8 Matrix Representation of
Transformations on Three-Dimensional

Space

In chapter 4 we saw the need for transforming objects in two-dimensional space.
When we draw three-dimensional pictures there will be many times when we
need to make the equivalent linear transformations on three-dimensional space.
Asin the lower dimension, there are three basic types of transformation:
trandation, scaling and rotation. We will represent transformations as square
matrices (now they will be 4 x 4). A general point in space relative to afixed
coordinate triad, the row vector (x, y, z), must be considered as a four-rowed
column vector:

X

y

z
1

All the operations on matrices (addition, scalar multiple, transpose,
premultiplication of a column vector and matrix product) that we saw in chapter
4 are easily extended to cope with 4 x 4 matrices and column vectors by simply
changing the upper bound of the index ranges from 3 to 4. In this way we can
generate a procedure ‘mult3’ (seelisting 8.1) for multiplying two 4 x 4 matrices
together. It is exactly equivalent to procedure ‘mult2’ in the two-dimensional
case, and for the very same reasons. The procedure multiplies matrix A by matrix
R to give matrix B, which is then copied into R. We also need the procedure
‘1dR3’ (seelisting 8.1) which sets R to the identity matrix.

Consider the case of ageneral linear transformation on pointsin three-
dimensional space. A point (X, v, 2) - ‘before’ - istransformed into (X',y’, Z) -
‘after’ - according to three linear equations:

X =Ap XX+ApXy+ARxz+Ay

Y A XX+tApnxy+tAzxztAy

Z=Ag XX+ApXy+AgpXz+Ag,
and as usual we add the extra equation:

1=Ap XX+Apxy+Apxz+Ay
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whichif itisto betruefor all x, y and zmeansthat Ay, = A, = Ay3 = 0 and that
A44 =1

Then the equations may be written as a matrix equation where a column
vector representing the ‘ after’ point is the product of amatrix and the ‘ before’
column vector:

X An Ap Ap Ay X
Yy B Az Ap Axp Ay y
z | | Aa An As Ay “\ 2
1 An Ap Ap Ay 1

So if we store the transformation as a matrix, we can transform every required
point by considering it as a column vector and premultiplying it by a
transformation matrix. As before, transformations may be combined simply by
obeying the sequence of transformationsin order. If their equivalent matrices are
A,B,C, ..., L, M, N, then the matrix equivalent to the combinationisN x M x
L x...x Cx B xA. Remember the order. Since we are premultiplying a column
vector, then the first transformation appears on the right of the matrix product
and the last on the | eft.

As with the two-dimensional case, we note that the ‘ bottom row’ of all
transformation matricesisaways (0, 0, 0, 1), and it isofno real usein
calculations. It is added only to form square matrices which are necessary for the
formal definition of matrix multiplication. We may adjust this definition, and that
of the multiplication of amatrix and a column vector, so that instead we use only
the top three rows of the 4 X 4 matrices (in chapter 4 we used the top two rows
of 3x 3 matricesin listings 4.2a, 4.3a, 4.4aand 4.53).

Listing 8.1

9100 REM nul t 3

9110 DEF PROCTul t 3

9120 LOCAL 1% J% K%

9130 FOR 1 %1 TO 3

9140 FOR J%1 TO 4

9150 B(I%J% =A(1% 1) *R(1, J% +A(1 % 2) *R(2, J% +A(1 % 3) *R(3, J%
9160 NEXT J

9170 B(I%4) =B(1% 4) +A(1 % 4)
9180 NEXTI %

9190 FOR | %1 TO 3

9200 FOR J%1 TO 4

9210 R(1% J% =B(1% J%

9220 NEXT J%

9230 NEXT | %

9240 ENDPROC

9300 REM i dR3
9310 DEF PRCC dR3

9320 R(1,1)=1 : R(1,2)=0 : R(1,3)=0 : R(1,4)=0
9330 R(2,1)=0 : R(2,2)=1 : R(2,3)=0 : R(2,4)=0
9340 R(3,1)=0 : R(3,2)=0 : R(3,3)=1 : R(3,4)=0
9350 ENDP|
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Trandlation

Every point to be transformed is moved by avector (TX, TY, TZ) say. This
produces the following equations which relate to the ‘ before’ and * after’
coordinates:

X =1xx+0xy+0xz+TX
Yy =0xx+1xy+0xz+TY
Z=0xx+0xy+1xz+TZ

so that the matrix describing the trandlation is

1 0 O0TX
0 1 0TY
0 0 17z
0 0 0 1

The procedure ‘tran3’ for producing such amatrix A, given the parameters TX,
TY and TZ, isgiveninlisting 8.2.
Listing 8.2

9000 REM tran3
9010 DEF PROCtran3(TX, TY, TZ)
9020 A(1,1)=1: A(1,2)=0 : A(1,3)=0 : A(1,4)=TX
9030 A(2,1)=0 : A(2,2)=1: A(2,3)=0 : A(2,4)=TY
9040 A(3,1)=0 : A(3,2)=0 : A(3,3)=1: A(3,4)=Tz
9050 ENDPROC
Scaling
The x-coordinate of every point to be transfonned is scaled by afactor SX, they-
coordinate by SY and the z-coordinate by Sz, thus

X =SXxx+ 0 xy+ 0 xz+0

y=0 xx+SYxy+ 0 xz+0

Z= 0 xx+ 0 xy+SZxz+0

giving the matrix

SX 0 0 0
0 SY 0 0
0 0 SZ 0
0 0 0 1
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Usually the scaling values are positive, but if any of the va]ues are negative then
thisleadsto areflection as well as (possibly) scaling. For example, if SX = SZ =
1 then points are reflected in the y/z plane through the origin. A procedure
‘scale3’ to produce such a scaling matrix A given SX, SY and SZ isshown in
listing 8.3

Listing 8.3

8900 REM scal e3
8910 DEF PROCscal e3( SX, SY, S7)

8920 A(1,1)=SX : A(1,2)=0 : A(1,3)=0 : A(1,4)=0
8930 A(2,1)=0 : A(2,2)=SY : A(2,3)=0 : A(2,4)=0
8940 A(3,1)=0 : A(3,2)=0 : A(3,3)=SZ : A(3,4)=0

8950 ENDPROCC

Rotation about a Coordinate Axis

In order to consider the rotation about a genera axisp + mq by agiven angleitis
first necessary to simplify the problem by considering rotation about one of the
coordinate axes.

y X z
y x' pa
X z' y
X
y
z-axis into page y-axis into page x-axis into page
@ (b) (©
Figure 8.1

(a) Rotation by angle 6 about the x-axis

Referring to figure 8.1c, the axis of rotation is perpendicular to the page (the
positive x-axis being into the page), and since we are using left-handed axes the
figure shows the point (X', y', ') that results from the transformations of an
arbitrary point (X, y, z). We see that the rotation actually reduces to a two-
dimensional rotation in the y/z plane that passes through the point; that is, after
the rotation the x-coordinate remains unchanged. By using the ideas explained in
chapter 4 we get the equations
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=X
y =cosfxy-sinBxz
Z =sn@xy+cosOxz

and thus the matrix

1 0 0

cosB -sing

= O O O

0

0 snB cos6

0 0 0
(b) Rotation by an angle 6 about the y-axis
Referring to figure 8.1b, we now have the positive y-axis into the page, and
because of the |eft-handedness of the axes the positive z-axis is horizontal; to the

right of the origin and the positive x-axis is above the origin. This leads us to the
equations

X =s8in@xz+c0s0 xx

y =y

Z =c0os0xz-sinBxx
which gives the matrix

cos6 0 sn6 O

0 1 0 0
-sin® 0 cos6® O

0 0 0 1
(c) Rotation by an angle 6 about the z-axis
Referring to figure 8.1awe get the equations

X =cosfxx—-sin@xy

y =sin@ xx+cos6 xy

Z=z

and the matrix

cos® -sn® O 0
sin® cos8 O 0
0 0 1 0
0 0 0 0
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A subprogram ‘rot3’ to produce such amtrix A, given the angle THETA and
the axis number AX1S (AXIS = 1 for the x-axis, AXIS = 2 for the y-axis and
AXIS = 3for the zaxisisgivenin listing 8.4.

Listing 8.4

8600 REM rot 3
8610 DEF PROCr ot 3( THETA, AXI S)

8620 LOCAL AX1, AX2, CT, ST

8630 AX1=(AXI S MOD 3) +1

8640 AX2=(AX1 MOD 3) *1

8650 CT=COS(THETA) : ST=SI N( THETA)

8660 A(AXI S, AXI S)=1 : A(AXI S, AX1)=0 : A(AXI S, AX2) =0
8670 A(AX1, AXI S)=0 : A(AXL, AX1)=CT : A(AX1, AX2)=- ST
8680 A(AX2, AXI S)=0 : A(AX2, AX1)=ST : A(AX2, AX2) =CT
8690 A(1,4)=0 : A(2,4)=0 : A(3,4)=0

8700 ENDPROC

Inver se Transfor mations

Before we can consider the general rotation transformation, it is necessary to
look at inverse transformations. An inverse transformation returns the points
transformed by a given transformation back to their origina position. If a
transformation is represented by a matrix A, then the inverse transformation is
given by matrix A-1, theinverse of A. Thereis no need to explicitly calculate the
inverse of amatrix by using such techniques as the Adjoint method (listing 7.4):
we can use listings 8.2, 8.3 and 8.4 with parameters that are derived from the
parameters of the original transformation:

(1) Atrandationby (TX, TY, TZ) isinverted with atrandlation by (-TX, -TY, —
TZ).

(2) A scaling by SX, SY and SZ isinverted with ascaling by 1/SX, /SY and 1/
SZ.

(3) Arotation by an angle 8 about a given axisisinverted with arotation by an
angle -0 about the same axis.

(4) If the transformation matrix is the product of a number of translation, scaling
and rotation matricesA x Bx C x ... xL x M x N, thentheinverse
transformation is

N1IxMIxL1lx. xClxB1lxA-1l

Rotation of Pointsby an Angley about a General Axisp + uq

Assume p = (PX, PY, PZ) and g = (QX, QY, QZ). We break down the task into a
numbe of subtasks:
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(a) Wetrandlate all of space so that the axis of rotation goes through the origin.
Thisisachieved by adding a vector —p to every point in space with amatrix F
say, which is generated by acall to ‘tran3’ with parameters —PX, -PY and —PZ.
Theinverse matrix F~1 will be needed later and is found by acall to ‘tran3’ with
parameters PX, PY and PZ. After this transformation the axis of rotation is the
line 0 + pq that passes through the origin.

1 0 0 -PX 1 0 0 PX

01 0 -PY 0 1 0 PY
F= F1l=

00 1 -Pz 0 0 1 PZ

00O 1 0 0 0 1

(b) We then rotate space about the z-axis by an angle —a, where (ALPHA =) a =
tan~1 (QY/QX), given by the matrix G. The matrix may be generated by acall to
‘rot3’, with parameters angle —ALPHA and axis 3, and the inverse matrix G1 by
acall to ‘rot3 with ALPHA and 3. At this stage the axis of rotationisalinelying
in the x/z plane that passes through the point (v, 0, QZ).

QX QY 00 X-QY 0 0
g=1 QY QX 00 g1= LJQY QX 0 0
v 0 0 v o v 0 O0OvoO

0 0 0 v 0 0O0v

where v is the positive number given by v2 = QX2 + QY2,

(c) We now rotate space about the y-axis by an angle —3, where (BETA =) B =
tan~1 (v/QZ), given by the matrix H which is obtained by the call ‘rot3’ with
parameters angle — BETA and axis 2, and the inverse matrix H-1 by a‘rot3’ call
with parameters BETA and 2

Qz 0 v O Qz 0 v O

H:i 0 w 0 O G—l-i 0O w 0 O
w v 0Qz O v -v 0Qz O

0 0 01 0 0 0 1

where w is the positive number given by w2 =v2 + QZ2 = QX2+ QY2 + QZ2. So
the point (v, 0, QZ) istransformed to (0, 0, w), hence the axis of rotation is along
the z-axis.

(d) We can now rotate space by an angley (GAMMA) about the axis of rotation
by using matrix W which is generated by ‘rot3’ (with angle GAMMA and axis
3):
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cosy -siny O

0

sny cosy 0 O
W =

0

0 0 1
0O 0 0 1

(e) We need to return the axis of rotation to its original position so we multiply
by H1, Glandfinaly F1.

Thus the final matrix Pthat rotates space by the angle y about the axis p + g
isP=F1xG1lxH1xWxH xG xF Naturaly some of these matrices may
reduce to the identity matrix in some special cases and can be ignored. For
exampleif the axis of rotation goes through the origin then F and F1 are
identical to the identity matrix and can be ignored.

So it is possible to write a specia procedure ‘genrot’ (listing 8.5) which
achieves this rotation and returns the required matrix P given GAMMA, (PX, PY,
PZ) and (QX, QY, QZ).

Listing 8.5

5000 REM genrot / rotate space about a general axis
5010 DEF PROCgenr ot ( PX, PY, PZ, QX, QY, QZ, GAMVA)
5020 LOCAL ALPHA, BETA

5030 PROCtran3(-PX -PY,-PZ) : PROCnult3

5040 ALPHA=FNangl e( QX, QY)

5050 PROCrot 3(-ALPHA, 3) : PROCmul t3

5060 BETA=FNangl e( QZ, SQR( QX* QX+QY*QY))

5070 PROCrot 3(-BETA, 2) : PROCnu

5080 PROCrot 3( GAMVA, 3) PRCI:mJI t3

5090 PROCrot 3(BETA, 2) : PROChul t 3

5100 PROCrot 3( ALPHA, 3) : PROChul t 3

5110 PROCt ran3(PX, PY, PZ) : PROCmul t3

5120 ENDPROC

Example 8.1
What happens to the points (0, 0, 0), (1, 0, 0), (0, 1,0), (0,0, 1) and (1, 1, 1) if
space is rotated by 174 radians about an axis (1, 0, 1) + u(3, 4, 5).

Using the above theory we note that

1 0 0 -1 1 0 0 1
0 1 0 0 0 1 1
F= Fi=
0 0 1 -1 0 o0 1
0 o 1 0 0 0 1
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3 4 00 34 00
_1 |4 3 00 _ 1§43 00
G_s 0 0 5 0 G 5 0 0 50
0 0 0 5 0 0 05
1 0-10 10 10
e L 0 v2 00 Jya-t [Ov2 00
V2 1 0 10 v2 11 0o oo
0 0 0+vV2 0 0 0 V2
1 -1 00
wel 1 1 00| .
v2 o o0v2 o0
0 0 0+vV2
41+ 2 -12- 13V2-15+35/2 -26+ 6V2
p= _1 |12+ 3W2 34+ 16V2 20+ 5V2 -26+ 6V2

50v2 §-15- 5V2 -20+35V2 25+ 25V2 -10+ 30V2
0 0 0 0

whereP=F1x G1xH1xWxH xG xFisthe matrix representation of the
required transformation. Premultiplying the column vectors equivaent to (0, O,
0), (14,0,0),(0,1,0),(0,0,1)and (1, 1, 1) by Pand changing the resulting
column vectors back into row form and taking out a factor 1/50v2 gives the
coordinates (26 + 6v2, 32 — 42v2, -10 + 30v2), (15 + 15V2, 20 - 5V2, =25 +
25V2), (-38 - 7v2, 66 — 26v2, =30 + 65V2), (—41 + 412, 12 - 37V2 15 + 55V2)
and (-12 + 37v2, 34 + 16v2, —20 + 85V2) respectively. Naturally, translating and
rotating space should leave relative positions unchanged; in particular the angles
between direction vectors should be unchanged (the same cannot be said about
the scaling transformation which in general does alter relative positions). In the
original system the three lines from (0, 0, 0) to (1, 0, 0), (0, 1, 0) and (0, 0, 1),
respectively, are mutually perpendicular (that is, the dot product of pairs of these
directions should be zero). The dot product of the directionsin the transformed
system should also be zero: the three directional vectors (with 1/50v2 vectored
out) are (41 + 9v2, =12 + 37V2, =15 - 5V2), (-12 - 13vV2, 34 + 16V2, -20 +
35vV2) and (15 + 352, =20 + 5v2, 25 + 25v2), and the dot product of any pair is
zero.
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Similarly the dot product of the direction vector from the originto (1, 1, 1) in
the original system, taken with any of the original directions above, givesthe
same value (= 1). Thisisaso tmein the transformed system: the fourth direction
is (14 + 31v2, 2 + 58V2,— 10 + 55V2), and when we take the dot product with
each of the three direction vectors above we get the value 5000, which when we
take into account the factor (1/50v2)2 gives the value 1.

A program that reads in the axis ofrotation (PX, PY, PZ) + u(QX, QY, QZ)
and the angle GAMMA, and rotates any point (XX, Y'Y, ZZ) about this axis by
an angle GAMMA isgivenin listing 8.6.

Listing 8.6

100 REM Rot ation about given axis

110 DI M A(4, 4), B(4, 4), R(4, 4)

119 REMread i n data on rotation

120 CLS : PRINT TAB(O, 3), "Rotati on about given axis", SPC(10)
130 I NPUT"Base vector of axis ", PX, PY, PZ

140 INPUT"Direction vector of axis ", QX, QY,QZ

150 | NPUT" Angl e of rotation ", GAMVA

160 CLS
170 PRI NT TAB(O, 3); "Base vector of axis "
180 PRI NT TAB(O, 4);"("; PX; ", ", PY; ", " PZ )"

190 PRINT TAB(O, 6);"Direction vector of axis "

200 PRI NT TAB(O, 7)"'("'QX' vt Q)

210 PRINT TAB(O0,9);"Angle of rotation "

220 PRI NT TAB(O, 10) GAMVA

229 REM cal culate rotation matrix R

230 PROC dR3 : PROCgenr ot ( PX, PY, PZ, QX, QY, QZ, GAMVA)

239 REM i nput point (XX YY, ZZ)

240 FOR 19%13 TO 21 : PRINT TAB(O, 1% ; SPC(40) : NEXT |%
250 PRI NT TAB(O, 12); " Coordi nates of point"

260 | NPUT XX, YY, Z2Z

270 PRINT TAB(O, 13):"("; XX ", " YY:", ";2Z")"

279 REM (XX, YY, ZZ) becomes (RX, RY. RZ)

280 RX=R(1, 1) * XX+R(1, 2) * YY+R( 1, 3) *ZZ+R( 1, 4)

290 RY=R(2, 1)*XX+R(2, 2) * YY+R( 2, 3) * ZZ+R( 2, 4)

300 RZ=R(3, 1) *XX+R(3, 2) *YY+R(3, 3) *ZZ+R(3, 4)

310 PRI NT TAB(O, 15); " becone"

320 PRINT TAB(O,17);"(";RG",";RY; ", "; RZ; ") "

330 PRI NT TAB(O, 21);"press any key to continue"

340 | F NOT I NKEY(0) THEN PRI NT TAB(O, 20); SPC(40) : GOTO 240 ELSE
340

Exercise 8.1

Experiment with these ideas. You can always make a check on your final
transformation matrix by considering simple values as above, and you can use
the previous listings to check your answer. It is essential that you are confident in
the use of matrices, and the best way to get this confidence isto experiment. You
will make lots of arithmetic errorsinitially, but you will soon come to think of
transformationsin terms of their matrix representation, and this will greatly ease
the study of drawing three-dimensional objects.
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Exercise 8.2

You will have noticed that the procedure ‘rot3' is usually called with THETA
generated by ‘angle’ which uses valuesAX and AY asinput parameters. ‘rot3’
calculates the cosine and sine of angle THETA - but we know these are AX/
V(AX2 + AY2) and AY V(AXZ2 + AY 2) respectively. Write another rotation
procedure ‘rotxy’ that calculates the rotation matrix direction fromAX and AY
without resorting to ‘angle’ .

Exercise 8.3

In chapter 4 we noted that some writers use row rather than column vectors, and
postmultiply rather than premultiply. We decided against this interpretation so
that the matrix of atransformation would correspond directly with the
coefficients of the transformation equations. In this other interpretation it is the
transpose of the matrix that isidentical to the coefficients. It is useful to be aware
of this other method, so use it to rewrite al the programs given in this chapter
(and the remainder of this book). Remember though, it is not important which
method you finally decide to use aslong as you are consistent. We have used the
column vector notation because we have found it causes less confusion in the
early stages oflearning the subject!

Complete Programs

| All thelistingsin this chapter, 8.1 (" mult3 and ‘idR3' ), 82 (" tran3' ), 8.3

(" scaled ),84( rot3' ),85(" genrot' ), 8.6 (" mainprogram' ) and listing 3.3

(" angle' ). Required data: base vector (PX, PY, PZ) and direction vector
(QX, QY, QZ) of the axis of rotation and the angle GAMMA. Then any
number of three-dimensional coordinates (XX, YY, ZZ). Try (0, 0, 0), (1
,1, 1) and 174, and points (1, 0,1), (1,1, 1), (1, 2, 3).



