NTELLIGENT
ADVENTURES

FOR THE ELECTRON
AND BBC
MICROCOMPUTERS

Noel Williams

INTELLIGENT ADVENTURES FOR THE ELECTRON
AND BBC MICROCOMPUTERS

Intelligent Adventures
for the Electron

and BBC
Microcomputers

Noel Williams

McGRAW-HILL Book Company (UK) Limited

London - New York - St Louis - San Francisco - Auckland - Bogota - Guatemala
Hamburg - Johannesburg - Lisbon - Madrid - Mexico - Montreal - New Delhi
Panama - Paris - San Juan - Sdo Paulo - Singapore - Sydney - Tokyo - Toronto

Published by

McGRAW-HILL Book Company (UK) Limited
MAIDENHEAD - BERKSHIRE - ENGLAND

British Library Cataloguing in Publication Data
Williams, Noel
Intelligent adventures for the Electron and BBC Microcomputers.
1. Computer games 2. Microcomputers
I. Title
794.8'028'5404 GV1469.2

ISBN 0-07-084749-5

Library of Congress Cataloging in Publication Data
Williams, Noel
Intelligent adventures for the Electron and BBC microcomputers

1. Electron Microcomputer — Programming. 2. BBC Microcomputer —
Programming. 3. Computer games.
I. Title.
QA76.8.E38W55 1985 001.64'2 84-17134
ISBN 0-07-084749-5

Copyright © 1984 McGraw-Hill Book Company (UK) Limited. All rights reserved. No part of

this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior permission of McGraw-Hill Book Company (UK) Limited.

12345 CUP 8654

Typeset by Oxprint Ltd, Oxford
Printed in Great Britain at the University Press, Cambridge

For my mother (who is ultimately responsible)

CONTENTS

Preface
Chapter1 Anintroduction tointelligent games

Chapter2 Designing and planning a game
2.1 Choice

2.2 Structures

2.3 Story structure

2.4 Gamestructure

2.5 Input/output

2.6 Program structure

2.7 Suggested themes for games

Chapter3 Planning the display
(including Pantry Panic)

3.1 Display strategies

3.2 Alook at windows

3.3 Abasicgraphic game

3.4 PantryPanic

Chapter4 Testing intelligence: simulations
(including Mernar Keep)

4.1 Theintelligent player

4.2 Some additional notes on Mernar Keep

Chapter5 Intelligent strategy
(including Scissors and Dilemma)
Gamesthat learn
Anintelligent opponent
Dilemma—the basic game
The program for Dilemma
Intelligent play

or oot oo
QU QO DD =

ix

10
11
13
17
21
26

28

28
33
36
44

50
50

79

79
84
86
88
98

vii

Chapter 6 Adventure basics
6.1 Adventurestructure

6.2 Theplayer character

6.3 Monsters

6.4 Objects

Chapter7 Textinadventure
7.1 Input
7.2 Talking to monsters

Chapter 8 More on adventures
(including Ideas)

8.1 Adventure maps

8.2 Moving a character

8.3 Method A: random movement

8.4 Method B: seeded random movement

8.5 Method C: the HIMEM map

8.6 Fillinginthe map

8.7 Creativity

8.8 Thecreative game

8.9 Bribery and gambling

Chapter9 Anadventure
(including The Opal Lily)
9.1 Writing an adventure
9.2 Objects
9.3 Themap
9.4 Encoding and decoding the text
9.5 Creatingadatafile
9.6 Savingthedata
9.7 Texthandling
9.8 Verbroutines

viii

105
105
107
112
119

122
122
133

139

139
140
140
140
143
146
148
157
166

170

170
178
182
188
198
201
202
207

PREFACE

You obviously know something about intelligence because you have
just done a highly intelligent thing—you began to read this book. If I
was trying to sell it to you (I'm not, of course) I could say that you will
demonstrate even greater intelligence by reading it from cover to
cover. But this book is not about the intelligence of you, the reader. It
is about the intelligence of computers and the intelligence of people
who play computer games. On the one hand it aims to show some of
the basics of artificial intelligence and how it can be used in games.
On the other it shows how you can go about writing games which
require some intelligence to play. Of course, the two things go
together.

Therefore if you want a book of one hundred and forty-four listings
that can be played in your sleep or you want to know how to write
arcade games that move so fast no-one can see their scintillating
graphics, you have probably picked up the wrong book. The listings
in this book are substantial, making extensive use of many of the
facilities of the Electron and BBC micros, but pay little attention to
aliens. There is one example of a graphic game but all the other
games require thought, and time, to play.

The most common example of the thinking man’s computer game
is an adventure. You will find four chapters on adventure which take
you through all the processes of designing and writing your own
adventure to the complexities of manipulating bytes and data
compaction, sentence processing, and semantic databases. This
culminates in an eighty-one room adventure which uses just about
every byte of the Electron’s RAM. There are other types of game
which require intelligence to play (and to program) so there is a
chapter on writing an abstract board game and a chapter on
simulation, both illustrated by substantial programs—Dilemma is
an original computer version of a board game; Mernar Keep is a
simulation cum wargame.

You will also find advice on designing games, on programming
with the Acorn machines, and on how to develop artificial
intelligence routines, as well as many ideas on programs you
yourself can develop. There is a game that learns, two programs that
create new ideas, and a set of programs to take the slog out of

1X

producing your own adventures, as well as many illustrative
routines to incorporate in your own work.

This might sound too good to be true—one book which introduces
artificial intelligence, gives all the basics of adventure design,
describes the considerations of game design, develops your
knowledge of the BBC and Electron, and gives three major
programs which might cost the price of the book on their own. What
has been missed out?

I have assumed a beginner’s knowledge of BBC BASIC and one or
other of the micros that use it, so there is no coaching on elementary
BASIC (though all the more unusual or advanced jargon is
explained). I have kept discussion of graphics in the background,
giving less than a chapter to one of Acorn’s best features, and I have
hardly mentioned sound. I have had to keep the text as brief as
possible and the examples simple—so that the spelling checker in
the adventure can only make suggestions about the player’s
intended input and the sentence processor (or parser) copes with a
limited range of word types. The vocabulary of the adventure could
have been larger than fifty-one verbs and eighty-seven nouns if
there had been room to introduce machine code, and the Dilemma
program could have played a virtually unbeatable game (as it is, it
wins about sixty per cent of the time).

In other words, the book aims to illustrate an enormous and
exciting field and does so through extended example, rather than by
trying to show everything and do everything. Hopefully you will find
an approach to programming and to writing and playing games
which is a little more rewarding than the continual bombardment of
aliens, and through it you will understand the elements of what is
likely to prove the next major stage in the development of
computers—the creation of a thinking machine.

One thing that will never be developed is a machine that could
replace the love and care of my wife, Carrol, without whom this book
could never have been written.

AN INTRODUCTION TO
INTELLIGENT GAMES

This book is about intelligent games, not only for the BBC/Electron
(for which you will find four major listings in this book and several
minor ones) but for any micro with enough memory (a minimum of
16K). There is plenty in the book which is specific to the BBC/
Electron which users of other micros would need to adapt, but all the
principles of design, coding, programming, and presentation
discussed in this book will apply to games design whatever micro you
own.

What do I mean by ‘intelligent games’? Two things. Firstly, there
are games which require some intelligence to play. For all the micros
currently on the market there are innumerable games of the arcade
style, with fast moving animated graphics and devastating sound.
These games are difficult and fun to play but generally they do not
require much intelligence. Instead, you need quick reactions, a good
eye, and a good knowledge of the game. These are typically combat
games—shooting down aliens or defending your missile base—or
travelling games—negotiating mazes at high speed or climbing up
and down ladders and ramps. If such games were real then the real
skills involved would be most appropriate to a soldier—skills of
dexterity, of accuracy, of avoiding panic, of manipulation, and of
concentration. However, this book is concerned more with the skills
of the officer, the person responsible for organizing and marshalling
the many skills of subordinates. The officer may well lack the ability
of those under his or her command, but requires extra skills. These
are skills of planning, of organization, of logistics, of tactics and
strategy, of psychology, of language, and of accurate guesswork. The
games in this book require those kinds of skills and the book
describes approaches to programming games which are primarily of
this kind. Although there is some discussion of graphics and one
program demonstrates their uses, you will not find many tips on how
to write fast arcade games.

As more and more people learn about micros and pass beyond that
early fascination with the magnificent arcade games which are
available, so the interest in intelligent games is widening. Many
people interested in programming seem to have the sort of mind that
likes games playing, whether it is solving puzzles, playing abstract

1

board games like Chess and Othello, role-playing games of fantasy
and adventure, or wargames and simulations. These games not only
demand logic and intelligence but they teach it. In particular,
educationalists have been quick to realize that not only can the
micro teach people about subjects like geography, mathematics, and
history, it can teach them a great deal about how to think, how to
plan, and how to solve problems. But this book is not really for the
teacher; it is for fun. There are still too few games around which
demand intelligence in players. Hopefully, when you have read this,
you will be able to do something to rectify that.

The second meaning that ‘intelligence’ has in this book is the sense
of ‘machine intelligence’. Perhaps you have come across this phrase
in computing magazines or perhaps have heard of the study of
artificial intelligence. Called AI for short, this is a branch of
computing which uses much research in psychology and linguistics.
It aims to learn about human intelligence by discovering what it
would take to make a machine intelligent. If you think about it for a
moment you will see that if we want to write a game which requires
intelligence to play then the game must have some intelligence in its
design. Either it has to be designed by hyper-intelligent alien
programmers with convoluted minds who are capable of designing
the microtorture known as adventure games (you will see how to
become one of these later in the book) or the game itself must have
some intelligence. So either the program must be intelligently
designed in order to cope with all the inputs and strategies of a
player or it must use some intelligence itself to cope with the player
as the game goes on. In work on Al, researchers have tried to
discover what a program has to do to behave like a human being so it
can respond to intelligent actions by a player.

Of course this research has not been designed with the main idea
of making better games. It has offshoots into robotics, medical and
psychological research, linguistics and machine processing of text,
weapons guidance systems, improved computer design, and many
other fields. The upshot is that if a piece of research in Al can make a
machine act more intelligently (or seem to act more intelligently)
then that idea can be used in games programs to make them play
more intelligently.

This book is not going to debate the implications or effects of Al
Perhaps the machines with such intelligence are really thinking, in
some sense, and perhaps one day we may want to call them ‘alive’,
but at the moment Al is in its infancy and there are many problems
to solve before we will see a truly intelligent machine. However, for
our purposes, if we can get a machine to do what a human being
could or would do in similar circumstances we can regard that

2

machine as ‘intelligent’, because what we want is a machine that
plays like a human being. Or perhaps we want one that plays rather
better than a human being. At any rate, the program must act in a
sensible and organized way.

There is no point in pretending that any of the games in this book
have a great deal of built-in intelligence. The field is fraught with
problems and many of them do not yet seem soluble on a
microcomputer—if at all. What we are going to do in the book is
explore the ways that a game can be made interesting from a
player’s point of view, particularly by using approaches derived from
Al However, each game only uses a small sample of the possible
techniques, and relatively simple techniques at that. The idea is to
stimulate your own thinking on game design so that you can produce
original ideas, and to do this by guiding you through various stages
of game design and different kinds of game so that you can design
your own games without problems. The kinds of games we are
interested in are simulation games, wargames, adventure games,
and abstract games.

One problem with games of this kind is that they tend to be large.
They use a great deal of RAM (i.e., Random Access Memory, the
memory that your programs use in the micro). There is a direct
trade-off between the interest and intelligence of the program and
its length, so most games which require intelligent play or apply Al
techniques tend to leave little space for the trimmings of graphics
and sound. However, because this book is as much about game
design as about Al, and because there are interesting things which
can be done with graphics in intelligent games, there is a chapter on
them in this book. Remember, though, that if you want to design
your own intelligent adventure or complex strategic game, even
with a 32K BBC/Electron, you are unlikely to have much room for
stunning graphics. There is almost always a trade-off between the
visual brilliance of the graphics and the internal brilliance of a
complex game.

The approach used in this book is that known as modular or
structured programming. This means that a program is thought of
as a structure made up of a series of modules. Each module is
self-contained, generally as a subroutine (or, in the language we will
be using, BBC BASIC, a PROCedure), so different modules can be
defined in different ways to give different programs. In this way
many different games can be written with only very small
changes—the same modules can be used again and again with
minor modifications. Modular programming has a number of other
advantages. It encourages programming habits which make error-
checking and debugging easier; it encourages a sensible and logical

3

approach to program design; it generally makes listings easier to
read and understand; it makes the transition to structured
languages such as Pascal much easier for those who want to learn a
new language; and it makes program design both easier and more
elegant. Its only real disadvantages are that it requires some self-
discipline from the programmer and programs may sometimes use
more memory or take more time than unstructured equivalents, but
these possible losses are well worth the gains. If you only want to
write one game which saves as much memory as possible and runs as
fast as possible, you have little to gain from structured
programming. However, if you plan to write several such games, or
to build a library of routines for such games, the initial work will be
amply repaid later on.

The main purpose of this book is to help you in game programming
and, through games, to help you learn more about programming
principles and design. We will look at the different components of
games, such as screen display, logic, idea generation, user
friendliness, and playability and how these can be programmed. We
will look at the advantages and disadvantages of different
techniques, such as ways of storing data, ways of interlinking
variables, and ways of accessing information. We will look at some of
the more common jargon words such as ‘random access’ and ‘menu’,
as well as ‘artificial intelligence’, to explain them in a
straightforward context. We will also look at some of the most useful
or unusual features of BBC BASIC. We will do all this by writing our
own games as we go along.

The book is organized in the following way. We begin by looking at
the different components in the game, with a brief sketch of different
kinds of game. Then comes the main part of the book, eight chapters
of programming and design techniques for use on different types of
game, beginning with overall design and working through all the
major components and working on successively more complex
design until we are ready in the last two chapters to develop a full
adventure. Most sections give one or more routines you can
incorporate in your own programs, usually in the form of procedures,
and we build up four complete games: Pantry Panic, Mernar Keep,
Dilemma, and The Opal Lily. Between them these four games
illustrate most of the essential principles discussed in each chapter
as well as containing many routines which can be used in other
games. In particular you will learn the processes for manipulating
data which are normally called ‘writing an adventure game’.

All the programs in this book have been developed on a BBC micro
and tested on an Electron. They will run on both machines, though
BBC owners with the 0.1 operating system may discover a quirk or

4

two. As the Electron and BBC hardly differ in their BASICs,
operating systems, or memory maps there is unlikely to be any
problem running an Electron program on the BBC, but the reverse
is not the case because the elder brother has Mode 7, additional
interfaces (and so the facilities for controlling them), and a different
sound system. You will find that sound is one area that has been
neglected by this book, partly because it is not very useful when
considering the topic of intelligent games, but mainly because of the
differences between the systems. I do not wish to waste the time of
one set of readers by explaining all the features of a micro they do not
own! However, in one or two cases there are some features of
difference between the machines which are important, e.g., Electron
owners have the programming advantage of single-key entry for
many BASIC keywords whereas to achieve the same thing BBC
owners must program function keys. However, the latter have a set
of dedicated cursor control keys which can be used for games
whereas the former have to use keys on the normal keypad. In the
one or two cases where differences such as keyboard layout might
affect the nature of a design I have given alternative suggestions.

Having been designed with Electron owners in mind none of the
programs use Mode 7. BBC owners will therefore find that they have
some advantage over users of the Electron where an expansion or
adaptation of the programs is concerned because both Mernar Keep
and The Opal Lily, as well as several other lesser routines, can easily
be converted to run in Mode 7, which releases an additional 7K for
extra programming. The only necessary alteration of the former
would be to redesign the map using Teletext graphics. For the
adventure more work may be needed as the large block of memory
which holds the data for the objects and the map as well as the
dictionary of allowed words will have to be moved in order to take
advantage of the extra RAM. This means that all lines using this
block of memory will need their addresses changed, but how to do
this is discussed in the relevant chapter.

DESIGNING AND PLANNING
A GAME

2.1 Choice

Playing a game, using strategy and tactics, is a question of making a
series of choices. Each choice depends on previous choices, so if the
player makes the wrong ones, he or she loses. Writing a game is a
process of creating a set of possible choices for the player to make.
The fundamental BASIC command for a game is thus
IF ... THEN ... ELSE. .. If the player chooses to do (a) then (b)
will happen, but if (x) is chosen then the result will be (y).

Therefore if we want to write a good game we must do three
things:

1. Offer the player some interesting or testing choices.

2. Organize those choices in a coherent way, so that the conditional
choices fit together sensibly.

3. Make the interrelations between the choices complex enough to
be worth while to solve but simple enough to be solvable.

We will look at the programming implications of these later, but the
simple lesson is that the game should play in a straightforward
manner although that apparent simplicity should depend on
complex hidden balances in the programming. You will see this
particularly in the game Mernar Keep in Chapter 4. This game is
really a large collection of variables fitted together in such a way
that any action by the player which affects one variable will also
have an effect on some of the other variables. The player can choose
any variable to increase or decrese, such as increasing the size of the
army or reducing the amount of forest on lands, but it must be
remembered that each of these choices may affect other variables
and therefore prevent other choices in the future. For example, if the
player recruits more men at arms in Mernar Keep there will have to
be fewer peasants. This means that there may not be a large enough
work force to plant the crops, which may in turn lead to a poor
harvest and consequently to starvation for the troops just recruited.

Games can depend on many kinds of choice. Initially the player

6

may be able to configure the game or some of its parameters, e.g., by
choosing the level of play or the type of character to play in an
adventure; there may be a possibility of choosing various actions in
different situations (e.g., running from, talking to, or fighting an
encountered dragon); the player might have to choose when to use
limited resources (e.g., when to commit the cavalry reserve in a
wargame) and even when to end the game (as with the save facility
incorporated in many puzzle adventure games).

To be a little pedantic for a moment, we could call a player’s
strategy a series of choices aimed at optimizing rewards in a game.
So the choices that make a game interesting depend on the kind of
rewards the game offers. At the most abstract level a game offers
points. The better the player, the higher the score, i.e., the better the
strategy and hence the series of choices made, the more points will
be obtained.

We could have a very simple game in which the player has to guess
anumber between one and nine chosen by the computer. The player
selects a number, makes a guess, and the computer tells the player if
its chosen number is higher or lower than the guess. The player
starts with a score of 100. Every time a guess is made, 10 points are
lost, so the better the guesses the higher the final score. Initially
there are three major choices—three possible strategies. Players
can guess numbers randomly; or they can start at one end of the
scale and work up (or down) till they hit the right number; or they
can use the following routine:

1. GUESS 5

2. IF NUMBER IS LOWER THAN 5 CHOOSE 3 ELSE CHOOSE 7

3. IF 7 WAS CHOSEN AND THE NUMBER IS LOWER THEN
THE ANSWER IS 6

4. IF7WAS CHOSEN AND THE ANSWER ISHIGHER CHOOSE
9

5. IF 9 IS CHOSEN AND THE NUMBER IS LOWER THEN THE
ANSWERIS 8

6. IF 3 WAS CHOSEN AND THE NUMBER IS HIGHER THEN
THE ANSWER IS 4

7. IF 3 WAS CHOSEN AND THE ANSWER IS LOWER THEN
CHOOSE 1

8. IF 1 WAS CHOSEN AND THE ANSWER IS HIGHER THEN
THE ANSWER IS 2

If players choose the random strategy they may take up to eight
guesses to get the correct answer and should average about five. If
they choose the second strategy the same is probably true. For the

7

third strategy, however, the number of guesses is never greater
than four so players will always score at least 60 points, and will
probably average around 80. Obviously the best strategy is the third
strategy because at each stage in the game the best choice of all the
available choices is made, i.e., the choice which reduces the number
of possible future guesses to the fewest.

In order to get an idea of how balanced your game is while you are
designing it use a points system against all the options as a rough
measure of the difficulty, reward, and balance built into the game.
You do not need to incorporate that system into the actual game
itself, but it can be a great help in designing to enable you to know
how easy or how complex your game is. For example, if you think
that each problem in your game is so easy to solve that it is only
worth one point you would be surprised during playtesting if you
found that the way you had put all the problems together meant it
took half an hour to score two points. There would have to be a
design flaw for something like that to happen. Perhaps the problems
are harder than you thought, perhaps the rewards of the game are
not great enough, perhaps the overall structure is at fault, or
perhaps more clues or instructions are needed.

Points are not the only kind of rewards, however. If we think of our
compulsive games player (let us call him ‘Igor’, short for Intelligent
Game Owner and Runner) as being a playing machine running a
program called ‘T'll enjoy this if it kills me’, we can regard REWARD
as one of the variables in that program which determine whether it
is successfully run or not. If REWARD falls below 1 then the
program will END. But values can be given to that variable by a host
of functions, only one of which is the ‘increase points’ function.

There are typically two kinds of rewarding function which Igor
will respond to, namely local rewards and global rewards. A local
reward is one which temporarily increases REWARD as a result of
an action just completed, but which has no permanent effect on the
rest of the game. For example, our hero may slay the Great Green
Slime Beast of Trag. He will feel rewarded the first time he achieves
it, but if he gets no points, finds neither treasure nor clues, does not
increase in skill, etc., he will quickly forget it. Some games are made
up of a series of such local rewards—there is no cumulative
REWARD, just a series of temporary increases in its value. For such
games to work they must keep the successes close together, so that
there is no time for REWARD to fall below 1, and each victory must
be different or new, or REWARD will not be incremented. This is
part to the philosophy of increasing the level of difficulty in arcade
games. Each time Igor succeeds at one task he is given a more
difficult task, so the reward is correspondingly greater.

8

Global functions which increase REWARD are the basis of good
adventures. The player must be given enough local success to keep
going from stage to stage, but will only want to complete the game, to
keep returning to it, if some successes increase the chance of overall
victory. In the simplistic number-guessing game above Igor will
continue to play as long as he thinks he is getting nearer to a
solution, but if every guess did not affect the chance of a future guess
being correct he would rapidly lose interest. And quite right too!
What is the point of playing if nothing you do increases your overall
chance of winning?

So the typical game has a series of hurdles to be overcome in order
to achieve the final victory. Each hurdle jumped will act as a local
reward and temporarily increase REWARD. After a while that
temporary increase will be lost, but there will still be an overall
increase because the player will know that now ‘the answer’ is much
nearer. In an adventure these hurdles may be problems to solve,
objects to find, mazes to get through, monsters to defeat, riddles to
answer; in an abstract game each new move is a hurdle because of
the new configuration of the board; in a strategic game or a wargame
the hurdles include all the various stages of planning and acting
correctly in a constantly changing situation. A simple problem like
‘How do I open the door?’ can provide enough reward to keep a player
going for several hours if it is known that the answer is on the other
side. Similarly, deciding exactly how many camels to load with
spears and how many to load with gold can keep Igor coming back
again and again if he sees that getting it right will finally enable him
to get across the Sahara.

In order to gain overall victory each of the separate problems must
be overcome. At any stage in a game therefore, Igor will have two
objectives: (1) to solve the particular local problem that faces him at
the moment and (2) to solve the overall problem. Obviously anything
which helps with the former will count as a local reward for him and
increase his enjoyment temporarily, whereas anything contributing
to the latter will give a permanent increase in REWARD. Winning
in this kind of game is like solving Rubik’s Cube. There is pleasure in
getting each individual coloured square in place, but that is nothing
like the overwhelming smugness that comes from being able to put
the lot together, every time.

So in designing our game we must bear in mind that the player
should feel, in part at least, to be progressing through a logical series
of choices. Random choices do not usually make satisfactory games.
It does not matter if some of the elements are random or fully
predetermined, but they should seem coherent from Igor’s point of
view. In an adventure this might be done by creating a storyline

9

which the player progresses through as the main character. In a
simulation or wargame this is done by having a setting or scenario
which makes sense of the choices. In an abstract game, however, the
approach is slightly different. A set of logical rules are constructed
and the player has to apply those rules to the best of his or her
abilities to achieve some final position. There is usually no ‘realistic’
basis for an abstract game. The pleasure comes from trying to
discover the best way to apply the rules rather than from imagining
one is solving a real problem of some kind.

2.2 Structures

Almost all games can be reduced to a number of key elements, the
relationships between those elements being shown by one simple
flow chart. In the rest of this chapter we will look at each of those
basic elements and the whole flow chart, so that in the following
chapters these general ideas can be turned into a design and then a
game. Each of the following chapters takes one or more of these
elements and discusses them in detail, exploring some of the
different ways they can be handled.

These elements will vary slightly according to the particular
machine used (e.g., whether it has colour or high-resolution
graphics), but at the most general level games all have each of the
following: some form of input/output, made up of a textual
component (what is written on the VDU, such as a description of a
room and its contents), a visual component (perhaps a graphical
picture of that room or a flashing warning), a sound component
(magical explosions, beeps, and burps), together with three
structures—the game structure (what the rules of play are and how
they are to be carried out), the story or puzzle structures (what the
player is meant to be doing in the game), and the program structure
(how each of the above elements fits together in a way that a
computer can understand). The basic model of a game is shown in
Fig. 2.1.

These are the seven areas we must consider at the earliest stage in
designing our game. Clear and original ideas at this first step will be
repaid later on. On the other hand, if we only have ideas on what the
game is about without considering how it will look to the player, or if
we decide we are going to design a game using speech but we do not
have any idea about how it will be played, sooner or later our coding
will come to a complete stop, or need large amounts of rewriting, or,
if it ever is finished, result in a dull and unplayable game. Of course,
you should not plan each of these areas in a way which is completely
separate from the others. They are convenient abstractions to aid

10

Game Story
structure structure

Program
structure

H

Visual Textual Sound

Input/output

4

Actual
play

Figure 2.1

design, not commandments that must be stuck to or completely
closed categories. Later in this chapter we will look at some design
strategies that may be used, but first we will make a brief
examination of each of the boxes in Fig. 2.1, the kind of content they
may have, and the decisions it is necessary to make in filling them.

2.3 Story structure

Many games begin with an idea for a particular storyline or
scenario. You might think that it would be a good idea to have an
adventure about climbing down the inside of a volcano to the centre
of the earth; or you might like a game in which players sail the
Kontiki across the Pacific; or wish there was a game where you could
actually talk to characters you find instead of just killing them.
However, having had your initial flash of inspiration, you may not
know how to turn that into a description which can be coded for the
micro. After all, many people have tried writing stories, but there
are only a few Flemings and Macleans.

You do not need to be a great novelist to write a story, scenario, or
puzzle that can become the basis of a program, especially if it is not
an adventure. In the case of the arcade type all you need is a

11

convincing scenario to make the game seem to be about something.
For a wargame or simulation a little more thought is needed. For an
adventure the story may be the most important element so it pays to
devote a little time to it. All you need to remember are two things:

1. Astoryisa series of linked events in which a character (or group
of characters) is changed in some way.

2. An event is made up of a place, a particular time, one or more
characters, one or more objects, and some possible actions or
consequences.

Now we can draw up our story structure. We write down, either
descriptively or as a flow chart, all the events we would like to
include and how they might be linked together. This in turn involves
deciding on the character or characters, how they might change
(e.g., they could become rich, injured, learn to fly, etc.), what places
or locations there will be, what period it is set in (the Napoleonic
wars, the far future, prehistoric times), what kinds of objects might
be found or used (starships, treasure chests, maps, weapons, horses,
boats, religious relics), and what kinds of actions can be taken (can
the characters be killed, can they talk or write, how can they move
from place to place, can objects be carried and if so which, will magic
or futuristic devices be included?). You will find at the end of this
chapter a list of possible storylines which have not been used much,
if at all, in games for you to adapt to your own games. These should
be especially useful if you are looking for a new idea for an adventure
plot.

We also have to decide on the way or ways the story might end.
Will it only end when the main character is killed? Will the character
have a task to fulfil or a problem to solve? Will the character have to
gather a certain amount of treasure or reach a particular social
level? These questions obviously relate to the game structure,
because the ways our story or scenario might end determine what
counts as winning or losing the game.

To illustrate how we can do this, here is the framework for a
simple story. Chief Iron Buffalo (the main character) must lead his
tribe to new hunting grounds before winter sets in. The tribe can
pass through mountains, forests, and plains (the possible locations)
where they may meet wolves, bears, the Long Knives, or settlers
(these are the other characters) and may find ponies, buffalo, and a
magic tomahawk (objects). They can choose to attack, run from, or
talk to other characters, to ride or hunt the ponies or buffalo, to take
or leave the tomahawk, and they must eat a certain amount of food
12

each week (possible actions). They might be given extra food, or be
shown a short-cut, or be attacked, by other characters (further
actions). Possible consequences are that the tribe will starve, or
become lost in the wilderness, or all be killed by the white men and
wild animals, or revolt against the chief and scalp him, or they may
find new hunting grounds (story endings).

Here are all the elements of our story. You could also use the same
kind of checklist to provide the background setting for other types of
game, though it is not usually necessary to go into so much detail.

Having decided on story details we must then decide how to string
them together and how to fit them with the six other basic program
areas. For example, what are the chances of encountering settlers in
the forest; will there be graphic illustration of any combats; how will
the tribe move from place to place?

2.4 Game structure

All games have essentially the same structure— the player makes a
move; the consequences of the move are calculated; if the player has
won or lost then the game ends; otherwise that player or another
player makes another move. We can represent this by using
essentially the same control loop (often called a supervisor) to
regulate all our games. Its general form would look like Fig. 2.2.

9 REM Main Loop

10 win = FALSE: lose = FALSE
20 PROCset_up_variables

30 PROCprint_instructions

40 REPEAT

50 PROCplayer_move

60 PROCconseguence

70 PROCother_move

80 UNTIL win = TRUE OR lose = TRUE

Figure 2.2

This same supervisor could be used to control an arcade game, in
which case PROCother_move would probably be used to move
targets around; or it could be used in a two-player game, in which

13

PROCother_move would be the second player, or in a game against
the computer, such as Chess, in which PROCother_move would be
the computer’s turn, or in an adventure, in which PROCother_move
would be the actions of any characters in the adventure which were
not the direct result of the player’s action.

In some games, such as adventures and simulation games like
Mernar Keep in Chapter 4, there are seldom moves in the
traditional sense of, say, a move in Draughts. What happens instead
is that the player is periodically presented with a series of choices
which represent the kinds of actions the character(s) could take in
the type of world represented in the story. These are often presented
as a menu (see Chapter 3). The choice made is the ‘move’ and its
consequences will be some effect on the world represented by the
program or the persona that the player has assumed in that world.
In an adventure the player may choose to DRINK WATER only to be
poisoned. In a simulation of governing Britain the player may choose
to increase taxes only to find that a general strike results.

The kinds of options, choices, and modifications available in the
game depend on the story or puzzle structure we choose, but the
basic system remains the same. However, there are obviously
variations which can be chosen, otherwise games would all be
roughly the same and rather tedious. For example, one of the options
may lead immediately to a choice of further options without any
modification of the player or the world. In this way the player may be
presented with the list of choices:

1. ATTACK
2. HYPERSPACE
3. RESEARCH

If ATTACK is chosen, a second series of choices may immediately be
given, each of which is a subcategory of attack:

1. FIRE MISSILE
2. FIRE TORPEDOES
3. RAM OPPONENT

Such increasing specificity can be continued indefinitely, up to the
nesting capacity of the micro used, i.e., the limit on the number of
embedded = PROCedures, REPEAT ... UNTIL loops, or
FOR ... NEXT loops. Many micros only allow a limited number of
embedded subroutines which would restrict this kind of nested
specificity.

14

A second game variation involves the effect which the choice has
on the player rather than on the character or the world. For
example, a request for further instructions or to print the
character’s current status is a part of the game structure which has
no effect on the game. However, it would be perfectly possible for
such choices to affect the game. So every time a player asks for
instructions the intelligence variable of the character could be
reduced. This kind of modification makes playing the game more
skilful, and that is a primary consideration in designing a game. An
enjoyable game is one that is difficult enough to be taxing yet easy
enough to understand. Abstract games such as Othello and Chess
are very popular for just this reason—they are simple to learn, but
difficult to play well. This is why the Dilemma game has been
included in this book (in Chapter 5). The concept is very easy to learn
but good play is quite taxing. Similarly, the game structure of an
adventure should make play easy but good play difficult. You will
find that some of the programming in both Mernar Keep and The
Opal Lily is quite complex even though the options available to the
player are few and simple. Essentially a game which requires some
intelligence to play has to encode a number of intellectual difficulties
or puzzles by intricate programming, but it must not make them
appear too difficult to players or they will not bother to play the
game.

A third variation is thus to alter the possible options and
consequences of a player’s moves and/or to make them affect each
other. In a good game a choice made in the first few moves can have a
significant effect on choices available much later on. Part of the
game structure should therefore be a description of how choices are
related to each other. For example, if, in Chess, you choose to place
all your pawns on black squares you make movement easy for your
white bishop but difficult for your black. Our game might involve
designing a spaceship. If the player chooses a great deal of
weaponry, perhaps only a slow ship should be allowed.
Alternatively, suppose a player in a fantasy game finds a magic
staff. In the short term this may do some good as spells can now be
cast, but perhaps it is cursed to destroy its owner in a room with
goblins in it, which may be a long-term disadvantage.

In particular, in designing a game structure we should decide on
how each operation will function. No choice in a game should
automatically result in success. Either the choice should bring
success only if made together with other correct choices (e.g., you
must choose the black bow but only the white arrow) or there should
only be a chance of success represented by a function curve of its
probability. Such curves are the heart of many games. For example,

15

suppose our game involved the character moving up the social scale
from peasant to king and each turn represented a year in his life. As
he goes higher up the social ladder his knowledge increases. We
would represent this by the curve in Fig. 2.3. However, as he gets
older his intelligence decreases, as in Fig. 2.4. Suppose his chance of
passing to the next social level depends equally on knowledge and
intelligence; then the curve for age against chance of increasing
social level would be Fig. 2.5.

As increase in age is uniform (one year each turn) but social level
is variable, so that keeping your chance at 50 per cent depends on
previously being successful (which initially you will be only 50 per
cent of the time), the actual curve of chance of success in increasing
social level as the game progresses will look more like Fig. 2.6, i.e.,
initially age and social level cancel each other out in determining the
chance of increasing social level, but as time goes on age becomes
more and more important. You will see that the design of Mernar
Keep involves a number of interrelated curves of this type.

4 4

Knowledge Intelligence
—» >
0 Social level 0 Age
Figure 2.3 Figure 2.4
7 3 A
Chance of Chance of
increase in 50 increase in 90
social level social level
> »
0 Age 0 Age

Figure 2.5 Figure 2.6
16

Every probability in a game can be given a curve like this, and the
chance of winning the game will depend on the curve which
summarizes the combination of all the curves. This can involve some
very complex mathematics. However, it is not necessary to go so far
as to compute all the curves of all the functions in our game,
especially if luck (the random factor) plays a large part. What we
have to ensure is that we choose functions, formulae, and algorithms
which (1) make sense in the world we are creating and (2) never
produce 100 per cent certainties. We must work out the
consequences of a few sample choices and play-test the most
frequently used functions in our game before we finally decide on
incorporating them into the game. It is always possible to adjust the
formulae later on, but it is much better to have a balanced structure
worked out from the beginning so that we do not have to resort to
tinkering which could upset the whole game.

You will find some appropriate suggestions for functions at
different points in this book as we explore each particular feature.

2.5 Input/output
SOUND

Many micros have no sound facility and others have very poor ones,
so you may not wish to incorporate sound into your game. It is
certainly less worth while for adventure than for arcade games, so it
is by no means essential. However, both the BBC and Electron
micros have excellent sound facilities and there are certain uses of
sound which can enhance all types of games, so if we decide to use
sound we should do so early on in the design process to maximize
effective use, as with every other feature of the game.

The main decision we must make initially is whether sound is to be
an integral part of the game, giving information which is not
available in any other way (such as using musical clues as part of a
puzzle), or simply an enhancement containing no essential features
(e.g., a tune played at the beginning and end of each game).
Naturally sound can be used in both ways in one program. In the
case of non-essential sound it can always be added during the final
stages of coding, when we know how much memory we have to play
with and which sections of the game need such enhancement.
However, essential sounds must be built into the design as early as
all the other essential information so that we can see how to fit it into
the overall structure and be able to develop aural effects parallel to
the rest of the program rather than tagging them on superficially.

17

VISUAL

Unless your game only gives printed hard copy (as in some play-by-
mail games) there will always be a visual component. Each turn
information will be displayed on the VDU. It may be entirely
graphical, in which case it will be an arcade-type game, or it may be
entirely textual. With the current generation of microcomputers it
seems rather wasteful to have no graphical output, but on the other
hand graphics can use a large amount of memory and games like
simulations and adventures generally require as much memory as
possible for their logic. It is a clever programmer who can build
exciting graphics and interesting artificial intelligence into the same
game, for example. The Opal Lily in Chapter 9 is entirely textual,
but even so it has been difficult to find enough memory for it. The
traditional adventure game is similarly entirely textual, but there is
an increasing demand for games which use real-time graphics,
colour, high resolution, three-dimensional illustration, etc. As
memory becomes cheaper such developments will become more
practicable.

It is therefore a good idea to make your first game mainly textual
as this simplifies matters, but to set aside one or two kilobytes of
memory for experimentation with graphical enhancement, such as
in titles or score routines.

If, on the other hand, we want an adventure which illustrates
every room and every monster, or a game which uses some form of
animation, then we will need much more memory, which will limit
the size and scope of the program. There are, however, ways of using
files on disks or cassettes which allow storage of graphics outside
RAM, thereby giving the best of both worlds (but slowing down
execution of the program).

For the moment we need to decide:

1. If we wish to use graphics.
2. For what purpose.
3. How much memory we will set aside for this.

Essentially there are three types of graphic display used in games,
namely:

1. Decorative display, as in titles, flashing warnings, decorated text,
etc.

2. Illustration, as in a picture of the monster the character is about
to grapple with or the view seen upon entering a new location.

18

3. Essential information, where the graphics hold information
which is essential to the game and not given in any other way,
such as when visual clues are used, or in an arcade-type display.

The first of these is easiest to do and can greatly increase the
attractiveness of a game, but being strictly speaking unnecessary is
often neglected. The third is the most interesting, but also the most
difficult. This book is not about graphics so we will concentrate
largely on the second. However, we should always attempt to use a
micro to the limits of its resources and one way to do this is by clever
mixture of sound, graphics, and text which is not merely illustrative
and could not be emulated in a board or table-top game. In Chapter 3
a short game is given which uses no artificial intelligence and
requires only minimal intelligence to play, but demonstrates some of
the basics of achieving an arcade-like display in a BASIC program.

In planning our display it is a good idea to draw at an early stage
rough sketches of the kind of displays we wish to see. While it is
unnecessary to go to the lengths of the film-maker’s storyboard, on
which every shot in the film is drawn before it is photographed, it is a
good idea to sketch the key pictures so that we can decide where they
will fit into the program, how they will use available screen space,
how they can be mixed with text, which graphics mode(s) will be
used, and whether our ideas are too ambitious for our skill or
machine.

Eventually we will need to plot all the major displays on graph
paper or a special plotting sheet, but at the planning stage simple
free-hand sketches are sufficient. Bear in mind that an illustration,
to be worth while, must be attractive, but a piece of important visual
information, such as a clue, can simply be a functional, unaesthetic
use of graphics. Remember also that one of the things that makes a
player return again and again to a game is its look and ‘feel’, so
paying some attention to how the game presents itself, including its
output on the screen, can be very important.

TEXT

Text is the most common form of input/output used in games. We
need to consider how text will be used, how it will be presented, how
it will be stored, and how it will be processed. The art of adventure
design in particular has a great deal to do with variety of text output
and versatile analysis of text input. Unfortunately, storing large
quantities of text uses large quantities of memory and in BASIC
string handling is generally slow, thus slowing down the game.

19

Therefore some compromises will have to be reached. These are
discussed further in Chapters 8 and 9.

We need to consider if all instructions will be included in the
program or if they will be described on an accompanying sheet; if
commands are to be in normal English or abbreviated words,
numbers, or single letters; if some form of data compaction is to be
used to store more text; if the description is to be full sentences or
abbreviated words; and if it is possible to use commands which can
be interpreted in different ways. We also need to decide how to
display the text and how to do so in conjunction with any graphic
displays. For example, if we want text and graphics together on the
screen throughout the game we will need to define text and graphics
‘windows’ of some kind or even several different windows for
different purposes (such as one for a character update and one for a
choice of possible actions).

Each of the topics ‘screen display’, ‘data compaction’, and ‘text
processing’ deserves a book in its own right, so they cannot be
handled thoroughly here. Instead, a number of relevant approaches
will be suggested, together with some BASIC coding routines which
deal with detailed examples. These can be incorporated at relevant
points in your own programs. Essentially, however, the principles to
abide by are:

Use anything which saves memory.

Use anything which speeds execution.

Use anything which adds variety to the game.

Use anything which makes the program easier to play and more
enjoyable for the player.

B Cobo =

Because of its fundamental importance it is worth considering
text at length in the planning stage. Text processing is often
neglected by BASIC programmers despite the fact that many
interesting procedures can be carried out. On the one hand we must
consider ways of making the game more attractive to the player, in
terms of textual variety, correct spelling, easily read displays, etc.
On the other hand we must see if we can come up with any original
ideas for using text, such as making a pun on the player’s name,
using jokes in response to player mistakes, displaying text as
fragments of parchment found at different places in the game, using
cypher routines which change cypher from game to game,
generating a series of verbal clues, routines for ‘conversation’ with
encountered monsters, variety in error messages, etc.

20

2.6 Program structure

When we have sorted out ideas on the story, the game, and the forms
of input and output, together with some sketches of what the display
will be like, we are ready to begin programming. A game is like any
other program but there are some aspects which it is wise to pay
attention to and which may modify your normal programming
techniques.

Probably most important is the fact that the kinds of game
discussed in this book are generally long. To be interesting games
must generally be varied and complex as a story/game/puzzle and
this means that it will generally be varied and complex as a program.
The easiest way to cope with these three related problems of length,
variety, and complexity is to adopt a modular structure. Modular
programming is a good idea in general because it prevents tangled
nets of GOTO statements and encourages BASIC programmers to
adopt structured techniques which makes the transition to
languages like Pascal and FORTH somewhat easier. Modules
enable us to test each section of a program as we develop it and
enable us to debug complete programs more easily. Furthermore,
modules can be used in different programs with little or no
alteration, so that once we have written one game we need never
start from scratch with any other. The designs in this book are
therefore modular in nature, designed for versatility in use.

What is meant by modular design? Essentially it is the same as
dividing your program up into a number of subroutines or
procedures, plus a main program which calls each subroutine as it is
required, as described above. The supervising program calls all the
other procedures which are needed at various points in the program
and these procedures may in turn call others. In BBC BASIC the
listing of the program therefore consists almost entirely of procedure
definition, probably with some definition of functions as well. If you
look at the listing of Mernar Keep in Chapter 4 you will see this very
well. (In dialects of BASIC which lack procedures the same kind of
structure will be created by using GOSUBs and subroutines, but
this is usually slower in BBC BASIC and less easy to read in the
listing because numbers are used rather than procedure names.
However, you will see that the program in Chapter 9 uses both
procedures and subroutines for a special reason.)

You should not feel, however, that programs which are not
structured are somehow ‘wrong’ or ‘inferior’. The rule in games
programming is ‘If it works, then it is good programming’. Some
people find that structuring imposes too many limits for them to
program comfortably; others resent being told that perfectly

21

workable practices are, for some inexplicable reason, bad. If you do
use unstructured code you should simply be aware of the pitfalls you
may encounter and of the difficulties that other people may have in
understanding your work. Of course, in some cases, such as
preventing piracy, this might actually be an advantage. The major
advantage of structuring is that it imposes a logical order on your
thinking which you might otherwise have; this makes you plan
ahead and enables you to check your ideas more easily.

In a structured program each module or subroutine has its own
particular task—it may print instructions, or calculate combat, or
display spaceship movement. That task may be called once or
several times per turn. If called only once, and particularly only once
per game, there is usually no need to put the module in a subroutine.
Instead it can be a clearly marked section of the main program.
However, to encourage flexibility and variety it is a good idea for as
many as possible of the subroutines to be capable of being called up
more than once, depending on conditions. For example, the combat
subroutine may be called if the player decides to fight or, later, if the
enemy decides to fight, or perhaps even if both wish to avoid fighting
but the ‘gods’ (i.e., a random number) decide otherwise.

If we have done our preliminary designs well it should be clear
what modules the program will need and in what order they will be
used. If it is not clear then our first programming task is to make it
clear by writing down all the ideas we have for the game and linking
them together. There are various methods for doing this but I
suggest two:

1. The mind map
2. The general algorithm

The mind is a way of generating ideas with links between them. The
algorithm is a way of structuring ideas in a logical and systematic
way.

THE MIND MAP

Take a blank piece of paper and write in the centre the main idea you
have for the program (what it is about, how it will work, what it will
look like, what it is called). Now, as rapidly as possible, so you do not
have much time to think consciously about it, jot down an idea,
phrase, or word which seems to be connected to that main idea. Link
the two together with a line. Think of another idea connected with
one of the two you now have on the page, write it down, and draw in
the link. Now repeat the process with another idea connected to one
of these three.

22

Carry on in this way, thinking up new ideas related to one or more
of the ideas you already have on the page, and writing them down,
and then drawing all the major links to ideas already down. Do not
pause to evaluate any of the ideas. Just jot them down, as fast as you
can, and draw in the links. Carry on until you have definitely run out
of ideas. You should end up with something like Fig. 2.7. Here the
central idea it started with was ‘Mernar Keep’.

This is your mind map. It is a plan of the ideas you have about your
program or game linked in the ways that make most sense to you at
an intuitive level. Now take all the notes, lists, sketches, jottings
that you already have on the game and if they have not been
incorporated in the mind map then add them and their links at the
most logical place(s).

You should find that certain ideas have many branches coming
from them, whereas others have only one or two. Those with many
branches are the main ideas, which will therefore become the major
routines in your program; those with only a few branches will be
small modules, used less; and those with only one branch do not need
to be separate modules at all but can be included in the larger idea
from which they branch. For example, in Fig. 2.7 the topic ‘money’
has four branches coming from it, so it is quite important—a major

Invasion Fight Enemies Marriage
Destroy Instructions Troops Allies

Crops MERNAR KEEP Money Bribe
Planting Peasants Hunt Status Loans
Revolt Forest King
Figure 2.7

23

routine or set or routines. On the other hand, ‘revolt’ only has one
branch so it is minor. In fact, it will only be called by the ‘peasants’
routine and therefore there might be no need for a separate routine;
the ‘revolt’ routine could simply be one part of the ‘peasants’ routine.

THE MAJOR ALGORITHM

A mind map has the advantages of crystallizing all our ideas and
clarifying the relationships between them, so we can see what gaps
there are and whether the logic is sensible. However, it is not an
exact description of a program by any means. The best way to
achieve this is probably by constructing a flow chart or algorithm.
This is a much more precise model, but is more difficult to construct,
particularly if we are still unclear about some aspects of the
program. So it is a good idea to construct a mind map first, to
generate the ideas, as a way of doing the groundwork, and then turn
it into flow charts/algorithms to make the relationships un-
ambiguous. You cannot easily code a program from a mind map, but
you can from a well-constructed algorithm.

There are several examples of flow charts and algorithms in this
book. Some are quite precise, being quite close to actual BASIC
routines; others are very general, leaving some stages implicit or
undeveloped. It is this latter kind you should first aim for in planning
your game—a broad description of everything that will occur in the
program, with some indication of the order in which they will occur.
Using the mind map in Fig. 2.7 we might construct an algorithm like
the one in Fig. 2.8.

(1) PRINT INSTRUCTIONS
(2) REQUEST ACTION

(3) CALCULATE ANY COMBATS
(4) CALCULATE HARVEST

(5) PRINT PLAYER 'S CURRENT STATUS

(6) IF THE PLAYER IS NOT DEAD THEN GO

TO (1).
Figure 2.8

Having worked out the major algorithm we can then take each
block in turn, treat it as a separate module, and draw an algorithm
24

for all the processes involved in it (possibly by brainstorming with
another mind map just of that section). Each of these processes
should, if necessary, have its own algorithm. We continue in this
way until our algorithm begins to read like a program and we are
ready to code our module. Assign line numbers to each of the blocks
in the most specific drafts and we can then begin to translate the
stages of the algorithm into appropriate lines of BASIC code.

Work through the ‘instructions’ module in Fig. 2.9 as an example.
Firstly, we decide that there will be written instructions displayed
before the game begins. Then we draw an algorithm like Fig. 2.8
putting the ‘instructions’ block in the correct place. Now we take a
separate sheet of paper and produce an algorithm of the
‘instructions’ module, perhaps like Fig. 2.9.

(1) FLASH UP THE TITLE OF THE GAME TEN
TIMES.

(2) PRINT THE DESCRIPTION OF THE GAME.
(3) DESCRIBE POSSIBLE PLAYER ACTIONS
AND THE AVAILABLE CONTROL KEYS.

(4) PLAYER PRESSES 'S° TO START THE
GAME.

Figure 2.9

Each of the boxes in Fig. 2.9 needs further elaboration. So
instruction 1 might be redrafted like Fig. 2.10. This looks very much
like a BASIC program. It is only a small step from Fig. 2.10 to a
section of code like Fig. 2.11.

(1) ADD 1 TO COUNTER

(2) CLEAR SCREEN

(3) PRINT TITLE OF GAME

(4) IF THE COUNTER <> 10 THEN GO TO (1)
(5) CLEAR THE SCREEN

(6) CALL THE NEXT SECTION OF THE

PROGRAM

Figure 2.10
25

10 FOR I =1 TO 10

20 CLS

30 PRINT "Mernar Keep"
40 NEXT I

Figure 2.11 50 CLS60 PROCmain

Although this piece of programming is elementary, the same
procedure should be used for more complex tasks. In fact, it is more
important to use it for complex tasks because without it we may well
miss crucial stages of coding when it comes to writing the actual
program. Using a series of algorithms like this may seem tedious,
but very long programs are prone to many different kinds of bugs.
Time we may lose in the planning stage will be amply repaid when
we find we have almost no debugging to do.

However, this procedure cannot on its own ensure perfect, bug-
free design. Other steps have to be taken. One important thing to do
is to ensure that the program is amply documented. Do not throw
away any design notes, make sure that all thoughts and changes are
written down when thought of so they are not lost, and keep the
program full of REM statements. A good idea is to use increments of
10 lines in writing your BASIC programs and place all the REM
statements on lines ending with 9. In this way each section of code
will have its identifier immediately before it and you will know what
lines to look for as you scan through your program during
development looking for a key section. Then, when the program is
finished, if you wish to delete them (to save memory or to make the
listing opaque for a user) it is a simple task to go through and delete
alllines ending in 9. An easy way to do this on the BBC and Electron
machines is simply to type “Auto 9” and then keep on pressing
<Return> until the line numbers generated by the Auto command
are greater than the highest line number in your program. What
this will do, of course, is delete all lines ending in 9. So make sure
before you do it that only REM statements are held on such lines or
you may wipe out valuable code.

2.7 Suggested themes for games

FANTASY

1. An underwater world (Atlantis, Mu, Captain Nemo)
2. A world entirely of winter
26

. A world in the sky, peopled by winged creatures
. A world inside a living organism (like The Fantastic Voyage) or a

machine (like Tron)

. The player is to learn the magical skills of a lost race, not through

combat but by correctly interpreting a series of magical clues

A game based on a series of competing religions or magics, in
which similar symbols have differing meanings (hence
ambiguous clues)

. The player designs and plays as a monster of some kind, such as a

dragon or vampire

A game based on some unusual geographical feature, such as
inside a volcano, on a series of floating islands, inside a glacier,
among tree tops, or entirely on a cliff face.

SCIENCE FICTION

1.

5.
6.

A planet with an unusual shape or topology, not a globe, such as a
world which really is flat, or a game based on Larry Niven’s
Ringworld

A game in which the player has the role of a robot

. A gamein which the player is a machine, such as the computer in

a starship, the starship itself, or an exploratory vehicle on a new
planet

. The player chooses an alien race to role-play and must behave

within the constraints of that race (e.g., a giant insect or an
intelligent plant)

A game based on time travelling, in which players must pick up
clues from different milieux

Prevent the mad scientist from conquering the earth.

HISTORICAL

1.
2.

oot

A game based on a remote or exotic culture, such as those of
China, Japan, Tibet, The Pacific Islands, or on the Incas or Aztecs
A game based on a particular historical period or event, such as
the rise and fall of Rome, the discovery of America, Alexander’s
conquest of Asia, the wars between Mongol and Chinese, or the
spread of Islam
A sporting event or competition used as the theme, such as a
round-the-world yacht race, a season of cricket, a Grand Prix
Real-world simulations, such as a game on the recording
industry, or advertising, or the cinema
Spies, espionage, and terrorism
An ecological game in which the player must take on a different
biological role.

27

3 PLANNING THE DISPLAY

3.1 Display strategies

A crucial aspect of most games, but particularly computer games, is
the physical appearance of the game—what it looks like on the
screen. This means that you must devote a great deal of thought to
the display of your game, whether it is a graphic or a text game.
What will the player actually see? In a graphics game the answer to
this question may control almost all other aspects of the game and
an adventure game may be the same if, for example, it is primarily a
maze to be solved or a real-time game. In the majority of games you
cannot let the display be the most important aspect; the structure of
the game comes first. However you will need to display both text and
graphics, so you must decide how they will be shown and how they
will fit together.
The preliminary questions to answer are as follows:

1. Isthedisplay to be purely text, or purely graphics, or a mixture of
both?

2. Will there be any real-time interaction and, if so, what will the
time interval be for displaying information on the screen?

3. Do we wish to use any of the special features of the machine? For
the Electron and BBC this means deciding if we want to use any
of the following:

flashing colours

high-resolution graphics (what resolution?)

changing logical colours using GCOL graphics and text
windows

the various different PLOT commands

user-defined graphics

4. How much information will be shown at a time?

There are three display strategies. The first is successively to add
lines to the display so that it is continually scrolling up the screen.
This is the easiest method, especially for displaying text, but one of
28

the most untidy and unattractive. It fills the screen with a great deal
of information which makes it difficult for the eye to find the exact
piece it wants, and most of that information is unwanted at any
particular point in the game anyway. Each time it scrolls the whole
display moves up in a ragged way and the whole effect can be untidy
and uninteresting.

A slightly more convenient and attractive method is to clear the
screen at regular intervals. This can be done each time the screen is
filled, which saves the need for continual scrolling, but is better after
each block of information is shown. This means dividing the
information displayed into separate logical classes, each with its own
subroutine or procedure, and calling each class when it is required.
Each block of information is a ‘chunk’ of text or illustration to be
shown at a particular point, called when it is needed. To do this we
need either a highly structured program or we would normally use
what is called a menu-driven approach (or both). Roughly speaking,
amenu is a set of options displayed on the screen from which the user
makes a selection. The user then inputs the selection and the
appropriate subroutine or procedure is called, clearing the menu
from the screen and displaying the appropriate information for that
subroutine. For example, the main menu might read:

Option Select

Combat 1
Refuel 2
Status 3

Ifthe user wants the combat routine then ‘1’is typed, and the display
changes to that of the combat routine. For example, it might show a
graphic display of the view seen by a spaceship’s combat computer.
Typing ‘2’ might give a different graphics display, let us say a
real-time graphic game in which two spaceships shown on screen
have to be docked together for refuelling.

It is quite possible that making a selection on one menu could lead
to the display of another menu, representing in effect a series of
nested subroutines. Thus selecting option 3 above might result in
the following display:

Option Select

Fuel 1
Ammunition 2
Battle damage 3

29

Selection of one of these could lead to a further menu, and so on
until the nesting limit of the microcomputer is reached. A series of
such menusis a way of guiding a user through the complex structure
of a program to the actual routine required. It is mainly used in
business programs and it is unlikely that you will produce a game as
complex as such commercial software. However, it is a useful way of
relating displays to each other. When the user has found a way to the
routine wanted and has carried out the required task by navigating
through a series of screens of information (each of which clears the
previous screen), the screen will clear again and return to the
original menu. This menu is generally known as the ‘main menu’. As
the technique depends on clearing the screen at the right moment it
is a good idea to get into the habit of clearing the screen right at the
beginning of each chunk just in case the calling routine itself leaves
something inelegant on the screen. The first line of each block of
information will therefore be the CLS command.

Using the scrolling method requires no planning or programming
at all as the usual method of most microcomputers is to display each
line of information at a time and scroll upwards when the screen is
full. To clear the screen at appropriate moments, whether using a
menu-driven system or not, demands careful programming. For
most purposes we need only to divide all output into appropriate
blocks, place each block in a subroutine, and make the first
command of each subroutine CLS. However, in some cases we might
not want to place output in a subroutine or PROCedure, e.g., in the
instructions at the start of a game. In this case we must compose
each screenful of information so that it is easiest to interpret, placing
a CLS command after each successive screen. However, remember
here that the screens will clear too quickly for anyone to read, so we
must place a delay of some kind at the end of each section.

There are two forms of delay—causing the computer either to
perform a process without result for a fixed period or to hold up the
program until the user inputs some information. Using the first
alternative means that the reader has a predefined period in which
to read, which may be too long or too short for some readers, but
guarantees that the rest of the program will be carried out. Using
the second alternative allows users to read the information in their
own time, but involves some action by them to ensure continued
operation, so you need to add an instruction explaining what kind of
input is required.

The first type of delay can be achieved simply by using a repeated
loop, generally a FOR . . . NEXT loop, e.g.,

30

100 FORI =1 TO 1000
110 NEXTI

The precise interval this achieves will depend on the microcomputer
used, so has to be discovered by trial and error. However, the
Electron and BBC micros have the INKEY command which waits
for a specified time or until a key is pressed. For such micros the best
method is therefore to instruct the program to wait for a long time
using these commands so that plenty of time is given even for the
slowest reader, but faster readers can interrupt at any time simply
by pressing a key. Therefore if we decided that it takes 10 seconds to
read a particular screen slowly, add a further 5 seconds for good luck,
multiply by 100 (because INKEY and INKEY$ wait in hundredths
of a second), and use a routine like the following:

10 REM FIRST PRINT THE SCREEN

40 PRINT “PRESS ANY KEY TO CONTINUE”
50 INKEY (750)
60 REM NOW PRINT THE NEXT SCREEN

In microcomputers which lack such commands, the programmer
must choose between the repeated loop (above) or user input. As the
input does nothing more than allow the program to continue, it does
not matter what that input is, so it is usual to allow any key to be
pressed. A line such as:

100 A$ = GET$: IF A$ =“” THEN GOTO 100

will be allowable in most dialects of BASIC. The first part of the line
looks for the input character while the second part loops back to the
first if no character has been input, causing the loop to continue
endlessly until a character is typed in.

However, a better (more structured) version in BBC BASIC is:

10 REPEAT
20 g=GET
30 UNTIL G<>0

This can be adapted so that all keys on the keyboard are disabled
(except Break and Escape) while one specific keypress is waited for.

31

We provide a continuous loop which is always waiting for input from
the keyboard and only exits when the right key is pressed, e.g.,

10 PRINT “Press space bar to continue”
20 REPEAT

30 g=GET

40 UNTIL g=32

This waits until the correct key (in this case the space bar) is pressed.
Similarly, we can set up a loop which only exits when one key out of a
limited number is pressed. For example, if we wanted to ensure that
only ‘Y’ and ‘N’ (for ‘Yes’ and ‘No’) would allow the user to go any
further we would use GET$ in the same kind of loop:

10 PRINT “Please type Y(es) or N(0)”
20 REPEAT

30 g$=GET$

40 UNTIL INSTR (“YyNn”, g$) <>0

Line 40 in this little routine uses INSTR to see if any of the four
upper and lower case ‘N’ and ‘Y’ characters have been pressed. If
they have not then the loop continues. Obviously any string of
characters could be tested for in the same way. It is usual when
testing for a range of numbers to use the maximum and minimum
values to control the exit, with a line like:

40 UNTIL g<3 OR g>7

where the desired number must be in the range 3 to 7. We can treat
numbers just like any other character and so allow any selection of
numerals to be acceptable input, e.g.,

40 UNTIL INSTR(“2479”,g$)<>0

The third method of display is to clear only those parts of the
screen which require updating. The ability to split the screen
between text and graphic windows is, of course, one way of doing
this, as we will see later on. However, in some cases we might want
to preserve, let us say, all the lines of text on the screen except for the
scores. Here we need to know where the scores are printed on the
screen, to wipe them out with spaces and to PRINT the new scores
over the same space. As it is necessary to delete with spaces rather
than just overprint the old numbers because the messages may be of
different lengths there is a danger that some of the earlier message
will be left behind.

32

To do this we use the TAB function for text and a PLOTting
routine for graphics or text treated as graphics. For example, if the
score was PRINTed 10 columns along the screen (from the left) and 5
lines down, and the longest score was five characters, then the
following routine will wipe it and PRINT the new score:

10 DEF PROCscore

20 REM First calculate the new score
30 PRINT TAB (10, 5); STRINGS$ (5,” ”)
40 PRINT TAB (10, 5); score

50 ENDPROC

The programs in this book have been designed to illustrate some of
the different methods of display. Scissors in Chapter 5 uses a
continual display of scores and results throughout the game itself
but has a screenful of instructions at the start and a short message at
the end. Mernar Keep in Chapter 4 uses a menu display to control
the major displays but has some scrolling within separate parts of
the game. Dilemma in Chapter 5 displays the game board all the
time but deletes the pieces and displays messages in a text window.
The Opal Lily in Chapter 9 includes its own printing routine because
it codes text to save memory, part of which involves ‘filling the
screen with text’ and scrolling off, but clears the screen when a new
location is found. This chapter concludes with a small demonstration
game illustrating a few of these principles.

3.2 Alook at windows

A better method than either continual or periodic screen-clearing is
to use screen ‘windows’. A window can be thought of as a section of
screen defined for a particular type of display. The BBC micro and
Electron allow us to define separate text and graphics windows,
using separate portions of the VDU screen. In the text window only
text appears while in the graphics window only graphics and text
treated as graphics appears; these windows may be any rectangular
portion of the screen.

Such a capability is, however, non-standard and owners of other
micros normally have to write their software routines to create such
‘windows’. We use VDU24 to define a graphics window and VDU28
to define a text window. Each command is followed by four
coordinates which specify the rectangle to be occupied by that
window. Unfortunately, however, we can only have one window of
each kind on the screen at the same time. For most purposes one of

33

each is plenty. In a game like Dilemma, for example, which shows
only a game board plus some brief instructions, nothing more is
needed, but a more complicated game might require a number of
different displays simultaneously. For example, a combat adventure
might need to display a description of the current location, a graphic
picture of that location, the last sentence the user has typed in, the
response to that sentence, and an illustration of the monster that
has just appeared. Not only must this be arranged on the screen in a
way that makes it easy for the player to understand and pleasurable
to look at but it has to be done in a way which ensures that no two
displays encroach on each other’s territories.

However, we can create our own windows by use of the TAB
command. With this command we can create windows on any part or
parts of the screen that we like. We can write PROCedures which
print variables at certain positions on the screen and assign to these
variables the actual values or strings we want printed. If the display
is to be graphical, the PROCedures will restrict graphic parameters
to the predetermined space. This solution is in many ways more
elegant and useful than having to put the TAB coordinates in every
PRINT statement, because we only have to calculate the necessary
coordinates once for each window and then hold them in the
PROCedure. But if you prefer you can define text windows so that
every kind of PRINT statement must be in a particular place on the
screen and must therefore have the appropriate AT or TAB
coordinates. This is the strategy used in the program at the end of
this chapter.

These basics can be demonstrated easily. Suppose we wanted a list
of items the player is currently carrying to be constantly updated in
its own window. Presumably in the whole game there will be a large
number of things to be carried, but the character will not be able to
carry all of them at any one time. This implies that the list will vary
from situation to situation. Sometimes there will be no objects and
sometimes there will be many. Consequently the techniques of
overprinting an exact location will not work, especially as strings
tend to be of different lengths. What is needed is a routine which fills
as much of the predefined window as is needed with the current text,
but also clears the whole of the rest of the window in case the
previous text printed in that area took more room.

Let us suppose that no list of items will fill more than five lines of
the screen. Therefore we need a five-line window, a routine to clear
that window, a routine to put together the actual text from the set of
possible strings, and a routine to PRINT the chosen text in the
correct window. Let us use the last five lines of the screen in mode 6
(lines 20, 21, 22, 23, and 24) and suppose that the items are listed as
34

items in the array item$(10). From the set of possible variables the
program has selected item$(3), item$(5), and item$(8), which are ‘a
sledgehammer’, ‘a fir cone’, and ‘a green and gold necklace’
respectively. This list will be preceded by the phrase “You are
carrying:”.

Firstly, we produce a list of items using the string concatenator
(the plus sign!) to turn our separate strings into one string, adding
the chosen items to the phrase “You are carrying:”. The routine has
to know how many items to look for and what they are, so the
choosing routines will have compiled a string (L$) made up of the
numbers of the selected items in the array item$. In this case L$ will
be ‘358’. The length of the string L$ tells the display routine how
many items to look for and add as well as the actual item numbers.
This is done by lines 600 to 640 below. Line 650 then clears the
selected window by PRINTing five blank lines. Finally, line 660
PRINTS the new string at the correct position:

600 REM TO PRINT A COLLECTION OF STRINGS AT
A PARTICULAR POSITION

610 p$="You are carrying: "

620 FOR i=1 TO LEN(LS)

630 p$= p$ + " " + item$(VAL(MIDS(LS,i,1)))
640 NEXT i

650 PRINT TAB(0,20); """~

660 REPEAT

670 space=INSTR(p$," ")

680 PRINT TAB(0,20);LEFTS$(p$,space-1)
690 pS$S=RIGHTS (p$,LEN(p$)-space)

700 UNTIL p$=""

The same procedure can be used whatever the number of lines of
screen or the number of items in the list. Simply change the number
of apostrophes in line 650 and the TAB numbers. From this example
you should be able to see how text windows can be defined almost
anywhere on the screen. Every separate PRINT position is itself a
text window, so the maximum number of windows would be the
number of these positions (which depends on the mode you are
using), though you will seldom want more than two or three. The key
point is to decide as early as possible how many windows you require
and of what size. It makes sense to write the PRINTing subroutines
before you have decided on all the text you are to display—but not
until after you have classified the types of text you will show. It also
makes sense to draw a rough sketch of the windows making a full
screen display in the planning stage so you can get an idea of how
cluttered or organized the screen will appear to a user.

35

The major advantages of using text windows are three. Firstly, it
produces a clear and attractive display, easy on the eye, well
organized and easy to understand. Secondly, it simplifies the process
of deciding what to print, where, and when. Thirdly, it means that a
large amount of information can be displayed on the screen at a time
without chaos. Several classes of information can be displayed
simultaneously without the need for scrolling, menus, or constant
screen clearing. Of course you can also use one window for several
purposes, as if it was a miniscreen. If you wish to do this, and the
window-cleaning routine is complex, it is often better to have this as
a PROCedure separate from the PRINTing routine, but called by it.
In this way several different types of text can use the same cleaning
routine and the same window without the need to duplicate code. All
that is needed is that the window-cleaning routine be given the
parameters of the screen area it is to clear. Thus one PROCedure can
be used to PRINT blank strings over any predetermined area of the
screen. In a similar way another PROCedure can be given
parameters for overprinting any area of the screen with the current
graphic background colour, in this way ‘cleaning’ graphics windows.

3.3 A basic graphic game

This book is not primarily concerned with graphic arcade-type
games or indeed with graphics. The BBC and Electron micros have
such a bewildering and versatile array of graphic facilities that
justice could not be done to them here. However, some of the
principles of game design can be shown by creating an elementary
graphic game, so that is what this section does. Other chapters deal
with aspects of the games such as structure and various aspects of
intelligence. In this section we will concentrate on the simpler
principles of producing an elementary entertaining graphic game to
illustrate some of the arcade principles, some of the BBC/Electron’s
features, and some of the more general considerations to bear in
mind when designing games of any kind and, in particular, aspects
of display.

Speed is one common feature of most graphic games but even in
BBC BASIC it is difficult to achieve a satisfactorily breath-taking
invaders-type game. Arcade games have their attractions and there
is no doubt that one of the major reasons for the growth of the home
computer industry has been the popularity of fast-action screen
games. It is not possible in BASIC to write very fast arcade-type
games—the language is just too slow, because it is an interpreted
language. If you have a compiler or understand machine code, you
will not have this problem, but the majority of us have to make do

36

with the slowness of BASIC. Fortunately we have a useful
assembler built into Acorn’s machines so it is easier to begin to get to
grips with machine code than on some other machines. Hopefully by
the time you have finished this book, particularly when you have
read the final chapter, you will have enough confidence in handling
bits and bytes to begin experimenting in Assembler, but you do need
quite a substantial knowledge to create fast-moving games that are
at all satisfactory.

However, speed is not everything. The growing popularity of
adventures shows this. Some designers have attempted to put a
little arcade action into adventures but with relatively little success.
Broadly speaking, when you design a game you will thus be making
a choice between a strategy/problem-solving game, of which the
adventure is the main type, or a game of reaction time and speed
with moving graphics. There are strategic elements in arcade
games, however. No player of arcade games survives by reaction
time alone. A strategy is needed which takes into account the likely
behaviour of the alien blobs, the rewards available for destroying
each particular type of alien, the time left for play, and so forth. A
number of factors have to be mentally assessed at the same time as
the player’s fingers are flashing over the keyboard.

The problem can be made harder for the player if some of the
aliens or the pursuing blobs have a degree of intelligence. This could
be given in several ways. One would be to ensure that the enemy did
not just become stronger or faster or more numerous, with increases
in the player’s score, but that they also adapted their behaviour
more to the tactics of the player. For example, the lowest skill level
might have the ghosts in a pacman game moving about randomly.
The next level up might be written so that, on average, every fourth
move by a ghost was in the general direction of the player. At the
next level it would be one move in three, at the next one in two, and
finally every move that the ghosts made would be following the
player.

Another tactic could be to program aliens to respond to the
player’s strategy for shooting at them. Suppose the player always
hid behind one particular defence or always attempted to stay
roughly in the centre of the screen. It is relatively easy to monitor
this sort of thing by simply incrementing a variable each time the
player is hiding in a particular position. The aliens could respond to
this ‘knowledge’ in a number of ways, perhaps by concentrating
their attacks on this area, or by ensuring that the high-scoring
targets avoided that area, or even by launching ‘intelligent’ missiles
which always homed in on the area most commonly frequented by
the player. There is no difference between this kind of sensitivity to a

37

player’s preferred actions and that discussed in the next chapter in
the general context of ‘strategic’ or ‘abstract’ games. As yet the sheer
thrill of speed, sound, and colour has created most of the attraction
in this type of game but it is only a matter of time before the aliens
not only have faster reactions than the player but also understand
more about how to play the game.

However, we will not design such a complex game for our first
effort. A simple type of arcade game will serve to illustrate the need
to develop strategy. One which is particularly easy to design is a
treasure-gathering routine. We remove some of the difficulties of
arcade programming by keeping the treasure stationary and only
moving the player’s representative. The player then simply has to
determine the best route to wander around the screen collecting his
or her ill-gotten gains.

There are only two real problems in arcade games—moving
objects and collision detection. In brief, moving an object involves
printing a graphic block in one position, calculating a new position,
printing it in the new position, and deleting it from the old position. If
this happens fast enough, it looks like movement. Collision detection
involves adding a number of tests within the movement loop to see if
the new position is already occupied and if so what the occupier is.
The results of the two objects meeting are then calculated and all the
relevant variables, such as the score, are updated.

It is easy to see why this slows a game down. If we have 40
invaders, one gun, five missiles, and 20 bombs on the screen at the
same time, then each ‘turn’in the game involves deleting 66 objects,
calculating their next positions, checking for contacts at those
positions, calculating the effects of any contacts and displaying the
results, and printing 66 objects at their new positions. For all this to
happen and still look natural it must literally take place in the blink
of an eye. For BASIC it is more like 40 winks.

So we will just look at a simple version in which only one object
moves (a little man representing the player) and only one position
needs testing for collisions each turn (the position the man will next
move to). The idea behind the game is simple. The player must move
his piece around gathering food and drink but avoiding exercise.
Each time food is encountered he gains bonus survival time; each
time he has to exercise (by colliding with a barbell) he loses time. The
more you collect the longer you last but as time goes by the
remaining food is further and further apart so the distances are
greater and energy needs conserving. In addition, each time food or
drink is taken a barbell replaces it, adding to the maze of hazards.

This introduces a limited element of strategy—given a restricted
amount of time, what is the best route to pick up as much as possible

38

of the high-scoring food while avoiding as far as possible the need to
do any exercise? Is it better to collect food first because there is more
of it or to gather the delicacies from the edge of the screen before time
runs out? Points are scored for each item of food eaten or bottle
drunk, so the player wants to get as many resources as possible
before time runs out. The more you consume, the greater your score
and therefore the longer you last. The competitive element, as with
all such games, comes in receiving a final score which the player will
constantly attempt to improve. The game also has a number of
different levels of difficulty, which basically means that the time
limit is shorter at the higher levels.
The program works quite simply and is given in Fig. 3.1.

10 MODE 7

20 MODE 2

30 CLS

40 PROCinit
50 PROCtitle
60 PROCstart
70 COLOUR 128
80 PROCmap

90 PROCmove
100 PROCfinish

110 END

120

130

140 DEF PROCmove

150 xm = 640

160 ym = 640

170 g =1

179 REM REDEFINE CURSOR KEYS
180 *FX4,1

190 REPEAT

199 REM PRINT THE PLAYER'S PIECE
200 PROCman (xm, ym, 2)

209 REM PRINT THE GREEN MAN

210 PROCman(x,y,7)

220 FOR I =1 TO 200

230 NEXT

240 h = INKEY(1l)

250 IF h<>-1 THEN g = h

259 REM UNPRINT THE PLAYER'S PIECE
260 PROCman(x,y,7)

269 REM UNPRINT THE GREEN MAN
270 PROCman (xm,ym, 2)

280 j = RND(3)-2

290 k = RND(3)-2

300 xm = xm+(j*64)
310 ym = ym+(k*32)
320 h = INKEY (1) Figure 3.1 ‘Pantry Panic’ (continues)

39

330 IF h<>-1 THEN g = h
340 IF g = 136 THEN x = x-64
350 IF g = 137 THEN x = x+64
360 IF g = 138 y = y-32
370 IF g = 139 y = y+32

379 REM STOP THE PLAYER WANDERING OFF THE SCREEN
380 IF y>992 THEN y = 992

390 IF y<96 THEN y = 96

400 IF x<64 THEN x = 64

410 IF x>1152 THEN x = 1152

419 REM STOP THE GREEN MAN WANDERING OFF THE SCREEN
420 IF ym>992 THEN ym = 992

430 IF ym<96 THEN ym = 96
440 IF xm<64 THEN xm = 64
450 IF xm>1152 THEN xm = 1152

460 PROCcalc

470 PROCupdate

480 PROCmc

490 UNTIL TIME >((800+score)*diff)

499 REM RETURN CURSOR KEYS TO NORMAL USE

500 *FX4,0
510 ENDPROC
520

530

540 DEF PROCinit

550 DIM board%(20,32)

560 score = 0

570 y = 128

580 x = 128

590 score=0

600 VDU 23,226,&1C1C;&3E08;&0808;&2214;
610 VDU 23,227,&787F;&7C78; &CCEC; &EECC;
620 VDU 23,228,&0000;&0018;&0000;&0000;
63C VDU 23,229,&0D18;&030F;&0000;&0000;
640 VDU 23,231,&4200;&4242;&4242;&0042;
650 VDU 23,232,&4200;&FF42;&42FF;&0042;
660 VDU 23,233,&%7EE7;&0008;&0000;&0000;
670 VDU 23,234,&0800;&7F3E;&7F7F;&1C3E;
680 VDU 23,235,&1818;&3C3C;&3C3C;&3C3C;
690 VDU 23,236,&0000;&1800;&0018;&0000;
700 VDU 23,240,&FFFF; &FFFF; &FFFF; &FFFF;
710 ENDPROC

720

730

740 DEF PROCtitle

750 COLOUR 135

760 CLS

770 a$ = "PANTRY PANIC"

780 FOR I = 1 TO LEN(a$)

790 REPEAT

799 REM CHOOSE FOREGROUND AND BACKGROUND
800 R = RND(7)+8
810 S = RND(7)+8

820 UNTIL S<>R Figure 3.1. (continues)

830
840
850
860
869
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1349

COLOUR R
COLOUR 128+S
PRINT TAB(I+2,I+6); MIDS$(a$,I,l)
NEXT
REM DELAY
TIME = 0
REPEAT
UNTIL TIME = 400
ENDPROC

DEF PROCapple(x%,y%)
VDU 5

GcoL 3,1

MOVE x%,y%

PRINT CHR$(234)

GCOoL 3,2

MOVE x%,¥Y%

PRINT CHRS$(233)

VDU 4

ENDPROC

DEF PROCbottle(x%,y$%)
VDU 5

GCOL 0,6

MOVE x%,Yy%

PRINT CHRS$(235)

GCoL 0,1

MOVE x%,y%

PRINT CHRS$ (236)

VDU 4

ENDPROC

DEF PROCbarbell(x%,y%)
VDU 5

GCoL 0,0

MOVE x%,Y%
PRINT CHRS$(240)
MOVE x%,y%
GCOL 3,7

PRINT CHRS$(232)
GCOL 3,6

MOVE x%,y%
PRINT CHRS$(231)
VDU 4

ENDPROC

DEF PROCmap
CLS
FOR I =1 TO 20
REM PLACE BARBELLS

41

42

1350
1360
1370
1380

1390
1400

1410
142C
1429
1430
1440
1450
1460
1470
1480
1490
1500
1509
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1619
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
17590
1760
1770
1780
1790
1800
1810
1820
1830

REPEAT
R = RND(19)
S = RND(30)+1
UNTIL board%(R,S)
AND board%(R+1,S)
AND board(R,S+1) = 0
board%(R,S) =1
PROCbarbell (R*64,S5*32)
NEXT
FOR I =1 TO 15
REM PLACE APPLES
REPEAT
R = RND(19)
S = RND(30)+1
UNTIL board%(R,S) =0
board%(R,S) = 2
PROCapple (R*64,5*%32)
NEXT
FOR I =1 TO 8
REM PLACE BOTTLES
REPEAT
R = RND(19)
S = RND(30)+1
UNTIL board%(R,S) = 0
board%(R,S) = 3
PROCbottle(R*64,S*32)
NEXT
PROCborder
ENDPROC

0
0

REM PRINTS THE MAN
DEF PROCman(x%,y%,z%)
VDU 5

GCOL 3,z%

MOVE x%,yY%

PRINT CHRS$(226)

VDU 4

ENDPROC

DEF PROCborder

VDU 4

FOR I =1 TO 18 STEP 2
COLOUR 140
COLOUR 11
PRINT TAB(I,0); CHRS62;
PRINT TAB(I,30); CHRS62;
COLOUR 139
COLOUR 12
PRINT TAB(I+1,0); CHRS62;
PRINT TAB(I+1,30); CHRS$62
NEXT

FOR I = 0 TO 29 STEP 2

Figure 3.1. (continues)

1840 COLOUR 140

1850 COLOUR 11

1860 PRINT TAB(0,I); CHRS62;
1870 PRINT TAB(19,I); CHRS62;
1880 COLOUR 139

1890 COLOUR 12

1900 PRINT TAB(0,I+1); CHRS62;
1910 PRINT TAB(19,I+1); CHRS62;
1920 NEXT

1930 PRINT TAB(0,30); CHRS62;
1940 PRINT TAB(19,30); CHRS62;
1950 ENDPROC

1960

1970

1979 REM UPDATE CALCULATIONS
1980 DEF PROCcalc
1990 a% = x DIV 64
2000 b% = y DIV 32
2010 IF board%(a%,b%)
2020 IF board%(a%,b%)
2030 IF boara%(a%,b%)
2040 IF board%(a%,b%)
2050 ENDPROC

2060

2070

2080 DEF PROCtime
2090 FOR I =1 TO 50
2100 COLOUR I

2110 PRINT TAB(1,30);"****EXERCISING***x*"
2120 NEXT

2130 ENDPROC

2140

2150

2160 DEF PROCbonus(c%)

2170 score = score+c%

2180 board%(x DIV 64,y DIV 32) =1

2189 REM TURN APPLE OR BOTTLE INTO BARBELL
2190 PROCbarbell(x,y)

2200 ENDPROC

2210

2220

2229 REM PRINT UPDATED INFO

2230 DEF PROCupdate

2240 a% = x DIV 64

2250 b% = y DIV 32

2260 COLOUR 129

2270 COLOUR 7

2280 PRINT TAB(12,0);" "

2290 PRINT TAB(5,0);"SCORE ";score

2300 PRINT TAB(12,30);" "

2310 max = (800+score)*diff

2320 PRINT TAB(1,30);"TIME "; TIME ;" MAX ";max
2330 ENDPROC

2340

THEN ENDPROC
THEN PROCtime
THEN PROCbonus(20)
THEN PROCbonus(10)

NWwH—O

o

2350
2360 DEF PROCstart
2370 REPEAT

2380 COLOUR 135

2390 COLOUR 0

2400 CLS

2410 PRINT

2420 PRINT "Difficulty level" " (1-9)2"
2430 PRINT

2440 PRINT “"(1 is hard, 9 easy)"

2450 g$ = GETS$

2460 diff = VAL(g$)

2470 UNTIL diff>0 AND diff<10

2480 ENDPROC

2490

2500

2509 REM TURN FOOD INTO BAKBELLS IF EATEN BY GREEN MAN
2510 DEF PROCmc

2520 a% = xm DIV 64

2530 b% = ym DIV 32

2540 IF board%(a%,b%)<>0 THEN PROCbarbell(xm,ym)
2550 ENDPROC

2560

2570

2580 DEFPROCfinish

2590 PRINTTAB(1,15);"YOU RE EXHAUSTED"

2600 ENDPROC

Figure 3.1 ‘Pantry Panic’

3.4 Pantry Panic

The program is very simple. The player controls a white man who
can be moved around the screen by using the cursor keys. If the man
collides with an apple or a bottle he gains points and the food or drink
is converted to a barbell. The points scored are used to compute the
maximum time limit for the game. The more Igor scores the greater
the limit (i.e., the longer the game will play). The length of time is
also determined by the difficulty level set at the beginning by the
player.

If the white man hits a barbell the game pauses while exercise is
taken. Everything stops except for the TIME counter. The BBC and
Electron micros have a built in real-time clock monitored by the
variable TIME and it is this which is used to check whether the game
has exceeded the allowed limit. To make things a little harder a
green man is also wandering around doing the same thing. He is
moved randomly but each time he finds food or drink a new barbell is
added to the screen and a potential scoring item is removed.
However, the green man does not have to perform any exercise. (If
44

the two men collide nothing happens other than a temporary change
in colour.)

The strategy is thus relatively limited. The player must move the
white man as quickly as possible to as much of the food and drink as
possible before the green man gets there, and without hitting a
barbell. The more food gathered the more difficult the task becomes
but the longer the interval available. Eventually, however, there is
no food or time left and an end mesage is printed along with the final
score.

Even with only a limited game of this kind both men flicker rather
too much because they are constantly being printed and deleted. To
reduce this a pause has been added at lines 220 to 230 which
momentarily halts the game while the white man is displayed.

Both the structure and the display of this game are simple. Let us
first look at its presentation and then how it works. There are three
screens in the program. Firstly, there is a title screen called by
PROCtitle. It uses two very simple devices to make a slightly
unusual title. The idea is that it will catch the eye and make the
game seem attractive. Line 750 selects a background colour. Every
number above 127 after the colour statement is a logical colour for
background, so 128 would be a black background and 135 is logical
colour 7 plus 128. In mode 2 this is white but you could change it to
any background. Line 770 declares the string a$ as the title.
Obviously by substituting any string here the same routine will
produce a decorative version of that string. This is one of those
advantages of modular programming that I have mentioned. With
just one alteration the same routine could be used for any title page
you wish in any program.

A FOR ... NEXT loop prints each character in a$ one letter at a
time, using the loop’s variable I to increment both the horizontal and
the vertical TAB positions and thus printing the string diagonally on
the screen. Each time a letter is printed the variables R and S are
randomly set to numbers in the logical colour range, thereby
choosing random background and foreground colours for each
character printed. Finally, a delay using TIME holds the display on
the screen for a few seconds. TIME can be used to control a delay loop
here because we have not yet begun the main program, but as it is
used as a controlling variable in the main body another delay
mechanism has to be used—hence the FOR . . . NEXT loop at line
220.

The second screen is not a title page so does not need to be very
attractive. It is simply a message requesting information to be input,
namely, the difficulty level of the game. It is called as PROCstart. All
this routine does is print the message a little way down the screen,

45

with a little spacing to make it easier to read. As the number
requested is simply in the range 1 to 9 GET$ can be used to gather
the value and save the user the added work of having to press the
<Return> key. Remember, however, that GET$ has to be placed in
a loop (lines 2370 to 2470) to ensure that only the allowed input is
taken in.

The third screen is the main screen on which the game is played. It
has to hold a fair amount of information so in the design stage it has
to be thought about more carefully than the others. We need to
display the current score, the time elapsed, and the maximum time
allowed, as well as the graphics of the game, and we need todoitin as
attractive a way as possible.

The chosen method is to display a border around the whole screen
and print the updated values periodically within that border. We can
make the border attractive by using alternating flashing colours and
by overprinting certain portions of that border using the TAB
command and printing in a contrasting colour. Flashing blue and
yellow is used for the border and black on red for the information.
Each time the main loop (called PROCmove) is cycled through the
values are updated and the screen windows in the border for score,
time, and max are altered. Occasionally, however, we need one
further piece of information to tell the player when the white man
has run into a barbell and is thus exercising. As the other
information is unimportant at such a point (because the player can
do nothing about it except wait) we can overprint the existing
windows with this message; thus the bottom border is used to flash
the message “exercising”.

The rest of the display on the main screen is the game itself. As
suggested above this consists of four phases. Firstly, the screen and
all variables are set up in PROCinit; then the player moves his piece
around the screen; with each movement a check is made for possible
consequences; and finally when time runs out a brief ending
message is displayed.

PROCinit dimensions an integer array called board%. (An integer
array can only hold whole numbers and uses only four bytes for each
number, whereas a normal numeric array holds what are called
‘real’ numbers which can include decimal points. The integer array
is indicated by the % sign.) This array will hold all the information
we wish to know about the screen. It is therefore a kind of ‘map’ of
the screen. You will find that most microcomputers are described as
having ‘memory mapped displays’ or some similar phrase. This
simply means that the micro holds a complete map of everything on
the screen at any one time. Consequently our array is, strictly
speaking, unnecessary because if we knew how to read the

46

Electron’s own screen map we could use the built-in information
instead of holding our own in a separate array. However, finding and
using the required information is not an easy task, especially in
mode 2, and we only need a crude map, not a map of every single dot
on the screen; thus the array is the simplest and most appropriate
method.

Having defined the graphics characters in lines 600 to 700
PROCmap randomly fills board% with the numbers 1, 2, and 3 (lines
1350 to 1570). Each number represents a particular object: 1 is the
barbell, 2 is the apple, and 3 is the bottle. Each time a number is
assigned to one of the array elements the corresponding position on
the screen is printed with the appropriate graphics. What do I mean
by the corresponding position? You will see that board% is an array
of 20 elements by 32, which is the same as the number of character
positions on a mode 2 screen. Therefore any element in the array can
be regarded as a ‘map’ of a particular character position on the
screen. Array element 1,1 would be the same as TAB position 1,1. If
we want to convert this into graphic coordinates then we multiply
the horizontal coordinate by 64 and the vertical coordinate by 32. So
board% (2,3) holds the number corresponding to graphic screen
position 128, 96.

The three drawing routines PROCbarbell, PROCapple, and
PROCDbottle use this information to draw the appropriate graphics
on the screen in the correct positions. One feature of these graphics
is that each character has more than one colour. This is done quite
simply by overprinting the same character position twice with two
different defined graphics. Thus the red part of the apple is
CHR$234 and the green part is CHR$233. If two characters are
overprinted as text (e.g., by using TAB), such as in our message
display routines, then the second character completely overwrites
the first, printing both foreground and background. If, however, the
graphics and text cursors are tied together using VDUS5 then text
can be printed using graphics commands, in which case only the
foregrounds are printed. This is what is done here. Unfortunately
the process is rather slow so the men figures do not have this feature
as it would make the flicker even more noticeable.

Having filled the map and thus the screen with objects the main
routine, PROCmove, looks for input from the player and moves the
figure accordingly while also moving the green figure. The same
process is used for both of these figures. A vertical screen coordinate
is calculated, a horizontal screen coordinate is calculated, and the
results together with the colour (white or green) are passed to
PROCman which prints the figure at those coordinates in that
colour using GCOL3. The loop is then finished and the figure is

47

printed again at the same coordinates which, of course, wipes it out.
New coordinates are calculated and the process repeated.

The only difference between the two processes is in the way that
the coordinates are worked out. In the case of the green man random
values are added to the base values of xm and ym. In the case of the
white man INKEY is used twice on each loop to see if any key has
been pressed by the player. If it has and it is one of the cursor keys
then the screen coordinates are updated appropriately (lines 340 to
370). In order to use the cursor keys in this way, i.e., as normal keys
giving an ASCII code, they have to be disabled using *FX4,1. (If
using this feature you should also make sure that *FX4,0 is used to
enable them again when the program is over or you will find the
editing features of BBC BASIC severely affected). If no key press
has been detected since the last execution of the loop then the
coordinates are increased by the same amount as on the previous
cycle and the figure will constantly move in the same direction until
a key is pressed or the border is reached.

Each cycle of the loop calls PROCcalc, which looks to see if the
current position of the player’s piece coincides with the position of
another object by looking at the corresponding element in board%
and seeing if it is anything other than 0. If it is 0 then PROCcalc
ends. If it is 1 then the game pauses and the exercising message is
printed. If it is 2 or 3 then the score is increased and a barbell is
printed in the new position. An important point to note is that not
only must the barbell be printed on the screen but that element of
board% must be changed to 1 because it is this screen map which is
being tested and interpreted, not the screen itself. There is a
function for testing the colour of a particular point on the screen in
BBC BASIC. POINT will return the logical colour of a particular
position on the screen. However, as we have used multicoloured
graphics in this game, the detection is not that easy to do using this
function.

PROCupdate prints the new values on the screen and PROCmc
carries out similar checks on the current position of the green man to
see if any food has been found and any reprinting needs doing.
Finally, when the condition in line 490 is met the main procedure
ends and the final message is printed in PROCfinish.

One final note on this and the other programs in this book
concerns the format for presentation. A number of blank lines have
been included to separate procedures and to aid reading. These, of
course, do not need to be typed in to make the program RUN, as with
REM statements. If you want to include such blank lines in your own
programs simply type a line number, a blank space, and <Return>.
The micro does not treat a space as an error but it does ignore it, so

48

such a line does nothing else but waste memory.

In addition a special format has been used for listing in order to
make the listings readable. You should not try to copy the shape of
the listing onto your screen. Only press the <Return> key at the
end of each line, i.e., when it is time for a new line number. For
example, line 1380 has been split into three lines of listing but it is
still only one line of program.

49

TESTING INTELLIGENCE:
SIMULATIONS

4.1 The intelligent player

Having looked at some principles of program design and a basic
graphic game let us start our work on a more extensive program,
though without yet considering artificial intelligence as such.
Instead we will work on a game that tests the player’s intelligence
without being particularly intelligent itself. This will be useful
practice both in applying some of the lessons of previous chapters
and in examining what we mean by ‘intelligent’ in the context of
playing a computer game.

There is a growing interest in using computers in the home as a
way of gaining insight into various complex aspects of reality which
the average human being never has a chance of experiencing. These
are programs which model or simulate some particular real
situation, such as solving the problems a football manager must face
in getting his team to the top of the league, or governing England for
15 years, or flying a Jumbo Jet. Whether you call these games or not
depends on your attitude to such programs as well as the nature of
the programs themselves. The more complete they are (and thus the
more complex) the closer they correspond to the real situation and
the greater the degree of ‘education’ such programs are likely to
involve. It is impossible to play a good economic game well without
learning something about the nature of economics. Such games and
simulations have long been used in colleges and schools as a pleasant
way of introducing students to various kinds of learning that they
could not possibly encounter in reality. Few people get a chance to fly
a Jumbo Jet in real life and those that do generally only have one
opportunity for crashing it.

Some models and simulations are used simply because it is not
possible to know the actual phenomenon at first hand. Models of
subatomic physics portray a world which no-one will ever be able to
see at first hand. Models of history try to reconstruct events and
ways of life which no longer exist. The keys to such programs are
thus careful design, a good knowledge of the subject, and the ability
to balance all the various relevant factors of the real world without
introducing too many extraneous and confusing details. There is no

50

point in using a simulation as a means of learning if the user is
totally confused by the experience.

As we are mainly concerned with games for entertainment rather
than education we do not need to worry too much about producing a
model which is an exact replication of reality. However, we do need
to produce a program which is well balanced and contains a number
of different factors. One of the things we recognize in intelligent
behaviour is the ability to cope with a number of different and
interrelated variables. If we want a game which is not just a test of
knowledge and is not extremely simple to play well, we could try to
produce such behaviour. The player will have to think about the
implications of his or her actions in several areas simultaneously
and try to achieve a balance between different kinds of strategy.

The most popular games which operate in this way are economic,
political, and war games. They deal with very intricate worlds in
which very few people have ever managed to succeed for long
because of the large number of factors involved. In this chapter we
will devise a game which incorporates elements of the political, the
economic, and the strategic—though in a relatively simple way.
What we are mainly concerned with is producing a nicely balanced
test of a player’s intelligence.

The game could be called a historical simulation. It aims to model
some of the problems facing a mediaeval or feudal baron. In this case
the baron is the player, lord of Mernar Keep. He is one of three
barons on an island with whom he is constantly competing for land,
labour, wealth, and social standing. In particular, he has to keep in
the good books of the King, his feudal overlord, as do the barons of
Ardan Keep and Hale Keep, so none of them can be too ruthless in
their behaviour. However, they cannot be too weak either or their
land may be stolen, their peasants may revolt, or their men-at-arms
may starve.

The game is carried out in seasons, with four seasons forming a
year. Each season Lord Mernar may take any of a number of actions,
and may be compelled to take others whether he likes it or not. He
should decide on how much grain is planted and how much land, if
any, is to be reclaimed by burning away forest, remembering always
that if too many people are at work in the fields when another baron
attacks the results may be fatal, and also that he must conserve
enough forested land to please the king and to give himself a good
hunt. Hunting is one way of gaining or losing prestige in the feudal
world and can also provide a useful bonus to the larder in lean times.

Prestige is the main concern of Lord Mernar. He wants to build as
good a reputation as possible to gain the royal favour. If his prestige
is high then he may find it easier to bend the law, and if it becomes

51

high enough he may find himself made Prince of the whole island
with Ardan and Hale banished to the wilds of Milton Keynes.
Prestige may be gained (or lost) in many ways, but is primarily a
function of the amount of treasure in the coffers and the number of
territories held. It is also affected by alliances (made through giving
land or money or by marriage), by military success, by satisfactory
handling of the peasants (just the right mixture of ruthlessness and
ruth), by pleasing the King, by success in the hunt, and by having a
well-kept castle.

This general sketch of the concerns of such a lord can be our
starting point for setting up the game, and we could use this as the
starting point for a mind map, as we have already seen in Chapter 2.
Although there is quite a large scope for graphics we are more
concerned with the internal structure of the game so we will content
ourselves with a symbolic map and concentrate on making an
interesting textual game. Itis a good idea, however, to get a sketch of
the screen display and a list of the likely major routines as an initial
guideline, so the first task for this game would be to provide these.
The display for Mernar Keep looks like Fig. 4.1 and the list of major
routines is Fig. 4.2.

i~ FIER
HALE
ARDAN BELAR
Ll
CANTOUR DEAN e
IREL
KATH ORAN
ELLYN
JEREN
LIRELLAN il NOTH
MERNAR

Figure 4.1 Map display for Mernar Keep.
52

10-999 Set up and main loop

1000-1999 Actions involving enemy lords

2000-2999 Map printing

3000-3699 Mernar s selection menu

3700-4999 General purpose and end of move routines
5000-7999 Mernar s main routines

8000-8359 End routine

8360-8999 Function definitions

9000-9009 General Data

9101-9999 Data for lands

Figure 4.2 Block diagram of Mernar Keep.

You will see that almost all the routines are called as
PROCedures. This is by far the most satisfactory way of building a
BASIC program on the Electron or BBC micros. In using
PROCedures we are using some at least of the principles of
structured programming, an approach that makes understanding
and debugging programs so much easier. You will see that the
listing for Mernar Keep is surprisingly readable. This is mainly due
to its structured nature. All the major routines are isolated in their
own separate block of code as described in Fig.4.2. Each block has
been isolated in the listing by prefacing it with two blank lines.
These are not REM statements but are simply empty lines with one
space typed on. As BBC BASIC treats a line with a space on it as a
line of program, it is remembered when typed in; but as spaces are
ignored when a program is run (except in a few special cases) they
are not treated as errors during execution. Naturally, if you put
anything else on these lines other than a space it will be treated in
the program as an error unless the line includes an acceptable
BASIC keyword.

I have also included a large number of REM statements to explain
all the various stages of the program—a large number of spaces
which are, strictly speaking, unnecessary—and I have used long
variable names in many cases to make it more readable. Finally, the
program has been listed using the LISTO7 option.

However, if you type in this program exactly as listed you will find
that it does not run. Almost certainly you will get the error “No
Room”, meaning you have run out of memory. Not only this, but

53

every space and every REM statement and every character in a
variable name over and above the first character will slow the
program down in running. Consequently, to make this program
RUN you should remove all the REM statements and all the lines
which only contain spaces. You may wish to substitute short
variable names for the longer ones I have used. The main variables
are listed in Fig. 4.3. If you are trying to save enough memory to add
your own routines to the game you will want to remove all the
superfluous spaces and create as many multistatement lines as
possible. (A multistatement line is a line of program which consists
of several statements, separated by colons.) You may like to keep
two versions of the program—one fully documented, structured,
and spaced to be used for reference and as a guide when developing
similar games and the other streamlined so that it actually runs and
does so in as efficient a way as possible. You will find as you learn
more about programming that one of its unfortunate laws seems to
be that there is an inverse relationship between ease of use of a
program from a human point of view and ease of use, or efficiency,
from the computer’s point of view. People like lots of redundancy
(extra information such as REM comments). Machines like the
barest minimum of information necessary for carrying out the task.

Also, to save memory (and, to some extent, typing) I have not
included any instructions in the game itself. The program is menu
driven, as described in Chapter 3, so once you understand its basis
you should not need any additional information to play it. When it
begins you are told the starting season and the current weather.
You are then shown the main menu which consists of all the options
Lord Mernar can carry out in a season. Some of them can only be
attempted once a season; others can be done as many times as you
like. One or two of the commands may sound a little strange. This is
because I have made selection of the desired command easy—you
just press the initial letter of the command—but to do so I have kept
the commands in a strict alphabetical order and therefore had to find
some appropriate way of expressing each command using the
available initial letter.

After selecting the action from the main menu the player gets one
or more submenus which allow various choices to be made within
that broad category of action. For example, in the hunting routine
the player can choose which province to hunt in, the weapon to be
used, and the tactic to be tried. Success in the hunt depends on all
these choices and also on the animals found and the tactics chosen by
the animals. This routine actually uses quite a complex algorithm to
work out whether the hunt is successful or not, and is a good
example of how complexity within the program can make an

54

ans$(7) animal names

alf alliance flag

cas$ castle graphic
ds(3,9) lords records

dep deposed flag

dft defeat flag

g GET variable

ho$ "How many "

h$ GET variable

i loop control

item loop control

j loop control

1%(15,7) records for each land
lords$(3) lords”® names

lord current lord

land current land

letts$ "ABCDEFGHIJKLMNO"
provs$(1l5) land names

pr prince flag

season$ (4) season names

sh shift troop flag

sqr controls printing of squares
sea season number

tr treaty flag

weS (7) weather types

w3 wear on Mernar s castle
wes weather

yS message

System variables used for passing parameters
A%, B%, C%, D%, E%, K%

Figure 4.3 Variables in Mernar Keep.

apparently simple set of choices available to the player into a testing
set of decisions.

Initially the number of animals found is calculated, the
probability being determined by the amount of forest in the
province. This in turn depends on how much has been burned to
make land suitable for crops, and that will depend on how many
peasants and men-at-arms the lord has to support. There is always a
chance that no animals at all will be found, in which case the lord
must still pay for the hunt but has no return on his investment.
Before setting out on the hunt the player must choose a weapon.
Although it might seem like an arbitrary choice each of the three
weapons is best used in a particular way. If the bow is chosen then
the appropriate tactic is to stand and wait. If the boar spear is chosen
it is best to charge the animal.

Each time an animal is found it will choose its own tactic and the
player must choose an appropriate one to counter it. Different

55

animals choose different tactics and, after playing the game for a
while, the player will begin to learn which tactics a particular animal
is likely to choose. As the tactics chosen by the player are closely
related to the tactics chosen by the animal (e.g., if the animal decides
to charge it is not very appropriate to attempt to sneak up on it!) as
well as on the weapon, and as the efficacy of different weapons is
related to the type of animals, choosing a tactic each time you meet
an animal can be quite a complicated decision.

Suppose, for example, you have chosen the short spear. You
wander into the forest and encounter a boar. From past experience
you think boars generally charge but sometimes try to hide. The best
tactic with a short spear is to try to sneak up on the creature, but
sneaking is not a good way of counteracting a charge. The best way
to nullify a charge is to charge in return, but the short spear is only
mediocre for charging and what if the boar decides to flee after all?
Thus, do you gamble on the more likely tactic of the boar or do you
choose the more cautious tactic and hope that circumstances favour
you?

If you add to this the fact that the prestige won by a successful
hunt depends on the number of animals killed, their type, and the
heroic nature of the tactics used, you will see that this section of the
program alone requires some intelligent thinking.

Most of the program’s sections are self-explanatory. All of the
decisions Lord Mernar can make may affect and/or be affected by
other aspects of the game. For example, he may decide that he needs
more land to increase prestige and crop-planting area. He would
thus want to invade an adjacent territory. If he does so he needs an
army, which means sufficient men-at-arms and peasants. If he has
not enough men-at-arms he may recruit more, but he has to pay
them. If he does not have enough money in the treasury he may have
to borrow from the King, which will lower his prestige, or he may
want to levy a tax on a province. Doing this may, however, cause a
riot which might do more harm than good. Similarly he needs to take
alarge number of peasants to guarantee victory but this will reduce
the number able to work in the fields and consequently the harvest
may be poor. He must also consider the weather as this will affect
fighting and, if he has no alliance with either of the lords of Hale and
Arden, whether they are allied, because this may mean the enemy is
too strong or might even take retaliatory action against him.

The lords of Hale and Arden are supposedly carrying out the same
kind of decisions but we do not have enough memory to cover that.
Instead, each lord will carry out one or more actions each season, the
number of actions depending to some extent on the season, which
may include hostility to Mernar but may be simple recruitment or

56

planting and might even involve hostility between each other.

At any time from the main menu Mernar can choose to end the
season or end the game, to get a map of current ownership of the
territories, or to examine his scribe’s records of his current status.
Remember that the sole object of the game is to increase prestige and
that everything else is subordinate to this one aim. Prestige is a
function of the number of peasants on the lands, the size of the army,
the success and/or failure of hunts, the number of territories owned,
the number of victories, and alliance with one of the lords. If your
prestige exceeds that of one of the lords by a set amount you will
automatically gain his lands, and if you can achieve a prestige
double that of either lord you will be made Prince of the Isle, gain
permanent rule, and win the game. This is not easy.

4.2 Some additional notes on Mernar Keep

Additional points of interest to bear in mind when designing a game
like Mernar Keep (Fig. 4.4), which depends very much on variety
and internal complexity, are the following:

1. Because the game manipulates so much information the memory
consumed is important. Mode 4 has been used because it only
uses 10K of memory for graphics but allows an attractive 40-
column screen. Graphics are necessary in order to display the
map, but colour is not needed as patterns can be used to indicate
the different provinces. Similarly, it would be nice to make the
displays more interesting with colour but mode 4 only allows two
colours at a time. Consequently I have varied the background for
different displays to make it a little more interesting visually.

2. The DATA statements at the end of the program are a
particularly wasteful kind of programming. Putting one DATA
item on a line wastes several bytes of precious memory. However,
I have done this to make the organization of the DATA clearer.
For each province the first line of DATA holds the number of
‘squares’ that comprise that province, the second line is the start
position for drawing each square, the third line is a start position
for drawing the province outline, the fourth is the number of lines
in the outline, the fifth holds the coordinates for the outlines, and
the sixth holds the province name and the position it is to be
printed at. These are READ into the drawing routines each time
PROCmap is called. Astute programmers will realize (1) that
some of this information is redundant and the drawing routine
could be rewritten to dispense with some of this DATA and (2)
drawing the map would be faster if the DATA did not have to be

57

58

read in each time but was permanently held as part of the routine
itself. The drawback with carrying out the first of these
modifications is that the program becomes more complex and less
easy to understand, and with the second more memory is needed
because the commands MOVE, PLOT, and DRAW would be used
many times over and the same basic procedures would be carried
out for each province drawn. However, you might like to
experiment with these variations.

The easiest area to expand in order to make the game even more
interesting would be the random event routines. It would be a
relatively simple matter to add more possible random events to
the potential actions each season by simply writing more
PROCedures and calling them by increasing the range of the
random variable at line 4230. I suggest you do this as a way of
exploring what can be done in a design of this kind. However,
bear two things in mind. Firstly, if your random routine is to be
any length at all you will probably need to gain extra memory for
it by the methods described above or by reducing some other
aspect of the program. For example, the map could be dispensed
with and the whole program use mode 6 (gaining at least 2K) if
PROCmap were replaced by a list of the territories owned by each
lord at any given time.

Secondly, inclusion of too many random events may have the
effect of unbalancing the game. As it stands it contains a fair
degree of randomness but not so much that it can cause the
player to lose the game (except once in a ‘blue moon’). However, if
alarge number of random events are added their effect may be so
great that the decisions available to the player are insignificant
in comparison. The player may be interested to see what happens
as aresult of a series of purely random activities but is more likely
to become bored with a game over which there is no control and
which does not seem to be affected by any kind of personal skill.

9 REM **x* MERNAR KEEP LIk
10 MODE 4

15 vbu 19,1,7
16 vDU 19,0,4
17 PRINT TAB(
20 PROCinit
25 PROCsc

0,0
0,0
3,1

— OO

14 4
4 ’
1 2) ; "MERNAR KEEP"

29 REM Main Loop - Supervisor

30 REPEAT

40 PROCweath

50 REPEAT

60 PROCmenu Figure 4.4. Mernar Keep (continues)

70 PROCselect

80 UNTIL g = 76 OR g = 81
90 IF g<>81 THEN PROCe(sea)
100 sea = (sea MOD 4)+1

110 UNTIL dep OR (pr>0) OR g = 81

119

120 PROCfarewell
990 END

998

999

1000 DEF PROCcash

1010 PRINT "How much?"

1020 INPUT g%

1030 r = RND(g%)

1040 sd = FNsoc(3,alf)

1050 r = r+(sd*10)

1060 IF r<(g%-(g%/3)) THEN PRINT “"That’s an
insult" : PROCpause : ENDPROC
1070 PRINT "That’s acceptable"
1080 cor = sd+l

1090 PROCcoff(g%,1l)

1095 ENDPROC

1098

1099

1100 DEF PROCmar

1110 IF d%(3,9) = 0 OR d%(alf,9) = 0 THEN PRINT

‘"There are no marriageable children"
PROCpause : ENDPROC

1118

1120 r = RND(5)

1130 PRINT “"Will you include a dowry?"

1140 REPEAT

1150 yn$ = GETS$

1160 UNTIL INSTR("YNyn",yn$)<>0

1170 IF yn$ = "y" OR yn$ = "Y" THEN INPUT "How
much ?"K% : PROCcoff (K%,1)

1180 IF r = 5 THEN PRINT "That has angered the
lord" : ENDPROC

1190 IF r = 4 THEN PRINT "The lord is not

interested" : cor = 1 : ENDPROC
1200 PRINT "A successful agreement"
1210 PROCord(3,9,-1) : PROCord(alf,9,-1)

1220 tr = alf

1230 cor =r

1240 ENDPROC

1248

1249

1300 DEF PROCg

1310 PROCwh

1320 1%(land,l) = alf
1330 cor = RND(3)+3
1340 ENDPROC

1400 DEF PROCanger

59

1410 r = RND(2)
1420 PRINT "In revenge the lord ";
1430 IF r = 1 THEN PRINT "invades one of your

lands" : PROCinvade : ENDPROC

1440 IF r = 2 THEN PRINT "raids one of your
provinces" : PROCraid : ENDPROC

1450 ENDPROC

1458

1459

1500 DEF PROCraid

1505 REPEAT

1510 land = RND(15)

1520 UNTIL 1%(land,l) = 3

1525 troop% = RND(d%(lord,4))

1526 peasant% = RND(d%(lord,3))

1530 PROCfight(lord, 3)

1535 IF dft = 1 THEN ENDPROC

1540 1%(land,5) = 0 : 1%(land,4) = 0 :
1%(land,3) = RND(1%(land,3))

1545 PRINT prov$(land);" has been raided, but
the raiders flee"

1546 PROCpause

1550 ENDPROC

1558

1559

1600 DEF PROCinvade

1610 REPEAT

1615 land = RND(15)

1620 UNTIL 1%(land,l) = 3

1625 troop% = RND(d%(lord,4))

1630 peasant% = RND(d%(lord,3))

1640 FOR j = 1 TO 15

1645 IF 1%(j,1) = lord THEN
PROCand(j,3,-(peasant%/d%(lord,?7
PROCand(j,4,-(troop%/d%(lord, 7))

1650 NEXT

1655 keep = 13

1660 sd = FNsoc(lord,3)

1665 IF sd<l OR land = keep OR RND(sd) = 1 THEN
PROCfight(lord, 3)

1670 IF dft = 1 THEN PRINT "You beat off an

))) e
)

attack in ";prov$(land) : ENDPROC
1671 PRINT prov$(land);" is seized." :
1%(land,1l) = lord

1675 d%(lord,7) = d%(lord,7)+1
1680 d%(3,7) = d4%(3,7)-1

1685 1%(land,l) = lord

1686 PROCpause

1690 ENDPROC

1698

1699

1700 DEF PROCshift

1710 CLS

1715 sh = 2 Figure 4.4. (continues)

1720 PROCwh : t = land

1725 sh =1
1730 PROCwh
1735 sh =0

1740 PRINT “"Move how many of your
";1%(land,3);" peasants?"

1745 REPEAT

1750 INPUT p

1755 UNTIL p<=1%(land,3)

1760 PRINT “"Move how many of your
":1%(land,4);" men at arms?"

1765 REPEAT

1770 INPUT m

1775 UNTIL m<=1%(land, 4)

1780 PROCtrans

1785 ENDPROC

1788

1789

1800 DEF PROCpay

1801 CLS

1802 PRINT “lord$(lord);" is taxing
";prov$(land)

1803 PROCpause

1805 py = RND(100)

1810 d%(lord,6) = ds%(lord,6)+py
1820 brig% = brig%+ INT(py/10)
1890 ENDPROC

1900 DEF PROCseed

1901 CLS : PRINT “lord$(lord);" is planting in
";prov$(land)

1902 PROCpause

1904 IF d%(lord,5)<1 THEN ENDPROC
1905 z = RND(d%(lord,5))

1910 1%(land,5) 1%(land,5)+z
1920 d%(lord,5) d%(lord,5)-z
1930 ENDPROC

1948

1949

1950 DEF PROCjoin

1951 CLS

1952 PRINT “lord$(lord);" is recruiting in
";provs$(land)

1953 PROCpause

1955 z = RND(1%(land,3))

1960 1%(land,4) = 1%(land,4)+z

1965 1%(land,3) = 1%(land,3)-z

1970 d%(lord,6) = d%(lord,6)-(z*10)

1975 IF d%(lord,6)<1 THEN d%(lord,6) = 0

PROCord(lord,8,- RND(6))
1980 ENDPROC
1998
1999
2000 DEF PROCmap
2005 vpU 19,0,1,0,0,0

62

2006
2010
2020
2040
2050
2060
2080
2090
2098
2099
2100
2110
2120
2130
2140
2150
2160
2170
2175
2176
2177
2178
2179
2180
2181
2182
2183
2190
2198
2199
2200
2205
2210
2220
2230
2231
2240
2242
2245
2250
2255
2260
2262
2265
2270
2275
2280
2285
2290
2298
2299
2300
2305
2310

vDU 19,1,7,0,0,0

CLS

FOR dp = 1 TO 15
PROCprovinceprint
NEXT

PROCcas

h = GET

ENDPROC

DEF PROCprovinceprint
RESTORE (9000+(dp*10))
READ loopi
FOR i = 1 TO loopi
READ x,y
MOVE X,y
PROCsg
NEXT 1
READ names$
READ name$
VDU 5
MOVE x,y : GCOL 0,1
PRINT STRINGS((LEN(name$)),
MOVE x,y : GCOL 0,0
PRINT name$
VDU 4
GCoL 0,1
ENDPROC

DEF PROCsq
IF 1%(dp,1)>1 THEN 2240
PLOT 1,128,-128
PLOT 0,-128,0
PLOT 1,128,128
ENDPROC
IF 1%(dp,1) = 2 THEN 2265
FOR x = 0 TO 3
PLOT 0,32,0
PLOT 25,0,-128
PLOT 0,0,128
NEXT x
ENDPROC
FOR x = 0 TO 3
PLOT 0,0,-32
PLOT 25,128,0
PLOT 0,-128,0
NEXT
ENDPROC

DEF PROCboundary
GCoL 0,1
READ x,y

CHR$ (230))

Figure 4.4. (continues)

2320 MOVE x,y

2330 PROCdraw

2340 ENDPROC

2348

2349

2400 DEF PROCdraw

2410 READ loopj

2420 FOR j = 1 TO loopj

2430 READ x,y

2440 DRAW X,y

2450 NEXT

2460 ENDPROC

2468

2469

2500 DEF PROCcas

2505 VDU 5

2510 MOVE 128,960

2520 PRINT cas$

2530 MOVE 1140,768

2540 PRINT cas$

2550 MOVE 600,192

2560 PRINT cas$

2590 VDU 4

2595 ENDPROC

2598

2599

3000 DEF PROCmenu

3001 vpu 19,1,7,0,0,0

3002 vbu 19,0,4,0,0,0

3005 CLS

3010 PRINT "Press initial letter of desired
action"

3020 PRINT TAB(10,3);"Annexe province"

3030 PRINT TAB(10,5);"Burn forest"

3040 PRINT TAB(10,7);"Crop plantlng

3050 PRINT TAB(10,9);"Display map"

3060 PRINT TAB(10,11);"Examine scribe’s
records"

3070 PRINT TAB(10,13

3080 PRINT TAB(10,15

3090 PRINT TAB(10,17 "Hunt"

3100 PRINT TAB(10,19);"Increase troops"

);"Find information"
);
);
);
3110 PRINT TAB(10,21);"Join alliance"
K
);
);
)i

"Gather taxes"

3120 PRINT TAB(10,23);"Keep repair"
3130 PRINT TAB(10,25);"Leave season"
3140 PRINT TAB(10,27);"Move troops/peasants
3150 PRINT TAB(10,29 "Quit"

3490 ENDPROC

3498

3499

3500 DEF PROCselect

3510 g = GET

3511 IF g>81 THEN g = g-32

3512 IF g = 65 PROCannex

64

3514 IF g = 66 PROCforest

3516 IF g = 67 PROCplant

3520 IF g = 68 PROCmap

3530 IF g = 69 PROCsc

3540 IF g = 70 PROCinfo

3550 IF g = 71 PROCtax

3560 IF g = 72 PROChunt

3570 IF g = 73 PROCrecruit

3580 IF g = 74 PROCally

3590 IF g = 75 PROCmaintain

3600 IF g = 77 PROCshift

3690 IF g = 76 OR g = 81 PRINT TAB(8,29);"Are
you sure? (Y/N)" : REPEAT : h$ = GET$: UNTIL
INSTR("YyNn",h$)>0 : IF INSTR("YyNn",h$)>2 THEN
g = 99

3695 ENDPROC

3698

3699

3800 DEF PROCwh

3801 CLS

3805 owner = TRUE

3806 IF sh = 1 THEN PRINT TAB(8,8);"From "
3807 IF sh = 2 THEN PRINT TAB(10,8);"To "
3810 PRINT TAB(13,8);"Which province?"

3820 PRINT TAB(5,10);"(Press initial letter of
name)"

3821 PRINT “" Province",,"Lord"

3822 PRINT : FOR k = 1 TO 15 : PRINT "
";provs$(k),,lord$(1%(k,1)) : NEXT

3824 REPEAT

3825 land = 0

3826 REPEAT

3830 g = GET

3831 IF g>79 THEN g = g-32

3832 UNTIL g>64 AND g<80

3835 g$ = CHRS(q)

3840 land = INSTR(lett$,g$)

3880 UNTIL land<>0

3890 IF 1%(land,1)<>3 THEN owner = FALSE

3895 CLS

3896 g = 0: sh =0

3897 ENDPROC

3898

3899

4000 DEF PROCweath

4005 CLS

4006 PRINT TAB(5,5);"It is now ";season$(sea)
4010 we% = RND(3)+sea-1

4020 PRINT TAB(5,7);"The weather is ";we$(we%)
4090 PROCpause

4095 ENDPROC

4098

4099

4100 DEF PROCe(a) Figure 4.4. (continues)

4105 CLS

4110 w% = (we%*d%(3,4))+(d%(3,3)/100)+ws
4120 kflag = 0

4122 FOR 1 =1 TO 15

4123 IF 1%(i,7)>0 THEN 1%(i,7) = 1%(i,7)+1
4124 IF 1%(i,7)>3 THEN 1%(i,7) =0
4125 NEXT

4130 FOR lord =1 TO 2

4140 PROClord(lord)

4150 NEXT

4160 PROCharvest

4170 FOR i =1 TO 3

4180 PROCprestige (i)

4185 ds(i,8) =0

4190 NEXT

4192 PROCchek

4195 PROCpause

4196 ENDPROC

4198

4199

4200 DEF PROClord(lord)

4210 r = RND(sea)

4220 FOR k =1 TO r

4225 REPEAT

4230 s = RND(8)

4240 land = RND(15)

4250 UNTIL (1%(land,l) = lord AND s>2) OR

(1%(land,1l)<>lord AND s<3)

4255 NEXT k

4260 IF s = 1 THEN PROCinvade
4270 IF s = 2 THEN PROCraid
4280 IF s = 3 THEN PROCseed
4290 IF s = 4 THEN PROCmove
4300 IF s = 5 THEN PROCpay
4310 IF s = 6 THEN PROCseed
4320 IF s = 7 THEN PROCseed
4330 IF s = 8 THEN PROCjoin
4390 ENDPROC

4398

4399

4500 DEF PROCmove

4510 IF 1%(lord,7)<2 THEN ENDPROC
4515 REPEAT

4520 t = RND(15)

4530 UNTIL 1%(t,1) = lord

4535 PRINT “"Troop movements are reported in
";provs$(t)

4536 PROCpause

4540 p = RND(1%(land,3))

4550 m = RND(1l%(land,4))

4552 PROCtrans

4555 ENDPROC

4558

4559

66

4560
4565
4570
4580
4590
4595
4598
4599
4600
4605
4610
4620
4630
4640
4650
4660
4670
arms"
4680
4690

DEF PROCtrans
PROCand(land, 3,-p)
PROCand(t,3,p)
PROCand(land,4,-m)
PROCand(t,4,m)
ENDPROC

DEF PROCharvest

CLS

FOR i =1 TO 15
IF 1%(i,1) = 3 THEN PROCcrop
NEXT

PRINT "Total crop is ";crop$
PROCord(3,5,crop%)

PRINT "You must feed ";d%(3,3);" peasants"
PRINT SPC (10);"and ";d%(3,4);" men at

PROCord(3,5,(d%(3,3)+(d%(3,4)*2)))
IF d%(3,5)<0 THEN death$ = "starvation"

PROCstarve : d%(3,5) =0

4700
grain"
4705
4710
4718
4719
4720
4730
4740
4750
4760
4765

PRINT "This leaves ";d%(3,5);" sacks of

PROCpause
ENDPROC

DEF PROCstarve
loss = ABS(d%(lord,5))
death = INT(loss/20)
PRINT death;" peasants die of ";death$
FOR k =1 TO 15
IF 1%(k,1) = lord THEN 1%(k,3) =

1%(k,3)-(INT(death/(d%(lord,7))))

4770
4775
4780
4788
4789
4800
4810
4820
4830
4838
4839
4900
4910
4920
4928
4929
4930
4940
4950
4958

NEXT k
PROCord(lord, 3,-death)
ENDPROC

DEF PROCcrop

y% = (1%(i,5)/(RND(we%))*(1%(i,3)/50))
Crop% = Ccrop%+y$%

ENDPROC

DEF PROCand(A%,B%,C%)
1%(A%,B%) = 1%(A%,B%)+C%
ENDPROC

DEF PROCord(A%,B%,C%)
d%(A%,B%) = d%(A%,B%)+C%
ENDPROC

Figure 4.4. (continues)

4959
5000 DEF PROCcoff (nu,K%)

5001 CLS

5005 PRINT "That will cost you ";nu*K%;"
crowns"

5010 IF nu*K%>d%(3,6) THEN PRINT "You ll have
to borrow from the king. He s not pleased"
PROCord(3,8,(RND(4))) : d%(3,6) =0

5020 d%(3,6) = d%(3,6)-(nu*Kg)

5022 IF d%(3,6)<0 THEN d%(3,6) =0

5025 PROCpause

5030 ENDPROC

5098

5099

5100 DEF PROCfight(at,df)
5110 r = RND(3)

5112 dmor = 0

5115 IF r = 1 AND at<>3 THEN amor = d%(at,1l)
5120 IF r = 1 AND df<>3 THEN dmor = d%(df,1)
5125 PROCshow

5126 PRINT “lord$(at);" attacks ";prov$(land)

5130 PRINT "Tactical report:"~

5140 IF r = 1 THEN PRINT "The enemy lord will
personally lead his troops"

5145 PRINT "The weather is ";weS$(we%)

5150 gs = nn

5152 amor = 0

5155 PRINT "Will you lead your troops
personally (Y/N)?2"

5160 g$ = GETS

5165 IF (g$ = "Y" OR g$ = "y") AND at = 3 THEN
amor = d%(3,1)

5170 IF (g$ = "Y" OR g$ = "y") AND df = 3 THEN
dmor = d%(3,1)

5175 PRINT "Will you :"

5180 PRINT " (1) Fight defensively"

5185 PRINT " (2) Try to outflank the enemy "

5190 PRINT " (3) Launch a frontal attack"

5195 g$ = GET$: IF VAL(g$)<l OR VAL(g$)>3 THEN
5195

5196 IF at = 3 THEN atac = VAL(g$) ELSE dtac =
VAL(g$)

5197 IF df<>3 THEN dtac = RND(3) ELSE atac =
RND(3)

5200 att = (troop%+((
RND(peasant%/lO))*10))*((amor+atac)/5)-(we%*6)+(
fds/atac)

5205 def = (1%(land,4)+(
RND(1%(land,3)/8)*8))*((dmor+dtac)/6)+(fd%/dtac)

5220 IF att<=def THEN dft = 1 : PRINT "The
attacker loses" : PROCpause : ENDPROC

5225 IF (at = 3 AND amor<>0 AND def>att) OR (df
= 3 AND dmor<>0 AND att>def) THEN p = RND(5) :

67

PRINT "You lose ";p;" prestige from the battle"
: d%(3,8) = d%(3,8)-p

5226 IF (at = 3 AND amor<>0 AND att>def) OR (df
= 3 AND dmor<>0 AND def>att) THEN p = RND(5)
PRINT "You win ";p;" prestige from the battle"
PROCord(3,8,p)

5227 IF att>defTHENPRINT ""The attacker wins"
ELSE PRINT "The defender wins"

5230 1%(land,4) = 1%(land,4)+troop%-(
RND(1%(land,4)+troop%)* RND(2))

5235 IF 1%(land,4)<0 THEN 1%(land,4) = 0

5240 1%(land,3) = 1%(land,3)+peasant%-(
RND(1l%(land,3)+peasant%)* RND(2))

5245 IF 1%(land,3)<0 THEN 1l%(land,3) =0

5250 PROCpause

5290 ENDPROC

5298

5299

5300 DEF PROCpause

5320 PRINT : PRINT " (Press any key to
continue)"

5325 G = GET

5330 ENDPROC

5398

5399

5400 DEF PROCriot

5405 CLS

5410 PRINT ~““"The peasants of ";prov$(land);"
rebel"

5420 m = RND(1%(land,4))

5425 PRINT “"They linch ";m;" men at arms"

5430 1%(land,4) = 1%(land,4)-m

5435 p = RND(1l%(land,3))

5440 g = INT(RND(1%(land,5)))

5445 IF g>0 THEN PRINT “"And steal ";g;" sacks
of grain"

5450 PRINT “"Losing ";p;" lives in the
fighting"

5455 1%(land,3)

5460 1%(land,5)

5485 PROCpause

5490 ENDPROC

5498

5499

5500 DEF PROCshow

5505 CLS

5510 1 = LEN(prov$(land)) DIV 2

5520 PRINT TAB(20-1,2);prov$(land)

5530 PRINT “"Cultivated land ";1%(land,2)+
FNspy(l%(land,2));" acres"

5540 PRINT “"Peasants ";l1%(land,3)+
FNspy(l%(land,3))

5550 PRINT “"Men at arms ";l1%(land,4)+

FNspy(1%(land, 4)) Figure 4.4. (continues)

1%(land,3)-p
1%(land,5)-g

5560 PRINT “"Current crop ";1%(land,5)+
FNspy(l%(land,5))

5565 PRINT
5570 IF 1%(land,7)>0 THEN PRINT "Already taxed
this year" : PRINT

5580 PROCtree

5590 ENDPROC

5598

5599

5600 DEF PROCtree

5610 RESTORE (9000+(land*10))

5620 READ sgr

5630 fd% = (sqr*100)-1%(land,2)

5640 PRINT “;"There are ";fd%;" acres of forest
left."

5644 *FX 15,1

5645 g = INKEY(200)

5650 ENDPROC

5658

5659

5700 DEF PROCprestige(lord)

5710 d%(lord,l) =
INT((d%(lord,3)/1000)+d%(lord,4)/250)+(d%(lord,1
)/4)+(d%(lord,7))+tr+(d%(lord,6)/100)+d%(lord,8)

5715 IF lord = 3 THEN PROCord(lord,1l,-(
INT(w%/100)))

5780 PRINT " ";lord$(lord);"’s prestige is
".d%(lord,l)

5790 ENDPROC

5798

5799

5800 DEF PROCchek

5810 FOR k = 1 TO 3

5815 IF 1%(13,1)<>3 THEN dep = TRUE : x$ =
"you have lost your castle"

5820 IF d%(3,1)<1 THEN dep = TRUE : x$
your prestige has fallen so low."

5830 IF d%(3,5)<1 THEN dep = TRUE : x$
you own no lands."

5840 IF d%(3,7)<1 THEN dep = TRUE : x$
you cannot feed your people."”

5845 hi =0 : lo =1

5850 FOR k =1 TO 3

I

5860 IF d%(k,1)>hi THEN hi = d%(k,1)
5870 IF d%(k,1)<lo THEN lo = d%(k,1)
5885 IF (hi-lo)>19 THEN pr = k

5890 NEXT

5900 ENDPROC

5998

5999

6000 DEF PROCannex

6010 PROCwh

6020 IF owner = TRUE THEN PRINT ~°" It’s
yours already" : PROCpause : ENDPROC

69

6025 REPEAT

6030 IF d%(3,4)>0 THEN PRINT
TAB(5,5);ho$;"men will you use?"

6040 INPUT troop%

6045 UNTIL troop%<=d%(3,4)

6046 REPEAT

6050 IF d%(3,3)>0 THEN PRINT
TAB(5,7);ho$;"peasants will you use?"

6060 INPUT peasant$

6065 UNTIL peasant%<=d%(3,3)

6066 FOR j = 1 TO 15

6067 IF 1%(j,1) = 3 THEN

PROCand (7,3, (-peasant%/d%(3,7)))
PROCand(j,4, (-troop%/ds(3,7)))
6070 NEXT
6075 enemy = 1%(land,l)
6080 IF enemy = 1 THEN keep = 1 ELSE keep = 8
6090 sd = FNsoc(3,enemy)
6100 IF sd<l OR land = keep OR RND(sd) =1
THEN PROCfight(3,1%(land,1))
6110 IF dft = 1 THEN PRINT TAB(10,0);"You are

soundly defeated" : PROCpause : ENDPROC
6115 PRINT "You seize ";prov$(land)
6120 1%(land,1l) = 3

6130 PROCord(3,7,1)

6135 ds(1l%(land,1),7) = d%(1l%(land,1),7)-1
6140 PROCpause

6190 ENDPROC

6198

6199

6200 DEF PROCforest

6210 PROCwh

6215 IF owner = FALSE THEN PRINT yS$:
PROCpause : ENDPROC

6216 PROCshow

6230 REPEAT

6260 PRINT : PRINT ho$;"acres will you
reclaim?" : INPUT acre%
6270 UNTIL acre%<=fd%

6280 PROCand(land,2,acre%)

6285 PROCord(3,2,acre%)

6390 ENDPROC

6398

6399

6400 DEF PROCplant

6410 PROCwh

6412 IF owner = FALSE THEN PRINT y$
PROCpause : ENDPROC

6413 PROCshow

6414 IF d%(3,5)<1 THEN PRINT “"You ve nothing

to plant" : ENDPROC
6415 REPEAT
6416 REPEAT Figure 4.4.
6420 PRINT TAB(4,16);ho$;"of your (continues)

":d%(3,5);" sacks of grain will you plant?"
6430 INPUT n

6435 UNTIL n<=d%(3,5)

6440 IF n DIV 100>1%(land,2) THEN PRINT
"Not enough land to plant this"

6450 UNTIL n DIV 100<=1%(land,2)

6455 PROCord(3,5,-n)
6480 1%(land,5) = n
6590 ENDPROC

6600 DEF PROCsc

6602 CLS

6603 FOR item = 2 TO 4

6604 dg(3,item) = 0

6605 FOR land =1 TO 15

6608 PROCcount(3,item,land)

6609 NEXT : NEXT

6610 PRINT : PROCprestige(3)

6620 PRINT " Coffers contain ";d%(3,6);"
crowns"

6630 PRINT " Lands owned ";d%(3,7)

6640 PRINT ‘" Men at arms ";d%(3,4)

6650 PRINT ‘" Peasants ";d%(3,3)

6660 PRINT “" Grain ";d%(3,5);" sacks"

6670 PRINT ‘" Total farming land ";d%(3,2);"
acres"

6690 PROCpause

6790 ENDPROC

6798

6799

6800 DEF PROCally

6805 CLS

6810 IF alf<>0 THEN PRINT TAB(0,10);"No-one
will admit your ambassador" : PROCpause
ENDPROC

6815 REPEAT

6820 PRINT TAB(0,10);"Do you want to ally
with Ardan(l)""" or Hale
(2) 2"

6830 alf = VAL(GETS$)

6835 UNTIL alf>0 AND alf<3

6855 IF alf = tr THEN PRINT "You already have
an alliance with this lord" : PROCpause
ENDPROC

6860 IF tr>0 THEN PRINT "You are allied with
the other lord. He’'s angry about your treachery
and plans to get his revenge" : tr = 0
PROCpause : PROCinvade : ENDPROC

6865 PRINT "Do you want alliance by marriage

(l)ll

6870 PRINT SPC (20);" gift of land (2)"

6875 PRINT SPC (20);" gift of money (3)"

6876 REPEAT

71

6880 t = VAL(GETS)

6882 UNTIL t>0 AND t<4
6885 cor =0
6890 IF t 1 THEN PROCmar

6895 IF t 2 THEN PROCg

6900 IF t 3 THEN PROCcash

6905 IF cor = 0 THEN PROCanger : ENDPROC
6906 IF cor = 1 THEN ENDPROC

6910 PRINT "You have a cordial alliance"
6915 tr = alf

6920 PROCpause

6925 ENDPROC

6998

6999

7000 DEF PROCtax

7010 PROCwh

7012 IF owner = FALSE THEN PRINT y$:
PROCpause : ENDPROC

7015 CLS

7016 PROCshow

7020 IF 1%(land,7)>0 THEN PROCriot : ENDPROC
7030 PRINT “"What is the levy for this

province?"

7040 INPUT crowns

7050 growa = 1%(land,2)-((1%(land,5)) DIV
100)+1

7060 subsist = (growa/(1%(land,3)))*5

7070 ptax = (crowns/1%(land,3))*10

7080 IF ptax>subsist THEN PROCriot : ENDPROC

7090 tpay = INT(crowns*(subsist-ptax))

7095 IF tpay<l THEN tpay = 0

7096 IF tpay>crowns THEN tpay = crowns

7100 PRINT “" You collect ";tpay;" crowns"

7110 PROCord(3,6,tpay)

7120 brig% = brig%+tpay DIV 5

7130 PROCand(land, 3, (tpay DIV 5))

7135 1%(land,7) =1

7140 PROCpause

7151 CLS : PRINT “"Here comes something else"
7190 ENDPROC

7198

7199

7200 DEF PROChunt

7205 hunt = FALSE

7210 PROCwh

7215 IF owner = FALSE THEN PRINT yS$
PROCpause : ENDPROC

7240 PROCtree

7244 count = 0

7245 antot = RND(INT(fd%/120))

7246 IF antot<l THEN antot = 0 : PRINT "A
wasted expedition, you’ve destroyed all the
wildlife here" : PROCpause : ENDPROC

2 REPEAT Figure 4.4. (continues)

7251 CLS

7252 PRINT “"What weapon will you take?"
7253 PRINT “"Bow (1)"

7254 PRINT “"Short spear (2)"

7255 INPUT “"Boar spear (3) ",wpn

7256 count = count+l : an% = (RND(6)+
RND(8)) DIV 2

7257 IF an%>6 THEN PRINT “" A wasted
journey" : hunt = TRUE

7260 CLS : PRINT “"You find a ";an$(an%)
7270 PRINT “"Do you want to ambush it (1)"
7275 PRINT “"Sneak up on it (2)"

7280 INPUT “"or charge it (3)",hutac

7295 IF an%>= RND(8) THEN tactic = 3 ELSE
IF (7-an%)>= RND(8) THEN tactic = 2 ELSE tactic
=1

7305 diff = ABS(hutac+tactic-4)

7315 IF (wpn = 3 AND hutac = 2) THEN effect
= 2 ELSE effect = ABS(wpn-hutac)

7325 kill 2

7335 IF ((an%+2) DIV 3 = 1 AND wpn = 1) OR
((an%+2) DIV 3 = 3 AND wpn = 3) THEN kill =1
()

7345 IF 4-((an%+1) DIV 2) = wpn THEN kill =
3

7355 kill = kill+diff+effect

7365 pres = -1

7370 IF kill> RND(7) THEN PRINT “"The
creature is too fast for you" ELSE PRINT “"You
slay the ";an$(an%) : pres =1
PROCord(3,5,an%*10)

7374 PROCord(3,8,pres)

7375 PRINT “"Your prestige bonus this
season is now ";d%(3,8)

7376 PROCpause

7380 UNTIL hunt = TRUE OR count = antot

7385 K% = antot*wpn
7386 PROCcoff(1,K%)
7390 ENDPROC

7398

7399

7400 DEF PROCrecruit
7410 CLS

7420 PRINT TAB(0,3);ho$;"troops do you wish
to recruit?"

7430 INPUT n

7440 dec% = n/d%(3,7)

7450 IF dec%<l OR dec%>d%(3,7)*100 THEN PRINT

"Not possible" : PROCpause : ENDPROC

7460 FOR 1 =1 TO 15

7470 IF 1%(i,1) = 3 THEN PROCand(i,3,-dec%)
PROCand(i,4,dec%)

7480 NEXT i

7490 PROCcoff(n,10)
7590 ENDPROC

73

74

7598
7599
7600
7605
7610

lands is correct"’,

DEF PROCinfo

CLS

PRINT TAB(0,10);"Information on your own
" but on other lands may be

distorted by"“"; SPC (15);" your spies"’

7615
7620
7630
7680
7790
7798
7799
7800
7820
7830
7840

PROCpause
PROCwh
PROCshow
PROCpause
ENDPROC

DEF PROCmaintain

charge% = RND(3)

CLS

PRINT TAB(4,10);"For full repairs it

will cost ";w%$*charge$%

7845
7850
7860
7870
7880
7890
7898
7899
7900
7910

PRINT TAB(4,12);

INPUT "How much will you pay ",n
PROCcoff(n,1)

w% = w%-(n/charge%)

IF w$<0 THEN w% = 0

ENDPROC

DEF PROCcount(lord,item,land)
IF 1%(land,l1) = lord THEN

PROCord(lord,item,1%(land,item))

7920
7930
7938
7939
8000
8010
8020
8030
8040
8050
8100
CHRS (8
8120

kflag =1
ENDPROC

DEF PROCinit

VDU 23,225,&E0A0;&AQEQ ; &BFB5; &FBFB;
VDU 23,226,&0705;&0507; &FDAD; &DFDF;
VDU 23,227, &FFFB; &BEBF; & FCBC; &FCFC;
VDU 23,228,&FFDF;&7DFD;&3F3D; &3F3F;
VDU 23,230, &FFFF;&FFFF; &FFFF; &FFFF;
cas$ = CHR$(225)+ CHRS$(226)+ CHRS(8)+
)+ CHRS(10)+ CHRS$(227)+ CHR$(228)

DIM

1%(15,7),d%(3,9),provs$(15),we$(7),an$(7),seasons$
(4),lords(3)

8125
8126
8130
8140
8142
8143
8144
8146
8147

sh = 0

ho$ = "How many "

FOR i = 0 TO 14
1%(i+l1,1) = (i DIV 5)+1
RESTORE (9000+((i+1)*10))

READ sqr

1%(i+l1,2) = sqgr* RND(6)
1%(i+1,3) = RND(300)+200
1%(i+1,4) = RND(30)+10

Figure 4.4. (continues)

8150 FOR j = 1 TO 3

8152 PROCcount ((i DIV 5)+1,3j+1,i+1)
8153 d%(j 9) = RND(4)

8154 d%(1) = RND(8)+1

8155 $(j,5) = RND(250)+250

8156 d%(],) = RND(50)+50

8157 das(j,7) =5

8160 NEXT : NEXT

8161 RESTORE 9000
8163 FOR i =1 TO 4

8164 READ season$(1i)

8165 NEXT

8166 FOR 1 =1 TO 3 : READ lordS$(i) NEXT
8170 alf = 0 : dep = FALSE : pr = 0

8175 kflag = 0 : sea =1

8180 lett$ = "ABCDEFGHIJKLMNO"

8182 FOR i =1 TO 15

8186 READ prov$ (i)

8187 NEXT

8190 w =1 : dft =0 : tr =0

8192 FOR i =1 TO 7

8194 READ weS$(i),an$ (i

8196 NEXT

8200 y$ = CHR$(10)+ CHR$(10)+" You don’t
own that territory"

8290 ENDPROC

8298

8299

8300 DEF PROCfarewell

8310 CLS

8320 IF dep = TRUE THEN PRINT "You are
deposed because ";x$

8330 IF pr>0 THEN PRINT lordS$(pr);" is made
Prince of the realm."

8340 PRINT " Farewell"

8350 ENDPROC

8358

8359

8360 DEF FNspy(x)

8370 LOCAL D%,E%

8380 D% = RND(2)

8390 IF D% = 2 THEN D% =
8400 E% = (RND(x/4)*D%)
8410 IF 1%(land,l) = 3 THEN E% = 0

8420 = E%

8428

8429

8990 DEF FNsoc(x,y) = d%(x,1)-d%(y,1)

8998 REM ****% DATA ***xx

8999

9000 DATA

spring, summer,autumn,winter,Ardan,Hale,Mernar
9001 DATA
Ardan,Belar,Cantour,Dean,Ellyn,Fier,Gast,Hale, Ir
el,Jeren,Kath,Lirellan,Mernar,Noth,Oran

-1

75

76

9005

DATA

sunny,badger, sunny,deer,dry, fox,damp, stag,very
wet,wolf,stormy,boar,very stormy,nothing

9009 REM DATA FOR ARDAN

9010 DATA 6

9011 DATA
0,1023,128,1023,256,1023,0,896,128,896,256,896
9012 DATA 0,1023

9013 DATA 4

9014 DATA 384,1023,384,768,0,768,0,1023
9015 DATA Ardan, 56,864

9019 REM DATA FOR BELAR

9020 DATA 4

9021 DATA 384,1023,384,896,512,896,640,896
9022 DATA 384,1023

9023 DATA 6

9024 DATA
512,1023,512,896,768,896,768,768,384,768,384,102
3

9025 DATA Belar,464,864

9029 REM DATA FOR CANTOUR

9030 DATA 7

9031 DATA
0,768,128,768,256,768,0,640,128,640,256,640,256,
512

9032 DATA 0,768

9033 DATA 6

9034 DATA
384,768,384,384,256,384,256,512,0,512,0,768
9035 DATA Cantour, 64,640

9039 REM DATA FOR DEAN

9040 DATA 4

9041 DATA 384,768,512,768,384,640,512,640
9042 DATA 384,768

9043 DATA 4

9044 DATA 640,768,640,512,384,512,384,768
9045 DATA Dean, 464,640

9049 REM DATA FOR ELLYN

9050 DATA 6

9051 DATA
0,512,128,512,0,384,128,384,256,384,0,256
9052 DATA 0,512

9053 DATA 8

9054 DATA

256,512,256,384,384,384,384,256,128,256,128,128,
0,128,0,512

9055
9059
9060
9061

DATA

REM
DATA
DATA

Ellyn, 64,320
DATA FOR FIER
6

512,1024,640,1024,768,1024,896,1024,768,896,896,

896
9062
9063

DATA
DATA

512,1023
6 Figure 4.4. (continues)

9064

DATA

1024,1023,1024,768,768,768,768,896,512,896,512,1

023

9065 DATA Fier,800,864

9069 REM DATA FOR GAST

9070 DATA 5

9071 DATA
640,768,768,768,898,768,768,640,898,640

9072 DATA 640,768

9073 DATA 6

9074 DATA
1024,768,1024,512,768,512,768,640,640,640,640,76
8

9075 DATA Gast,800,640

9079 REM DATA FOR HALE

9080 DATA 6

9081 DATA
1024,1024,1152,1024,1024,896,1152,896,1024,768,1
152,768

9082 DATA 1024,1023

9083 DATA 4

9084 DATA
1279,1023,1279,640,1024,640,1024,1023

9085 DATA Hale,1100,864

9089 REM DATA FOR IREL

9090 DATA 4

9091 DATA 1024,640,1152,640,1024,512,1152,512
9092 DATA 1024,640

9093 DATA 4

9094 DATA 1279,640,1279,384,1024,384,1024,640
9095 DATA Irel,1100,512

9099 REM DATA FOR JEREN

9100 DATA 5

9101 DATA
896,384,1024,384,1152,384,1152,256,1152,128
9102 DATA 896,384

9103 DATA 6

9104 DATA
1279,384,1279,0,1152,0,1152,256,896,256,896,384
9105 DATA Jeren,1000,320

9109 REM DATA FOR KATH

9110 DATA 4

9111 DATA 384,512,512,512,384,384,512,384
9112 DATA 384,512

9113 DATA 4

9114 DATA 640,512,640,256,384,256,384,512
9115 DATA Kath, 464,384

9119 REM DATA FOR LIRELLAN

9120 DATA 7

9121 DATA
128,256,256,256,384,256,0,128,128,128,256,128,38
4,128

9122 DATA 0,128

9123 DATA 6

71

9124

DATA

128,128,128,256,512,256,512,0,0,0,0,128

9125
9129
9130
9131
9132
9133
9134
9135
9139
9140
9141

DATA Lirellan, 200,128

REM DATA FOR MERNAR

DATA 4
DATA 512,256,640,256,512,128,640,128
DATA 512,256
DATA 4
DATA 768,256,768,0,512,0,512,256
DATA Mernar,540,128

REM DATA FOR NOTH

DATA 6

DATA

768,256,896,256,1024,256,768,128,896,128,1024,12

8
9142
9143
9144
9145
9149
9150
9151

DATA 768,256

DATA 4

DATA 1152,256,1152,0,768,0,768,256
DATA Noth,896,128

REM DATA FOR ORAN

DATA 6

DATA

640,640,640,512,640,384,768,512,768,384,896,512

9152
9153
9154

DATA 640,640
DATA 8
DATA

768,640,768,512,1024,512,1024,384,896,384,896,25
6,640,256,640,640

9155

DATA Oran, 704,384

Figure 4.4 Mernar Keep

78

5 INTELLIGENT STRATEGY

5.1 Games thatlearn

If you were playing Noughts and Crosses and each time your
opponent placed his cross in the centre square he won the game, in
subsequent games you might try putting your nought in the centre,
either to stop him winning or in the hope that you would win. If you
were playing Scissors, Paper, Stone and your opponent always used
‘stone’ you would soon learn to use ‘paper’ every time, because paper
always beats stone. Whenever you play a game you are continually
learning. You learn how the game should be played in order to give
yourself a better chance of winning (as in the Noughts and Crosses
example) and you learn how your opponent plays so you can adapt
your own play accordingly (as in the second example). This is
intelligent play. There is little point in ignoring your opponent or the
nature of the game if you want to win. You must learn how to play,
how to play well, and how to play well against different kinds of
players.

One criterion for an intelligent game might be that it should be
able to learn. We will know that it is learning when its play generally
improves or if its strategy is constantly updated to match that of the
player. Thus in Scissors, Paper, Stone one would expect a program to
win about 50 per cent of the time, but less if the human player is
employing an intelligent strategy. For example, if our micro version
of the game simply chose randomly each turn from the three
available alternatives all the human player needs to do is to play the
same choice every time to ensure, in the long term, that both players
come out even. Alternatively, as there is always a greater chance
that the program will select to play a choice different from the
previous choice rather than the same choice, if the player selects
that choice he or she should win in the long term.

Let uslook at a program to play this simple game and find out how
it might learn to play against a particular opponent. The program is
very simple and is given in Fig. 5.1. The player chooses one of the
three moves Rock, Scissors, or Tissue and the computer
independently makes its own choice. Rock beats Scissors, Scissors
beats Tissue, and Tissue beats Rock. Every time the player makes a

79

250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

80

ON ERROR GOTO 540

MODE1

COLOUR 129

CLS

PRINT ~~ "~

PRINT " GUESS ROCK, SCISSORS OR TISSUE"
PRINT" BY PRESSING THE INITIAL LETTER"
PRINT ~ ;" TO END GAME PRESS <ESCAPE>"
PROCwait

CLS

PROCinit

REM Main Loop
REPEAT
PRINTTAB(O,0); "MY TOTAL ";
COLOUR 2
PRINTTAB(10,0);total(1l)
COLOUR 3
PRINTTAB(20,0);"YOUR TOTAL ";
COLOUR 2
PRINTTAB(32,0);total(2)
COLOUR 3
REPEAT
PRINTTAB(29,10);" "o
PRINTTAB(11,10);" o
TAB(12,15);" ";TAB(12,16);"
move=1+((moves(s,1l)<=moves(s,2))"2)
move=move+((moves (s,move)<=moves(s,3))"2)*(3-move)

r=s

move=(move+3*((l=move)”2))-1

PRINTTAB(0,10);"YOUR GUESS ";
REPEAT

guess$=GETS$
UNTIL INSTR("RST",guess$)<>0
REPEAT
X=0
PROCupdate
UNTIL X<>0
PRINTMIDS (possible$, X, 8)
IF guess$="P" THEN s=1 ELSE s=ASC(guess$)-81
PRINTT2B(20,10);"MY GUESS ";
guess$=CHRS (move+81)
X=0
PROCupdate
PRINTMIDS (possible$, X, 8)
moves(r,s)=moves(r,s)+1
IF s=move THEN PRINTTAB(15,16);"A DRAW" :PROCwait
UNTIL s<>move
win=s-move+3*((move>s)"2)
total (win)=total(win)+1
PRINT TAB(12,16) ;name$(win) ;" WIN"
PROCwait
UNTIL FALSE

530

540 REM End Routine

550 CLS

560 PRINT """~

570 IF total(l)>=total(2) THEN
PRINT"It looks as if I'm too good for you"
ELSE PRINT"I suppose you think you're clever"

580 END

590

600

610 DEFPROCupdate

620 FOR i=1 TO 24 STEP 8

630 IF guess$=MID$(possible$,i, 1) THEN X=i

640 NEXT i

650 ENDPROC

660

670

680 DEFPROCinit

690 possible$="ROCK SCISSORSTISSUE "

700 DIM total(2), moves(3,3), name$(2)

710 r=INT(RND(3))

720 s=INT(RND(3))

730 moves(r,s)=1

740 moves(s,r)=1

750 name$(l)="I"

760 name$(2)="YOU"

770 ENDPROC

780

790

800 REM Waits until space bar is pressed

810 DEFPROCwait

820 PRINT TAB(5,20);"Press space bar to continue"

830 REPEAT

840 g=GET

850 UNTIL g=32

860 PRINTTAB(5,20);STRINGS(30," ")

870 ENDPROC

Figure 5.1 ‘Scissors’.

move the computer remembers it, together with the player’s
previous move. Thus it ‘knows’ how many times playing Rock has
been followed by playing Tissue, for example. This is the purpose of
the 3 X 3 array. For each of the three possible moves that could be
played it holds the number of times that they have been played and
the number of times they have been followed by each kind of move.
Thus when it has to make its own choice it looks at the move the
player last made, looks along the table to see which move most
frequently has been used by the player to follow that move, and

plays the appropriate counter-move.
Suppose the player always follows Rock by playing Scissors. The
81

program will have in its array the information “Rock followed by
rock—0”, “Rock followed by Scissors—8”, and “Rock followed by
Tissue—0”. So it ‘knows’ that Scissors is the likely choice and will
thus choose Rock itself. As soon as the player realizes that this is
what is happening another strategy will be chosen, but as soon as
the player has used this strategy more than the other one the
computer will also switch strategies.

In this way the program is always learning about the player and if
the player sticks to a rigid routine the computer will always win. Of
course, most players realize this and so try to play as randomly as
possible. It is unlikely that a player would lose to this program more
than once or twice. However, the result of this simple routine is that
the player must constantly be thinking about the game and must
play intelligently in order to win.

How could we improve the program so that it might have a better
chance? The best way would be to set up larger arrays that
remembered not just the previous move but the previous two, three,
four, or more moves and looked for patterns in play. However, the
program would also have to incorporate what is known as an
‘evaluative function’ which might be quite complex. An evaluative
function in a game is a single function which gives weight to all the
possible variables and aspects of the situation and combines them in
a way which the programmer thinks shows the best course to take,
usually by resulting in a single number which controls the choice of
the program’s move.

For example, if our program remembered patterns of two moves
and also patterns of three we might have an evaluative function
which regarded the two-move pattern as more important than the
longer one, so gave a weighting of 2 to the former and 1 to the latter,
i.e., the former is regarded as twice as important as the latter.
Suppose that the program held the information that if one looks at
two-move patterns the player has chosen Scissors after Rock 8 out of
20 times and if one looks at the current three-move pattern (say
Tissue, Tissue, Rock) the player has never chosen Scissors after
Rock but has chosen Tissue 5 times out of 6. This means that the
player has a tendency to follow Rock by Scissors except when he
has just played two Tissues, when he has then played another
Tissue on every occasion except one. We might expect him to
choose another Tissue. Our evaluative function would be:

2*(number of times the player has played x in this two-move
position/number of times the player has been in this position) +
1*(number of times the player has played x in this three-move
position/number of times the player has been in this position)

82

If we suppose that Scissors had only been played once after this
three-move position this would give for Scissors:

2%(8/20) + 1*(1/6) =0.96

If we use the same function on the number of times Tissue has
been played we might find it is six times in the two-move pattern and
five in the three-move pattern, giving:

2%(6/20) + 1*(5/6) = 1.43

Thus although the player has more often played Scissors after
Rock than Tissue after Rock and the evaluative function gives
double the weighting to the two-move pattern, the fact that the
three-move pattern shows a clear tendency for Tissue means that
the program will on this occasion expect Tissue and therefore choose
Scissors as its counter-move.

If this is not complicated enough then you could also add on the
history of four-move patterns, and so forth, giving them weightings
in the evaluative function which reflected their supposed degree of
importance. Obviously the success of the whole program relies on
having a sensible evaluative function but for many games this is
difficult to work out and can only usually be done by trial and error.
First you establish your evaluative function with weightings that
you think are reasonable and you RUN the game. Play it a few dozen
times and see how easy it is to beat. If it is easy then make a major
adjustment to just one of your weightings. (Only alter one at a time
or you will not know which is having the observed effect.) Play the
same number of games and see if you were able to win more games or
fewer. If you won more change the weighting back and try a
different alteration. If you won fewer then you are on the right lines
and you might want to alter that weighting even more in the same
direction. In the above example we might decide that the result was
correct but it showed that more weighting should be given to the
three-move patterns, so we may change the formula to 3*(two-move
pattern)plus 2*(three-move pattern), which increases the relative
importance of the latter. Eventually you should get to a point where
every alteration you can think of only makes the program play a
worse game, in which case you have found the best evaluative
function you can using the variables you are giving it. If the program
is still playing miserably then you have not chosen the right
variables in the first place and no tinkering with weightings will
alter the fact that your description of the game is flawed.

83

5.2 Anintelligent opponent

In this section we will begin to look at a new computer board game
which has a certain amount of intelligence. What we want is a
program which can play the game instead of a real opponent, so the
program has to know the rules of the game and have some idea of
how to use those rules to win. The program can be thought of as
having two parts. The first part is the part that replaces the board
and components of the game (such as playing pieces, dice, cards,
etc.). Some people are quite happy with programs that simply
provide this. For them the micro game is just the same as an
ordinary board game except that it is played using a keyboard and
TV and both players are human using the computer as a means of
playing.

The second part of our program is that which replaces the
opponent. This is the part which is, in some sense, intelligent. It
‘understands’ the game and also has some ‘ideas’ on how the game
should be played. Obviously it would be quite easy to write a
program that cheats in any game because all the information about
the game, together with all the coding of the rules, is held by the
computer. Consequently our two parts should be kept separate. It is
unfair for the human player if the computer is able to access
information or carry out operations which a human player would be
unable to do. For example, it would be a pointless game that allowed
the computer to make any moves it liked but restricted the human
player solely to the legal moves. If the computer can cheat then there
is no point to the game. A game is after all a series of rules which both
players have to agree to. If one player opts out then the game cannot
be played—the rules do not work.

Consequently, we must write the second section of the program as
an imitation of a human player. It should be able to do what a human
player can do, and no more. If we tried to make it do exactly what a
human player does we would have a number of problems. Firstly,
the actual psychology of playing games (like many other aspects of
human behaviour) is not very well understood and what is
understood can be difficult to describe. Secondly, most players play
in very complex and usually inefficient ways. A player might look at
one move, examine some of its possibilities, then notice another
possible move, then look at a third, then go back to the first, then
perhaps tentatively move a piece, then change his or her mind, begin
looking at a totally different section of the game, and finally shrug
and simply play any move to avoid thinking about it any more.
Acting in this way is usually an inefficient strategy, wasting time
and resources, and generally not producing the best move, but it is

84

characteristic of human play. Not only would it be foolish to program
a computer to play an inefficient strategy but it would be wasteful of
the computer’s resources and, as we shall see, memory is an
important feature of intelligent games.

The third reason that it would be silly to write a program that
played in the same way as a human being, even if it was possible, is
that in some ways computers can play better than human beings.
For example, there are few human Chess players alive at the
moment who are capable of consistently beating the best Chess
programs around. The strategies built into the computer are better
than the strategies which human beings typically use. Why are they
better? They are superior to human strategies because they can be
thorough in searching for the best possible move, they can
accurately remember which moves have been looked at and which
have shown most promise, and they can explore a number of
different options of a high degree of complexity without becoming
confused or making mistakes.

All this assumes that the programmer of such a superior program
has analysed the game correctly. The reason that the current
generation of Chess games is so successful is that a great deal of
research and experiment has been carried out on such programs
over the last 20 years. It was thought that in learning how to
program a machine to play Chess major discoveries would be made
about human intelligence and problem-solving because the game
was regarded as one of the most difficult of human intellectual
activities. Consequently, many academics and programmers
devoted a great deal of their time to making such programs as
efficient as possible. As it turns out not very much has been learned
about human intelligence and relatively little has been learned
about making machines intelligent, but a great deal has been
learned about playing Chess and about getting a machine to play

Chess.
When designing a program which is to act as a human player it is

important to decide what kind of player we want the program to be.
It is not difficult to program a game which makes its moves
randomly, but such a game would be relatively easy to play and easy
to beat. To make a game play with a degree of intelligence is quite
difficult, but to make it better than the best human player is well-
nigh impossible. In other words, we must decide on a level of play
which is cost effective in terms of the development time available.
One reason that there is, at the time of writing, no commercial
version of Go available for a computer is that an enormous number
of man-hours would be required to construct a game which could
play at the level of only an average human being, so no software firm

85

thinks it is worth the investment. On the other hand, if you are an
ardent Go player you may be prepared to spend that amount of time
because the game is worth much more to you than simply making
money out of it. (However, there are a number of other problems in
writing a Go program.)

A second factory normally limits the programmed intelligence of a
game, and that is the capacity of the computer. The drawback with
comprehensive game search routines is that they use an enormous
amount of memory and they can take a long time to execute. On the
Electron we are limited to about 24K for a program (although BBC
owners have mode 7 which gives about 31K of available RAM). For
most purposes this would be plenty, but intelligence can require a
very large amount of temporary storage while its routines are being
carried out so that every byte becomes precious. We will see, for
example, that the game used in this chapter is in some way badly
written because of the need to leave enough memory for the
intelligent routines.

Similarly, the speed of the processor can be an important factor.
The essential principle of getting a computer to think is to make it
explore every possible alternative. This means that it has to do a
great deal of work, which takes even a computer a great deal of time.
One of the advantages of the human method of decision-making is
that is is often faster than that of the machine because certain
options are ignored from the beginning. Thus if we are writing our
routines in BASIC rather than machine code the process of deciding
on the move can be intolerably slow. The programmer thus has to
decide on what is a tolerable amount of time for such processing,
which of course will depend on who is using the program. Ifit is to be
commercially available then it is important that it be as fast as
possible, but if it is only for the use of the programmer, a dedicated
games player, then perhaps delays of hours can be tolerated
between moves.

5.3 Dilemma—the basic game

Before looking at the intelligent aspects of this chapter’s game,
Dilemma, we will briefly examine its nature. The principle is quite
simple, if a little tortuous to describe. A board is set up as an 8 X 8
array of coloured squares. No two squares of the same colour will be
adjacent, vertically or horizontally. Each player has three pieces and
the first player to move one of his pieces from one side of the board to
the other is the winner. Movement is alternate and may be of any
piece but must be forward, either directly or diagonally, and only one
square may be moved at a time. The only other constraint is that a

86

piece can only move to a square which is the same colour as one
directly in front of one of the three pieces of the opponent.
Consequently, if all the squares immediately in front of the
opponent’s pieces are white then it is only possible to move to a white
square. If no white square is close enough to one of the pieces the
player would have to forfeit a move. It is thus possible to obtain a
draw where no piece on either side can be moved. In this case we
could decide that the player with a piece nearest the opponent’s
baseline is the winner.

The set-up part of this program must therefore be to build a board
of eight by eight squares with no adjacent squares of the same
colours. The starting positions of three pieces for both players must
then be decided. The main program must know where each piece is
and must be able to print the pieces on the board and move them to
the correct locations when desired. It must also be able to tell if a
player has won and should be able to print error messages if illegal
moves are attempted. In addition, it must also include a mechanism
which allows the human player to specify which piece is to be moved
and where it is to be moved to.

For the Electron this immediately adds some constraints to our
design. In the first place we need a multicoloured board together
with two different colours for the opposing pieces. As the game is not
very interesting unless the board has at least four different colours
this means a minimum of six colours need to be displayed, and this
limits us to mode 2. Consequently we only have 12K for the program
(20K being used for the graphics), which means that the intelligence
routines have to be brief.

Our other main decision is how to input the user’s moves. One
normal method would be to allow the input of coordinates. This
would mean that each time the player wanted to move, a letter and a
number (let us say) would have to be typed to indicate the square to
be moved from, and another letter and number to indicate the
square to move to. If a mistake was made the directions would have
to be re-typed. This is a tedious if simple method of input which
annoys some players so much that they never bother with the game.
A better, quicker, and more direct method is to use the cursor keys to
identify the chosen piece and square. Although the user still has to
press two keys there is no need to worry about coordinates and no
need to read small letters off the screen or to worry about typing
mistakes. The main drawback with the method is that it will use
more memory than the coordinate approach. Still it is probably
preferable to design a less intelligent game that a player enjoys
playing than a more intelligent game that he or she does not want to
play.

87

A third method is to let the micro indicate a possible piece to be
played. This is used in our version of Dilemma. At each turn the
program first checks that at least one move is possible for the player
and, if it is, one of the player’s pieces is flashed and the player is
asked whether that piece is to be moved. If the response is ‘N’ for ‘No’
another piece is flashed and the program continues to cycle through
all three pieces until the player types in ‘Y’ for ‘Yes’. When ‘Y’ is
typed the player must select one of the three legal moves by typing
‘L’ for ‘Left diagonal’, ‘R’ for ‘Right diagonal’ or ‘F’ for ‘Forward’. If
the player attempts an illegal move, e.g., by trying to move onto a
square which is already occupied, the cycle is repeated. In this way
the player receives a clear indication of what is required at each
stage and the program has to do only a small amount of checking to
ensure that the input is allowed. It is difficult for the player to choose
an impossible move and impossible for an illegal move to be carried
out. Most importantly, the amount of work the player needs to do is
kept to a minimum. Only two keypresses are needed in some cases,
with a maximum of four on any turn, provided that an illegal move is
not attempted.

The program works by holding the current position of all six pieces
in the game in an array called current%. The routine needs only to
flash the three positions held in array elements 4 to 6 (the player’s
piece number, because the machine controls pieces 1 to 3) one at a
time. This can be done by constantly calling a FOR . . . NEXT loop
whose variable moves between 4 and 6, but our version uses a
REPEAT . .. UNTIL loop which, rather like a FOR . . . NEXT loop,
increments a counter from 4 to 6 while carrying out the necessary
tests each cycle. When the variable reaches 6 it is reset to 4. In this
way the whole operation is kept within one loop with only one test for
the exit, rather than the more complex structure that would be
needed to keep using a FOR . . . NEXT loop. Almost certainly if you
tried to use a FOR...NEXT loop you would need to use a
conditional GOTO loop which loops back within the program. While
perfectly acceptable this is a habit to avoid if possible because it can
lead to code which is difficult to decipher and adapt.

5.4 The program for Dilemma

The complete listing for the game Dilemma is given in Fig. 5.2. As
described above it is a micro version of a board game using mode 2
graphics.

10 CLEAR

20 MODE 2

30 PROCinit

40 PROCboard Figure 5.2 ‘Dilemma’ (continues)

88

60
70 REM **** Main Loop IEIIE S

80 REPEAT

90 PROCis_move_poss(1,3,4,6,1)

100 IF check = 0 THEN draw = draw+l ELSE PROCumove :
draw = 0

110 PROCwin

120 IF win>0 THEN 160

130 PROCis_move_poss(4,6,1,3,-1)

140 IF check = 0 THEN draw = draw+l ELSE
PROCmachinemove: draw = 0

150 PROCwin

160 UNTIL draw>l OR win >0

170 IF draw>1l THEN PRINT "A Draw " ELSE PRINT name$(win);

n wins"

180 END

190

200

210 DEF PROCboard
220 FOR X% = 0 TO 63

230 ?(piece%+X%) = 0

240 NEXT

250 FOR X% =1 TO 3

260 R% = RND(8)-1

270 IF ?(piece%+R%) <>0 THEN 260

280 ?(piece%+R%) = X%

290 current% (X%) = R%

300 NEXT

310 FOR X% = 4 TO 6

320 R% = RND(8)-1

330 IF ?(piece%+R%+56) <>0 THEN 320

340 ?(piece%+R%+56) = X%

350 current%(X%) = R%+56

360 NEXT

370 FOR Y% = 0 TO 7

380 FOR X% = 0 TO 7

390 R% = RND(6)+1

400 IF board%?(X%-1+(Y%*8)) = R% OR
board%?(X%+((Y¥%-1)*8)) = R%¥ THEN 390

410 board%? (X%+(Y%*8)) = R%

420 PROCsquare(X%,Y%)

430 NEXT

440 NEXT

450 GCOL 0,0
460 FOR X% = 160 TO 832 STEP 64

470 MOVE X%,0

480 DRAW X%,640

490 MOVE 0,X%+32

500 DRAW 960 ,X%+32
510 NEXT

520 ENDPROC

530

540

550 DEF PROCsquare(X%,Y%)
560 VDU 5

570 MOVE 300+(X%*64),640-(Y%*64)
580 GCOL 0,?(board%+X%+(Y%*8))
590 PRINT sg$;

600 PROCpiece

610

670

VDU 4
ENDPROC

DEF PROCpiece

IF ?(piece%+X%+Y%*8)>3 THEN pcol = 0 ELSE pcol =1
IF ?(piece%+X%+(Y%*8))>0 THEN GCOL 0,pcol

PLOT 0,-64,16 : PRINT pc$: GCOL O,R%

ENDPROC

DEF PROCinit
win = 0

DIM board% 64

DIM piece% 64

DIM current%(6)

DIM name$(2)

name$(1l) = "The computer "
name$(2) = "The player "
g% = FALSE

vDu 28,0,5,19,0

VDU 24,0;0;1023;800;

VDU 23,241,&18,&3C,&7E,&3C,&18,&18,&3C, &7E
vbU 23,242,&00,&00,&00,&00,&18,&3C,&7E,&00
VDU 23,240, &FF, &FF, &FF, &FF, &FF, &FF, &FF, &FF
sg$ = CHRS$240+ CHR$8+ CHRS$10+ CHR$240

pc$ = CHR$241

DIM p%(3),9%(3)

ENDPROC

DEF PROCumove
x =3
REPEAT
REPEAT
x = x+1
IF x>6 THEN x = 4
PROCflash(x)
CLS
PRINT "Move this piece?"
REPEAT
yn$ = GETS
g = INSTR("YyNn",yn$)
UNTIL g<>0
CLS
PROCflash(x)
UNTIL g<3
REPEAT
PRINT "Move Left, Forward or Right?"
flag = 0
g$ = GETS
g% = INSTR("L1FfRr",cs$)
IF (g%<3 AND current%(x) MOD 8 = 0) OR
(4%>4 AND (current%(x)+1) MOD 8 = 0) THEN PRINT
"Impossible" : flag =1
UNTIL g% <>0 AND flag = 0
sq = current%(x)-8+(INT((g%+l)/2)-2)
colsg = ?(board%+sq)

PROCchecksgok(1,3,1) Figure 5.2 (continues)

1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670

1680
1690
1700
1710
1720
1730
1740

IF check = 0 THEN PRINT "impossible®
UNTIL check = 1
PROCupdate(x,0)
ENDPROC

DEF PROCflash(x)

VDU 5

GCoL 3,8

MOVE 300+(FNcurx(x) *64),624-(FNcury(x)*64)
PRINT pc$

VDU 4

ENDPROC

DEF PROCchecksqok(os,oe,param)
check = 0

FOR 1 = os TO oe

p =?(board%$+currentt%(i)+(8*param))
IF p = colsq THEN check =1

NEXT

FOR i =1 TO 6

IF current%$(i) = sq THEN check =0
NEXT

ENDPROC

DEF PROCupdate(piece,pcol)

VDU 5

MOVE 300+ (FNcurx(piece)*64),624-(FNcury(piece)*64)
GCOL 0,?(boards$+current%(piece))

PRINT pc$

? (pieces+currentt(piece))=0

current%(piece) = sq

?(piece%+sq) = piece

MOVE 300+ (FNcurx(piece)*64),624~-(FNcury(piece)*64)
GCOL 0,pcol

PRINT pc$

VDU 4

ENDPROC

current%(a) MOD 8
current%(a) DIV 8

DEF FNcurx(a)
DEF FNcury(a)

DEF PROCmachinemove

CLS

PRINT "I'm thinking...."

PROCchoose

PRINT "Aha!"

IF r>0 AND s>-2 THEN PROCupdate(r,l) ELSE
PRINT "No move possible"

ENDPROC

DEF PROCchoose

bestmac = =900
bestbest = -900
bestmove = =900

91

1750

memimove = =2

1760 mempiece = 0
1770 maccount = 0
1780 defaultmove = 0
1790 defaultpiece = 0
1800 FOR piece =1 TO 3
1810 FOR move = -1 TO 1
1820 mem2 = -2
1830 check = 0
1840 sq = current%(piece)+move+8
1850 colsqg = ?(board%+sq)
1860 REM Don’t go off the edge
1870 IF (move = -1 AND (FNcurx(piece) MOD 8 = 0))
OR (move = 1 AND ((FNcurx(piece)+l) MOD 8 = 0))
THEN check = 0 ELSE PROCchecksgok(4,6,-1)
1880 IF check = 1 THEN PROCcount(piece,move)
defaultmove = move : defaultpiece = piece
1890 REM Record best move for thi piece
1900 IF bestmac > bestbest AND check = 1 THEN
bestbest = bestmac : mem2 = move
1910 NEXT
1920 bestbest = bestbest+(FNcury(piece))/2
1930 IF check = 1 AND bestbest > bestmove THEN PROCchosen
1940 NEXT piece
1950 IF mempiece<>0 AND memmove>-2 THEN
PROCshow ELSE PROCdefault
1960 s¢ = current%(r)+8+s
1970 colsg = ?(board%+sq)
1980 ENDPROC
1990
2000
2010 DEF PROCis_move_poss(os,o0e,ps,pe,param)
2020 check =0
2030 FOR k = os TO oe
2040 FOR 1 = ps TO pe
2050 FOR j = -1 TO 1
2060 IF j+param = 0 AND param = 1
AND (current%(k)) MOD 8 = 0
THEN 2110
2070 IF j+param = 0 AND param = -1
AND (current%(k)+1) MOD 8 = 0
THEN 2110
2080 IF j+param = -2 AND (current%(k)) MOD 8 = 0
THEN 2110
2090 IF j+param = 2 AND (current%(k)+1) MOD 8 = 0
THEN 2110
2100 IF ?(board%+current%(k)+(8*param)) =
? (board%+current% (i)-(8*param)+3j) AND
? (piece%+current%(i)-(8*param)+j) = 0
THEN check =1
2110 NEXT
2120 NEXT
2130 NEXT
2140 IF check = 0 THEN PRINT "No move possible" ;"Any key to
continue" : h = GET
2150 ENDPROC
2160
2170
2180 DEF PROCwin

92

Figure 5.2 (continues)

FOR i =1 TO 3
IF current%(i) >55 THEN win = 1
IF current%(i+3) <8 THEN win = 2
NEXT

ENDPROC

DEF PROCcount (p,m)
REM Hold three temporary positions in p%(x)
FOR 1 =1 TO 3
p%(i) = current% (i)
NEXT
p%(p) = sg
oppcount = 0
bestmac = 0
REM Count all possible opponent moves
FOR j = 4 TO 6
FOR opmove = -1 TO 1
sq = current%(j)+opmove-8
colsqg = ?(board%+sg)
PROCchecktwo(1l,3,1)
IF ck = 1 THEN oppcount = oppcount+(Y-(sgq DIV 8))

maccount = 0 : PROCmaccalc
NEXT opmove
IF bestmac<maccount THEN bestmac = maccount

NEXT j
PROCinfront
oppcount = oppcount*forward
bestmac = (bestmac*2)-oppcount
ENDPROC

DEF PROCchecktwo(os,0e,param)
ck =0
FOR = os TO oe
= ?(board%+p%(1i)+(8*param))
F p = colsg THEN ck =1
EXT
=1 TO 6

IF current%(i) = sqg THEN ck = 0
NEXT

i
p
I
N
i

DEF PROCmaccalc

FOR k =1 TO 3
g% (k) = current%(k+3)
NEXT

q%(j-3) = sqg

FOR k = 1 TO 3

FOR kmove = -1 TO 1
colsc = ?(board%+p%(k)+kmove)
PROCcheckthree(4,6,-1)
IF ch = 1 THEN maccount = maccount+l
NEXT kmove
NEXT Kk
ENDPROC

93

2760

2770 DEF PROCcheckthree(oe,o0s,param)
2780 ch =0

2790 FOR 1 = os TO oe

2800 p = ?(board%+g%(i-3)+(8*param))
2810 IF p = colsc THEN ch =1

2820 NEXT

2830 FOR i1 =1 TO 6

2840 IF current%(i) = sq THEN ch = 0
2850 NEXT

2860 ENDPROC

2870

2880

2890 DEF PROCinfront
2900 forward = 0
2910 FOR z = 4 TO 6

2920 IF FNcury(z)>forward THEN forward = FNcury(z)
2930 NEXT

2940 ENDPROC

2950

2960

2970 DEF PROCchosen

2980 bestmove = bestbest
2990 mempiece = piece
3000 meminove = mem2

3010 REM best piece and best move
3020 ENDPROC

3030

3040

3050 DEF PROCshow

3060 r = mempiece

3070 s = memmove

300 ENDPROC

30939

3100

3110 DEF PxOCaefeault

3120 r = cefaultpiece

3130 s = defaultmove

3140 ENDPROC Figure 5.2 ‘Dilemma’ (continues)

As in Pantry Panic the graphics of Dilemma are user-defined
graphics. Mode 2 is used to get the range of required colours so the
graphics are rather ‘chunky’. They are also rather wider than they
are tall, so to produce the coloured squares for the board two smaller
rectangles are drawn. A string of characters is created called sq$ and
each time we wish to print a square that string is printed. This is
more elegant than repeatedly calling a ‘square drawing’ routine.
The string is defined in line 790 and is made of two of the user-
defined rectangles (CHR$ 240, defined in line 780) plus cursor
movement characters (CHR$ 8 and CHR$ 10, to move the cursor to
the correct position for printing the second rectangle). The other
user-defined graphic, CHR$ 241, is the shape for the player’s pieces.
This is called pc$ for ease of reference and use but there is no reason

94

why it could not be called using VDU 241 or PRINT CHR$ (241)
instead.

PROCboard is the main routine which controls the graphic
display. Firstly, it places the three pieces of the player and the three
of the computer in random places in the byte array that represents
the board, piece%, and puts the current position of each piece in an
integer array called current%. A byte array differs from both the
integer and numeric arrays previously discussed when describing
Pantry Panic. Instead of being a multidimensional matrix of
elements, into each of which a number can be placed, a byte array is
simply a block of memory of specified size to which the first byte is
given a name. So in line 740 “DIM piece% 64” means ‘set aside a
block of 64 bytes starting with the byte we will call piece%’. It is not
necessary for the programmer or the user to know the address of
piece%, as long as the micro knows it. We can then write bytes into
and read them out of this block by referring to “piece% + n”, where n
is the number of the byte we want to refer to. The main advantage of
a byte array is that it uses only one byte per number, provided the
numbers are between 0 and 255, as compared with the ordinary
numeric array which uses four bytes per number. For our purposes
the 64 bytes represent the 64 squares of the board for the game. Just
as in Pantry Panic we used a map of the screen to hold the
information so in Dilemma we will use one block of bytes to hold the
current positions of the pieces and another to hold the colours of the
squares on the board.

PROCinit then fills this second byte array called board% with a
series of random numbers in the range 2 to 7. These are the colours
of the squares. Colours 0 and 1 are reserved for the pieces. If you
wished to change these colours any colours could be assigned to
these logical values using VDU 19, but I have kept the default
values. As the random squares are chosen line 370 ensures that no
two squares of the same colour are adjacent horizontally or
vertically.

Having chosen the colour of a square the routine then PRINTS it.
This is why the routine is so slow. It could be accelerated if the
colours were all chosen first and then all printed rather than one at a
time, but it is not important as the routine is only used once in each
game. PROCsquare is the procedure which prints the square. It
simply changes the current foreground colour, using GCOL, to that
which has randomly been chosen by looking at the value in board%
and prints sq$ in that colour. However, it also checks that a piece has
not been placed in that square using PROCpiece which checks
piece%. If there is a piece in that square then GCOL has to be
changed to the piece colour and then pc$ is printed. This means that

95

the foreground colour also has to be changed back when the
procedure has finished. Note that each piece is only one graphic
character but each square is two. PROCpiece therefore moves the
piece into the middle of the square before PRINTing it. This gives a
much more satisfactory appearance than a single-character square
or an uneven border around the piece. Note also the use of VDU4
and VDUS to tie the text and graphics cursors together because we
are PRINTing a text character (i.e., a user-defined graphic) at a
graphics coordinate (using MOVE). A final routine draws a black
grid around the squares to make the whole thing look a little neater.

When the board has been set up the game consists of a simple
repeated sequence, represented by the main loop of lines 60 to 150.
The program first checks that the current player is able to make at
least one move. If not, then the variable ‘draw’ is incremented by one
and play passes to the other player. If both players cannot play, i.e., if
the variable draw has exceeded 1, then the gameis a draw (tested for
in line 140). Only three procedures are called by the main loop.
PROCumove controls the player’s move. PROCmachinemove
controls the computer’s move and PROCwin tests to see if either
player has reached the opponent’s baseline.

PROCumove has been described above. It consists of requests for
input, a procedure called PROCflash to indicate which piece is being
referred to, and various tests to ensure that the desired move is
possible and legal. Line 1500 ensures that the player does not try to
move a piece off the edge of the board. Because our byte array
representing the board is actually a sequence of 64 values and not a
matrix of eight squares by eight it is not actually possible to go off the
edge of the board. Instead, the piece would appear on the opposite
side of the board one rank forward, i.e., eight bytes further into the
array. Although this is not allowed in the original game this
variation could actually make the basis of an interesting game. If
such moves were allowed the game board would be topologically
‘cylindrical’ rather than ‘flat’, i.e., it would have the spatial
properties of a cylinder. You may like to explore the idea of a board
without edges in designing your own game. This is one area where a
game can be played on a micro that could not be played in any other
way.

The other main checking procedure is PROCchecksqok. This looks
at the squares immediately in front of the opponent’s pieces to see if
the square the player intends to move to is of the same colour and
hence legal. When a legal move is attempted PROCupdate is called.
This calculates the current position on the screen of the selected
piece and then looks at board% for the colour of the square. It then
PRINTS pc$ on that square in the square’s colour which is, of course,
96

equivalent to blanking out the piece. It then ‘moves’ the chosen piece
by printing it onto the intended square and transferring the values
in current% and piece% from the old positions, which are given zero,
to the new. This occurs so quickly that it looks as if the piece actually
moves across the board. You will realize that this is exactly the same
process as used in Pantry Panic to move the figures around the
screen.

The rest of the program is devoted to helping the computer make
its own move. As this is the key purpose of this program you might
like to experiment with various approaches yourself. Because of the
modular construction this is quite easy to arrange.
PROCmachinemove consists of two lines. Firstly, PROCchoose is
called and this returns two values, r which is the piece number to be
moved and s which is the square to be moved to. Then PROCupdate
is called to move the piece in exactly the same way as for the human
player’s piece. Consequently, we can write any routines we like to
determine the program’s move, provided that the routine produces a
value for r and a value for s.

The easiest way to do this is to select the values randomly. A
routine which can be used in Fig. 5.2 instead of lines 1710 to 1980
and 2260 to 3140 is given in Fig. 5.3. You can see that it is rather
shorter than the ‘intelligent’ version. It consists of a PROCchoose
which selects a random value for s and a random value for r, checks
that they are legal in the same way as the human moves are
checked, and then passes those values back. You will see that the
same routine, PROCchecksqok, is used to do this. It simply has
different parameters. The first two parameters, os and oe, are
‘opponent’s start piece’ and ‘opponent’s end piece’ and the third
parameter, param, holds the direction to examine. If
PROCchecksqok is checking squares in front of the human’s pieces
then it needs to look at the value eight less than the piece position,
i.e., 8 ¥ —1, whereas to examine a square in front of a computer’s
piece it must look at a value eight greater than the position of the
piece, i.e., 8 *1. So in the former case param has a value of minus one
and in the latter of plus one.

A random routine like this works reasonably well and on one or
two occasions it can beat a human player if the squares are arranged
in a fortuitous combination. However, most human players do not
find it too difficult to beat such a random routine most of the time.
Nor is it very interesting to play because it is almost impossible for a
player to decide on the routine’s most probable course of action and
thus to take appropriate steps. In other words the game feels like a
random game to the player who is not able to develop any consistent
strategy other than to ignore the opponent. Consequently if we want

97

a game like Dilemma to be interesting we must build in at least some
intelligence.

1530 DEFPROCchoose

1540 REPEAT

1550 REPEAT

1559 REM Choose piece

1560 r=RND(3)

1569 REM Choose move

1570 s=RND(3)

1580 s=2-s

1599 REM Make sure the choice is on the board
1600 UNTIL NOT (s=-1 AND (FNcurx(r) MOD 8=0))

AND NOT (s=1 AND ((FNcurx(r)+l) MOD 8=0))
1609 REM Make sure the colour is allowed
1610 sg=current%(r)+8+s
1620 colsg=?(board%+sqg)
1630 PROCchecksqgok(4,6,-1)
1640 UNTIL check=l

1650 ENDPROC

Figure 5.3 Random machine movement

5.5 Intelligent play

What would make the program play better? Let us approach this by
considering what a human player would be thinking about when
trying to win this game. This is one of the minor benefits of
attempting to program intelligence—you always have a model to
hand. (It can also be a drawback because you are limited to your own
knowledge, abilities, and strategic skill in designing your algorithm
for the program.)

Obviously a human player would be doing two things. He or she
would be trying to win the game and trying to prevent the opponent
winning. This means that two types of strategy will be kept in mind

98

at the same time and two considerations at least come into every
decision:

1. IfI make move x will it increase my chances of winning?
2. If I make move x will I decrease my opponent’s chances of
winning?

This, of course, means that some kind of evaluation is going on
concerning each move, such as:

3. Onbalance, is the advantage I gain from move x coupled with the
disadvantage my opponent gains better than the combination of
advantages and disadvantages from move y?

So our player, Igor, is looking at each move for advantages to both
sides and then trying to weight each combination of advantages and
disadvantages to find the move with the best combination. In other
words, to use the jargon introduced in the Rock, Scissors, Tissue
example, Igor is assigning a value to each move and comparing them
by using some kind of evaluative function. So all we need to do to get
our program to play like Igor is to use the same evaluative function
and assign the values correctly to each possible move.

It should be clear by now why Dilemma has been chosen as the
example of game search intelligence rather than, say, Chess or
Backgammon. In Dilemma each player can only move three pieces
and each piece can only move one of a maximum of three squares in
any one move, making a maximum set of nine possible moves to
evaluate each turn. In Chess we might have all 16 pieces faced with
four of five moves each, giving 80 or more moves to evaluate.
Furthermore, the moves in Dilemma are all of the same kind; we can
use the same function to evaluate all the possible moves. However,
in Chess this is not the case and functions may be much more
complicated as a result.

Actually this need not be the case because the evaluative function
can be used not to assess each move as such but the position which
results at the end of each move, by asking questions like: Is my king
likely to be placed in check? Is the opponent’s king in check? Does the
opponent have fewer pieces? etc. What kinds of characteristics of a
game position will Igor be looking at? The most important thing in
Dilemma is to move your pieces forward, especially if the chosen
piece is near the opposing baseline. On the other hand you should
not make a move which allows the opponent to move a piece onto
your own baseline.

The second important aspect is to ensure that you have as many

99

potential moves available as possible. The fewer moves you can
make, the easier it will be for your opponent to prevent you from
moving. Conversely, you want to reduce the number of moves
available to your opponent. Let us take this as the basis of our
evaluation and see what can be done with it. We will look at an
evaluative procedure usually known as ‘minimaxing’. It is called this
because it involves trying to find the maximum possible value for
your own move which ensures the minimum possible score for your
opponent. At first sight this might seem simple but let us examine
the idea in more detail.

Suppose we had a game in which only three moves are possible
eachturn, A, Band C. Let us say that the evaluation score for a move
is u (for us) and t (for them). We will not worry about the evaluative
function for the moment. Just suppose it to be a reasonable one. So if
we make move A the value will be Au, if we make move B the value
will be Bu, and if we make move C it will be Cu. Then a simple
calculation would tell us which move is best to make. Whichever is
the greater of Au, Bu, and Cu indicates the best move. If Au is
greater then we should make move A.

However, remember that after we have moved the opponent will
also move. He or she will also have three choices: let us say X with
value Xt, Y with value Yt, and Z with value Zt. Whichever move we
make from A, B, or C the opponent will have three moves. We can
represent this by saying that in two turns (after we have had a turn
and the opponent has had a turn) there will be nine possible
outcomes, as follows:

Au—A Xt)
Au—A (Yt)
Au—A (Zt)
Bu-B (Xt)
Bu-B (Yt)
Bu-—B (Zt)

Cu—-C (Xt)
Cu—C (Yt)
Cu—C (Zt)

That is to say, the outcome of any move will be its value to us minus
the value to the opponent, and there are nine such possible
outcomes. Of course the opponent is going to choose the outcome
which is the best of those nine, so there are really only three likely
outcomes—the best choice for the opponent following move A, the
best choice for the opponent following move B, and the best choice for
the opponent following move C.

100

Now suppose the value for move A was 7, for B was 4, and for C
was 6. If we were using just a one-ply search, i.e., if we were just
looking at one turn, we would choose A. But suppose the best move
that the opponent can make after A gives a score of 9, the best after
B a score of 2, and the best after C a score of 5. Which is now the best
move—A, B, or C? Clearly B is our best move because it results in a
net gain of 2. Look at the scores:

Move Plyl Ply2 Netvalue

A 7 =9 -2
B 4 -2 +2
C 6) +1

If we represent the value to us as a positive score and the value to
the opponent as a negative score (because a positive score for the
opponent reduces our chances) then the net benefit of any move will
be the sum of our score and the opponent’s best reply. B is, at one ply,
our worst move, but because it also results in the worst outcome for
the opponent it is actually the best move when the possible replies
are taken into consideration.

Now if we were being really thorough we would want to go further
than this. Suppose we made move B because of our two-ply analysis
and then found that our best score for the next move was only 1,
whereas the worst the opponent could get on the next move was 12
(i.e., —12 from our point of view). This would be a four-ply analysis
and the overall value of move B, the move that starts the sequence
off, would be 4 — 2 + 1 — 12 = —9 (assuming that both players make
the best choice each turn), which does not look very good. However,
what about the next ply down?

You will see that an ideal analysis would follow all the stages of
evaluation from the first move to the end of the game. You will
probably also see that this would be impossible to do for most games
on a microcomputer. Staying with our three-move game, suppose a
complete game could be played in eight turns, i.e., an eight-ply
search would guarantee to give the best first move. (It cannot, of
course, because there are eight squares to traverse so the smallest
full search would be 15 ply.) For an eight-ply search we would need
to evaluate 3*3*3*3*3*3*3*3 positions to find the best overall score,
i.e., a total of 6561 calculations. This might take some time. More
importantly, at each ply at each level of evaluation we would have to
hold all the currently possible positions because we would not know
which ones to discard until we have come to level eight. So we might
have to hold over 6000 game positions in memory at one time. Even

101

if our game had a minimal nine squares we would presumably need
nine bytes to hold each possible position, so we would need 6561*9
bytes to remember every position, which is roughly 60K of memory.
And this is supposedly a simple and trivial game!

Of course I am exaggerating here. There are techniques which can
reduce the storage needed for such an evaluation quite dramatically.
Our nine-square board can be held in a bit map of nine bits (one byte
plus one bit), and we can throw away many positions as we work
through the search and evaluation as they prove much worse than
any current position. Even so, for most practical purposes searches
at levels below three ply can become difficult to code, and this is
certainly the case on the BBC and Electron.

Our routine only looks at two ply. It considers each possible move
in turn and counts the number of moves that would be available to
the opponent. For each of those moves it counts the number of moves
that could result. PROCchoose selects each move in turn and calls
PROCcount if a possible move is found. PROCcount counts all the
possible opponent’s moves and calls PROCmaccalc if a legal move is
found. PROCmaccalc counts the number of moves that would then
be available to the machine as a result. These values are compared
with the best values found so far and, if they are better, replace
them. Finally, the variable ‘bestbest’ is calculated and the move
which results in bestbest (the best score of all the possible best
scores) is remembered in memmove and mempiece. These values are
passed back to r and s and this is the move that is made, using
PROCupdate as before.

To do all this it is necessary to hold the positions of the pieces that
would result at each level of analysis so that the positions can be
evaluated. Consequently most of the programming (and memory)
taken up by the ‘intelligent’ portion of this program is simply in
remembering the current projected board set up for evaluation.
PROCchoose sets the variables to very low values so that the
evaluation will be higher. It is no good setting them to zero because
on some occasions the best move may still have a negative
evaluation. PROCcount holds the position of the opponent’s pieces
that would result if a possible move is made. PROCchecktwo counts
the number of legal moves the opponent could make from that
current position, held in p%(). PROCmaccalc then holds the position
that would result from each of the opponent’s legal moves for that
position in q%() and PROCcheckthree counts the number of legal
moves that the computer could make as a result of that position. This
uses a fair amount of memory and programming. The program could
be made more elegant by using recursion, but as recursive routines
are notoriously difficult to read and understand I have tried to keep
102

things relatively simple. (Now you know what simplicity is in
programming!)

On some occasions no evaluation may provide a sensible move, in
which case PROCdefault is called. Two variables, defaultmove and
defaultpiece, have been given the values of an arbitrary move which
the routine has found to be legal (in line 1880). These values are
returned as s and r if no good moves are found by the evaluation.

The evaluation function itself is split into several parts. This was a
result of trial and error experimentation with the program. It was
found that the evaluation as just outlined, i.e., entirely based on
maximizing the computer’s moves and minimizing the player’s
moves, led to some odd moves. For example, the nearer the
opponent’s pieces get to the far edge the fewer moves are available to
the pieces, so the program tended to ignore the most dangerous of
the player’s pieces. It would also sometimes not move on to its own
final rank and thus win the game because another of its possible
moves reduced the opponent’s available moves by a large amount.
Consequently, some weighting has to be added to ensure that it
regards the pieces nearest the destination edges as the most
dangerous.

This is done partly by PROCinfront. PROCinfront finds out the
rank of the frontmost piece of the player and returns this in the
variable called ‘forward’. Forward is used in line 2450 to weigh the
calculation so that oppcount (the number of moves available to the
player as a result of the currently evaluated move) is multiplied by
the rank of the frontmost piece. The effect of this is that as the
player’s pieces get nearer and nearer to the edge the number of
moves available to the player becomes more and more significant to
the evaluation. In the early stages it is almost ignored but in the final
stages it becomes the most important factor.

The second stage of the evaluation is in line 2460. This performs
the evaluation not simply by subtracting the opponent’s possible
moves from the computer’s but by doubling the importance of the
computer’s moves. In this way the program will favour attacking
rather than defensive moves, i.e., it will tend to make the move that
leads it forward rather than the one that reduces the player’s
possible moves, all other things being equal. However, as ‘forward’
increases so this weighting becomes overruled.

The final stage of the evaluation is line 1920. Here the current
position of the computer’s piece that is being evaluated is added to
the equation. The rank that the piece is on is divided by two and
added to the evaluation. Consequently, the closer it gets to its
destination edge the higher will be the added factor, and if two pieces
would result in the same overall position for both sides then the one

103

nearer the destination will be chosen.

You might like to play around with the values in each of these
three lines to see what happens to the computer’s play. Defensive
play will be encourged by reducing the weighting in line 2460 but
more draws will result as fewer and fewer moves become available.
Increasing the weighting in line 1920 will result in the frontmost
piece of the computer being given more and more of the play, which
is probably not a good strategy because if it gets blocked then a piece
from the rear has to do all the running. Tinkering with ‘forward’ will
make the most advanced player’s piece more or less significant. Asit
stands the program plays reasonably well and gives an average
player something to think about, but there are always positions in
which it makes mistakes and you may find a better balance of
weightings.

104

6 ADVENTURE BASICS

6.1 Adventure structure

Let us now begin to look at one of the most popular kinds of micro
game where the scope for intelligent programming is almost
unlimited—the adventure game. In this chapter we will consider
some of the basic considerations for adventure design while in
Chapter 9 we will build a complete adventure which has some
‘intelligent’ routines.

Let us first look at the story structure of adventure games. The
story is what gives sense to the game, making it into something
which is a coherent pattern rather than a random series of events.
Planning an original story, or what games designers generally call a
‘scenario’, can be the difference between a game which feels like a
computer program and a game which feels like a world worth
exploring.

A story is a series of events leading up to a major consequence. The
events happen to a major character or group of characters and the
consequence is often either the character’s death or the achievement
of a particular objective. In game terms the character is the player’s
‘piece’ or persona (discussed in the next section) and the consequence
is either successful completion of the game (= achieving the
objective and giving the maximum reward) or unsuccessful
completion (= death).

An event in a story usually fits the following formula:

MAIN CHARACTER + PLACE + TIME + OTHER
CHARACTERS + OBJECT(S) + POSSIBLE ACTIONS +
POSSIBLE CONSEQUENCES

So an event in an adventure game should ideally have all the
componentsin that formula, and any adventure programis a system
for producing sets of such components, each set forming a coherent
event. Not every event will need all the components but some will
always be needed. A series of such events forms the story and this
corresponds to the player character’s progress through the mapped
locations in the adventure game.

105

The links between mapped locations may be totally random or
totally structured or a combination of both, and similarly with
events. The advantage of random determination is that it is easy to
program and can give great variety. Its main disadvantage is that a
random game rapidly becomes boring because it consists of a series
of unpredictable events with no logical relationship, i.e., a series of
purely local rewards. A decision made in one location will have no
effect on subsequent actions unless the player’s character is altered
in some way in that location—becoming weaker, perhaps, or finding
a laser sword. Adding this kind of alteration to a basically random
game is quite easy to do. It provides a simple way of adding some
structure to a game. If no such alteration occurs in any location the
events are unconnected and we really have a series of small games
rather than one large one.

This approach—using a random series of events which connect
only by their effect on the central character—is typically a series of
rooms or caves in each of which there is a percentage chance of
OTHER CHARACTERS (usually monsters) or OBJECTS
(treasures, weapons, food) or ACTIONS (falling into a pit, becoming
ill, reading an inscription) occurring. For example each room in a
dungeon could contain an event constructed in the following
manner:

GENERATE RANDOM NUMBER A IN THE RANGE 1-10

GENERATE RANDOM NUMBER B IN THE RANGE 1-10

GENERATE RANDOM NUMBER C IN THE RANGE 1-10

IF A IS GREATER THAN 4 THEN GENERATE RANDOM

NUMBERD IN THE RANGE 1-4

THIS ROOM CONTAINS MONSTER (D)

IF B IS GREATER THAN 4 THEN GENERATE RANDOM

NUMBERE IN THE RANGE 1-4

7. THISROOM CONTAINS OBJECT (E)

8. IF C IS GREATER THAN 6 THEN GENERATE A RANDOM
NUMBERF IN THE RANGE 1-4

9. THISROOM CONTAINS ACTION (F)

Random numbers A, B, and C decide whether there should be a
monster, object, and action in a particular room; random numbers D,
E, and F select the appropriate monster, object, and action if there is
one. These would be set up in the program using arrays or
subroutines from which random items could be called. Each
randomly chosen item would then be a set of variables which
potentially modifies the character in some way. Sample monsters,
objects, and actions are outlined in other chapters. This sort of game

106

oo

S

is less common than it used to be because designers have developed
various more rewarding approaches, including the addition of some
intelligence to originally random games.

The opposite approach, that of a totally structured series of
events, is typical of the puzzle-type adventure game. Here the task is
not to survive as many randomly generated events as possible, but
to discover the puzzle or story and pass through each of the planned
events in the correct order. For example, Igor may find that he
cannot progress in the game until he has discovered how to open a
rusty trapdoor. To discover this, he must bribe a goblin, which
means he has to obtain some money. To get the money he must first
get past the headless ghost—and so on. The advantage of this type of
game is that it is a real test of the player’s abilities, intelligence,
logical power, and imagination, and is not merely a test of reactions
or responses to a random series of accidents. The puzzle adventure
game has been likened to the crossword—it demands the same class
of skills, including language skills, and all parts must be solved to
complete the whole. Therefore if it is well written it demands
intelligence in the player. As players become more sophisticated and
clever so adventure games must develop equivalent intelligence in
order to keep ahead of the players and provide new and exciting
forms of play.

The main disadvantage of a totally structured series of events is
that the game is the same each time it is played. There is none of the
novelty or unpredictability of a random dungeon, the initial stages
may become tedious with repetitive play, and the game once solved
will never be played again. It is also a much more severe test of the
programmer’s imagination and ability, as a fully structured game
demands a highly structured program.

When designing our game we must bear in mind the fact that
players should feel in part at least as if they are progressing through
astory. It does not matter if some of the elements are random or fully
predetermined, but they should seem coherent from Igor’s point of
view. It is important, therefore, that his character makes sense.

6.2 The player character

The character is the player’s persona. It is the unit that represents
Igor in the game. When it is destroyed, the game is over. We will use
the word ‘character’ even when it is a monster or spaceship or vehicle
that the player is pretending to be because essentially it is the
abilities and behaviour of that ‘playing piece’ that make combat
adventure games entertaining. In the puzzle game, however, the
player seldom has a defined or variable character, which is one of its

107

drawbacks. It would be better if puzzle adventure games were
designed so that different character configurations were able to
approach the solution differently, but this would cause enormous
programming problems, as you will see later. In the puzzle
adventure game, therefore, it is the player’s own personality that is
being tested and not the surrogate personality of the character.

What the character is in game or programming terms is a
collection of numbers that are altered as the game goes on. For
example, if the character is a medieval knight, he might be regarded
as:

Speed 4
Defence 5
Attack 4

where the maximum is 6. If he lost his horse or his armour or his
sword these numbers might decrease. If he drank a magic potion or
found a mace or rode a dragon, they might increase. Every time the
player has to make a decision in the game the chance of success will
depend on the current value of one or more of three numbers.
Therefore, if the player had to decide whether to enter a race,
success would depend on speed, but if the decision was about
whether to fight a giant, success might depend on both attack and
defence.

In other words a character is a collection of variables. Those
variables may or may not be related, but to increase the interest of a
game it is often a good idea to link such variables in some way. This
gives Igor more to think about. For example, mounting a dragon
might increase speed but could decrease attack (because the
knight’s sword cannot reach the enemy from the dragon’s back).
However, if he gets a lance, this would increase attack value on
dragon-back, but might reduce defence because it is more difficult to
use a shield with a lance than with a sword. Now, Igor, are you going
to get on that dragon or not?

Normally a collection of variables is best kept as an array, so let us
start to build up the array for our first hypothetical character. We
will call him Sir Jon (his mother wanted him to be a doctor). We will
hold his variables in array A(4) and give him four variables to start
with—strength, skill, constitution, and knowledge—so we need to
DIMension an array with just four variables. This might be wasteful
on memory, but when we develop Sir Jon later on we will need the
flexibility of an array. Having DIMensioned the array we can READ
into it the initial DATA, i.e., the values the variables are initially set
to, the abilities that Sir Jon starts off with. Let us make strength and

108

knowledge 2 and skill and constitution 1. So our routine to set up the
character would be:

8000 REM Set up Sir Jon
8101 DIM A(4)

8929 FORI=1TO4
8030 READ A(D)

8040 NEXTI

9000 REM Sir Jon’s data
9010 DATA 2,2,1,1

Naturally these values will not be arbitrary. We must have some
idea of the likely range of values. Designing a character is tied up to
alarge extent with what the character is going to do in the game and
what the game might do to him. For example, if we wanted the
possibility of a weak character fighting strong monsters we might
allow a range of 0 to 9 for strength, but not allow any character to be
greater than 6.

However, if strength, A(1), is a variable to be used in routines
other than the combat routine (such as a routine for lifting heavy
objects) we must ensure that the range is also suitable for these
routines and that the initial value is set to a meaningful level.
Usually we will want the character’s variables set to the lowest in
the range (if the game is primarily concerned with improving
abilities) or to the highest value (if it is a game about avoiding
weakness). We might also want to set some variables at mid-point,
meaning ‘normal’ or ‘average’, if they are the kind of variables that
could get better or worse. Let us assume that Sir Jon is average in
strength and knowledge, starts off with little training and hence low
skill, and being rather undernourished is weak in constitution. If the
range for all the variables is 0 to 9 Sir Jon’s values could be:

Al)=4
A@2)=4
AB)=0
A4)=1

We are expecting him to improve his skill and constitution through
discipline and hard work and are also assuming that he could get
stronger or weaker, more knowledgeable, or less knowledgeable.
Let us also add a variable that starts at a maximum of 9 and can
only be reduced during the game. Let us say Sir Jon has nine magic
wishes granted to him at birth. We also add A (5)=9 to the array,
remembering that we also have to change the DIM and
FOR ... NEXT statement. Sir Jon will be able to use these wishes at
crucial points in the game.
109

Sir Jon’s aim in this adventure will be to become a knight of the
Round Table. Not only can we use the variables which make up the
character to calculate each situation as it occurs but we can also use
them to decide when Sir Jon is worthy of becoming such a knight. We
would probably make the test easy to start with and complicate it as
the gameis developed. So let us say that if Sir Jon has knowledge of 8
or more and his strength is 8 or more then he can become a member
of the hallowed order of the Round Table. We can express this as a
single line of BASIC:

IF A(1)>=8 AND A (2)>=8 THEN roundtable =1

The variable ‘roundtable’ is being used as a flag, i.e., a variable
marking whether Sir Jon is a knight of the Round Table or not. If the
flag is set to 1 then he is; if it is set to 0 then he is not.

The main aim of Igor will thus be to increase strength and
knowledge, while his subsidiary aims will be to increase skill and
constitution in so far as they help him in his main aim. At the same
time he will want to preserve his nine wishes for the most vital
moments. The rewards of the program will thus be increases in these
variables.

However, we can also add a more abstract points reward for those
players who like such things. We can invent an overall score
dependent on how well the character is doing. In the case of Sir Jon it
seems important that a knight should behave as honourably as
possible, so we will give him honour points depending on how well he
does in particular situations. If we make this scale 1 to 100 and
record this as A(6) (remember to change those statements) we can
also incorporate this rather abstract score into the test for
knighthood. Suppose that to be admitted to the Round Table a
knight must be very honourable, with an honours total of over 90,
but that his honour is worth more if he has not used his wishes to aid
him—he has done it under his own steam and not with supernatural
aid. We will say that for every wish he has left he scores five honour
points. This means that total honour points will be those normally
added to A(6) plus 5* A(5). Our test for knighthood has now become a
short routine:

7799 REM KNIGHTHOOD TEST

7800 HP = 0: REM CLEAR ANY PREVIOUS VALUE
7810 HP = (A(5)*5)+ A(6)

7820 IF A(1) >= 8 AND A(2)>= 8 AND HP>90 THEN
ROUNDTABLE =1

7830 RETURN

110

Line 7810 has more brackets than some BASICs might think
necessary. Different versions of the language have different
priorities for evaluating expressions so it is best to keep the
expression explicit.

In the puzzle adventure game the character is less important than
in the combat game. Usually the character has no variable
characteristics. Instead the player’s persona varies only according to
the objects or items that have been collected. In effect the difference
is that whereas in the combat game the persona has a constant set of
attributes whose actual values vary, in the puzzle game it is the
attributes themselves which vary, with each particular attribute
having a constant value.

For example, the puzzle may involve finding an apple (in order to
bribe a teacher), finding a bomb (to blow a hole in a door) and finding
a coin (to get past a guard). Each of these objects, a, b, and ¢, has a
constant value in terms of the program: a has the value ‘enables
bribe of teacher’, b has the value ‘opens door’, and ¢ has the value
‘gets past guard’, but the character may carry any combination of
these at a time, e.g.,a+b, a+c, b+c, etc., which means that the tasks
the character can carry out successfully at a particular time will
vary, just as in the combat game.

An array could be used to hold this information just as in the
combat game. Each variable in the array will be used as a flag to
represent a particular object. If the correct flag is set to 1 the
character possesses that object, if to 0 he or she does not. However,
as these flags can be set to more than two values they can be used for
other purposes, to indicate various states of the object in question.
After all, any particular variable in a program uses at least one byte
of memory and not just one bit. A bit of information is effectively a
flag which can only be set to 1 or 0, i.e., it has only two possible states.
In other words it is binary, and bit stands for ‘binary digit’.

However, a byte can have 256 different states, which is why many
aspects of BASIC are limited to 256. If you look at the BBC/Electron
character sets in the appendices of the manuals you will see that
these consist of 256 codes (some of which are not used). A byte is
made up of eight bits which allows coding of numbers up to 256 using
the binary system of counting. Consequently, any variable which
can be set to 1 in a BASIC program can also be set to 255 (the 256th
state being 0, which is also a number). So if we use such flags in a
puzzle game, we could use a system like the following:

0 means the object is hidden.
1 means the object can be seen.

111

2 means the player has the object.

3 means he has used it correctly.

4 means he has put it in the correct place.
And so on up te 255.

The combination of such a set of flags thus amounts to a
description of the current level of achievement of the character, i.e.,
the stage reached in solving all the problems. So if your game is
primarily a puzzle game the way you design your character is to
consider all the puzzles that are to be solved and what set of flags will
best record all their possible stages. It is certainly possible to have a
different flag for every possible state or stage, but that would be very
wasteful. Instead we might decide that there are eight main puzzles,
each of four stages. Though it would be possible to record this
information with only two flags (using methods we cannot discuss
here) it is easier to have eight with four possible states (0 to 3) rather
than 32 different flags.

6.3 Monsters

If the game is to have a combat element then there have to be
opponents for the player’s character. Even if there is no combat
there will probably be beings of some kind which the character will
be able to interact with, especially if we are building in intelligent
processes of language. To make things easier we will regard all such
creatures as monsters, even though some might be perfectly friendly
humans. In my experience no one in an adventure has any real
interest in helping the character—they are all in it for some
monstrous purpose of their own. Monsters could be anything from
rustlers to dragons to Klingons—it is a catch-all term for any
creatures not controlled by the players.

A monster will be a configuration of numbers similar to the
player’s character. It may contain exactly the same range and type
of variables as the character, but usually will have fewer, the range
and type being a reflection of and related to a subset of the
character’s attributes. For example, if the character has an attack
rating, a speed rating, and a treasure variable, the monster might
have a defence rating, a speed rating, and a hoard of treasure. The
combat routine will then depend on the relations between character
attack and speed and monster defence and speed, with the reward
for winning the combat being the monster’s treasure, or more points,
or both.

As monsters are one of the key hazards in this type of game,
112

providing much of the interest, much thought should be devoted to
their design, bearing in mind the following criteria:

1. A monster should only have variables and values which are
meaningful in terms of the rest of the game. This usually means
that those variables are related to the player character variables,
but in the case of an ‘intelligent’ monster which can act in the
program independently of the character, other variables will be
needed.

2. The character should seldom encounter monsters which are
extremely powerful, comparatively speaking, unless as the result
of a major mistake (otherwise the game becomes ‘sudden death’).

3. No monster should be invincible, or too easy to defeat! Actual
monsters encountered should either be in a range of powers, all of
which can be overcome by the character, or should have their
powers related to the current powers of the character.

4. Each monster should be different, not simply by virtue of the
magnitude of its variables but also in terms of its overall
configuration, i.e., its name, its behaviour, the kind of problem it
presents, and consequently the choices/strategy needed for its
defeat.

Broadly speaking this gives us two kinds of monster—the monster
that is randomly encountered and the intelligent monster. The
random monster can be found at any suitable location, but the
intelligent monster will only be called by the program if certain
conditions are met. Random monsters are relatively fixed in their
function—it is to respond to the player, usually in combat.
Intelligent monsters may be programmed with more complex
behaviour and attributes which may lead them to have purposes
independent of the character. They will have a ‘personality’ in some
sense and the player character will have to interact with them.

Let us work on the random monster first, as this is the usual type
in the majority of adventures and is the easiest to design. We can
then consider the differences which need to be programmed into
intelligent monsters.

We can hold the data, the numbers describing each monster, in
any of a number of ways. The three easiest in BASIC are the array,
the character string, and the DATA statement. We will look at each
of these in turn before considering the exact data we are going to
store. We will asume a set of data made up of the numbers 1, 2, 3, and
4. To hold such data in an array of one dimension would mean a
different array for each monster, which is a possible though usually

113

clumsy and wasteful method. It would be better, therefore, to use a
two-dimensional array in which one dimension holds the list of
monsters and the other the data for each of those monsters.

If our monsters were Bugblatter Beast, OOzler, and Giant Turnip
and their respective data was 1, 2,3 and 2, 3, 4, and 1, 3, 2, then our
array can be thought of as the following matrix:

Bugblatter Beast 1 2 3
Oozler 2 3 4
Giant Turnip 1 3 2

The column here represents value and the row each particular
monster. If we called the array mon, then a BASIC routine to create
and fill such an array would be:

10 DIM mon(3,3)

20 FOR I =1 TO 3

30 FOR J =1 TO 3

40 READ mon(I,J)

50 NEXT J

60 NEXT I

70 REM BUGBLATTER BEAST
80 DATA 1,2,3

90 REM OOZLER

100 DATA 2,3,4

110 REM GIANT TURNIP
120 DATA 1,3,2

To find the appropriate piece of data at any stage in a game the
program needs to know two things in addition to the name of the
array it is to consult. These are the number of the monster being
looked at (the row of the array) and the number of the value required
(the column on the array). If we were calculating a combat and
needed to know the attack value of the Oozler, we would use mon
(2,3), the third item in the second row.

Arrays are very useful for this type of procedure, a process usually
known as random access because any random item randomly
selected can be accessed as easily as any other. However, arrays use
memory and if there are a large number of monsters in the game an
array to hold them all would use a great deal of memory, which
would be particularly wasteful if the values were only in a small
range, such as the 1 to 4 range above. The array mon will use at least
20 bytes on most systems. On the BBC and Electron 45 bytes would
be needed to create the above array. This may not seem much but if
you have 20 monsters you will need 20 X 3 X 5 bytes, i.e., 300 bytes.
Some can be saved using integer arrays or byte arrays as used in
114

Dilemma, and we can actually cram nine numbers in the range 1 to 4
into only three bytes because four values can be held in two bits and
9*2 = 18 bits or a little over two bytes. In the adventure in Chapter 9
you will see how we can hold several pieces of data in one byte in this
way.

One other way to save some memory is to hold the monster data as
character strings. Such a string can be declared at the beginning of
the program just as we might dimension the required array. For our
current example the declaration of the string would be:

M$=123234132”

This string would only occupy nine bytes, much less than the
equivalent array. However, to access the information in the string
requires a more complex procedure than just referring to an array
subscript.

In the first place we need to know in which section of the string the
required monster data are held, then we need to know which piece of
data in that section is required, and finally we have to turn the string
data into numerical data which can be used by the program. If we
are interested in the Oozler’s attack value, we want section 2 (a
substring of three characters), item 3. We have a look along the
string in groups of three characters at a time till we reach the second
group and then look within that group till we find the third item.
BASIC allows us to create a string function which can do this job.
The function could be defined as:

DEF FNk(M,I) = VAL(MIDMS, (M*3)+1,1))

M is the monster number and Iis the item number. When we want to
find the Oozler’s attack we write:

attack=FNk(2,3)

This might not appear too complex. However, writing to such a
string is more difficult. If we wanted to alter the Oozler’s attack
value within the program and it was stored in array mon, we need
only write:

mon(2,3)= x
where x is the new value. However, using a character string we have

to find the correct item, delete it, and insert the new item, having
115

turned x into a character. Again this could be done by a few lines of
program used as a subroutine, but functions can also do the job:

DEF FNa$ (M$, M,) = LEFT$ (M$,(M—1)*3) +1-1) + STR$(x)
RIGHT$ (M$,(LEN(M$)—((M—1)*3) +1 +1))

It is not necessary to define all parameters for this function because
some are already defined in the rest of the program—MS$ is the
string of characters we are using, M is the number of the monster
and I the number of the item we want to change, and X is the new
value.

This complex function takes the string to the left of the required
item and adds that to the string version of the new value, adding to
the result the remainder of the string beyond the old value. The old
item is therefore cut out of the string by selecting halves before and
beyond it, while the new value is inserted between them, in the
equivalent place.

Although a complex procedure, it is probably worth while if you
are handling large amounts of data, and memory is crucial. Storing
data in this way does have two other defects, however. Firstly, in an
array random access means that it takes virtually the same time to
find any piece of DATA, whether it is held at the start, the end or the
middle of the array. However, to process the information in a string,
particularly if using nested loops, but even with functions that
access information in sequence, the further the desired information
is in the string, the longer the search will take. Consequently, it is a
good idea to store the data which will be used most at the beginning
of such a string and that used least at the end.

In order for the functions to work properly the string has to stay
the same length and the data cannot move position. This means that
the original string has to be the maximum length needed by the
program, and all positions in it must be filled. If the values of
particular items are likely to change from 1 to 20, each slot in the
string has to be treated as a two-position slot from the beginning.
This is true even if only one item in the string will be two characters
long. So our example string would now be “010203020304010302”
and all functions would have to operate on items two characters long
rather than one.

One way to get around this problem, if we do not mind our data
being somewhat limited, is to use characters instead of numbers in
the string. Each character in a computer’s character set will have a
distinguishing code. For the BBC/Electron these are returned by the
function ASC. As most of these codes are two- or three-digit
116

numbers, storing a string of single characters is the same as storing
a series of numbers between 32 and 255 if we look at the codes of the
characters rather than their display values.

Unfortunately the codes up to 32 are usually control codes and are
difficult to manipulate in such strings, so if we want a range of
numbers starting at 1 we have to subtract 32 across the board. We
would also want to avoid the “ character as this may cause problems
with string handling, so we start our useful range at ASC 35, giving
us an actual range of 1 to 221. This is nevertheless a useful
improvement on the clumsy handling that number strings involve.
Our sample string would now be “#$%$%&#%$”. To decode it we
use a routine like the ones above, but substituting ASC for VAL. For
example, to represent 1 we must add 34 to 1 then turn it into the
character equivalent of that number using CHR$—CHRS$ (35) is #.

To write to the string we use function a$ above, again substituting
ASC for VAL. In both cases we must remember to subtract or add 34
to turn the actual range into the allowed range.

Our final method of data storage involves direct handling of
DATA statements. You may have noticed that in getting our data
into an array earlier in this section we read the data from data
statements. This means that, in a sense, the same data are held
twice in the program—once in the array and once in the data. The
reason that arrays are used is that they can be manipulated with
ease, whereas string handling can be more complex and data
statements cannot be manipulated at all within a normal BASIC
program.

Consequently, data can be read from DATA statements but not
written to them. If our program is such that we do not want to
manipulate these data (or to manipulate it only temporarily and not
store the results), we might find that an array is a waste of time and
coding, and simply read from DATA instead. Some applications of
this are discussed in other chapters. However, the method is
simplicity itself.

Every monster is given its own DATA statement on a separate
line of the program and the data are held in a known order,
corresponding to the fixed order of our array or string. To find the
particular piece of information we want simply RESTORE the
DATA pointer to the correct line number and READ DATA in to a
single variable until we have READ the correct number. If, for
example, our Oozler’s DATA are stored thus:

1010 DATA 2,3 ,4

117

the following short routine finds the attack value:

50 RESTORE 1010

60FORI=1TO3

70 READ A

80 NEXTI

90 PRINT “OOZLER’S ATTACK VALUE IS”; A

As you will see in The Opal Lily in Chapter 9 one of the methods of
storing numbers used to save memory for holding descriptions and
messages is a combination of holding numbers as coded strings and
keeping them in DATA statements to be read in this way. Although
this program manipulates a large amount of data it uses no arrays at
all. Instead, almost all the data have been placed in memory as a
block of bytes by another series of programs, the memory block itself
has been saved, and this large memory block is loaded and used by
the main program.

Having looked at how we might store the monster’s
characteristics, let us briefly look at what those characteristics
might be.

It is generally better to give the monsters a range of abilities as
well as a range of values. In a fantasy game this means such devices
as giving them magical powers, special forms of attack or behaviour,
and different descriptions. In a more realistic game, such as a wild
west adventure, personalities might be developed for different
‘monsters’ as well as giving them a range of skills (such as lassooing,
shooting, wrestling, rustling, drinking, gambling, etc.). For
intelligent monsters such differences are crucial.

The aim, of course, is to give variety so that the player does not
have a good idea of what to expect and always finds something new
about a particular game. Any feature which can alter player-
monster interaction is worth considering for incorporation—
perhaps different monsters communicate in different ways; perhaps
after befriending a monster by offering gifts or talking, the player
may be accompanied through the adventure; perhaps monsters of
different ages, sexes, heights, weights, or religions may be sensitive
to certain kinds of remarks; perhaps some monsters have other
friends or enemies within the adventure; perhaps some monsters
know information about others; and so on. Almost any feature that
can be found in a real-life encounter or a novel can be programmed
into a game by setting up an appropriate routine and a database.

You will find in the next chapter a short program which should
stimulate your imagination in this direction. What is important to
remember, though, in turning any of these ideas into code, is that

118

there must be a balance achieved between the amount of program
(memory, time, coding) that is required and the effect of the monster
on the game. If half the program is used simply to generate one
clever monster, found in room 100, the player is unlikely ever to
appreciate the intricacies of your design.

6.4 Objects

In an adventure program objects are of two kinds—portable and
fixed. Portable objects can be moved from location to location in the
game, but fixed objects cannot. In game terms this means that the
fixed object is essentially a feature of a particular location, an aspect
of its description. From the player’s point of view there is no
difference between the output “You are in a dark and smelly tunnel”
and “Thereis a brass candlestick hanging on the wall” if no input can
have any effect on the description. From now on, therefore, we will
use the word ‘object’ to refer only to items which can be moved from
location to location and we will regard fixed objects as features of
particular locations.

Objects serve several purposes in adventure games. In terms of
player psychology they provide the immediate rewards (you will
remember that we previously analysed the game as being a strategy
designed to gain rewards). In other words, each time the player first
finds an object which can be taken or manipulated in some way a
little victory has been scored or part of the game has been ‘won’.

In terms of the narrative realism of the story which forms such a
game, carrying things around is a key aspect of a plot, though
sometimes the thing carried is information or ability rather than an
object.

In terms of the program structure, having objects is one of the
simplest ways of adding complexity and variety to our game. After
all, a small game of 10 locations and 10 objects could give 100
possible events in the game; a large game of 1000 locations and 100
objects can give 100000 events, which is probably more than even
the most dedicated Igor would care to solve.

An object may have no significance in the game, being some kind
of red herring, time-waster, or obstacle, but usually it has a more
specific purpose. In the puzzle game it will usually form part of the
solution to the puzzle, e.g., to find the missing formula Igor must
enter a room with a locked door, so first he must find and bring the
key. In the combat game objects normally improve the character’s
abilities, giving more efficiency in some other aspect of the game. For
example, finding a shield may improve the defence value and hence

119

the likelihood of surviving future combats; acquiring a magic potion
may increase the character’s strength, and hence attack value,
and/or ease of carrying other objects.

However, certain penalties may also go along with such
advantages. In puzzles it is often the case that having found an
object needed to get past one problem, finding the object itself
creates another problem. Finding gold dust may help you bribe the
bartender, but how do you now get past the bank robber? Finding a
two-handed axe adds eight to your attack value, but you cannot now
carry a shield so your defence goes down.

From the programming point of view, therefore, an object can be
regarded either as a flag, signalling that a particular condition is
met (the object is found) and therefore certain consequences are
permitted, or as a function which acts on one or more of the
character’s variables, usually by increasing them. This means that
objects may be represented in our program in several ways, and one
object may have several representations. It also means that, just as
the construction of monsters depends on the overall program
structure, and particularly the character’s structure, so objects must
be thought of as extensions of the character, modifying it according
to built-in rules which allow certain development in the game to take
place.

Let us explore an example. Suppose we wanted a game in which
the player was a nineteenth century explorer in Egypt. One of the
key problems we can give Igor is the deciphering of hieroglyphics (a
good opportunity for some interesting graphics). We would want him
to start off with minimal skill in decipherment, which he would then
be able to build up. He starts with D=10, which gives him a 10 per
cent chance of understanding any hieroglyphic he encounters. If,
however, he finds the Rosetta Stone he will have a dictionary of the
majority of the signs, so his chance goes up to 60 per cent.

Such ideas can easily be complicated without much extra coding.
Inside a pyramid or tomb, because of the darkness, the chance goes
down to a quarter of its normal rate, unless a lamp is used, in which
case it goes down a half of the rate. If the player is able to decipher a
magical hieroglyphic then his chance goes up to 100 per cent for a
limited period, but if he commits sacrilege it drops 5 per cent.
Unfortunately, the Stone is very heavy, so cannot be carried at the
same time as any treasure, and if a mummy sees the Stone it will
immediately attack the bearer.

In this way a complex story potential is built around a few simple
variables, and each element is fitted together with all the others.
The monster and objects are related (mummy and stone); character
abilities and objects are interrelated; situation may affect all of
120

these; and success can lead to further success. Yet there are possible
penalties and pitfalls and the reward itself might be a peril (such as
in successfully using the Stone to read a curse which is then
activated).

As with monsters, it is therefore important that objects should not
only make sense in programming terms but they should also make
sense in plot and game terms. Good adventures are not a series of
arbitrary actions. Nor should they be a series of highly structured
actions which appear to be arbitrary. Good games, from the player’s
point of view, are not those which are well written but those which
appear well written. The effect of a game and its appearance is often
more important than its actual nature or content.

121

7 TEXTIN ADVENTURE

As most adventures are mainly ways of processing text it is worth
pausing for a moment to consider the textual aspect of adventures.
One reason why many people like adventures is that they are a little
like people because they ‘understand’ and ‘use’ real language. This is
one of the distinguishing features of intelligence, of course, so we
need to consider how a program can understand language. The
adventure given in Chapter 9, The Opal Lily, uses only some of the
techniques discussed here but they are all useful in adventure
design for one purpose of another. This chapter presents the
essentials but The Opal Lily adds some more sophisticated versions.

7.1 Input

The kind of input that an adventure game uses depends to some
extent on its type. A real-time graphics adventure, for example,
needs single-key entry, whereas a complex puzzle adventure needs
input that is as close as possible to ordinary English. There are other
types of input, but we will look at these two. The Opal Lily is
primarily of the second kind, though some of its input can be
simplified. In both cases the procedure is the same:

. INDICATE THAT INPUT IS NEEDED

. THE PLAYER INPUTS INFORMATION

. CHECK THAT THE INFORMATION IS ACCEPTABLE
. INTERPRET INPUT

. ACT ONINPUT

QU O N

Single-key input is the easiest to program and in some ways the
easiest for the player if there are only a few possible inputs.
However, if too many keys are required (more than about eight) the
player will forget which is which and make mistakes. While this can
be useful in some games, most players will dislike a game which is
essentially designed to test their knowledge of the keyboard.

For single-key entry, numbers are easiest to process, particularly
because numeric input is easy to check. For example, if the numbers

122

2to 6 are the only allowed input, a routine such as this will do the job:

80 REPEAT

90 PRINT “Please type a number between 2 and 6 and press
RETURN”

100 INPUT A

110A =INTA

120A = ABS A

130 UNTIL A<6 AND A>2

Line 110 is necessary to ensure that players do not try clever input
involving decimals. Line 120 similarly ensures that negative
numbers are not typed in.

As each key on the keyboard has a code, we can define a range of
allowable keys in the same way. The codes for all the BBC/Electron
characters are contained in the back of the manuals, being standard
ASCII and Teletext codes. For example, lower case letters a to f are
ASCII codes 97 to 102 inclusive. To check this input we would
change the routine above to read:

80 REPEAT

90 PRINT “Please type a letter from a to f and press RETURN”
100 INPUT A$

110 A$=LEFT$(A$,1): REM JUST IN CASE MORE THAN ONE
LETTERISTYPED

120 UNTIL ASC(A$)>97 AND AS(A$)<102

The problem with this is that the keys we choose are not likely to
be easy to remember unless each letter is the first letter of the
command it stands for, such as the usual N,S,E,W for the points of
the compass. Checking for errors in input as complex as these can
itself be quite complicated if we rely on the number codes, because
error-checking of this kind relies on allowing only numbers in a set
range. Therefore we add a different kind of checking to our routine,
ensuring that only input of an allowed letter is possible.

No matter how clever our program, there will be some possible
inputs we have not allowed for and the player can always make a
mistake. Our error-checking has therefore not only to make sure
that the input is in the correct range but also that it is sensitive to
other possible errors. Every time the player presses a key there
should be an appropriate routine to trap any errors. The error trap
should come early in the routine if a mistake is likely, but may come
at the end if mistakes are less likely. If in doubt the check should

123

come immediately after the INPUT (or GET($) or INKEY($))
statement.

If an error is detected then some form of error message should be
sent to inform the player of the mistake. The best error messages tell
the player three things:

1. That an error has been made
2. The kind of error that has been made
3. The kind of input that is acceptable

The worst kind of error message is no message at all! The player will
have no idea what has happened or what is meant to be done.

If we are allowing a number of different single-key inputs all we
can do to check them is to test for each one in turn. We could do this
mechanically by using an IF ... THEN statement for each of the
possible inputs each time input is required, with the default line
being ‘ERROR’, but this has the usual faults of inelegance,
wastefulness, and inefficiency.

What we want is a routine to check that the input letter is one of
an acceptable set of characters. It is quite likely that at different
points in the game different sets of characters will be allowed. For
example, during combat the possibilities might be:

A = ATTACK
M = MAGIC
R = RETREAT

whereas on entering a new location the options might be:

L = LISTEN
R = REST

S = SEARCH
W = WAIT

Therefore the routine should be a general one which can be called
whenever single-letter input is expected to test for its validity.

The obvious method for us to use is to hold the valid characters as a
string and compare the input character with each of the characters
in the string in turn. We will call the string test$. Then every time
single-letter input is expected we use GET$ rather than INPUT, to
maximize the main advantage of single-letter input—which is
speed—using the following routine:

124

80 REM FOR COMBAT INPUT

90 PRINT "Please type a single letter (A,M or R)"
100 test$ = "AMR":REM DECLARE TEST STRING
110 PROCcheck

120 PRINT "O.K. That’'s valid"

900 END

999 REM CHECKS FOR VALID CHARACTERS
1000 DEF PROCcheck
1010 REPEAT
1020 A$ = GETS
1030 IF INSTR(AS,test$)=0 THEN

PRINT "No, you idiot, ";test$

1040 UNTIL INSTR(AS,test$)<>0
1050 ENDPROC

If you follow this routine through you will see that control only
returns from the subroutine if one of the correct keys is pressed.

PROCcheck can be called at any time in the game so long as we
remember to declare the test string before the call is made. It is
important also that we do not include any invalid characters in the
string, such as punctuation or spaces, unless these are possible valid
input.

To make such a routine efficient we should also ensure that any
lower case input is converted to upper case (or vice versa), thus
making the test strings much shorter and easier to code. To make it
friendly it should tell the player the character which has just been
typed so that any mistakes can be monitored. One of the worst
features of games players is the way they blame the program for the
way their fingers slip around the keyboard.

If we use single-key input we should try to do the following:

1. Choose only a few keys.

2. Choose keys whose meaning easily stands for the appropriate
command.

3. Make sure we can check for potential errors in the input.

4. Choose a combination of keys that can easily be handled on the
keyboard, especially if the game is real-time.

What about ‘English’ input? It is usual in text-based adventures
for commands of word pairs to be allowed, such as “GO WEST”,
“TAKE BOOK?”, etc. These are obviously more complex than single-
key ones—they take more time to design, to code, and to use in play,
but they offer much more varied rewards than limited single-key
input.

Even with this complexity a technique similar to that for testing
single-key input can be used. The differences are that INPUT has to
be used instead of GET$ (so the RETURN key has to be pressed after
each input by the player) and the string which is input has to be
divided into its separate words. We will assume a two-word input,

125

though the principles remain the same for longer phrases or
sentences. Most adventures only allow two-word input, but in
Chapter 8 we will discuss some ways this might be changed. We need
to declare some string variables as well so we will use the following:

AS$ is the string input by the player.

B$ is the first word.

C$ is the second word.

D#$ is the first three letters of the first word
E$ is the first three letters of the second word.
noun$ is a test string for nouns.

verb$ is a test string for verbs.

It will become clear why all these are needed. The algorithm we
will use is:

PLAYER INPUTS TWO-WORD COMMAND

WORDS ARE SEPARATED

D$ IS SET TO THE FIRST THREE LETTERS OF THE FIRST
WORD

D$ IS CHECKED AGAINST V§

E$ IS SET TO THE FIRST THREE LETTERS OF THE
SECOND WORD

E$ IS CHECKED AGAINST N$

Al SR

o

Although we could check the complete words that were input this
would take more time and memory than is necessary. A three-letter
code is enough to distinguish many words and, provided we can
ensure that no pair of valid command words in our program begins
with the same three letters, there will be no problems—do not pick
CANDLE and CANNON in the same program. If, for some reason,
you need to have keywords which start with the same three letters,
you will have to use four-letter codes (or more, if more are needed to
distinguish the words), but this should be avoided if possible.

Suppose we have an adventure which uses two-word input.
Amongits allowed commands are: LIGHT TORCH, TAKE WHEEL,
and SWIM RIVER. The allowed verbs are thus LIGHT, TAKE, and
SWIM, while allowed nouns are TORCH, WHEEL, and RIVER.
Notice that no two of these words begin with the same three letters.
We can compile strings made up of the three-letter codes of
acceptable words in the same way that we did for test$ in the
single-key input routine above. Thus somewhere in the program will
be aline saying LET N$ = “TORWHERIV” and another saying LET
V$ = “LIGTAKSWI”.

126

We can then compare the first three letters of our input words (D$
and E$) with each three-letter section of this string and, if it
matches, we can then branch to the appropriate routine. Let us work
through the whole procedure a stage at a time in BBC BASIC. Call
the procedure PROCdecode.

First, input the words:
999 REM TWO WORD INPUT
1000 PRINT “What next?”
1010 INPUT A$

Then separate A$ into two words:

1020 REPEAT

1030 IF INSTR(AS," ")=0 THEN PRINT "Two words please"
1040 UNTIL INSTR(AS," ")<>0

1050 L = O: B$="": c$=llll: D$=Illl: E$=Illl

1060 FOR i = 1 TO LEN(AS)

1070 IF MIDS$S(AS$,i,1)=" " THEN B$ = LEFTS$(AS$,i-1): CS$ =

RIGHTS (A$, (LEN(A$)-1i))
1080 NEXT i
1060 ENDPROC

Next we take the first three letters of each of the two words. The
problem here is with words such as GO which have only two letters.
We have to add a space to these, which means that V$ must include
GO plus space if it is an allowed command, e.g., “LIGTAKGO SWI”.
Line 1060 does this:

1060 B$ = B$ + ? C$ o C$ 4 7”
1070 D$ = LEFT$(B$,3): E$ = LEFT$(C$,3)
1075 FL =0

In a similar way we can use a string such as “N S E W ” to define
movement commands which can be input as single-letter commands
but will not be confused with the initial letters of other words.

Now we check D$ against the verb codes (V$) and E$ against the
noun codes (N$). As the process is the same for both we can use the
same checking routine twice, provided we declare the relevant
strings before we call it.

1080 LET TS = VS$: LET US = DS$: PROCword
1085 IF FL = 1 THEN ENDPROC

1090 LET TS = NS$: LET US$ = ES$:PROCword
1095 IF FL=1 THEN ENDPROC

127

1096 PRINT "O.K"

1099 ENDPROC

1199 REM PROCEDURE TO COMPARE TEST STRING AND
AND INPUT WORD

1200 DEF PROCword

1210 FOR I = 1 TO LEN(TS) STEP 3

1220 IF MIDS(TS,I,3) = US$S THEN FL=I

1225 NEXT I

1230 IF FL<>0 THEN ENDPROC

1240 PRINT "I don’t know how to ";AS: FL =1

1250 ENDPROC

Note the flag FL set at lines 1075 and 1240. Line 1075 sets it to 0,
in case it already has been used. Line 1240 will set it to 1 if the first
half of the command is invalid so that, on returning to 1085, the
procedure is not run for the second part. Notice also the STEP
command in line 1210, which may be an instruction you have not
used before. This simply means that the FOR ... NEXT loop
between lines 1210 and 1230 will increase I by three at a time, thus
moving along T$ three characters at a time, which is how our codes
are grouped. Normally a FOR . . . NEXT loop will operate in steps of
one, which is the default value if STEP is not specified.

There is a slightly more efficient way of doing the check in lines
1210 and 1230 by using the INSTR command (which is not available
in a number of BASICs). We can replace lines 1210 to 1230 by the
single line:

1210 IF INSTR(T$,U$) THEN ENDPROC

Having checked that the input is alright we now have to branch to
the appropriate routine in the program. The most elegant way to do
this would be to use numerical input or character codes as the basis
of sending control to subroutines. For example, a very elegant input
and selection routine would be:

90 PRINT “Please type an instruction from 1 to 9”

95 REPEAT
100 INPUT A:A = INT(A)
105 UNTIL A>1 AND A<10

110 GOSUB A* 1000

This sends control to subroutines beginning at lines 1000, 2000,
etc., up to 9000. However, such elegance is not always possible if the
input is initial letters or full words. Nor is it possible to use
conditional control like this for PROCedures. If we wanted to send

128

control in this way to a procedure rather than a subroutine in BBC
BASIC we would have to use a series of lines like:

110IF A = 1 THEN PROCa
120 IF A = 2 THEN PROCb
130 IF A = 3 THEN PROCc

By careful design we could send control to a subroutine related to
the ASCII character code or the sum of the codes in any three-letter
combination, but the design effort is probably not worth while. We
may have to resort to a series of one-line tests, whether procedures
or subroutines are used, of the form:

IF input = keyword x THEN GOSUB routine y

So for our single-key example appropriate lines might be:

130 IF A$ = “A” THEN GOSUB 2000
140 IF A$ = “M” THEN GOSUB 2100
150 IF A$ = “R” THEN GOSUB 2200

and for two-word input appropriate lines might be:

130 IF B$ = “TAK” THEN GOSUB 2000
140 IF B$ = “SWI” THEN GOSUB 2100
etc.

However, BBC BASIC can go one better than this to make things
somewhat easier. The parameter of a GOSUB or a GOTO can be a
numeric variable and numeric variables may be any number of
characters. Consequently each acceptable letter or three-letter code
can be used as a variable name and the value of the variable can be
declared as the line number of the appropriate subroutine.

To clarify this let us use the example of SWIM and suppose that
the swimming routine begins at line 2110. During initialization of
the program we can assign a value to the variable called SWI, which
also happens to be our three-letter code for ‘swim’. When input has
been through all the validation checks B$ will hold “SWI” as the first
part of the first word. If we can turn the string held by B$ into the
value held by the variable with the same name, we can use the input
string to direct control.

The function which does this is VAL, which turns a string into its

129

appropriate value. If our program contains among others the
following lines:

10 LET SWI = 2110

it will work if “SWIM?” is the first word input.

The advantage of this is that it is easy to follow the workings of the
program and it saves coding. We do need to declare a variable for
every acceptable input word, but we can dispense with all the long-
winded IF . . . THEN statements. It also allows clever programmers
to alter the routine a particular command is running. For example,
there may be two locations in which a player might be allowed to
swim, namely, a placid stream and a dangerous river. If the player
swims in the stream there is no danger of drowning. In the river,
everything is the same as for the stream, except for the danger of
drowning. So the same routine will be used for each, with an extra
piece of code for the river. If this extra piece of code was held at line
2005, with the common routine at 2110, then a line like the following
could make use of it:

135 IF LOCATION = RIVER THEN LET SWI = 2005

However this trick will only be of use in a few circumstances, as
extra code can be held and called in other ways, e.g., by the use of
flags or nested subroutines.

As the most frequently used nouns will be those for movement we
can speed things up by having two noun strings, one full of objects,
the other for directions, e.g., “NORSOUEASWES”, and only test the
latter when a valid movement verb is detected, e.g., in the case of
most adventures the verb GO. In addition we may need two special
commands which do not need nouns, namely HELP and
INVENTORY. The first of these gives help to the player with
problems, the second lists all the objects the player currently has. So
before the standard word comparison routine we would need three
separate tests for these three verbs. As the latter two have no nouns,

130

we test for these before the main routine, i.e., between lines 1015
and 1020:

“INV” THEN GOSUB INV: RETURN
“HEL” THEN GOSUB HEL: RETURN

1016 IF LEFTS(A$,3) =
1017 IF LEFTS(A$,3) =
The test for GO will come before the main verb and noun tests, i.e.,
before 1080. If W$ is the string “NORSOUEASWES” then lines
1078 and 1079 will do the job:

1078 IF D$ = “GO” THEN LET T$ = W$: LET U$ = E$: GOSUB
1200: IF FL = 1 THEN RETURN
1079 IF D$ = “GO” THEN GOSUB VAL (B$): RETURN

These check that the word following GO is a legitimate direction,
send control back to the main program if not, or forward to the GO
routine if it is.

We must also minimize the effects of faulty input of commands.
Likely mistakes involve typing only one word, or words of less than
three letters, or extra spaces. An easy way to avoid most of these
problems is to declare the variables not as empty strings but as
strings of spaces and to clear each string to the required number of
spaces each time the input loop is called.

Once the loop has run it will return with a flag, marking an error if
one has occurred, and input will again be repeated. However, if both
input words are correct control will have to be passed to other
routines in the program. In order that the detected verbs and nouns
can be used in such a control they have to be given numerical values.
If we do not want to use the method already outlined of declaring
variables with the same names as the verb codes and values equal to
the subroutine line numbers we have one further alternative.

For every verb or noun we already have a value, namely the
position of the three-letter code for each word in the relevant string.
This is counted by the variable I in the loop which attempts to match
D$ or E$ against these codes; however, I is used as the variable in
several other loops, so monitoring it might become confusing.
Consequently we can add a line which sets another variable, say K,
to the same value as I if a match is found in the checking loop. Then
K will be passed back to the main checking routine where it is turned
into the appropriate variable, which we can call VERB or NOUN. If
we use INSTR rather than a loop to check that an input word is
allowed then K will be set to the position of the substring within the
test string, i.e., the word number.

If there are special words to be detected then VERB and NOUN

131

may have to be set specially, such as in the case of INVENTORY and
HELP. If these are looked for as special cases before the general
checker, VERB will have to be set specially.

With these two variables, VERB and NOUN, most of the
descriptive routines can be called. VERB can be used as the control
variable to call the appropriate verb routines and NOUN as one of
the variables which determines the exact subroutine which is used.

As these are crucial values it is very important to approach them
from a logical point of view. While coding my adventures I use at
least three major reference sheets to find my way through the
program. These are doubly important if you have no printer so
cannot obtain hard copy of the problematic or unfinished areas of
your program.

My first reference sheet is a map of the logical maze with each
location numbered. Each location which is either a GET or NEED
square has G or N written in it, plus the noun or nouns which are
there. In addition any special puzzles or features are also noted here,
such as a river which has to be swum. Finally, an H is placed in each
square where an object is hidden, rather than being immediately
obvious.

To make things easy I use the variable ROOM (or LOCATION) in
the program to hold the current code for each location on the map,
and this is used as the control variable for the description routines in
the main block of the program. The correspondence is as follows: the
location number is on my hand-drawn map, is held above HIMEM in
a specific address (or wherever the block of data for the map is kept),
and when multiplied by 10 and added to a base number gives us the
number of the description routine to be called. The description
routine would either be a subroutine or a DATA statement to be
read in and PRINTed using RESTORE.

The second list is of all the verb routines and their start lines.
These should be regularly spaced (at least 20 lines should give room
for alterations) and kept in the same order as the verbs in the verb
string. Consequently if you decide that a verb is not to be used after
all or a new one is to be added you can see at a glance where it should
go in the verb string and in the program, without having to worry
about keeping track of how many there are or what VERB should be
set to. (As usual put the most frequently used verbs first in the list,
early in the verb string, and early in the program block.)

Finally, there is the list of nouns. This is probably the most
important of the lists. It holds the names of all the objects and the
solutions they are part of, as well as the line numbers of the verb
routines which use them, and should correspond to the reference
number of the noun in the noun list. The nouns are listed in the order
132

they are held in arrays or memory, which roughly corresponds to the
order in which the Gets and Needs should be encountered in the
program in order to solve it. It is important to have a complete list
because the noun routines, being the end points of a series of calls,
can seldom be held in a very logical way and will therefore be difficult
to locate during debugging. REM statements would help with this
problem, but so many would be needed that the size of the program
may well be doubled so they would have to be removed from the
finished version. However, it is a sensible idea to create two versions
of your program, one full of REMs so it is easy to understand and
debug and one stripped to the bone which runs quickly and
efficiently.

7.2 Talking to monsters

It is all very well killing monsters and stealing all their worldly
goods, which is the standard fare in adventurers, but not every
monster is hostile and some may be too powerful for lowly
adventures to pit themselves against. Fighting in many
circumstances would not come under the heading of intelligent
behaviour. In such circumstances the wily adventurer is best
advised to use sly flattery, gentle persuasion, high-sounding oaths,
blood-chilling threats, or any other form of conversation which
seems likely to win the monster round. However this means the
monster should be able to talk back, and talking is a difficult thing to
simulate.

A great deal of artificial intelligence research has gone into trying
to make programs understand and produce recognizable
conversation. Kenneth Colby’s PARRY produces recognizably
paranoid text. DOCTOR and ELIZA provide a number of
conversational gambits like a psychiatrist. A program -called
SHRDLU is able to understand English commands for manipulating
a world of coloured blocks and pyramids by using a robot arm. Some
programs exist that can tell stories which are almost passable.
However, by and large there are no programs which understand
enough about the world to produce acceptable conversation.

This has happened for two reasons. Firstly, research is not
sufficiently advanced for suitable programming techniques to be
available and in some ways the available hardware is still limited.
More importantly, linguists do not really know enough about the
way human beings converse to be able to provide a suitable model for
a computer. Whatever we do, it will be limited, but at the same time
we can have the satisfaction that we might be breaking new ground
and the problems that control our humble attempts at adventures

133

are the same ones that some of the best brains in the world are
currently puzzled by.

Two approaches are possible on a micro. We can aim for as full a
simulation as possible in which many tests and transformations are
made on the language, attempts are made at meaningfulness, and a
wide and varied vocabulary is used. The program in Chapter 9 goes a
little way towards this, although its cleverness lies in input rather
than output. Or we can settle for a couple of sleight-of-hand tricks,
which appear to allow conversation but actually just do random
things with words. This has been the most successful approach so
far, even in much more serious artificial intelligence research.

The first approach is very complex—too difficult to give a full
account here. Useful routines can be adapted from accounts of
recent research but in many cases implementation is too demanding
for a micro, especially in the context of a program which needs
memory for other tasks. The sleight-of-hand approach is usually
based on two procedures—in the processing or input the program
checks for keywords, by comparing each input word against a
dictionary of recognized words and, according to the match that is
found, will compile an output string with an approach meaning; and
in the processing of that output some changes are made to the
structure to make it fit grammatically with the input string.

An example of the first kind would be a test for a word like ‘fight’. If
this was found the monster might respond with “So you want to
fight, do you?” and control might switch to the combat routine. An
example of the second would be the transformation of pronouns,
where if the first string is something like “I will give you my sword”
then the output might be “O.K. I'll take your sword”. Here ‘my’
becomes ‘your’ and ‘give’ becomes ‘take’.

You will see that this requires a great deal of thought. The least
that is required of a good routine to do this is that it should have a
large and appropriate vocabulary, that it should produce reasonably
grammatical sentences, that it should allow input of strings longer
than two words, and that the response should be connected to the
input. This means we would have to think of all the words likely to
occur and find some appropriate response for each, which might
demand much more work than the program justifies. However the
essential design is easy to describe:

1. ACCEPT INPUT STRING
2. SEPARATE STRING INTO COMPONENT WORDS

3. HOLD ALL WORDS IN MEMORY
134

4. COMPARE ALL INPUT WORDS AGAINST THE
DICTIONARY OF KEYWORDS

5. IF A KEYWORD IS FOUND THEN EXECUTE THE APPRO-
PRIATE SUBROUTINE

6. IF THE SUBROUTINE USES THE ORIGINAL STRING
THEN DO THE NECESSARY TRANSFORMATIONS ON
THAT STRING

7. IF NO KEYWORDS ARE FOUND THEN EXECUTE A
DEFAULT OUTPUT.

8. IF THE KEYWORD SENDS CONTROL TO ANOTHER
ROUTINE THEN EXECUTE THAT ROUTINE, OTHERWISE
GO TO THE BEGINNING OF THE CONVERSATION LOOQOP.

Stages 2 and 3 are simply expansions of the routines we have
already used to analyse two-word input, namely looking for spaces
and holding all items between spaces as separate words. Stage 4 will
take each word in turn and each word in the database vocabulary
and compare the two of them. This could be a very long process,
especially if the input string or the vocabulary is large. It can be
speeded somewhat by using a three- or four-letter code rather than
the full word for matching (but this may result in faulty matches), by
ignoring all words of less than four or more than six letters (because
these are likely to be unusual or else serve grammatical but not
semantic purposes) and by using an indexing system, based either
on the alphabet or the codes of the characters, so that the search can
branch through the database rather than look at every item.

For example, suppose the input string was “Give me your jewels or
I’ll chop off your head, you sycophant”. In consulting our dictionary
the simple method would be to take each word in turn and using
FOR-NEXT loops compare it with each word in the dictionary. It is
unlikely that any interesting responses can be built into the
program to deal with ‘or’, ‘off’, ‘me’, ‘you’, or ‘sycophant’, which is
why these are all outside our word length limit. ‘T’ll’ could also be
excluded because it contains internal punctuation and this could be
tested for. This means a 12-word string is reduced to six. For each of
these six the program then could do the word by word comparison,
but if we arrange our dictionary in such a way that words can be
compared alphabetically, such as by using a number of string arrays,
the number of tests can be greatly reduced. If we suppose that only
‘give’ is held in this dictionary and the comparison is made
alphabetically it would take only two tests to find a match, as the

135

program first looks at ‘chop’ and then ‘give’. In essence this is the
approach taken in the use of a dictionary in The Opal Lily in Chapter

Stage 5 is the heart of the program. For each keyword one or more
possible outputs should be allowed. These could be randomly
selected once control has been directed to them or they could be
motivated in some other way. For our sample string there might also
be some transformations used. For example, the ‘give’ routine could
take all the words between ‘give’ and the end of the string or a
conjunction (in this case ‘or’), and invert any pronouns found in that
substring; we get “give you my jewels”. To this the routine adds “If I”
and “what will you give me?”. So the output formula is:

“If 1” + transformed input string + “what will you give me?”

giving the perfectly meaningful response, “If I give you my jewels,
what will you give me?” Note that to do this, the program only needs
to recognize one keyword. It does not need to know what jewels are,
nor who ‘you’ refers to.

The default output, used if no keywords are found, would contain a
number of choices of non-commital remarks, such as “Tell me more”,
“That’s easy for you to say”, “I don’t understand”, and so on. Even
with a first class string-processing program these remarks will be
used more than any other, so a wide choice is needed to prevent too
much repetition.

In principle, routines like these could be used throughout entire
adventures and not just in exchanges with monsters, but in practice
this has not been done, because many other potentials of adventures
have not been realized—it takes too much time to code, too much
memory is used, there are many problems with design of suitable
algorithms, and no-one has seriously tried it.

However, the easier option has been used quite successfully. This
involves more trickery than actual conversation, though the
principles are quite similar to those just discussed. Here there is no
attempt made to ‘understand’ the input string, but the monster
makes a more or less random choice between a set of responses
which make sense in the context.

For example, the player may be given a simple choice between
fighting and talking to a monster. He chooses the latter because
strength is low and says, “I’'m very fond of goblins”. There are many
possible responses to such a remark—the monster could ask for
more information, could become angry, could become very friendly,
could be wary or deceitful. All of these possible attitudes can be
136

expressed by phrases which are unconnected to the phrase which
sets them off:

Tell me more.
So all you can say is “I’m very fond of goblins”, is it?
I'm giad you’ve said that.

So that’s what you think, is it?

You’'ll have to give me some time to think of an answer.

Being unconnected to the input string these can be chosen randomly
and, providing the next choice is reasonably consistent, this will
appear to make sense and could eventually lead to combat or to
giving treasure, or to the monster stealing from the character,or any
other action of the monster which is coded in the program. A sample
routine for this which could be added to many adventures is below:

3800
3805
3810
3820
3822
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885

3890

R=20
PRINT

"What do you have to say?"

R = RND(3) + R

INPUT

AS$

IF R < 1 THEN GOTO 3950
GOTO 3830 + (R*5)

PRINT

"I'm fed up with this, I’'m going":

RETURN :REM GOES BACK TO MAIN ROUTINE

PRINT
R =R
PRINT
R =R
PRINT

"So that’s how you feel is it?":

+ 1: GOTO 3810

"I don’t quite understand you":

- 2: GOTO 3810

"Haven 't you anything better to say

than that?": R =R + 1l: GOTO 3810

PRINT " So you don’t want me to eat you?":

R =R - 3: GOTO 3810

PRINT "Do you want to be friendly then?":

R =R - 5: GOTO 3810

PRINT "I 'm getting impatient":

R =R + 3: GOTO 3810

PRINT "I detest adventurers like you":

R = R + 2:GOTO 3810

PRINT "I could give you a reward if you
behaved nicely ": R = R - 5: GOTO 3810

PRINT "I hate people who say things like that":
R =R + 3: GOTO 3810

PRINT "You’d best watch out for my temper":

R =R - 1: GOTO 3810

PRINT "You 've one more chance to be pleasant":
R =R - 2: GOTO 3810

PRINT "I WARNED YOU!!!":

GOSUB COMBAT ROUTINE: RETURN

137

3895 PRINT "Because I think you’re so rude
I'm taking your treasure":
(treasure variable) =0: RETURN
3900 PRINT "Stuff this for a lark ":
(treasure variable) = 0:
GOSUB COMBAT ROUTINE: RETURN
3905 PRINT "The monster works himself up into
an apoplectic fit and expires on the floor":
(treasure variable) = (treasure variable)
+ (monster s treasure): RETURN
3950 PRINT "You seem so friendly I 'm going
to let you have all my hard earned savings":
(treasure variable) = (treasure variable)
+ (monster s treasure) :RETURN

This works quite simply by increasing and decreasing R according
to the output string chosen. As R goes down the monster is more
likely to give his treasure away; as it goes up he is more likely to fly
into a rage. However, if he gets really angry he may have a fit as a
result, and if R ever becomes 1 he may just get fed up and go away.
The strings are muddled up a little in order to make sure that R can
fluctuate because monsters are notoriously temperamental.
However, the random variable added each time will always tend to
push him towards anger, so the longer the character talks, the more
likely he is to annoy the monster.

(This is one example of ‘poor spaghetti’ programming which,
because it is a self-contained routine and because there is always an
exit sooner or later, is perhaps allowable. To write a similar routine
in a structured way would actually be quite complicated. However, if
you are going to write tangled code of this kind make sure it is well
planned in advance.)

The routine can easily be expanded or contracted by adding and
subtracting lines, and other outcomes can be added by using other
values of R to direct control to other routines or by building in other
variables. It would also be possible to incorporate simple checks on
the player’s input to affect these variables. For example, a dictionary
of swearwords could be used as a database to check input, such that
two of these words would immediately send the monster into a rage.

138

8 MORE ON ADVENTURES

8.1 Adventure maps

The key part of an adventure game is its map and the mechanism for
moving the player’s character around that map. We have already
looked at how a graphic piece can be moved around a screen in
Chapter 3. Now we will examine some of the ways of creating and
representing a map and of moving a character around it. For most of
the approaches discussed here it does not matter if there is meant to
be a screen display or not, but some of the approaches are easier to
implement with graphics than others.

It is common in adventure games as well as graphic games to
control player movement by use of a set of keys. Normally these
would be the cursor keys, or the arrow keys, with the arrows
representing the chosen direction (these are the same thing on the
BBC and Electron), or the keys N,S,E,W (for North, South, East,
and West), or in some cases the number keys, especially if a numeric
keypad is available. In practice any set of keys could be used and it is
possible to define a ‘mapping keypad’, that is to say, a subset of the
keyboard made up of nine keys in a square, with the orientation of
the external eight keys representing the points of the compass and
the central key either ignored or used for a special action, such as the
ubiquitous ‘hyperspace’. On a QWERTY keyboard the most likely
mapping pad is the sector shown in Fig. 8.1.

N>0
M=
QgH

Figure 8.1

Having decided on the set of keys which will control player
movement we must design a routine to interpret the keyboard.

139

8.2 Moving a character

The method used to move a player through the different eventsin a
game depends on the type of game and the nature of the events. If
our game has a constant graphic display we would probably use
method C below. If, on the other hand, our adventure game is
primarily textual we will probably use a method like that used in
Chapter 9. However, the simplest methods are those I have called A
and B: A is random movement and B is seeded random movement.

8.3 Method A: random movement

Whether our adventure is textual or graphic, we can make the link
between successive events purely random. In this case there will be
no map as such because returning to the same ‘location’ may well
result in a different event. A typical structure might be asin Fig. 8.2.

1. PLAYER MOVES PIECE

2. GENERATE A RANDOM NUMBER BETWEEN 1

AND 3 = R

3. CHOOSE A SUBROUTINE ACCORDING TO R

Figure 8.2 4. DO CHOSEN SUBROUTINE

Here only three types of event are possible, called routines 1,2, and
3. The choice of a particular routine is made only when the player
makes a move butisrandom,i.e., unrelated to the actual move made.
If the player moved south then north, i.e., returned to the same
position, there would be only a third of a chance that the event that
occurred at that location would be the same as the last event that
occurred there. For such a routine it makes little sense to build a
map into our program as the player’s ‘movement’ is purely illusory.

8.4 Method B: seeded random movement

This method is probably the most economical on memory, which is
useful for machines with only a small amount of RAM or for

140

programs where an unusual amount of memory is required for
storing data. Put simply, each time the program is run a different
map will be generated, but that map remains the same, unalterable,
throughout the game. The ‘map’ is actually a series of numbers but
only an extremely able mathematician would be able to predict the
map from the initial randomly chosen number. The method works as
in Fig. 8.3.

1. USE A FORMULA TO CREATE A NUMBER

WITH A DECIMAL POINT

2. GET RID OF THE INTEGER IN THE NUMBER

3. USE THE FORMULA TO INDICATE POSSIBLE

DIRECTIONS

4. USE THE FORMULA TO CALCULATE EVENTS

5. NEXT MOVE

Figure 8.3

Because the formula is the same and the sequence of numbers is
the same throughout, the result of the formula will be the same at a
particular ‘location’ every time it is run.

The routine below outlines the way to do this. The key line is line
400 which defines function p. This function uses the current x, y, and
z coordinates of the player (i.e., his or her location in the game) to
calculate a decimal value. Every time the coordinates are the same
the value will be the same. PROCcalc compares that value with an
arbitrarily chosen constant, e.g., 0.35. If p is greater than this
constant then there is an exit in that direction. If not, there is none.
The variable move is used to record whether a particular direction is
possible or not, being set to 1 if the exit is clear and 2 otherwise.
PROCmovement takes an input direction, checks that it is possible
given the current values of x,y, and z, and if it is calls PROCgo which
prints the exits available from the new location by temporarily
resetting x,y, and z to see if the numbers that would result are

141

greater than 0.35. Each of the digits in the decimal part of the
number derived from the function could also be used to control
different events in addition to the available exits. For example, one
digit could be used to control selection of the main event to be found
in that location.

99 REM Seeded Random Movement
100 DEF PROCmovement
110 move = 0
120 IF move = 2 THEN move=0:
PRINT "Solid rock" :ENDPROC
130 REPEAT
140 PRINT TAB(0,10);"Which way?"
150 INPUT dirS$:dir$=LEFTS(dir$)
160 UNTIL INSTR("NSEWUD",dir$) <> 0

170 IF dir$ = "N" THEN x=x-1: PROCgo:
IF move=2 THEN GOTO 120

180 IF dir$ = "S" THEN x=x+1: PROCgo:
IF move=2 THEN GOTO 120

190 IF dir$ = "E" THEN y=y+l: PROCgo:
IF move=2 THEN GOTO 120

200 IF dir$ = "W" THEN y=y-1l: PROCgo:
IF move=2 THEN GOTO 120

210 IF dir$ = "U" AND z=1 THEN PRINT
"You ‘re on ground level!": GOTO 120

220 IF dir$ = "U" THEN z=z-1: PROCgo:
IF move=2 THEN GOTO 120

230 IF dir$ = "D" THEN z=z+l: PROCgo:

IF move=2 THEN GOTO 120
240 ENDPROC
250 DEF PROCgo
260 PROCcalc: IF move = 2 THEN ENDPROC
270 PRINT "Exits are: ";: move = 0
280 x=x-1 : PROCcalc: IF move = 1
THEN PRINT "North"
290 move = 0 : x=x+2 : PROCcalc: x=x-1
IF move = 1 THEN PRINT "South"
300 move = 0 : y=y-1 : PROCcalc:
IF move = 1 THEN PRINT "West"
310 move = 0 : y=y+2 : PROCcalc: y=y-1
IF move = 1 THEN PRINT "East"
320 move = 0 : z=z+1 : PROCcalc: z=z-1
IF move = 1 THEN PRINT "Down"
330 IF z>1 THEN move = 0 : z=z-1 : PROCcalc:
z=z+1 : IF move = 1 THEN PRINT "Up"
340 PROCcalc
350 ENDPROC
360 DEF PROCcalc
370 p=FNp: IF p<.35 THEN move = 2 : ENDPROC
380 move = 1
390 ENDPROC
400 DEF FNp=SQR(x*x+y*y*z)=-INT(SQR(x*x+y*y*z))

142

8.5 Method C: the HIMEM map

A short routine using the machine code provision of BASIC (i.e., the
indirection operators described in Chapter 39 of the BBC manual
and Chapter 23 of the Electron manual) can be used to store a map as
a series of bytes and another routine used to recall the set of bytes
around the current player location to control movement and print
environment. This technique can be used for simple or more complex
purposes but the principle remains the same. Firstly, it is necessary
to reserve sufficient memory for storing the machine code map. On
the BBC/Electron this can be done by resetting HIMEM, and similar
relocatable pointers for the highest location of user RAM exists for
most systems (e.g., Ramtop on the Spectrum). The reserved memory
must be at least as large as the total number of locations in the map.

Into this reserved area is POKEd a series of bytes, each
representing one location in the map. That is to say, for each of the
reserved locations in turn we use the formula:

?(memorylocation) = room number byte

These bytes can then be used as the code for description of the
player’s current location, or even for direct visual mapping. Let us
take the latter first. Suppose the map is a series of rooms arranged
within a matrix of 12 X 12 possible locations. Within these possible
144 locations, 48 are rooms and 96 are blank walls. Each of the 48
rooms will be given an identifying number and the blank walls 0, so
that the whole map if drawn looks something like Fig. 8.4. After
each movement the player can be shown the current position on the
map by displaying the eight surrounding locations together with the
current location. This obviously works well in conjunction with the
‘graphic keypad’ method of controlling movement.

If any of the surrounding locations are 0 they will be displayed as a
wall character, such as a graphics block from the BBC’s Teletext set.
(Electron users will have to use a character such as the asterisk or
define their own character.) If greater than 0 the display will be a
blank space. For example, if the player is at location 9,11 in the
matrix in Fig. 8.4, the map of his surroundings would be Fig. 8.5.

Each time the player moves not only will the map be updated but a
test will be made beforehand to see if the player can move to that
next location, i.e., testing to see if the next byte (location) is greater
than 0. To use such a matrix we would need to reserve 144 addresses
and POKE (using the ? operator) into each in turn the appropriate
value. The first 12 addresses will be locations 1,1 to 12,1 on our map;

143

1 2 3 4 5 6 7 8 91011 12

3 012 3 4 524 0 0 0 0 0 O
4 013 0 6 0 23 25 26 32 44 45 O
5 014 0 72122 0 033 0 0 O
6 01516 8 0 0 O 034 0 0 O
7 0 017 0 028373635 0 0 O
8 0 018 19 20 27 0 O 38 46 47 O
9 0 0 0 0 029 0O 039 0 0 O
10 0 0 0 O 030 O 040 O O O
11 0 0 0 0 O0 31 43 42 41 48 0 O

/// /
i

Figure 8.4

Figure 8.5

the next 12 addresses will be 1,2 to 12,2; and so on. Thus if the first
address is 20 000 (decimal), we would POKE into it 0, and similarly
for the next address (20 001). However, 20 002 would be given the
value 1. An easy way to achieve such a series of POKEs is as follows:

500 P= &1FFF: REM ONE LESS THAN THE START
ADDRESS (HEXADECIMAL)
144

10 FORI=1TO 144: REM THE NUMBER OF BYTES
520 READ A

530 ?(P+I)=A

540 NEXTI

550 DATA 0,0,1,0,0,0,0,0,0,0,0,0

560 DATA 0,0,2,0,0,0,0,0,0,0,0,0

570 DATA 0,12,3,4,5,24,0,0,0,0,0

etc.

To read a map like this in checking the player’s movements and
printing the map, we simply PEEK the nine relevant bytes, again
using the ? operator. If x is the horizontal position of the map and y
the vertical, then the locations around him will be x—1,y—1; x,y—1;
x+1,y—1; x—1,y; x+1)y; x—1,y+1; x,y+1; x+1,y+1. However, the
map is kept in memory not as a matrix but as a sequence. Each xis 1.
Each y is 12. Therefore to find the desired byte we must make it
x+(y*12). For example, if the player is located at point 3,2 in the
matrix then x=3 and y=2, so we need to read the byte located at 20
000 plus 3 plus 2*¥12=address 20027. The bytes surounding the
position are thus 13 less, 12 less, 11 less, 1 less, 1 more, 11 more, 12
more, and 13 more. We can draw the nine necessary bytes using the
following routine:

600 P=(&2000 +x +(y*12))

610 Q= ?(P—13) : IF Q=0 THEN PRINT AT (relevant screen
location) (block graphic)

620 LET Q= ?(P—12) : IF q=0 THEN PRINT AT (next screen
location) (block graphic)

etc.

Can this be reduced to a formula? Yes it can, using
FOR ... NEXT loops, as below:

10 REM m = FIRST ADDRESS OF MAP LOCATIONS
20 REM a AND b ARE PRINT COORDINATES

30 REM x IS WEST TO EAST

40 REM y IS NORTH TO SOUTH

50 a=2

60 b=2
70 FOR y=-12 TO 12 STEP 12
80 FOR x=-1 TO 1 STEP 1
90 p = ?(m+x+y): REM LOOK AT ADDRESS OF LOCATIONS
100 IF p=0 THEN PRINT TAB(a,b);"*"
ELSE PRINT TAB(a,b);" "
120 b=b+l : REM MOVE TO NEXT PRINT POSITION

145

130 NEXT x
140 a=a+l : REM MOVE TO NEXT PRINT LINE
150 NEXT vy

A similar easy routine can be used to test for 0, to check that the
player is not trying to walk through a brick wall (some adventures
make players think this is quite a sensible action!). The main
advantage of this method is that no complex checking of screen
memory is needed. The BBC and Electron organize their map of the
screen in a somewhat peculiar way, which is difficult to process in a
program. By using our own map of what is on the screen we do not
need to look at the micro’s own screen map at all.

8.6 Filling in the map

Having designed our puzzle map, placed it in memory, and written
routines for examining it to display and act on what is there, we need
to know what each location means. With only 68 locations it is
possible to have a small routine for each location, but it is easier to
write rather less. So we will have three types of routine which are
called by the unique map location. These can be:

1. Simply a display routine with a simple description

2. A display routine, a simple description, and a routine which is
also used by other locations

3. A display routine, a simple description, and a routine unique to
this particular location

So each of the 68 subroutines will involve a description. Some will

have additional routines and some of the additional routines will be

general, while others will be specific to the unique location.

It is at this point that creativity, imagination, humour, mind
maps, and fun come into the design. Each of the 68 places will need a
description, which can be as simple as ‘a tunnel’ or as complex as you
like. Each location and each element in the logical puzzle will have to
be filled with a meaningful description. The way to work is to
produce a long list of clever ideas, two or three times the amount you
will need, and then select the ones that fit together best for the kind
of game it is going to be. You may already have some ideas based on
the general setting of the game, but now they have to be turned into
specific words.

One way to do this is to draw up a list with three columns, the
letters of the alphabet (used for easy reference), the objects, and
what the object is needed for. A simple example is that object J might
be ‘a key’ and elsewhere in the puzzle will be ‘a locked door’.

146

However, it is best if most of the relationships are not as
straightforward as this. In fact, many puzzle adventures make a
point of being as esoteric as possible, often using puns or long trains
of thought to make the thing work. For example, K might be ‘a duck’
which might be needed at ‘a steep cliff’. What is the relationship? In
order to go further you have to descend the cliff. How do you do that?
It is easy—you get down off the duck. (Not a very good joke perhaps
but it can really test the intelligence of the player.)

Once we have a complete list of such relationships we have all the
basics of our game. It is a good idea if some sort of theme links them
together, but it is not necessary. You can see in The Opal Lily that
some of the puzzles are thematically linked and others are more or
less arbitrary.

It is then mainly a question of writing and coding each of the
separate location routines. This can require some thought.

Before coding we write a list of all the objects, which will be our
noun list, and the action or actions that can be performed with each
object. In addition we need a list of all the descriptions of the different
locations. At each map location two types of routine will be used, one
which prints the description including any objects there and one
which accepts input and gives conditional responses. The description
routine will thus have two components, but the player should not be
able to separate them. One part will simply print the description of
the location. The player will not be able to manipulate or respond to
that output in detail. The other part will mention any objects there
or, if the objects are hidden, a clue as to the presence of such an
object.

In essence anything that can hold a person can be regarded as a
location with its own description. Some commonly used places are
listed in Fig. 8.6. The description can be as long and involved as
memory allows. The larger it is the more the player will need to
interpret, but a description which is too long without any possible
player interaction will only serve to annoy. The locations should be
as interesting as possible.

Try to make the relationships between places of some interest,
rather than the straightforward ‘you enter another room’.
Characters can travel into and out of buildings, up and down hills
and cliffs, across ravines and rivers, into secret passages, under
bridges, etc. Where possible, extra puzzles can be set by making the
entrance to a particular location problematic even if it does not
depend on an object to be found. A simple example is to give in the
description a choice of routes, only one of which is correct, with the
others ending in sudden death, as in describing two treacherous
paths down a cliff face, one of which will crumble away. More

147

intricate can be locations which are unreachable unless the correct
command is used. For example, to cross a stream the player might
try to JUMP, WADE, LEAP, PADDLE, and CROSS before he
thinks of SWIM.

FIELD FOREST MOUNTAIN BRIDGE HOUSE
MANSION CASTLE CAVE TUNNEL ROOM CHEST
WARDROBE CLOCK ROCKET VALLEY HOLE PIT
BOX DESK CAR CART CARRIAGE TREE
FRIDGE CUPBOARD WINDOW ATTIC CELLAR
ORCHARD BARREL CHIMNEY BOAT RAFT ROOF
PLANE LADDER STAIRCASE LIFT ALLEY ROAD
VOLCANO GLACIER PYRAMID DESERT SWAMP
SHRUBBERYPOOL LAKE GLACIER ISLAND
LAGOON HILL THEATRE LEDGE CLEFT

Figure 8.6

In writing descriptions of locations we should also make them
appear relevant to the objects which are originally located there.
This means they make sense to the player (which might not matter if
we are designing a nonsense or absurd game such as one based on
Alice in Wonderland) and that the important aspect of each location
may not at first be apparent, thus adding more problems for the
player.

8.7 Creativity

At this point we will pause for a moment and consider a program
which has one of the elements of artificial intelligence, namely, a
degree of creativity. The program produces new ideas just as a
human being might (e.g., in generating the mind maps suggested in
Chapter 2). However, the program does not evaluate any of the
ideas. To do so it would require a huge database of knowledge on
what was practical or desirable in the real world. Creativity in
human terms is a question of finding new links between existing
items, a process sometimes called ‘bisociation’, and that is what this
program does. The user has to evaluate the ideas that result,

deciding which might be usefully developed.
148

A simple version of the program is Bisoc, given in Fig. 8.7. This
simply takes any two lines of program and READs in a DATA
statement from each line. The result is sometimes striking but often
nonsensical and rather limited. A more sophisticated, more
intelligent, or ‘creative’ program is one that has some of the
meaningfulness of language built in so that its ideas are a little more
like human ideas. In the jargon, we want a program with some
‘semantic knowledge’. Ideas in Fig. 8.8 gives an idea of such a

program.

10REPEAT

20R=INT(RND(90)*10) :S=INT(RND(90)*10)

30RESTORE (R+90)

40READAS

S0RESTORE (S+90)

60READ BS$
70PRINTAS;"

";BS

80UNTIL FALSE

90DATA
100DATA
110DATA
120DATA
130DATA
140DATA
150DATA
160DATA
170DATA
180DATA
190DATA
200DATA
210DATA
220DATA
230DATA
240DATA
250DATA
260DATA
270DATA
280DATA
290DATA
300DATA
310DATA
320DATA
330DATA
340DATA
350DATA
360DATA
370DATA
380DATA
390DATA
400DATA
410DATA
420DATA

CITY
FISH
UNDERWATER
ICE
SHIP
FOREST
FEMALE
ROCK
LEDGE
EGG
CAVE
GIANT
FISHING
GHOUL
WAR
HEAVY
GOLD
DRAGON
WOOD
ROAD
LANE
TOWN
VILLAGE
ROOM
ROUND
SQUARE
ANCIENT
WATER
FIRE
GLOWING
RIVER
GLACIER
STEAM
ERD

430DATA
440DATA
450DATA
460DATA
470DATA
480DATA
490DATA
500DATA
510DATA
520DATA
530DATA
540DATA
550DATA
560DATA
570DATA
580DATA
590DATA
600DATA
610DATA
620DATA
630DATA
640DATA
650DATA
660DATA
670DATA
680DATA
690DATA
700DATA
710DATA
720DATA
730DATA
740DATA
750DATA
760DATA
770DATA
780DATA
790DATA
800DATA
810DATA
820DATA
830DATA
840DATA

RED
STREAM
SCREAMING
BROKEN
WINDY
TREE
HOLE
SILENT
WHITE
ANIMAL
GREEN
FIELD
CAVERN
BOX
CUPBOARD
SWORD
CLOUD
AIR

SKY
WINGED
ROOF
HOLLOW
KITCHEN
OGRE
PATH
DELL
VALLEY
VOLCANO
SPACESHIP
LADDER
CLIFF
TUNNEL
VAULT
FLYING
CASTLE
PALACE
JUNGLE
REEF
CROWN
CORAL
AIR
CLOUD

149

850DATA FAN 930DATA TARN
860DATA GAS 940DATA POND
870DATA CREEK 950DATA WELL
880DATA COVE 960DATA PUMP
890DATA POOL 970DATA DAM
900DATA BAY 980DATA MARSH
910DATA MOUTH 990DATA SWAMP
920DATA LAKE
Figure 8.7 Bisociation.
5 CLS
10 PROCinit
20 REPEAT
30 PROClength("the")
40 PRINT "THE ";
50 PROCadj
60 PROClength("the")
70 PRINT "THE ";
80 PROCchoose
90 PROCnoun
100 UNTIL FALSE
110 END
120
130
140 DEFPROCadj
150 PROCchoose
160 R=FNR(4)-1
170 IF R<2THEN PROCnoun:ENDPROC
180 FOR I=2TOR
190 REPEAT
200 S=FNR(adjs)
210 UNTIL AAS(S,2)=NAS$(T,2) OR AAS(S,2)="2"
220 PROClength(AAS$(S,1))
230 PRINT AAS(S,1);" ";
240 NEXT I
250 PROCnoun
260 ENDPROC
270
280
290 DEFPROCnoun
300 PROClength(NAS(T,1))
310 PRINT NAS(T,1 ;" "
320 R=FNR(3)
330 IF FLAG <R THEN PROCverb:ENDPROC
340 PRINT CHRS$(8);"."
350 PRINT
360 FLAG =0
370 ENDPROC
380
390
400 DEFPROCverb
410 REPEAT Figure 8.8 ‘Ideas’ (continues)

150

420
430
440
450
460
470
480
490
500
510
520
530
535

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920

U=FNR(verbs)

UNTIL VAS(U,2)=
PROClength (VA$ (U
PRINTVAS (U,1); "
FLAG = FLAG +1
ENDPROC

L)

NAS(T,2) OR VAS(U,2)="2"
1))

DEFPROCchoose
REPEAT

T=FNR (nouns)

vv=0
REM CHECK VA AND NA AGREE - RETURNS VV =1
IF NOT

IF FLAG <> 0 THEN PROCagree
UNTIL VV<>1

ENDPROC

REM Initialisation

DEFPROCinit
nouns = 319
adjs = 64

verbs = 52
DIM NAS(nouns,2),AA$(adjs,2),VAS(verbs,3)
DEF FNR(X)= INT(RND(1l)*X)+1
FLAG=0
FOR I=1 TO nouns
READ NAS(I,l1), NAS(I,2)
NEXTI
FOR I=1 TO adijs
READ AAS$(I,1l), AAS(I,2)
NEXT I
FOR I=1 TO verbs
READ VAS(I,l), VAS(I,2), VAS(I,3)
NEXT I

ENDPROC

DEFPROClength(word$)

1=LEN(words$)
IF POS + 1 > 39 THEN PRINTCHRS (13)
ENDPROC

REM CHECK N+V AGREEMENT

DEFPROCagree
IF VAS(U,3)="2" THEN ENDPROC
IF NAS(T,2)=VAS$(U,3) THEN ENDPROC
vv=1
ENDPROC

DATA HOUSE,0,DRAGON,1,TROLL,1,
GOBLIN,1,KEY,O0

151

930
940
950
960
970
980
990

1000
1010

1020
1030

1040
1050
1060
1070
1080
1090
1100
1110
1120

1130
1140

1150
1160
1170
1180
1190
1200
1210

1220

152

DATA STONE,0,BOOK,0,SCROLL,0,POTION, O
SLAVE, 1

DATA HAT,0,COAT,0,CLOAK,0,BOOTS,0,
BAG, 0

DATA GAUNTLETS,0,ROBE,0,HELMET,O,
CROWN, 0

’

DATA EARRINGS,0,RING,0,NECKLACE,0,CHAIN,O
DATA SCARF,0,SHAWL,0,ARMLET,0,BRACELET,O0
DATA TORQUE,O0,JACKET,0,TUNIC,0,TROUSERS,0

DATA BELT,0,POUCH,0,SACK,0,SANDALS,O,
ANKLET, 0,DRESS, 0

DATA HELM,0,CHAINMAIL,O0,ARMOUR,0,GREAVES,0
DATA VANBRACES,0,BREASTPLATE,O0,SHIELD,O,

BUCKLER, 0,SPURS, 0

DATA DAGGER,0,SWORD,1,MACE, 0,HAMMER, 0
DATA FLAIL,O0,SPEAR,0,JAVELIN,O,
MORNING STAR,O

DATA BOW,0,ARROW,0,SLING,0,CROSSBOW,0
PIKE,O0,LANCE,0,DART,0

DATA WEAPON,O0,CLUB,0,STAFF,O0,

WAND, 1,SCIMITAR,O

’

DATA TRIDENT,O,HALBERD,0,AXE,0,PICKAXE,O,

JERKIN, 0,WHIP,0,QUARREL,O0

DATA SCABBARD,0,QUIVER,0,CAP,0,WIG,0,
GLOVES, 0

DATA WINESKIN,O,TINDERBOX,0,TORCH,O,
SPIKE,0,BOAT,0,POLE, 0

DATA MIRROR,1,LANTERN,O0,CHEST,0,MAP,0
SCROLLCASE, 0

DATA CANDLE,O,PACK,0,BEADS,0,CROSS,0,
FLASK,0,SADDLE, 0, BLANKET, 0

’

DATA CART,0,HERB,0,TREE,1,FOOD,0,BEER,O,

BREAD,0,APPLE, 0,WINE,O
DATA MEAT,0,CHICKEN,1,COW,1,DO0OG,1,
DONKEY, 1,GOAT,1,HAWK,1

DATA HORSE,1,MULE,1,0X,1,PIGEON,1,PIG,1

DATA SHEEP,1,BIRD,1,EAGLE,1l,SWAN,1,
SQUIRREL, 1,SPARROW,1

DATA DUCK,1l,FERRET,1,CAT,1,BEAR,1,
WOLF,1,FOX,1,LION,1,TIGER,1

DATA APE,1l,ANT,1,BADGER,1,BANDIT,1,
BANSHEE, 1

DATA BASILISK,1l,BEAVER,1,BEETLE,1,
BERSERKER, 1,DRAGON, 1,BOAR, 1,
BROWNIE, 1

DATA BUGBEAR,1,BULL,1

DATA CAVEMAN,1,CENTAUR,1,CENTIPEDE,1,
CHIMERA,1,COCKATRICE,1,CRAB,1

DATA CROCODILE,l,DEMON,1,DEVIL,1,
DINOSAUR,1,GENIE, 1,DRYAD,1l,DWARF,1

DATA ELEMENTAL,1,MAN,1,EEL,1,ELEPHANT,1,

ELF,1,WOMAN,1,GIRL,1,BOY,1,CHILD,1

DATA BABY,1,FAIRY,1,FAWN,1l,DEER,1,FROG,1,

STAG, 1,FUNGUS,1,GARGOYLE, 1

Figure 8.8 (continues)

1230 DATA GHOST,1l,GHOUL,1,GIANT,1,GNOLL,1,
GNOME, 1,GOBLIN,1,GOLEM, 1,
GORGON, 1,SLIME,1,GRIFFON,1,
HALFLING, 1,HARPY, 1, HOUND, 1,
HOBGOBLIN, 1, HAWK,1,HYDRA, 1

1240 DATA OGRE,1l,KOBOLD,1,INSECT,1,LEOPARD,1,
LICH,l,LIZARD,1,LIZARDMAN,1,LURKER,1,
WEREBEAR, 1, WEREWOLF, 1 , WERERAT, 1

1250 DATA MANTICORE,1l,MEDUSA,1l,MERMAN,1,
MERMAID,1,MINOTAUR,1,MOULD,1,MOLE,1,
MUMMY, 1,NAGA,1,
SPIRIT,1,NIXIE,1,NOMAD,1,NYMPH,1

1260 DATA ORC,1,MAGE,1l,OWL,1,PEGASUS,1,
PIERCER,1,PIRATE,1l,PIXY,1,MAGE,1,
SORCERER,1,RAT,1,ROCK,0,MONSTER, 1,
SALAMANDER, 1, SATYR, 1

1270 DATA SCORPION,1,SHADOW,1,SKELETON,1,SLUG,1,
SNAKE,1,SPECTRE,1,SPIDER,1,SPRITE,1,
STIRGE,1,SYLPH,1,TOAD,1

1280 DATA ENT,1,0AK,1,TROLL,1,SOLDIER,1,
UNICORN,1l,VAMPIRE,1,WASP,1,BUSH,O0,
FERRET,1,WIGHT,1,WRAITH,1,WYVERN,1,
ZOMBIE, 1

1290 DATA RIVER,O0,SEA,0,POND,O0,LAKE,O,
WATERFALL, 0, ISLAND, 0, FORD, 0, STREAM, 0,
OCEAN, 0, MOUNTAIN, 0,HILL,0,STONE, O,
CLIFF,0,RAVINE,0

1300 DATA CITADEL,O,PALACE,0,CITY,0,CAVE,O,
VILLAGE,0,FARM,0,FORTRESS,0,FOREST,0,
TOWER, 0,HUT, 0,CASTLE, 0

1310 DATA GLADE,0,WOOD,0,TOWN,0,GLACIER,O,
RIDGE, 0

1320 DATA THIEF,1l,WIZARD,1l,KING,1,QUEEN,]1,
PRINCE,1,KNIGHT, 1, SORCERER,1,FIGHTER,1,
CLERIC,1,DRUID,1,PALADIN, 1,ASSASSIN,1

1330 DATA SORCERESS,l,NURSE,1l,PRINCESS,1,
RANGER, 1,BARD, 1, INNKEEPER,1,SMITH, 1,
COOPER,1,DOCTOR, 1,MIDWIFE,1,WITCH, 1

1340 DATA MERCHANT,1,FARMER,1,WOODSMAN,1,
HUNTER, 1, FURRIER, 1, BOOK, 0, AMBASSADOR, 1

1350 DATA COOK,1l,SAILOR,1,GUARD,1,

MAN AT ARMS,1,0STLER,1,GROOM,1,PEASANT,1

1360 DATA COLD,2,STUPID,1l,STEEL,0,GOLD,?2,
COPPER, 0

1370 DATA BLACK,2,BLUE,2,WHITE,2,GREEN,2,
RED, 2,0RANGE, 2, PURPLE, 2, SILVER, 2, BRONZE, 0
YELLOW, 2,

1380 DATA INTELLIGENT,2,CLEVER,2,IRON,2,WOODEN,O,
RUBY, 0, SAPHIRE, 0, TOPAZ,0,JET,0, IVORY,O,
MOONSTONE, 0,OPAL, 0

1390 DATA AMETHYST,0,AGATE,O0,GARNET,O,
TURQUOISE,0,CRAZY,1,LAZY,1,SILLY,1,
BROKEN, 0, HOT, 2,ICY,2,FIERY,2,UNDEAD,1

1400 DATA GRANITE,O,HARD,2,SOFT,2,GENTLE,1,

153

STERN, 1,COMFORTABLE, 0,STRONG, 1,WEAK, 1,
UGLY, 2,ATTRACTIVE, 2

1410 DATA WOUNDED,1,HEALTHY,1,ILL,1,MAD,1,
PERFECT, 2,ANCIENT, 2,DAMAGED, O,
FRIGHTENING, 2, WORRIED,1

1420 DATA HOLY,2,WICKED,1,EVIL,2,FURTIVE,1,
DRUNKEN, 1, HUNGRY, 1,DECEITFUL, 1

1430 DATA KEPT IN,0,0,FOUND NEAR,2,0,
MADE BY,0,1,MAKER OF,1,0,ENEMY OF,1,1
POSSESSED BY,0,1,POISONED BY,1,1,

1440 DATA ENEMY OF,1,1, HATED BY, 2,1,
PURSUING,1,1, CONCEALING, 2,2

1450 DATA MAKER OF,1,0, MADE BY,0,1,
OWNED BY,0,1, LIVING BY,2,1

1460 DATA AFRAID OF,1,2, CURSED BY, 2,1

1470 DATA WORRIED BY,1,2,KILLED BY,1,2,
IN LOVE WITH,1,1,HATED BY,2,1,0WNED BY,2,1,
GIVEN TO,0,1,TAKEN FROM,2,1

1480 DATA CHASED BY,1,1,DISCOVERED BY,2,1,
HIDDEN BY,2,2,FRIEND OF,1,1,
ASSASSIN OF,1,1,RULER OF,1,2,HOME OF,0,1

1490 DATA LIVING WITH,1,2,SLAVE OF,1,1,
HIDING FROM,1,1,RUNNING FROM,1,1,
RUNNING TO,1,2,LOVED BY,2,1,STOLEN FROM,2,2

1500 DATA CAUGHT BY,1,1,CAUGHT WITH,1,2,
SERVANT OF,1,1,MASTER OF,1,2

1510 DATA VALUED BY,2,1,LOST NEAR,2,0,
FRIEND OF,1,1,CONQUERER OF,1,1,

1520 DATA ENCHANTED BY,2,2,BEARER OF,1,0
PROTECTOR OF,1,2,WORSHIPPED BY,2,1,
FOUND NEAR,2,2,LOST BY,2,1

Figure 8.8 ‘Ideas’

The value of a program like this depends on its database. This
particular idea generator produces ideas to use in adventure or
fantasy role-playing games. It attempts to create new fantasy ideas,
but different databases could be used for other types of plot or
scenario, such as Science Fiction or a Western. Other databases,
rather more remote from the type usually found in an adventure
game, could include different kinds of human social or political
relationships, or the kinds of relations typical of TV soap opera, or
any situation where two elements are linked in some way. In
principle any simple domain in which ideas can be generated more or
less ‘mechanically’ by linking two hitherto remote concepts could be
incorporated into a program such as this. It is therefore included
here for three reasons. Firstly, it gives just a glimpse of what
creativity in AI might involve. Secondly, you can use it to produce
original ideas for your own games and adventures. Finally, you
might like to adapt it to produce ideas in an area that you are
154

particularly interested in. For example, you might want to write a
story or a play—create a database of plot elements and a program
like this can link them to give you new scripts. Or you may want to
invent a new meal or a drink—create a database of ingredients and
this will do the job for you. You might even be able to adapt it to
suggest solutions to difficult problems by giving it a database of the
component elements in the problem and the desirable goals, and
evaluate the possible combinations it gives.

You can probably see from this that any real ‘creativity’ here
comes from the user rather than the program. The user creates the
database and the user evaluates the results. It is the user who
interprets the program’s output and if the user cannot apply the
output to the desired task then no creativity has occurred at all. The
program is therefore really a tool for creating new phrases and new
links between words. It is the user who finds the asefulness (or not)
of the ideas behind those words. This is actually quite close to part of
the processes of some human creativity. Very often people will have
ideas which they change, alter, mature, and evaluate before using
them, and the original source of the ‘idea’ can be very remote from
the final solution. Thus the program really serves to spark the
imagination rather than to replace it. It throws up unlimited
suggestions in the hope that sooner or later something will occur
that the user can make sense of.

The principle could probably be extended. One could imagine a
program which operated a number of the ‘rules’ for lateral thinking
popularized by psychologists like Edward de Bono. Much of his work
shows that people fail to find solutions to problems because they get
trapped in particular patterns of thinking and find it impossible to
enter into a different mode of thought. If we had a program which, as
a matter of course, simply applied all the possible strategies to a
particular idea this should create a number of suggestions which,
however absurd, suggest to the user more sensible variants that
break the restricting thought patterns in which the problem solver
is trapped. (If you can write such a program then you are probably
made for life!)

The ideas program works by building up noun phrases concerning
objects/creatures/beings and then linking two or more such phrases
through a verbal relation of some kind. To avoid ungrammatical
constructions certain limitations are built into the database and the
program, such as using ‘THE’ rather than ‘A’ to avoid the problems
of agreement. However, most of the possible relations are
semantically correct, though some might seem a little odd. The basis
of this correctness is the number held in the DATA statements after
each word or phrase. All nouns and adjectives have a single-number

155

code; all verb phrases have two-number codes. Code 0 means that
the word is inanimate, 1 means that it is animate, and 2 means that
it could be either. The verb phrases have two codes because they are
preceded by a word that may be animate or inanimate as well as
followed by the same choice. So the phrase ‘hated by’ must be
followed by an animate phrase because only animate things can
hate, but may be preceded by either an animate or an inanimate
phrase as both classes of thing can be hated. Its code is therefore
2,1,

The program simply selects a noun phrase, then a verb phrase,
and then another noun phrase. However, each noun phrase can
have up to three adjectives and a noun phrase may itself consist of an
embedded verb phrase plus a noun phrase. So a simple selection
would be a simple noun phrase plus a verb phrase plus another
simple noun phrase, all of them agreeing and none using adjectives,
such as:

THE PRINCESS +IN LOVE WITH + THE FROG
The next most complex version adds one or more adjectives, such as:

THE GIANT MUSHROOM BROKEN BY THE UGLY
BLACK GOBLIN

Finally, the most complex is one which modifies the final phrase by
adding a verb phrase to it, such as:

THE STONE HELMET WORN BY THE GREEN
DRAGON FEARED BY THE ANCIENT CLEVER WIZARD

Of course, for every idea that makes reasonable sense you will still
find quite a number which are nonsensical, funny, or impossible. If
you wanted to reduce these you would have to build in other types of
semantic constraints in addition to the test for animacy. The kinds of
things you might test for could be size, mobility, whether they can be
eaten or not, whether they have emotions, etc. There is a huge
number of possible relations and every one you add to the program
will reduce the inventiveness of the ideas and will have some
exceptions which make the rule difficult to apply. Perhaps you can
begin to see why making a computer intelligent is such a difficult
task. Just to make it understand the word ‘SACK’, for example,
means that it has to know a sack is floppy unless something is in it,
that it can be moved, but only if an animate thing is moving it
(unless the inanimate thing is actually a force such as the wind or
156

the tide), that it is a container, that it is not a house in the human
sense but that things can live in it, that it can be cut and torn, that it
can leak but not hold liquids, . . . , and so on. You can imagine how
difficult it would be to program all the knowledge required to use
language properly even in a very limited area. Nevertheless it is fun
trying.

8.8 The creative game

It should be clear by now that there are really only two types of
game, particularly when we think about adventures. On the one
hand there is the puzzle type adventure which is a real test of the
player’s intelligence and imagination, but it has the major defect of
being fixed in structure and content, so that once it has been solved it
will not be played again. On the other hand, there is the random
adventure, the dungeons and dragons combat game. Rather than
being fixed at the outset, this is fundamentally a series of random
structures. The player has relatively little to do in the way of
developing a consistent and intelligent strategy, and little chance of
predicting how the parts of the adventure might fit together.
Monsters and treasures are randomly distributed and alterations in
the character’s variables, abilities, and characteristics are more or
less accidental (depending on which locations were gone to and
when). Therefore though each encounter may be interesting, its
fundamentally random nature will eventually lead to boredom.

One approach which may eventually overcome this problem is to
devise a game which structures itself so that it is different each time
it is played yet has a logical structure, thus testing player
intelligence and developing strategies, and which changes during
play to respond to the player’s previous decisions not randomly but
intelligently. Artificial intelligence can provide ideas and techniques
on how to go about achieving this. As usual, however, we run up
against the problem which the current generation of popular
microcomputers have—insufficient memory for large artificial
intelligence components—so at present we can only investigate the
possibilities and try to find new ways of development.

However, it should be self-evident that most of the decisions a
programmer makes in designing an adventure could be handed over
to a computer, provided we could specifiy the decisions clearly
enough for a workable algorithm to be produced. Two approaches
are possible. One would be to design a suite of programs which, like
the programming aids described in Chapter 9, successively produce
stages of the adventure until the final product is a complete block of
code which, when run, is an adventure. The first program would

157

generate a series of ideas, a plot, or a set of puzzles, using a method
something like that used in the Ideas program. A second program
would then fit the puzzles and ideas together to make a map, i.e., a
linked series of ideas. A third program would look at each described
location in the map and turn it into a full description by using
phrases like ‘You see a ..., ‘Ahead there is a...’, ‘After a long
journey you enter . . .’, and so on. Each location where a problem was
to be solved would be marked, just as in planning an adventure a
designer would note which areas needed fuller development, and a
subsequent program would code each of these markers to represent
one of a series of puzzles developed by another program. You can
probably see that if ‘creating an adventure’ is broken down into its
component stages it would not be too difficult to construct such a
series of programs. The key program, the most intelligent program,
would have to be the creative or ‘imaginative’ program that set up
the design in the first place and, as we have seen, creativity is not
well enough understood to be modelled accurately as yet and it may
never be.

Consequently you might settle for the lesser aim of the second
approach. This would be to write one program which reconfigured
itself each time it was played. This might also seem impossible, but
in principle it is not (though I have yet to find a playable
implementation). The basic set-up would always be the same in
some sense—let us say a fantasy city—and it would always have the
same potential components (such as a list of 50 possible locations).
However, each time it is run it could use a number of different
procedures to set up a totally different game. First of all it could set
up a street map which links all the locations together, using some
constraints which make sure, for example, that the palace is not in
the middle of the beggars’ quarters and that the shipbuilder’s yard is
near the dock. This would be very easy as the program would simply
have a matrix holding the maximum and minimum distances
allowed between any two locations. (Here is one reason why memory
becomes crucial.)

It could also generate new street names for each of the streets and
a set of character names, together with personality variables which
control the behaviour and nature of those characters. This would be
something like the set up of a purely random game up to this point.
However, one of the features of such characters would be their
‘home’ (i.e., their base location) and their allowed routes (i.e., the
streets and locations they are allowed to enter). Add to this a routine
which moves some of the characters around each turn and we have a
different populated city each time it is played.

On top of this we would want a routine that sets up a scenario, i.e.,
158

a task to be accomplished. Firstly, a number of objects are scattered
around which have value either to the character or the player’s
character or both. Then the program puts together two sets of two
plot elements to create the scenario, using the objects, street names,
locations, and characters as its raw data. For example, suppose we
had the following list of possible plot elements:

Group 1
Kill
Capture
Find
Return

Group 2

Greybeard the Wizard
King Aelfric

Stoutfish the Dwarf
Princess Freda

Group 3

The palace
The dungeon
The Green Tower

Group 4

The diamond sword
The packet of seeds
The magic flute
The pack of hounds

The rules of combination, like those in the Ideas program, would say
which combinations were allowed to string items together. For
example, one possibility would be Group 1 + Group 2 “AND” +
“Return” + (Group 2 or Group 4) + “TO” + (Group 3 or Group 2).
This could give scenarios like:

“You must capture Greybeard the Wizard and return Greybeard
the Wizard to the Green Tower”

or:

“You must kill Stoutfish the Dwarf and return the magic flute to
Princess Freda”

Obviously the semantics of such combinations must be thoroughly
159

worked out beforehand. My example would allow a scenario like
“You must return Princess Freda and return Princess Freda to
Princess Freda”, which does not make sense. Equally obviously, this
plot-devising routine would hold some internal representation of the
plot it has devised in order to test that the conditions had been met.
Each character would have a value, as would each location, and if
the plot was “Return character x to location y” then the program
would check each turn of the game to see if character x was in
location y and accompanied by the player’s character.

One final refinement to such a program would be to add to each
character a small ‘knowledge’ component. Once the plot, locations,
characters, homes, routes, and objects had been established it would
be a simple matter to allow each character to ‘know’ something
about the rest of the town, such as “The dwarfis in the pub” or “The
packet of seeds opens the door to the princess’ library” or “The
wizard walks every day in Sluicegate Lane”. This information could
be extracted from the characters in various ways—by bribery, by
fighting, by being nice to them, by giving them the required object,
or by the tried and trusted method of ‘bashing hell out of them’. This
introduces another possibility—that the player’s character and the
‘monster’ could interact intelligently.

To make a program behave intelligently is to make it understand.
That means it has to know not only what the player has just done but
also what the player has been doing for some while and what these
actions mean (i.e., what the player is likely to do in the future).
Normal games programs consist of a series of immediate responses,
based on what the player has just done. In the puzzle game the
player types in a command and the program interprets the
command, then forgets it, and waits for the next one.

In the combat game the program calculates the effect of each blow,
then forgets it, and waits for the next one. It calculates each combat
in this way. When it is over it forgets it and waits for the next one.

An intelligent program, however, remembers what has been
done, tries to interpret it (by discovering an underlying meaning or
strategy), and tries to predict what might happen next. According to
that prediction it will make a response which is not based on the
player’slast actions, but the overall trend of the actions, and which is
not purely responsive and dependent, but independent, directed by
the ‘goals’ of the program itself. This is essentially what happens in
the Scissors game in Chapter 5.

Exactly the same approach can be used in adventure games. For
example, let us look at the concept of friend/enemy mentioned above.
A simple flowchart for understanding this concept might be as in
Fig. 8.9.

160

(1) PLAYER ACTS TOWARDS MONSTER

(2) IF THE ACTION IS HOSTILE THEN LET
ENEMY = ENEMY + 1

(3) IF THE ACTION IS NOT HOSTILE THEN
LET FRIEND = FRIEND + 1

(4) IF FRIEND < ENEMY THEN FIGHT THE
CHARACTER

(5) IF FRIEND >= ENEMY THEN GIVE

CHARACTER REWARD

Figure 8.9 The concept of friend/enemy

In other words, this involves setting a variable for each of the two
concepts, updating the two variables every time the player performs
an action, and comparing the two variables every time a response is
needed. Consequently, two possible types of routine are also needed,
a friendly one and a hostile one. This could mean that for every
monster in the game two variables are needed and two sets of
response routines. Obviously this is likely to double the amount of
memory we will need for a fixed number of encounters, though there
are ways to reduce this. For example, the enemy/friend dichotomy
can be held in one variable, with hostility subtracting one from the
value of that variable and friendliness adding one. Thus if the
number is positive the relationship is friendly; if negative it is
hostile. Also the same response routines can be used with different
variables for different monsters. Even so, more memory is needed
for ‘intelligent’ routines.

For every axis of intelligence we wish to add, the cost in memory
and coding will increase. If we wanted to record generosity versus
miserliness, for example, or caution versus recklessness, or
talkativeness versus shyness, or stupidity versus cleverness we
would need to add variables and routines for each of these. While
such additions will greatly enhance the game, what we are actually
adding is potential. In any particular playing of the game many of
these routines might never be used. A very unfriendly, generous,
cautious, talkative, and stupid player would only ever use half the
game. Potentially the game would be much more interactive and

exciting, but some of it would not be used.
161

This is the problem with such programming. Intelligence involves
being able to respond to a wide number of situations, so they have to
be programmed in, but if a particular situation does not occur, that
part of the program will not be used.

The same is true in the example of writing a game which writes
itself. Suppose, for example, the game could choose from a set of
possible puzzle types each time it was run. Let us say it had the
choice of anagram, cypher, and square-root problem. It chooses
‘cypher’. It then uses the cypher routine to produce an actual cypher
and it holds this in memory as being the particular problem to solve.
It then looks at all the empty locations in the game and picks one to
hold that cypher. It then chooses another empty location and sets a
flag which indicates “if the cypher has not been solved, this location
is blocked”. Then it selects from a number of possible descriptions
the actual description used: “Your route is blocked by a door with a
combination lock”. Finally, it checks that a route is possible between
the two locations.

The process just described is very much like the processes
described earlier in this book in more detail, to guide you through
the task of writing your own adventure. In other words, such a
program would be doing what a programmer could do and doing it
intelligently. However, it would involve at least eight routines which
we did not incorporate in our game, plus extra memory and
variables to hold the possible choices, and this would only set one
type of location. If this was to be a semantic puzzle, such as one based
on a pun, a different set of routines would be needed.

It therefore seems unlikely that micros such as the BBC or
Electron will support such elaborate games, unless additional
processors become available which expand the maximum memory.
It might also be possible to reduce the problem of holding a number
of potential routines which might not be used, in making characters
and computer responses more ‘intelligent’, by using disks. If the
least-used routines are held on disk they do not need to use any of the
computer’s RAM except when called and loaded. Thus the same
RAM could be used for different routines at different times in the
game. However, only expensive micros like the Apple presently
have such adventures, and even these slow the response time of a
game down quite noticeably.

There are other possibilities for improving existing types of game
substantially even within the limits of the current generation of
micros. One way to do so is to combine both the puzzle and combat
types. There are one or two games which attempt to do so, but some
programs which claim to do this are really several games
masquerading as one.

162

If you understand the principles behind both types of game you
should find it easy to improve them and consequently may hit on
ways of integrating them. It is a relatively easy job to add combat
locations to the puzzle game, for example. A particular location could
be passed through not by solving a problem but by fighting a
monster. That fight could be helped or hindered by the objects which
the player’s character is currently carrying. A sword might make
him fight better; a plank might get in his way. By a device such as
this an extra dimension can be added to the puzzle game as the
player cannot be certain that a particular set of objects will always
lead to success.

Similarly the combat game can have puzzle locations within it.
Suppose the reward for destroying an enemy starship is that Igor
gainsits cargo. The cargo could be fuel or ammunition, in which case
this simply improves the fighting abilities of the victorious ship.
However, it could also be an object, without which the ship could not
go to a particular location; this could be a map of a new solar system,
or an electronic key to a starport, or a guidance system for use in
asteroid fields.

In this way puzzles, combat strategies, and even arcade-type
real-time action can be combined in one game. Variety is not only of
structure and content but also of play. The player will have to make
decisions of different kinds and in different combinations, testing all
of his abilities and not just a limited set of them.

It is also possible to use techniques like those used in artificial
intelligence to enhance a game without trying to go to the full extent
of making the program cope with every eventuality. For example, in
the combat game it is a comparatively simple matter to keep a record
of the number of victories the player has scored over a particular
kind of monster. If this record shows that the player tends to defeat
one kind of monster but run away from another kind, the program
can alter the game so that there are fewer of the ‘easy’ monsters and
more of the ‘hard’ ones. Or it can just keep count of the monsters
killed and use this as a variable which determines the strength of the
next monster encountered.

Intelligence could also be built in to a routine like that described in
Sec. 7.2 for talking between monster and character. For example,
suppose your program keeps track of the number of goblins the
player kills, and the number he tries to bribe or subject to some other
tactic. This can be used as an index of ‘friendliness/hostility to
goblins’. Suppose the player meets a very powerful goblin and does
not want to fight it. The player does not have any money, so cannot
bribe it, and needs the treasure which the goblin is guarding. The
only option is to talk. In the program’s database will be a number of

163

keywords to look for in the talk routine and each will have a value,
such as the following:

Word Value
Evil -3
Nasty =
Ugly -1
Nice +1

Intelligent +2

The talk routine, having detected such a word, adds its value to
the index of hostility and friendliness. If the index drops below —9
the goblin will attack. If it goes above +9 the goblin will give the
treasure away. Otherwise, providing the player does not attack, he
will carry on talking, his response depending on the current level of
the hostility index.

If the index is —8, the goblin might say “Clear off, you lousy elf”,
but if it is +8 he might say “I’'m glad you came because I've been
looking for someone to give my diamonds to”. It would not be
necessary to have a different conversational gambit for every value
of the index if there was not room to store a large amount of text, and
variety in output can be achieved by combining phrases. Again,
these phrases would have to be valued in the range of the index (—9
to +9), but some phrases might have a wide range of values, for
example:

Phrase Phrase Value
Number for hostility
of output
1 I'M GLAD YOU’VE COME +7TO +9
2 IHATE ELVES —-6TO -9
3 BECAUSE —-9TO +9
4 CLEAR OFF -5TO -9
5 AND -9TO +9
6 BUT —9to +9
7 ILIKE ELVES +6 TO +9
8 YOU LOUSY ELF —4TO -9
9 TELL ME MORE —7TO +7
10 I'LL SKIN YOU ALIVE —-8TO -9
11 I'VE SOMETHING FOR YOU —-3TO +4
12 I'M GOING TO LET YOU HAVE IT —5TO +3

The phrases used at any particular time would be chosen so that
they fitted together sensibly and all were allowed by the current
164

hostility index. Even more variety can be included in such output by
including variables or randomly chosen words. For example, phrase
8 could be held as “YOU” + A$(R) +N$, where A$() is an array of
insulting adjectives, Ris a random number, and N$ holds the kind of
character that the player has chosen (wizard, elf, dwarf, etc.). By
building up small elements in this way a great deal of complexity can
be built into a game using relatively little memory, and this
complexity will be meaningful, not random.

Do not forget that if we put a variable or a set of data in our
program for one purpose we can use it for many other purposes. For
example, a simple routine can be used to allow monsters to give clues
to the whereabouts of treasure as the reward for victory, rather than
giving out the treasure itself. Such a routine can use the data
already present and be given out either as a truth or a lie.

For example, we might want the output to be “Spare my life and
I'll tell you where x is”. The monster might know where x is, or he
might not, and as x would be one of the treasure items located
somewhere in the program, no new variables would be needed for
telling the truth. However, if the monster is to lie, it has to choose a
treasure from the set of possible treasures and a location for it. The
following routine would do the job:

99 REM ROUTINE FOR LYING MONSTERS

100 R = INT(RND*3) +1

110 IF R =1 THEN L = treasurelocation :
T$ = treasurename$:GOTO 140

120 R = INT(RND*4)+1: L = INT(RND * 20)+1

130 FOR I = 1 TO R: READ T$: NEXT I

140 PRINT "If you spare my life I‘1l1
tell you where the ";T$;" is."

150 REM (player spares monsters life)

160 PRINT "The ";T$;" is at ";L

180 RETURN

190 DATA silver crown, gold torque, ruby, emerald

Line 110 decides whether to lie or not. There is a one in three
chance that the monster will tell the truth. (Of course, some
monsters might be more truthful than others, in which case 3 will be
replaced by the truthfulness variable.) Line 120 sets the variables
T$ and L to the treasure’s name and true location respectively and
then sends control to the output lines.

Line 130 selects the lie, choosing one of four treasures and one of
twenty locations. Line 140 reads the name of the treasure into T$,
using the DATA statement at 190, which will be the same DATA
statement used in originally setting up the map. Lines 150 to 180
output the information. Here seven lines of new program add a

165

whole new dimension to the game; these could be reduced by, for
example, letting the random number which determines if a lie is to
be told also determine the actual lie to be told.

There are many ways of adding new aspects to a basic game by
using the existing structure. Monsters can be ‘disguised’ as other
monsters; puzzles can use data already defined in the program for
other purposes; the subroutine used to determine combat can also be
given different parameters or variables and used to determine if a
door can be opened, if a chest explodes, if a monster is asleep, etc.; a
record of generosity can be used to determine the size of bribes
needed (monsters ask for more because they have heard that the
player is generous), the price of equipment, the friendliness of ‘good’
creatures, the chance of a bribe being successful, or the effectiveness
of magic (the gods reward a generous player); input insults can be
‘remembered’ and used later about the player; objects which are
useful in one situation can be hazards in another—the possibilities
are endless.

8.9 Bribery and gambling

As interaction with monsters is one of the key areas for possible
intelligence in certain kinds of game it is worth considering some
additions that can make it more interesting. Two such additions are
bribery and gambling.

Both of these involve the same kind of exchange with probably the
same result—the player loses money and so is less likely to be able to
buy what is needed in other locations. Bribery consists of the
monster asking for money or some other gift and if he gets what he
wants the player can proceed without harm. The bribe function can
be incorporated in one of two ways—either the player has a free
choice of it as one of the strategies, or before the player is allowed to
make a choice the monster will ask for a bribe.

A way of constructing the routine to fit our game is given in Fig.
8.10. The variable ‘money’ represents the current total of silver
pieces that the character has. The routine can be improved by
making the monster ask for weapons or other items that the
character is carrying. This could be the fall-back request if the
character has not enough money or it could be randomly determined
before the routine is run. Alternatively, the monster could steal all of
the player’s money if the decision is made not to bribe.

Gambling is slightly different in so far as it must be possible for the
player to increase his or her money. The gambling could, of course,
be for something other than money, such as armour or even the
character’s life, but in all cases there should be the possibility that
166

the character will gain something out of the encounter. As gambling
contains its own risk there is no need to combine it with any other
type of routine, so it could be a totally separate kind of encounter.

100 REPEAT

110 PRINT "Do you want to:"

120 PRINT " (F) Fight"

130 PRINT " (R) Retreat"

140 PRINT " (B) Bribe"

150 AS = GETS

160 G = 0

170 IF A$ = "B" THEN PROCbribe : IF G =1
THEN ENDPROC

180 IF G = 2 THEN PROCfight

190 CLS

200 UNTIL FALSE

3500 DEFPROCbribe

3510 LET R = FNR(money)

3520 PRINT "He says he will accept ";R"
silver pieces."

3530 PRINT "Will you pay?"

3540 INPUT AS

3550 IF LEFTS$(AS$,1) = "N" THEN ENDPROC
3560 IF money < R THEN PRINT " Try to
swindle me , would you?": LET G=2 : ENDPROC
3570 money = money-R

3580 G =1

3590 ENDPROC

Figure 8.10
167

The key to a gambling routine is the curve of probability used. The
simplest would be a straight-line graph, so that the chance of
winning remained the same throughout the game, irrespective of
the results of previous gambles or the amount of money gambled.
This would be represented by a formula like R = RND@3): IFR =1
THEN PRINT “You win”. Here the player has one chance in three of
winning every time that a bet is made.

Gambling is more interesting if there is a correlation between the
amount of the possible prize and the degree of risk. We could set up a
table of odds where the lower the chance of winning the higher the
possible reward. Thus betting at three to one gives Igor a one in
three chance of winning, but would triple his money if he won,
betting at twelve to one gives only a one in twelve chance of victory
but success means twelve times the reward. A simple way to build
this into a routine is to ask the player for the odds required and use
this in the random statement:

100 PRINT "How much would you like to bet?"

110 INPUT A

115 IF A > money THEN PRINT "I ‘m afraid your calculator
needs new batteries": CLS: GOTO 100

120 money = money-A

125 PRINT "What would you like to multiply
your ";A;" silver pieces by?"

130 PRINT "Please type a number
between 2 and 20 "

140 INPUT B: IF B<2 OR B>20 THEN PRINT
"Perhaps you should learn some maths
before you play with the big boys?":
CLS: GOTO 120

150 PRINT "That’s a cool ";A*B;

" you could win"

160 R = INT(RND *B) + 1

170 IF R = 1 THEN PRINT "And you win it!!!":
money = money + R :RETURN

180 PRINT "Oh what a terrible shame.

You lose. Never mind, its only money"

190 IF money > 0 THEN PRINT "Another go?"

200 INPUT AS

210 IF AS$(1) = "Y" THEN GOTO 100

Any of the micro gambling games, such as fruit machine or
roulette or dice, can be adapted to fit in as a subroutine in a larger
game, having the advantages of more complex and varied odds and
often interesting graphics. A simple way to test the player’s
knowledge of probabilities is to ask him to bet on the total of two
six-sided dice, giving either a flat doubling of the bet if he wins (in
which case he is best advised to guess ‘seven’ every time) or linking
the winnings to the odds. For example, throwing two dice will give
168

an average of one 12in every 36 throws, so we can safely offer odds of
30 to 1 on a 12 and be sure that the player will lose in the long run.

To make things slightly more difficult for the player we might
make it easy to win by gambling in the early stages of the game,
when the player may need all the help possible, but increasingly
difficult as time goes on. The counter of time could be a real-time
counter, a counter of the number of moves the player has made, or
could be some measure of the current success of the player, such as
the overall points score or a counter which holds the number of times
a bet has previously been successful.

169

9 AN ADVENTURE

9.1 Writing an adventure

Having discussed the different aspects of and approaches to
designing adventures, let us actually write one. The adventure
described in this chapter could hardly be called intelligent although,
like all good adventures, it takes intelligence to play it. However, we
might happily call it ‘clever’ because it does a few things which make
it a little human. The main reasons for designing an adventure of
this nature rather than an adventure filled with artificial
intelligence routines are three:

1.

170

The Electron does not really have enough memory for good Al
routines without a substantial amount of machine code. You will
see that I have resorted to a number of methods to save memory
in this adventure but even so it is very cramped and what Al
there is happens to be rather limited. BBC users will find more
elbow room if they adapt the program to run in mode 7. The
additional 7K should allow substantial expansion of the language
processing and other ‘clever’ bits in this game. Even so, for a
really intelligent adventure either larger RAM or machine code
is required.

The adventure described here is in many ways introductory in
nature and could have been altered in several ways to increase
the ‘intelligence’ it has. However, most people reading this book
will never have designed an adventure at all so the design here
has to be somewhat introductory.

. Finally, I have tried to show the kinds of things that can be done

rather than carry any one of them to its logical conclusion. For
example, it would not be difficult to expand the text processing
routine to accept a much greater range of possible English
sentences, but this would have meant that something else would
have been left out of the game. The purpose of this book is as
much to make you think as to present you with actual routines
because several of the ideas raised in this and other chapters are
new to game programming and have not been explored in detail
by anyone. You could be the first.

Before we get down to the business of the game design it is
necessary to describe some of the methods that have been used in
order to save memory. To end the book I have designed an adventure
with 81 locations, with a vocabulary of 140 words, and containing
over 40 objects. It accepts input which is more complex than normal
two-word commands, as well as allowing two-word, single-word, and
single-letter commands in some cases. It checks the spelling of the
entries and makes suggestions about the command that the player
might have intended to type in. It uses text compression to give
reasonable descriptions of the locations. It allows the user to carry
out a number of actions which are not part of the game’s puzzle but
which would be perfectly acceptable in the real world. It monitors
the personality of the character playing so that events and other
characters respond accordingly.

None of these things on their own make this an intelligent
adventure, but intelligence is as much a matter of versatility as
anything else. This is where human beings still have the edge on
machines. We are much more versatile, can command a whole range
of skills, and, though we may not be perfect in any one area, we have
a range of competence and skills and can switch between them at
leisure. So one major feature you should aim for in trying to make a
game appear intelligent is to achieve variety. We have already
considered this from the point of view of entertaining the player, but
it is equally important if we want to achieve a human-like nature in
our games. This adventure gains a degree of intelligence from the
fact that it can cope with a number of different aspects of human
behaviour, though not being especially good at any particular one of
them.

All of this means that drastic attempts have been made to save
memory, and this makes programming the adventure not simply a
matter of typing in a listing. All adventures are programs for
processing databases, and this one has a large database. However, if
we were to load that database within the main program we would be
adding several kilobytes of additional program. Some of it would be
the DATA statements used to hold the information, some of it would
be the RAM-consuming arrays into which the data would be put,
and some of it would be the routines used to load in and sort out that
data.

Instead of loading the data as part of the program we create our
database first, then get rid of all the routines used to create that
database, and save the whole block of data as one block of memory
using *SAVE. Then all that is needed in the actual adventure are a
few short routines to look at the appropriate section of memory and
to read the required data. This is what has been done with the map

171

data, the object data, and the dictionary. The dictionary is, however,
a special case because, as another memory-saving device, most of
the text used in the adventure has been compacted and coded. It is
still held in DATA statements but these are roughly half the length
of the text they represent. The dictionary held in our block of data is
used to decode these compacted data statements as well as being
used to check the commands input by the user. The result of this is
that we save memory, we make the descriptions of the adventure
virtually impossible for you to read as you type them in, thus
creating a degree of surprise, we reduce the amount of typing a little
(because the total of dictionary plus compacted text requires less
typing than creating the whole text), we make a large potential
vocabulary available for the user, and we enable very rapid decoding
of input. (Can you imagine how long it would take to check a five-
word sentence against a possible vocabulary of 140 words using the
methods described in Chapter 7?)

The memory block consists of five main chunks arranged in this
way:

All the data on the objects.

The map, held as a description of all the exits.

The legal verb that a player might type in.

The legal nouns that a player might type in.

The remainder of the dictionary needed for decoding descriptions.

AR kol o

Each of these blocks can be created in a number of ways. Those of
us lucky enough to have a disassembler/monitor and/or a word
processor will find the task a lot easier. A disassembler/monitor
enables bytes to be put directly into memory and checked for
accuracy. A word processor can make the compilation of dictionaries
from a series of prose descriptions a much easier task. However,
without these aids it is still a relatively simple task with custom-
made routines. Essentially each routine is the same. It asks the user
for the information to be encoded. Then it codes that information.
Finally, it places that coded information into a secure place in
memory. When all the information has been coded and stored in this
way it is a simple task to save the complete block onto tape (or disk).

In the case of the three language blocks the main differences
between them are simply in the way that the memory block is
constructed. For the verbs and nouns it is necessary to have a
regular arrangement so that any particular entry can be found very
rapidly during the game. So the nouns are arranged one after the
other in groups of eight bytes. These eight bytes will either be seven
letters for the noun plus a <Return> character (coded as

172

hexadecimal &OD and decimal 12) or if the noun is less than seven
characters a number of <Return> characters to make up the
difference. This is one of the inelegant aspects of this program
because it wastes a few bytes of memory, but it is worth it for the
rapid response in decoding input. Slow input processing is probably
one of the major irritants in playing an adventure. The verbs are
held in an identical fashion, but only seven bytes have been assigned
to each verb because verbs are generally shorter than nouns. Two
fudges have had to be made to make this system work, however. One
is that a few nouns have been chopped short so that they fit the
eight-byte format. These therefore require special tests in the input
routine. In addition, two of the verbs in the verb list do not exist.
There are spaces reserved in memory for a verb beginning with N
and another with V but no such verbs are used. The reason for this is
simply that access to the verb file is initially through the ASCII code
of the left-most character of the word. The files are arranged
alphabetically at the beginning of the file and therefore there has to
be an ‘n’ and a ‘v’ in the list. The access routine is described in more
detail below.

The third text block does not require rapid access so there is no
need to arrange its contents in a regular format. Each word is given
a byte for each character plus a <Return> character. When this
part of the file is read in order to code text descriptions every string
and substring is looked at one by one, which can take a minute or two
for a long text, but time is unimportant at this stage. When the
adventure is actually run and the coded strings are decoded the
relevant dictionary entries are found immediately because the code
holds the memory address of the relevant word so no search is
needed.

The object data could have been held almost as efficiently as a byte
array defined in the main body of the program. However, this would
have required code for loading data into the array to be held and run
during the adventure itself, which is too wasteful for our purposes. It
is also rather easier to manipulate a block of memory than a byte
array once you become accustomed to it because it is easier to find,
load, and save the former.

The block holding the map data is slightly more complicated than
the dictionary. It is held in what is known as a linked list (actually
the same method is used as for the nouns and verbs). As there are 81
for locations or ‘rooms’ in the adventure there are 81 items in the first
part of the list, each item describing the first exit in the room. As part
of its description it points either to the next exit in the room, which
will be held further down the block, or it has a marker which
indicates that it is the last exit in that room, in which case no other

173

items in the list will be examined.

The data structure for each of these is described below in the
relevant section. A data structure is simply the format in which data
are held. It is necessary to know and describe such structures
because, as you know, all that a block of RAM actually holds is a
series of numbers. Both programmers and programs need to know
what those numbers mean and this will depend on the format used
when they are read in.

Before looking at the data and the routines in detail let us briefly
consider the design process behind this adventure. I will describe
very rapidly the way that I went about constructing it.

Firstly, I ran the Ideas program, sometimes getting output on a
printer to study later and sometimes just writing down ideas from
the VDU. I did not take any notice of over 90 per cent of the ideas
because they were either silly, trivial, or not what I wanted. Nor did I
always write down the exact output. Instead I used the program to
fire my own ‘idea generator’ and wrote down the modifications I
thought up. This, together with some other ideas I had collected in a
notebook, gave a list of about 40 interesting ideas.

Next I tried to group them together. I looked for ideas that were
set in similar places or had related effects or used the same kind of
object or fitted together in some other reasonably coherent way.
Gradually by shuffling the ideas around I found I had six basic areas
in the adventure. I drew up a crude map of six areas and inserted
small boxes within each large area containing the ideas I still
wanted to keep. As I did this fragments of plot began to suggest
themselves and it was clear that certain linking objects or rooms had
to be provided.

After drawing in these linking areas I could see what fitted
together logically and what was somewhat isolated. These isolated
areas were either crossed out or concentrated upon until some
sensible connection suggested itself. For example, I had an
underwater palace next to a cliff of ice. How could these two things fit
together? Obviously the player has to get to the water’s surface, so I
gave the player a magnet which would be attracted by iron on the
surface. As the player could not be directly under the cliff the iron
had to be out at sea. I drew in an ice floe in which an iron bar was
buried and made the floe float to the cliff. You will find that in the
final game it does not happen in quite this way because I then
decided to move the iron bar.

After all this I had something like a logical map. However, it
looked a bit too logical so I moved one or two exits around, added one
or two puzzles just to make things awkward, and created a few extra
locations which were not actually ‘in’ the map in a logical way. At

174

this point it became necessary to check that all the objects required
to solve the puzzles were somewhere in the game and that it was
always possible to get the required object to the necessary puzzle.
This is an important part of the design process as it is all too easy to
design a logic which fits together perfectly but which the player can
never penetrate because A is needed to get B, B to get C, and C is
needed to get A. Some people prefer to design the logical structure of
their map long before they consider the actual plot or content in
order to ensure that a solution actually exists.

At the same time it is necessary to check that there is not a
possible pattern of simple solutions which solve the game without
encountering half the map. Many adventures can be solved in more
than one way and these are probably the best kind because they
allow for creativity in the player. However, there should not be too
many solutions and they should not be possible without having
visited most of the adventure world.

At this point I began to write detailed descriptions of each of the
rooms and objects. It is probably best to begin with some form of
general sketch of each location, either in words or drawings, to get a
general idea of the feel of the game and an idea of the likely
vocabulary and probable length of the final descriptions. Take into
account the fact that each puzzle and each solution, together with a
fair number of errors, will require messages and may require extra
code. As a rule you can assume that each location will want a
description of about 20 words, that about half the locations will have
hidden features which need a further description of about 12 words,
and that you will need one error message for each verb and probably
a help command for at least half the objects. If you have 50 locations,
20 verbs and 20 objects this means a total text of at least 2000 words.
As the average length of a word is just over five characters this
means an adventure of this size would need at least 10K for the text
data alone. You can easily see why I have used text compaction in
The Opal Lily. Every byte becomes vital.

When you have a reasonably complete description of each
location, including all the various messages which might arise there,
you will want to split that description into its logical parts. On the
one hand you will have a description which will be printed every time
that location is visited (plus perhaps a graphical equivalent). In
addition there may be some additional messages which will only be
revealed if certain conditions are met, such as visiting the location
with the necessary object or pronouncing the correct password. A
sensible way to deal with these is to give each location on the map a
number and give the same number to each description, but using a
subclassification for each of the additional messages at that location.

175

For example, location 12 might have three messages: 12a is always
given, 12b is given when the orange is left there, and 12c is given
when the player performs the dance of the seven veils.

Now we have a complete description of our adventure and its
logical structure. Only at this point can we begin to think about
coding it. With The Opal Lily I first drew up a block diagram of the
major areas of the program, as shown in Fig. 9.1. I tried to make sure

00-59 Set up and Main Loop

60-199 Describe Current Location

200-999 Map
1000-2999 Process Input
3000-3999 End of Move and End of Game Routines
4000-6649 Verb Routines
6650-6999 Housekeeping Functions and Procedures
9000-9999 Room descriptions
10000-19999 Responses to actions

20000-20999 Object descriptions

Figure 9.1. Block diagram of the Opal Lily.

that I left enough space for all the likely sets of routines that would
be required, but as usual I had to do a little tinkering with it as the
design developed because I found I had miscalculated. Always err on
the side of generosity when planning the amount of code you will
need for a particular routine or block of program.

I also began to think about how to number the verbs and nouns so
that I could easily keep track of them. To do this, of course, you need
a list of all the verbs and nouns allowed in your game. Exactly how
many items you have and how they are listed will depend on the
method of storage and access you are using, However, remember
that some nouns may be fixed to particular locations but most will
wander around the adventure (being portable objects), that verbs
usually are read first, and that your rooms should be numbered as
far as possible in a logical way. I numbered my rooms according to
the six major areas defined in the program. Having listed all the
verbs I thought important I took one for each letter of the alphabet
that I thought would be used most and arranged those in

176

alphabetical order in the list. I did the same thing with the nouns. By
doing this access will be speeded in interpreting commands and
initial letters can be used for some commands if desired.

Now came the most tedious part of the design. I had decided what
methods of storage I was going to use for the dictionary so I now had
to decide exactly which words would be included in that dictionary.
Of course, if you are not using this method of text compaction you
will not need a dictionary, but you may still need to re-read your
descriptions to see if there are too many words for the method you
are using. The description of, say, 2000 words has to be reduced to a
dictionary file consisting of all the words and word parts used in that
description, with only one occurrence of each. For words like ‘the’
and ‘a’ it is easy to see that they occur more than once and so delete
them from your file, but you might have a word like ‘ebony’ in the
second location and also in the sixty-fifth one. If you do not notice
that this word occurs twice it will be put into the dictionary twice and
memory will be wasted.

Compiling a dictionary can be much easier by use of the ‘search
and replace’ feature of a word processor. However, if you have
handwritten or typed your own descriptions you will have to do the
same thing by hand. Carry out the following algorithm on your
description until you have looked at all the words in your file. It is a
good idea to use alphabetical index cards on which to transcribe the
dictionary in order to make organization and checking easier, but it
is not essential.

1. START WITH THE FIRST WORD

2. WRITE INTO THE DICTIONARY THE NEXT UNDELETED
WORD IN THE FILE

3. GO THROUGH THE FILE AND DELETE EVERY
OCCURRENCE OF THAT WORD

4. IF ALL THE WORDS IN YOUR FILE HAVE BEEN DELETED
THEN YOU HAVE FINISHED IT; OTHERWISE GO TO THE
NEXT UNDELETED WORD IN THE FILE AND GO TO
STAGE 2.

Obviously it is a good idea to have a separate copy of your description
because you will have to scribble all over the work file. It is best to
ensure that the two files are identical by getting either a printout or
a photocopy. If you intend to use the dictionary to check input in the
manner of The Opal Lily you can use your dictionary to mark the
legal input verbs and nouns because these will have to be identified
separately in your dictionary for processing in different ways.
Now we are ready to code.
177

9.2 Objects

A crucial part of any adventure built around a puzzle is the number
and nature of objects that can be found and what can be done with
them. Some form of record needs to be kept of these objects so that
the program knows what the player has found and what has been
done with them. Many adventures use a very simple system of flags.
A flag is simply a numeric variable which is altered to mark the
status of some aspect of a program. It may be used to ‘flag’ the fact
that a particular condition is now TRUE or FALSE or it may record
more complex conditions. Each object is given a flag and as the
status of the object changes so the flag changes. Every time the
player attempts to perform an action the flag is consulted. If it is set
to the correct number the action is permitted; otherwise the action is
now allowed.

Moving the available objects around the world is the crucial aspect
of the puzzle adventure game from the player’s point of view. The
player should be allowed to take any object anywhere, provided that
the necessary puzzles can be solved. Thus at any stage in the game
we need to know where any object is and which objects the player is
carrying. The character must be able to pick up objects (The Opal
Lily uses the common verb TAKE for this) and to leave them behind
(The Opal Lily uses DROP). We might also allow an INVentory
command so that the player can be reminded of what he or she is
carrying.

The Opal Lily takes care of these problems by using a three-byte
data structure for each object. As there are 87 nouns (hence 87
potential objects, though some of the nouns cannot usefully be used
by the player) this means a block of 261 bytes. Byte 1 holds the
current room number of the object, a number between 1 and 81. It
can also be set to various other values: 0 means it no longer exists
(perhaps the player has destroyed it), 99 means the player is
carrying it. This is thus a flag with 83 useful states, but as it could be
set to any value up to 255 we may find other uses for it as well.

Bytes 2 and 3 are used to mark various aspects of the status and
nature of all the objects. One of the non-intelligent features of a
number of adventures is that they allow commands like BURN
STICKS but then count BURN DOOR or BURN LEAVES as
meaningless. This is because burning sticks is an important feature
of the particular adventure, but burning wood or doors is irrelevant
to the main puzzle. Not only is this frustrating to the player but it is
also rather unrealistic and irritating. It would be much better if our
game allowed each verb to be used with each legal noun in a logical
way which reflects the real world, but only some of those actions will

178

be useful in solving the adventure. This adds one further level of
puzzlement to the game. The player knows something must be burnt
to frighten away the bear, but does not know what will do the trick
and in experimenting may destroy the magic wand which is needed
to solve a later puzzle.

If we were to code every possible relation of verb to noun with a
routine for each combination we would find ourselves with an
impossible task. Suppose we had 20 verbs and 50 nouns. Then there
are 1000 possible combinations, each of which would require a
routine! It is obviously simpler to have one single “You can’t do that”
routine for the majority of these combinations, only allowing puzzle-
solving relations, but this is dull programming. What is really
needed is some development of semantic coding, the kind of thing
which is the basis of much AI research, perhaps similar to that
discussed for the Ideas program in Chapter 8.

The Opal Lily does not try to anticipate every possible
relationship, but it does allow a number of actions which would be
possible in the real world but are not very useful in the game. It does
this by coding a number of semantic categories into the two status
bytes for each object and then using these categories to decode the
appropriate verb routines. For example, suppose the player wanted
to fill the chest. The purpose of the chest in the program is simply to
hide one of the treasures so that once it has been opened it serves no
further purpose. However, a chest is a container so if the player
wants to fill it that should be allowed. So we record in the status
bytes whether every object is a container or not and if so whether it is
full or not. This information is actually only important for the shovel/
spade, but the player does not know that.

Similarly, these bytes hold information about whether an object is
alive, whether it can move, whether it can be broken, whether it is
broken, whether it can be eaten or drunk, whether it has been eaten
or drunk, if it can be worn, if it is being worn, if it is concealing
another object, if it is concealed by another object, and if it can be or
has been burned. In addition, there is a general flag which has four
possible states and holds special information for certain objects. This
means that in 174 bytes we hold enough information to interpret
roughly 1200 relationships of noun to verb, because 14 verbs use this
information and there are 87 nouns. Of course, in the majority of
cases the result is still negative. If the player tries to MOVE FARM
or BURN WATER or EAT RAFT the attempt will be unsuccessful.
Also, there are still many actions which ought to be allowed and are
not, such as EAT GRASS, which is possible but foolish, or BURN
CHIEF, which is not allowed because it might mean ‘set fire to the
chief’ or it might mean ‘hurt him’ and the program has no way of

179

knowing which. Nevertheless, the idea is clearly a good one and
developments along these lines are what we should expect from
commercial games. After all, if this amount of semantic information
can be stored in such a small space one might be able to write
adventures which work purely by interpreting general semantic
relations rather than by trying to envisage all the separate
individual cases.

How is all this information held in two bytes? You will remember
that a byte is made up of eight bits and that each bit can be in one or
two states, either on or off, represented as either 1 or 0. Each bitin a
byte can therefore be regarded as a separate flag. So in two bytes we
could hold 16 flags of the status of an object. In the first byte one
could, for example, represent ‘breakable’if set to 1 and ‘unbreakable’
if set to 0. However, we can get a little more information in if we
group the bits into pairs. Thus the leftmost pair of bits in the first
byte holds the following information in The Opal Lily:

00 Not edible or drinkable

01 Drinkable but not consumed
10 Consumed

11 Edible but unconsumed

These two bits can be used to answer four questions:

1. Isit edible?

2. Isit drinkable?

3. Hasit been eaten?
4. Has it been drunk?

These are all ‘Yes/No’ questions so each could be represented by
one bit of information, but then we would want four bits, not two,
which doubles the amount of memory needed. The complete
structure of the two status bytes is:

Statusbyte1 Bits

Consumable? 7/6
Container? 5/4
Wearable? 3/2
Hiding/hidden? 1/0

Status byte 2 Bits

Breakable? 7/6

Mobile/alive 5/4

Burnable? 3/2

Special? 1/0
180

Each time a verb is called it will be decoded with reference to the
appropriate pair of bits. For example, suppose the player types
“BREAK ROCK WITH BOTTLE”. The routine for BREAK will look
at bits 7 and 6 of status byte 2 for both rock and bottle. It will find
that rock is set to 00 so the rock cannot be broken. However, the bits
for bottle will be set to 01 so it can be broken. Probably it will be, so
the two bits are reset to 10, meaning ‘the object has been broken’.
Now it may be that a broken bottle will be useful elsewhere in the
adventure, so this resetting will become important. On the other
hand, the bottle may now be useless, in which case the ‘possession’
byte will be set to 0 because the object has effectively been destroyed.

As an indication of what the special pair of bits might mean, let us
take the example of the logs and the vines. Initially the special bits
for both these are set to 00. They will be set to 01 when the player has
found them. When the vines are tied to the cliff to enable climbing of
it they are set to 10, signifying ‘tied’. They then have to be untied at
the top of the cliff, i.e., set to 01 again, in order to be carried to the
river, where they are tied again, this time to the logs, to make the
raft, which sets the vines to 11 and the logs to 11. When the raft
breaks both are set to 00 and the possession byte is also set to 0 for
‘destroyed’. Of course, if meanwhile the player types “BURN
VINES” or “BREAK LOGS” it may be found that the items are
destroyed prematurely and a raft can never be made.

The general routines which make use of the object file are those
which describe the objects to be found in a location, which give the
player an inventory of current possessions and which allow objects
to be taken and dropped. Naturally there is a command for each of
these actions. In the first case, after describing the location the
routine will look through the whole object file for objects whose first
byte (the possession byte) is the same number as that of the current
room. When it finds one it checks the ‘Hidden? bit of status byte 1
and if the object is revealed it will print its name, giving a list of all
such objects. If the player LOOKs at some of these locations the
hidden bit, if set, may be reset thus revealing an object.

For an INVentory the same routine as the description routine
looks for bytes which equal 99. DROP changes the possession byte
from the player’s number to the room number and TAKE does the
reverse. However, DROP also has a slight quirk to make it a little
more interesting. A variable records the number of times the player
uses the verb DROP. The higher the variable the more likely the
player is to break something which is dropped, provided it is
breakable. The rationale behind this is that repeatedly dropping
things implies clumsiness and hence a likelihood of breaking things,
and in game terms the more a player is undecided about what

181

strategy to use, what to take, and what to leave, the greater the risk
that something will go wrong. The idea is thus to plan ahead in what
you carry and only take what you intend to use.

9.3 The map

The method for storing the map of The Opal Lily is not any of those
described in the previous chapter. Instead a ‘linked list’ has been
used. A linked list is a list of items held in memory in which each item
in the list points to the next relevant item. The reason for using this
method is that it was necessary to store several pieces of information
about each exit, in a similar way to storing information about each
object. The program needs to know for any given location how many
exits there are, which direction they go, what locations they lead to,
and whether they are currently available to the player. The
drawbacks with the methods given in the previous chapter are
either that they use a great deal of memory, or they could not hold all
this information, or they cannot adequately describe a map in which
rooms are not immediately next to each other.

For every room in the adventure there are six possible exits—
north, south, east, west, up, and down. However, no room has all
these exits and most have less than four. Thus if we were simply to
set up a two-dimensional array with one dimension the number of
rooms and the other the number of exits, roughly half the slots in the
array would be unused. At four bytes per slot for an integer array
this is a loss of (81 * 6 * 4)/2 bytes or nearly 1K! What is needed is a
structure that holds the necessary information on each exit, but does
not even hold empty spaces for the missing exits. As there is no way
of predicting how many exits there will be from a particular room
any such list will have an irregular structure. It is therefore
necessary for the entry for each exit in a room to point to the entry
for the next exit. This is how the records in the list are linked. For
example, the first exit in room 1 goes south. The entry in the list says
that it can be used by the player at once and it goes to room 2 and
that the next exit can be found 81 entries further down the list.

So the data structure for each exit consists of a three-byte entry.
The first byte holds the direction of that exit in bits 0 to 5, whether
the exit is hidden or not in bit 6, and whether it is the last exit for this
room in bit 7. The second byte holds the number of the room the exit
leads to and the third holds the offset, if any, to the next relevant
record in the list. It does not hold the actual number of bytes
separating the two entries but the number that is to be multiplied by
three to give the required address.

On entering a room each time the description routine looks first at
182

the item in the list with the room number, e.g., for room 27 it looks at
the twenty-seventh item in the list. If that exit is hidden it looks at
byte three for item 27 and if that is zero it will print “No exits”.
However, if the room is not hidden it decodes the relevant bits of byte
1 and prints the direction that it leads. If byte 3 is not zero it will then
calculate the address of the next relevant entry and repeat the
routine for that item. It continues in this way until it finds an entry
whose third byte is zero, when it will finish the routine.

The movement routine performs in exactly the same way, except
that instead of printing the chosen exit it will print “You can’t go
that way” if there is no exit or if the exit is hidden, but will look at
byte 2 of the entry and change the location variable R% to that byte
if there is an available exit.

In order to put the map into memory in the first place it is
necessary to run a routine which does the following. First it must ask
the programmer for the total number of rooms in the adventure and
then for the DATA on each room in turn. It must code the
information into the relevant bytes, placing the first three-byte code
per room at the location in memory represented by the number of
the room, then working out the address of the next free byte after
the total number of first-byte entries, placing that exit there, and
putting the address onto the third byte of the previous entry. When
all the rooms have been worked out and stored in RAM the block
must be saved in the same way as other blocks of DATA using
*SAVE.

However, to make things easier for you the object and map data
for The Opal Lily is contained in the programs listed in Figs. 9.2 and
9.3. It is a very simple program which just reads all the map
information held in the DATA statements into memory starting at
location &4DA7. Then it *SAVEs the whole block as a file called
“MAP,’.

9 REM LOADS OBJECT DATA TO &4C98
10 HIMEM=&4C97
20 H=HIMEM+1
40 FORI=0T0260
50 READ X
60 ?(I+H)=X

80 NEXT
89 REM LOADS MAP DATA TO &4DA7
90 H=&4DA7

100 FORI=0TO587
110 READ X
120 ?2(I+H)=X

130 NEXT)
140 *SAVE "MAP" 4C98 4FFF Figure 9.2 Program to load object
190 END and map data.

183

99 REM OBJECT DATA

400 DATA
401 DATA
402 DATA
403 DATA
404 DATA
405 DATA
406 DATA
407 DATA
408 DATA
409 DATA
410 DATA
411 DATA
412 DATA
413 DATA
414 DATA
415 DATA
416 DATA
417 DATA
418 DATA
419 DATA
420 DATA
421 DATA
422 DATA
423 DATA
424 DATA
425 DATA
426 DATA
427 DATA
428 DATA
429 DATA
430 DATA
431 DATA
432 DATA
433 DATA
434 DATA
435 DATA
436 DATA
437 DATA
438 DATA
439 DATA
440 DATA
441 DATA
442 DATA
443 DATA
444 DATA
445 DATA
446 DATA
447 DATA
448 DATA
449 DATA

12,128,32
11,33,96
34,33,72
0,0,0
0,0,0
22,0,104
36,0,97
10,128,41
0,128,104
17,49,97
18,0,104
9,136,104
0,64,41
0,0,0
32,8,104
30,128,120
0,1,16
0,16,105

HFNNHND S
N -
N

o
Y

104

HOs OHOKFHS OO0 O HFHFOKFHS OHOOO®S HOHFHOS O

6,112

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
4717
478
479
480
481
482
483
484
485
486

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0,56,105
63,0,32
0,0,0
24,8,32
16,0,120
69,0,120
83,8,105
47,8,104
0,0,96
0,0,104
16,128,40
0,136,120
20,0,104
0,128,32
61,16,96
19,0,104
10,136,104
0,0,8
0,0,0
0,0,112
0,0,16
0,1,16
2,64,41
78,0,32
0,0,88
0,64,0
0,128,0
0,1,72
0,0,40

N

oo ONOOO

S S S S S s~ s

ooOnoCc o+ OOO

B s NS S o~

O~ OOWWOoOWwWOo
o -
o]

-

Figure 9.3 Object and map data for Fig. 9.2 (continues)

184

499
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

REM MAP DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

32,8,82,32,7,84,129,7,0
66,6,84,8,7,85,136,8,0
8,4,85,160,12,0,32,13,84
8,10,85,32,22,86,32,14,88
132,18,88,136,16,0,32,21,89
8,22,89,8,19,0,32,25,89
96,23,91,96,58,91,8,23,92
32,55,95,16,27,96,32,26,96
72,26,96,2,28,96,32,29,97
32,30,99,136,31,0,0,27,98
160,33,0,96,37,98,16,30,98
96,39,98,132,37,0,8,40,99
2,42,99,194,23,0,65,40,98
1,42,98,32,46,99,160,44,0
80,44,99,136,46,0,8,50,100
16,48,101,32,53,101,8,53,101
96,51,102,32,50,103,96,53,104
72,56,105,32,59,106,8,58,107
32,60,107,96,64,108,80,58,110
66,63,111,160,61,0,2,65,111
144,59,0,65,63,110,1,65,111
96,68,111,96,48,113,8,79,114
32,69,115,32,70,115,8,71,116
96,67,116,32,75,117,96,76,11%
132,75,0,32,78,118,16,77,118
72,80,118,96,81,119,144,80,0
132,5,0,132,3,0,8,2,1
132,12,0,8,5,1,16,3,1
132,10,0,8,1,1,132,4,0
16,5,1,132,8,0,16,4,1
132,9,0,132,13,0,8,3,1
208,11,0,16,12,1,194,14,0
65,13,1,16,15,1,132,19,0
132,16,0,8,15,1,16,17,0
132,18,0,144,16,0,16,14,1
132,20,0,68,26,1,16,18,0
196,26,0,8,14,1,16,19,1
196,24,0,16,22,1,132,25,0
16,22,1,132,25,0,8,24,1
144,21,0,132,28,0,208,33,0
1,29,0,16,30,1,132,35,0
16,31,1,132,36,1,8,33,0
196,32,0,16,34,1,132,30,0
200,29,0,160,37,0,72,38,1
80,35,1,68,36,0,144,37,0
132,39,0,130,43,0,2,44,1
136,52,0,16,43,1,4,45,0
68,47,1,96,48,1,136,51,0
16,46,1,132,49,0,196,36,0
132,48,0,16,52,1,132,46,0
68,43,1,136,54,0,4,51,1
16,54,0,68,52,1,144,55,0
16,25,1,196,54,0,8,57,1

185

554 DATA 144,55,0,132,56,0,16,23,1
555 DATA 132,57,0,72,60,1,80,56,1
556 DATA 68,61,0,68,59,1,96,65,0
557 DATA 8,59,1,144,62,0,1,61,0
558 DATA 16,60,1,136,66,0,130,67,0
559 DATA 72,71,1,80,73,1,132,66,0
560 DATA 8,69,1,144,67,0,16,70,1
561 DATA 132,68,0,136,71,0,16,72,1
562 DATA 132,67,0,144,73,0,4,72,1
563 DATA 200,74,0,4,73,1,193,8,0
564 DATA 72,77,1,144,74,0,132,75,0
565 DATA 132,79,0,80,78,1,132,69,0
566 DATA 132,79,0

Figure 9.3 Object and map data for Fig. 9.2

The program for loading map DATA can be used with the data for
any adventure using the same format. However, you need the
DATA statements in the first place so the program listed in Fig. 9.4
will turn information typed in when it is run into a pseudo DATA
statement. This is printed out on the screen at the end of execution.
If you then use the <Copy> key to copy it that will be added to the
program. Keep running the program and adding the new DATA
statements until all the exits have been coded. Make sure that you
do one exit for each room before doing any others. All exits which are
the only exits in a room will be given a 0 as the third byte but the
others will be given a dummy “*”. When you have completed all the
DATA you must work through it and replace all the asterisks with
the number of lines separating two subsequent DATA statements
for a room from each other.

9 REM ROUTINE TO CODE EXIT DATA FOR ROOMS
10 CLS

20 PRINT "~

30 dat%=0

40 PRINT"WHAT DIRECTION?"
50 DS=GET$

60 x= INSTR("NSEWUD",DS)
70 IF x=0 THEN 40

80 dat%=dat%+2"(6-x)

Figure 9.4. Exit data coder (continues)
186

90 PRINT "Is exit available?"

100 yn$=GET$:IF INSTR("YNyn",yn$)=0 THEN 90
110 IF yn$="N" OR yn$="n" THEN dat%=dat%+64
120 PRINT "is this the last exit in the list?"
130 yn$=GET$:IF INSTR("YNyn",yn$)=0THEN 120
140 IF yn$="y" OR yn$="Y" THEN dat%=dat%+128
150 PRINT"what room does it lead to?"

160 A%=A%+10

170 INPUT room

180 PRINT A%;" DATA ";dat%;",";room;",";

190 IF dat%<128 THEN PRINT"**" ELSE PRINT"O"
200 PRINT "~
210 PRINT "Now <Copy> this DATA statement"

220 PRINT "To add it to the program"
Figure 9.4. Exit data coder.

To make this clearer, suppose you have finished running the
program for your adventure and room 1 has two exits. You will find
that the third element of its first DATA statement has an *. If you
now look for the DATA statement coding the next exit in room 1 and
subtract the lower from the higher you will get the offset which is to
replace that asterisk. Suppose the first exit is in statement 1000 and
the second in statement 1083. Then the asterisk must be replaced by
83. You will know which statement to look for because it is the first
one after the last room in the adventure, i.e., it will be the eighty-
second DATA statement for The Opal Lily because there are 81
rooms.

Similarly, repeat the operation for each room and each exit in each
room, looking for all the exits from each room until the statement
ending in 0 is found. One way to make each statement easy to find is
to use a sensible numbering scheme for the DATA statements. They
can always be renumbered afterwards if necessary. A possible
scheme would be that each statement will end with the room
number and begin with the exit number. So exit 1 for room 43 would
be line number 143; exit 2 would be 243; exit 3 would be 343. If you
have more than 99 rooms then use 1000 as your baseline number.

187

9.4 Encoding and decoding the text

The descriptive text for The Opal Lily is held in DATA statements
from line 9000 onwards. You have to type these in exactly as they
are, even though they look like nonsense. This is because each line
actually consists of a series of numbers represented by the ASCII
code of the characters in the DATA strings. The numbers are in
pairs and represent a number system in base 64. What this means is
that, whereas, the decimal system consists of 10 digits from
0 to 9, the hexadecimal system consists of 176 (0,1,2,3,4,5,6,
7,8,9,A,B,C,D,E, and F) so a base 64 system has 64 codes. The
right-hand letter of each pair thus represents a digit between 0 and
63 and the left-hand letter represents a number between (0*64) and
(63*64). The maximum range of a two-digit code using base 64
numbers is thus ((63*64) + 63), i.e., 4095.

These 4095 numbers are the possible locations that can be
addressed by this system. Therefore we can store up to 4095 pieces of
information (each one, one byte long) and recall it by using the
unique two-character code for its address. However, as the address
code is two bytes this is rather a foolish way to store items of data
which are one byte long. For every byte of data we need two bytes of
address data, so to store 100 characters would cost 300 bytes!
However, suppose the data being stored was longer than three
bytes. It would still seem more costly on memory to hold three-byte
items in memory plus two-byte addresses than it would be to hold
the data in data statements or arrays. This is true, provided each
item would only have been stored once in the DATA statements.

However, suppose our data was “THE GOBLIN IN THE
DUNGEON TAKES THE PINEAPPLE”. Including spaces this
string is 45 characters long, hence 45 bytes (plus the cost of the
DATA line itself). If each of the words was held at one of our 4095
addresses and the DATA statement just held the coded addresses
then we could write a procedure which recalled each word in turn by
looking at each address in the DATA string in turn, PRINTed it, and
then PRINTed a space. This would mean 16 bytes to hold the
addresses (eight words * two-byte code) and 32 bytes of memory for
the characters in the string. It is 32 because we can forget the spaces
(7 bytes) and the word THE is used three times but we only need to
store it once and use the same address code three times. 16 + 32 =
48, which is still more than the original 46, but not much.

Now suppose that another description in the program is “THE
PINEAPPLE IS IN THE DUNGEON”. How many bytes to hold
this? There are 31 bytes in the literal string. If we used the same
codes as the previous description we would need six words * two

188

bytes = a twelve-byte string. All of the words except ‘IS’ are in the
string previously encoded, so we need two more bytes to put this into
memory, giving a total of 18 bytes used thus saving 13. If we add the
two strings together then it would take 46 + 31 = 77 bytes to hold
these strings as DATA statements but only 48 + 18 = 66 using the
memory block and address code system.

It is not, as you might expect, quite as simple as this. In the first
place we must add to each word stored one more byte for the
<Return> character. This is because the $ operator available on the
BBC and Electron allows us to read any string starting at a specific
address and ending with the <Return> character. If we did not have
this facility we could still retrieve strings from memory but we would
have to store the strings at regular intervals and retrieve them one
byte at a time starting at a given position. So our total memory cost
would be 66 bytes plus 7 return characters = 73. Therefore all we
have saved is 4 bytes!

This might not appear large, but if you have two sentences for
each room and one hundred rooms in your adventure then you will
have saved nearly 1K in all. The savings are even much greater than
this. If you think about it the saving can be expressed in a rough and
ready way as a formula. If the length of the word to be encoded plus a
space = L and the number of times it is used in the total adventure is
N, then the total saving is:

Saving = ((L*N) — ((2*¥N) + L)) bytes
Thus if the word is one character long and used 10 times we have:

Saving = ((2*¥10) — ((2¥10) + 2))
=20 - 22
=—2
This is a negative result and hence wasteful. However if we have a
six-letter word used five times then:

Saving = ((7*5) — ((2*¥5) + 7))
=35-17
=18

which is a saving of over 50 per cent.

In general, therefore, the longer a word is and the more it is used
in an adventure the greater will be the saving using this method.
Remember, however, that you are limited in total memory store to
4095 bytes (a little less than 4K) so there is an absolute limit on the
number of words in your dictionary, which is another argument for

189

repeating words as often as possible. The potential dictionary could
be expanded by using a number code with a base larger than 64. A
base of 100 would give us 9999 addresses or nearly 10K for our
dictionary.

Other ways to make the system more efficient are to create two
dictionaries and to use word parts rather than entire words. The first
method has not been used here but one can use one-byte codes to
represent the very short or very frequent words. If the characters
representing single-byte codes are a different set from those
encoding the two-byte addresses the decoding routine can check for
them and branch accordingly. For example, if we were using a code
system in base 26 then lower case letters could be interpreted as
one-byte codes accessing a one-byte dictionary and upper case
letters could be read in pairs as accessing a separate two-byte
dictionary. Obviously the one-byte address system only allows a
small dictionary, limited to the base of number chosen, but it means
that the inefficiencies of using three bytes to encode a two-byte word
can be avoided.

The second alternative has been implemented in The Opal Lily.
Instead of handling just words it deals in what linguists call
morphemes, i.e., pieces of words that have their own meaning and
can be combined with different words. Thus the simple coding
system would hold QUICK, SLOW, QUICKLY, and SLOWLY at
four different addresses. It would obviously use less memory to have
only three entries for SLOW, QUICK, and LY. There are a large
number of bits of words that recur like this and some words can be
thought of as ending with such bits even if they could not normally
be detached. For example, taking the LY from FLY does not give a
meaningful word but it would be one way of coding it.

The problem is that word endings have to be printed immediately
after the word beginnings but our decoding routine puts a space
after each dictionary entry it decodes. If left to itself it would thus
PRINT “SLOW LY” rather than “SLOWLY”. We thus have to build
the backspace character into the system. This is ASCII character
127, one of those invisible characters that can be used in VDU
statements. If we add to each word ending a ‘(’ character and regard
this as meaning ‘backspace’ then on decoding the bracket can be
swapped for CH$(127) before printing. This is done in line 1595 of
the program. It means using one more byte for each word part
entered in the dictionary, but if that means not having to enter the
same word beginning twice this will mean an overall saving. The
SLOW/QUICK example above would use 26 bytes to store
information that word splitting can encode in 15.

We can now look at the actual encoding and decoding routines
190

used. First the dictionary must be placed in memory. Run the
program in Fig. 9.5 and it will fill the memory from &5000 onwards
with a dictionary defined in the DATA statements, organized in the
way described above. Then it will ask for a blank tape and *SAVE
the whole file onto tape as a file called “DICT”. Next time you need
the dictionary you need only *LOAD the DICT file. You can easily
change the DATA statements to create a different dictionary for use
in another adventure which uses the same coding system.

5 REM Reads Dictionary into Memory at &5000

9 REM First the verbs

10 P=&5000

20 FOR i= 0 TO 51

30 READ verb$

40 READ m

50 $(P+(i*7))=verb$

60 ?2(P+6+(i*7))=m

70 NEXT

99 REM Next the Nouns

100 RESTORE 600

110 Q=&5170

120 FOR i= 0 TO 86

130 READ noun$
140 READ m

150 $(Q+(i*8))
160 2(Q+7+(i*8
170 NEXT

199 REM Finally the rest of the words

200 RESTORE 700

210 R=&5427

220 REPEAT

230 READ text$

240 $SR=text$
250 R=R+LEN(text$)

260 UNTIL text$=""

299 REM Now save the data

300 PRINT "Place a cassette in the recorder"
310 PRINT "Then press any key"

320 g=GET

330 *SAVE "DICT" 5000 S5FFF

340 END

499 REM *** DATA LAt

noun$
)

))=m

Figure 9.5 Dictionary loader (continues)

191

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

"ASK" , 0
"BREAK", 22
"CLIMB", 24
"DROP", 24
"ENTER", 26
"FILL", 27
"GO", 31
"HOLD", O
"INVEN", O
"JUuMP", O
"KILL", O
"LOOK", 27
"MOVE", 29
IIN" ' 0
"OPEN", O
"PLANT", 0
"QUIT" , 0
"REAP", O
"SHUT", 26
"TAKE", 30
"UNTIE", O
"V", 0
"WEAR", 29
"BRIBE", 1
"BUILD", 1
"BURN", O
ncyT" , 0
"DRINK", 1
"DIG", 1
"DOUSE", O
"EMPTY", 1
"EAT", 0
"FIGHT", 1
"FILE", 1
"pLY" , 1
"FAN", 1
"FLOAT", O
"GIVE", O
"LAUNC", 1
"LIFT", 1
"LURE", O
"MAKE", 1
"MELT", 1
"MOUNT", O
"SWIM", 1
"SMASH",
"SMEAR",
"SKATE",
"SHADE",
"THROW",
"pIRE" , 0
"WAVE", 0

— O

Figure 9.5 (continues)

192

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

"APPLE", 23
"BOTTLE", 24
"CHEST", 28
"DOWN",31
"EAST",32
"FAN",33
"GEM", 75
"HONEY", 39
"ICE" ,0

" JAR" '0
"KEY", 37
"LEAVE", 37
"MOON", 39
“NORTH", 41
"OPAL", 0
"PILOT", 40
"QUEEN", 0
"RAFT", 40
"SOUTH", 42
"TEETH", 48
"UP", 48
"VINE", 48
"WEST", 48
"APE" ,1
"AQUA" , 0
"BAG" , 1
"BEAD",1
"BONE",1
"BATTLE",1
"BREATH", 49
"CHIEF",1
"CLIFF",1
"COFFIN",1
"CORPSE", 0
"DEEP",1
"DRAGON", 0
"EBONY",1
"EXPLOD",0
"FARM", 1
"FILE",1
"FISH",1
"FLAME",1
"FLAT",1
"FLOWER",1
"FLUE",1
"FLYING", 34
"HOLE", 37
"KNIFE",0
"LASSO0", 1
"I,OG" , 1
"LUNG", 0
"MAGNET",1
"MOUTH", 1
"MUD" ’0

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
6717
678
679
680
681
682
683
684
685
686

700
701
702
703
704
705
706
707
708
709

710

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

"NATIVE",O
"PEGASU",1
"PLUME", 28
"ROD",l
"ROCK",1
"RUBY",23
"SEED",1
"SKATE",1
"SCYTHE",1
"SNOW", 1
"SPADE",1
"STICK",1
"gUN" , 0
"TREE",0
"UNDER", 0
"VILLAG",O
"WASP",1
"WHIRL",1
"WHISKY",1
"WHITE",1
"WITCH",1
"WATER",1
"WEED",1
"WALL",9
"BROKEN", 0
"FIELD",1
"FIRE",O
"GATE",1
"REED", 3
"HUT" , 0
"pPIG" , 0
"RIVER", 0
"WIND", 79

“OF","IN","AT","ON","BY"
"WITH","TO","THROUGH" , "OVER", "ABOVE"
"OUT", "AND","A","AN","IS"
"AS","ARE", "THE", "THAT", "HAS"
"THERE","I","YOU","HE","THEY"
"IT","(Y","(THRONE"," (D", " (EST"

" (ED", " (LONG","(S"," (CONTROLLAB", " (PLE"
"(DY","(LY"," (ING"," (ES"," (LESS"

" (EN"," (WAY"," (TO"," (ERY"," (LOW"

" (BOW", " (CIRCLE"," (ILY","AL","EN"

IIUN" , "RAIN" , IIWARII , "CEIL" , (1] SEE"
193

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737

738

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA
DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

"VAST","EXPANSE", "ROOF", "JUNGLE", "FRONT"
"LARGE", "SWEET", "SMELL", "LIKE", "HUGE"
"SOME", "PATCH", "GAUDY", "MANDRAKE", "VIBRAT"
"OMINOUS", "FLOUNDER", "FOUL", "SWAMP" , "GROWN"
"PATH","TOP","HIGH", "BRANCH", "LEAF"
"SCREECH", "GIANT", "NEST","RISE", "AHEAD"
"SURROUND", "BUSH" , "CANOPI", "SIDE", "CAVE"
"WHERE","OLD", "STILL","LIE","TALL"

"WOOD", "FENCE", "CONFRONT" , "EITHER" , "CARVED"
"FIGURE","MAN", "MASK", "WAV", "CLOUD"

"DUST", "STOCKADE", "SEVERAL", "DO", "VARIOUS"
"MENIAL","JOB","ALL","DRIED","CLAY"

"MAK", "HEADRESS", "GROUND", "LITTER", "CORPSE"
"OTHER", "ARMOUR" , "SHELL", "CLOTH" , "SEA"

"CLEAR","HERE", "FLOW","STAIN","GOLD"
"WARM", "DOCTOR", "TEM", "MADE", "BLOCK"

"WAY","POOL", "BUBBL", "RUNN", "STEAM"

"HOT", "SWIRL", "AROUND","R","CRASH"
"AGAINST", "PROW", "WRECK", "SHIP", "LOOM"
"STRAND", "BARREN","FIND", "LEAD", "SHARK"
"TOOTH", "GARDEN", "FERN", "GROW" , "REGULAR"
"PLOT","SAND", "EACH", "MARK", "ROW"

"TURN", "TWIST", "GRIN", "BASK", "SUBMERGED"
"PORTION", "ROTT", "SKELETON", "DRESS", "PROPP"
"GLADE", "BLUE", "FOUNTAIN", "SPOUT", "SILVER"
"CORAL", "MAZE", "FOREST", "TURQUOISE", "PALACE"
"RUIN","DECAY","CAUGHT","VIOLENT","FORC"

" (WARD", "DESERT","ISLAND", "FLOE", "CRACK"

Figure 9.5 Dictionary loader (continues)

194

739 DATA "BASE","STEEP","IDE","MOUNTAIN","FROZEN"
740 DATA "LAKE","THIS","CHAMBER", "GREAT", "CRAG"
741 DATA "TRANSLUCENT","HANG"," (RN","STAND"," (MAN"
742 DATA "CHILL","TONE","SAY","BLACK","STONE"

743 DATA """ "SLAB","MALACHITE","SIT","SCAR"

744 DATA " (RED","SHE","SMILE","WICKED", "FLEX"

745 DATA "LONG","JAGGED","CLAW","STUMBLE","PIT"
746 DATA "RO","BE","(YOND","SIGHT","CENTRE"

747 DATA "COLUMN", "PACK","NARROW","PASS"," (AGE"
748 DATA "FROM","FLOOR","NEED","(LE","SHARP"

749 DATA "IMPOSSIBLE","ANGLE","IRON","BAR","EMBEDDED"

750 DATA "ONE","CHUTE","ENVELOP", "WALK", "GLOW"
751 DATA "SMALL","PIECE","SULPHUR","FALL","FROM"

752 DATA "","TIME","TOUCH","DRIP","TREAD"

753 DATA "ACROSS","STRETCH","SMOKE","RING","JET"

754 DATA "START","FURNACE","TEND", "MOLTEN","SQUEEZE"
755 DATA "FUME","SWEPT","FIERY","SPARK","PAST"

756 DATA "EAR","SCORCH","SPIRAL","APPARENT","END"

757 DATA "WISP","COME","HOLE","SKY","LADDER"

758 DATA "PLACE","FOOT","FIRST","RUNG","SCREAM"

759 DATA "AGONY","AMIDST","CERULEAN", "SWIFT", "SWALOW"
760 DATA "ABOUT","TREMBL", "MOVEMENT","VIBRATE", "MORE"
761 DATA "HEAVEN","STUCK","BANK","STRATO","CUMULUS"
762 DATA "MAGNIFICENT","CHARIOT","FOG","TWENTY", "BUFFET"
763 DATA "ROUND","ROOM","BRIDGE","EAGLE", "GLINT"

764 DATA "BEAK","VIEW","DESCEND","GET","WIDER"

765 DATA "MILE","MIRROR","CELESTIAL","CIRRUS","SPREAD"

766 DATA "MIST","FLAKE","LEAP","CAN","BARE"

195

767 DATA "CRESCENT","STAR", "CATHEDRAL", "SPUN","CRYSTAL"
768 DATA "EMIT","YELLOW","SPAR","LIGHT","THRONE"

769 DATA "CHILD", "BLONDE","CURL","CURVED", "MOSAIC"

770 DATA "AMETHYST","POINT","ARCH","CANOP","SILK"

771 DATA "WOMAN","(SIDE"
Figure 9.5. Dictionary loader

When the dictionary is held in memory the DATA statements
containing all the messages should be typed in and appended to the
program ‘Encoder’ given in Fig. 9.6. This should then be run. It will
take each statement in turn, look for each of its words in the
dictionary, and code the word into a two-byte representation. The
resulting coded DATA statement can then be copied from the screen
using the <Copy> key, and the coded statement will replace the
literal one. (Make sure that you have kept a copy of your original
DATA statements just in case anything goes amiss.) Alternatively,
you could adapt ‘Encoder’ so that it creates a file which *SPOOLSs the
DATA. Unfortunately the encoding process is so slow and cassettes
are so long that you might be better off *SPOOLING each DATA
statement as a separate file and then *EXECing them later onto the
main program.

10 HIMEM=&5000

20 *LOAD "DICT" 5000

30 CLs

40 REM THIS CODES ADVENTURE TEXT

50 REM INTO TWO BYTE CODES

60 codeS$=""

70 PRINT"What DATA line to encode?"

80 INPUT line

90 RESTORE line
100 READ text$
110 text$=textS$+" "
120 CLS
130 PRINT ® “"SEARCHING....." "~
140 REPEAT
150 next_space = INSTR(text$," ")
160 current_word$ = LEFTS(text$,next_space-1)
170 text$S=RIGHTS (text$,LEN(text$)-next_space)
180 PROCcode

190 UNTIL LEN(text$)<LEN(current_word$)
200 PRINT ““line;" DATA """;code$;""""
210 PRINT “"NOW <COPY> THIS DATA LINE"

220 END

Figure 9.6 Text encoder (continues)

196

230 DEFPROCcode

240 count=&4FFF

250 REPEAT

260 count=count+1

270 find$=S$count

280 UNTIL current word$=find$
290 IF ?count=0 THEN ENDPROC

300 count=count-&4FFF

310 countl=count DIV 64

320 count2=count MOD 64

330 code$=code$+CHRS (35+countl)+CHRS (35+count2)
340 ENDPROC

350 DATA "YOU SEE AN APPLE"

360 REM ***x*% FROM HERE ON LIST ALL DATA *k kKK
370 REM ***x* TO BE ENCODED. *kkkk

380 REM ***** COPYING THE PROGRAMS DATA WILL *****
390 REM ***** REPLACE THEM WITH THEIR CODE. ***%*

Figure 9.6 Text encoder

However, you do not need to do this for The Opal Lily as the
encoding process has already been carried out. All you need do is
make sure that you type in each of the DATA statements exactly as
printed here and that the dictionary has been loaded correctly. Any
error at all will create a faulty address which will result at best in a
peculiar message and at worst a system crash when the final
program is run.

PROCdecode in the main program is called whenever a coded
message is to be PRINTed on the screen. The pointer is RESTOREd
to the appropriate line and the statement READ in to the variable
text$. This is repeatedly done until an empty stringis READ in. You
will see that every few DATA statements there is such an empty
string. These are important as they represent the terminators for
that chunk of text.

Each time a DATA line is read in to text$ it is decoded in pairs of
characters, controlled by the STEP command in line 1540. The
current pair of characters is held in code$ and line 1560 works out
the number that code represents by multiplying the ASCII code of
the left-hand character by 64 (having subtracted 35) and adding the
result to the ASCII code for the right-hand character (having
subtracted 36). The subtractions are necessary in order that the
characters below ASCII 35 are not used as most of these cannot be
printed out and the “ character can cause confusing strings.

The resulting number is now used as the address of the required
word. Line 1580 is the key line which reads the word from memory.
The command “word$ = $number” can be read as “Put in word$ the
string which starts at address ‘number’ and ends with the next

197

<Return> character found”. Before this word is printed on the
screen two further tests are made to see (1) whether the word will be
split on the edge of the screen when printed and (2) if the leftmost
character of the word is ‘C. The test uses POS, which holds the
current horizontal position of the text cursor, and adds it to the
length of the current word. If this is greater than the line length then
the new line character, CHR$ (13), is printed so that the next word
will be on a new line.

Ifthe leftmost characteris ‘C then it is replaced by CHR$ (127), the
backspace character, so that the word part is printed immediately
following the start of the word it belongs to. A space is then printed
and the whole routine is repeated until the end of text$ is reached.
When this happens control is returned to the calling routine and a
full stop is printed. This is why the DATA statements are arranged
in a slightly irregular manner. As each statement is a full sentence,
in some cases a location will have several DATA statements while in
others it will have only one.

9.5 Creating a data file

Another way to create the DATA statements for a program such as
an adventure is to write a program which works out the DATA for
you and sends it to a file on cassette or disk. If we take the objects
used in The Opal Lily as an example a program such as OBJWRT2
(Fig. 9.7) will encode the objects as a series of semantic codes. When
it is RUN it uses the dictionary file, which it loads, to name each
noun in turn and ask the user for its starting room together with
various pieces of semantic information. This is encoded into three
bytes. The first byte holds the room number (dumpl), the second
holds four sets of semantic information (dump2), and the third holds
additional semantic information as described above (dump3).

10 REM PROGRAM TO PLACE OBJECT CODES IN MEMORY
20 MODE®6

30 CLS

40 base=&4C98

50 HIMEM=base

60 *LOAD "DICT"

70 FOR i= 0 TO 86

80 r=&5170+(i*8)

90 PRINT "What room is ";S$Sr;" in?"
100 INPUT dumpl

110 I$="Is it "

120 dump2=0:dump3=0

130 PRINT IS$;" edible?"

140 PROCyesno

Figure 9.7 OBJWRT2 (continues)
198

150 IF yes=1 THEN dump2=dump2 + 128
ELSE PRINT IS$;"drinkable?":
PROCyesno:

IF yes=1 THEN dump2=dump2 + 64

160 PRINT I$;" a container?"

170 PROCyesno

180 IF yes=1 THEN PROCempful

190 PRINT IS$;" wearable?"

200 PROCyesno

210 IF yes=1 THEN dump2=dump2+8

220 PRINT IS$;" hiding something?"

230 PROCyesno

240 IF yes=1 THEN dump2=dump2+l

250 PRINT IS;" breakable?"

260 PROCyesno

270 IF yes=1 THEN dump3=dump3+64

280 PRINT IS$;" mobile?"

290 PROCyesno

300 IF yes=1 THEN dump3=dump3+32

310 PRINT IS$;" animate?"

320 PROCyesno

330 IF yes=1 THEN dump3=dump3+16

340 PRINT IS$;" burnable?"

350 PROCyesno

360 IF yes=1 THEN dump3=dump3+8

370 PRINT IS$;" hidden?"

380 PROCyesno

390 IF yes=1 THEN dump3=dump3+l

400 PROCq(0,dumpl)

410 PROCg(1l,dump2)

420 PROCq(2,dump3)

430 NEXT

435 PROCsave

440 END

450

460 DEFPROCyesno

470 yes=0

480 REPEAT

490 ynS$=GETS$

500 yes = INSTR("YNyn",yn$) MOD 2

510 PRINTyes

520 UNTIL INSTR("YNyn",yn$)<>0

530 ENDPROC

540

550 DEFPROCempful

560 PRINT IS$;" full?"

570 PROCyesno

580 IF yes<>1 THEN dump2=dump2 +16 :ENDPROC

590 PRINT IS;" open?"

600 PROCyesno

610 IF yes<>1 THEN dump2=dump2 +32:ENDPROC

620 dump2=dump2+48

630ENDPROC

640

650 DEFPROCg(g,u)

199

660 ?(base+qg+(i*3))=u

670 ENDPROC

680

690 REM READ OBJECT CODES FROM MEMORY

700 REM AND SEND TO A FILE AS DATA STATEMENTS

710 DEFPROCsave

720 PRINT"Please place a blank cassette
in the recorder"

730 PRINT"Then press Record
and press any key"

740 g=GET

750 @%=00003

760 *SPOOL "OBJFILE"

770 FOR i=0 TO 86

780 PRINT (11000+i);" DATA ";

790 PRINT STR$(?(base+(i*3)));",";

800 PRINT ?(base+l+(i*3));",";

810 PRINT ?(base+2+(i*3))

820 NEXT

830 *SPOOL

840 ENDPROC

Figure 9.7 OBJWRT2

Each time a noun is finished the results are stored in three arrays,
called Room%, Stat1%, and Stat2%. When all the information has
been coded the second part of the program opens a file called
OBJFILE by the command *SPOOL. It then PRINTSs on the screen a
line of program consisting of a line number, the word DATA, one
number from each array, and commas to separate the numbers,
giving screen output just like a programmer typing in DATA
statements as part of a program, such as:

11001 DATA 12,128,16

As the only information that goes to the file is that which appears
on the screen, we have effectively sent a series of program lines to a
file on cassette or disk without having to type them in. The second
*SPOOLin line 830 closes the file so no extra information can be sent
to it by mistake. This file is not the same as a normal BASIC
program, however, because BASIC files are held in what is called
‘tokenized’ form. That is to say a BASIC file would not contain the
word DATA held as four bytes (one for each character) but as a
one-byte code or token which represents the entire keyword. This is
obviously a very efficient way of storing programs both from the
point of view of memory and of processing, but it means our screen
output, which is only pretending to be the lines of a program, cannot
be stored in this way.

The *SPOOL command creates an ASCII file in which every
character sent is represented by one byte, so in OBJFILE the word
200

DATA will be represented by four bytes. It therefore has to be loaded
back to the screen in a special way, by typing in direct mode (i.e., not
as part of a program) *EXEC “OBJFILE”. The file will be called back
to the screen just as if you were typing it in, but much more quickly
and, what is more, the lines will now be taken into memory as a
program just as if you really had typed them in directly. In other
words, the file that we have spooled is being treated in exactly the
same way as the keyboard. Information is being read in and, if it
begins with a number, it is treated as a line of program.

Programs can be merged together using this method (see pages
402 and 403 of the BBC manual and pages 200 and 201 of the
Electron manual). You will find that if you had anything in memory
when you typed *EXEC “OBJFILE” that the incoming lines have
been appended to the existing program. This is obviously useful if it
is what you wanted, but frustrating if it corrupts a valuable program
you have forgotten to save beforehand. Therefore, always double
check when using *EXEC, (1) that, if anything is held in memory,
you want it to be combined with the incoming file and (2) that there
is no overlap between the line numbers in the programs, because the
existing lines will be overwritten by the new ones.

9.6 Saving the data

When you have compiled The Opal Lily’s map, object data, and
dictionary you can simply load them into memory together and then
*SAVE the lot using the small routine below:

20 *LOAD “MAP”

30 *LOAD “DICT”

40 PRINT “NOW CHANGE TO A BLANK CASSETTE THEN
PRESS ANY KEY”

50 G=GET

60 *SAVE “OPALDAT” 4C97 5FFF

You should have all the previously saved data blocks separately
held on one cassette in the order “MAP” and “DICT”. These will be
loaded in turn and held in RAM next to each other, provided they
have been *SAVEd correctly. When the program asks for a blank
cassette insert a new one so that you have the complete “OPAL” file
on a separate tape. Otherwise you will have difficulty finding it
again. When you have typed in the listing for The Opal Lily this tape
will be your data tape used by the main program.

201

9.7 Texthandling

Text handling in adventure programs can be very sophisticated
provided you can put up with the (by now familiar) problems of
memory shortage and complexity of algorithm. The Opal Lily (Fig.
9.8) does not represent a great advance on the normal two-word
adventure input routines but I have included one or two
improvements to show how you can go about achieving a complex
text parser. (A parser is simply a program for analysing sentences
into their component parts.) The key features of the input routine
are:

1. Input can be in lower or upper case.

2. Extraneous spaces, numbers, and other characters are removed
so some common typing mistakes do not mean that the player has
to retype a command.

3. Provided the player types the first letter of each word correctly
the machine will guess the intended word if it was mistyped.
Input can be two words, several words, single words, or single
letters (in some cases).

5. The input checking routine is very fast.

6. One conjunction and one preposition are allowed for complexity
of input.

Many adventures have none of these features. Some
programmers seem to think that because input is not actually part of
the game structure players will put up with all sorts of quirks in the
input system. However, the so-called ‘user interface’ for adventures
is crucial to enjoying the game. If processing is slow, if mistakes are
easy to make, if easy forms of input are prevented, the player may
become fed up with playing even if the actual game is quite original.

You will see that the total input routine is one of the longest in the
program, so let us go through procedure by procedure to see exactly
what is going on and what could be developed further.

The main loop contains PROCcommand, which asks for and
decodes input, and then a GOSUB call dependent on v%, the
variable representing the input verb. PROCcommand firstly looks
to see if any text remains to be processed (line 1045). This is
indicated by the variable conj, meaning conjunction, being set to 1. If
it is set then the string held as temp$ is processed. Temp$ holds any
text left over from the previous processing cycle. If it is not set then
PROCinput is called.

PROCinput does two things. Firstly, it gets the text using INPUT
LINE to make sure that no errors are generated from faulty

202

punctuation. Then it looks at each character in the input string in
turn and turns it to upper case if it is in lower case and throws it
away ifitis anything other than an upper case letter or a space. This
is done simply by checking the ASCII codes of the input text and
altering each character accordingly. Finally, it reduces any strings
of multiple spaces (caused, for example, by the player pressing the
space bar for too long or by the routine deleting punctuation between
two spaces) to a single space. This last stage is important because, as
we have seen in Chapter 7, the space is used as a marker for word
endings. If we have more spaces than words then the rest of the
decoding routines will create errors.

At this point we now have a string called text$ which either has
just been typed in or was left over from the previous input cycle. The
program next looks to see if the command was only one word. This
will be the case if there is no space in the input string. If it is,
PROCone_word is called. PROCone_word firstly makes sure that the
word is allowed on its own. Allowed commands include the six
possible directions, Inventory and Quit. It does this by looking only
at the left-most letter so other single words with the same initial
letters would be treated identically. For example, if SWEAR was
typed in the program would treat it as SOUTH. This is done in order
that single-letter and single-word commands can be dealt with by
the same routine. If we wanted to allow single-letter commands but
prevent confusion between words with the same initial letters we
would have to use two procedures and add an extra test.

The left-most letter is compared with a string called dir$ (for
‘direction’). If there is no match then PROCcommand ends and
another input is requested. If the command is found then either it
will be a direction or it will be something else. If it is a direction then
it can be treated as if it was the two-word command “GO (direction)”
so the verb variable is set to 7 (for ‘GO’) and the noun variable to the
direction number, dependent on the letter’s position in dir$. You will
see that the GO subroutine deals both with single-letter and multi-
word instructions.

If the command is not a direction then the verb is set to a number
beween 1 and 26 derived from its ASCII code (line 1720). In other
words, the only allowed single-word commands are the first 26 in the
verb dictionary, one for each letter. If you wish to use this method in
another program it is a good idea to place the most common verbs in
these slots in your dictionary.

If there are spaces in text$ then it consists of more than one word.
The process is therefore like the two-word decoding described in
Chapter 7. Firstly, the words are checked to see if they are legal; if
they are then control variables are set to their values. All the

203

characters up to the first space are stripped off text$ and treated as
the first word, which has to be a verb to be legal. So PROCword is
used to check that it is an allowed verb. PROCword is also used to
check the nouns when found. Consequently, it needs a set of
parameters telling it where to begin the search in the dictionary and
the length of the strings it is meant to be looking at. You will
remember that the data structures are different for nouns and
verbs, the former being eight characters long, the latter only seven.
PROCword returns a variable called ‘number’. If number is 0 then
this flags an error. If it is greater than 0O then this is the control
variable and either v% (for verb), n1% (for the first noun), or n2% (for
the second noun) will be set to it.

PROCword compares the input word with a subset of the
dictionary stored above HIMEM. It is at this point that input
routines usually slow up because many words have to be checked
before a match is found. However, the data structure we have used
means that very few comparisons have to be made—a maximum of
ten and an average of about four. This is because the procedure
knows exactly where to look for likely candidates. Its first choice is
the first word in the appropriate section of the dictionary which
begins with the same letter as the input word (found by multiplying
the ASCII code of the leftmost letter of the word by the allowed word
length and adding the result to the address of the start of that
portion of the dictionary). If there is no match then the entry for that
word contains a pointer to the next word beginning with the same
letter. If that does not match then it has a pointer to the next word.
This continues until all the words in the verb dictionary or the noun
dictionary which begin with the correct letter have been checked. If
no match is found then the last entry in the list will have a zero
pointer which tells the searching routine that no match exists and it
ends.

If a match is found then the routine terminates and the variable
number is set to the word’s number in the list. If a partial match is
found (i.e., if a word is found which begins with the same letter as the
input word but otherwise differs) then PROCspel is called.
PROCSspel simply compares the current partial match with the input
word to see how many letters the former has that correspond to
letters in the latter. This is not a particularly sophisticated
comparison and you might like to improve it, but given the rather
limited dictionary used by adventures it works well enough. It
simply uses INSTR to count the number of letters in the partial
match which are also in the input word. It does not, for example,
attempt to ensure that it does not count a letter twice; nor does it try
to match position as well as character type. Consequently, if you

204

typed FILD by mistake for FILE the program will find the best
match as FIELD because there are more letters in common even
though their positions are different.

PROCspel sets a variable called best_score to the highest number
of matches it finds and keeps in poss_count the address of that match
in memory. Then if PROCword fails to find a perfect match for the
input word the variable ‘number’ is set to 0 and PROCerror is called.
If no match at all has been found then the input word is called a
mistake and the player is told as much. However, there is usually a
partial match, in which case the match held at poss_count will be
printed with a request for the user to say whether it is a correct guess
or not. In this way a large number of spelling mistakes and slips of
the fingers are compensated for, saving a great deal of mistyping. I
find that especially in the process of debugging the program this
routine saves a great deal of frustration.

If the user types ‘N’ (for ‘No’) then the whole command is
abandoned and another command is requested. This spelling
checker has one major flaw, however, if you want to use it in a
situation where cheating is to be prevented. A player will very
quickly realize that all that is needed to discover a fair percentage of
the vocabulary of the game is to keep typing in errors and record the
suggested matches that the program comes up with. Whether you
regard this as a flaw or not depends on your point of view. Obviously
there are so many opportunities for you to cheat, because you have
the whole program laid out before you in the book, that a routine like
this does not really matter. In addition, there are some games which
give you all the vocabulary beforehand. In other games a tried and
trusted technique of players is to keep trying words randomly until
something happens, so this could be regarded as an extension of that
method of ‘solution’. And knowing the words does not necessarily tell
you how to use them. However, if you did want to prevent this sort of
cheating you would either have to remove the spelling checker or
you would have to add a routine which monitored the words that the
player was allowed to know.

This kind of routine would not be too difficult to write. It would
only be necessary to set aside one bit of memory for each word. This
could easily be combined with the actual dictionary by using the
left-most (most significant) bit of the byte holding the first letter of
each word. (As capital letter character codes do not go above 90 this
bit is not used but you will have to change all the text decoding
routines accordingly.) If the bit is set then that word has not yet been
‘found’ by the player so cannot be used by the spelling checker.
However, when the player finds the word (e.g., by using the TAKE
routine or entering a location which uses the word in its description)

205

the bit will be ‘unset’ or ‘reset’ and the spelling checker can use it.

If a legal verb is found then the next word is stripped from text$
and treated as a noun. PROCword is called with different
parameters and the same series of tests is made. At this point one
could add a slight degree of sophistication to the routine by allowing
articles (i.e., ‘the’ and ‘a’). All that would be required is a test to see if
the current word is either of these and if it is it is thrown away and
the next word from text$ is taken. The noun is either the leftmost
word in text$ or the whole of text$ if there are no spaces.
Consequently if a space is missed out in typing an error will probably
result here, though is some cases the spelling checker will still find a
match.

At this point we have described a reasonably intelligent two-word
command system. However, to make a fully fledged parser which
can deal with many different kinds of English input more work is
obviously required. Therefore I have added two slight variations to
show the way that such a routine might be developed. They are not
called if either one- or two-word input is used, but only if there is
more text to process after v% and n1% have been assigned.

The first of these is the conjunction “AND”. This conjunction can
actually mean several different things but this program only allows
one of those meanings, namely, linking two commands together. For
example, “TAKE ROCK AND GO NORTH” is allowed, but “TAKE
ROCK AND SWORD” is not because the second verb is missing. The
two commands must be two-word commands (or more) and must be
complete. If AND is found in text$ then it is stripped off, the variable
conjis set to 1, the whole of text$ is put into temp$, and text$ is wiped
clean. Then the procedure ends and the command that has so far
been decoded is executed. However, when that command has been
completed and PROCcommand is called again new input will not be
requested but the text stored in temp$ will be placed back into text$
and this will be decoded instead. Needless to say, several commands
can be embedded in one input string provided they are all linked by
AND-—up to the string-handling limit of the micro.

Some other conjunctions could be treated in a similar way. THEN,
for example, could be treated exactly like AND. However, others
would require more thought. For example, use of AFTER (apart
from requiring different verb forms) would mean that the first part
of the command should be processed second.

If AND is not found then the program looks for the preposition
WITH. It will continue to do so until it is found or until all the words
have been removed from text$. If WITH is found then it will also
look for a noun, again using PROCword, setting n2% to the
number of any noun found. It also sets the variable prep to 1 as

206

some routines can make sense with or without the preposition.

Using prepositions allows a large increase in the potential of an
adventure though this will also involve extra coding in the verb
routines. In effect every new preposition allowed by our program
adds 1 to the available classes of noun. Without prepositions we have
just the object, the thing acted upon by the verb. With the
preposition WITH we have introduced the category ‘instrument’,
i.e., things that can be used for other things. For example, there is a
world of difference between “FIGHT DRAGON”, “FIGHT DRAGON
WITH SWORD” and “FIGHT DRAGON WITH BANANA”.
(Remember it would also be possible to allow commands like
“FIGHT DRAGON WITH CAUTION".)

Other prepositions allow other kinds of noun category. TO allows
the category ‘destination’,i.e., the thing which something is directed
towards, as in “GIVE BANANA TO DRAGON” or “THROW
DWARF TO LIONS”. FROM allows the reverse of destination, the
‘source’; ON, IN, UNDER, OVER, and so on, allow complex
positions; FOR allows specification of duration; and BY allows
specification of a conveyance of some kind. Consider the apparent
complexity of a command like “SEND THE DWARF FROM THE
CAVE TO THE LIONS BY CHARIOT WITH A GUARD”, for
example. This kind of command could be decoded in exactly the same
way as our single example, by decoding each preposition in turn.
However, as I have remarked before, if you wish to do this in your
adventures, something else will have to be sacrificed.

9.8 Verb routines

Any adventure of this type is really a large database with a series of
routines for manipulating the data held within it. So far we have
examined the nature and structure of the database and of the input
controls which determine which manipulating routines are called.
Let us now examine the verb routines, which are the main routines
whereby the data can be manipulated.

In essence all the verb routines in The Opal Lily have the same
structure, and this is true for a large majority of adventures. They
consist of the following formula:

Check that the input command makes sense in the current
location and, if it does, alter either the map data or the object data,
or print a rewarding message; otherwise print a different message
indicating an error.

Verb routines really only call one or more of three kinds of routine:
207

a routine to affect map data, a routine to affect object data, or a
routine to print a new message. However, there are different kinds
of map and object data and different kinds of message, so we will
probably not be able to make do with just three routines, even if they
can take different parameters, though we might be able to reduce
the actual number of routines well below the number of verbs
multiplied by the number of nouns. In addition, we need to include
tests to ensure that the input command makes sense in a given
location, which will add another routine or set of routines to the list.
If we list the key variables in The Opal Lily we will get some idea of
the kind of tests and the kind of alterations that might be needed.
These main variables are:

R% = the player’s current
location
Object byte 1 = the location of a
given object
Object byte 2 = four kinds of status
information on a given object
Object byte 3 = four more kinds of
status information
on a given object
Map byte 1 = the availability of a
given exit from
the current location

This is the entirety of the significant control variables in the game,
not a large number. The input commands can therefore only have
one of the following effects, if we discount one or two special verbs
like “INVENTORY”:

1. End the game (either by voluntary quitting or by ‘dying’).

2. Change R% (i.e., move to a different location, which could be
voluntary or involuntary movement).

3. Change the location of an object by taking it (setting the relevant
variable to 99), dropping it (setting the variable to R%), or
destroying it (which might be deliberate or the consequence of
some other action, but results in the variable being set to 0).

4. Change one or more of the status bits by opening, burning,
breaking, etc.

5. Reveal an exit, i.e., set the ‘hidden exit’ bit to 0.

6. Some combination of the other five, either by repeating an action
or combining two or more actions.

208

It looks as if we should be able to code the effects of all verb
routines using just five routines, therefore, though some verbs may
require a sequence of such routines. Could a similar thing be done for
the tests? A list of all possible tests would be:

1. Is the location suitable for the desired action?

2. Is the main object at this location?

3. Isthe instrument (the auxiliary object) at this location?
4. Are the appropriate status bits set to the correct values?

It would appear that five routines or functions would be sufficient
to perform these tests, though we may want more than one test
performed at a given location. We thus have a set of five WRITE
routines which will write particular data to the database and a set of
five READ routines which will read the current contents of the
database. Provided we use the correct combination of these we
should be able to carry out all the necessary verb manipulations. A
slightly more specific model of the typical verb routine would thus
be:

1. Perform all necessary tests by using the READ routines.

2. If at least one test is negative then print an error message and
end the verb routine; otherwise proceed to the next stage.

3. Perform all the required WRITE procedures to alter the
database.

4. Print the appropriate discovery messages.

5. End the verb routine.

There might also be some exceptional verbs which control other
variables or automatically carry out operations without such tests,
like the QUIT and INV verbs, but the majority of verbs should fit
within this general pattern.

The key feature of these routines has to be their flexibility.
Different verbs will require tests of different bytes and for different
values. Consequently, the READ and WRITE routines will need
several parameters which the calling verb will have to pass values
to. The general form for a verb subroutine would therefore be:

IF FNtest(a,b,c...n) THEN PROCact(o,p,q...z)

where the brackets contain the values to be passed as the
parameters of the functions or procedures. FNtest could, for
example, read the byte which was b bytes from byte a and compare it
with ¢, while PROCact could add value p to the value in the byte (q*r)

209

above byte s. The unfortunate thing is that we have to design these
functions and procedures to use only and all the parameters given,
and thus we have to send values to each parameter even if they are
not to be used. Our program therefore uses several such routines
and only calls the appropriate ones in order to balance the efficiency
of using one procedure for several verbs against the inefficiency of
having to pass redundant parameters.

NOTES

(a) The listing will not run if typed in in this form. All
unnecessary spaces and all REM statements must be removed.
Where possible lines must be converted to multi-statment
lines. (This will also increase speed of execution).
Shortening variable names will also save space.

(b) All DATA must be typed in exactly as printed here or the
decoding routines will not run accurately. If you find that a
message is odd it will probably be because of mistyping the
DATA.

(c) Do not put the DATA statements on multi-statement lines as

this will produce °‘No such line’ errors when RESTORE is used.

10 MODE 6
11 HIMEM = &4FFF
20 PROCst
21 PROCds

29 REM MAIN LOOP

30 REPEAT

31 v =0

32 nlg =0

33 n2% = 0

34 PROCcommand

40 IF v%<>0 THEN GOSUB (4000+(50*v%))
50 PROCaf

60 UNTIL d% = 1 OR qu

Figure 9.8 The Opal Lily (continues)
210

130
140

REM END ROUTINE
PROCdAd
END

REM DISPLAY ROUTINE
DEF PROCds
CLS
K$ =0
PRINT
RESTORE (9101+(R%*10))
REM PRINT EACH SENTENCE OF DESCRIPTION
REPEAT
READ text$
PROCdecode
IF text$<>"" THEN PRINT CHRS$(8);"."
UNTIL text$ = ""
PRINT CHRS$(11);
PRINT
PROCmp (R%)
PRINT
vp = VPOS
PRINT C$

REM DISPLAY ANY OBJECTS AT THIS LOCATION

FOR k = 1 TO 83
IF FNo(0O,k) = R% OR ((FNo(2,k) AND 1)

1) PROCrev

160
170
180
188
189
220
221
240
245
250
251

NEXT

IF vp+l = VPOS THEN PRINT TAB(9, VPOS-1);N$

ENDPROC

REM DISPLAY ANY AVAILABLE EXITS
DEF PROCmp(I)
K% = 0
pk = FNex(3)
IF pk AND 64 THEN 310
FOR i = 0 TO 5
IF pk AND (27i) PRINT PS$;

MIDS$(ns$,(i*5)+1,5)

300
310
320
330
340
348
349
350
355
360
361
362
363
364
390

NEXT
IF FNex(1l) = 0 ENDPROC
K$ = K%+(FNex(1l))*3
GOTO 240
ENDPROC

REM MOVE LOCATION IF EXIT IS OKAY
DEF PROClk
LOCAL k
k=0
REPEAT

K% = K%$+k

k = FNex(1l)*3

UNTIL FNex(3) AND g OR FNex(1l) =0
IF FNex(3) AND 64 THEN ENDPROC

211

400 IF FNex(3) AND g THEN R% = ?(H-2+(R%*3)+K$%)
410 ENDPROC
418
420 DEF FNex(byt) = ?(H-byt+(R%*3)+K%)
428
429 REM SPECIAL MOVEMENT CHECK
430 DEF PROCch(A%,number,C%)
440 K% = 0
441 IF nl%<>A% OR R%<>number THEN ENDPROC
450 IF FNex(3) AND 64 THEN ?(H-3+(R%*3)+K%) =
?(H-3+(R%*3)+K%)-64
460 IF FNex(l) = 0 THEN RESTORE
(12000+(v%*100)+nl%) : READ text$
PROCdecode : PROCpa : v% = 7 : n%
4350 : ENDPROC
470 K% = K%+(FNex(1l))*3
471 GOTO 450
490 ENDPROC
1038
1039 REM DECODE INPUT COMMANDS
1040 DEF PROCcommand
1045 IF conj = 1 THEN text$ = temp$ ELSE
PROCinput

1050 conj = 0

1051 sp = INSTR(text$," ")

1052 IF sp = 0 THEN vr$ = text$: PROCone_word :
ENDPROC

1065 vr$ = LEFTS$ (text$,sp-1)

1066 text$ = RIGHTS(text$, LEN(text$)-sp)

1067 IF LEN(vr$)>5 THEN vr$ = LEFTS$(vrS$,5)

1070 PROCword(vr$,ve,7)

1071 IF number = 0 THEN PROCer : IF number = 0
THEN ENDPROC

1080 v% = number

1081 sp = INSTR(text$," ")

1082 IF sp<>0 THEN n$ = LEFTS$(text$,sp-1) ELSE n$
= text$

1085 IF LEN(n$)>6 THEN n$ = LEFTS$(n$,6)

1090 IF RIGHTS(nS$,l1) = "S"™ THEN n$ = LEFTS$(nS,
LEN(n$)-1)

1095 IF text$<>n$ THEN text$ = RIGHTS(text$,
LEN(text$)-sp) ELSE text$ = ""

1100 PROCword(n$,nn,8)

1101 IF number = 0 THEN PROCer : IF number = 0
THEN ENDPROC

1110 nl% = number

CLS :
C% : GOSUB

1111 IF text$ = "" THEN ENDPROC

1120 REPEAT

1121 IF LEFTS$(text$,3) = "AND" THEN conj =1 :
E$ = "AND" : temp$ = RIGHTS (text$, LEN(text$)-4) :
text$ = "" : GOTO 1165

1130 IF LEFTS(text$,4) = "WITH" THEN prep =1 :

text$ = RIGHTS (text$, LEN(text$)-5)
1135 sp = INSTR(text$," ")

212

Figure 9.8 (continues)

1136 IF sp<>0 THEN n$ = LEFT$(text$,sp-1) ELSE
n$ = text$

1141 IF text$<>n$ THEN text$ = RIGHTS(textS$,
LEN(text$S)-sp) ELSE text§$ = ""

1150 IF n$<>"" THEN PROCword(n$,nn,8)

1155 n2% = number

1165 UNTIL text$ = "" OR (sp = 0 AND number =
0)

1170 ENDPROC

1173

1174 REM INPUT ROUTINE

1175 DEF PROCinput

1200 REPEAT

1201 PRINT

1202 INPUT LINE "WHAT NOW",text$

1203 UNTIL text$<>""

1220 CLS

1221 i =0

1222 REPEAT

1223 i = i+l

1224 1% = FNt(i)

1245 IF 1%>90 THEN text$ = FN1l(i-1)+
CHRS(1%-32)+ FNr

1255 IF FNt(i)<65 AND FNt(i)<>32 THEN text$ =
FN1(i-1)+ FNr : i = i-1

1265 IF FNt(l) = 32 AND FNt(i+l) = 32 THEN
text$ = FN1(i-1)+ FNr : i = i-1

1270 UNTIL i= LEN(text$)

1280 ENDPROC

1283

1284 REM SUNDRY TEXT SPLITTING FUNCTIONS
1285 DEF FNt(t) = ASC(MIDS(text$,t,1))
1290 DEF FNr = RIGHTS$(text$, LEN(text$)-i)
1295 DEF FN1(1) = LEFTS$(text$,1)

1298

1299 REM DECODE WORDS

1300 DEF PROCword(word$,c%,T%)

1310 ES = word$

1311 best_score = 0

1312 E$ = LEFTS$(ES$, INSTR(ES," ")-1)
1313 k$ = LEFTS(ES,1)
1314 pt = 0

1315 pn% = 0

1316 K% = c%+((ASC(k$)-65)*T%)

1345 REPEAT

1346 K% = K$+(pt*T%)

1347 pt = 2 (K%+T%-1)

1348 IF E$<>$K% THEN PROCspel

1365 UNTIL pt = 0 OR pt = 79 OR ES$ = $K%

1370 IF ES$S = $K% THEN number = ((K%-c%)/T%)+1
ELSE number = 0 : pn% = ((poss_count-c%)/T%)+1

1380 ENDPROC

1383

213

1384 REM INFORM PLAYER OF ERRORS

1385 DEF PROCer

1386 IF pn%<l THEN PRINT text$;" IS A MISTAKE" :
ENDPROC

1390 PRINT "DID YOU MEAN ";$poss_count;" (Y/N)2"

1395 yn$ = GETS

1396 A% = INSTR("yYnN",yn$)

1397 IF A% = 0 THEN 1395 : IF A%>2 THEN ENDPROC

1410 number = pn$%

1411 ENDPROC

1413

1414 REM FIND THE BEST MATCH FOR AN INPUT WORD

1415 DEF PROCspel

1420 sc = 0

1421 FOR i = 1 TO LEN(ES)

1422 IF INSTR($K%, MIDS(ES$,i,1))<>0 THEN sc =
sc+l

1430 NEXT

1440 IF sc>best_score THEN best_score = sc :
poss_count = K%

1445 ENDPROC

1448

1449 REM DECODING THE COMPRESSED TEXT

1520 DEF PROCdecode

1521 j =0

1522 number = 0

1523 IF text$ = "" THEN ENDPROC

1540 FOR i = 1 TO LEN(text$) STEP 2

1541 code$ = MIDS(text$,i,2)

1560 number = ((ASC(LEFTS(code$,1))-35)*64)+(
ASC(RIGHTS$(code$,1l))-36)

1580 word$ = $(ve+number)

1585 j = LEN(word$)+1

1590 IF POS+j>36 THEN PRINT CHRS$(13)

1595 IF LEFTS$(word$,l) = "(" THEN word$ =
CHRS$ (127)+ RIGHTS(word$, LEN(word$)-1)

1600 PRINT word$;" ";

1601 NEXT i

1620 ENDPROC

1628

1629 REM SPECIAL ROUTINE FOR SINGLE WORD
COMMANDS

1630 DEF PROCone_word

1631 n% = 0
1632 v% = INSTR(dir$, FN1(1l))
1633 IF v$ = 0 THEN PROCer : ENDPROC
1700 IF v%<7 THEN n% = v% : v$ = 7 : ENDPROC
1720 v = ASC(FN1(1l))-64
1721 ENDPROC
1998
1999 REM PRINT CURRENT VERB
2000 DEF FNvb
2010 j$ = s(vet(vy*7)-7)
2020 = j$
Figure 9.8 (continues)

214

2098

2099 REM "YOU VERB IT"

2100 DEF PROCit

2101 PRINT Z$; FNvb;" ";

2102 PROCn

2103 ENDPROC

2138

2139 REM "YOU WANT TO VERB IT"

2140 DEF PROCtry

2141 PRINT Z$;"WANT TO “; FNvb;" ";

2142 PROCn

2143 PRINT w$

2144 ENDPROC

2198

2199 REM CHECK OBJECT IS NOT HIDDEN

2200 DEF PROCrev

2210 IF (NOT((FNo(2,k) AND 1))) = TRUE THEN
PROCdis : ENDPROC

2220 IF FNo(l, FNo(0,k)) AND 1 THEN ENDPROC
2230 IF FNo(0, FNo(0O,k)) = R% THEN PROCdis : nl$%
=k : ?2 FNin = R% : PROCoin(2,-1)

2240 ENDPROC

2298

2299 REM DISPLAY OBJECTS

2300 DEF PROCdis

2301 RESTORE (19999+k)

2302 READ text$

2303 PROCdecode

2304 PRINT

2305 ENDPROC

2398

2399 REM DISCOVER HIDDEN OBJECTS BY LOOKING
2400 DEF PROCas

2401 FOR lm = 1 TO 87

2402 IF (FNo(0,1lm) = nl%) AND ((FNo(2,1lm) AND
1) = 1) THEN ?2(0%+((lm=1)*3)) = 99 : RESTORE
(19999+1m) : READ text$: PRINT C$; : PROCdecode

2430 NEXT

2431 ENDPROC

2998

2999 REM CHECK FOR CONDITIONS AFTER EACH MOVE
3000 DEF PROCaf

3001 IF R%>28 AND R%<41 THEN oxy = oxy-1l : IF
oxy<0 THEN PRINT "YOUR AIR RUNS OUT." : d% =1

3025 IF R%>29 AND R%<41 AND ((FNo(2,54) AND 2) =
2) THEN PRINT "THE MUD IS WASHED AWAY" : nl% = 54

? FNin = 24 : PROCoin(2,-2)

3030 IF R% = 8 AND (NOT(FNo(2,54) AND 2)) =

TRUE AND L%<1 THEN PRINT R$;"STUNG BY WASPS" : d%
=1
3040 IF (?(0%+184) AND 4)<>4 AND R% = 46 THEN
PRINT Z$;"FALL OVER AND BREAK YOUR NECK" : d% =1
3050 IF R% = 54 AND FNo(0,52) = 99 THEN PRINT

215

RS ; "PULLED UPWARD" : R% = 53

3060 IF R% = 22 AND FNo(0,55)<>99 THEN PRINT "THE
WITCH DOCTOR SEES ";R$;"ALONE AND WAVES HIS FAN."
: ds =1

3070 IF R% = 55 AND (2(0%+34) AND 4)<>4 THEN
PRINT RS$;"SCALDED TO DEATH" : d% =1

3080 IF X% = 1 AND R% = 45 PRINT "A VAMPIRE RISES
AND NIBBLES YOUR NECK" : d% =1

3090 IF R%$ = 37 AND ?2(0%+45) = 99 THEN nl% = 14 :
v$ = 7 : PROCch(nl%,37,5)

3100 IF R%$ = 21 THEN ?2(0%+51) = 0

3110 IF R% = 59 AND J%<>1 THEN PRINT RS$;"LOST IN
SMOKE"

3120 IF R% = 60 AND E% = 0 THEN PRINT R$;"TRAPPED
BY A RING OF FIRE"

3130 IF R% = 79 AND ?(0%+216) = 99 THEN nl% = 73

: v$ = 38 : PROCch(nl%,79,3)

3190 ENDPROC

3298

3299 REM END OF GAME

3300 DEF PROCdAd

3310 IF 4% = 1 PRINT RS;"DEAD"

3320 IF L% = 2 THEN PRINT "WELL DONE!"

3390 ENDPROC

3998

3999 REM PAUSE

4000 DEF PROCpa

4001 TIME = 0

4002 REPEAT

4003 UNTIL TIME = 400

4004 ENDPROC

4047

4048 REM VERBS BEGIN HERE

4049 REM ASK

4050 PRINT "I’'M A STRANGER HERE MYSELF"

4051 RETURN

4098

4099 REM BREAK

4100 PROCh(nl%)

4101 IF h% = 0 THEN RETURN

4115 IF FNb(2,64) THEN PROCit : PROCoin(2,64) :
RETURN

4120 IF FNb(2,128) THEN PRINT 1$;"BROKEN" :
RETURN

4130 PRINT K$;"BREAK IT"

4131 RETURN

4148

4149 REM CLIMB

4150 IF nl%<>21 AND nl%<>4 THEN PRINT HS : RETURN
4156 IF FNo(2,49) AND 2 THEN PROCch(21,13,5) :
RETURN

4160 vy = 7

4161 GOSUB 4350

4162 RETURN

4198 Figure 9.8 (continues)

216

4199 REM DROP

4200 IF FNg THEN PRINT y$: RETURN

4220 ? FNin = R%

4221 PROCit

4222 D% = D%+1

4240 IF R%>65 THEN PRINT "IT FALLS THROUGH THE
CLOUD" : ? FNin = 0 : RETURN

4245 IF D%>12 THEN r = RND(3) : IF r = 1 AND
FNb(2,64) = 64 THEN PRINT "YOUR CLUMSINESS HAS
BROKEN IT" : ? FNin = 0

4246 RETURN

4248

4249 REM ENTER
4250 PROCch(45,1,2)
4251 PROCch(53,1,2)
4252 PROCch(45,61,5)
4253 PROCch(82,15,4)
4254 PROCch(47,65,6)
4255 RETURN

4298
4299 REM FILL

4300 IF FNg THEN PRINT y$: RETURN

4320 IF FNb(1l,16) THEN PROCit : PROCoin(1,32) :
RETURN

4330 IF FNb(1l,32) THEN PRINT Q$: RETURN
4340 IF FNb(1l,48) THEN PRINT 1S$;"FULL"

4348 RETURN

4349 REM GO

4350 IF n% = 0 THEN nl% = INSTR(dir$,
CHR$ (nl%+64)) ELSE nl% = n%

4355 IF nl%$>6 THEN PRINT "NO WAY!" : RETURN
4360 g = 27 (6-nl%)

4361 K% = 0

4362 PROClk

4363 PROCds

4364 RETURN

4398

4399 REM HOLD

4400 IF (nl% = 30 OR nl% = 35) AND (R%<30 OR
R%>40) THEN oxy = 12 : PRINT Z$;"FILL YOUR LUNGS"
: ELSE PRINT K$

4445 RETURN

4448

4449 REM INVENTORY

4450 PRINT US;

4451 vp = VPOS

4452 FOR k = 1 TO 87

4453 IF FNo(0,k) = 99 THEN PROCdis

4490 NEXT

4495 IF vp = VPOS THEN PRINT NS$

4496 RETURN

4498

4499 REM JUMP

217

4500 IF R% = 66 THEN PRINT "DOWN YOU GO" : R%
10 : RETURN

4530 PRINT "WHAT FUN!"

4531 RETURN

4548

4549 REM KILL

4550 PRINT R$;"TOO WEAK"

4551 RETURN

4558

4559 REM LOOK

4600 IF nl% = 0 THEN PROCds : RETURN

4605 PROCh(nl$)

4606 IF h% = 0 THEN RETURN

4610 IF FNb(1l,1)<>1 THEN PRINT C$;N$: RETURN
4620 PROCoin(1l,-1)

4621 IF FNo(0,nl%) = R% THEN PROCds ELSE PROCas
4640 RETURN

4648

4649 REM MOVE

4650 GOSUB 5000

4700 RETURN

4748

4749 REM OPEN

4750 IF FNg AND ? FNin<>R$ THEN PRINT y$: RETURN

4754 IF FNb(1l,16) = 16 THEN PRINT 1$;"OPEN" :
RETURN

4755 IF nl% = 3 AND n2% = 0 AND FNb(1l,16)<>16
THEN PROCtry : RETURN

4756 IF nl%$ = 26 THEN PRINT R$;"BOWLED OVER BY AN
ANGRY GALE" : PROCpa : ?(0%+75) = 0 :
PROCch(nl%,59,5) : J% = R%-58 : RETURN

4760 IF nl% = 3 AND (n2%<>11 OR ?2(0%+30)<>99)
THEN PRINT "THAT WON'T WORK" : RETURN

4780 IF FNb(1,32) = 32 THEN PROCit :
PROCoin(1,16) : ELSE PRINT K$;"OPEN IT"

4785 IF R% = 45 THEN X% =1

4795 RETURN

4798

4799 REM PLANT

4800 PROCh(nl%)

4801 IF h% = 0 THEN RETURN

4830 IF nl%$ = 61 OR nl% = 20 THEN PRINT "WORMS

EAT IT" : 2(0%+180) = 0 : ENDPROC
4847 RETURN
4848

4849 REM QUIT

4850 qu = TRUE

4851 PRINT "SAVE GAME?"

4885 REPEAT

4886 g$ = GETS

4887 UNTIL INSTR("YyNn",g$)<>0

4890 IF INSTR("YyNn",g$)<3 THEN PROCsa
4895 RETURN

Figure 9.8 (continues)

4899 REM REAP

4900 PROCch(72,75,1)
4901 PROCch(87,75,1)
4902 RETURN

4948

4949 REM SHUT

4950 IF FNg AND ? FNin<>R% THEN PRINT y$: RETURN

4965 IF FNb(l,16) = 16 THEN PROCit :
PROCoin(1l,-16) : ELSE PRINT 1$;"SHUT"

4980 RETURN

4998

4999 REM TAKE

5000 IF nl% = 30 OR nl% = 35 THEN GOSUB 4400 :
RETURN

5005 IF NOT(FNg) THEN PRINT 1$;"YOURS" : RETURN

5010 IF (FNo(0,nl%)<>R% AND FNo(O,
FNo(0,nl%))<>R%) OR ((FNo(2,nl%) AND 1) = 1) THEN
PRINT IS;"NOT HERE" : RETURN

5015 IF nl% = 55 THEN PRINT "HE 'S NOT THAT EASY
TO PERSUADE" : RETURN

5016 IF nl% = 74 AND n2%<>65 THEN PROCtry :
RETURN

5020 ? FNin = 99

5021 PRINT "NOW ";US$;

5022 k = nl%

5023 PROCdis

5025 IF FNo(2,nl%) AND 1 THEN PROCoin(2,-1)

5047 RETURN

5048

5049 REM UNTIE

5050 PROCh(nlg)

5051 IF FNg AND h% = 0 THEN PRINT y$: RETURN

5060 PROCit

5061 2(0%+48) = 0

5062 ?2(0%+63) = 99

5063 ?(FNin+2) =

5100 RETURN

5148

5149 REM WEAR

5150 IF nl% = 54 GOSUB 6350 : RETURN

5160 PROCh(nlg)

5161 IF h% = 0 THEN RETURN

5170 IF FNb(1l,4) THEN PRINT 1$;"BEING WORN"
RETURN

5175 IF (FNo(l,nl%) AND 8)<>8 THEN PRINT S$
RETURN

5176 PROCoin(1l,-4)

5177 ? FNin = 99

5178 PROCit

5182 IF nl% = 43 THEN ? FNin = 0 : nl% = 62
FNin = 99 : PROCoin(l,-4) : st =1

5190 IF nl% = 51 OR nl% = 25 THEN oxy = 500
PRINT Z$;"BREATHE CLEAN AIR"

0

.
)

219

5195 RETURN

5198

5199 REM BRIBE

5200 IF n2% = 0 THEN PROCtry : RETURN

5210 IF nl% = 55 AND n2% = 27 AND FNo(0,55) = R%
THEN PRINT "THE NATIVE GOES WITH YOU" : ?2(0%+162)
= 99 : ?2(0%+78) = 0 : RETURN

5247 RETURN

5248

5249 REM BUILD

5250 GOSUB 6100

5251 RETURN

5298

5299 REM BURN

5300 PROCh(nl%)

5301 IF h% = 0 THEN RETURN

5310 IF nl% = 78 THEN GOSUB 6150 : RETURN

5320 IF FNo(0,42)<>R% AND FNo(0,81)<>R% THEN
PRINT K$;"USE THE FIRE" : RETURN

5330 IF FNb((2,8) THEN PROCit ELSE RETURN

5345 PROCoin(2,4)

5346 ? FNin = 0

5347 RETURN

5348

5349 REM CUT

5350 IF n2% = 0 OR ?2(0%+((n2%-1)*3))<>99 THEN
PROCtry : RETURN

5355 IF n2%<>48 THEN PRINT "NOT SHARP ENOUGH" :
RETURN

5360 PROCch(77,35,6)

5361 RETURN

5398

5399 REM DRINK

5400 IF FNg THEN PRINT y$: RETURN

5420 IF FNb(l1,64) THEN PROCitELSEPRINTSS$: RETURN
5425 ? FNin = 0

5426 PROCoin(1l,128)

5427 RETURN

5448

5449 REM DIG

5450 IF n2%<>65 THEN PROCtry : RETURN

5465 IF FNo(0,65)<>99 THEN PRINT x$;"A SPADE" :
RETURN

5470 PRINT "THE SPADE BREAKS"

5471 ? FNin = 65

5472 RETURN

5498

5499 REM DOUSE

5500 IF R% = 78 OR (R%>55 AND R%<65) THEN PRINT
"IT BURNS FIERCELY" ELSE PRINT "FIRST FIND A FIRE"
5545 RETURN

5548

5549 REM EMPTY

5550 IF FNg THEN PRINT y$: RETURN

5565 IF FNb(1l,48) THEN PROCit : PROCoin(1l,-32) :

220 Figure 9.8 (continues)

RETURN

5570 IF FNb(1l,32) THEN PRINT Q$: RETURN

5575 IF FNb(1l,16) THEN PRINT 1$;"EMPTY" : RETURN

5580 RETURN

5598

5599 REM EAT

5600 IF FNg THEN PRINT y$: RETURN

5620 IF FNb(1,128) THEN PROCit ELSE PRINT "YOU'LL
BE SICK" : RETURN

5630 ? FNin = 0

5631 PROCoin(1l,64)

5632 RETURN

5648

5649 REM FIGHT

5650 GOSUB 4550

5651 RETURN

5698

5699 REM FILE

5700 PRINT J$;"NO FILING CABINET"

5701 RETURN

5748

5749 REM FLY

5750 PRINT p$

5751 RETURN

5798

5799 REM FAN

5800 IF FNo(0,6)<>99 THEN PRINT x$;"A FAN"

RETURN

5820 IF R% = 78 QR (R%>56 AND R%<65) THEN PRINT
"THE BLAZE BURNS THE FAN" : ?2(0%+15) = 0

5840 RETURN

5848

5849 REM FLOAT

5850 v% = 39

5851 GOSUB 5950

5852 RETURN

5898

5899 REM GIVE

5900 IF FNg THEN PRINT y$: RETURN

5905 IF nl% 57 AND R% = 17 AND FNo(0,57) 99
AND FNo(0,48) R% THEN PRINT V$;"HIS KNIFE" : nl$%
= 48 : ? FNin 99 : ?(0%+168) = 0 : RETURN
5908 IF nl% 15 AND R% = 81 AND FNo(0,15)
THEN PRINT "S";V$;"A GOLDEN JAR" : ? FNin = 0 :
2(0%+27) = 99 : RETURN

5910 IF nl% = 40 AND R% = 49 AND FNo(0,40) = 99
THEN PRINT "S";V$;"A RUBY" : ? FNin = 0 : nl% = 7
: ? FNin = 99 : RETURN

5911 n3% = nl%

5912 PROCch(60,73,4)

5913 PROCch(73,79,3)

5914 PROCch(13,79,3)

5915 PROCch(67,80,1)

W uwu
[

99

221

5916 PROCch(44,80,1)
5917 PROCch(1l,7,5)
5918 PROCch(7,73,4)
5920 PROCch(20,31,4):PROCch(61,67,5)
5921 nl% = n3%

5922 ? FNin = R$%
5923 RETURN

5948

5949 REM LAUNCH
5950 PROCch(18,21,4)
6000 RETURN

6048

6049 REM LURE

6050 IF R% = 8 AND ?(0%+21) = 99 THEN PRINT "THE
WASPS EAT THE HONEY AND DIE" : L% = 2 : qu = TRUE

: ELSE PRINT "THEY DO NOT COME"

6090 RETURN

6098

6099 REM MAKE

6100 IF n2% = 0 AND nl%<>18 THEN PRINT Z$; FNvb;"
A LASSOO"™ : nl% = 22 : PROCoin(2,2) : 2(0%+63) =
14 : ?2(0%+144) = 99 : RETURN

6130 IF FNo(0,22) = 99 AND FNo(0,50) = 99 THEN
PRINT Z$; FNvb;"™ A RAFT" : nl% = 22 : ? FNin = 22
: 2(0%+27) = 50 : ?2(0%+51) = 99 : 2(0%+147) =0 :
RETURN

6140 PRINT x$;"THE EQUIPMENT"

6141 RETURN

6148

6149 REM MELT

6150 IF n2% = 0 THEN PROCtry : RETURN

6160 IF R% = 12 AND (nl% = 37 OR nl% = 78) AND
(n2% = 74 OR n2% = 42 OR n2% = 81) AND FNo(0,74) =
99 THEN v% = 43 : PROCch(nl%,12,2)

6190 RETURN

6198

6199 REM MOUNT

6200 PROCch(36,49,4)

6201 PROCch(56,74,6)

6202 IF R$ = 8 THEN L% =1

6225 PROCh(nls%)

6226 IF h% = 0 THEN RETURN

6230 IF R%<>49 AND R%<>74 AND R%<>8 THEN PRINT
"NO ROOM TO FLY"

6247 RETURN

6248

6249 REM SWIM

6250 IF R%<25 THEN PRINT J$;"NOTHING TO SWIM IN"
: RETURN

6270 IF nl%<>14 AND nl%<>19 AND nl%<>5 AND
nl%<>23 THEN PRINT HS$: RETURN

6280 v = 7

6281 GOSUB 4350

gg gg RETURN Figure 9.8 (continues)

222

6299 REM SMASH

6300 GOSUB 4100

6301 RETURN

6348

6349 REM SMEAR

6350 PROCh(nlsg)

6351 IF nl%<>54 THEN PRINT p$: RETURN
6365 GOSUB 5000

6366 PRINT R$;"NOW COVERED IN MUD"

6367 PROCoin(2,2)
6368 RETURN

6398
6399 REM SKATE
6400 IF R% = 46 AND ((FNo(l,62) AND 4) = 4) THEN

st = 1 : PROCch(nl%,46,1)
6450 RETURN
6498
6499 REM THROW
6500 PROCh(nl%)
6501 IF h% = 0 THEN RETURN

6520 IF R% = 13 AND nl% = 49 AND ?(0%+63) = 99
THEN PRINT I$;"CAUGHT ON A ROOT" : PROCoin(2,2) :
?(H+297) =1 : 2(0%+63) = 14 : 2(0%+144) = 13 :
RETURN

6525 IF R% = 45 AND nl% = 38 OR (R% = 45 AND nl$%
= 59) THEN PRINT "THE COFFIN SHATTERS" : 2(0%+99)
= 45 : ?(0%+111) = 0 : RETURN

6540 GOSUB 4200

6541 RETURN

6548

6549 REM TIE

6550 GOSUB 6100

6551 RETURN

6598

6599 REM WAVE

6600 PROCh(nl%)

6601 IF h% = 0 RETURN

6610 IF nl% = 6 PRINT R$;"MAGICALLY WHISKED AWAY"
: R = 58 : RETURN

6620 IF nl%=58 THEN PROCch(58,60,5) : E% =1
RETURN

6640 PRINT "VERY PRETTY"

6641 RETURN

6898

6899 REM VARIOUS PEEK AND POKE FUNCTIONS

6905 DEF FNb(by,v) = FNo(by,nl%) AND v

6910 DEF FNo(rby%,x) = ?2(0%+rby%+((x-1)*3))

6915 DEF FNg = FNo(0,nl%)<>99

6920 DEF PROCoin(wby%,wv$)

6921 ?(FNin+wby%) = ?(FNin+wby%)+wv$
6922 ENDPROC
6958

6959 REM IS OBJECT HERE?
6960 DEF PROCh(no)

223

6961 hs = 0

6962 IF FNo(0,no0)<>99 AND FNo(0,no)<>R% AND
FNo(0, FNo(0,no)+1)<>R% AND FNo(O,
FNo(0,no)+1)<>99 THEN PRINT y$: ENDPROC

6970 hg =1

6971 ENDPROC

6980 DEF PROCn

6981 k = nls%

6982 PROCdis

6983 ENDPROC

6990 DEF FNin = (0%+(nlg%-1)*3)

6999 REM ROUTINE TO SAVE GAME
7000 DEF PROCsa

7010 PRINT "“INSERT BLANK CASSETTE"
7025 ?2&5F94 = R%

7030 *SAVE "OPALDAT" 5000 S5FFF
7040 PRINT "FILE SAVED"

7050 ENDPROC

7199 REM INITIALISATION AND GAME LOADING

7200 DEF PROCst

7210 *LOAD"OPALDAT" 5000

7220 IF 2&5F94<>0 THEN R% = ?&5F94 ELSE R% =1

7221 n% = 0

7222 0% = &5000

7223 H = &510F

7224 ve = &5368

7225 nn = &54D8

7226 png = 0

7227 X% =0

7228 oxy = 2:st =0

7230 ds = 0

7231 L% =0

7232 E$ =0

7235 z$ = "you "

7236 RS = Z$+"ARE "

7237 C$ = ZS$+"SEE :"

7238 J$ = "THERE IS "

7239 P$ = J$+"AN EXIT "
7240 US$ = Z$+"HAVE "

7241 1$ = "IT IS "

7242 Q$ = I$+"SHUT"

7245 w$ = "WITH WHAT?"
7246 S$ = "DON’'T BE SILLY"
7247 dir$ = "NSEWUDILQ"
7248 p$ = "IMPOSSIBLE"
7249 H$ = "WHICH WAY?"
7250 K$ = Z$+"CAN'T "

7251 x$ = Z$+"DO NOT HAVE "
7252 y$ = xS$S+"IT."

7253 1$ = IS+"ALREADY "
7254 N$ = " NOTHING INTERESTING"
7255 V$ = "HE GIVES "+Z$

Figure 9.8 (continues)

7270 ns$ = "DOWN UP WEST EAST SOUTHNORTH"
7280 qu = FALSE

7281 conj = 0

7290 ENDPROC

8995 REM kkkkkkk DATA kkkkkkk

8996

8997

8998 REM ROOM DESCRIPTIONS
8999

9111 DATA "4a78+W7<7A3K7N"
9112 DATA

",X7U3K4a4B+W7[7a8 "6)$SM3Z+W.,8-+W82/4",""

9121 DATA "4a4H14871,5M*6+W8<3K8B3$5M",""
9131 DATA "+W828H,X7U3K4a4B8Q6)8X6%",""

9141 DATA "4a4H8£6)3b+W9)8°6)9.","

9151 DATA "4ad4H*6&Z4*949:140G1,5M",""

9161 DATA "4a4H&>0G9?23K+Wl,"

9162 DATA "4a78*D;£4/4a",""

9171 DATA ",X0G9H6.3K+W90631,4a78&2Z+LIT6)&>4a",""
9181 DATA "+w9\1D9b 5M453KOG9.. o OU

9191 DATA "4a4H:25C0.:;6.3282:@6. 3K1*,5M" "o
9201 DATA "4a4H,X+W7[2L3K1S$.,5M",""

9211 DATA "4a4H,x5JOG:L:Q4a78&z#V:[",""

9221 DATA "4Y4B+W2<3K-40$3_0G+s$",""

9231 DATA "+D:a5M+W;%,L3K1\0s$",""

9241 DATA "4a4H&>0G9?3K+W,L3K1\0s$",""

9251 DATA "+W;*682\6<,X+W;%;/;55M4a"

9252 DATA "*6;>:G4B+W;E;L3K+W;S,X+W;W;\6)+W&Y",""
9261 DATA "4a#@+W<+:Q<4/D5M4H<<6)<?<G<KN5M"
9262 DATA "5(4H2=(&5C3Z<V<\",""

9271 DATA "4a4H,X0G%#3K0G,D"

9272 DATA "OH4B<a6)+W=g",""

9281 DATA "0G=.4B=55C3Z=<5M"

9282 DATA
"874H(&5C3Z<V<\=C5M%>=I3K=P49=V6)3K=\24",""
9291 DATA "4a4H,X+W/<5a=k6)",""

9301 DATA "4Z4B+W34-D",""

9311 DATA
"3b0G,42L>+5M+W3<>05C>60.0G/<","0G2,4B>;",""
9321 DATA "4a4H,X0G%#3K0G2s$>@",""

9331 DATA "4Z4B+W>GS5\>K3K>P5M3K<V/<", ""

9341 DATA "0G=. "5M6=3_>Z5M3K>_6)/<",""

9351 DATA "4Z4B+W3<?%6)*<3_+$"

9352 DATA "0G2,4B?*6)20",""

9361 DATA "4a4H?45C1%5P6%?:,X+W=\#G5C3Z0$5M",""
9371 DATA "0G*\?2C6.?2I0G?Q3K+W?2V5C2\",""

9381 DATA "4a4H@&5C*6+W@-0$",""

9391 DATA "4a@4+W9:+W5G0G0S$@96)-$142,",""
9401 DATA
"4a4H,X0G@>@D@JI:Q=\245M49@Q5M@V, X@[A#5M3KA(",""
9411 DATA "0GRJA;5M,X6A+WOS6E"

9412 DATA "+W@>3Z+W@D63AF:a5MAK6)*60G0OS5M",""
9421 DATA ""

225

9431 DATA
9441 DATA
9451 DATA
9461 DATA
9471 DATA
9481 DATA
9491 DATA
9501 DATA
9521 DATA
9531 DATA
9541 DATA
9551 DATA
9561 DATA
9571 DATA
9581 DATA
9582 DATA
9591 DATA
9592 DATA
9601 DATA
9611 DATA
9621 DATA
9631 DATA
9632 DATA
9641 DATA
9651 DATA
9661 DATA
9671 DATA
9672 DATA
9681 DATA
9691 DATA
9701 DATA
9711 DATA
9712 DATA
9721 DATA
9731 DATA
9741 DATA
9751 DATA
9752 DATA
9761 DATA
9771 DATA
9781 DATA
9791 DATA
9801 DATA
9811 DATA

9821 DATA
9831 DATA
9841 DATA
9842 DATA
9851 DATA
9861 DATA
9871 DATA
9872 DATA
9881 DATA
9891 DATA

"4a4H,X0GAPAZ3IK+W?2V5C2\",""

"+WB ‘=(5C,X=\2449=P:a5M:,",""
"4a#@+WTN3K;\6)24",""

", X+WB<3KBBA(4a78+WBGBP6)BV2," ,""
"4a4H,X0GB]C#" ,""
"4a4H,X+WC(3KB]",""
"474B+WC/C9C@5C49CE5C" ,""

"4a4HCK, X+WCR1L3K2,CZ6)4a+4C_5M",""
"4a4H*6&7) TD3&£6) *<" ,""
"0GD3?C6.,X6A+WD8&>0GD>3KDC,L3K)T",""
"4a4H,XSJ+WDM3K)T",""
"4a4H,X+WEZ:L",""
"474B+WDVD]1\49E:",""

" ,XDbE ‘E/E55M3KE:)TEF4*4a",""

" ,X0G2<3KDb:LEKEO5SM+WOLEU"

", X+WEZE£OHF%5M1\-\%S5MF)F/",""
"*6+WF73KF<FF5MOGFJFOO0,-,"

"% ‘FTFXSMF"6%G%6) SHG/G65M" ,""
"4aG;3b+WGC3K?46)0L",""
"0G7I3KDb:LEK: '5SM$HGMGS",""
"4a4H,X+WH,H3H83KIQ6))T",""
"H=0G2<5M49HB3KDb : LEKHHHMHQ+, 3K)T0\45"
"§ZI(I-4BI1-$,X,-",""
"4a378+WDCI>3K)T",""
"4a4HIDSCO.+W7< ;£3K2*" ,""
"4a4HIL6)0.0G3<3K2T",""

",XDbIQ6) :LEKIVI\SM3KIbJ*H=0G736)"
"A-J5,-J:6.0G=.3V-<6.CR6%",""
"2TJ@5MH=0G7I3KDb:L",""
"JKDb:LEKJR6 .+W2<3KJzZ",""

"+WJL 3KK%2TK)5M3_# 6T4a",""
"4a4H,X0GK/3K0OGI\"
"0G9\EO5MK76)0G-\5M",""

"JKDb7< :L>+5M+W=\3KK<I(",""
"4aKC,X6A0G.4#G5C3ZKK5SM3KIb",""
"4a4HKP+W5G0.+WKV1L3D",""
"4a4H*6+W5HL29 : LI6$#N6)K8626%+4C_5M"
"+WLF3KJZLKSMH=+WLP,X0G9:",""
"4a4H*60G1WLY",""

"MC+WMJ1WMS5M490]SM&RMa4a",""
"4a4HEO6) *6+WN 6);£",""
"Db4BOG2L3KND",""
"4a4H,X+WNQ3KNVN]",""

@&5M3K ;£ 49094H1L5C0.0=CR3D5M4E5 (OD4a:5Db0OQ" , " "

"4a4H*60G7*600V",""

"§Z0]3Z+WPH#6)P)FF5M*6+W9b3K)D5M" , " "
"IVLP5M,XDb*D;£*F6JP.5M3K0G7N%H6J"
"+W7*3K1D5M4BP36)4EOGLP5MP;P2?2",""
"4ZEO5MOGFY9C1L3D",""

"474BOGE “3KPJ5M",""

"Db4BOGPQC(",""

" X0GGYEO5M+W1l,3KOLQ.5M",""

“Q46) =;£ 3_;£4B+WK\3K].\"\" , nn

Figure 9.8 (continues)

"4aQ9Q=6%784PDbE "4UQB5M*60G736) 49QK5M*60GHB" ,""

9901
9902
9911
9912

"4/0G9C5>S.
D=I4B# 535;

11998
11999
12000
12321
12544
12545
12547
12553
12582
12714
13526
13872

14777
15801
15807
15813
15820
15861
15867
15873
15918
16378
16436
16456
16814
17258
19997
19998
19999
20000
20001
20002
20005
20006
20007
20009
20010
20011
20014
20015
20017
20019
20021
20024
20025
20026
20032

DATA
DATA
DATA
DATA

REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

"DbE “4B+WQP3KQZ>6"
"*6+W543K1\R8FF5M+WRE3ZRKRR5M" , " "
"O0GHB3KDbRWE “4B+WR"3KB]49S%"

3K0GS46) HB&f SM+WS9503K1\S? : Q+WSD=(5C, X *

"n o onw
14

SPECIAL MESSAGES

"4a#20G+<"
"4aH33b"
"4a#2,X3_F)Jz"

") , 4a#—N"

"4aH33b"

"4aH33b"
"0G*L-T@94a"
"<a6)LP5M,X0GJZ"
"4a%Z+WLP49KC3b"
"4a%ZLP5M,X0G24"
"0G+L%)5MOG(T49%)5M4a+40G1, "
"0GO]%)5M4a3b"
"OGRE$%)5M$V"
"0G@>$F5SMSV5M/4 "
"5(&=0G0449$80G;E"
"4Y4B+WBG3K>6R8"
"+W*41\IQR85M0G6="
"4a4HKP453_=\"
"4aH33b+WLP"
"$VP35M3Z4a, XSVSMG6"
"4aP33b0G;€"

" 4a(_JKII
"4Y4HOMLPSM, X0G2T"

OBJECT DESCRIPTIONS

l|&Z (Tll
ll+w(\ll
"+W) $ll
WS "
"+W0,) D"
ll87)Lll
"+W)\"
"+W*$"
"g7%,5M"
"§Z*D.,"
"g7*L-T"
"+W*\"
"871\+' "
ll+w+<ll
ll&Z+T/$"
|l+w+\"
ll+w’ $Il
"+W,T3K)T"

227

20033
20037
19968
20042
20045
20046
20047
20048
20049
20051
20053
20054
20055
20056
20057
20060
20061
20062
20063
20064
20065
20066
20072
20073
20075
20077
20082

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

"+w'\“
"87-<6)0$5M"
"WEK"
"87.$-T"
"W <"
"+W.D"
"+W.L"
ll+w'Tll
"87.\5M"
"+w/' n
||87/<"
"+W/D"
"+W/L5M"
ll+w/Tll
Il+w/\|l
"8704"
"87(-5M"
ll+w0Dll
"870L"
II+WOTII
"+W2D0\"
"871$.,5M"
"g71T"
n+w1_\n
"872, LU
"+W2<"
"873$5M"

Figure 9.8 The Opal Lily

228

Adventures and artificial intelligence

‘This book is about the intelligence of computers, and about the intelligence of people
who play computer games. On the one hand, it aims to show some of the basics of
artificial intelligence and how it can be used in games. On the other it shows how you
can go about writing games that require some intelligence to play. Of course, the two
things go together.’

This is how Noel Williams introduces his book. Writing a good adventure game is by
no means a trivial job, and using some of the most recent techniques, it can form an
ideal introduction to artificial intelligence — the design of a program that makes the
computer appear to react intelligently, learning from past mistakes. The book
assumes a knowledge of BBC BASIC, implemented on the Electron or on the BBC
Micro. All aspects of the design and writing of an adventure game are covered,
including techniques of data compaction, sentence processing, and semantic
databases.

As a final illustration of the techniques described, there is a listing of a full-sized
eighty-one room adventure, The Opal Lily, occupying practically all of the Electron
RAM. Other illustrations — with full listings — are Mernar Keep (a simulation/war
game), and Dilemma, an original computer board game.

For the serious Electron or BBC Micro programmer, games writer, or student of
artificial intelligence, this book is a ‘must’!

McGRAW-HILL Book Company (UK) Limited
MAIDENHEAD - BERKSHIRE - ENGLAND 070847495

