
13 Teletext Graphics, Mode 7

Mode 7 on the BBC micro is the only mode in which the shapes of the characters
are not explicitly stored in memory. Instead just one byte is used for each of the
screen character locations which, in the simplest case, holds the ASCII code of
the character to be displayed there. The screen display is then generated by a
special micro-chip which contains the data for each character. The chip looks at
the screen memory to see which character is to be displayed at that position and
then includes the correct data for that character directly into the television signal.
This means that the chip has to recalculate the data for the whole screen each
time the television display is refreshed, 50 times a second (60 times a second in
the U.S.A.).

The memory for the screen is arranged very simply and consists of 1000
locations (40 across by 25 down). Starting at location HIMEM (which is set to
&7C00 in mode 7) the data for the screen are stored row by row, with forty
locations per row. Hence the location equivalent to the block accessed by PRINT
TAB(X, Y) is given by &7C00 + 40 * Y + X. As in chapter 5, we assume that
there is no hardware scrolling of the screen.

There are two types of character in this mode: alphanumeric and graphic. Try
the simple program in listing 13.1 which changes one single screen location at a
time by storing the ASCII code of an alphanumeric character.

Listing 13.1

10 MODE 7
20 REPEAT
30 A=&7C00+(RND(25)-1)*40+RND(40)-1
40 ?A=RND(32)+64
50 UNTIL FALSE

Example 13.1
Invisible control codes may also be placed in these screen locations. These allow
control of further display options such as colour, flashing, or distinguishing
between alphanumeric and graphic characters. Rerun listing 13.1 (which drew
alphanumeric characters by default) with line 40 replaced by ?A = RND(256) −
1. The effect of these codes is to mix up graphics and alphanumerics randomly
on the screen.

Table 13.1 shows the ASCII codes that have special effects on the mode 7
teletext screen.

Table 13.1

128 144
129 Alpha red 145 Graphic red
130 Alpha green 146 Graphic green
131 Alpha yellow 147 Graphic yellow
132 Alpha blue 148 Graphic blue
133 Alpha magenta 149 Graphic magenta
134 Alpha blue 150 Graphic cyan
135 Alpha white 151 Graphic white
136 Start flash 152 Conceal
137 End flash 153 Contiguous graphics
138 154 Separated graphics
139 155
140 Normal height 156 Black background
141 Double height 157 New background
142 158 Hold graphics
143 159 Release graphics

Some of these characters are available (from OS 1.0 onwards) directly from
the keyboard by using the shift or control keys with the red soft keys. Most
useful are the colour codes alpha red to alpha white, which are available with
shift on keys fl to f7 (see table 3.2), and colour codes graphic red to graphic
white, which are available with control on the same keys. Other codes can be
programmed for the function keys by using the ‘ !’ option (see user guide) to
produce codes that are numerically greater than or equal to 128. For example,
typing ‘KEY1||!||M would set key fl to code 141 which corresponds to double
height. The control keys H, I, J, K will move the text cursor (left, right, down,
up): this will enable you to experiment by placing control codes all over the
screen. For example, double-height letters may be placed on the screen by typing
f1 (the control code 141) followed by the required text at the text cursor, and then
repeating (or copying) the same string (code 141 followed by text) exactly one
line above. You can see this in programmed form in the ‘brickout’ game of listing
13.5 .

Each hne of the display is treated as an individual unit. Unless told otherwise,
the computer assumes that a black background and white alphanumerics are
required. For example, to get red text you must type the colour code for alpha red
(shift fl), which would appear as a space on the line, followed by any required
text. The red code will be effective either for the remainder of the present line or

Teletext Graphics, Mode 7 225

until another colour code is encountered. Naturally all control codes take up one
screen block and result in a space being displayed at that position. These codes
can be used to highlight REMarks in prograin listings when viewed in mode 7.
The programs on the audio cassettes that accompany this book contain colour
codes in the REM statements to make it easier to find individual procedures and
to read the explanatory comments.

226 Advanced Graphics with the BBC Model B Microcomputer

Listing 13.2

10 MODE 7
19 REM go t hr ough al l t he codes except t he cont r ol codes (< 32)
20 FOR I =32 TO 255 STEP 32
30 VDU 129
40 FOR J=I TO I +31
49 REM don' t out put char act er s 127 or i t wi l l del et e pr evi ous code.
50 I F J<>127 THEN VDU J
60 NEXT J
70 PRI NT ‘
80 NEXT I

Example 13.2
Run listing 13.2. The program will display, in red, all the available alphanumeric
characters (equivalent to ASCII codes 32 to 255). If we change line 30 from
VDU 129 (alpha red) to VDU 145 (graphic red) you will see all the available
graphic characters. The upper case characters are the same in both the graphics
and alplianumeric colours, but the remaining characters are different. These other
codes will be displayed as the block graphics characters, each containing 6 small
square blocks (3 vertically by 2 horizontally). The 64 possible characters that are
produced from such a combination of 6 blocks may be accessed by typing the
normal alphanumeric characters for the ASCII codes 32 to 63 and 96 to 127 after
a graphics code. Note that the ASCII codes 65 to 95 still produce their normal
symbols. All the codes from 32 to 127 are duplicated on ASCII codes 160 to 255.
Therefore should we wish to write a program that PRINTs teletext characters
(including teletext codes) it is easier to use the lower ASCII code values which
can be typed (into the string inside quotes following PRINT) directly from the
keyboard. This, however, has the disadvantage that code 127, which should
correspond to a totally filled character, is equivalent to the delete code. The VDU
command allows use of the characters with codes 160 onwards. To calculate the
appropriate ASCII character for any given pattern of blocks you should use the
method detailed in the user guide, which finds the code value for any block
character in the higher set (160 to 255) or you can see them in figure 13.1.

Example 13.3
It is tedious to access each individual block character, especially if we wish to
use them for drawing low-resolution diagrams. A far more sensible approach is to
create a library of procedures to do the manipulation for us. For example, the

Figure 13.1

listing 13.3 draws a low-resolution picture of sine and cosine curves. The
individual square pixels of this picture are the 1/6th blocks from within the
graphics characters. Naturally we must allow for the addition (or deletion) of
extra square pixels within a graphics character. We use the locations down the
left-hand side of the screen for the graphic white code (or any other graphics
colour). This means that the x-coordinates for our square pixel-blocks are in the
range 2 to 79 (character columns 1 to 39: column 0 holds the colour code) and
the y-coordinates are in the range 0 to 74 (rows 24 to 0). We introduce a ‘plot’
procedure which has three parameters, the coordinates of the pixel to be plotted
and an integer (1, 2 or 3) that is used to define the type of plot − plot
FOREGROUND, plot BACKGROUND or plot EOR respectively. We also give
the ‘draw’ procedure which joins two specified points with an approximation to a
straight line.

After mnning the program, hold down the RETURN key and you will delete
all the control codes from the left-hand edge of the screen, and all the equivalent
text characters become visible. Now type control Z, wllich will take the text
cursor to the top of the screen. Then continuously press soft key f9 (set by line
180 ofthe program), which will reset the graphics control codes.

Teletext Graphics, Mode 7 227

Listing 13.3

 10 MODE 7
 19 REM Ar r ay D st or es val ues f or posi t i oni ng each 1/ 6t h bl ock
 i nsi de char act er .
 20 DI M D(1, 2)
 30 FOR I %=0 TO 1
 40 FOR J%=0 TO 2
 50 READ D(I %, J%)
 60 NEXT J%
 70 NEXT I %
 80 DATA 16, 4, 1, 64, 8, 2
 89 REM pl ace gr aphi cs whi t e codes down si de of scr een.
 90 FOR L=0 TO 24
100 A=HI MEM+40* L : ?A=151
110 NEXT L
119 REM Dr aw axes.
120 PROCdr aw(1, 2, 35, 79, 35)
130 PROCdr aw(1, 40, 0, 40, 74)
139 REM Si mul t aneousl y pl ot cur ves.
140 FOR I =2 TO 79 STEP 1
150 PROCpl ot (1, I , COS(4- I / 10) * 30+35)
160 PROCpl ot (1, I , SI N(4- I / 10) * 30+35)
170 NEXT I
180 * KEY0| ! | W| J| H
190 END

200 REM pl ot
210 DEF PROCpl ot (M, X, Y)
220 LOCAL C, XX, YY
229 REM Fi nd addr ess of char act er bl ock whi ch cont ai ns ‘ pi xel ' .
230 A=&7C00+(25- (Y DI V 3)) * 40+X DI V 2
240 XX=X MOD2 : YY=Y MOD 3
249 REM Make sur e we have char act er i n hi gher set (160 t o 255) .
250 C=?A : I F C<128 THEN C=C+128
259 REM Modi f y char act er .
260 I F M=1 THEN C=C OR D(XX, YY)
270 I F M=2 THEN C=C AND (D(XX, YY) EOR &FF)
280 I F M=3 THEN C=C EOR D(XX, YY)
289 REM Repl ace char act er .
290 ?A=C
300 ENDPROC

400 REM dr aw
410 DEF PROCdr aw(M, X1, Y1, X2, Y2)
420 DX=X2- X1 : DY=Y2- Y1 : SX=SGN(DX) : SY=SGN(DY)
430 DX=ABS(DX) : DY=ABS(DY)
440 I F DX=0 THEN ST=DY : SX=0 : GOTO 480
450 I F DY=0 THEN ST=DX : SY=0 : GOTO 480
460 I F DX>DY THEN SY=SY* DY/ DX : ST=DX ELSE SX=SX* DX/ DY : ST=DY
470 I F ST=0 THEN ENDPROC
479 REM Pl ot each pi xel al ong l i ne.
480 FOR I =0 TO ST STEP SGN(ST)
490 PROCpl ot (M, X1, Y1)
500 X1=X1+SX : Y1=Y1+SY
510 NEXT I
520 ENDPROC

228 Advanced Graphics with the BBC Model B Microcomputer

Exercise 13.1
Change the value of NXNX and NYP1X in the ‘start’ procedure (listing 2.1) and
alter ‘moveto’ and ‘lineto’ (listings 2.4 and 2.5) so that they produce calls to the
‘plot’ and ‘draw’ procedures. This will allow you to use any of our existing two-
dimensional and three-dimensional graphics programs to draw 1ow-resolution
teletext pictures. Figure 13.2 is a 1ow-resolution picture of a cube that was drawn
by the program from chapter 9 which has been altered in this way.

Figure 13.2

Listing 13,4

2000 DEF PROCkeys
2010 DEF PROCinitkeys
2020 *KEY0|!|L
2030 *KEY1|!|M
2040 *KEY2|!|Z
2050 *KEY3|!|\
2060 *KEY4|!|]
2070 *KEY5|!|^
2080 *KEY6|!|_
2090 ENDPROC

We now return to a discussion of the control co:ies. As we have seen, not all
the codes are immediately available from the keyboard so we give a procedure
‘initkeys’ (listing 13.4) which simplifies the entry of control codes that are not
a1ready available on the keyboard by redefining the soft keys. Table 13.2 lists the
codes accessible from the keyboard.

Teletext Graphics, Mode 7 229

Table 13.2 Control codes available on the function keys

Key With shift With control

fl 141 Double height 129 Alpha red 145 Graphic red
f2 154 Separated graphics 130 Alpha green 146 Graphic green
f3 156 Black background 131 Alpha yellow 147 Graphic yellow
f4 157 New background 132 Alpha blue 148 Graphic blue
f5 158 Hold graphics 133 Alpha magenta 149 Graphic magenta
f6 159 Release graphics 134 Alpha cyan 150 Graphic cyan
f7 135 Alpha white 151 Graphic white
f8 136 Start flash 152 Conceal
f9 137 End flash 153 Contiguous graphics

The codes flashing (136) and non-f1ashing (137) are already available with
shift on function keys 8 and 9. Like all control codes, these affect the remainder
of the line (unless the opposite code is encountered) and they each appear as a
space. Flashing displays the characters as alternately a blank background and
then the normal character in quick succession. We have already seen double-
height characters (code 141). This again will affect everything to the end of the
line unless the normal height is restored with code 140.

To get different background colours in teletext we must first select a new
colour (either graphics or text, it does not matter which) and follow it with the
code for a new background (157). Since we are unable to select black as a
foreground colour there must also be a special command to set a black
background (code 156), and naturally you will have to introduce a new
foreground colour. This means that the codes to set a new background will
appear as two spaces on the screen. Code 152 enables you to conceal a string
with background colour. If you overprint this code with a different code then the
string becomes visible.

The last fuur codes to be considered all relate to the relative position of the
graphics characters. Contiguous graphics (code 153) is assumed for all lines and
means that 1/6th character blocks all touch. Separated graphics (code 154)
slightly separates these square blocks. When pictures are drawn in teletext it is
obviously a disadvantage to have a blank space between different colours. The
hold graphics code (158) is designed so that subsequent control codes will not be
displayed as blanks but will have the previous graphics character repeated and
displayed at that location. The release graphics code (159) turns off this effect.

Example 13.4
We use some of these commands in the program given in listing 13.5 which plays
a ‘brickout’ game in mode 7. The program first prints out a double-height logo,

230 Advanced Graphics with the BBC Model B Microcomputer

and requests a skill factor (0 diicult to 10 easy). Five coloured walls are drawn,
and on pressing the space bar a bat appears and a ball is served into play. The bat
is moved left and right by the corresponding cursor keys, and is used to hit the
ball back into play. Whenever the ball hits a wall it knocks a brick out and
increments the score. If the ball hits the bottom of the screen then the serve is
over. You have three serves per gaine. If the ball penetrates the five walls and hits
the top line then the bat gets smaller.

Listing 13.5

 10 MODE 7 : HISCORE=0
 20 REPEAT
 30 PROCinit
 40 PROCgame
 50 PROCend
 60 UNTIL FALSE
 70 STOP

 100 REM Initialise game variables
 110 DEF PROCinit
 120 SCORE=0 : BALLS=3
 130 B$=" ppppp " : LB=5
 140 BRICK$="////////////////////////////////////"
 150 B=2 : *FX15,0
 160 REPEAT : CLS
 170 PROClogo(3,2)
 179 REM print twice for double height letters
 180 PRINT TAB(9,12);"SKILL LEVEL (0 TO 10)"
 190 PRINT TAB(9,13);"SKILL LEVEL (0 TO 10)"
 200 PRINT SPC(40): PRINT TAB(17,14);:INPUT S
 210 UNTIL S>=0 AND S<=10
 220 SKILL=S*10
 230 PROCwall
 240 ENDPROC

 300 REM game
 309 REM repeat all stages of game. Note you have 3 chances to
 move bat each time ball moves
 310 DEF PROCgame
 320 REPEAT
 330 PROCthrow
 340 REPEAT
 350 PROCkey
 360 PROCball
 370 PROCkey
 379 REM slow down game
 380 FOR I=1 TO SKILL : NEXT I
 390 PROCkey
 400 UNTIL OUT
 410 BALLS=BALLS-1
 420 UNTIL BALLS=0
 430 ENDPROC

 500 REM start new ball
 510 DEF PROCthrow
 520 PRINT TAB(1,17); : VDU 141
 530 FOR I%=0 TO 1
 540 PRINT TAB(8,16+I%); : VDU 141,136

Teletext Graphics, Mode 7 231

 550 PRINT"PRESS"; : VDU 130
 560 PRINT"""SPACE"""; : VDU 151
 570 PRINT"FOR BALL"; : VDU 137
 580 NEXTI%
 590 REPEAT:UNTIL INKEY(-99)
 600 PRINT TAB(1,17); : VDU 32
 610 FOR I%=0 TO 1
 620 PRINT TAB(8,16+I%);" "
 630 NEXT I%
 640 X=RND(20)+10 : Y=22
 650 XD=SGN(RND(1)-.5) : YD=-1
 660 PRINT TAB(X,Y);"0"; : OX=X : OY=Y
 670 OUT=FALSE
 680 ENDPROC

 700 REM check keyboard
 710 DEF PROCkey
 720 IF INKEY(-122) AND B<38-LB THEN B=B+1
 730 IF INKEY(-26) AND B>2 THEN B=B-1
 740 PRINT TAB(B,23);B$;
 750 ENDPROC

 800 REM move ball
 810 DEF PROCball
 820 Y=Y+YD : IF Y>23 THEN OUT=TRUE : GOTO 930
 830 IF Y=22 AND YD=-1 AND BRICKOUT THEN PROCwall
 840 X=X+XD : IF X<4 THEN X=3 : XD=-XD
 850 IF X>37 THEN X=38 : XD=-XD
 860 IF Y=2 THEN YD=-YD : IF LB=5 THEN B$=" ppp " : LB=3
 : PRINT TAB(B,23);B$;" ";
 870 PRINT TAB(X,Y); : A%=135 : C=USR(&FFF4)
 : C=(C AND &FF00)/&100
 880 IF C=47 THEN PROCbrickout : YD=-YD :SOUND0,-15,2,1
 890 IF C<>112 THEN 910 ELSE YD=-YD : SOUND 1,-15,150,1
 : IF X<>(B+1+INT(LB/2))THEN XD=SGN(XD)*2 ELSE XD=SGN(XD)
 900 IF C=112 THEN 920
 910 PRINT TAB(X,Y);"0";
 920 IF OY=23 THEN 940
 930 PRINT TAB(OX,OY);" ";
 940 OX=X : OY=Y
 950 ENDPROC

1000 REM draw new wall
1010 DEF PROCwall
1020 CLS : VDU23,1,0;0;0;0;
1030 VDU 134 : PRINT" SCORE ";SCORE
1040 PRINT TAB(22,0);"HISCORE ";HISCORE
1050 FOR I%=1 TO 22
1060 PRINT TAB(0,I%); : VDU 151
1070 PRINT" j"
1080 PRINT TAB(39,I%); : PRINT"5"
1090 NEXT I%
1100 FOR I%=5 TO 9
1110 PRINT TAB(0,I%); : VDU 140+I%
1120 PRINT TAB(3,I%); : PRINT BRICK$
1130 NEXT I%
1140 PRINTTAB(3,1);"````````````````````````````````````"
1150 PRINTTAB(0,23);:VDU150
1160 BRICKOUT=FALSE
1170 ENDPROC

232 Advanced Graphics with the BBC Model B Microcomputer

1200 REM add score for a brick
1210 DEF PROCbrickout
1220 SCORE=SCORE+10-Y
1230 IF SCORE>HISCORE THEN HISCORE=SCORE
1240 PRINT TAB(10,0);SCORE : PRINT TAB(30,0);HISCORE
1250 IF SCORE MOD 540=0 THEN BRICKOUT=TRUE
1260 ENDPROC

1300 REM end of game
1310 DEF PROCend
1319 REM delete remaining bricks
1320 PRINT TAB(39,9); : I=0
1330 REPEAT
1340 PRINT" "; : VDU 8,8 : I=I+1
1350 A=RND(200)
1360 SOUND1,-10,A,1 : SOUND2,-10,1.5*A,1 : SOUND3,-10,A*1.75,1
1370 UNTIL INKEY(-99) OR I=200
1380 ENDPROC

1400 REM print double height brickout logo on screen
1410 DEF PROClogo(B,F)
1420 PRINT TAB(0,0);
1430 FOR I%=1 TO 25
1440 B=(B+2) MOD 6 : F=(F+2) MOD 6
1450 IF I%<>1 THEN PRINT
1460 VDU 129+B,157,129+F,141
1470 PRINT"*********** BRICKOUT ***********";
1480 NEXT I%
1490 ENDPROC

The game was written in a modular fashion similar to that of the worm game
chapter 1. We shall not give a detailed description of the program since the
technique of constmction should be self-evident from the listing. However, it is
instmctive to note from the game logo that the background and foreground
coiours for the two halves of a double-height character need not be the same.

We now consider the construction of the sort of pictures that are fainiliar to all
owners of teletext televisions. It is possible to write a program to generate each
individual picture, or painstakingly to create pictures by typing in codes and text
from the keyboard. It is far better to use an interactive program for drawing
displays like figure 13.3. We give such a program in listing 13.6.

Because the screen is used by the program for displaying messages as well as
for drawing the picture, it is essential to store a copy of the picture elsewhere in
tlle memory. We chose the locations between &7800 and &7C00, which we call
a picture buffer, and set HIMEM to &7800 to protect this area. Any intentional
changes made to the diagram on the screen (that is, to the screen memory) are
also made to the corresponding buffer locations. Hence even though the screen is
overwritten at several stages by the program, the diagram can be restored from
‘he memory buffer when required. The program includes an error-handling
routine which ensures that any problems, apart from a deliberate BREAK, will

Teletext Graphics, Mode 7 233

Figure 13.3

Listing 13.6

 10 ON ERROR GOTO 1510
 20 MODE 7 : HI MEM=&7800
 30 * LOAD EDPI C 7800
 39 REM ar r ay gi v i ng bi t val ues f or bl ocks i n gr aphi cs char act er s
 40 DI M D(1, 2)
 50 FOR I %=0 TO 1
 60 FOR J%=0 TO 2
 70 READ D(I %, J%)
 80 NEXT J%
 90 NEXT I %
 100 DATA 16, 4, 1, 64, 8, 2
 110 VDU 15 : VDU 23, 1, 0; 0; 0; 0;
 120 * FX4, 1
 130 PROCi ni t keys
 139 REM i ni t i al i se posi t i ons of t ext and gr aphi cs cur sor s
 140 TX=20 : TY=10
 150 GX=40 : GY=35
 160 X1=GX : Y1=GY
 169 REM di spl ay pi ct ur e wi t h menu
 170 PROCbackon
 180 PROCmenu
 189 REM pr i nt i ng i s done i nsi de one l i ne wi ndow at bot t om of
 scr een t o appear f l ashi ng
 190 REPEAT
 200 PRI NT' " TELETEXT EDI TOR " ;
 209 REM FNkeys wai t s f or a key pr ess i n t he same way as I NKEY$
 but al l ows t he cur sor t o move

234 Advanced Graphics with the BBC Model B Microcomputer

 210 A$=FNkeys(100)
 220 I F A$<>" " THEN PROCcommand
 230 PRI NT' " I NPUT COMMAND ? " ;
 240 A$=FNkeys(100)
 250 I F A$<>" " THEN PROCcommand
 260 UNTI L FALSE
 270 END
 300 REM command
 310 DEF PROCcommand
 319 REM deal wi t h any keypr ess
 320 PRI NT' " I NPUT COMMAND ? " ; A$;
 330 I F A$=CHR$(13) THEN ENDPROC
 340 P=I NSTR(" BGI MT" , A$)
 350 I F P=0 THEN PRI NT" I NVALI D" ; : A$=GET$: GOTO 320
 360 PRI NT
 370 I F A$=" I " THEN PROCi ni t
 380 I F A$=" M" THEN PROCmenu
 390 I F A$=" T" THEN PROCt ext
 400 I F A$=" B" THEN PROCbyt e
 410 I F A$=" G" THEN PROCgr aphi c
 420 ENDPROC

 500 REM keys
 510 DEF FNkeys(T%)
 520 T=TI ME
 530 REPEAT
 540 B$=I NKEY$(0)
 550 SHI FT=I NKEY(- 1)
 559 REM i f shi f t i s pr essed r emove gr aphi cs cur sor
 560 I F SHI FT THEN PROCpl ot (1, 3, GX, GY)
 569 REM al t er t ext / gr aphi cs cur sor dependi ng on shi f t
 570 I F B$=CHR$(&8B) THEN PROCup : B$=" "
 580 I F B$=CHR$(&8A) THEN PROCdown : B$=" "
 590 I F B$=CHR$(&88) THEN PROCl ef t : B$=" "
 600 I F B$=CHR$(&89) THEN PROCr i ght : B$=" "
 609 REM r edr aw gr aphi cs cur sor
 610 I F SHI FT THEN PROCpl ot (1, 3, GX, GY)
 619 REM i f non- cur sor key pr essed or t i me i s up t hen r et ur n
 620 UNTI L TI ME>T+T% OR B$<>" "
 630 =B$
 700 REM up
 710 DEF PROCup
 719 REM move gr aphi cs cur sor posi t i on
 720 I F SHI FT THEN GY=GY+1 : I F GY=75 THEN GY=0
 730 I F SHI FT THEN ENDPROC
 739 REM er ase t ext cur sor move i t and r edr aw i t
 740 PROCcur sof f : TY=TY- 1 : I F TY=- 1 THEN TY=24
 750 PROCcur son : ENDPROC

 800 REM down
 809 REM see up
 810 DEF PROCdown
 820 I F SHI FT THEN GY=GY- 1 : I F GY=- 1 THEN GY=74
 830 I F SHI FT THEN ENDPROC
 840 PROCcur sof f : TY=TY+1 : I F TY=25 THEN TY=0
 850 PROCcur son : ENDPROC

 900 REM r i ght
 909 REM see up
 910 DEF PROCr i ght
 920 I F SHI FT THEN GX=GX+1 : I F GX=80 THEN GX=2

Teletext Graphics, Mode 7 235

 930 IF SHIFT THEN ENDPROC
 940 PROCcursoff : TX=TX+1 :IF TX=40 THEN TX=0
 950 PROCcurson : ENDPROC

1000 REM left
1009 REM see up
1010 DEF PROCleft
1020 IF SHIFT THEN GX=GX-1 : IF GX=1 THEN GX=79
1030 IF SHIFT THEN ENDPROC
1040 PROCcursoff : TX=TX-1 : IF TX=-1 THEN TX=39
1050 PROCcurson
1060 ENDPROC

1100 REM get
1109 REM return the value stored on the screen at location X,Y
1110 DEF FNget(X,Y)
1120 A%=&7C00+Y*40+X : =?A%
1200 REM put
1210 DEF PROCput(A,X,Y,CHAR)
1219 REM store the CHARacter at X,Y either on the screen (A=1)
 or in the buffer (A=0)
1220 A%=&7800+A*&400+Y*40+X
1230 ?A%=CHAR : ENDPROC

1300 REM curson
1310 DEF PROCcurson
1319 REM remove graphics cursor, store current value at text cursor
 position and replace with a square, replace graphics
1320 PROCplot(1,3,GX,GY) : TST=FNget(TX,TY) : PROCput(1,TX,TY,255)
 : PROCplot(1,3,GX,GY)
1330 ENDPROC

1400 REM cursoff
1410 DEF PROCcursoff
1419 REM remove graphics cursor and replace text cursor by old
 screen value then replace graphics cursor
1420 PROCplot(1,3,GX,GY) : PROCput(1,TX,TY,TST) : PROCplot(1,3,GX,GY)
1430 ENDPROC

1500 REM error section
1509 REM if error occurs in loading EDPIC then carry on
1510 IF ERL=30 THEN 40
1519 REM if any other error occurs save the picture from buffer
 and then...
1520 *SAVE EDPIC 7800 7C00
1529 REM report error in usual way
1530 MODE 7 : REPORT : IF ERL<>0 THEN PRINT" at line ";ERL : VDU 14
1539 REM reset cursor keys and stop
1540 *FX4,0
1550 END

1600 REM backup
1610 DEF PROCbackup
1619 REM copy screen to buffer
1620 LOCAL I% : FOR I%=0 TO 996 STEP 4
1630 I%!&7800=I%!&7C00 : NEXT I%
1640 ENDPROC

1700 REM backon
1710 DEF PROCbackon
1719 REM copy buffer to screen
1720 LOCAL I% : FOR I%=0 TO 996 STEP 4

236 Advanced Graphics with the BBC Model B Microcomputer

1730 I%!&7C00=I%!&7800 : NEXT I%
1739 REM replace cursors
1740 PROCplot(1,3,GX,GY) : PROCcurson
1750 ENDPROC

1800 REM menu
1810 DEF PROCmenu
1819 REM retrieve picture from buffer set window for menu
1820 PROCbackon
1830 VDU 28,2,21,39,4 : CLS
1839 REM put control codes for yellow background outside window
 so they can't scroll away
1840 FOR I%=4 TO 21 : PROCput(1,0,I%,131) : PROCput(1,1,I%,157)
 : NEXT I%
1849 REM print out instructions with pauses making operating system
 scroll window up
1850 PRINT TAB(0,16);" COMMAND M FOR MENU DISPLAY/REMOVAL"
1860 A$=INKEY$(10) : PRINT'" USE CURSOR KEYS TO MOVE TEXT CURSOR "
1870 A$=INKEY$(10) : PRINT'" USE SHIFT/CURSOR KEYS FOR GRAPHICS "
1880 A$=INKEY$(10) : PRINT'" COMMAND T TO PLACE TEXT AT CURSOR"
1890 A$=INKEY$(10) : PRINT'" COMMAND B TO ALTER BYTE AT CURSOR"
1900 A$=INKEY$(10) : PRINT'" COMMAND G FOR GRAPHICS FUNCTION"
1910 A$=INKEY$(10) : PRINT'" COMMAND I TO INIT TEXT/GRAPHICS"
1919 REM back to the top of window print double height header
1920 VDU30 : PRINT'SPC(12);CHR$(141);"COMMANDS"
1930 PRINT SPC(12);CHR$(141);"COMMANDS"
1939 REM alternate colours of two halves of header by colour codes
 while waiting
1940 REPEAT
1950 PROCput(1,10,5,133) : PROCput(1,10,6,130)
1960 C$=INKEY$(50) : IF C$="M" THEN 1990
1970 PROCput(1,10,6,133) : PROCput(1,10,5,130)
1980 C$=INKEY$(50)
1990 UNTIL C$="M"
1999 REM replace picture and remove window
2000 PROCbackon : VDU 28,0,24,39,24
2010 VDU 15,30
2020 ENDPROC

2100 REM plot
2110 DEF PROCplot(A,M,X,Y)
2120 LOCAL C,XX,YY
2129 REM calculate character position containing the point either
 on the screen (A=1) or in the buffer (A=0)
2130 A=A*&400+&7800+(25-(Y DIV 3))*40+X DIV 2
2139 REM find coordinates of point within the character
2140 XX=X MOD 2 : YY=Y MOD 3
2150 C=?A : IF C<128 THEN C=C+128
2160 IF M=1 THEN C=C OR D(XX,YY)
2170 IF M=2 THEN C=C AND(D(XX,YY) EOR &FF)
2180 IF M=3 THEN C=C EOR D(XX,YY)
2190 ?A=C
2200 ENDPROC

2300 REM draw
2310 DEF PROCdraw(A,M,X1,Y1,X2,Y2)
2319 REM draw a line from X1,Y1 to X2,Y2 either on the screen (A=1)
 or in the buffer (A=0)
2320 DX=X2-X1 : DY=Y2-Y1 : SX=SGN(DX) : SY=SGN(DY)
2330 DX=ABS(DX) : DY=ABS(DY)
2339 REM find the amounts by which one coordinate must change assuming
 the other has a larger distance and is moving in steps of one

Teletext Graphics, Mode 7 237

2340 I F DX=0 THEN ST=DY : SX=0 : GOTO 2380
2350 I F DY=0 THEN ST=DX : SY=0 : GOTO 2380
2360 I F DX>DY THEN SY=SY* DY/ DX : ST=DX ELSE SX=SX* DX/ DY : ST=DY
2370 I F ST=0 THEN ENDPROC
2379 REM go al ong l i ne addi ng st ep si ze t o coor di nat es and
 pl ot t i ng r esul t i ng poi nt
2380 FOR I =0 TO ST STEP SGN(ST)
2390 PROCpl ot (A, M, X1, Y1)
2400 X1=X1+SX : Y1=Y1+SY
2410 NEXT I
2420 ENDPROC

2500 REM i ni t
2510 DEF PROCi ni t
2520 REPEAT : I NPUT" I NI TI ALI SE G OR T ? " B$: UNTI L B$=" G" OR B$=" T"
2530 REPEAT : I NPUT" WHI CH COLOUR (1 TO 7) ? " C : UNTI L C>0 AND C<8
2540 REPEAT : I NPUT" RANGE OF LI NES ? " T, B
 : UNTI L T<B AND T>=0 AND B<=24
2550 I F B$=" G" THEN C=C+144 ELSE C=C+128
2559 REM pl ace a col our code (ei t her t ext or gr aphi cs) at t he st ar t
 of each l i ne i n r ange bot h i n buf f er and on scr een
2560 FOR I =T TO B : PROCput (1, 0, I , C) : PROCput (0, 0, I , C) : NEXT I
2570 ENDPROC

2600 REM t ext
2610 DEF PROCt ext
2619 REM show whol e pi ct ur e and r eset cur sor so copy can be used
2620 PROCbackon
2630 * FX4, 0
2640 VDU 23, 1, 1, 0; 0; 0; 0; : VDU 28, 0, 24, 39, 0
2650 PRI NT TAB(TX, TY) ; : I NPUT" " ANY$: I F LEN(ANY$) =0 THEN 2670
2659 REM put t he st r i ng i nt o buf f er
2660 FOR I =1 TO LEN(ANY$) : PROCput (0, TX+I - 1, TY, ASC(MI D$(ANY$, I , 1)))
: NEXT I
2669 REM r eset mode 7 i n case st r i ng was ent er ed on bot t om l i ne
 scr ol l i ng scr een
2670 VDU 22, 7
2680 VDU 23, 1, 0, 0; 0; 0; 0; : VDU 28, 0, 24, 39, 24
2689 REM r edi spl ay pi ct ur e and r eset cur sor keys f or pr ogr am use
2690 PROCbackon
2700 * FX4, 1
2710 ENDPROC

2800 REM byt e
2810 DEF PROCbyt e
2820 PROCbackon
2829 REM set one l i ne wi ndow bel ow byt e and scr ol l t o c l ear
 bef or e pr i nt i ng val ue
2830 TT=(TY+1) MOD 25 : TS=(TY- 1) MOD 25 : VDU 28, 0, TT, 39, TT
2840 PRI NT' "

�����������	��
���
���������������������������� ����!"��# ����$&%��

2849 REM set one l i ne wi ndow above byt e and i nput new val ue
 ‘ r et ur n' =0 f or no change
2850 VDU 28, 0, TS, 39, TS
2860 PRI NT
2870 REPEAT : I NPUT" WHAT ASCI I CODE (32 TO 255) ? " C : UNTI L C>31
AND C<256 OR C=0
2880 I F C=0 THEN 2910
2890 PROCput (0, TX, TY, C) : PROCput (1, TX, TY, C)
2900 I F TY<> 24 THEN TST=C
2910 PROCbackon : VDU 28, 0, 24, 39, 24
2920 ENDPROC

238 Advanced Graphics with the BBC Model B Microcomputer

3000 REM graphic
3010 DEF PROCgraphic
3019 REM plot point at cursor or draw line from last point
 specified to cursor
3020 REPEAT : INPUT" PLOT OR DRAW (P OR D) ? "A$
 : UNTIL A$="P" OR A$="D"
3030 REPEAT : INPUT" FOREGROUND,BACKROUND,EOR (1,2,3) ? "A
 : UNTIL A>0 AND A<4
3040 PROCbackon
3049 REM plot points directly into buffer then restore picture
3050 IF A$="P" THEN PROCplot(0,A,GX,GY)
3060 IF A$="D" THEN PROCdraw(0,A,X1,Y1,GX,GY)
3070 X1=GX : Y1=GY
3080 PROCbackon
3090 ENDPROC

3100 REM initkeys
3110 DEF PROCinitkeys
3119 REM set keys to produce more teletext codes directly
3120 *KEY0|!|L
3130 *KEY1|!|M
3140 *KEY2|!|Z
3150 *KEY3|!|\
3160 *KEY4|!|]
3170 *KEY5|!|^
3180 *KEY6|!|_
3190 ENDPROC

save the diagram as file EDPIC on backing store before ending. Before you start
any constmction you may wish to clear the picture buffer locations by typing

CLS : PROCbackup

Initially the program will try to load the edit picture EDPIC from backing store;
however if this is not available the program will continue on to the next line
Whcn you press ESCAPE (if you are using tape backing store) or it will continue
automatically (if you are using disks) − hence the need to clear the screen at the
beginning of a diagram construction. Having loaded this picture (from the
backing store or the buffer) the program will display it on the screen and then
immediately display a menu over the top of it. This menu can be recalled or
removed at any time by pressing key M. The other options available with this
interactive program are Initialise, Graphics, Text and Byte. These commands are
called by typing their initial letter and are described below.

Initialise is used to place a Graphics or Text colour code (of any colour) in the
first column of each one of a range of lines (a subset of rows 0 to 24). This will
affect the whole line unless countermanded by graphics/text colour codes further
along that line. Text enables the typing of text and control codes on the screen
(remember that if you want to start a text string with a space then you must
enclose the whole entry in quotes). When text is being typed the copy cursor is
enabled, so making it simple to copy parts of the screen to new locations.
RETURN enables you to exit from this section ofthe program so that you can
input another command.

Teletext Graphics, Mode 7 239

Graphics allows you to use point plotting and line-drawing routines which
include a choice of ‘plot’ options (background, foreground or EOR). The ‘draw’
cominand will draw from the last point specified either by plot or from the end of
the last line drawn. The program creates a graphics cursor, by EORing a single
point on the screen, which caii be moved by using the shift and cursor keys.
When this graphics cursor runs through alplianumeric lines (as opposed to
graphics) it will appear as a text character. Sometimes the graphics cursor is
invisible, but holding down the shift key makes it flash, thus making it visible.
The ‘plot’ and ‘draw’ procedures have an extra parameter which allows you to
plot either on the screen as with the graphics cursor (which is not stored with the
diagram), or directly into the buffer area as with line drawing. The text/graphics
cursors must be moved into position prior to entedng the Text and Graphics
sections.

Byte allows you to read directly the value currently positioned at the text
cursor location. This enables you to see exactly which control code or character
is at that position, and allows you either to alter it by typing in the replacement
value or to RETURN. This is especially helpful if a graphics hold mode is
operative, which effectively hides the control codes.

The program will automatically save the picture as file EDPIC on
encounterin1 an error, such as typing ESCAPE by accident, so that any
alterations are not lost. If you do not wish to save the picture, type BREAK to
halt the program. The picture will still be in the buffer in memory.

Example 13.5: Animation
We can use the idea of a buffer to hold more than one picture in memory at any
one time. This would be convenient for displaying simple teletext diagrams as a
slide show in lectures or as advertisements. Since each picture occupies only 1K
of store, at least twenty teletext pictures can be fitted into the memory at once.
This is impossible for modes 0 to 2 since each screenful takes up 20K of memory
in these modes. We simply set HIMEM to protect whatever area we wish to use
for picture storage and then transfer each picture to the actual screen memory
when required. Listing 13.7 contains an assembler routine to do this. Because
user-defined characters are unavailable in mode 7 we can use this part of the
memory (locations starting at &C00) to store the machine code produced by this
program. It also stores the code as a file DISPLAY on backing store. This routine
uses the OSBYTE call with the accumulator A set to 19, which allows the
machine to wait for the start of the next refresh of the screen before copying the
data to the screen: this helps to eliminate flickering. The program in listing 13.8
allows us to display any one of 20 pictures by typing a number between 0 and 19.
Even when called from BASIC programs, this routine is fast enough to display a
new picture within the time the machine takes to refresh the screen, and so it
enables us to display animated pictures. We simply draw a set of pictures at
varying stages of rotation, and arrange that the last frame is the same as the first.
The movie section of the program (accessed by typing M) displays all the

240 Advanced Graphics with the BBC Model B Microcomputer

pictures in rapid succession to get the animation effect. Listing 13.8 draws
twenty pictures of a simple curve rotated through a further π/40 radians with each
frame, and stores each picture at the correct location in memory by using a
modified version of the ‘backup’ procedure of the teletext editor (listing 13.6).
Then the program allows the slide show and movie procedures to display.

Listing 13.7

 9 REM display routine transfers a teletext picture to screen
 10 OSBYTE=&FFF4
 20 FOR I=0 TO 3 STEP 3
 30 P%=&C00
 39 REM multiply picture number in A by four and add to start of
 pictures to get hi-byte, use *FX19 to wait, then transfer
 40 [OPT I
 50 ASL A : ASL A
 60 CLC : ADC #&2C
 70 STA &71
 80 LDA #&7C : STA &73
 90 LDY #0 : STY &70 : STY &72
100 LDX #4
110 LDA #19 : JSR OSBYTE
120 .LOOP
130 LDA (&70),Y : STA (&72),Y
140 INY : BNE LOOP
150 INC &71 : INC &73
160 DEX : BNE LOOP
170 RTS
180]
190 NEXT
199 REM run address set to a RTS in ROM so that program can be
 loaded from disk by *<fsp>
200 *SAVE DISPLAY C00 +30 FFB8

Listing 13.8

 10 MODE 7
 20 HIMEM=&2C00
 30 DIM D(1,2)
 40 FOR I%=0 TO 1
 50 FOR J%=0 TO 2
 60 READ D(I%,J%)
 70 NEXT J%
 80 NEXT I%
 90 DATA 16,4,1,64,8,2
100 *LOAD DISPLAY
109 REM draw 20 frames of movie with curve rotating through PI/2
110 FOR F=0 TO 19
120 ANG=F*PI/40
129 REM for each frame put graphics white codes down the side
130 CLS
140 FOR I=0 TO 24 : PRINT TAB(0,I); : VDU 151 : NEXT I
149 REM draw clover leaf curve
150 OX=40+30*COS(ANG) : OY=38+30*SIN(ANG)
160 FOR I=0 TO 2*PI STEP PI/100
170 S=SIN(I+ANG) : C=COS(I+ANG)
180 S2=SIN(2*I) : C2=COS(2*I)

Teletext Graphics, Mode 7 241

190 R=(C2^3+S2^3)*30
200 X2=40+R*C : Y2=38+R*S
210 PROCdraw(1,OX,OY,X2,Y2)
220 OX=X2 : OY=Y2
230 NEXT I
239 REM store frame F in memory
240 PROCbackup(F)
249 REM until all twenty frames are prepared and stored
250 NEXT F
260 PROCshow
270 END

300 REM plot
310 DEF PROCplot(M,X,Y)
320 LOCAL C,XX,YY
330 A=&7C00+(25-(Y DIV 3))*40+X DIV 2
340 XX=X MOD2 : YY=Y MOD 3
350 C=?A : IF C<128 THEN C=C+128
360 IF M=1 THEN C=C OR D(XX,YY)
370 IF M=2 THEN C=C AND (D(XX,YY) EOR &FF)
380 IF M=3 THEN C=C EOR D(XX,YY)
390 ?A=C
400 ENDPROC

500 REM draw
510 DEF PROCdraw(M,X1,Y1,X2,Y2)
520 LOCAL DX,DY,SX,SY,ST,I
530 DX=X2-X1 : DY=Y2-Y1 : SX=SGN(DX) : SY=SGN(DY)
540 DX=ABS(DX) : DY=ABS(DY)
550 IF DX=0 THEN ST=DY : SX=0 : GOTO 580
560 IF DY=0 THEN ST=DX : SY=0 : GOTO 580
570 IF DX>DY THEN SY=SY*DY/DX : ST=DX ELSE SX=SX*DX/DY : ST=DY
580 IF ST=0 THEN ENDPROC
590 FOR I=0 TO ST STEP SGN(ST)
600 PROCplot(M,X1,Y1)
610 X1=X1+SX : Y1=Y1+SY
620 NEXT I
630 ENDPROC

700 REM show
710 DEF PROCshow
719 REM ensure screen hasn't scrolled and that mode 7 is set
720 VDU 22,7
729 REM if you have a file of twenty frames already stored
730 INPUT" NAME OF SLIDE FILE OR PRESS <RETURN> ",A$
740 IF A$="" THEN CLS : GOTO 770
749 REM use CLI to load file
750 $&7D00="LOAD "+A$+" 2C00"
760 X%=0 : Y%=&7D : CALL &FFF7
769 REM alternate between single frame slide show and coninuous movie
770 REPEAT
780 REPEAT
790 VDU 26 : INPUT A$
800 A%=VAL(A$)
809 REM put selected frame onto screen
810 CALL &C00
820 UNTIL A$="M"
829 REM if M is pressed start showing frames in quick succesion
830 REPEAT
840 FOR A%=0 TO 19
850 CALL&C00
860 NEXT A%

242 Advanced Graphics with the BBC Model B Microcomputer

870 UNTIL INKEY(0)>-1
879 REM never leave until escape
880 UNTIL FALSE
890 ENDPROC
900 REM backup
910 DEF PROCbackup(FRAME)
920 LOCAL I%,A%
929 REM start address from frame
930 A%=&2C00+&400*FRAME
939 REM transfer data from screen
940 FOR I%=0 TO 996 STEP 4
950 I%!A%=I%!&7C00
960 NEXT I%
970 ENDPROC

Complete Programs

I Listing 13.1. No data required.
II Listing 13.2. No data required.
II Listing 13.3. No data required.

IV Listing 13.5. The ‘brickout’ game. Type in the skill level (try 10), then type
a space to start the game and move the bat with the left and right cursors.

V Listing 13.6. The teletext interactive diagram constmction package. Try the
following sample inputs (those underlined).

Type M, T, move the text cursor into position by using the cursor keys
and type hello folks (note lower case characters). Then move the text cursor
owr the ‘e’ and type B. This will show the ASCII code for the character that
is at present occupying that screen position (namely ‘e’ = ASCII 101). Type
117 and RETURN. Now move the cursor away and you will see a ‘u’
replace the ‘e' . Then type I and T and you will be asked for a colour (try 1)
and a range oflines (try the whole screen 0, 24). Everything should go red.
Now type I, G, a colour (2), and range (again 0, 24), and the lower case red
text characters change into green graphics characters.

VI Listings 13.7 and 13.8. First run 13.7 which creates the file DISPLAY. Then
run listing 13.8 which reloads DISPLAY and either loads 20 pictures from
backing store or on typing RETURN takes about 15 ntinutes to draw them.
Then type an integer between 0 and 19 to get an individual frame, or M to
get a movie: any key will stop it.

Teletext Graphics, Mode 7 243

