
3 Two-Dimensional Coordinate
Geometry

In chapter 2 we introduced the concept ofthe two-dimensional rectangular
coordinate system, and defined points in space as vectors, whence we were able
to draw line segments between pairs of points. To be strictly accurate, a straight
line (or line for short) in two-dimensional space is not a finite segment, but
stretches off to infinity in both directions, and so we need to introduce ways of
representing a general point on such a line.

It is well known that the equation of a straight line is y = mx + c. This gives
the relationship between the x-coordinate and the y-coordinate of a general point
on a line, where m is the tangent of the angle that the line makes with the positive
x-axis, and c is the point of intersection of the line with the y-axis, so that when x
= 0 then y = c. This formula may be well known, but it is not very useful: if the
line is vertical, then m is infinite! A far better formula is

ay = bx + c

This allows for all possible lines: if the line is vertical a is 0. (b/a) is now the
tangent of the angle that the line makes with the positive x-axis, and the line cuts
the y-axis at (c/a) provided that a is not equal to zero, and the x-axis at (−c/b)
provided that b is not equal to zero. The line is parallel to the y-axis if a is zero,
and to the x−axis if b is zero.

We shall frequently use this fonnulation of a line in the following pages;
however we now introduce another, possibly more useful, method for defining a
line. Before we can describe this new method we must first define two operations
on vectors (namely scalar multiple and vector addition) as well as describe how
to calculate the absolute value of a vector. Suppose that we have two vectors, p1

≡ (x1 , y1) and p2 ≡ (x2 , y2) then

scalar multiple: we multiply the individual coordinates by a scalar (real) value:

kp1 = (k × i1 , k × y1)

vector addition: we add the x-coordinates together, and the y-coordinates
together.

p1 + p2 = (x1 + x2 , y1 + y2)



absolute value: the distance of the point p2 from the origin (this is also called the
length, and the modulus of the vector).

| p1 | = √ (x1
2 + y1

2)

To define a line we first arbitrarily choose any two points on the line - again
we call them p1 ≡ (x1, y1) and p2 ≡ (x2, y2). A general point p(µ) ≡ (x, y) is given
by the combination of scalar multiples and vector addition

(1 − µ)p1 + µp2

for some reitl value of µ; that is the vector ((1 − µ) × x1 + µ x2 , (1 − µ) × y1 + µ
× y2). We place the µ in brackets after p to show the dependence of the vector on
the value of µ. Later when we understand the relationship more fully we shall
leave out the (µ). If 0 ≤ u ≤ 1 then p(µ) lies on the line somewhere between p1
and p2. For any specified point p(µ), the value of µ is given by the ratio

distance of p(µ) from p1——————————
distance of p2 from p1

where the measure of distance is positive if p(u) is on the same side of p1 as p2,
and negative otherwise. The positive distance between any two vector points p1
and p2 is given by (Pythagoras)

| p2 − p1 | = √ {(x1 − x2)2 + (y1 − y2)2}

Figure 2.1 shows a line segment between the points (−3, −1) ≡ p(0) and (3, 2) ≡
p(1): the point (1 , 1) lies on the line as p(2/3). Note that (3, 2) is at a distance of
3√5 from (−3, −1)  whereas (1 , 1) is at a distance of 2√5. From now on we shall
omit the (µ) from the point vector.

Example 3.1
We can further illustrate this idea by drawing the pattern shown in figure 3.1 . At
first sight it looks complicated, but on closer inspection it is seen to be simply a
square, outside a square, outside a square etc. The squares are getting
successively sinaller and they are rotating through a constant angle. In order to
draw the diagram we need a technique that, when given a general square, draws a
smaller internal square rotated through this fixed angle. Suppose the general
square has four corners { (xi , yi) | i = 1, 2, 3, 4}  and the ith side of the square is
the line joining (x1, y1) to (xi+1, yi+1) − assuming that additions of subscripts are
modulo 4 (that is 4 + 1 ≡ 1). A general point on this side of the square, (x’ i, y’ i), is
given by

((1 − µ) × xi + µ × xi+1, (1 − µ) ×  y1, + µ × yi+1) where 0 ≤ µ ≤ 1 

In fact µ:1 − µ is the ratio in which the side is bisected. If µ is fixed and the four
points {(x'i , y'i) | i = 1, 2, 3, 4 } are calculated in the above manner, then the sides
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of the new square make an angle α = tan−1 [ µ/(1 − µ) ] with the corresponding
side of the outer square. So by keeping µ fixed for each new square, the angle
between consecutive squares remains a constant α. In listing 3.1 , which
generated figure 3.1, there are 21 squares and µ = 0.1.

Figure 3.1

It is useful to note that the vector combination form of a line can be reorganised
as

p1 + µ(p2 − p1)

When given in this new representation the vector p1 may be called the base
vector, and (p2 − p1) the directional vector. In fact any point on the line can stand
as a base vector; it simply acts as a point to anchor a line that is parallel to the
directional vector. This concept of a vector acting as a direction needs some
further explanation. We have already seen that a vector pair, (x, y) say, may
represent a point; a line that joins the coordinate origin to this point may be
thought of as specifying a direction - any line in space that is parallel to this line
is defined to have the same directional vector. We insist that the line goes from
the origin towards (x, y), the so-called positive sense; a line from (x, y) towards
the origin has negative sense.

This base and direction representation is also very useful fur calculating the
point of intersection of two lines, a problem that frequently crops up in two
dimensional graphics. For suppose we have two lines p + µq, and r + λs, where 
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Listing 3.1

100 REM square in square etc.
110 MODE 1
120 HORIZ=2.8 : VERT=2.1
130 PROCstart(3,0)
140 PROCsetorigin(HORIZ/2,VERT/2)
150 DIM X(4),Y(4),XD(4),YD(4)
160 DATA 1,1, 1,-1, -1,-1, -1,1
169 REM setup coordinates of square
170 FOR I%=1 TO 4 : READ X(I%),Y(I%) : NEXT I%
180 MU=0.1 : UM=1-MU
189 REM loop through 21 squares
190 FOR I%=1 TO 21
200 PROCmoveto(X(4),Y(4))
209 REM draw square defined by arrays X and Y
        : find next square given by arrays XD and YD
210 FOR J%=1 TO 4
220 PROClineto(X(J%),Y(J%))
230 NJ%=(J% MOD 4)+1
240 XD(J%)=UM*X(J%)+MU*X(NJ%)
250 YD(J%)=UM*Y(J%)+MU*Y(NJ%)
260 NEXT J%
269 REM reset (X,Y) values to (XD,YD)
270 FOR J%=1 TO 4
280 X(J%)=XD(J%) : Y(J%)=YD(J%)
290 NEXT J%
300 NEXT I%
310 STOP

p ≡ (x1, y1), q ≡ (x2, y2), r ≡ (x3, y3) and s ≡ (x4, y4) for −∞ < µ, λ < µ. We ned to
find the unique values of µ and λ such that

p + µq = r + λs

that is, a point that is common to both lines. This vector equation can be written
as two separate equations

x1 + µ × x2 = x3 + λ × x4 (3.1)

y1 + µ × y2 = y3 + λ × y4 (3.2)

Rewriting these equations we get

µ × x2 − λ × x4 = x3 − x1 (3.3)

µ × y2 − λ × y4 = y3 − y1 (3.4)

Multiplying equation (3.3) by y4, equation (3.4) by x4 and subtracting we get

µ × (x2 × y4 − y2 × x4) = (x3 − x1) × y4 − (y3 − y1) × x4

If (x2 × y4 − y2 × x4) = 0 then the lines are parallel and there is no point of
intersection (u does not exist), otherwise

(x3 − x1) × y4 − (y3 − y1) × x4µ = ———————————— (3.5)
(x2 × y4 − y2 × x4)
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and similary

(x3 − x1) × y2 − (y3 − y1) × x2λ = ————————————
(x2 × y4 − y2 × x4)

The solution becomes even simpler if one of the lines is parallel to a
coordinate axis. Suppose this line is x = d, then we can set r ≡ (d, 0) and s ≡ (0,
1), which when substituted in equation (3.5) gives

µ = (d − x1)/x2

and similarly if the line y = d

µ = (d − y1)/y2

Naturally if the two lines are parallel then the denominator in these equations
becomes zero and we get an infinite result, because two parallel lines cannot
intersect.

Example 3.2
Find the point ofintersection ofthe two lines that (a) join (1 , −1) to (−1, −3) and
(b) join (1, 2) to (3, −2).

The lines may be written as

(1 − µ)(1, −1) + µ(−1,−3) −∞ < µ < ∞ (3.7)

(1 − λ)(1, 2) + λ(3, −2) −∞ < λ < ∞ (3,8)

or when placed in the base/directional form as

(1, −1) + µ(−2, −2) (3.9)

(1, 2) + λ(2, −4) (3.10)

Substituting these values into equation (3.5) gives

(1 − 1) × −4 − (2 + 1) × 2
µ = —————————— = −1/2

(−2 × 4 − (−2) × 2)

whence the point of interaction is (1, −1) − 1/2(−2, −2) ≡ (2,0).
The general case is solved by the program given in listing 3.2.

Exercise 3.1
Experiment with this concept of vector representation of two-diimensional spac' .
You can make up your own questions: it is easy to check that your answers are
correct. Consider example 3.2. We know that (2, 0) lies on the first line because
we used the value µ = −1/2: our answer is correct if it also lies on the second line
which it does with λ = 1/2. 
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Listing 3.2

100 REM intersection of two lines
110 MODE 7
120 DIM X(4),Y(4)
130 PRINT TAB(8,3),"INTERSECTION OF LINES"
140 PRINT TAB(0,5),"LINE A FROM (X(1),Y(1)) TO (X(2),Y(2))"
150 PRINT TAB(0,6),"LINE B FROM (X(3),Y(3)) TO (X(4),Y(4))  "
159 REM INPUT vertices of lines A & B
160 FOR I%=1 TO 4
170 PRINT "X(";I%;"),Y(";I%;") "; : INPUT X(I%),Y(I%)
180 NEXT I%
190 CLS
199 REM PRINT information about lines
200 PRINT TAB(0,5);"Line A goes from"
210 PRINT"(";X(1);",";Y(1);") to (";X(2);",";Y(2);")"
220 PRINT TAB(0,8);"Line B goes from"
230 PRINT"(";X(3);",";Y(3);") to (";X(4);",";Y(4);")"
239 REM calculate (XINT,YINT) the point of intersection
240 X(2)=X(2)-X(1) : Y(2)=Y(2)-Y(1)
250 X(4)=X(4)-X(3) : Y(4)=Y(4)-Y(3)
260 DET=X(2)*Y(4)-Y(2)*X(4)
270 PRINT TAB(0,12);"Point of intersection ";
280 IF ABS(DET) < 0.00001 THEN PRINT "does not exist." : GOTO 320
290 MU=((X(3)-X(1))*Y(4)-(Y(3)-Y(1))*X(4))/DET
300 XINT=X(1)+MU*X(2) : YINT=Y(1)+MU*Y(2)
310 PRINT : PRINT"(";XINT;",";YINT;")."
320 PRINT TAB(0,22); : STOP

Exercise 3.2
Write a program that reads in data about two straight lines in the form of an
equation and then calculates their point of intersection (if any).

Returning to the use of a vector (q ≡ (x, y) ≠ (0, 0), say) that represents a
direction, we note that any positive scalar multiple kq, for k > 0, represents the
same direction and sense as q (if k is negative then the direction has its sense
inverted). In particular, setting k =1/ | q |}  produces a vector (x/√(x2 + y2),
y/√(x2 + y2)) with unit absolute value.

Thus a general point on a line p + µq, is a distance µ | q | from the base point p
and if | q | = 1 (a unit vector) then the point is a distance µ from p.

We now consider the angles made by directional vectors with various fixed
diretions. Suppose that α is the angle between the line joining O (the origin) to
q ≡ (x, y), and the positive x-axis. Then x = | q | × cos α and y = | q | × sin a - see
figure 3.2: there are similar figures for the other three quadrents. If q is a unit
vector (that is, | q | = 1) then q ≡ (cos α, sin α). However, since sin α = cos(α −
π/2) for all values of α, this expression can be written as q ≡ (cos α, cos(α − π/
2)), where α − π/2 is the angle that the vector makes with the positive y axis.
Hence the coordinates of a unit directional vector are called its direction cosines,
since they are the cosines of the angle that the vector makes with the
corresponding positive axes

Two-dimensional Coordinate Geometry 49



| | cosαq

| | sinαq

(x , y)≡q

y

x

α

Figure 3.2

Before continuing we should take a look at the trigonometric functions
available in BASIC: SIN and COS, and the inverse function ATN. SIN and COS
are functions with one parameter (an angle given in radians) and one result (a
value between −1 and +1). The ATN function takes any value and calculates the
angle in radians (in the so-called principal range between −π/2 and +π/2) whose
tangent is that value.

This leads us to the problem of finding the angle that a general direction q ≡
(x, y) makes with the positive x-axis, which is solved by the procedure ' angle'
given in listing 3.3 . ‘angle’ will be of great use in later chapters when we
consider three-dimensional space.

Listing 3.3

8810 DEF FNangle(AX,AY)
8820 IF ABS(AX)>0.00001 THEN 8860
8830 IF ABS(AY)<0.00001 THEN =0
8840 IF AY<0 THEN =1.5*PI
8850 =PI/2
8860 IF AX<0 THEN =(ATN(AY/AX)+PI) ELSE =ATN(AY/AX)

Now suppose we have two directional vectors (a, b) and (c, d); for simplicity
we can assume that they are both unit vectors and that they both pass through the
origin (see figure 3.3). We wish to calculate the acute angle, α, between these
lines. From the figure we note that OA = √(a2 + b2) = 1 and OB = √(c2 + d2) = 1.
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Figure 3.3

So by the Cosine Rule

AB2 = OA2 + OB2 − 2 × OA × OB × cos α = 2 × (1− cos α)

But also by Pythagoras

AB2 = (a − c)2 + (b − d)2 = (a2 + b2) + (c2 + d2) − 2 × (a × c + b × d)

= 2 − 2 × (a × c + b × d)

Thus a × c + b × d = cos α. It is possible that a  × c + b × d is negative in which
case cos−1(a × c + b × d) is obtuse and the required acute angle is π − α. Since
cos(π − α) = −cos α, then the acute angle is given immediately by cos−1(| a × c +
b × d |). For example, given the two lines with direction cosines (√3/2, 1/2) and
(−1/2, −√3/2), we see that a × c + b × c = −√3/2 and thus a = cos−1 (√3/2) = π/6.
This simple example was given in order to introduce the concept of a scalar
product • of two vectors, (a, b) • (c, d) = a × c + b × d. Scalar product is
extendable into higher-dimensional space (see chapter 7 for a three-dimensional
example) and it always has the property that it gives the cosine of the angle
between any pair of lines whose directions are defined by the two vectors.

Curves: Functional Representations versus Parametric Forms

A curve in two-dimensional space can be considered as a relationship between x
and y coordinate values, the so-called functional relationship. Alternatively the
coordinates can be individually specified in terms of other variables or
parameters, the parametric form.
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We have already seen that a line (a circular arc of infinite radius) may be
expressed as ay = bx + c. If we rearrange the equation so that one side is zero,
that is ay − bx = 0, then the algebraic expression on the left-hand side of the
equation is called a functional representation of the line and written as

f(x, y) ≡ ay − bx − c

All, but only, those points with the property f(x, y) = 0 lie on the curve. This
representation divides all the points in two-dimensional space into three sets: f(x,
y) = 0 (the zero set) f(x,y) > 0 (the positive set) and f(x, y) < 0 (the negative set).
If the function divides space into the curve and two other connected area only
(that is, any two points in a connected area may be joined by a curvilinear line
which does not cross the curve), then these areas may be identified with the
positive and negative sets defined by f. However, be wary, there are many
elementary functions (for example, g(x, y) ≡ cos(y) − sin(x)) that define not one
but a series of curves and hence divide space into possibly an infinite number of
connected areas (note that g(x, y) ≡ g(x + 2mπ, y + 2nπ for all integers m and n).
So it is possible that two unconnected areas can both belong to the positive set.

Note that the functional representation need not be unique. We could have put
the line into an equivalent form

f'(x, y) ≡ bx + c − ay

in which case the positive set of this function is the negative set of our original,
and vice versa.

The case where the curve does divide space into two connected areas is very
useful in computer graphics, as we shall see in the study of two-dimensional and
(especially) three-dimensional graphics algorithms. Take for example the straight
line

f(x, y) ≡ ay − bx − c

where a point (x1, y1) is on the same side of the line as (x2, y2) if and only if f(x1,
y1) has the same non-zero sign as f(x2, y2). The functional representation tells us
more about a point (xl, y1) than just on which side of a line it lies - it also enables
us to calculate the distance of the point from the line.

Suppose we have the above line, then its direction vector is (a, b). A line
perpendicular to this will have the direction vector (−b, a). (Why? Because the
product of the tangents of two mutually perpendicular lines is −1 ; see McCrae,
1953.) So the point q on the line closest to the point p ≡ (x1, y1) is of the form

q ≡ (x1, y1) + µ(−b, a)

Therefore, a new line that joins p to q is perpendicular to the original line. Since
q lies on this original line, then

f(q) = f(x1, y1) + µ(−b, a)) = 0
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that is

a × (y1 + µ × a) − b × (x1 − µ × b) − c = f(x1, y1) + µ(a2 + b2) = 0

Hence

µ = f(x1, y1)/(a2 + b2)

The point q is a distance µ × | (−b, a) from (x1, y1) which naturally means that the
distance of (xl, y1) from the line is m × √(a2 + b2) = −f(x1, y1)/√(a2 + b2): the sign
denotes on which side of the line the point is lying. If a2 + b2 = 1 then | f(x1, y1) |
gives the distance of the point (x1, y1) from the line.

This idea leads us directly to a way of implementing convex areas; these areas
are such that a straight line segment that joins any two points within the area lies
totally inside the area. We shall limit our study to convex polygons, however,
since it is obvious that any convex area may be approximated by a polygon,
providing that it has enough sides.

Suppose we have a convex polygon with n vertices {p≡ (x1, y1) | i = 1, 2, . . . ,
n} taken in order around the polygon (either clockwise or anticlockwise) - we
shall call such a description of a convex polygon an oriented convex set of
vertices. The problem of finding whether such a set is clockwise or anticlockwise
is considered in chapter 7. The n boundary edges of the polygon are segments of
the lines

fi(x, y) ≡ (xi+1 − x1) − (y − y1) − (yi+1 − yi) − (x − xi)

where i = 1 , . . . , n, and the addition in the subscripts is modulo n (that is, n + j ≡
j for 1 ≤ j ≤ n). Try to explain why these formulae do actually describe the line
segments!

This systematic definition of the lines enables us to define the inside of the
convex area. Any given line segment, say the one joining pi to pi+1 for some i, is
such that the points inside the body must lie on the same side of this line as the
remaining vertices of the polygon, in particular pi+2. So the inside is given by

{(x, y) | sign of fi(x, y) = sign of fi(xi+2, yi+2) ≠ 0: i = 1, . . . , n}

A point on the boundary is given by

{(x, y) | there exists one j, or two if (x, y) is a corner
where 1 ≤ j ≤ n such that fi(x, y) = 0 and
sign of fi(x, y) = sign of fi(xi+2, yi+2) ≠ 0: i ≠ j and 1 ≤ i ≤ n}

A point outside the area is defined

{(x, y) | there exists one j, 1 ≤ j ≤ n such that
0 ≠ sign of f(x, y) ≠ sign of fi(xj+2, yi+2) ≠ 0}

Naturally the additions of subscripts are all modulo n. This technique of ‘ inside
and outside’ is fundamental to the hidden surli' ce algorithm of chapter 12. 
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Example 3.3
Suppose we are given the convex polygon with vertices (1 , 0), (5, 2), (4, 4) and
(−2, 1): see figure 3.4. 1n this order the wrtices obviously has an anticlockwise
orientation. Are the points (3, 2), (1, 4), (3, 1) inside, outside or on the boundary
of the polygon? What is the distance of (4, 4) from the first line?

-2 -1 1 2 3

2

1

x

y

4 5

3

4 (4 , 4)

(-2 , 1)

(1, 0)

(5 , 2)

Figure 3.4

f1(x, y) ≡ (5 − 1) × (y − 0) − (2 − 0) × (x − 1) ≡ 4y − 2x + 2

f2(x, y) ≡ (4 − 5) × (y − 2) − (4 − 2) × (x − 5) ≡ −y − 2x + 12

f3(x, y) ≡ (−2 − 4) × (y − 4) − (1 − 4) × (x − 4) ≡ −6y + 3x + 12

f4(x, y) ≡ (1 + 2) × (y − 1) − (0 − 1) × (x + 2) ≡ 3y + x − 1

Hence point (3, 2) is inside the body because f1(3, 2) = 4 and f1(4, 4) = 10; f2(3,
2) = 4 and f2(−2, 1) = 15; f3(3, 2) = 9 and f3(1, 0) = 15; f4(3, 2) = 8 and f4(5, 2) =
10 - all with the saine positive signs.
Point (1, 4) is outside the body because f3(1, 4) = −9 and f3(1 , 0) = 15 − opposite
signs.
Point (3, 1) is on the boundary because f1(3, 1) = 0, f2(3, 1) = 5, f2(3, 1) = 15 and
f4(3, 1) = 5.                

In fact there is no need to work out fi(xi+2, yi+2) for every i - since they all
have the same sign, once we have calculated fi(x3, y3) then we can work with this
value throughout.

(4, 4) is a distance (f1(4, 4)/√(42 + 22) = 10/√20) =,/5 from line 1
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Exercise 3.3
Imagine two convex polygons that intersect one another. The area of intersection
is also a convex polygon. Use the methods that are mentioned in this chapter to
calculate the wrtices of the new polygon.

Having dealt with the functional representation of a line, what about the
parametric form? We noted that this form is one where the x-coordinate and y-
coordinate of a general point on the curve are given in terms of parameter(s)
(which could be the x or y values themselves), together with a range for the range
for the parameter. So we have aheady seen a parametric form of a line, it is
simply the base and directional representation

b + µd ≡ (x1, y1) + µ(x2, y2)
≡ (x1 + µ × x2, y1 + µ × y2) where −∞ < µ < ∞

Here µ is the parameter, and x1 + µ × x2 and y1 + µ × y2 are the respective x and y
values, which depend only on variable µ.

We can also produce functional representations and parametric forms for most
well-behaved curves. For example a sine curve is given by f(x, y) ≡ y − sin(x) in
functional representation, and by (x, sin(x)) with −∞ < x < ∞ in its param' tric
form. The general conic section (ellipse, parabola and hyperbola) is represented
by the general function

f(x, y) ≡ a × x2 + b × y2 + h × x × y + f × x + g × y + c

where the coefficients a, b, c, f, g, h uniquely identify a curve. A circle centred at
the, origin of radius has a = b = 1, f = g = h = 0 and c = −r2, whence f(x, y) ≡ x2 +
y2 − r2. All the points (x, y) on the circle are such that f(x, y) < 0, and the outside
of the circle f(x, y) < 0, and the outside of the circle f(x, y) > 0. The parametric
form of this circle is (r × cos α, r × sin α) where 0 ≤ α ≤ 2π. (We have already
met the parametric form ofa circle, ellipse and spiral in chapter 2.)

It is very useful to experiment with these (and other) concepts in two
dimensional geometry. There will be many occasions when it is necessary to
include these ideas in programs, as well as the ever-present need when we are
generating coordinate data for diagrams.

Example 3.4
Suppose we wish to draw a circular ball (radius r) that is disappearing down an
elliptical hole (major axis a, minor axis b) - see figure 3.5. Parts of both the
ellipse and circle are obscured.

Let the ellipse be centred on the origin with the major axis horizontal and the
centre of the circle a distance d vertically above the origin. The ellipse has the
functional representation

fe(x, y) ≡ x2/a2 + y2/b2 − 1
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and in parametric form

(a × cos α, b × sin α) with 0 ≤ α ≤ 2π

For the circle

fc(x, y) ≡ x2 + (y − d)2 − r2

and in parametric form

(r × cos λ, d + r × sin λ) where 0 ≤ λ ≤ 2π

To generate the picture we must find the points (x, y) coniinon to the circle and
ellipse (if any). As a useful demonstration we shall mix the representations in
searching for a solution, by using the functional representation for the circle and
the parametric form of the ellipse.

So we searching for the points (x, y) ≡ (a × cos α, b × sin α) on the ellipse that
also satisfy fc(x, y) = 0. That is

a2 × cos2α + (b × sin α − d)2 − r2 =0

or

a2 × cos2α + b2 × sin2α − 2 × b × d × sin α + d2 − r2 = 0

And since cos2a =1 − sin2a, then

(b2 − a2) × sin2α − 2 × b × d × sin α + a2 + d2 − r2 = 0

This is a simple quadratic equation in the unknown sin a, which is easily solved
(the quadratic equation Ax2 + Bx + C = 0 has two roots given by (−B ± √(B2 − 4 ×
A × C))/(2 × A)). For each value of sin a we can find values for a with 0 ≤ α ≤ 2π
(if they exist) and we can then cakulate the points of intersection (a × cos α, b ×
sin α).

There is no hard and fast rule about which representittion to use in any given
situation - a feel for the method is required and that only comes with experience.

Exercise 1.4
Write a program that will draw figure 3.5.
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Figure 3.5

Complete Programs

I ‘ lib1’ and listing 3.1 : no data required.
II Listing 3.2. Data required: four coordinate pairs (X1, Y1), (X2, Y2),

(X3, Y3) and (X4, Y4). 
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