9 Orthographic Projections

We may now address the problem of drawing views of three-dimensional objects
on our (necessarily) two-dimensiona graphics screen. The simple method we
describe here is adirect generalisation ofthe method introduced in chapter 4 for
two-dimensional objects. Again it involves the use of (up to) three positions. To
illustrate these ideas we first give a brief outline, and then expand on this by
using pictorial and numerical examples. We start by defining an arbitrary but
fixed triad of axesin space which we call the ABSOLUTE system. Then, asin
the two-dimensional case, we consider the three positions: (1) the SETUP
position, (2) the ACTUAL position and (3) the OBSERVED position.

(1) The SETUP Position

Most scenes will be composed of simple objects (such as cube(s) — see example
9.1) which are set at a particular position and orientation in space. It isvery
inefficient to calculate by hand the complicated coordinates ofevery vertex of
these objects and input them into the program. Instead we look at each object in
turn and initially defineit in an elementary way relative to the ABSOLUTE triad,
usually setting it about the origin. The information required will be that of
vertices (x-coordinate, y-coordinate and z-coordinate), and perhaps lines (which
join pairs ofvertices) or (later when we consider hidden surface algorithms)
facets, which are polygonal planar areas bounded by the above-mentioned lines.
This elementary definition of the object is called its SETUP position. We could
also have other information such as the colour of the object.

(2) The ACTUAL Position

We may then use the matrix techniques of the last chapter to generate a matrix
that will move the object from its SETUP position to its required ACTUAL
position relative to the ABSOLUTE axes. We shall call thisthe SETUPto
ACTUAL matrix P,

162 Advanced Graphics with the BBC Model B Microcomputer

(3) The OBSERVED Position

Viewing an object in three-dimensional space naturally involves an observer (the
eye — and note only one eye!) placed at a position (EX, EY, EZ) relative to the
ABSOLUTE axeslooking in afixed direction: this direction of view can be
uniquely determined by any other point on the line of sight (DX, DY, DZ), say.
The head can also be tilted, but more of thislater. What the eye sees when it
looks at a three-dimensional object is a projcction of the vertices, lines and facets
of the object on to a (two-dimensional) view plane which is normal to the line of
sight. In order to calculate such projections we must standardise our approach.
We use matrix methods to transform all the points in space so that the eye is
placed at the origin, and the line of sight is along the positive z-axis. Thisisthe
OBSERVED position, and the matrix that transforms the ACTUAL to
OBSERVED position is called Q throughout this book. The method for
calculating Q will be dealt with in detail later, but for the time being we shall
assume that the eye is already at the origin and islooking along the z-axis: soin
this simple case Q is the identity matrix.

When al the points in space have been moved into this OBSERVED position
we note that the view planeis now paralléel to the x/y plane through the origin.
Having moved the eye into the correct position, we are now ready to project the
object on to the view plane. But note, as yet we have neither defined the position
of the view plane (we have only its normal), nor have we described the type of
projection of three-dimensional space on to the plane. These two requirements
are closely related. In this book we shall consider three possible projections —in
alater chapter we shall deal with the perspective and stereoscopic projection, but
first we introduce the simplest projection — the orthographic.

The orthographic Projection

Nothing could be simpler. In the orthographic projection we can set the view
plane to be any plane with normal vector along the line of sight. When
transformed into the OBSERV ED position, the view plane will be any plane that
isparalel to the x/y plane given by the equation z = 0. For simplicity we take the
xly plane through the origin. The vertices of the object are projected on to the
view plane by the simple expedient of seiting their z-coordinates to zero. Thus
any two different points in the OBSERVED position, (X, y, 2 and (X, y, Z) say
(where z# 7'), are projected on to the same point (x, y, 0) on the view plane.
Then we identify the x/y values on the plane with pointsin the graphics screen
coordinate system (usually centred on the screen) by using the methods of
chapter 2. Once the vertices have been projected on to the view plane and then on
to the screen, we can construct the projection of lines and facets. These are
related to the projected vertices in exactly the same way as the original lines and
facets are related to the original vertices.

Orthographic Projections 163

Before considering in detail the general case where the eye and direction of
view are arbitrarily positioned, we shall consider an elementary example to
demonstrate the orthographic projection.

Example 9.1
Use the above ideas to draw an orthographic projection of a cube. Figures such
asthosein figure 9.1 are called wire diagrams or skeletons (for obvious reasons).

In the SETUP position the cube may be thought to consist of eight vertices (1,
1,1),(1,1-1),(1,-1,-1),(1,-1,1),(-1, 1, 1), (-1, 1,-1),(-1, -1, -1) and (-1,
-1, 1): vertices are labelled numericaly 1 to 8. The twelve lines that form the
wire cubejoin vertices1to2,2t03,3t04,4t01;5t06,6t07,7t08,8to 1; 1
to5,2t06,3to7and 4o 8.

Figure 9.1a shows the simplest possible example of an orthographic
projection of the cube, where even the SETUPto ACTUAL matrix is the identity
matrix, that is the cube stays in its SETUP position. We get a square: pairs of
paralel lines from the front and back of the cube project into the same line on the
screen. We put a‘ +' in these diagrams to show the position of the z-axisin the
OBSERVED position (into the screen).

Figure 9.1b shows the same cube drawn after the following three
transformations place it inits ACTUAL position:

(a) Rotate the cube by an angle o = —0.927295218 radian about the z-axis -
matrix A. This example is contrived so that cos a = 3/5 and sin a = -4/5, so
ensuring that the rotation matrices consist of uncomplicated elements.

(b) Trandate it by the vector (-1, 0, 0) — matrix B.

(c) Rotate it by an angle —a about the y-axis — matrix C.

The SETUPto ACTUAL matrix isthusP=C x B x A, where

3545 0 0 1 00-1 3/5 0 4/5 0
A= -4/53/5 0 0 B = 0100 C:0100
0 0 10 0010 -4/50 3/5 0
0 0 01 0001 000 1
and Pis given by the matrix
9 12 20-15

1 |20 15 0 0
25 |-12 -16 15 20
0 0 0 O

P=

So the above eight vertex coordinate triplesin the SETUP position are
transformed into the following eight ACTUAL coordinate triples: (26/25, —5/25,

164 Advanced Graphics with the BBC Model B Microcomputer

7/25), (—14/25, -5/25, -23/25), (-38/25, —35/25, 9/25), (2/25, —35/25, 39/25), (8/
25, 35/25, 31/25), (—32/25, 35/25, 1/25), (-56/25, 5/25, 33/25), (—-16/25, 5/25,
63/25).

For example (1, 1, 1) istransfornned into (26/25, —5/25, 7/25) because

9 12 20 15 1 26

1 220 15 0 O 1 1 -5

JR— X = —
25 |-12 -16 15 20 1 25 7
0 0 0 25 1 25

Sincethe ACTUAL to OBSERVED matrix Q isthe identity matrix, the projected
coordinates on the view plane are thus (26/25, -5/25), (—14/25, -5/25), (—38/25,
-35/25), (2/25, -35/25), (8/25, 35/25), (-32/25, 35/25), (-56/25, 5/25), (—16/25,
5/25). We can place these points on the screen and join them with linesin the
same order as they were defined in the SETUP cube.

@
(b)
(© (d)

Figure 9.1

Orthographic Projections 165

Construction of the ACTUAL to OBSERVED Matrix Q

We assume that the eyeis at (EX, EY, EZ) relative to the ABSOLUTE axes,
looking towards the point (DX, DY, DZ). The OBSERVED position is achieved
in the following sequence of steps.

(1) A matrix D trandates all the points in space by avector (-DX, -DY, -DZ) so
that now theeyeisat (EX — DX, EY - DY, EZ - DZ) = (FX, FY, FZ) say,
looking towards the origin:

1 0 0 -DX
D= 01 0 -DYy
0 01 -Dz
00O 1

(2) A matrix E changes (FX, FY, FZ) into (r, O, FZ) by rotating space by an angle
-a, where a = tan-1 (FY/FX), about the z-axis. Herer2= FX2+ FY2and r > O:
FX FY 0 O
1 f-FY FX 0 O
E=Tlo o 1o
0O 0O O r
(3) A matrix F transforms (r, 0, FZ) into (0, 0, —s) by rotating space by an angle 1t

- 0 about the y-axis — where 8 = tan™1 (r/FZ). Here 2 = r2 + FZ2 = FX2 + FY2
FZ2ands>0:

Fz O r O
1 0 S 0 O
F= —
S -r 0 -FZ 0
0 0 0 s

(4) The transformation thus far places the eye at (0, 0, —s) on the negative x-axis
looking towards the origin and at the same distance fromiit (s) as (EX, EY, EZ)
was from (DX, DY, DZ). We now generate a matrix G which moves the eye to
the origin:

o O O
o O » O
o +» O O
= O O O

166 Advanced Graphics with the BBC Model B Microcomputer

(5) If in example 9.1 we now premultiply P=C x B x A by our first
approximation to the ACTUAL to OBSERVED matrix Q (=G x F x E x D) to
find the SETUPto OBSERVED matrix R=QxP=GxFxExD xCx B xA,
we draw figure 9.1c by orthographic projection. Thisview isnot really
satisfactory because the matrix Q places the cube at an arbitrary orientation
within the view plane. It is much better to standardise our view, and one of the
most popular ways isto maintain the vertical, that is aline that was vertical (that
is, parald to the y-axis) initsACTUAL position remains vertical after
transformation by Q into its OBSERVED position. Take the vertical line from
(DX, DY, DZ) to (DX, DY + 1, DZ). Because of this peculiar construction, we
note that intermediate matrix K (F x E x D) transforms this line into one that
joins (0, 0, 0) to (K(1, 2), K(2, 2), K(3, 2)) =(p, 9, 1), say. So if we further rotate
about the z-axis by an angle B = tan™1 (K(1, 2)/K(2, 2)) =tan1 (p/q) =tan™1 (-
FY x FZ/(s x FX)) using amatrix H, before multiplying by G, then the vertical
is maintained:

qg-p 0 O
1 0
H= = p q
00 t O
0 0 0 t
wheret2 = p2 + g2 and thus
q-p 0 O
1 0 O
H x = — P A X
r t 00t O r r
1 0 0 0 t 1 1

Thus the complete transformation (figure 9.id) is achieved by the matrix R = Q x
P=GxHxFxExDxCxB xA, and the projection of the line joining points
(DX, DY, DZ) to (DX, DY + 1, DZ) isthelinejoining (0, 0) to (O, t) on the
screen; that is, the vertical — matrix G does not affect the x/y values. Note that
this technique works in al cases except where (EX, EY, EZ) isvertically above
(DX, DY, DZ) to start with, and naturally in this case maintaining the vertical
makes no sense. The procedure ‘1ook3’ (listing 9.1), given (EX, EY, EZ) and
(DX, DY, DZ), generatesthe ACTUAL to OBSERVED matrix in the steps shown
above, and at each step premultiplies the matrix R: so at the end of the process R
will hold its original matrix value premultiplied by Q. If we wish to store Q
explicitly then we need first to set R to the identity matrix (using ‘idR3’), then
cal ‘look3’, and finally copy array R into array Q. Procedure ‘100k3’ can be

Orthographic Projections 167

redically reduced if we assume that the eye always looks at the origin (that is,
DX = DY = DZ = 0). Furthermore with the orthographic projection the
OBSERVED position of the eye need not be at the origin, it merely needsto be
on the z-axis: again the procedure can be cut down. We give the general case,
which will be essential for later perspective projections

Listing 9.1

8200 REM | ook3 / maintain vertical
8210 DEF PROCI ook3

8220 LOCAL FX, FY, FZ, THETA

8230 CLS : INPUT"(EX EY,E2)", EX EY, EZ
8240 | NPUT" (DX, DY, DZ) ", DX, DY, DZ

8250 PROCtran3(-DX, -DY,-DZ) : PROCnul t3
8260 FX=EX-DX : FY=EY-DY : FZ=EZ-DZ
8270 THETA=FNangl e(FX, FY)

8280 PROCr ot 3(-THETA, 3) : PROCmul t 3
8290 DI ST=SQR(FX* FX+FY* FY)

8300 THETA=FNangl e(FZ, DI ST)

8310 PROCrot 3(PI-THETA, 2) : PROCmul t3
8320 DI ST=SQR(DI ST*DI ST+FZ* FZ)

8330 THETA=FNangl e(Dl ST*FX, - FY*FZ)
8340 PROCr ot 3(THETA, 3) : PROCnul t 3
8350 PROCtran3(0,0,D ST) : PROCmult3
8360 ENDPRCC

If required, we can extend this program to deal with the situation where the head
istilted through an angle y from the vertical. Thisis achieved by further rotating
space by —y about the z-axis. Thus matrix H should then rotate about the z-axis
by anangle 3 -v.

The construction of the ACTUAL to OBSERVED matrix is obviously
independent of everything other than the position of the eye, line of sight and the
tilt of the head. So if we wish to view a series of objects from the same position,
we can store Q and use it repeatedly for placing each object.

How to Define an Object

It is now time to deal with the problem of representing objects to the computer.
There is no definite solution, it really depends on what is being drawn and how it
is projected. In this section we described various ways of setting up a data-base
to hold the information that is necessary for drawing any given scene, but make
no comment on their usefulness. Thisis considered in the remainder of the book
where We give examples to illustrate the value of particular methodsin different
situations. We shall be using arraysto hold large sets of data, and so naturally the
amount of space given to arrays will depend on the amount of information that is
required for a scene: be sure that when you declare these arrays there is enough
space for all the information — if in doubt, overestimate your store requirements.

168 Advanced Graphics with the BBC Model B Microcomputer

\ertices

We will always need to define vertices and other specia reference pointsin a
scene, and these we store as x-coordinates, y-coordinates and z-coordinates in
arrays X, Y and Z respectively, assuming that if the total number is not known
explicitly then thisvalueis calculated as NOV. So there must be space for not
lessthan NOV valuesin each of the three arrays. These vertices may bein the
SETUP, the ACTUAL or the OBSERVED position, it depends on the context of
the problem. There will also be situations (perspective in particular) when we
need to store the x/y coordinates of the projections of these NOV vcrtices - in
arrays XD and YD. Naturaly thisis unnecessary in the case of an orthographic
projection of pointsin the OBSERVED position since we can use the values
aready stored in the X and Y arrays. The choice of data-base really depends on
the scene and type of projection.

Lines

We can store information on NOL (say) line segments in the two-dimensional
integer array LIN. The Ith line is defined by the integer indices (between 1 and
NOQOV) of the two points at each end of the line — we store theindicesin LIN(1, 1)
and LIN(2, 1). The true coordinate values of the two points at each end of the
line segment can be found from the X, Y and Z arrays. We normally assume that
these lines are coloured implicitly by the program, usually black.

Facets

A facet isaconvex polygonal area on the surface of athree-dimensional object,
and can be defined in a number of ways. Most facets will be triangular or
quadrilateral, rarely greater than six-sided, so we usually assume than no facet
has greater than six sidesin order to minimise waste of store. The NOF facets
can be defined in terms of the indices of the vertices at their cornersin array
FACET: FACET(l, J) isthe index of the It vertex on the 2h facet. Naturally if the
facet is not hexagonal then some of the values are garbage so we need to store
array SIZE, the number of vertices/edges on each facet. We can implicitly colour
each facet or storeit as an integer array COL, and we may implicitly colour the
lines that form the edge of the facet. Another method isto store the facet in terms
of theindices of the linesin the object in array FACET, which would thus refer to
array LIN: FACET(I, J) would now be the index of the Ith line on the edge of the
Jh facet. There are many other methods for representing these, and other
elements of athree-dimensional object: you choose the one most suitable to your
particular situation.

Construction Procedures and the ‘Building Block’ Method

For any required object we define a construction procedure that needs as
parameters amatrix R to move verticesinto position and and any other

Orthographic Projections 169

information about the size of the object (if the object isto be stored in the
SETUP position then naturally no matrix is needed). The procedure can then
define the vertices, lines, facets or any other elements of the object, and use the
matrix R to move the vertices of the object into the required position. Depending
on the context of the program the procedure can then either draw the object, or
extend a data-base that contains this information. We shall give examples of both
methods.

We can construct a scene that contains a number of similar objects (so the data
will bein either the ACTUAL or the OBSERVED position). There is no need to
produce a new construction procedure for each occurrence of the object, al we
do each timeiscalculate anew SETUPto ACTUAL matrix P, and enter it (for
the ACTUAL position) or Q x P (for the OBSERVED position) into the same
procedure. Naturally we shall require one new procedure for each different type
of object.

The complete scene is achieved by the execution of a main program (listing
9.2), which INPUTs the MODE of the picture (usually modes 1 or 4), prepares
the graphics screen by using input values of HORIZ and VERT, and finaly calls
aprocedure ‘ scene3’ which organises the objects in space and then draws them.
The main program below will be used in al the three-dimensional graphics
programs that follow, so do not alter it without very good reason.

Listing 9.2

100 REM MAI N PROGRAM

110 | NPUT" Wi ch node "MOAD : MODE MOWD
120 | NPUT"HORI Z, VERT", HORI Z, VERT

130 PROCstart (3, 0)

140 PROCset ori gi n(HORI Z/ 2, VERT/ 2)

150 PROCscene3

160 STOP

‘scene3’ declares al the arrays that are required for storing information about
a scene, together with the matrices A, B, R and (perhaps) Q for moving objects
into position. If required the values of NOV and NOL (or NOF) areinitialised,
and these will be updated in later construction procedures. For each individual
object (a‘block’), ‘ scene3’ must calculate a matrix P that moves this block into
the ACTUAL position, and then call the construction procedure by using the
correct matrix R (perhaps SETUPto ACTUAL or SETUPto OBSERVED). All
the blocks finally construct the finished scene. Sometimes the drawing of the
projection is done inside the construction procedure, or it can be elsewherein
other procedures that are specifically designed for special forms of drawing (asin
hidden line and hidden surface pictures): it depends on what is being drawn and
what isrequired of the view. As usual, because of the restriction of not passing
array parameters into procedures, we do not normally explicitly generate P and

170 Advanced Graphics with the BBC Model B Microcomputer

Q: we usually rely on updating matrix R. If we require the ACTUAL to
OBSERVED matrix then this procedure calls ‘look3' . Should we need to store Q
then we must first call ‘idR3’ which sets matrix R to the identity — remember all
matrix operations are done viamatrices A and R, using matrix B to hold
intermediate values.

Our first example of this method islisting 9.3, which is the ‘ scene3’ procedure
that is needed to construct a picture of asingle cube as shown in figure 9.1d. The
scene can be viewed from any position with the vertical maintained. We also
have a construction procedure ‘ cubg’ (listing 9.4) which generates the data for a
cube with sides of length 2. It places the vertices, eight sets of coordinate triples,
inarrays X, Y and Z. There is no need to store the lines of the cube explicitly, we
get the information from a DATA statement and draw the lines straight away. The
data for figure 9.1d are HORIZ = 8, VERT = 6, (EX, EY, EZ) = (-2, 2, 2) and
(DX, DY, DZ) = (-1, 0, 0).

Listing 9.3

6000 REM scene 3 / cube (exanple 9.1)
6010 DEF PRCCscene3

6020 DI M X(8), Y(8), Z(8)

6030 DI M A(4,4),B(4,4),R(4,4)

6040 PROC dR3

6050 PROCrot 3(-0.92729522,3) : PROCnul t3
6060 PROCtran3(-1,0,0) : PROChult3

6070 PROCr ot 3(0.92729522,2) : PROCult3
6080 PROCI ook3

6090 PROCcube

6100 ENDPROC

Listing 9.4

6500 REM cube / data not stored, |ines drawn

6510 DEF PROCcube

6520 LOCALI % XX, YY, ZZ, L1, L2

6530 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1, -1,1,1, -1,1,-1, -1,-
1,-1, -1,-1,1

6540 DATA 1,2, 2,3, 3,4, 4,1, 5,6, 6,7, 7,8, 8,5, 1,5, 2,6, 3,7,

6550 RESTORE

6559 REM READ vertex data, transformwith matrix R
6560 FOR 1%1 TO 8

6570 READ XX, YY, ZZ

6580 X(19=R(1, 1) *XX+R(1, 2)*YY+R(1, 3)*ZZ+R(1, 4)
6590 Y(1 9 =R(2, 1) *XX+R(2, 2) *YY+R(2, 3) *ZZ+R(2, 4)
6600 Z(19 =R(3, 1) *XX+R(3, 2) *YY+R(3, 3) *ZZ+R(3, 4)
6610 NEXT | %

6619 REM draw |ines

6620 FOR 1 %1 TO 12

6630 READ L1, L2

6640 PROCnovet o(X(L1), Y(L1))

6650 PROC i net o(X(L2),Y(L2))

6660 NEXT | %

6670 ENDPRCC

Orthographic Projections 171

We could have more than one cube in the scene. For example, should we
rewrite ‘scene3’ asin listing 9.5, keeping all the other procedures the same, we
would get figure 9.2. Note that the X, Y and Z values of the previous cube are
overwritten in the second call to ‘cube' . Also, because we have the same
ACTUAL to OBSERVED matrix for both cubes (they have different SETUPto
ACTUAL matrices) we need to store Q so that it can also be used for the second
cube. Remember Q must premultiply the array P that moves the second cube into
the ACTUAL position. The data for figure 9.2 are HORIZ = 8, VERT = 6, (EX,
EY, EZ) = (3, 2, 1) and (DX, DY, DZ) = (0, 0, 0).

Listing 9.5

6000 REM scene 3 / two cubes not stored

6010 DEF PROCCscene3

6020 LOCAL | % J%

6030 DI M X(8), Y(8), Z(8)

6040 DI M A(4, 4), B(4, 4), R(4, 4), Q(4, 4)

6049 REM cal cul ate and store Q, draw first cube
6050 PROCi dR3 : PROCI ook3 : PROCmul t3 : PROCcube
6060 FOR 1%1 TO 4 : FOR J%1 TO 4

6070 Q1% J% =R(1 % J%

6080 NEXT J% : NEXT 1%

6089 REM put cube 2 in ACTUAL position

6090 PROC dR3

6100 PROCtran3(3,1.5,2) : PROCmult3

6109 REM then in OBSERVED position

6110 FOR 1%1 TO4 : FOR J%1 TO 4

6120 A(1% J% =Q(1 % J%

6130 NEXT J% : NEXT | %

6139 REM draw second cube

6140 PROCnul t3 : PROCcube

6150 ENDPROC

Figure9.2

172 Advanced Graphics with the BBC Model B Microcomputer

Exercise9.1

Extend procedure ‘ cube’ so that information about the size of arectangular block
isinput, so enabling the procedure to construct a block of length LH, breadth BH
and height HT: multiply the x-values of the SETUP cube by LH/2, the y-values
by HT/2 and the z-values by BH/2.

Again it should be noted that the modular approach we have adopted may not
be the most efficient method of drawing three-dimensional pictures. We chose
this descriptive method in order to break down the complex situation into
manageabl e pieces. Once the reader has mastered these concepts he should
cannibalise our programs for the sake of effiiciency. However, to show the value
of this modular approach we give another example, which illustrates just how
quickly programs can be altered to draw new scenes and situations. As the scenes
get more complicated you may run out of storein modes 1 or 0. You should
either run your programsin mode 4 (if you need only two-colour output) or load
the compl ete program into store after having set PAGE = & 1100, and it isalso
advisable to delete all REMarks and unused procedures (such as ‘triangle’ or
‘scale).

Example 9.2
We wish to view afixed scene (for example, the one shown in figure 9.2) from a
variety of observation points.

In this caseit is better to store the vertex coordinates of the scene in the
ACTUAL position, rather than the OBSERVED position, and store the line
information in array LIN. The ‘scene3’ procedure (listing 9.6) must first set NOV
and NOL to zero and then place the objectsin their ACTUAL position by using
matrix R = P. The construction procedure ‘ cube’ (listing 9.7) must therefore be
altered to update the data-base (but note that the same procedure could be used to
store vertices in their OBSERVED position: it needs only adifferent R = Q x P).
Then for each different view point and direction the ‘ scene3’ procedure must
clear the screen, set R to the identity matrix and call ‘look3’, and then call a
special new ‘drawit’ procedure (listing 9.8) which uses the matrix R (which holds
the values of Q, the ACTUAL to OBSERVED matrix) to put the pointsin the
OBSERVED position and orthographically project them into arrays XD and YD
(we cannot use X and Y because this would corrupt our ACTUAL data-base).
Procedure ‘ drawit’ which was labelled in ‘ scene3’ can then use the information in
array LIN to draw the picture on the screen.

If the observer istravelling in astraight line and always looking in the same
direction we need not even calculate Q each time, but simply initially manipulate
space so that the observer islooking along the z-axis; then we can use the
‘setorigin’ procedure to move the observer instead! After you have gained
expertise in drawing three-dimensional projections, you should choose your

Orthographic Projections 173

Listing 9.6

6000 REM scene3 / 2 cubes stored.

6010 DEF PROCscene3

6020 DI M X(16), Y(16), Z(16), XD(16), YD(16)
6030 DI M LIN(2,24),A(4,4),B(4,4),R(4,4)
6039 REM' put cubes in ACTUAL position
6040 NOV=0 : NOL=0

6050 PROC dR3 : PROCcube

6060 PROCtran3(3,1.5,2) : PROCmult3
6070 PROCcube

6079 REM' draw in OBSERVED position
6080 PROCI dR3 : PROC ook3

6090 PROCdr awi t

6100 GOTO 6080

6110 ENDPROC

Listing 9.7

6500 REM cube / add to data base

6510 DEF PROCcube

6520 LOCAL | % XX, YY, ZZ, L1, L2

6530 DATA 1,2, 2,3, 3,4, 4,1, 5,6, 6,7, 7,8, 8,5,

1,5, 2,6, 3,7, 4,8
6540 DATA 1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1,
-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1
6550 RESTORE

6559 REM store line information

6560 FOR | %1 TO 12

6570 READ L1,L2 : NOL=NOL+1

6580 LIN(1, NOL) =L1+NOV : LI N(2, NOL) =L2+NOV

6590 NEXT | %

6599 REM store vertex information put in position by matrix R
6600 FOR | %1 TO 8

6610 READ XX, YY, ZZ : NOV=NOV+1

6620 X(NOV) =R(1, 1) * XX+R(1, 2) * YY+R(1, 3) *ZZ+R(1, 4)

6630 Y(NOV) =R(2, 1) * XX+R(2, 2) * YY+R(2, 3) *ZZ+R(2, 4)

6640 Z(NOV) =R(3, 1) * XX+R(3, 2) * YY+R(3, 3) *ZZ+R(3, 4)
6650 NEXT | %

6660 ENDPROC

Listing 9.8

7000 REM drawi t

7010 DEF PROCdr awi t

7020 LOCAL 1%1L1,L2 : CLG

7029 REM put in OBSERVED position

7030 FOR |1 %1 TO NOV

7040 XD(1%=R(1, 1) *X(1 9% +R(1, 2) *Y(1 99 +R(1, 3)*Z(1 9 +R(1, 4)
7050 YD(1 % =R(2, 1) *X(1 99 +R(2, 2) *Y(1 99 +R(2, 3) *Z(1 %Y +R(2, 4)
7060 NEXT | %

7069 REM draw |ines of object

7070 FOR 1%1 TO NOL

7080 L1=LIN(1,19% : L2=LIN(2,1%

7090 PROCrovet o(XD(L1), YD(L1))

7100 PROO i neto(XD(L2), YD(L2))

7110 NEXT | %

7120 ENDPROC

174 Advanced Graphics with the BBC Model B Microcomputer

construction and viewing method with care. You will rarely need to go through
the complete method given in this chapter, there will always be short-cuts.

Exercise 9.2
Produce construction procedures for a tetrahedron, pyramid etc. For example

(a) Tetrahedron: vertices(1, 1, 1), (1, -1, -1), (-1, 1, -1) and (-1, -1, 1); lines 1
t02,1t03,1t04,2t03,2to4and 3to 4.

(b) Pyramid with square of side 1 and height HT: vertices (0, HT, 0), (1, 0, 1), (1,
0,-1),(-1,0-1) and (-1, 0, 1); lines1to2,1t03,1t04,1t05,2t03,3t04,4
to5and5to 1.

Exercise9.3

Set up aline drawing of any planar object in the x/y plane (for example, the
outline of an alphabetic character or string of characters) and view them in
various orientations in three-dimensional space. You can place such planar
objects on the side of a cube. All you need do is extend the ‘ cube’ procedure
above to include extra vertices and lines to define the symbols.

Figure 9.3

Thus far we have restricted our picturesto those of the simple cube. Thisis so
that the methods we give are not obscured by the complexity of defining objects.
Our programs will work for any object provided that it fits within the limitations
of store (and time) that are available on the BBC micro. For complex objects we
merely extend the size of our arrays, although some objects will have properties
that enable us to minimise store requirements. Consider the jet shown in figure
9.3 — it possesses two-fold symmetry, which can be used to our advantage. We

Orthographic Projections 175

assume that the plane of symmetry isthe y/z plane, and so for every point (X, y, 2)
on the jet there is @ so a corresponding point (-X, Y,). To draw figure 9.3 we use
al the graphics and 4 x 4 matrix routines, listing 9.1 and 9.2, together with
listing 9.9, ‘scene3’ and construction procedure ‘jet’ which generates all the
vertices of the aeroplane that have positive x-coordinates, and thus stores
information only about one-half of the jet. To construct the complete aeroplane
we also need a ‘ drawit’ procedure (also in listing 9.9) which draws one side of
the jet and then, by reversing the signs of all the x-values, draws the other.

It issimple to construct these figures, just plan your object in various sections
on a piece of graph paper, number the important vertices and note which pairs of
vertices are joined by lines. The coordinate values can be read directly from the
grid on the paper. The datafor figure 9.3 are HORIZ = 160, VERT = 120, (EX,
EY, EZ) = (1, 2, 3) and (DX, DY, DZ) = (0, 0, 0).

Figure 9.4

Bodies of Revolution

Thisfar in our construction of objects we have relied on DATA to input all the
information about lines and vertices. We now consider atype of object where
only asmall amount of information is required for a quite complex object — this
isabody of revolution, an example of which is shown in figure 9.4.

The method is simply to create a defining sequence of NUMYV linesin the x/y
plane through the origin; thisis called the definition set. We then revolve

Listing 9.9

6000 REM scene3 / jet

6010 DEF PROCscene3

6020 DI M X(37),Y(37),Z(37), XD(37), YD(37)

6030 DI M LIN(2,46), A(4 4) B(4 4y, R(4 4)

6040 PROC dR3 : PR(I] 00

6050 PROC et : PRCXJdrant

6060 ENDPRCC

6500 REM j et

6510 DEF PROJ et

6520 LOCAL | %

6530 DATA 0,0,80, 0,0,64, 0,8,32, 4,8,32, 8,4,32, 8,0,32,
4,-4,32, 0,8,-32, 4,8,-32, 8,4,-32, 8,0,-32, 4,-4,-32,
0,-4,-32, 8,0,24, 48,0,-32, 8,2,-32, 0,8,0, 2,8,-32,
0,32,-32, 28,-4,-24, 30,-2,-24, 32,-2,-24, 34,-4,-24

6540 DATA 32,-6,-24, 30,-6,-24, 28,-4,8, 30,-2,8, 32,-2,8,
34,-4,8, 32,-6,8, 30,-6,8, 31,0,-24, 31,-2,-24,
31,-2,-12, 31,0,-12, 0,6,40, 3,6,40

6550 DATA 1,2, 2,3, 2,4, 2,5, 2,6, 2,7, 3,4, 4,9, 5,10,
6,11, 7,12, 8,9, 9,10, 10,11, 11,12, 12,13, 14,15,
15,10, 15,16, 14,16, 17,18, 17,19, 18,19

6560 DATA 20,21, 21,22, 22,23, 23,24, 24,25, 25,20, 26,27, 27,28,
28,29, 29,30, 30,31, 31,26, 20,26, 21,27, 22,28, 23,29,
24,30, 25,31, 32,33, 33,34, 34,35 35,32, 36,37

6570 RESTORE : NOV=37 : NOL=46

6579 REM SETUP vertices and |ines

6580 FOR |1 %1 TO NOV : READ X(1%,Y(1%,Z(1% : NEXT 1%

6590 FOR 1 %1 TO NOL : READ LIN(1,19%,LIN(2,19% : NEXT 1%

6600 ENDPROC

7000 REMIrawit / two hal ves of jet

7010 DEF PROCdr aw t

7020 LOCAL 1% J% S% XX, YY, ZZ, L1, L2

7030 S%1

7039 REM | oop through two hal ves

7040 FOR J%1 TO 2

7049 REM vertices in OBSERVED position

7050 FOR |1 %1 TO NOV

7060 XX=SWX(19% : YY=Y(1% : ZZ=Z(1%

7070 XD(19% =R(1, 1) * XX+R(1, 2) * YY+R(1, 3) *ZZ+R(1, 4)

7080 YD(19% =R(2, 1) * XX+R(2, 2) * YY+R(2, 3) * ZZ+R(2, 4)

7090 NEXT | %

7099 REM draw | i nes

7100 FOR |1 %1 TO NOL

7110 L1=LIN(1,19% : L2=LIN(2,1%

7120 PROCrovet o(XD(L1), YD(L1))

7130 PROC i net o(XD(L2), YD(L2))

7140 NEXT 1%

7150 S%-1

7160 NEXT J%

7170 ENDPRCC

176 Advanced Graphics with the BBC Model B Microcomputer

this set about the vertical (y-axis) NUMH — further timesto create new vertical
sets. The NUMYV linesin the definition set are formed by joining the NUMV + 1
vertices (XD(1), YD(2), O) (where1 <1 < NUMYV + 1) in order. From thiswe
generate NUMH different vertical sets: the Jth vertical set isthe definition set

Orthographic Projections 177

rotated through an angle PHI + 21(J — 1)/NUMH about the vertical y-axis, for
some input value PHI(f). Aswell as the set of NUMH xx NUMV vertical lines
we also introduce horizontal lines. We consider a single point (XD(l), YD(I), 0)
at the end of aline segment in the definition set: as we rotate about the vertical
axisit movesinto NUMH positions (provided that the point is not on the axis of
revolution):

(XD(l) x cos(8 + @), YD(I), XD(l) xsin (6 +¢)) where
0 = 2r(J - 1)/NUMH with | £ J< NUMH

These NUMH points are joined in order, and the NUMH position is joined back
to thefirst, to give the Ith horizontal set. So there are (NUMH — n) x NUMV
horizontal lines, where n is the number of vertices on the axis of rotation. Listing
9.10 is a construction procedure ‘revbod’, which draws the body of revolution
when given NUMV, NUMH, PHI, the original set of verticesin XD and YD and
the positional matrix R. Listing 9.11 is the ‘ scene3’ procedure which creates the
scene of aspheroid in figure 9.4 by placing eight points from a semicircle into
the definition set: HORIZ = 3.2, VERT = 2.4, PHI = 1725, NUMH = 10, NUMV
=8, viewed from (1, 2, 3) looking at (0, 0, 0).

Listing 9.10

6500 REM revbod / body of revolution

6510 DEF PROCrevbod

6520 LOCAL | % J% THETA, TD, N1, C, S, XX, YY, ZZ

6530 THETA=PHI : TD=PI *2/ NUMH

6540 N1=NUW+1 : C=COS(PHI) : S=SIN(PH)

6550 FOR | %1 TO N1

6560 XX=XD(1%*C : YY=YD(19% : ZZ=XD(|%*S
6570 X(19% =R(1, 1) *XX+R(1, 2) * YY+R(1, 3) *ZZ+R(1, 4)
6580 Y(19% =R(2,1)*XX+R(2, 2) *YY+R(2, 3) *ZZ+R(2, 4)
6590 NEXT 1%

6599 REM | oop thru second vertical set

6600 FOR J%1 TO NUWH

6610 THETA=THETA+TD : C=COS(THETA) : S=SI N(THETA)
6620 FOR 1 %1 TO N1

6630 XX=XD(1%*C : YY=YD(19% : ZZ=XD(1%*S
6640 X(19%N1) =R(1, 1) *XX+R(1, 2) * YY+R(1, 3) *ZZ+R(1, 4)
6650 Y(I9%NL1)=R(2, 1) *XX+R(2, 2) *YY+R(2, 3) *ZZ+R(2, 4)
6660 NEXT | %

6669 REM join vertical |ines

6670 PROCnovet o(X(1), Y(1))

6680 FOR | %2 TO N1

6690 PROC i neto(X(1%, Y(1%)

6700 NEXT | %

6709 REM join horizontal |ines

6710 FOR | %1 TO N1

6720 PROCovet o(X(19%, Y(1%)

6730 PROC i net o(X(I %-N1), Y(1 %+-N1))

6739 REM second set becomes first set

6740 X(19% =X(19%NL) : Y(I1%=Y(I%N1)

6750 NEXT 1% : NEXT J%

6760 ENDPROC

178 Advanced Graphics with the BBC Model B Microcomputer

Listing 9.11

6000 REM scene3 / spheroid

6010 DEF PRCCscene3d

6020 LOCAL | % THETA, TD

6030 DI M X(32), Y(32), XD(16), YD(16)

6040 DI M A(4,4),B(4,4),R(4,4)

6050 | NPUT" NUVMBER OF HORI ZONTAL LI NES", NUVH
6060 | NPUT" NUVMBER OF VERTI CAL LI NES", NUW
6070 | NPUT"I NI TI AL ROTATI ON', PHI

6080 THETA=PI/2 : TD=PI/ NUW

6089 REM definition set is senicircle
6090 FOR 1 %1 TO NUW+1

6100 XD(19% =COS(THETA) : YD(|% =SI N(THETA)
6110 THETA=THETA+TD

6120 NEXT | %

6130 PROC dR3 : PROCI ook3

6140 PROCr evbod

6150 ENDPROC

Exercise 9.4

Experiment with this technique — any line sequence will do. Try an ellipsoid: this
is essentially the same as the spheroid except that the definition set is produced
from a semi-ellipse rather than a semicircle. Thereis no need to produce only
convex bodies: lines can cut one another or crossto and fro over the y-axis, and
x-values can move up and down.

Thisidea can be extended into a body of rotation. Now as the set of lines
moves around the central axis, they-values of the points do not stay fixed. They
can movein aregular manner, that is they can drop by the same amount with
each rotation through 2r'NUMH. Now, of course, the lines may make more than
one compl ete rotation about the axis — see figure 9.5. Write a program to
implement a body of rotation.

Figure 9.5

Orthographic Projections 179

Animation of Line Drawings

We can animate simple line drawings like those created in this chapter by using
the method of redefining the logical-actual colour relationships. The techniqueis
to produce n (for some even integer n) separate pictures of an object in different
positions. We have a white background (logical colour binary 11) and a black
foreground (logical 00). The object will be drawn inlogical colours Ol or 10; at
any time one logical colour will be set to actual white and the other to actual
black. By ANDing a picture on to the screen in white an invisible picture will be
drawn, which can be made visible later by redefining the logical colour to be
actual black. ANDing awhite line over ablack pixel will leave the black pixel on
the screen as required. ORing the same picture on to the screen in the opposite
logical colour to which it was originally drawn will delete the picture from the
screen memory (whether it be visible or invisible). This deletion will not leave
holesin the visible lines from the other views still on the screen. Thisgivesusa
simple method:

(1) With the (i — 1)t picture visible draw the it view so that it isinvisible.
(2) Make theith picture visible and the (i — 1)t invisible by redefining the
logical-actua relationship.

(3) Delete the (i — 1)th view when it isinvisible.

Herei varies from 1 to n (the number of views). If the views are such that the (n
+ 1)thview (if there was one) is the same as the first then we have an infinite
movie.

Listing 9.3

Listing 9.12 gives an implementation of this method for drawing arotating cube.
We change the ‘10ook3’ routine so that each timeit is called the observer movesto
adifferent position relative to the object. The ‘ scene3’ routine sets up a SPOOL
file called ROTCUB on backing store to hold all the graphics commands (the
program istoo slow to draw the figures in real-time animation). It also uses the
‘drawit’ routine which draws a ‘ cube’ setup by the procedure from listing 9.7,
and the ‘lib1’ and ‘1ib3’ routines (excluding ‘look3’ naturally). By typing in the
instructions below you load ROTCUB file back into store and then execute the
commands in sequence over and over again to get a non-stop movie:

*OPT 1, 2: PAGE = &1900
*LOAD ROTCUB 1900
The size of the file will be displayed on the screen: in this case & C6C
MODE 1: GCOL 0, 131: CLG
REPEAT: FOR 1% = 0 to & C6B: VDU [%7?& 1900: NEXT 1%: UNT1L FALSE

180

Advanced Graphics with the BBC Model B Microcomputer

Listing 9.12

6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180

7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120

8200
8210
8219

8220
8230
8240
8250
8260
8270
8280
8290
8300
8310
8320
8330
8340
8350

REM scene3

DEF PROCscene3

DI M X(8),Y(8), Z(8), XD(8) YD(8), LIN(2,12)
DI M A(4, 4) B(4 4), R(4,

NOV=0 : NOL= COLOR=2 : OTHER=1
PROCI dR3 : PR([bube

* SPOCOL" ROTCUB"

FOR A=0.05 TO PI/2 STEP PI/20

GCOL2, COLOR : AL=A

VDU19, COLOR, 7, 0, 0, 0, 19, OTHER, 0, 0, 0, 0
PROCI dR3 : PROC ook3 : PROCdr awi t
VDU19, COLOR, 0, 0, 0, 0,19, OTHER, 7,0, 0, 0
AL=A-PI /20

PROCI dR3 : PROC 00k3

GCOL1, COLOR : PROCdr awi t

OTHER=COLOR : COLOR=3- COLOR

NEXT A

* SPOOL

ENDPROC

REM dr awi t

DEF PROCdr awi t

LOCAL | %

FOR 1 %1 TO NOV

XD(1 9 =R(1, 1) *X(19 +R(1, 2) *Y(1 % +R(1, 3) *Z(1 %9 +R(1, 4)
YD1 =R(2,1)*X(1 99 +R(2,2)*Y(1 99 +R(2, 3)*Z(1 % +R(2, 4)
NEXT | %

FOR 1 %1 TO NCOL

L1=LIN(1,19% : L2=LIN(2, 1%

PROCovet o(XD(L1), YD(L1))

PROCI i net o(XD(L2), YD(L2))

NEXT | %

ENDPROC

REM | ook3

DEF PROC ook3

REM adj usted | ook 3 routine. Cbserver noves in a circle
around the origin making an angle AL with the +ve
x-axi s | ooki ng at the origin.

EY=2 : EX=SQR(10)*COS(AL) : EZ=SQR(10)*SI N(AL)

DX=0 : DY=0 : DzZ=0

PROCt r an3(DX, DY, DZ) : PROChult3

FX=EX-DX : FY=EY-DY : FZ=EZ-DZ

THETA=FNangl e(FX, FY)

PROCr ot 3(- THETA, 3) : PROCnul t 3

DI ST=SQR(FX* FX+FY* FY)

THETA=FNang! e(FZ, DI ST)

PROCr ot 3(Pl - THETA, 2) : PROCmul t3

THETA=FNangl e(R(2, 2), R(1, 2))

PROCr ot 3(THETA, 3) : PROChul t 3

DI ST=SQR(DI ST*DI ST+FZ*FZ)

PROCt ran3(0, 0, DI ST) : PROCmul t 3

ENDPROC

Orthographic Projections 181

Complete Programs

From now on we shall refer to listings 3.3 (‘angl€e’), 8.1 (‘mult3’ and ‘idR3’), 8.2
(‘tran3), 8.3 ('scaled), 8.4 (‘rot3’), 9.1 (‘100k3’) and 9.2 (‘ main program’) as
‘lib3' . Also from now on it is best to load programs with PAGE = & 1100.

| ‘lib1’, ‘lib3" and listings 9.3 (‘ scene3’) and 9.4 (‘ cube’). Data required:
mode, HORIZ, VERT, (EX, EY, EZ) and (DX, DY, DZ). Try 4, 6, 4, (1,
2,3), (-1, 0, 1). Also use modes 0 and 1.
Il ‘lib1’, ‘lib3" and listings 9.5 (‘ scene3’) and 9.4 (‘ cube’). Datarequired:
mode, HORIZ, VERT, (EX, EY, EZ) and (DX, DY, DZ). Try 4, 8, 6, (1,
2, 3), (-1, 0, 1). Make systematic changes to one of these input values
and keep dl the other parameters fixed.
11 ‘libl’, ‘1ib3" and listings 9.6 (‘ scenel’), 9.7 (‘ cube’) and 9.8 (‘drawit’).
Datarequired: mode, HORIZ, VERT, and then repeated input of (EX,
EY, EZ) and (DX, DY, DZ). Try 4, 8, 6, then (1, 2, 3), (-1, 0, 1); (3, 2,
1), (0, 0, 1). Again make systematic changes to one of the input
parameters.
v ‘lib1’, * 1ib3 and listing 9.9 (‘scened, ‘jet’ and ‘drawit’). Data required:
mode, HORIZ, VERT, and then (EX, EY, EZ) and (DX, DY, DZ). Try 4,
200, 150, then (1, 2, 31), (-1, 0, 30) or (3, 2, 20), (0, 0, 21).Again make
systematic changes to one of the input parameters.
Y ‘lib1’, ‘lib3' and listings 9.10 (‘ scene3’) and 9.11 (‘revbod’). Data
required: mode, HORIZ, VERT, NUMH, NUMV, PHI, (EX, EY, EZ)
and (DX, DY, DZ). Try 1, 3.2, 2.4, 10, 10, 1, (1, 2, 3), (0, 0, 0); (3, 2, 1),
(0,0, 0).
VI ‘lib2’, ‘1ib3’ (minus ‘ 100k3), listings 9.7 (‘ cube’) and 9.12 (‘ scene3,,
‘drawit’ and ‘100k3’). Data required: mode, HORIZ, VERT. Try 1, 6, 4.
Thiswill create afile ROTCUB on backing store. Then type

*OPT 1, 2: PAGE = &1900
*LOAD ROTCUB 1900
MODE 1: GCOL 0, 131: CLG
REPEAT: FOR 1% =0TO &C6B: VDU 1%?&1900: NEXT 1%: UNT1L FALSE

