicate that all
256 different bit patterns have been successfully tested.

Should a failure occur, the program will stop with a beep and the prompt will
return. The address of the bad byte is in locations &70 and &71.

PRINT ~&70 + &71 « &100

will put it on to the screen. The value which caused the failure is held in location
&72.

It is not possible to test the memory below &900 with this program, since that
area is used by the Operating System to store its control variables, vectoring
addresses and the like. If you fill it with different byte values, the computer tends
to crash to a sudden halt!

Since various buffers are tested, it is best to clear the system completely with a
CNTRL BREAK when you have finished with the test.

76

10

20

30

40

50

&0

70

g0

en
100
110
120
130
140
150
140
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
3610
370
380
390
400

RAM test
Rl xxomx RaM TEST xxxx

REM () Tam Trackman 1983
loc = 70 ! REM + &71
hrate = &72

oswroh = EFFEE

oshyte = EFFF4

2
¢

start = 9 ¢ REM Start at &9200
pages = &80 - start

<+
opt = 2
L4

FOR I7% = 0 TO opt STEF opt
F% = &100

[
OFT I%

LDX #&FF

TXS N\ Reset stack

NOFlush function key buffer
LDA #18

JER osbyte

N Mode 7

LA #&16

JER oswreh

LDA #7

JER oswroh

N Cursor off
LDA #23

JER oswroh
LDé& #1

JER oswroh
LDA &0

LDX #8

RAM test

78

410
4zZ0
430
440
450
460
470
480
490
500
510
52
530
540
550
S&0
570
580
590
&HO00
410
&H20
&30
&40
&S50
4461
&7 0
&H80
&90
700
Z10
720
730
740
750
7410
770
780
790
a0

+
¢

sZer0 JER oswroh
DEX
BNE zero

NoSet up to start

LD& #0

8Té loco

5Té byte N Test byte
TaY

e

Sheain LDA #Fstart

8Té loo+l

LDXY #pasges

Y o Store s bhyte throwghout memory
sloopl LDA byte

STéa (loc),Y

INY

BNE loopl

INC loc+l

DEX N Decrement page counter
ENE loopl N ALl pages done 7
NoMow check the bhyte

LA #start

STH loo+l

LDX #pages

L& bwgte

sloop2 CMP (loc),Y

BNE ervor

IHY

ENE loopZ

ING loo+l

DEX N Decrement page counter
ENE loop?2Z N A1l pages done 7

*
¢+

RAM test

10N Erned of one pass
220 LDA #ASC Uy
130 JESR oswroh
840 INC bwte
&
8

«,.} fary

a0 BME begin N Unless bhyte = (0

&H0%

70 LDA #F N Beep

[0 JER oswroh

a50 JMP begin

2003

Pi0.evrvor S5TY loo N Ervvor sddaress now
in looc, loc+l

QE0OLDA &7 N Bell snd exit

Q30 JMF oswrcoh

e4071

GEONEXT

2403

QFOEMD

79

REM stripper

REM STRIPPER

This is one of the three ‘squeeze utilities which will help to shorten a BASIC
program and so make it run faster. It removes REM statements and, optionally,
lines containing only colons and spaces (used, for example, to highlight the
boundaries of block structures).

There are two versions of the program on the tape. REMSTRP is the version for
use with tape-based computers and resides between &00 and &I0FF.
RMSTRPDISK is for use with disks and is loaded between & 1600 and &I8FF.
Please refer to ‘Using the Programming Ultilities' for installation instructions.
Other than the addresses at which they start, the two programs operate
identically.

As the utility is co-resident, you can load it before or after you get your BASIC
program into memory. Once the utility is in memory, start it working with
CALL &E0O (tape version) or CALL &1600 (disk version). On disk-based
systems, it is the first of the utilities used in the xEXEC SQUEEZE routine.

The routine begins by setting Mode 7 and displaying the message

Do you want to remove single-colon and single-space lines ?

If you type Y, all such lines will be removed. Otherwise, type N. If, instead, you
want to stop the routine at this point, press Escape.

The next message to be displayed is Stripping in progress . . . After a short
while - just how long depends on the length of your program and how much
stripping needs to be done - the prompt will return, leaving the stripped BASIC
program in memory.

If you are squeezing a program to its smallest size, REMSTRP should be the first
utility that you use, before CRUNCH and PACKER.

In case your program contains a reference to a line which is actually a REM
statement line, such as:
100 GOSUB 1000

1000 REM Print-out subroutine

1010:

1020 PRINT . ..

REMSTRP will automatically adjust the line reference to the next ‘live’ line. In
this case, line 100 will be changed to GOSUB 1010 - if you have not opted to
remove single-colon lines - or to GOSUB 1020 if you have.

80

REM stripper

If you want to keep one or two REMs (the program title for instance), you can
either re-enter them after using REMSTRP or you can temporarily alter the REM
to, say, RME so that it will not be recognised by the utility.

REMSTRP will not remove comments from an assembly language listing (i.e. text
preceded by a reverse oblique).

Please refer to 'Using the Programming Ultilities' for notes on tacked-on bytes,
embedded control codes and other general hints.

10 REM xxxx REM STRIFFER XXXX

20 3

30 REM (o) Ian Trackman 1982

40 3

50 REM Re-referencing fails if
referernce to REM eto. as lasst line
of program

&0 REM Assumes no hidden &8Ds embedded
i text

70 3

80 DIM msg()

g0 3

100 REM Basic pointers

110 lowmem = &0

120 himem = &&é

130 vartop = &2

140 top = 12

150 paage = 818

140 3

170 memloc = K70 3 REM + &71

180 linernum = 72 § REM + &73

190 syronloc = &74 1 REM + &7%5

200 binnum = &F4H Y REM + &77, &78
210 temp = 79 1 REM + &74, &7B
220 source = &70 1 REM + &7D

230 destin = E7E § REM + &7F

240 colonflag = &80

250 flag = 81
260 lemnath = &82
270 srohlen = &83

8l

REM stripper

280 offset = &84
290 ysave = KT
300 count = K86
310 3

320 osrdoeh = &FFED
330 oswreh = &FFEE
340 osnewl = &FFE7

as0 ¢

360 REM Constants

370 eol &0D

380 esc K1E

390 space asc o

400 colon asc "y

410 rem &F4 1 REM Basic token
420 wmawsize = &7C ¢ REM for Mode 7
430 3

440 ovrg = &EEQOO0

450 3

oH #o# o

460 opt = 2
470 ¢

480 FOR I% = 0 TO opt STEF opt

490 PZ = org

%00 C

S10 OPT IX

Han o3

530 LDY 40

G940 smusalloop LDA msgl(l),Y \ Mode 7
ancgd title

S50 BEQ msgldone

S460 JSR oswroh

S70 0 INY

580 BENE msqlloop

5P s

00 N Himem under Mode 7

410 smsgldone LDA #Fmaxsize

HZ0 8TA himem+l

430 LDX %0

440 8TX himem

&G0 3

82

H&0
&7 0
46810
&P 0
700
710
720
730
740
750
740
770
780
790
800
810
8210

830
840
830
840
a7o
830
890

Gao
@10
At
S30
f40
@no
Z&0
G770
Qa0
PO

1000

REM stripper

AN

v Strip single colons 7P
«3sk JER osrdoh

GND #EDF N Mask to upper—-case
CMF #ASCUN"

BEEQ o

CHMP EASC"Y"

BER ves

CMF #esc

ENE ask

JMFE Findshn

sqes DEX N To &FF

S0 8TX colonflag

JER oswron N Print Y or N
LY #0

sMmugfloop LDA msalZ),Y N\
Stripping

BEQ msgZdone

JER oswroh

INY

ENE msalloop

NoAdjust oross-references

smsafdons LDA 1 N Start at PAGE

1
S8Ta memloo

S8TéH memloc+l
N oFimd osn o opening REM eto.
st line LDY #0

LDA (memloc),Y

CMF #EFF N End of program flag
ENE morelines

JMP o strip N Re-referencing
completed

*
*

83

REM stripper

84

1010
1020
1030
1040

1050
10460
1070
1080
1090
1100
1110
1120
1130
1140
1180
1140
1170
1180
1190
1200
1210
1220
1230
1240
1250
12460
1270
1280
1290
1300
1310

13240
1330
1340
1350
13460
1370
1380

stanrelines INY
INY
LA (memloc),Y

5Ta lenmgth N Offset to start of

mext Line
®
¢

by te INY
LDA (memloc),Y
CHMF dreom

BEEQ refohelk
CMF #eol

BEEQ flagtest
CHF fFcolon

BEQ nextbhyyte

CHMF fspace
BEQ mextbhyte
motecolon JMP endline

+
+

Flagtest BIT colonflag

EFL notoeolon

NTs this line referved to 7P
srefohek LDY #0

LDA (memloc),Y

STa Linerumtl

INY

LA (memloc),Y

8TéH linenum

JER convert N Cormvert linenum
3-tyte code

¢+
¢

N temp’ will be re-used, so -
LDX #2

sbransfer LDA temp,X

STA binmum, X

DEX

EFL transfer

to

REM stripper

1390 3
1400 N Look for thst number in
PTOQram

1410 LDA 1
1420 8TéH srohloo
1430 LDA page
1440 STA sroehloo+l
1450 3
14460 srmextsroh LDY 40
1470 LDA (srohloc),Y
1480 CHMFP &&FF
1490 BEQ endlimne N\ End of this pass
1500 3
1510 INY
1520 INY
1830 LDA (srohloc),Y
1540 STaA srohlen
13550 3
L340 smovesrceh INY
1570 LDA (srohloc),Y
1580 CMF f#eol
1520 BEQ srohline
1600 3
1610 CMF #&88D N Line mumber token
1620 BNE moresvoh
L&30 3
14640 N Compasre with 3 coded bytes
1650 LDX 40
1660 8TX flag
1&70 3
1680 s trymatoh INY
1690 LDA (srohloc),Y
1700 OCMF birrmam, X
1710 BEQ morematoh
1720 DEC Tlag
1730 3
1740 smorematoh INX
1750 CFX #3
1760 ENE truymatoh
1770 3
85

REM stripper

1780
1720
1800
1810

1820
1830
1840
185

1840
1870
1880
1890
1900
1910
1920
1930
1940
195

19260
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160

86

LDA flag
ENE moresroh

Ll
+

NoAlter this reference
mext line
N Code up mext
LA memloco
CLC
Ane
ST
LDA
ADC
ST
5TY
LDY
LDaA
STh
INY
LDA
5Té
JER
LY

*

length
SOLTC
memloc+l
#0
sourcet]
YEEVE

#0
(source) ;Y
Lineroim+1

(source),Y
Lirnerm
convert
Ysave

N No matceh

if <0

to coded

lime number

N Alter the &8D reference

LDX &2

sswWwap LDA temp,X
STa (srchloc),Y
DEY
DEX
EFL.
LDY wsave \ Where
ENE moresrch N Always

sSwap

+
*

sarehline LDA
CLC
ADo
STA
LDé&
ADC

arcnloc

srohlen
srohloc
srohloc+l
#0

we Wwere

looking

REM stripper

2170 8TA srchloc+l

2180 BNE mnextsrceh \ Always
2190 ¢

2200 N Set up for next line
2210 sendline LDA memloo
2220 CLC

2230 ADC length

2240 8TA memloc

2250 LDA memloo+l

2260 ADT 40

2270 8TA memloc+l

2280 JIMF nextline

2290
2300
2310 N Convert linernum to 3-buyte code
2320 sconvert LDA linenum+l

2330 ORA #&40

2340 8Ta temp+2

2350 LDA linenum

2360 AND $#&3F

2370 ORA #&40

2380 8TA temp+l

2390 LDA linernum

2400 AND #&CO

2410 STA linenum

249420 LDA linernumt+l

2430 AND #&C0

24940 LSRR A

2450 LSRR A

2460 ORA linenum

2470 LSRR A

2480 LSE A

2490 EOR #8854

2500 85TA temp

2910 RTS

Lrd rd
257

£530
2540

2550

e o

Actusl stripping starts here

e O we an

87

REM stripper

2960 sstrip LDA &1
2970 8TH memloo
2580 LDA page
2390 8TA memloo+l
2600 3
2610 +lookrem LDY #0
2620 LDA (memloc),Y
2630 CMF #&FF
2640 EBNE lookremZ
2630 JMF fimish
26460 ¢
2670 Jlookrem?Z INY N Skip line-number
byte 2
2680 INY
26890 LDA (memloc),Y
2700 8TA length
2710 INY
2720 LDA (memloc),¥Y
2730 OMP #rem N Opening REM 7
2740 BEQ lineouwt
2750 3
2760 BIT colonmflag N Leave colons 7
2770 BFL midlook
2780 3
2790 OMP H#colon
2800 BEQ opener
2810 3
2820 CMF #spasce
2830 BENE midlook
2840 3
2830 N Test for one or more opening
colons or spaces
28460 sopener INY
2870 LDA (memloc),Y
2880 OCMF #space
2890 BEQ opener N Still maybe
2900 ¢
2910 CMP fcolon
2920 BEQ opener N S8till maybe
2930 ¢
88

2940
2950
2960
2970
2980
2990
3000

an1o0
anzo
3030
3040
3050
3060
3070
3080
3090
3100

3110
3120
3130
3140
a150
31460
3170
3180
3190
3200
3210
2220
3230

3240
3250

326D
3270
3280
3290

REM stripper

CHF fFeol N A whole line of them 7
ENE midlook?

*
*

N Remove entire line

sLimeout LDY #0 N Nothing to keep
JER pachk

JMP lookrem N Next line now in
position of lost line

*
+

smicdlook INY

smicilook? LDA (memloc),Y

CHMF feol

BEQ lookline N\ Onto next line
CHMF #Frem

ENE midlook

N Test for preceding colons or
GERPACOS

shack DEY

CFY $#2 N At start of line 7

BEEQ lineout

LD& (memloc),Y

CMF #space

BEQ bhack

CHF #Fcolon
BEEQ bhack

¢
*

INY N Carnecel last INY
DEC length N Overlay &0 bhefore
following line
JSE opack N Found mid-line REM
LDY ysave N Saved by ‘pack’ but
points at eol, so -
INY
TYH
STa length
LDY #2
89

REM stripper

3300

3310
3320
3330
3340
3350
33460
3370
3380
3390
3400
3410
3420
3430

3440

3450
34460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3E60
3590
3600
34610
3620
3630
3640
3650
36460
90

H5TA

(memloe),Y N\ Over-write

current lernaoth

*
L]

slookline LDA memlooc

CLE
ADC
STA
LDA
ADC
STA
JMF

lenagth
memloo
MmEmloctl
#0
memloo+l
lookrem

N Packing sub-routine

N Enter with (memloc),Y on split
point

spack 8TY ysave N Selt up move
pointers

L.D&
CL.C
abo
S8ThA
LD&
ADC
S5ThH

-

LDA
CLC
ARG
STé
LDA
AbC
STh

-

L.DA
SEC
SEC
HTh
L.D&
SEC

memloo

ysagve
destin
meamloc+l
0
destintl

meml oo

lenath
SO e
memloot]
%0
sourcatl

top
SOUTCE

ot
top+l

34670
3680
3690
3700
3710
areo
3730
3740
3750
37460
az7e
3780
3790
3800
3810

3820
3830
3840
aeso
3860
3870
3880
38920
a%00
agin
3920
3930
3940
3250
aga0
ae70
39810
3990
4000
4010
4020
40320
4040
4050

REM stripper

SEC sourcet+l

LDY #0

TéX N Fages Lo move
BEQ shift?

ve

ashiftl LDA (source),Y
STA (destin),Y

INY

ENE shiftl

ING sourcetl

INC destintl

DEX

ENE shiftl

-

ahift2 LDX cournt N Move odd
bhytes
EEQ shiftdone

*

£
ahift3 LDA (sourcel),Y
STA (destin),Y
INY
DEX

ENE shift3
\ Reset Basic pointers
sahiftdone LDA lenath
SEC

SEC ysave

8Th offset

LDA top

SEC

SEC offset

STéH top

STH lomem

STA vartop

LDA top+l

SEC &0

5ThA topt+l

8ThH lomemtl

STA vartop+l

-

91

REM stripper

4060
4070
4080
4090
4100
4110
4120

4130

4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250

92

RTS

sFinish JSK osnewl

JMF osnewl N & exit to caller
1

FROCtext (1, CHR$Z22 + CHR$7 +
CHR$31 + CHR$12 + CHR$Z + "REM
STRIFFER" + CHR$31 + CHR$1 + CHR%$8
+ "Do you want Lo remove
single-colorn arnd” + CHR$13 + CHR$LO0
+ CHRE$10 + " gingle-space lines 7
II)

FROCtext (2, CHR$31 + CHR$7 +
CHR$16 + "Stripping in proaress

LR BN B J ”)
*

NEXT

E-ND

*
+

DEF FROCtext (N,A%)
maagiN) = F¥%

Prmasg(MN) = A%

F4 = FZ + LEN(A%) + 1
P#R-1 = 0

ENDFROC

Replacer

GLOBAL REPLACEMENT

REPLACE is a utility written in machine-code, which will change almost

anything - commands, variables, strings or text - into anything else within a
BASIC program, irrespective of their relative sizes. You can use it, for example,
to change long variable names to short ones or vice versa, to change real arrays
to integer arrays or subroutine calls into calls to named procedures.

There are two versions of the program on the tape. REPLACE is the version for
use with tape-based computers and resides between &E00 and &FFF.
REPLACEDSK is for use with disks and is loaded between &1700 and &I8FF.
Please refer to 'Using the Programming Utilities’ for installation instructions.
Other than their starting addresses, the two programs operate identically.

The utility is co-resident, that is, it will remain in the computer's memory whilst
you load, run and save BASIC programs until you over-write it.

Before you use the utility, you'll need to set up two function keys - any keys will
do. Program the first key

«KEY | 0 {H Replace ?

and the second key

«KEY 2CA.&E00KiM

If you like, you can add a space after the question mark at the end of the first
key's string. The second key's string must be typed exactly as printed above,
with no spaces between the characters. If you want to use keys other than | and
2, you'll obviously use different key numbers when setting them up. If you are
using the disk version of the program, the second key string will be

« KEY 2CA.&1700iKiM

To use the utility, press the first function key and the message Replace ? will
appear on the screen. Type in what you want to replace (let's call it the ‘target’
from now on) followed by a reverse oblique('\), then whatever you want to
substitute for the target (we'll call it the ‘replacement’), ending with a Return. If
you are in Mode 7, the oblique will appear on the screen as 2. The oblique acts
as a ‘'delimiter’, that is, it tells REPLACE where your target ends and your
replacement begins.

As an example, let us say that your program contains an integer array A%().
You now realise that it has to hold decimal numbers and you have to alter every
reference to it into A(). After pressing the first function key (Replace ? appears),
you would type:

A%(\A(

followed by a Return.

93

Replacer

What you have done at this point is to cause a new line, numbered O, to be
added to the program in memory, containing the target and the replacement
separated by a delimiting oblique. (If you wonder why we add a new line to
your BASIC program, the reason is so that we can use the parser in ROM to
create tokens from BASIC keywords.)

There are a number of points to bear in mind from this process.

Since REPLACE temporarily adds a new line O to your BASIC program (which it
subsequently deletes), your program must not already contain a line 0. If it does,
it will be lost.

Be careful if your target might appear in different contexts in the program. For
example, if you want to change the variable A to B, and you give just the letter
A as your target, every occurrence of that character in your program will be
altered. To prevent unwanted changes, you could temporarily change other
occurrences to unused names (e.g. A$ into ZZZ$). Then alter A to B and finally
reset ZZZ$ to A$.

If you do not proceed to the second stage of the utility (by pressing the second
function key), you will be left with an unwanted line 0, which will probably cause
a syntax error unless you delete it before running the program.

Since the reverse oblique is reserved for use as a delimiter, you can't include it
as part of your target or replacement.

The utility will search for the target in the exact form in which you have typed it
and will change it to the replacement, again exactly as you have typed it.
Therefore, be accurate - particularly with spaces.

One advantage of using the parser is that you can type in the truncated form of
BASIC keywords. If you are changing, say, MOVE XPOS to DRAW XPOS, you
can type:

MOV. XPOS\DR. XPOS

The drawback of using the parser is that it will not tokenise anything after a REM
or DATA command. You cannot therefore specify REM or DATA as part of
your target, because the second REM or DATA will be retained as ASCII
characters by the parser. Although it will look correct when you list the program
line, it will generate a syntax error when the program is run. If this happens, re-
copy the line with the cursor edit keys and the line will be re-parsed and re-
inserted into your program in its correct form. The same principle explains why
you should be careful about including both opening and closing quotation marks
in a target. For instance,

94

Replacer

PRINT ‘‘Hello\ PRINT‘‘Goodbye
will not work, whereas you will succeed with
PRINT ‘“‘Hello’"\PRINT *‘Goodbye’’

You can mix keywords, variables and text as you wish. For example, you can
change

A$="APPLES"

to

PRINT TAB(I13) *“‘ORANGES”

Because your target and replacement are tokenised, you must include the full
word (don't type SUB 1000 instead of GOSUB 1000) and all necessary
brackets in accordance with the list of tokens on pages 483-4 of the User Guide.
For instance, if you want to replace LEFT$ with RIGHTS$, you must type:
LEFT$(RIGHT$(

The final point is that you must not begin your target with a number, since it will
be parsed as part of the line-number and you will add a new and unwanted line
somewhere else in the program! Since numbers within a line can almost always
be related to another command, e.g. GOSUB, or a mathematical symbol,
include that as the start of the target and replacement.

Having entered your target and replacement, press the second function key.

If you have made an error in the form of your command line, you'll get the
message Bad command. This will happen if there is no target before the oblique,
no replacement after it, no oblique or more than one oblique. Re-enter the
command, line by pressing the first function key.

If the utility cannot find your target anywhere in the BASIC program, it will
respond with Not found. Otherwise it will replace the target with the
replacement and indicate, with the message Replaced, that it has finished.

There are two situations when replacement will not take place. The maximum
length of a BASIC program line is 237 characters. If you try to change a target in
a line with a longer replacement and the effect would be to exceed the
maximum line length, replacement will stop with the message Too long. Since
some replacement may already have taken place, you should now list the
program to find the problem line and break it up into shorter parts. Remember
to re-use the utility, since otherwise you will have a partially altered program.

The other case when replacement will stop is if, as before, you are enlarging the
program by making the replacement larger than the target. If the size of the
program grows until TOP reaches HIMEM and it runs out of expansion space,

95

Replacer

you'll again get a Too long error. One solution is to change to Mode 7 and
repeat the command, unless you're already in Mode 7, in which case your
program is just too big!

As with all of these types of utility, ‘tacked-on’ bytes will cause problems. (See
‘Using the Programming Utilities'.)

The utility contains useful routines for string searching and for moving blocks of
bytes upwards and downwards through the memory.

10 REM xxxx GLOEAL REPLACEMENT Mok

20 3
30 REM () Tan Traclkman 1983
40 3

S0 DIM msa(4),08CL 20

60 Firudd = "Replace ? "

70 FROCoscli (MKEEY L 0JH" + firmcd$)
REM Fut wuser input into line 0

80 3
0 himem = 046 ¢ REM &07

100 top = &12 ¢ REM &13 Top of
PTOgram

110 page = &18 ! REM Holds msh of
start of program

120 3

130 loo = K70 ¢ REM + &71

140 from = &72 ¥ REM + &73

150 dest = &74 ¢ REM + &73

1460 aap = &76 §+ REM + &77

170 length = &80 § REM .., of line

180 status = &81 § REM Exit messaqe
ircde

1920 size = 882 1 REM Relative size

flag
200 len_one = &83
210 len_two = &84
replacement
220 offset = &85
size

REM Size of target
REM Size of

b w

ExY

REM Difference in

96

Replacer

230 ysave = 886

240 ysaves = &87

250 3

260 REM User’s data buffers

270 first = &710 § REM After start of
kewbhoasrd bhuffer

280 second = &780

290 3

300 oswreh = EFFEE

310 osbhyte = &FFF4

320 3

A30 eol = &00

340 slash = ABC "\

350 3

3560 org = &E00

370 PROCoscli ("KEY Z2CaA.&" + STR$~org +
TIE M)

380 ¢

390 opt = 2

400 3

410 FOR X% = 0 TO opt STEF opt

420 P4 o= org

430 [

440 OFT IX

450 3

4460

470

480 LDA #3 + LEN find$ N Skip prompt

490 STA loc

5000 LDA page

S10 8TA loo+l

SE0 3

530 LDY #&FF

540 . loopl INY

990 LDA (loc),Y

5460 CMF feol

570 BER ervvgmp N Before slash 7

580 OMP fFslash

HP0 BNE loopl

&00 3

Firmdd wser’s input din line 0

e e

97

Replacer

98

&10
&20
4310
6410
&G0
&60
670
46810
490
700
710
720
730
740
780
760
770

ao
790
goa
810
820
830
8410
8510
840
870
880
820
Q00
10
Q@20
30
F40
250
460
70
San
R0

STY len_one

TYAa N\ For Z-fTlag

BEQ errgmp N Null string

EMI ervgmp \ Over &7F characters
DEC len_one

DEC lern_one

LDX #&FE N For slash and eol
sloop? INX

INY

LDA (loc).Y

CMF #eol

EBNE loop?2

CFX #&FF

BEQ errjmp N Nothing after "\"
CFX #&7F

ECE errjmp N Too bhig

STX len_two

+
<+

N Reverse makes faster search
LDX #0

DEY

revl LDA (loc),Y

CMP s lash

BEQ revd

STa second,; X

INX

DEY

ENE revl

+
L

sTreved LDX #0

DEY N skip slash
sTevd LDA (loc),Y
8Ta first,X

INX

DEY

BENE revd

+
+

1000
1010
1020
1030
1040
100
1040
1070
1080
1090
1100
1110
1120
1130
1140
1150
1140
1170

1180
1190
1200
1210
1220
1230
1240
1250
12460
1270
1280
1290
1300
1310

320

et b e b e
L3 L3
i3
=

N Difference dn size 7

LDX
LDA
SEC
SEC
BEQ

-

LDX
BECS

BT

LDA
SEC
SEC
LDX
ENE

T

-

#0 N For size flag
len_one

len_two
search N\ Size remains

#8840 N Bit 6 set
sesroh

len_two
lan_one

FEEB0 N Bit 7 set
search N always

errimp LDA fmsqll) N "Ead

commarnag!

SThH
JMF

e o owe wa

status
fimish

Start of seasarch

ssearceh 5Tad offset

8TX
LD&
&Th
L.DY
STY

&

size
Fmaea(Z) N "Not foundg®
status

FL 0N Start of proaram
loo

N o Skip fake line 0

INY

LDA

(loc),Y

STa length

EME

+
*

endline N Always

Replacer

99

Replacer

1380
1390
1400
1410
1420
1430
1440
1450

14460
1470
1480
1490
1500
1510
1E20
13530
1540
13550
15460
1570
1580
1590
1400
14610
14620
1630
14640
1650
1640
1670
14680
14650
1700
1710
1720
1730
1740
1750
1740
100

smextline LDY #0

LDA (locd, Y

EMI fimish N &FF end of program
INY

IHY

LDA (loc),Y

STA lenath N Offset to start of
next line

slookmore LDX len_one

STY wsave N For moves

smestigtbe TNY

LA (loc),Y

CMF #eol

BEQ endline

+
*

scompare CMP first,X
BNE lookmore

DEX

BFL mextbhyte

o e we

Matoth found
STY uysaved N End of matoh
BIT size
EMI larger
BVC swap N\ Same size
JER movedown
JMF swap

*
*

slarger JSR moveup
BCS fimisth N Error in move

+
N Insert replascement
4
¥

sawap LDX len_two
LY ysave
INY

1770
1780
1790
1800
1810
1820
1830
1840

1910
1920
1930
1940

1980
1990
2000
2010
2020
2030
2040
2050
2040
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160

suwap?d LDA second, X

STh (loc),Y

INY

DEX

Bl swapd

LDA& #Fmusgl3) N "Completed"
S8TH status

LDY ysave

BIT size

Bl lookmore N Same size or less
+

N Skip re-sesroh of replacement
LDA usave

SEC N Flus 1

AR offset

Tay

BNE lookmore N\ Always
sendline LDA loo

CLC

ARC length

8Th loco

BCC mextline

INC loo+l

ENE mextline N\ Always

vo wo

fFimish LDX status
Mmealoop LDA msgstart,X
BEQ exit

JER oswreh

INX

BENE msgloop

N Delete line 0

sexit LDA #R1S N VDU off
JER oswroh

LDY #45C "0"

JER bhufohar

Replacer

101

Replacer

2170
2180
2190

2200
2210
2220
2230
2240
””50

2610
””70
2280
2290
2300
2310
2320
2330
2340

2350

2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
24460
2470
2480
24910
2500
2510
4.»).4.0
2530
2540

102

ve 7w S e e

LDY #6 N VDU on

JER bufohar

LY #eol N Fall throuwgh & exit
Basic

'

N Futs Y imto kevgybosrd bhuffer

fohar LDA H#R8A
LDX 0
JMEP osbigte

HEXK Subroutines XXXKX
XEXX Move memory block riaght

smoveupr LDA length

CLC

ADC offset

CMF #&ED

BCS too lomg N\ Over 237
chisracters

*
¢

N Store mew lenath

5TA length
LDY 42
aTa (looc),Y

-

LA top

STA from

CLG

ADRC offset
SThH dest

TAX N Temp save
LDA top+l
STa from+l
abc &0

STéH dest+l
CMF himemt+l
ECS too_long

£

to

2550
2540
2597

258

2590
2600
24610
2620
24630
2640
2650
264610
2470
24810
246910
2700
2710
2720

vy
273

2740
2750
2760
2770
2780
2790
2800
2810

>y
2821

2830
2840

oy
2850

3

oo e
]

't

[RER RS

o % ol

Ll S B X5 R B
o

=

IR EE A I SN A B S B 5 O o2

fe

v

SO N D N0 D

L3 0l
(=]

BAEXEX
o

ny R

ST top N OK to
8Ta toptl

LT

L& from
SEC

SEC loo
STH gap
LDA fromtl
SEC loct+l
STa gap+l

-

L& gap
SEC

SEC 4ysaveld
5TH aasp
EBCS rmove
DEC gapt+l

-

rmove LDY #0
LDX gap+l
EEQ rmvpart

@

va

“

rave DEC fromt+l
DEC dest+l

rmv3d DEY

LA (from),Y
STa (destd; Y
CrY #0

ENE rav3

DEX

BNE vave

*
L4

-

sTavpart LDX gap
BEQ ravdaone
DEC from+l

DEC dest+l
svmvd DEY

LDA (Fram),Y

alter

Replacer

103

Replacer

2950
2940
2970
2980
2970
3000
3010
3020
3030
3040
305

30460
3070
3080
3090
3100
a1io
al1zo
3130
3140
3150
31460
3170
3180
31%0
3200
3210

3220

3230
3240
FEH0
3260
3270
23280
3Z90
3300
3310
3320
3330
33440
104

+
+

srmvidone CLO

*
+

*

+e o9

N

+
4

S5TAH
DEX
FNE

RTS

too

S5Th
RTS

(cdest),Y

rmvd

long LDA

status

#Frmag(4)

NoWibh carry set

KEXX Move

MEMOT Y

smovedciowrn LDA loo

s

ey

-

CL.C
ARe
STh
L.DA
ADC
5Th

ysavers
from
loc+l
#0
fromtl

from

offset
ciest
fromt+l
0
cest+l

top

C from

Qap
top+l
from+l
aapt+l

top

thloock

left

Loe s J =4
3350

3340
3370
a3ao
33910
3400
3410
3420
3430
2440
3450
34460
3470
3480
3490
as00
3510
3520
3830
3540
3550
aEa60
3870
2580
3590
34600
3410
3620
34630
34640
3450
34660
34670
34680
3690
3700
3710
3720

3730

v

«

“a

-

* 2o

-e

L 4

-

Ll s wa

L

SEC
STh
LDA
SEC

STA

offset
top
top+l
#0
toptl

lmove LDY #0

L.DX
EEQ

gqaptl
Imvpart

Imvpage LDA (from),Y

STh
INY
ErNE
ING
IMC
DEX
EiNE

(dest),Y
Imvpage
Fromtl

cest+l

Invpage

Leavpart LDX qap

EEQ

Imvadone

ITmviliast LDA (from),Y

GTéh
INY
DEX
ENE

(ciest),Y

Imviasst

Imvdone LDA lerngbh

SEC
SEC
S5Th
LDY
85Th

RTS

offset
length
%2
(loc),Y

mesostart N Used for messages

Replacer

105

Replacer

3740 REM Cover "CA.&sazaa"

3750 FPROCtext (1,CHR$7 + "Bad command')
37460 FPROCtext (Z;"Not found'™)

3770 PROCtext (3,;"Replaced ")

3780 PROCtext (4,CHR$7 + "Too long ')
3790 NEXT

3800 3

3810 END

3820 3

3830 @

3840 DEF FPROCoscli (A%)

3850 X% = 0Q5CL MOD &100

38460 YZ = 05CL DIV &100

3870 $#05CL = A%

3880 CaLlL &FFF7

3890 ENDPROC

3900 ¢

3910 1
3920 DEF FROCtext (N,A$)
3930 msgaddr = FX%

3940 Fmosgsddr = A%

3950 meaiNY = PY - msagstart § REM Offset
to message

39460 PR o= PE o+ LEN{(A&FY + 1

3970 PEP-1 = 0

P8I ENDFROC

Resequencer

PROGRAM RESEQUENCER

RESEQ is a utility written in machine-code, which moves one or more lines of a
BASIC program to another place within the program. Having written part of a
program, you might decide that you need to re-use a section of code. Instead of
copying it out again, you can move it down the program, turn it into a
procedure and call on it as needed. Even if your program uses a block of the
code only once, it often helps to establish the structure of a program by creating
a number of smaller, self-contained procedures out of a large section of code.
You might also want to use RESEQ to sort all of your procedures into
alphabetical order so as to make them easier to find in a listing.

There are two versions of the program on the tape. RESEQ is the version for
use with tape-based computers and resides between &E00 and & | OFF.
RESEQDISK is for use with disks and is loaded between & 1600 and &|8FF.
Please refer to ‘Using the Programming Utilities' for installation instructions.
Other than the addresses at which they start, the two programs operate
identically.

As the utility is co-resident, you can load it before or after you get your BASIC
program into memory. Once the utility is in memory, start it working with
CALL &E00 (tape version) or CALL &1600 (disk version). If you are going to
make repeated use of the utility, it might be worth setting up a function key to
make the call.

When you invoke the routine, it will respond with a hash sign (‘4') to indicate
that it is waiting for your command line.

The form of the command line is:

FLN/LLN:TLN

FLN is the line-number of the first line of the block to be moved. LLN is the line-
number of the last line of the block to be moved. TLN is the ‘target’ line-
number which tells RESEQ where to move the block. Don't include any spaces.

As an example, if you want to move lines 550 to 740 to a point just after line

1250, you would type:
550/740:1251
followed, of course, by Return.

Since the maximum number of digits in FLN, LLN and TLN is five, you will be

allowed to enter up to |7 characters. Anything other than a numeral, an oblique

or a colon will be ignored.

FLN and LLN are interpreted in the same way as line-numbers that you would

give to the LIST command. Assuming that your program is numbered in normal
107

Resequencer

incremental steps of 10, you could have given any number between 541 and 550
as FLN and any number between 740 and 749 as LLN. In other words, RESEQ
uses the closest actual line-number.

As to TLN, you can give any number up to and including the line-number of the
line before which the insertion is to be made. In other words, in the above
example you could have given any number between 1251 and 1260. However,
we suggest that to avoid mistakes, you forget about the ability to use an existing
line-number (i.e. 1260).

The utility will also accept default values. Using our symbols to represent real
numbers, if you type:

/LLN:TLN

RESEQ will assume that FLN is the first line of the program. If you type:
FLN/:TLN

it will assume that LLN is the last line of the program; and if you type:
FLN/LLN:

it will assume that you want to move the defined block to the end of the
program. You can use the default values of FLN and TLN in combination, as in:
/50:

which means that you want to move the lines from the start of the program up
to line 50 to the end of the program.

RESEQ will first test the validity of your command line. It will reject it:

- if the command line does not contain one and only one oblique

- if the command line does not contain one and only one colon

- if the colon precedes the oblique

-if FLN, LLN or TLN are not integer decimal numbers in the range 0 to 32767
- if FLN is greater than LLN

- if LLN is less than FLN

- if TLN is between FLN and LLN.

Notice that there is nothing to prevent FLN and LLN from being the same
number. Indeed, that is how you would tell RESEQ to move a single line.

Remember that if your command line is rejected, you must re-invoke the utility

and produce a new hash symbol. Don't just copy over the old command line, as
you'll either create a syntax error or, worse, accidentally over-write the original
line at FLN if you miss out the hash!

Because the block of code has to be moved around the computer's memory,
additional RAM space is needed. If there is insufficient room, RESEQ will fail with
a No room error. If you are in a high-resolution Mode, try switching to Mode 7.

108

Resequencer

Once your command line is accepted, RESEQ will take a fraction of a second to
make the move. It then has to change the line-numbers. Rather than making the
utility even larger by including our own renumberer, we decided to make
RESEQ call up BASIC's own RENUMBER command and so you'll see REN.
appear on the screen just before control is handed back to you.

Renumbering can cause problems if the block being moved contains a line which
is referred to elsewhere in the program. You'll know about it when you get the
Failed at . . . error message. If you write well-structured programs with named
procedures, this should cause only minor difficulties with RESTORE and ON
ERROR commands containing line references. You have to edit those lines by
hand after the renumber in order to reinstate the correct line references.
However, if you write unstructured, ‘spaghetti’ code full of GOTOs, we regret
that we have little sympathy for you.

Referring back to the opening paragraph, we would make one suggestion as to
the creation of new procedures out of main-ine code. Enter the DEF and
ENDPROC lines and the PROC call itself before you invoke RESEQ. In that way,
your program will be correct immediately after using the utility. If you insert the
procedure commands after moving the block of code, there is a danger that the
renumbering will confuse you as to the correct place in the program to add the
new procedure call.

The utility contains some useful subroutines for text input verification, block
memory moves and decimal to hexadecimal number conversion.

Please refer to 'Using the Programming Ultilities’ for notes on tacked-on bytes
and other general hints.

10 REM ®xxxx RESEQUENCER 30KX
20 3

a0 REM (o) TIan Trackman 1983
40 3

=50 xKEEY 4 Call. &14600(HM

&0 %

70 hMimem = &0&6 3 REM + &7
ap page = &18 ¢ REM Hi-byte of FAGE
S (R

109

Resequencer

1060 loc = &70 ¢ REM + &71
110 fimsl = &72 ! REM + &73
120 limel = &74 ¢ REM + &795
130 limeZ = &74 1 REM + &77
140 target = E78 §| REM + &79¢
1350 top = &7 1 REM + &7E
160 asdadvrl = E70 § REM + &7D
170 sodr? = E7E § REM + &7F
180 tgtsdr = &80 ! REM + &81
190 temp = ER2 1 REM + &83
200 dest = &84 § REM + &85
210 size = 84 ¢ REM + &87
220 gap = &8 | REM + &89
230 mark = E8M

240 flag = ROk

230 hi_tep = &8C

260 3

270 param E&H00 ¢ REM 5 bytes

280 buffer EHUS 1 REM User-defined
Leybhoasrd input bhuffer

290 3

300 osnewl = EFFE7

310 oswroeh = &FFEE

20 osword = &FFF1

it

330 osbtte = &FFF4
340 3

350 return = 13

360 slash = AL »/m
370 colon = &80 v
ago 3

370 orqg = &E00

400 3

410 opt = Z

420 3

430 FOR IX = 0 TO opt STEP opt
440 PR = org

450
440 OFT I
470 ¢
480 ¢

110

490
a0o
a1
520
530
G940
S50
G460
a70
a80
agn
a0G
410
4620
&30
&40
4510
&40
470
&80
&90
700
710
720
730
740
750
760
770
780
790
8eo
810
820
830
840
850
8460
870
880

LDA
STA
L.DA
85ThA
LDA
STh
LDA
S5Th
LDA
8TA
L.DA
JESR
L.DA
L.DX
JSR

*

Resequencer

¥X%X Input 2 line

Set wup parameter block

Foaffer MOD &100

param

Fouffer DIV &100

paramtl

17 N Maximum line lenath
paramt?

Fslash N\ Minimum ASCII

paramt3

foolon N Maximum ASCIT
paramtd

FASC "F" N As prompt

OsWrch

F15 N Flush input buffer
*1

osbhyte

N Cell 085 input routine

L.DA
LDX
LDY
JER
BECC
JMF

#0

Fparam MOD &100
fparam DIV &100
osword

not_esc N\ Carry set if escape
asnewl N so RTS to BASIC

+
+
+*
+
N\ XxXX¥ Get first line number
*
+

* rIOt__

STY
L.DA
SThA
DEY
LDA
STA
INY
LDA

esc LDY #1 N Skip ‘return’
loc

page

loc+l

N To 0

(loc),Y

limnel+1l N Hi-byte of line no.

(loc),Y
111

Resequencer

8920 STA linel N Lo-byte of line
P00 INY

10 3

QZ0 3

P30 N xxxx Gelt last line mumber

940 3

230 sgetlast LDA (loc),¥Y N Line
length

@60 CLOC

270 ADC loco

280 STA loco

990 BCC getlst?

1000 INC loc+l

1010 3

1020 .getlst?2 LDY #0

1030 LDA (loc),Y

1040 EBMI save_top \ &FF = end of
PTOgram

1050 ¢

10460 N Save lastest line no.

1070 878 fimal+l N Hi-byte of las
Fie e
1080 INY

1020 LD& (loc),Y

1100 8TA fimsl N Lo-bhyte of last
i) e
1110 INY

1120 ENE getlast \ Always

1130 ¢

L140 N Save top of proagram sdodress

1150 .save_top LDA loco

11460 87Ta top

170 LDA loo+l

1180 5Ta top+l

Lieo ¢

1200 3

1210 N xxxx Get fivst commasnd line
o s

e

o line

line

1230

1240
1250
12460
1270
1280
1290
1300
1310
1320
1330

1340

1350
1340
1370
1380
1390
1400
1410

1420
1430
1440
1450
14460
1470
1480

1420
1500
1510

G520
1530
1540
1550
1560
1570

LDA Fbhuffer MOD 100 N Set up
feonvert”’

STéa loco

LA #Fhuffer DIV &100

STha loc+l

LDA linel N Farameters

LDX linel+l

LDY #slash

JER convert

BECS jmperr

N Ts new start line after resl
first line 7

LDA temp

CHMP linel

LDA temp+l

SBEC linel+l

ECC hexsond

N If so0, wuse new start line
rimber

LA temp

8ThA linel

LDA temp+]l

STA linel+l

e vo

XXX Convert second rumber Lo

hies
+
+
siessoncd LDA final

Resequencer

for

8Ta line?2 N Can never be > finasl

LDX final+l
STX lineZ+l
LDY #colon
JER convert
BCS jmpery

*s

13

Resequencer

1580 N Is new start line before real
last line 7

1590 LDA temp

14600 CMF fimal

1410 LDA temp+l

14620 SEBEC final+l

1630 EBCS order

14640

1650 N If so; wse new end line number

1660 LDA temp

1670 8Ta line?

14680 LDA temp+l

1620 8Ta lined+l

ETY

1700 3

1710 ¢

1720 N xxx¥¥% Ts “last’ before ‘first’
?

1730 ¢

1740 .order LDA line?
1750 CMF linmel

1760 LDA lineZ+l
1770 SEC linel+l
1780 ECC jmperr

1790 3
1800 ¢
1810 N xX¥xX Where to move it ?
1820 @

1830 LDA finmasl
1840 LDX Tirmal+l
1850 LDY #return
18460 JSR convert
1870 ECS jmperr
1830
1890 \ Save it
1200 LDA temp
1210 8TA target
1920 LDA temp+l
1930 STA target+l
1940
1950
114

ve a

1940

1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140

2150

21460
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300

Resequencer

NOXxXxxX Is target sbove first line
?

*
*

LDA& tarqet

CMF linel

LDA target+l

SEC linel+l

BCC find \ Below
N oses and below end line ?
LDA lineZ

CMF target

LDA lineZ+l

SBC target+l

BCC find N Line no. is above

Jmperr JMF synterre

\NOXXXX Find 2 line no. addresses
\OExit with closest line
addresses in addrl, addrd

sFimd LDX &0

STX flag

INX N Skip opening ‘return’
STX loco

LDA page

STé looc+l

fFind?2 LDY #0

LDA (loc),Y N Hi-byte line no.
8TA hi_tmp N Hold it

INY N Ready for lo-byte
BIT flaag

EMI test?

¢+
¢

115

Resequencer

2310
2320

2330

2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
249440
2450
2440
2470
2480
2490
2500
2510
2520
2530
2540
2550
25960
28970
2580
2590
2600
2610
2620
2630
24640
2650
24660
2670
2680

116

\ Compare with first no.

CHMF #&FF

BEEQ jmperr N\ First mo. = last line
e

LDA (loc), Y N\ Lo-byte line no.

CMP linel

LDA& hi_twmp

SEC linel+l

ECC mnewline N Not et passed

N Save detasils of this line
LDA loco

STA addrl

LDA loc+l

STA addrl+l

DEC flag

ENE newline \ Alwavys

*
v

»test? CMP #&FF

EEQ overtop \ &FF end of program
N\ Compare with second no.

LDA line2

CMF (loc),Y N\ Lo-byte

LDA linmeZ+]

SEC hi_tmp N Hi-byte

BECC overtop

+
+

Mmewline LDA loco

CLC

INY

ADRC (loc),Y N\ line length
8Th loco

LDA& loc+l

ADC &0

STé loc+l

ENE find2 \ Always

¢

2690
2700
2710
2720
2730
2740
2750

2760
&770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070

sover
8Th
LDA
5TA

e s

top LDA loc
aoidy 2

loct+l
adcir 2+ 1

Resequencer

NOXXXK Test for move space above

TOF
LDA
SEC
SEC
FHF
CL.C
Aho
STA
LDA
FL.F
SEC
CLC
Aabe
S5Th

N OEno
L.DA
CMF
LDA
SEC
BCS
JMF

KX X

*r 7 ee 2e

sahiif
SEC
SEC
STA
STé
LDA

addr 2

agoddrl N Difference ..

top N ... sdded to top
temp
aodr2+1

addr1+1

topt+l
temp+l

uah room below HIMEM ?
frimem

temp

frimemtl

temp+l

ashift

Nnoroom

¥ Move block to end
t LDA asddr?

aocr 1

size

Qqap
addr 2+

17

Resequencer

3080 SEBEC addrl+l
3090 STA sizetl
3100 STA aap+l
3110 LDA addarl
3120 S7TA loco
3130 LDA addrl+l
3140 STA loc+l
3150 LDA top
3160 STH dest
3170 LDA top+l
3180 STA dest+l
3190 JER lmove

3200 3

3210 ¢

220 N xxxx Close gap

3230 %

3240 N Inelude end block in shift

reacdy for next exit test

3250 LDA top

3260 SEC

3270 SBC addrl

3280 STA size

3290 LDA top+l

3300 SEBC addrl+l

3310 8TA size+l

3320 LDA addr?

3330 STéA loco

3340 LDA addr2+l

3350 STA loc+l

33460 LDA addrl

3370 STA dest

3380 LDA sddarl+l

3390 STA dest+l

3400 JSR lmove

3410 ¢

3420 N Is shift to end of proagram ?
(Target => last line no.)

34320 LDA taraet

3440 OMP finasl

3450 LDA target+l

|18

34460
34710
3480
3490
3500
3510

3520
3530
3540
355

3560
3570
3580
3590
34600
3610
3620
34630
3640
3650
3660
34670
3680
34690
3700
3710
3720
a73o
3740
3750
3760
azzao
3780
3790
3800
3810
3820
3830
3840

Resequencer

SEC final+l
BCC gettagt
JMF exit N No more moves needed

o e se

X¥XEX Find address of line above
tarqget

+
+

agettat LDY #1 N\ Skip ‘return’
STY loc

LDA page

STé loc+l

INY \ To 2

sqgettgt? DEY \ To 1

LDA& (loc),Y

CHMF target

RDEY \ To 0

LDA (loc):Y

SBEC target+l

BCS gettqtd3 \ Fassed it
INY

INY \ To 2

LDA (loc?,Y N\ Line length
CLC

anc loc

5TH loo

ECC gettat?

INC loc+l

ENE aettgtZ \ Aluasys
saettqtd LDA loc

STA tatadr

LDA loc+l

8TaA tgtadr+l

XXXX (Opern new aap

e o e e

119

Resequencer

asso LDA top

3860 SEC

3870 SEC tgtadr
3880 OTA size
3890 LDA top+l
3200 SEC tgotasdrt+l
3210 STA sizetl
3920
3930 LDA top
3940 STA dest
3950 SEC

39460 SBEC gap
3970 STA loc
3980 LDA top+l
3990 STA dest+l
4000 SEC gap+l
4010 STA loc+l
4020
4030
4040
4050
4060 +rmove LDY #0
4070 LDX sizet+l

4080 EBEQ rmvpart

4090 ¢

4100 .rmvZ DEC loc+l
4110 DEC dest+l

4120 .vrmv3 DEY

4130 LDA (loc),Y

4140 STA (dest),Y
4150 CFY %0

4160 ENE rwv3

4170 ¢

4180 DEX

4190 EBNE rmvZ

4200

4210 srmvpart LDX size
4220 BEQ rmvdone

4230 ¢

-

XXXX Move memory block right

* 7 4s s

120

Resequencer

4240 DEC loc+l

4250 DEC dest+l

4260 +rmvd DEY

4270 LDA (loc),Y

4280 STé (dest),Y

4290 DEX

4300 BNE rmv4

4310 ¢

4320 ¢

4330 N\ xxxX%X Move block to gap
4340 3

4350 .rmvdone LDA qap

4360 STA size

4370 LDA& qaptl

4380 STA sizetl

4390 LDA top

4400 STéA loco

4410 LDA top+l

4420 STA loct+l

4430 LDA tatadr

4440 SThH dest

4450 LDA tgotadr+l

44460 STA dest+l

4470 JSR 1move

4480
4490 ,exit LDA #&FF
4500 LDY #0

4510 STA (top),Y
4520
4530 LDA #&8A N\ Stuff buffer
4540 LDX &0

4550 LDY #ASC "R"

45460 JSR osbyte

4570 LDY #ASC "E"

4580 JSR osbyte

4590 LDY #ASC "N"

44600 JSR osbyte

44610 LDY #ASC "M

44620 JSR osbyte

4630 LDY #return

v

-

e

121

Resequencer

4640
46510
44660
44670
4680
44690
4700

4710

4720
4730
4740
4750
4760
4770
4780
47910
4800
4810

4820
4830
4840
4850
4840
4870
4880
4890
4900
4910
49210
4930
4940
4950
49460
4970
4980
4990
L0000
122

JMF

2 e S ee s

ir

P

AX

*
¢

osbyte N RTS to BASIC

XXX Subroutines XEXX

Convert decimal to hex
‘loc’ contains correct address

buffer

Ermter with default line no. in

and delimiter in Y

convert S5Ta temp

5TX
STY

temp+l
mark

delimiter first character 7
¥0

(loc),;Y

mark

convdone N No digits to

convert

+

N Else clear temp

STY
STY

+

temp N0
temp+l

N Top of loop
sconvE LDA (loc),Y

CMP
EEQ
CHMF
ECC
ASL.
FOL.
LDA
LDX
ASL.
ROL.

mark N Delimited ?
convidona

FASC "0" N For what’s below
converr N HWrong delimiter

temp N times 2

temp+l

temp N Save in AX
temp+l

temp N times 8
temp+l

Resequencer

5010 ASL temp

5020 ROL temp+l

5030 CLC

5040 ADD temp N add times 2
5050 STA temp

5060 TXA

5070 ADC temp+l

5080 STA temp+l

5090
5100 LDA (loc),Y N Next ASCIX
5110 SEC

5120 SEBC #ASC "0" N To hex
5130 CLC

5140 ADRC temp \ Add it on
5150 8STA temp

5160 BCC convd

5170 INC temp+l

>

5180 ¢

5190 sconvd BIT temp+l

5200 BEMI converr N line no. = Q2767 7
5210 3

5220 INY

5230 CFRY #6 \ Too long 7

5240 EBNE convZ N If so, fall through
H250
5260 sconverr SEC
5270 RTS

5280

aZen

> e

‘e

convdone INY \ Foint to next

trgte

5300 TYA N\ Ready for re-entry

5310 CLC

5320 ADC loco

H5A20 8TA loc N Hi-byte must stay on
BEAME PHOEe

5340 RTS N With carry clear as DK flaag

5350

5360

5370

5380

-

XXKE Move memory bhlock left

e S ee e

123

Resequencer

5390 s lmove LDY #0

5400 LDX sizet+l

5410 BEQ lmvpart

S4z20

5430 Jlmvpage LDA (loc),Y
5440 STA (dest),Y

9450 INY

9460 EBENE lmvpage

5470 INC loc+l

5480 INC dest+l

5490 DEX
5500 EBNE lmvpage
5510 8

G920 lmvpart LDX size
5530 BEQ lmvdone

5540 3

S50 Jlmvilast LDA (loc),Y
9560 STA (dest),Y

SS570 INY

SEH80 DEX

5990 BNE lmvlast

9600 3
9610 +lmvdone RTS
9620 ¢
G430 3
G640 3
9650 1
D660 ¢

9670 synterr = Y

9480 M% = CHR$0 + CHR$4 + CHR$7 +
"Silly"

S94690 $synterre M#%

G700 PZ o= PXZ o+ LEN M%$

5710 PPZ = 0

it

720 ¢

G730 noroom = P%

9740 M% = CHR$0 + CHR$0 + CHR$7 + "No
room

G750 $norvoom = M$

G760 FA o= PYO+ LEN M$
124

Resequencer

G770 PR o= 0
GBren PAo= FPLo+ 1
Garen 3

G800 NEXT

G103

G0 END

125

Shape maker

SHAPE MAKER

SHAPER is a BASIC program which analyses a shape drawn on the screen and
converts it into a string of user-defined characters, so that you can re-display it
at different places over the screen. The program is written as a BASIC

procedure (PROCIAill) and is embodied within a larger demonstration program.

The shape that we are using for our demonstration is a circle with a thick
circumference line. It will take up 36 character spaces and is set in a box to
define its boundaries.

Since we will exceed the normal 32 characters available for user-defined
characters, we have to ‘explode’ the character set. Please refer to the notes on
the Character Generator for a full description of this process. The program
starts by checking whether PAGE has been reset in order to make room for the
extra characters. If your shape is of a different size, you'll need to make the
appropriate adjustments.

At the beginning of the program there are two variables, HZ and VT, which
specify the horizontal and vertical dimensions of our shape. If you look at the
source listing, you'll see how the program uses these two variables to work out
whether we need to explode the character set and, if so, where to set PAGE.
We call on OSBYTE routine 131 (see page 431 of the User Guide for details) to
establish whether you have a disk- or tape-based system.

Before we draw the circle itself, we set up an array of sine and cosine values.
Although this takes up extra space in the computer’s memory, it is faster to
look up the array during run-time than to carry out the same calculations of
trigonometric values over and over again. The circle itself is drawn in quadrants,
using the same routine as appears in the Circle Draw program.

The shape is then analysed with the POINT command and the individual pixels
are transformed into 8 X 8 character cells. They are re-plotted in red simply to
demonstrate the progress of the scan.

The scan itself is carried out in the form of a vertical boustrophedon, that is, in
columns moving alternately up and down the screen, rather than in a more usual
left-to-right row scan. The reason for this is so that the final shape can be sliced
up with LEFT$ and RIGHTS$ commands. In that way, you can ‘pull’ it on from
the left of the screen and ‘push’ it off at the other side without wrap-around.

Although the demonstration uses a circle, you can obviously create your own
shapes, with mathematical routines or from the keyboard (perhaps using the
cursor move keys) or even with a joystick.

126

Shape maker

10 REM xxxx SHAFE-MAKER xxxx
20 3

30 REM (o) Tan Trackman 1983

40 3

930 REM Draws 2 shape on the scoreen

thern converts it into a
user~defined shape for printing
angwhere else

&0 3

70 HZ

g0 vT

2 L

100 MEM = ({(HZ x VUT) DIV 32) x%x &i00 ¢
REM Every 32 characters abhove the
first meeds an extra 100 buytes of
MEMOT Y

110 ¢

120 REM Find lowest free RAM sddress

1320 A% = &83

140 BASE = (USR(EFFF4) AND &FFFFO00) DIV

&lo0

150 3

160 REM Test that the character memory
is sufficiently "emploded"”

170 IF FAGE < BASE + MEM THEN FRINT
"Reset FAGE to "i ~BASE + MEM " and
re-run'" § STOF

180 ¢

190 MODE 1

200 VDU 23:,1,0503030F ¢ REM Cursor off

210 ¢

220 MEM = MEM DIV &100

230 IF MEM > 0 THEN FROCoscli

240 3

250 FROCbhox (HZ x &20,VUT x &20) § REM
Draw & box to show shape’s ares

260 3

&
&

REM Horizonmtal size
REM Vertical size

- e

o

127

Shape maker

128

270
280
290

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
w00
S310
B20
G330
G540
550
G960
G70
a80
G90
600
610
420
&30
640
650

SZ = 2 1 REM Drawing step size
FROCtriqQ

FROCeirele (RES0,&840) ¢ REM As a
demo

GCOL. 0,1

FROCFLILL (6,6)

FROCsetup

FRINT A%

FRINT TAEC0,30)

END

*
*

+
4

DEF FROChox (X,Y)

UDL 29,82803&82003

X = X + &20

Y = Y + &20

MOVE X DIV 2,Y DIV 2
FLOT 1,X,0

FLOT 1:;0,-Y

FLOT 1,-X,0

FLOT 1,0,Y

ENDFROC

¢

+
+

DEF FROCcircle (R1,R2)

FOR RZ% R1 TO RZ2 STEF 2

FOR A = 0 TO RAD 20 STEF RAD $Z
Xao= R4 SODEG &) /7 2) + 5
YZ = RZA x CODEG A) / 2) + .5

ES

FOR QX% = -1 TO 1 STEF 2
FOR QYZ4 = -1 TO 1 STEF 2

MOVE x% x OQX%Z,4% X QY%
DR&W XZ X QX%Z.YZ X QY%
NEXT
NEXT
YA ¢4

&6
470
4810
690
700
710
720
730
740
750
760
770
780
790
800
810
820

830
840
850
860
870
aao
8%
oo
f1a0

Qe0

230

240
e
Qa0
@70
Qa0
@0
1000

yh o=
NEXT
NEXT
ENDFROC

DEF FROC
DIM E(7)
Upu 29,8
N o= 128

FOR T =
IF I M
IF I

TO 1

FoO

T

Shape maker

Y%

fill (X,Y)

260 ~ XX&L103&Z1C + Yx&103

1 T X

on 2 THEN FOR J = 1 TO Y
MOD 2 = 0 THEN FOR J =Y
STEF ~1

R K =0 T0O 7 STEF 2
FOR L = 1 TO 0 STEF -1

H]

BEo= 0

FOR M = 0 TO 7
XT = Ix&20 + Mx4
YT = -Jx&20 - (K +
L) x4
IF POINTOXT,YTY THEN
FLOT 69, XT.YT
IF POINT(XT,YTY THEN E
= oBoR E A AT - M)
MNEXT M

e

E(E o+ L) = E

MEXT L.
NEXT K

129

Shape maker

1010

1020
1030
10440
1050
10460
1070
1080
1090
1100
1110
1120
1130
1140
1150
1140
1170
1180
1190
1200
1210

1220
1230
1240

1250
1240
1270
1280
1290
1300

1310

130

UDU 23, N,EB(0) BCL) ,B(2) ,E(3),
BCA) B (S, B(6) ,E(7)
s N+

_—

oJ

H

NEXT
MEXT T

ENDFROC

¢
*

DEF FROCoscli

REM Explode the character set
DIM OSCL 10

FOSCL = "FX 20," + STR$ MEM
X% = 0O8CL

Y# = Q8CL DIV &100

call. &FFF7

EMDFRQOC

L3
*

DEF FROCsetup

fF = STRINGH{(PS," ") ! REM
"Declare" the string size -
prevents string garbage

AF = """ ¢ REM Now cleasr it

M o= 128 ! REM CHR$ counter

REM Cornmect defined shapes in a
vertical "houstrephon" with
cursor move keys

REM This allows LEFT$ and RIGHTS
sectioning of the shape

FOR X = 1 TO &

IF X MOD 2 THEN FOR Y = 1 TO 5
IF X MOD 2 = 0 THEN FOR Y = 5
O 1 STEF -1

A% = A% + CHREN + CHR$8

N
et

1330
1340
1350
1340
1370
1380
1390
1400
1410
1420
1430
14410

1450

1440
1470
1480
1420
1500
1810
1520

1430

Shape maker

IF X MOD 2 THEN A% = A% +

CHRE$10 ELSE A% = A% +
CHR$11 ¢ REM Up and down
alternate passes

No= N+
NEXT
A% = A% + CHR$N
N o= N o+
NEXT
NDFROE

s ¢4 [T we

DEF FROCtLvig

REM Creste array of trig
values,

REM Faster than calculating
during run-time

DIM 8490 DIV 82,0020 DIV 823

*
*

FOR AZ = 0 TO 90 DIV 87
SOAXY = SIM (R&AD AXXE)
Ceax)y = COS (RAD AXx2)
MEXT

@

ENMDFROC

131

Sideways characters

SIDEWAYS CHARACTERS

The routine which forms the basis of this program was originally part of a
program called ‘Sideways', which is included in the ‘Programs from the
Computer Programme’ Pack. The routine has since been enhanced to make it
more versatile.

The program is called TWIST. It lets you display any character sideways (left or
right) or upside-down. The routine itself is written in assembly language, but the
demonstration is in BASIC, so CHAIN or LOAD-and-RUN it.

First, a business letter is typed on the screen the right way up. Then, when a key
is pressed, the first part of the letter is reprinted sideways, waiting for you to
finish it off. Characters typed in from the keyboard will be displayed sideways.

The machine-code routine takes up 67 bytes and makes use of CHR$224. You
can substitute any free user-definable character in line 1020 if your program is
already using CHR$224. The routine is CALLed by PROCtwist, which simply
‘pokes’ the required ASCII character into a location in zero-page, where it is
collected on entry to the routine.

Another location, labelled type, controls the orientation of the output character.
If it contains O, characters will appear twisted to the right. With &80 (decimal
128) in it, the characters will be produced upside-down and &40 (decimal 64) will
cause a twist to the left. In the demonstration, it is set to O in line 400. Of
course, altering the value of type merely changes the orientation of the
characters and not of the entire screen display, so that if you change the value of
type and re-run the program, you'll either have to use a mirror or stand on your
head to make sense of what appears on the screen!

When displaying a screenful of characters, the trick effect is clearly enhanced if
the layout of the page is also sideways. You will see from the demonstration that
we have had to use joined cursors (VDU 5) and MOVE commands to perform
this trick. We also needed to write our own rudimentary line-feed and carriage-
return routines.

Since the BASIC part of the program is only a demonstration for fun and to
illustrate the speed of the machine—code, we haven't added complete routines
to trap and handle the cursor-move and edit keys; nor, indeed, for scrolling.

Where we think that you will actually find the routine most useful is in diagrams
and games. You can label graphs down the edges without having to make up an
entire set of user-defined characters. You can also give the idea of turning
movement in a game or moving diagram by making up your own symbols and

132

Sideways characters

then rotating them as you go round corners or change direction. (You're
obviously not limited to the letters of the alphabet - any character, keyboard or
user-defined, will work.)

If you are interested in understanding how the matrix inversion routines work,
you may care to study the BASIC translation of the right-twist routine which
we 've added at the end of the program. It's only there for information. As it is
never used, you don't need to copy it when you use the routine in your own
programs.

10 REM ®xxx TWIST KX

20 3

30 REM (o) Tan Trackman 1982, 1983

40 3

50 REM This program demonstrates how
the standard character set can be
re-defined in & different rotation

&0 3

70 ON ERROR GOTO 800
an

20 MODE 4

100 VDU 23,1,050303058 3 REM Mo cursor

110 VDU 28,0,29,3%9,:,1 § REM New screen
Hi e

120 3

130 PROCsssemble

140 3

150 COLOUR 0

160 COLOUR 129

170 CLS

180 FRINT 77

190 3

200 REM Frint letter normally

210 REFEAT

220 READ LIMN%

230 FRINT TaAB(7)Y LIN%

240 UNTXL LINE = " "

250

e

133

Sideways characters

260
270
280
290
300
310
320
330
340
350

340
370
380
390
400

410
420
430
440
450
4&0
470
480
490
a00
a1
G20
930
40
S50

ab0
a70
aSgo
590

134

*FX 15,0

{ = GET
RESTORE

REM Frint letter sideways
CLS

VDU S REM Join cursors
GCOL. 4,0 § REM Inverting
GCOL. 0,129

GAF = &10C ! REM Gap bhetween
characters

MARGIN = 5 % GAF

X o= &488 ! REM "Top of page" gap
LMARE = &3FF -~ MARGIN

Y = LMARG

Prtype = 0 3 REM &80 for
upsice-dowrn, &40 Tor
anti-clockwise

b4

REFEAT

®
+

READ LIN%

FOR I% = 1 TO LEN LIN%
MOVE. X, Y
FROCtwist (MID$(LIN$,IZ,12)
Y =Y - GAF
NEXT

LMARG
X - 828

v B - we

—

INTTL LINg = " v

REM Frint kegbosrd characters
sidiewaus
¥FX 15,0

X

+
L]

= X - RZE

GO0
H10
&HZ0

420
&40

&G0

6460
&7 0

&H80
&70
760
710

F20

730
740
750
740
770
78n
7en
800

8id

LR A N

R i N s R e [s

o

(SRR RS ARV e

s R s R v v s R vs)
xR I S
~2 3

a8e0
200

Sideways characters

REFEAT

+

MOVE X,Y

FROCtwist ("_") 3 REM Frint
“"oursor®

fat = DETH

MOVE X, Y

FROCtwist (" ") | REM Remove
CuUTSOT

MOVE X, Y

IF &% = CHR$13 THEN Y = LMARG ¢ X
= ¥ - &Z8 1 UNTIL FaALSE § REM IT
‘Return’; back for znother
character else ...

MOWVE X, Y

FROCtwist (A%}

Y = Y ~ GaF

IF Y < MARGIN + GaAF THEN Y = LMARG

b se

X = X - &28 ¢ REM New line

UNTIL FALSE

END

¥

+

REM Error trap
MODE &

IF
at

ERR <= 17 THEN REFPORT 3 PRINT "
Vime "3 ERL

EMD

&
*

DEF PROCtwist (L$)
Pohar o= ASC LY
Call Mcoode

ENDFRQC

va @

135

Sideways characters

¢10
®Z0

{30
?40

@50
@40

@70
eaon
g0
1000
1010
1020

1030
1040
1050
10460
1070
1080
1090
1100

1110
1120
1130
1140
1150
1160

1170
1180
1190
1200
1210
1220

136

DEF FROCzssemble

REM Crestes s machine-code program
for matrix inversion

:

DIM Moode 100 3 REM Space for
Mmachineg code program

+
L]

chiar = 70 ¢ REM Use ¢ bytes on
rero page for speedd
type = K80

oswroh = &FFEE

osword = EFFF1

vdu_chiar = 224 ¢ REM Use anyg spare
ASCIYI character

apt = 2 1 REM No display

FOR I% = 0 TO opt STEF opt
F#% = Moode
COFT I%

¢
¢

N Call 08 ‘read character
definition’ routine

LD& #&A

LDX fohar

LDY #char DIV K100

JER osword

N Creaste new character with VDU
23

LDA 23 N Start VDU 23 command
JER oswroh

LDA #Fvdu_char

JER oswroh

LDY #8 N Twist 8 buytes

re

1230
1240
1250
12460
1270
1280
1290

1300
1310
1320
1330
1340
1350
1340

1370
1380

1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500

1510
1520
1530
1540

Sideways characters

stest LDX #8 N Bit counter

BIT type

BEMI reverse N Bit 7 set

BVS anti \ EBEit 6 set

N Twist 8 bits clockwise
sloopl ROL char,X N\ Rotate one
bit from each byte into carry
ROL. A N ses and collect it
DEX

BNE loopl N Done 8 bits 7

EEQ print N always
N To twist wpside-down -
sreverse LDA char,Y N\ Take each
bSt@ + 00

STh char N .0 hold it

loop? ASL char \ Reverse each
it s

RO A N o6 and save it

DEX

ENE loopZ2

EEQ primt N\ Always
N To twist anti-clockwise -~
santi ROR char X

ROR A

DEX

BENE anti

*
+

print JS5R oswrch N Frint a
hyte
DEY
ENE test N\ Done 8 bytes 7
LDA #vdu_char N Frint new
character ...
JMFP oswroh N e and RTS Lo
BASIC
137

Sideways characters

15460
1570
1580
1550
14600
1610
1620

1430
14640
1450
146410
1670
1&E0
14690
1700
1710
1720
1730
1740
1750
1740
1770
1780

1790
1800
1810
1820
1830
1840
1850

1840
1870
1880
18%0
1200
1910
1920

138

1
MNEXT

EM Here’s the same routine in
Bzsic

DIM X% 8, BZ(8)

Y% X% DIV &100

A% 10

PEE o= ASC L%

Call &FFF1

o

H%Z = &80

FOR I% = 1 TO 8
BACIRY = 0
HZZ = 1

FOR J% = 1 TD &

IF (XZ72J0% AND HX) THEN BX(IX)

BEXRAIXEY + HEZ

HZ% = HZ¥ x 2
MEXT

*

HX = HX DIV 2

NEXT
VDU 23,224, BZ01),BX(2),BX(3),
BLOD) LEBX(G) BRI, BE(T I BL8)
Ul 224

¥

FREM Demo datsas

DATA v 1%, HICH STREET"
DaTa v ANYTOWNY
DaTa

1930
1940
1950
19460
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110

DT
DAaTH
DATH
DATH
DATA
DATH
DATH
DAaTH
DATH
DATH
DATA
DATH
DATH
DATA
DATA
DATH
DATA
DATA
DAETA

Sideways characters

"Je Smith Esa. 1st March"
12, The Averme"
“Londorn N.W. 18"

"Deasr Mr Smith,"

"Thark vou for your letter”

"I confirm that mnext Mondayg"
“ig g suitable date for our"
"meeting and I look forwsrd"
Lo sesing woue '

"Yours sincerely,"

“doe Blogas"

139

Sorting routines

SORTING IT ALL OUT

Three factors control how well a sort works. The first is, naturally, how good
the sorting algorithm is and how well it has been translated into the particular
computer language (BASIC, in our case). The second factor is the total number
of items in the list to be sorted. Some sorts work well with a small list, but work
much more slowly as the size of the list grows (the so-called ‘exponential
explosion"). The third factor is how badly the list is out of order. Some sorts
work very fast with a list which is nearly in order; others work at the same rate,
whatever the order of the list. The last two factors mean that there isn't really a
‘best’ sorting method - it depends on your requirements.

The Demonstration Programs

There are seven demonstration programs on your tape. They are named:
BUBLSRT

SLCTSRT

INDXSRT

SHELSRT

SHL2SRT

QUIKSRT

HEAPSRT

Each of the programs follows the same format. There is a main program which:
a) sets up an array of 100 random numbers

b) calls PROCsort (the actual sorting procedure)

c) displays the sorted array and various information about the way in which the
sort has worked.

Here is the main routine from BUBLSRT - the Bubble Sort demonstration:

10 REM xxxx BUERRLE SORT xoxowx
2003

an LS

40 % = 4 3 REM Print formatting

S0 N o= 100 3 REM No. of itewms
&0 DIM ACNYD
70 XxH o= RNDO-1)Y ¢ REM Resst
randomizer
g0 3
@0 FOR I% = 1 TO N%Z
100 AT = RND(NZD
110 FRINT &4{X%) 3
140

Sorting routines

120 MEXT
136 ¢
140 FRINT

150 COMF 0

1460 SWAR 1]

170 TIME = 0 ¢ REM Reselt timer
180 ¢

190 FROCsort

200 3

210 NOW = TIME

220 3

230 FOR XX = 1 TO NA

240 FRINT A(X2) ¢

250 HEXT

26008

270 0% o= &908 ¢ REM Reselt print formst

280 FRINT 7 "Tiwme "3 MOW/LOO0 M

Seconds"

290 PRINTE NX " Numbers"

S00 PRINTE COMP " Comparisons'

310 FPRINTE SWAF " Swaps"

A0 END
Line 40 (@ % =4) simply formats the colums of numbers so that they fit
properly onto the screen. Normal formatting is reset in line 270 before the
program ends.
In line 50, the variable N% sets up the number of items to be sorted. As we
mentioned above, it doesn't necessarily follow that if you double the number of
items, each of the various sorts will take twice as long. Some are comparatively
faster, but some take more than double the time. We'll come back to this point
shortly.
Line 70 resets BASIC's randomiser. Each of the series of random numbers
generated by the different routines will be the same, so that valid comparisons
can be made.
A loop then creates an array of N% random numbers. An interesting
experiment is to re-run the sorts with the numbers already in order by changing
line 100 to:
A(l%)=101—1%
Then run the sort again with the numbers in reverse order altering line 100 to:
Al%)=101—1%

141

Sorting routines

The computer’s internal timer is set to zero just before the test starts and then
read as soon as the sort is completed.

The variables COMP and SWAP count how many comparisons and swaps have
been made. Although time is usually the most important factor, these variables
will give you some indication of the efficiency of the sort routine, particularly if
you change the size of the array or the order of its contents.

Using the Routines in Your Own Programs

The procedures containing the sorting routines are almost completely self-
contained. The only things that need to be done beforehand are to dimension
the array(s) that will be needed and, of course, to put some data into the main
array. All the variables used by the procedures have been declared as ‘local’
variables so that they will not conflict with any variables with the same names in
your main program.

The COMP and SWAP variables are included in the procedures only because
we want their values afterwards for display. They don't affect the actual sorting
process and all references to them should be deleted.

If you delete the main program (lines 10-340), you can append the sort
procedure to your own program, using one of the methods described on pages
402-3 of the User Manual.

You can use the routines to sort string arrays simply by changing the variables
A() to A$() and T (whenever it is used) to T$, in which case the array variables
will be sorted according to their ASCII values.

As written, the routines always sort the entire array - the normal case. If you
want to sort only a part of the array, you can send the start and end ‘pointers’
to the sort procedure as parameters, e.g. PROCsort (FIRST, LAST). You'll then
have to re-define the loop counters (I and N% in the demonstration programs)
to correspond to the new values.

Which Sort for You?

The table below sets out the sorting times which we obtained from the six
routines, using three different array sizes (25, 100 and 150 items) in random
order, correct order and reverse order. We've also calculated the average
times for each routine.

Before we ran the timing tests, we removed the COMP and SWAP variables
from the procedures. If you want to make the routine work even faster, you
can remove the blank spaces, which we put in to make the listings more legible.

142

Sorting routines

You can also put several statements on to one line. However, if you are that
anxious to save a few more micro-seconds, perhaps you should be thinking of
using a sort written in machine-code. A well-designed machine-code sort could
be over 150 times as fast as its BASIC equivalent!

TABLE OF SORTING-ROUTINE SPEEDS

Number of items 25 100 150 Average
BUBBLE Random 134 21-00 49-44 2993
I — N% 0-01 0-24 0-37 0-21
N% — | 195 31-00 6975 3423
Average [-10 17-41 39-85 19-46
HEAP Random 0-88 527 8-65 4.93
I —N% [0l 571 9-28 533
N% — | 0-86 4.98 8-13 4-66
Average 0-92 5.32 8-69 4.97
INDEX Random |-48 21.98 49.02 24-16
I —N% |-47 21.88 48.-84 24-06
N% — | 1-47 21.87 48.84 2406
Average |-47 2191 48-90 24.09
QUICK Random 0-83 4-97 8-76 4-85
I —N% 173 24-99 5553 27.42
N% — | 169 24.73 55.06 2716
Average [-42 18-23 39-78 19-81
SELECT Random 0-70 8-86 19-31 9-62
I —-N% 0-64 8-51 18-69 9-28
N% — | 0-85 118l 26-10 12-92
Average 073 9.73 21-37 10-61
SHELL Random [-03 9-24 13-14 7-80
I —N% 0-26 [-51 268 |-48
N% — | 0-66 4-08 7-01 3-92
Average 0-65 4-94 7-61 4-40

Best results are shown in bold type.
143

Sorting routines

How Do They Do It?

The next section attempts to explain the mechanics of each type of sort. You
don't need to understand how the routine works in order to use it, but if you
do, you might like to play around with the routine to try to improve its speed
or, say, to sort the array into descending, rather than ascending, order.

To assist in the explanations, we're going to use a pack of playing cards to
represent our array. Let's arbitrarily decide that, for our purposes, a pack of
cards in correct order will start with the Ace of Clubs as the first card, going
through the Aces in the order Clubs, Diamonds, Hearts and Spades, and then
repeat the suit order for the Twos, Threes, etc. The last card will therefore be
the King of Spades. The only problem with using a pack of cards is that there are
no duplicates, whereas in an array there may well be. So, if you really want to
be realistic, mix up two or more packs and then deal yourself 52 cards at
random.

Bubble sort

The Bubble Sort
The Bubble Sort is probably the easiest routine to understand.

Starting at the beginning of the array, adjacent items are compared. If they are
out of order, they are swapped. In that way, the largest item will ‘bubble’
through to the end of the array. The same process is repeated to bring the next
largest number to one position before the end. Every time that a swap is

made, a ‘flag’ (the variable F%)is set to FALSE. The swapping continues until no
more swaps are needed, that is, until the flag remains TRUE.

Take your shuffled pack of cards and a coin. Turn the coin heads up. Look at the
first two cards. If the first card should be lower in the pack than the second,
swap them over. Look at the second and third cards. Again, swap them if
necessary. Repeat this process until you reach the end of the pack. The first
time that you make a swap on each ‘pass’ through the pack, turn the coin over
and then leave it tails up until you reach the end of the pack. At the end of the
first pass, you should be left with the King of Spades (the ‘largest’ card) at the
bottom of the pack.

If the coin is heads up, you didn't make any swaps. This means that the pack is in
order and you have finished. However, if the coin is tails up, there is more work
to be done. Turn the coin back to heads and restart the ‘compare and swap'
process from the beginning of the pack. Since the King of Spades is already at the
bottom of the pack, you only have to compare 5| cards this time. Now you'll
get the King of Hearts to one before the end. Each time you go through the
pack, stop one card sooner, since you know that the cards below are in order.

In the computer program, the coin is represented by the variable F% (for ‘flag’)
and the stopping point is held in the variable P% (for ‘pointer’). Notice how we
need an extra variable T to help in the swap. If you don't understand why, try
swapping the contents of a glass of water with the contents of a glass of milk
without using a third glass! (T is a floating point variable in case the item to be
swapped is a decimal number or outside the range of an integer number.)

The speed of the Bubble Sort depends on how ordered the items are to begin
with. There is a significant difference between an array in order (with 100 items,
the demonstration program takes about 0.2 seconds) and an array which is in
reverse order (about 3| seconds).

As you will see from the table, the sorting time also increases out of direct
proportion to the size of the array. A fourfold increase in the number of items
causes a fifteenfold increase in the sorting time.

145

Bubble sort

10 REM xxxx BUEELE SORT XXX

20 3

a0 CLS

40 @%Z = 4 ¢ REM Frint formatting
90 N%Z = 100 { REM No. of items

&0 DIM ANK)

70 I% = RND(-1) { REM Reset
randomizer

80

0 FOR IZ = 1 TO N%

i00 ACTZY = RNDNZ

110 FRINT ACIX):

120 NEXT

1206 3

140 FRINT

150 COMP

0
1460 SWAF 0
0

§onoH

170 TIME : REM Reset timer
180 ¢

1920 FROCsort

200 @

210 NOW = TIME

L ard :

230 FOR I% = 1 TO NZ

240 FRINT A(IZ%)§

250 NEXT

260 @

270 @% = &904 ¢ REM Reset print format

280 FRINT 7 "Time “§ NOW/100 »
Seconds"

220 FRINT: NXZ " Numbers"

300 FRINT: COMF " Comparisons®

310 FRINT: SWAF " Swaps" ¢

320 END
330 ¢
340 ¢

350 DEF FROCsort

360 LOCAL FRE,IXH,PXE,T
370 PR o= NE - 1

380 3

146

Bubble sort

%0 REFEAT

400 Fa o= TRUE

410 H

420 FOR IX = 1 T0 PX

430 IF A Y o A(IEALY THEN T

ACTRY = A(Ix+1) ¢

ACTZHLY = T 3 F# = FALSE § SWaP
= GWAF + 1

444G COMF = COMF + 1

450 MEXT

440 :

4710 Fa o= Fi - 1

4810 LUNTIL FZ

490

500 ENDFROC

147

Selection sort

The Selection Sort

In the Bubble Sort, we physically swapped adjacent cards throughout the pack.
Let's imagine that before we started, the King of Spades was the 27th card.
After the first pass, that card became the 52nd card but all of the other cards
stayed unsorted. So why don't we just look for the King of Spades and swap it
for the bottom card? Then the next time, we ll look for the King of Hearts and
swap it with the 5Ist card and so on, throughout the pack.

That's the idea behind the Selection Sort, except that, since loops run faster in
BASIC forwards than backwards, we'll begin by looking for the Ace of Clubs
and bringing it to the top of the pack. When you do the sort with a pack of
cards, you might not see why we have to do a swap, since you can simply
extract the Ace of Clubs from somewhere in the middle of the pack and put it
on the top. If you don't do a swap, you are effectively going right through the
pack, putting the original first card in the second position, the second card in the
third position and so on - very time-consuming for the computer.

Again, we could use our coin as a ‘flag’ to tell us whether a swap is needed, but,
with a small array, this actually slows down the computer program. It takes
longer to check the flag than to complete the entire loop. With a large array,
the ‘trade-off’ time might warrant testing a flag.

10 REM = SELECTION S0RT wwxx

20 3

an CLS

40 BE o= 4

S0 ME o= 100

0 DIM & ONED

J0TE = RNDO-1)
a0 1
O OFOR TXH = 1 TO N%

100 ACTEDY = RNDONTD
110 FRINT A(TH) 3
120 MEXT

130 2

140 PRINT
150 COMF = 0
L&EO SWSE 0
1784 TIME 0
180

190 .
200 3

148

Selection sort

210 MNOW = TIME

220 03

280 FOR I#% = 1 TO MNZ%

240 FRINT AL% 3

2590 HEXT

2603

270 @E o= &Y0H

20 PRINT ¢ "Time i NOW/s100 "
Secordds"

290 FRINTI NZ " Mumbers'

300 FRINT: COMF " Comparisons"

310 PRINT SWAF " Bwaps" 7

320 END

330 3

G40 3

350D

340

arzn 2

380 FOR I% = 1 TO NZ-1

a%0 T = A(L#E?

400 S A 4

410 §

420 FOR J% = T% + 1 TO N%

430 IF acdZ)y 0T THEN T = &0GJ%) 8

P o= J% 3 SHAF = SWAF + 1

440 MEXT

450 3

44610 T = a(I#%)

4710 ACLZY = AFE)

480 AoEEy = 7T

490 COMPF = COMF + 1

500 MEXT

510 3%

HE0 ENDFROC

149

Index sort

The Index Sort

This time, take a piece of paper. Write down the numbers | to 52 in a column.
Look at the first card. Now go through the pack, and count up the number of
cards which are lower in value than that first, ‘control’ card. Add one. Write
down that number against | on your paper. For example, if the first card is Six
of Diamonds, you would write down the number 22 in the first row of your list
of numbers. That tells us that the first card in the pack is the 22nd highest in
order.

In the previous sort routines, duplicates have been taken care of automatically.
In the Index Sort, we would have a problem if two or more cards had the same
value. To deal with this situation, if a row already has a number against it, you
would have to move down until you found an empty row.

Keep repeating the process until you have been through the entire pack.

As you'll see from the table, this is a very slow sort routine, since it goes right
through the entire array for every item in it. The reason that it's sometimes
used is that, as its name suggests, it creates an index to the main array, which is
left alone in its original order. This could be useful to avoid wasting memory
space when swapping string arrays.
L0 REM xxxx TNDEX SORT sxowx
20 3
a0 CLS
40 @% = 4
S0ONE o= 100
A0 DIM ACNKY XHIONTD
0 TH = RND(-1)
an 3
0 FOR IX = 1 TO N
100 ACTZY = RNDONZD
110 FRINT &(T%) 3
120 MEXT
130 3
140 FRINT
150 COMP 0
160 BWAF = 0
{

170 TIME =
ran ¢

190 PROCsOTL
00 3%

150

10

el
Bee oo

230
240
250

e &
ol)

270
280

290
ago
310
320
330
340
350
3460
370
380
390
400
410
420

430
440
450
4460
470
480
490
S00
510
G20
430
G40

NOW = TIME

FOR IZ = 1 TO NX
FRINT A{XZ(IZI S
NEXT

+
*

% = 904

FRINT 7 "Time "3: NOW/LO0O0 ¢
Seconds"

FRINT? NZ " Numbers"
FRINT: COMF " Comparisons"
FRINTS SHAF " Swaps"

END

DEF PROCsovrt

LOCAL Ix%;J4,F%

FOR I% = 1 TO N%
PE o= 1

FOR JX = 1 TO NX
IF AT
1
COMF = COMF + 1
NEXT

REFEAT
IF XX(FZ)Y THEN FZ = PX
UNTIL XX(FZ)Y = 0

*

XKAAPZY = I%
SWAF = SHAF + 1
NEXT

ENDFROC

-+

1

Index sort

= AGIEY THEN FX = FPXL +

151

Shell sort

The Shell Sort

We can see from the table that if the items in the array are already in order, the
Bubble Sort is the fastest sorting routine. The idea of the Shell Sort is to
concentrate on getting a gradually increasing section of the array sorted out as
early on as possible, so that it won't need re-sorting on subsequent ‘passes’
through the array.

Unless you have a very large card-table, you'll probably need to lay out this card
demonstration on the floor. Take your shuffled pack of cards and a coin. Put the
coin heads up. Set out the cards, face up, in two rows of 26 cards one above
the other. (In fact, you're splitting the total number of items to be sorted into
two halves.) Go through the pack, but, instead of comparing adjacent cards as in
the Bubble Sort, compare pairs of cards in columns. In effect, you are comparing
the first card with the 26th card, the second card with the 27th card and so on,
until you have made 26 comparisons. In each comparison, if the card in the top
half is larger (i.e. higher in our arbitrary card order) than the card beneath it in
the second half of the pack, swap the two cards over and, if the coin is not
already set to tails, turn it over.

Turn the coin heads up. (The coinis a ‘flag" - tails indicates that a swap has been
made during the pass.) Collect up the cards in order (i.e. the first card in the top
row first, the second card in the top row second and so on). Re-deal the cards
into four rows of |3 cards each. The first card goes at the left of the top row,
the second card to its right and so on. Starting with the first card, compare it
with the card immediately below it. Swap them if necessary and set the coin to
tails up. If the coin is tails up after the last comparison, put it back to heads and
repeat the ‘compare and swap' process. Keep doing so until the coin stays heads
up. Notice now that the cards are already in order within each column of four
cards.

Collect up the cards and re-deal them into eight rows of six cards each with four
cards left over in a ninth row. The size of the row - six cards - is always half of
the previous row size, ignoring fractional halves. Repeat the entire ‘swap and
compare’ process until the coin stays heads up. The columns should now be in
order.

Repeat the complete process twice more, once with rows of three cards and,

finally, with one long column, one card wide. The last pass is, of course, a
standard Bubble Sort.

A slightly slower variation of the Shell Sort (included on the tape as SHL2SRT)
carries out a Selection Sort, rather than a ‘mini Bubble Sort" on each pass
through the array.

152

REM s SHELL SORT XK

<+
*

LS

Ba o= 4

ME o= 100

DIM AN

T#% = RND{-1)

FOR T# = 1 TO NZ
ACTEY = RNDONZD
FRINT &Y% 3§
MEXT

FRINT

COMF = 0

SWAF = 0

TIME = 0

FROCsor L

MO = TIME

FOR T#% = 1 TO NX
FRINMT ACIX)
MEXT

@n o= &908

FRINT 7 "Time "§ NOW/ZL1OO ¢

Seconds"
FRINT: NZ " Numbers"

FRINTS: COMFP " Comparisons'

FRIMT: SWAF " Swaps"
END

0

Y

DEF FROCsort
LOCAL CE,FEL,GRTH, T
G o= NI

+
+

4

Shell sort

153

Shell sort

390
400
410
420
430
440
450
460
470

480

490
aS00
a510
D20
a3
a40
550

G40

RE.

e

BN

FEAT
Ga o= GX DIV 2
Ca o= NZ& - GX
REFEAT

FZ = FALSE

FOR T% = 1 TO CZ%
Fa o= T% + GX
IF ACTEY > APEY THEN T =
ACTZY ¢ ACTEY = ALY+ AP
= T 3 F# o= TRUE ¢ SHWAF = SWAF
+ 1
COMP = COMF + 1
MEXT

UNTIL FZ = FALSE

*

UNTIL GX <= 1

DFROC

154

10
Z4

30
40
&l
&
70
810
kL
100
110
120

130

RE
L.
34
M
DI

res e
LA

<+
a

Fi

<
H

Moxxsr SHELL/INSERTION SORT Xxxx

g

= 4

= 100
MoACNZD

Ry (12

ROTE = 1 TO NX
AOTEY = RMDONZD
FRINT &4(TX) 3
MEXT

140
150
1460
170
180
190
200
210
220
230
240
250
2460
a7
280

2890
300
310
3Z0
aso
240
350
260
a7z
380
ago
400
410
420
430
440
450
4460
470
480

4910
S00
510

Shell sort

FRINT
COMP = 0
SWAR = 0
TIME =

FROCsort
NOW = TIME
F

OFr I#% = 1 TO NZ
FRINT A(TZ) 3§
MEXT

4+
+

% = &9204

FRINT ¢ "Time "3 NOW/sLO00 ¢
Seconds"

FRINTS: N¥E " Numbers"
FRIMNT: COMF " Comparisons”
FRINT: SWAF " Swaps' 7

END

DEF FROCsort
LOCAL CEFX, R, TH %, T
G o= NZ

REFEAT
GA o= GA DIV 2
Ca o= N& - GX%

FOR Ix = 1 TO Cx STEF GX
T = ALTE)
A A 4

FOR J# = TZ + GZX TO NX STEF GX
IF ARy <0 T THEN T = AdJX) 3
FA o= JA
COMFP = COMF + 1
NEXT

e

I55

Shell sort

520 T = ACTH)

a3 ACTEY = AP
G40 ACExRY = T

G950 SHAF = SWAF + 1
a60 MEXT

S70 H

580 UNTIL G% <= 1

G990 3

H00 ENDFROC

156

Quick sort

The Quick Sort
The Quick Sort, as its name indicates, is significantly faster for out-of-order
arrays than the sort routines that we have looked at so far.

Take your pack of cards. Look at each card in turn. If it is lower than the Six of
Hearts, put it on to a left-hand pile, otherwise put it on to a right-hand pile. (The
reason for choosing the Six of Hearts is that it is half-way through a pack of cards
which is already in order.) Next, pick up the left-hand pile and divide it into two
smaller piles, using the |3th card, Five of Clubs, as the test card. Do the same
with the right-hand pile, using the 39th card (Nine of Spades).

Continue subdividing into left- and right-hand piles. If you keep the piles in their
correct positions relative to each other, you'll end up with the Ace of Clubs as
the left-most card and the King of Spades as the right-most, with all of the other
cards in order in between.

That's the general idea of the Quick Sort - but it's organised slightly differently
for use on the computer. To work it with the cards, you'll need a paper-clip and
a coin.

Reshuffle the cards and lay them out, face up, in one long row. Now carry out
the following steps:

| Put the paper-clip on the left-most card and the coin on the right-most card.
2 Compare the two ‘marked’ cards. If the left-hand card is higher than the
right-hand one, swap them over.

3 Remove the coin (leaving the card where it is) and replace it on one card
nearer towards the card with the paper-clip.

4 If the paper-lip and the coin are not on the same card, go back to Step 2.

5 When the coin and the paper-clip meet, that card is in its correct position.
Furthermore, all the cards to its left are earlier in the pack and all of those to its
right come later in the pack. Turn the card over to show that it has been sorted.
6 Now repeat the whole process, first with all of the cards to the left of the
correct card and then with all of the cards to its right.

7 Gradually, you'll end up with more and more subdivisions consisting of only
one card. When there are no more multiple-card subdivisions, the pack will be
in order.

Obviously, the computer doesn't ‘turn cards over’. Instead, it keeps track of
duplicate sets of ‘paper-clips and coins’ - actually left-hand and right-hand
pointers to the appropriate positions of the items in the array - until they all
meet up, but the concept is the same. You'll notice from the program listing
that two special arrays have to be created to hold the pointers so that the
Quick Sort, although fast, takes up extra memory space. You would use it if

speed were important and you had plenty of spare memory capacity. 57

Quick sort

10 REM xsxx QUICK S0RT ®xxx
20 3
30 CLS
40 @% = 4
50 OMNE o= 100
A0 DIM
AN S SLAISARINGY) , SRA(SARING YD
70 I#% = RND(-1)
80 3
SO0 FOR I% = 1 TO NZ
100 ACTHY = RNDONZ)
110 FRINT &4d0X%) 3
120 MEXT
130 3
140 FRINT
150 COMF = 0
140 SWAF = 0
170 TIME = 0
180 3
190 FROCsort
200 3
210 NOW = TIME
220 3
230 FOR I#% = 1 TO NZ
240 FRINT ACITXY:
250 MEXT
2600 8
270 @% o= E90A
280 PRIMT 7 "Time "§ NOW/L00 "
Seconds"
290 FPRINT: MNE " Nombers"
300 FRINT? COMP " Comparisons"
10 PRIMT SWHaPF " Swaps'
BZ0 END
330
340

“h e

158

Quick sort

350 DEF FROCsort

FE60 LOCAL FXLE, L2, PXRE,REX
I70 PRo= 1

280 SLEFZY = 1

Ag0 SRAFXY = NX

400 ¢

410 REFEAT

A4Z0 L% = SLEFZD

430 A o= SGRIAFXD

440 AL o= PX - 1

4510 :

460 REFEAT

470 L2% = LA

480 RZ% = R%

420 Fru = TRUE

aoo $

S10 REFEAT

O IF AMRZZY < ALZXY THEN T =
ACLZZY + ALZEY = ARZXN) ¢
ARZZY = T 3 F& = NOT Fx ¢
SHAF = SWAF + 1

] IF NOT FZ THEN LZ2% = L2Z¥
ELSE RZZ = R2% -~ 1

a40 COMF = COMF + 1

il UNTIL L2% = RZZX

D40

570

£
\J

-

x
S

f_;..l

F LZZ + 1 < RZ THEN FZ = FX +
POSLEARXY = L2% + 1 1 SRUPXD

HEE i o BT

"'3
B

580 hé = RZXE ~ 1
590 UNTIL L% == R¥%
4010 H

410 UNTIL F% = 0

&20 ¢

&30 ENDFROC

159

Heap sort

The Heap Sort

The final sorting routine on the tape is the Heap Sort, which makes use of the
idea known as the ‘binary tree’. Although it's only the fastest routine with 150
unsorted items, its timings average well and it is a good contender for the ‘best
all-rounder’ prize. If you look at the listing, you'll also notice that it uses up very
little extra memory space in which to operate.

It is more difficult to understand how it works than the other sorting routines.
To make it easier, the following description, using the pack of cards, is a
somewhat simplified version of the actual steps carried out by the computer.
Set out the cards in rows. Put one card in the first row, two in the second row,
four in the third row, and so on, doubling up the number of cards in each row.
You should end up with 21 cards in the bottom row. Now, so that you can see
what is happening more easily, move the cards into the form of a pyramid. Each
card in the upper rows (except where there are cards short in the bottom row)
should be in a position half-way between the two cards below it. Now we are
ready to begin the sort.

Go through the following steps:

| Put a paper-clip on the last card at the right-hand end of the row above the
bottom (the fifth row).

2 If there are no cards below the card with the paper-clip on it, move the
paper-clip on to the card to its left. When you reach the left-hand end of a row,
continue at the right-hand end of the row above.

3 If there are cards below the card with the paper-clip on it, compare the card
with the paper-clip on it with the two cards below it. (With a pack of cards,
there will be one card with a single card below it.) If either of the two lower
cards comes earlier in the pack than the upper card, swap the smaller of them
with the upper card. (Don't swap the lower two cards with each other.)

4 When you reach the left-hand edge of the fifth row, you'll notice that each of
the cards in that row is earlier in the pack than the cards, if any, below it.

5 Repeat the process with the third row. This time, however, if you swap
cards in the third and fourth rows, you may affect the relationship between the
cards in the fourth and fifth rows. If you do, you'll have to carry out a secondary
swap between the fourth and fifth rows to keep them in order.

6 After you have checked out the third row, move up to the second row and
finally up to the top card. As before, you'll have to do subsidiary swaps if you
disturb lower cards.

7 At this point, the Ace of Clubs, being the first card in the pack, should be at
the top of the ‘heap’. Put it on one side as the start of the sorted pack. The rest
of the cards won't necessarily be in order, although any particular card will
always be higher than all of the cards in the ‘mini-pyramid’ beneath it.

160

Heap sort

8 Next, you have to carry out the somewhat laborious process of gathering up
the cards in row order, that is, starting at the left-hand card of the second row
and working towards the right-most card in the bottom row. Then, you have to
make a new pyramid and sort it out as before. This time, however, the cards
will be almost in order so that very little swapping should be needed. The Ace
of Diamonds will now be the top card. Remove it and put it under the Ace of
Clubs.

9 Continue making new pyramids - or ‘heaps’ - until the old pack is
exhausted. Each time, the top card will be the next card in order in the sorted
pack.

10 REM s HEAF SORT s
20 3

a0 CLS

40 @R o= 4

H0ON% o= 100

AT DIM ACNZD

7O T = RND(-12

aon s

P0OFOR TH = 1 TO NZ
100 ACTHY = RNDONZD
110 FRINT aCLxR) 3
120 MEXT

130 3

140 PRINT

180 COMP = 0

140 SWaP = 0

170 TIME = 0

ren 3

120 FROCsort
00 3

L0 ONOW = TIME
Z20 @

20 FOR IXE = 1 TO NX

240 FRIMNT AT §

250 MEXT

260 %

SF0 @ o= &90A

20 PRINT 2 "Time "§ NOWSLOO0 M

Seconds"

161

Heap sort

290 PRINT: NYZ " Huombers!

[00 PRINT: COMP " Comparisons'

310 FRINT? SWEFP " Swaps"

320 EMND

330 3

340 @

350 DEF PROCsort

360 LOCAL Ix,J%,7T

370 J% = NX

380 2

390 FOR I% = NZX DIV 2 TO 1 STEF -1
400 T = &(LHE

410 FROCsubsart

4Z0 NEXT

420 3§

440 Ixn = 1
450 %

4460 FOR J% = NZ-1 TO 1 STEF -1
470 T = ACJE+1}

480 GBldE+ly = A1)

420 FROCsubsort

500 HEXT

G100

o
R

ENDFROC
530 3
54003
550 DEF FRDCsubsort
SE0 LDCAL FYHEXE LA
570 K% = I%
580 F% o= FaALSE
S90 BWAF = SWHaF o+ 1
&00 3
&10 REFEAT
40 COMF = COMF + 1
&30 L#E = KA + K%
&40 IF L% = J% THEN UNTIL TRUE @
AOHXY = T § ENDFROC

&G0 8

162

&)

&7 0

&80
&G0
J00
Zin

Heap sort

TF LE < JE THEN IF adliZ+1) > AL
THEN L% = LX + 1

TE T < &dLEY THEM AKE) = &0L%)Y ¢
Fao= LA BELSE FX o= TRUE

UNTIL FZ

AOEEY = T

ENDFROC

163

Spacer

SPACER

SPACER is a utility, written in machine-code, which adds spaces around
keywords and other selected items in a BASIC program, so making it easier to
read, edit and debug. To a large extent, it reverses the effect of the Crunch
utility.

There are two versions of the program on the tape. SPACER is the version for
use with tape-based computers and resides between &E00 and &FFF.
SPACERDISK is for use with disks and is loaded between &1700 and &I 8FF.
Please refer to ‘Using the Programming Ultilities' for installation instructions.
Other than the addresses at which they start, the two programs operate
identically.

As the utility is co-resident, you can load it before or after you get your BASIC
program into memory. Once the utility is in memory, start it working with
CALL &E00 (tape version) or CALL &1700 (disk version).

The routine begins by setting Mode 7and displaying the message Uncrunching . ..
After a short while - just how long depends on the length of your program and
how many spaces need to be inserted - the prompt will return, leaving the
spaced BASIC program in memory.

There is a table at the end of this section which sets out the BASIC keywords in
the numerical order of their tokens. Spacer will insert a space, provided that
there isn't one there already, around all of the keywords between AND (&80)
and HIMEM (&93), with the exception of TAB, and between AUTO (&C6) and
the end of the table, with the exception of PROC (&F2). It will also add spaces
around TO (&B8). We have made this selection in an attempt to compromise
between a fast-running, compact utility routine and adding spaces where a
programmer would probably want them, bearing in mind that, in some cases,
adding an extra space would create a syntactically incorrect BASIC statement.

Spacer will also add spaces around colons and (except as mentioned below)
equals signs.

It won't insert a space:

- at the very beginning of a line

- at the very end of a line

- after an asterisk at the beginning of a line (indicating a call to the Operating
System)

- anywhere between opening and closing quotation marks

- toseparate)= or (=,since) = or { = (with an intermediate space)
causes a syntax error

|64

- after a DATA statement
- after a REM statement

- if it would cause the line to exceed its maximum permitted length.

Spacer

Since the utility is adding to the size of your program with the extra spaces, it
will stop with a ‘No room’ error if the program is about to exceed the amount

of RAM available to it.

Please refer to ‘Using the Programming Ultilities’ for notes on tacked-on bytes,

embedded control characters and other general hints.

EEC EBASIC KEYWORD TOKENS

80 AN 81 DIV 82 EOR

84 OR 85 ERROR 86 LINE
88 STEF 89 SFC 8A TAE(
8C THEN 8D Lirne no 8E OFENIN
90 FAGE 91 TIME 22 LOMEM
?4 AES 95 ACS ?6 ADVAL
98 ASN 99 ATN A EGET
?C COUNT 9D DEG PE ERL

A0 EVAL Al EXF AZ EXT

A4 FN AS GET A6 INKEY
A8 INT A? LEN AA LN

AC NOT AD OFENIN? AE OFENOUT
20 FOINT(C El FOS E2 RAD

E4 SGN ES SIN E6 SQR

B8 TO E9 TRUE 3A USR

EC VFOS ED CHR$ BE GET$
Co0 LEFT®(C1 MID$(C C2 RIGHT$(C
C4 STRING$(CS EOF Cé6 AUTO
C8 LOAD C9 LIST CA NEW

CC RENUMEER CD SAVE CE

D0 FAGE D1 TIME D2 LOMEMS
D4 SOUND DS EBFUT Dé6 CALL
D8 CLEAR D9 CLOSE DA CLG

DC DATA DD DEF DE DIM

E0 END E1 ENDFROC EZ ENVELOFE
E4 GOSUE ES GOTO E6 GCOL
E8 INFUT E9 LET EA LOCAL
EC MOVE ED NEXT EE ON

Fo FLOT F1 FRINT F2 FROC
F4 REM FS REFEAT Fé6 REFORT
F8 RETURN F9 RUN FA STOF
FC TRACE FD UNTIL. FE WIDTH

| New EASIC only
2 OFENUF in new EBASIC
3 0ld EASIC only

MOD
OFF
ELSE

© FTR

HIMEM
ASC
cos

" ERR

FALSE
INSTR(

¢ L0G
- FIL

RND
TAN
VAL
INKEY$
STR$
DELETE

READ
RESTORE
COLOUR
oscLx!

165

Spacer

10

20

a0

40

S0

&0

70

80

en
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
2460
270
280
290
300
310
320
330
340
350
340
370
380
390
400

166

.....

REM (o) Ten Trackman 1982

+
DIM msg(d) 3
b4

+

FEM Basic pointers

lomem
fimem
vartop
top
page

4
*

i

&0
&é

. 94

Mmemloo =

aplit
newtop
SOLIP e
cdestin

length =

aquotefl
asave
HUEIVE
offset

®
L

&

i

OSWrCh o=

asrewl
<
*

REM Con
a0l
GPHoe
quote
colon
astar
equals
Maxsize
st
auto
cata
Proc

T &M

&

&12
&18

&70
&72
874
&7 6
8789
&7 h
&70C
&7D
&7E

=

REM
REM
FEM
REM
FEM

&71
&73
&7%
R77
&79

o+ o+

GH Gl Ge B o

R7E

&FFEE
EFFE7

tants

&on

= ASC

i
i

#oH

822
ASC
ASC
ASE

= &70

&894

= &C&

&nc

- &F2
- &F 4

¢ REM ¢
"xll

I REM for

Mode

REM Text messaqes

7

410
420
430
440
450
440
470
480
490
aoo0
10
H20
5320

540

5850
5460
B70

G580

590
&00
&10
YAl
&30
&40
650
&40
&7 0
&HB 0
&F0
F00
710
FEO
F30
740
70

toat
o

*

<
OTa

H
opt

<+

FOR
Fa =
L

OFT

LDy
+ MG
ard
BEQ
JER
IMY
BNE

-

-

STh
L.DX
5TX

£

LDA
STh
LDA
STA

o

-

LD&

= K8A
= EE8

= &EO0

e 2

IZ = 0 TO opt STEF opt

arg

I%

#0

1loop LDA msaodl),Y N\ Mode

title
msgldone
CSW T

msalloop

#0
fiimem

#1 N Start
meEmloc
page
memloot]

mewthlins LDY &0

(memloo) .Y

maaldone LDA #maxsize
frimemt+l N Himem under Mode 7

at FAGE + 1

7

CHF #&FF N End of proaram Tlag

FNE
JMP

L4
+

morelines
fimisn

Spacer

167

Spacer

760
770
780
790

800
gLo
820
830
8440

ga0
840
870
gan
850
a0
S10
920
Gan
40
QEn
Q&0
@7a

280
G0
1000
1010

LO0Z0
1030
1040
1050
1040
1070
1080
Lo

168

smorelines INY

IMY

LI (memloc),Y

STy length N Offset Lo
mest Line

CMP 5 N One byte line
BEQ endline

INY

L& (memloc),Y N Firvst
Line

CHF #Fstar N 05 command
BEQ endgline

DEY N reset it
solesrauote LD& ED

8Ta aquotetlasa

+
+

smetibvte TNY

LA (memloc),Y

CHMF ool

BEQ endline

BIT quoteflag N Tanore
aquotes

EFL gquote_test

CHF daquote

start of

item in

-

colons in

EME mextbhwyte N Loop wuntil closing

oot
EEQ cleasvraquote

*
®

sauote test CMF fquote

BNE tolkentest

*

DEC aquoteflaa N Set flasg

BENE mestbhyyte

+
¢

1100

1110
1120
1130

1140
111G
1140
1170
1180
1190
1200
1210
1220
1230
1240
1250
1240
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430

1440
1450

Spacer

stokertest CHMF #&8D N Line-rmumber

+
¥

+
®

token.

BNE tokens?

INY N Next 3 bytes are encoded

Line number

Iy
IMNY
EiNE

nexthyte

Mustn’t unpaschk

stokens? CMP #8880 N A token 7
BCS operup

*
*

+
&

N oDont split <= or

+
L]

+
L

CMF

fFoolon

EEQ operuap

CHMF fequals
ENE mextbhyte

DEY
LDA
INY
CMF
EEQ

CHF
BEQ
LD

{(memloc),Y

AsSC "av
rmextibhute

AascC "y
ettt
feaquals

sopernp STA assave

<+
@

STY

Ysave

JER wunpachk

LDA&
LDY
CMF
o

EEQ

T

BHEVE
BV E

fodzta N Can’t
&M

encline

aspace aflter

dats

169

Spacer

14&0
1470
1480
1490
1500
13510
1520
1530
1540
1850
15460
1570
1580
1590
14600
14610
1620
14630
Lé40
146510
144610
1&70
14680
1490
1700
1710
1720
1730
1740
1750
1740
1770
1780
1790
1800
1810
1820
1830
1840

170

CHMP frem
ENE mextbhwte

*
-

serddline LDA wmemloc
(I

ADC length

STé memloo

LDA memloot+]

ADC &0

STH memloo+l

JMF mextline

*
*

Fimish JER osnewl
JMF osmewl N & exit to csller

e s

sunpack LDA top
CLC

Aabc #2

LDA top+l

ARG &0

CMP #maxsize N Room to unpack

BCC inmem
JMF outmem

*
+

sinmem LDA &0

S5TH offset

DEY

CFY #2 N HWas it first byte 9
BEQ typetest

LDA& (memloc,Y

CMF #Fspace

BEQ typetest

ING offset

IHC length

L
<+

shupetest INY

v

1880
18720
1200
1910
1920
1930
1940
1950
19460
1970
1980
1990
2000
2010
2020
2030
20410
2050
2040
2070
2080
2090
2100
2110
2120
21320
2140
2150
2160
2170
2180
21920
22010
2210

oo
tl..z.":x.'to

INY
LDA
GME
EER

+
+

NoNow one up
(memloc), Y
Feol
movetest

CHF
BED

fapace
movetost

LDA

asave
CMP &t ab
EEQ movetest
CHF #abs
BCC goodtype
CHF fFproc
BEQ movelest

CHMF
EEQ

L4
+

fFto
anodtype

Fauto
movetest

CMF
BCC

+
<+

saoodtype LDA lenath
UMk
BCS

no_move N Too big

TN
TG

Ll
&

Smnvetest LDA offset
BENE ao_move
S0 _move RTS

¢
kY

offset
length

NONHOo move

sao_move LDY &2

LDA lenoth

8Té (memloc?:Y N Over
currant length

FEFD N Mawimum line

lerngth

neacded

~wWr 1t

Spacer

171

2240 N FPoint split st token
2250 LDA memloo
2260 CLOC

2270 ADC ysave

2280 STA split

2290 LDA memloc+]

2300 ADC #O

2310 SThA aplit+l

2320 3

2330 NSet up move vectors
2340 LDA split

23S0 8TA source

23460 LDA& top+l

2370 8TA source+l

2380 LDA source

2390 CL.OC

2400 ADkC offset

2410 STh destin

29420 LDA sourcet+]

2430 ADC #0

24490 STA destintl

2450
2460 LDA& top

2470 SEC

2480 SEC split

29490 TaY N Difference over exact KRl100s
200 LDA top+l

2510 SEC

282 SEC splitel

2930 TAX N Fages Lo move

ZE40 0 TYA

2950 BEQ shiftz

2HH0 3

EH70 N Move odd bytes

2H80 0 INY

2E90 sshiftl DEY

2600 LDA (source),Y

Z2HL0 0 85TH (destin),Y

26Z0 CFY &0

BT

172

Spacer

2630 BMHE shiftl
2640 3
ZHG0 sanifLE TXA

26460 BEQ shifltdone
2670

2680 N Move full pages
2690 sanift3d DEC source+l
2700 DEC destintl

2710 %

ZFPE0 cmhiftAd DEY

2730 LDA (sourcel,; Y

7400 8TA (destin),Y

2750 UPY &0

2760 BME shift4

EEF0 ODEX

2780 BHNE shift3

278003

ZH00 sshdiftdone LDA fFspaoe
2810 LDY ysave

U0 CFY #3

2830 BEQ sfter

2840 3

2850 DEY

28460 OMF (memloc),Y

2870 BEQ sflter

880 3

7890 INY

2900 8Ta (memloo), Y

Ze10 LDY offset

2920 CFX #1

2930 BEQ repoint

2940 3

ZoEd safter LDY offsel
FOH0 8Ta (split),Y

2970 DEY

2980 LDA zssave

290 8TA (aplit),Y

So00 ¢

173

Spacer

3010
3020
3030
3040
3050
3040
0740
aoao
3090
3100
3110
120
3130
3140
3150
ala&0

3170
3180
3190
3200
3210
3220
2230
az4
3E50
d240

3270

32840

3290
Tjﬂﬂ

33 J-l]

aE40

174

srepolint LDA& top
CLC

ADC offset
STa top

STH lomem
8TaH wvartop
LA top+l
ahec &0

STé top+l
STH lomem+l
STé vartop+l
INC vsave

RTS
sowtmen LDY 40
staugdloop LDA msglZ),Y N Outb

MEMOT Y
EEQ msgZdone

JER oswroh

THY

BME msgZloop

Muaddons PLA& N FOFP RTS

FL

P Fimdsh N Exit st once

e L

4+

FROCtext (1, CHR$2Z + CHR$7 +

CHRE$31 + CHR$14 + CHR$12 +
"Uncrunoehing ")

FROChext (2, CHR$EL0 + CHR$10
CHRE1E + "No room" + CHR$7)

MEXT

EMD

L4
®
+
%

of

+

Spacer

3350 DEF PROCte:t (N,A%)
33460 msg(N) = FX

3370 $msalN)Y = A%

3380 PX = FL 4+ LEN(A$)Y + 1
3390 PE?-1 = 0

3400 ENDFROC

175

Space remover

SPACE REMOVER

CRUNCH is a machine-code utility for removing spaces from BASIC programs.
It is the second of the three ‘squeeze’ utilities which will help to shorten a BASIC
program. Use it after REMSTRP and before PACKER.

Get the utility into memory as described in ‘Using the Programming Utilities'. It
takes up exactly &100 bytes starting at location &E00. CRUNCHDISK is the disk
version and loads at &800.

When you invoke the utility, the screen will clear (to Mode 7) and the message
Crunching will be displayed in the middle of the screen. After a short while -
depending on the length of your program and the number of spaces init - the
normal prompt will return and the crunch will have been completed.

CRUNCH does not remove all of the spaces in a program. It will leave quoted
strings - that is, anything between quotation marks - as originally entered. It will
also not touch anything in a line following a REM or DATA statement.

Since spaces can be used as delimiters in «FX calls, CRUNCH will not remove
spaces from any line which starts with an asterisk. Normally, asterisks elsewhere
in the line mean ‘multiply’, so that

A=B+C
is correctly shortened to
A=BxC

However, this will cause problems with something like

IFA = 5THEN «FX |5 0 (with a space between 15 and 0)

which will be reduced to

IFA=5THEN+FXI150

The solution is to use commas as delimiters in indine *FX commands, like this
IFA = 5THEN «FX 15,0

Two further checks are made in case your program contains an assembly
language listing. Anything following a reverse oblique (*\") is considered to be an
assembly language comment and anything beyond it to the end of the line is left
uncrunched. Secondly, a space can be used as a delimiter between a symbolic
address label and an opcode, as in:

Joop INX

The rule here is that a dot at the start of a line will prevent crunching. On the
other hand, if you have a label as part of a multiple-statement line, as here:
BEQ skip : .add INC hibyte : etc. . . .

CRUNCH will create the compound variable name addINC and assembly will
fail. The solution is keep all labels at the start of program lines.

176

Space remover

Notice that in all of the above cases where we refer to the start of a line, we
mean literally the first byte. One or more spaces before an asterisk or full stop
will prevent the check from operating properly.

There is one other case where removing a space will cause difficulties. You can
reserve a fixed number of bytes in memory with the special use of the DIM
statement, as in DIM A 25 or DIM B% 30 (see page 237 of the User Guide for
further detalils). If you use an integer variable, the percentage sign enables the
interpreter to handle the crunched DIMB %25, but if you use a real variable, as
in DIMA25, A25 will be treated as a compound variable name and will generate
an error when you run your program. You must either use integer variable
names or reinstate the space after using CRUNCH.

You may be aware that you can omit THEN after IF, as in

IFA=BC=5

meaning

IFA=BTHENC =5

provided that you leave a space between the variable names B and C. If you put
such a statement through CRUNCH, the space will be removed and the result
will become

IFA=BC=5

leading to a syntax error. Since, when tokenised, both the space and THEN
take up one byte each, there seems to be no good reason to leave out the
THEN when writing programs except, of course, to save work for lazy typists
and to make the program code less readable!

One final point arises if you subsequently want to edit your program. Normally,
when you add lines to your program or edit them, you have to make sure that
you insert spaces wherever there is the possibility of ambiguity, particularly after
a variable name. For example, you cannot type

IF A = BTHEN PRINT

since the line editor treats BTHEN as the name of a variable. (You must type a
space between B and THEN.) As CRUNCH is working on a program which has
already