
16. Anagram

General description

This program runs on a BBC Model 'B', but without REMs and
restricted amount of data it may run on a Model 'A'. However,
this has not been tested.

The program generates anagrams from given data, randomly
accessing the data and jumbling the letters. It invites a response
from the child and checks for certain letter combinations. Those
it considers most unlikely it marks with an arrow (^). There are
limited sound effects to hold the attention of the player.

It finally invites the player to judge whether the word made is
an 'English' word. Deliberately, there are no facilities to rub-out
errors and all attempts made by the player are saved for display
to the teacher when the program finishes. The teacher is needed
to correct and instruct the player when the 'game' has finished
and the final display is marked with '?'s against words the
computer thinks suspect and with '*'s against those that the
player thinks suspect.

In theory, progress on from the display page is controlled by
the teacher who will need to type in the '{character. The escape
key also follows progress.

You are first presented with an introduction page. This is
followed by letters being 'beeped' across the screen for the
anagram. The escape key is used to give up on the anagram and
progress to the menu page, whence the game can be finished,
replayed or results displayed.

It is important to read the educational notes before typing in
the program as several decisions must be taken concerning the
data. The game seems to hold the attention of players for about
15 minutes.

89

Detailed Description

Lines 1-34 Main structure of the program. The final block of
program is jumped to at line 224, otherwise the program is really
a simple series of steps through procedures. Certain variables
have to be initialised.

35-51 All jumbling of the letters is done on string handling
routines. The only array used in the program is to hold the words
created by the player. WORD$ is the unmixed word and
NEWWORD$ is the anagram.

52-77 This routine marches the letters of the anagram across
the screen to a respectable beeping sound. The small delay is to
give each letter time to sound its 'beep'. Play with the sound if
you like.

78-119 This is the heart of the checking section of the
program. The educational section of the notes will give you a
guide on the data to be included. If you change the data OR
renumber the program - beware . . . the program uses a
computed RESTORE to point to the correct data line. At the
moment the last number in line 86 is a '1'. This is the line
renumber interval. If you renumber with gaps of ten, then change
this to '10'. Similarly, in line 87 the current pointer to the start of
the data is '94'. Any renumber or playing with data may change
this. Finally when you change the data remember to finish each
line with a '9'. This acts as a data terminator.

120-134 This routine checks to see whether the letter chosen
is in the anagram. If it is not, the selected letter will generate no
screen response. There is also a check that the same letter in the
anagram is not used twice. This is done by substituting the
character '9' into the word once the letter in its position has been
used.

135-167 This routine itself calls a number of other
procedures. CONWORD$ is a parameter passed between
procedures via INWORD$. The last letter pair used is created
and checked against letter pairs in the routine above. The
player's word is stored for later display with a flag (SIGN) set if
the computer does not like the letter combination.

168-181 This routine, called from the one above, determines
if the last letter entered (TEST$) was a vowel. A flag (HFLAG)
is set if a vowel is found.

182-206 As the introduction is written in MODE 7 the CHR$
90

refers to the control codes required when working in MODE 7.
You are welcome to alter any features at the beginning to suit
your needs.

207-222 This simply generates the word to be jumbled
(WORD$). The data is accessed randomly so the number in
brackets in line 215 must contain a value that is the same as the
number of words in the data.

223-248 This displays the end of the game menu. Notice that
it is written in MODE 7 with all the above notes on control
codes for this MODE. Change the envelope if you do not think
that it suits you.

250-265 This routine is called from the menu. Return to the
menu should be via the '{character but I have not trapped the
escape key here and this will return to the menu as well . . . not
good practice.

266-276 This allow the player to decide if the word is an
English word or not and adds a suitable marker '*' at the end of
the word if the player rejects the word made.

Educational Notes

It is very important that these are read carefully before typing in
the program and the DATA in particular. The DATA supplied is
test data to show that the program works, but will not provide
the best use of the program. The teacher using the program must
decide (i) the number of words available to be mixed up, (ii) the
words themselves and (iii) the letter pairs that will be allowed.

The words themselves must be chosen with care. You may
wish to concentrate on the letter pairs 'ST', 'CT', 'LT'. It would
then be advisable to choose short words for the data which
include these letters, and other letters when combined with S, T
etc. would not be acceptable. Take e.g. 'BOAST'. By limiting the
acceptable letter pairs you will test for 'BT', 'BS', 'SB' etc. The
longer words provide greater problems for computer analysis, as
the chances of three consonants being put together and being
accepted by the computer increase. E.g.: 'SST' will currently
pass the pairs test as 'SS' and 'ST' both separately pass the test. It
is up to the user to decide whether to write a three letter check
procedure, but I feel that back checking has to finish arbitrarily
anyway, so I have stopped at letter pairs. If the teacher wishes to

91

avoid this problem, the anagram words must again be chosen
with care.

It is partly for this reason, and the educational advantages of
making the player decide whether the word he has used is an
'English' word for himself, that such a routine has been included.

I suggest that you keep several copies of the program with
different sets of data or spool the data in from tape if you wish to
adapt the program in that manner. In this way you can develop a
structured series of programs which in themselves will form a
learning program.

I will of course be pleased to hear in detail of any program of
learning that is developed. If you don't follow this idea, the
program will stand alone - but will not be as useful as it could
be.

Program Listing

 1 REM **************************
 2 REM * *
 3 REM * THE ANAGRAM PROGRAM ! *
 4 REM * adapted by I Murray *
 5 REM * 1983 *
 6 REM * *
 7 REM **************************
 8 REM
 9 REM ===========================
 10 REM = =
 11 REM = main structure =
 12 REM = =
 13 REM ===========================
 14 REM
 16 REMON ERROR GOTO 224
 17 MODE 7:SIGN=0
 18 PROCstart
 19 CLS : MODE 5 :CLEAR:DIM KWORD$(61):SIGN=0
 20 FFLAG=0:KW=1:KWORD$(1)=""
 21 PROCgetword
 22 LL=LEN(WORD$)
 23 PROCjumble (WORD$)
 24 PROCdisplay
 25 PROCgetin
 26 IF SIGN THEN KWORD$(KW) = KWORD$(KW) + " ??"
 27 PROCchoose
 28 SIGN = 0
 29 KW = KW + 1
 30 IF KW=60 GOTO 224
 31 VDU 31,1,10
 32 PRINT SPC (400) " "
 33 VDU 31,1,12:PRINT SPC(200) " ":GOTO25
 34 END
 35 REM =============================
 36 REM procedure to jumble letters
 37 REM
 38 REM
 39 DEF PROCjumble (WORD$)

92

 40 TEMP$=""
 41 LOCAL Y,X
 42 REPEAT
 43 X=LEN(WORD$)
 44 Y=RND(X)
 45 TEMP$ = TEMP$ + MID$(WORD$,Y,1)
 46 L$=LEFT$(WORD$,Y-1)
 47 R$=RIGHT$(WORD$,X-Y)
 48 WORD$=L$+R$
 49 UNTIL WORD$=""
 50 NEWWORD$=TEMP$
 51 ENDPROC
 52 REM ============================
 53 REM
 54 REM procedure to display letters
 55 REM on screen
 56 REM
 57 REM
 58 DEF PROCdisplay
 59 LOCAL U,V,W,X,Y,Z
 60 COLOUR 129:COLOUR 2
 61 CLS
 62 Y = LEN (NEWWORD$)
 63 W=2:X=0
 64 REPEAT
 65 X=X+1
 66 LET L$ = MID$(NEWWORD$,X,1)
 67 FOR Z = 1 TO W
 68 PRINT TAB(Z,3) L$
 69 SOUND 1,-10,50+Z,1
 70 FORV=1TO150:NEXT
 71 PRINT TAB(Z,3) " "
 72 NEXT Z
 73 W=W+2
 74 PRINT TAB(Z,4) L$
 75 SOUND 1,-10,30,2
 76 UNTIL X=Y
 77 ENDPROC
 78 REM ===========================
 79 REM
 80 REM procedure to check letter
 81 REM combinations are sensible
 82 REM
 83 REM
 84 DEF PROCcheck
 85 LOCAL C$
 86 STOR = (ASC(STOR$)-65)*1
 87 RESTORE (94+STOR)
 88 FFLAG = TRUE
 89 REPEAT
 90 READ C$
 91 IF C$="9" THEN FFLAG = FALSE
 92 UNTIL PAIR$=C$ OR FFLAG = FALSE
 93 ENDPROC
 94 DATA AI,AU,9
 95 DATA BB,BL,BR,BS,BY,9
 96 DATA CH,CK,CL,CR,CT,9
 97 DATA DG,DM,DR,DS,DY,9
 98 DATA EA,EE,EI,EU,9
 99 DATA FF,FL,FR,FS,FT,FY,9
 100 DATA GG,GH,GL,GN,GR,GS,GY,9
 101 DATA HR,HT,HS,9
 102 DATA IA,IE,IO,9
 103 DATA 9
 104 DATA KK,KN,KS,KY,9
 105 DATA LC,LD,LF,LG,LK,LL,LM,LP,LR,LS,LT,LY,9
 106 DATA MB,MC,MM,MP,MS,MY,9
 107 DATA NC,ND,NG,NK,NN,NP,NS,NT,NY,9
 108 DATA OA,OI,OO,OU,9

93

 109 DATA PH,PL,PN,PP,PR,PS,PT,PY,9
 110 DATA 9
 111 DATA RB,RC,RD,RF,RG,RH,RK,RL,RM,RN,RR,RS,RT,RV,9
 112 DATA SC,SH,SK,SL,SM,SN,SP,SQ,SS,ST,SW,SY,9
 113 DATA TH,TL,TR,TS,TT,TW,TY,9
 114 DATA UA,UE,UI,UO,9
 115 DATA VV,VS,VY,9
 116 DATA WH,WS,9
 117 DATA XY,XT,9
 118 DATA 9
 119 DATA ZZ,ZY,9
 120 REM ============================
 121 REM procedure to check the
 122 REM validity of character input
 123 REM against characters in the
 124 REM jumbled word
 125 REM
 126 REM SOUND 1,-15,20,5
 127 REM
 128 DEF PROCincheck (INWORD$)
 129 LOCAL X
 130 GFLAG=TRUE
 131 X=INSTR(INWORD$,INCHAR$)
 132 IFX=0THEN GFLAG = FALSE ELSE INWORD$ = LEFT$(INWORD$,X
-1)+"9"+RIGHT$(INWORD$,LL-X)
 133 CONWORD$ = INWORD$
 134 ENDPROC
 135 REM ============================
 136 REM procedure to input from the
 137 REM keyboard and display char.
 138 REM
 139 REM
 140 DEF PROCgetin
 141 LOCAL X,FLAG1,FLAG2
 142 X=1 : CONWORD$ = NEWWORD$
 143 PRINT TAB(1,10) "Make your word"
 144 REPEAT
 145 VDU 31,X,12
 146 INWORD$ = CONWORD$
 147 *FX15,1
 148 INCHAR$ = GET$
 149 IF ASC(INCHAR$)=13 THEN :PRINT:ENDPROC
 150 PROCincheck (INWORD$)
 151 IF NOT GFLAG THEN 148 ELSE PRINT INCHAR$
 152 SOUND 1,-12,53,2
 153 KWORD$(KW)=KWORD$(KW)+INCHAR$
 154 PAIR$ = RIGHT$(PAIR$,1)+INCHAR$
 155 IFX=1THENX=X+1:STOR$=INCHAR$:GOTO145
 156 TEST$=INCHAR$
 157 PROCvowel (TEST$)
 158 IF HFLAG THEN FLAG1=TRUE ELSE FLAG1= FALSE
 159 TEST$=LEFT$(PAIR$,1)
 160 PROCvowel (TEST$)
 161 IF HFLAG THEN FLAG2 =TRUE ELSE FLAG2 = FALSE
 162 FFLAG=TRUE
 163 IF (FLAG1 AND FLAG2) OR (NOT FLAG1 AND NOT FLAG2)
 THEN PROCcheck
 164 IF NOT FFLAG THEN VDU 31,X,13:PRINT"^":SIGN = TRUE:S
OUND 1,-15,10,4
 165 STOR$ = INCHAR$:X=X+1
 166 UNTIL LL = X-1
 167 ENDPROC
 168 REM ===========================
 169 REM vowel check
 170 REM
 171 REM
 172 DEF PROCvowel (TEST$)
 173 RESTORE 180
 174 LOCAL X,C$

94

 175 HFLAG=FALSE
 176 FORX=1TO5
 177 READ C$
 178 IFC$=TEST$ THEN HFLAG=TRUE
 179 NEXT
 180 DATA A,E,I,O,U
 181 ENDPROC
 182 REM ============================
 183 REM procedure to introduce the
 184 REM game
 185 REM
 186 REM
 187 DEF PROCstart
 188 PRINT"TO FINISH PRESS " CHR$(131) "ESCAPE" CHR$(135) "
KEY"
 189 PRINT TAB(3,3) CHR$(141);CHR$(131);"THE ANAGRAM TESTER
"
 190 PRINT TAB(3,4) CHR$(141);CHR$(131);"THE ANAGRAM TESTER
"
 191 PRINT TAB(3,6) CHR$(129) "This program is meant to"
 192 PRINT TAB(3,7) CHR$(129) "test the ability to"
 193 PRINT TAB(3,8) CHR$(129) "create letter pairs"
 194 PRINT TAB(3,9) CHR$(129) "from a valid anagram."
 195 PRINT : PRINT
 196 PRINT "RULES"
 197 PRINT
 198 PRINT "You will see lots of letters in a mess"
 199 PRINT "Try to get them into a word."
 200 PRINT "The word can be as long as you like !"
 201 PRINT "The micro will make a noise and"
 202 PRINT "show a little arrow '^' if it"
 203 PRINT "thinks a letter is very silly."
 204 PRINT CHR$(141) ; CHR$(131) "PRESS ANY KEY TO START"
 205 PRINT CHR$(141) ;CHR$(131) "PRESS ANY KEY TO START"
 206 LET R$ = GET$: ENDPROC
 207 REM ============================
 208 REM choose a word for the poor
 209 REM little mites to do.
 210 REM
 211 REM
 212 DEF PROCgetword
 213 RESTORE 219
 214 LOCAL X,Y
 215 X = RND(10)
 216 FOR Y = 1 TO X
 217 READ WORD$
 218 NEXTY
 219 DATA MASSIVE,GANTRY,TRIBUTE,TRYING
 220 DATA SAUCER,VISION,MIXTURE
 221 DATA METAL,CATTLE,THROUGH
 222 ENDPROC
 223 REM ===========================
 224 REM end of game routines
 225 REM
 226 REM
 227 MODE 7:ON ERROR GOTO 224
 228 PRINT CHR$(141);CHR$(131);"CALL YOUR TEACHER"
 229 PRINT CHR$(141);CHR$(131);"CALL YOUR TEACHER"
 230 PRINT
 231 PRINT TAB(10) CHR$(130) "Options"
 232 PRINT TAB(10) CHR$(130) "-------"
 233 PRINT
 234 PRINT TAB(5) "Print out words and results (1)"
 235 PRINT TAB(5) "Jumble another word (2)"
 236 PRINT TAB(5) "Restart the program again (3)"
 237 PRINT TAB(5) "End the program (4)"
 238 PRINT
 239 PRINT "Enter 1,2,3 or 4 only >> ";
 240 R$=GET$

95

 241 IF R$ < "1" OR R$ > "4" THEN 240
 242 PRINT R$
 243 IFR$="1" THEN PROCresult :GOTO 224
 244 IFR$="3" GOTO 16
 245 IFR$="2" GOTO 19
 246 ENVELOPE 1,3,2,2,2,5,5,5,0,0,0,-1,120,120
 247 SOUND 1,1,10,30
 248 PRINT TAB(5,15) CHR$(136);CHR$(131);"BYE BYE ... Ta":E
ND
 249 REM =============================
 250 REM display words of kiddy
 251 REM
 252 REM
 253 DEF PROCresult
 254 CLS :LOCAL X,Y
 255 PRINT CHR$(157) CHR$(141) CHR$(151) CHR$(132) TAB(8) "
RESULTS"
 256 PRINT CHR$(157) CHR$(141) CHR$(151) CHR$(132) TAB(8) "
RESULTS"
 257 PRINT:PRINT CHR$(131) "Jumble was " CHR$(130) NEWWORD$
 " from " WORD$
 258 PRINT:PRINT
 259 FOR X=1TO60 STEP 4
 260 PRINT TAB(1) KWORD$(X); TAB(10) KWORD$(X+1); TAB(20
) KWORD$(X+2); TAB(30) KWORD$(X+3)
 261 IF KWORD$(X+3)="" THEN X= 60
 262 NEXT : PRINT
 263 PRINT"LET YOUR TEACHER LOOK "
 264 CN$=GET$:IF CN$<>"["GOTO264
 265 ENDPROC
 266 REM =========================
 267 REM child chooses result
 268 REM
 269 REM
 270 DEF PROCchoose
 271 LOCAL X
 272 PRINT TAB(1,15) "An English word ?"
 273 WE$ = GET$
 274 IF WE$ = "N" THEN KWORD$(KW) = KWORD$(KW) + "*":PRINT"
NO":SOUND 1,-15,10,4:ELSE PRINT"YES" :SOUND 1,-12,70,5
 275 FOR X=1TO500 :NEXT
 276 ENDPROC

96

