
6 Diagrams and Data Graphs

More information is available to more people than ever before. Businessmen are
being overwhelmed by massive documents that contain reams of statistics on
every subject from capital expenditure to market research. Worst of all,
computers are pouring out printouts of dreary data that cover every topic from
Astrology to Zoology. Obviously something must be done! Computers have
helped to create the problem and they can also help to solve it. The data must be
presented in a more digestible manner: as pie-charts, histograms, scientific
graphs or just plain diagrams. With the advent of desktop computers the
increasing sales of programs that produce these displays has made this one of the
major growth areas in computer graphics. In this chapter we shall see how such
diagrams can be constructed with ease, given just a few tools to aid our
draughtsmanship.

There are so many different types of diagrams that it is impossible to cover
every possibility. We shall concentrate on the drawing of histograms, pie-charts
and data graphs as well as giving a simple method for labelling and adjusting
general types of diagram. Hence we give four major listings, which contain
interactive programs for producing these diagrams, as examples of how to
approach the general problem of data diagram construction. Naturally each
individual program will require vastly differing data, although they will have
some common input, display menus and prompts. Furthermore during the
execution of a program the data being read may depend on previous responses
(the program must not ask you for a radius before you ask to draw a circle!).
Therefore we have organised the responses and displays (and the equivalent
procedures) as part of a question and answer program that is based on the level
concept. In our case level 0 will be common to all four programs, whereas lower
levels will be unique to each of the four types of program.

To cope with the need for displaying both diagrams and prompts, the screen is
divided into two areas: the graphics area which holds the diagram, and a text area
for menus and prompts. In the top of the text areas we place five coloured blocks
(normally logical colour 1 : default red) and marked f0, fl, f2, f3 and f4X, Y.
Also, by pressing f9 when the machine requires input will cause a termination of
the program. We call these the pseudo-soft keys because they correspond to the
soft keys at the top of the keyboard. At any given moment during the execution
of the program the machine can write character strings beneath each pseudo-soft
key to demonstrate the option that is currently available with that key. Other

prompts that request normal INPUT can also be printed in this text area beneath
the blocks. When a soft key has been pressed then the colour of the equivalent
pseudo-key turns yellow. Key f4 controls a crosswire cursor which, when
activated, can be moved about the screen using cursor keys. However if you type
f4 (when the corresponding pseudo-key is red) then a new position of the cursor
can be explicitly INPUT as the coordinates of an addressable point. The present
cursor position is written under the f4 pseudo-key.

The level 0 prompts consist of five options: SAVE (f9) to ‘save’ a picture on
disk or tape, LOAD (f1) to re' load’ it from such a backing store, ERASE (f2) to
erase the present picture (after double checking), the red f4 key for cursor
control, and ETC. (f3). The latter option leads on to level 1, which naturally
depends on which one of the four main programs has been loaded. The
procedures for this level are given in listing 6.1 .

There are five procedures which ‘ init' ialise various variables that are used by
the procedures on all levels. The first, ‘ initdims' , initialises any DIMensions that
are required for any of the procedures. The ‘ initkeys’ procedure sets up the
variables that are needed for reading the soft keys and for the display of soft key
prompts at the bottom of the screen. The procedure also uses the Command Line
Interpreter (see the user guide) to clear any definitions off the first five soft keys
so that no garbage is inadvertently entered into the programs. ‘ initprompt’ sets up
the strings that correspond to the red key prompts that are displayed in the text
area. The fourth ‘ init’ procedure, ‘ initdiag' , sets up the graphics window that is
used for drawing and clears the background to a colour, in this case logical 0.
Finally ‘ initcursor’ sets the crosswire cursor at its start position and initialises the
variables that are used in the main cursor procedure.

Next we have a set of three procedures that can be used to display the set of
simulated function keys. The ‘prompt’ procedure displays any one of a set of
options for the key assignments: it uses the ‘ text’ procedure to control the number
of lines available at the bottom of the screen. A non-zero parameter for ‘ text’
specifies the number of lines, and then it clears the screen, whereas a zero
parameter sets the text window to cover the whole screen but does not clear the
screen. The ‘ light’ procedure lights up the pseudo-soft keys in specified
back,round and foreground colours (defaulting to red, yellow or white).

Our construction of a ‘cursor’ requires a little further discussion. The need for
accurately controlling the position of objects on the screen is self-evident. This is
achieved on most graphics displays by a crosshair (crosswire) cursor, which may
be controlled either from the keyboard or in more expensive devices from an
external joystick, lightpen or similar analogue input device. Not wishing to put
the reader to any further expense we shall use the keyboard to control
movements: it achieves the same effect as a joystick anyway. The ‘cursor’
procedure that is contained in listing 6.1 overlays the existing picture with the
crosswires by using the EOR option of GCOL. These crosswires specify the
point at their intersection. The cursor is moved in any one of eight directions by
the standard cursor keys either singly or in pairs. If you have a joystick or similar

Diagrams and Data Graphs 109

peripheral attached to your computer then alter the ‘cursor’ procedure so that it
receives informittion from your device rather than from the keyboard.

The ‘cursor’ procedure may be called to initiate a single movement by using
the parameter 1 in the call (externally initiated by pressing the f4 key when the
equivalent pseudo-key shows red and explicitly typing the coordinates, as in the
‘sketch’ procedure), or a continuous sequence of moves using parameter 0
(externally initiated by pressing the cursor keys). The coordinate values of the
present cursor position are requested by the program when the pseudo-key f4
shows (default) white, and they are entered by pressing soft key f4. When a
cursor key is held down the speed of movement gradually increases (a cursor that
always moves just one addressable point per key depression is tedious to use!).
To aid in positioning the cursor there is a grid which is switched on and off by
pressing G. If operative then it is automatically removed when you press f4 to
enter a point.

Listing 6.1
 10 MODE 1 : VDU23,1,0;0;0;0;
 20 PROCinitdims
 30 PROCinitkeys
 40 PROCinitprompt
 50 PROCinitdiag(0)
 60 PROCinitcursor(640,512)
 70 LEVEL=0 : OL=-1
 80 BC=0 : OC=1 : TC=2 : GC=3
 100 REM main loop
 110 REPEAT
 120 IF LEVEL<>OL THEN PROCprompt(LEVEL) : OL=LEVEL
 130 IF INKEY(K(0)) THEN PROCkey0
 140 IF INKEY(K(1)) THEN PROCkey1
 150 IF INKEY(K(2)) THEN PROCkey2
 160 IF INKEY(K(3)) THEN PROCkey3
 170 IF INKEY(K(4)) THEN PROCkey4
 180 UNTIL INKEY(-120)
 190 STOP

 200 REM initdiag
 210 DEF PROCinitdiag(BACK)
 219 REM set window and clear graphics to BACKground colour
 220 VDU24,0;65;1279;1023;
 230 GCOL0,128+BACK : CLG
 240 ENDPROC

 300 REM initkeys
 310 DEF PROCinitkeys
 320 DIM K$(4),K(4) : RESTORE 380
 329 REM remove key definitions from key 0 to key 4
 330 FOR I%=0 TO 4 : A$="KEY"+STR$(I%)
 340 $32512=A$: X%=0 : Y%=127 : CALL &FFF7
 350 NEXT I%
 359 REM set up arrays of INKEY values and strings for display
 360 FOR I%=0 TO 4 : READ K$(I%),K(I%)
 370 NEXT I%
 380 DATA" f0 ",-33," f1 ",-114," f2 ",-115," f3 ",-116
 ," f4 X,Y ",-21
 390 ENDPROC

110 Advanced Graphics with the BBC Model B Microcomputer

 400 REM pr ompt
 410 DEF PROCpr ompt (A)
 419 REM cl ear t he bot t om t wo l i nes
 420 PROCt ext (2) : PROCt ext (0)
 429 REM di spl ay keys wi t h appr opr i at e pr ompt s f or l evel A
 430 FOR I %=0 TO 3
 440 PROCl i ght (I %, 1, 3)
 450 PRI NT TAB(I %* 7, 31) ; P$(A, I %) ;
 460 NEXT I %
 470 PROCl i ght (4, 1, 3)
 480 PRI NT TAB(30, 31) ; X; : PRI NT TAB(34, 31) ; " , " ; Y;
 490 ENDPROC

 500 REM l i ght
 510 DEF PROCl i ght (KEY, BACK, TEXT)
 519 REM pr i nt key i n BACK col our wi t h l abel i n TEXT col our
 520 COLOUR 128+BACK : COLOUR TEXT
 530 PRI NT TAB(KEY* 7, 30) ; K$(KEY) ;
 540 COLOUR 128 : COLOUR 3
 549 REM make sur e key i s not st i l l bei ng hel d down
 550 REPEAT : UNTI L NOT I NKEY(K(KEY))
 560 ENDPROC

 600 REM t ext
 610 DEF PROCt ext (N)
 619 REM set t ext wi ndow of N l i nes up f r om bot t om and cl ear buf f er s
 620 I F N<>0 THEN N=32- N
 630 VDU 28, 0, 31, 39, N : * FX15, 0
 639 REM i f N=0 t hen wi ndow i s whol e of scr een so don' t c l ear i t
 640 I F N<>0 THEN CLS
 650 ENDPROC

 700 REM i ni t cur sor
 710 DEF PROCi ni t cur sor (XPOS, YPOS)
 719 REM set st ar t i ng poi nt f or cur sor
 720 X=XPOS : Y=YPOS : OX=- 1 : OY=- 1
 730 ENDPROC

 800 REM cur sor
 810 DEFPROCcur sor (M)
 819 REM M=0 means cont i nue t i l l f 4 i s pr essed. M=1 i s s i ngl e st ep.
 820 GCOL3, 3 : I F M=0 THEN S=1 ELSE S=4
 829 REM i f cur sor has moved t hen use PROCcr oss t o change di spl ay
 830 I F OX<>X OR OY<>Y THEN PROCcr oss: OX=X: OY=Y
 840 I F I NKEY(- 122) AND X<1280- S THEN X=X+S
 850 I F I NKEY(- 26) AND X>=S THEN X=X- S
 860 I F I NKEY(- 42) AND Y>=65+S THEN Y=Y- S
 870 I F I NKEY(- 58) AND Y<1024- S THEN Y=Y+S
 879 REM i f cur sor i s movi ng t hen add t o st ep si ze and updat e t he
 di spl ay of coor di nat es
 880 I F OX=X AND OY=Y THEN S=1 ELSE S=S+1 : PRI NT TAB(30, 31) ; "
" ;
 : PRI NT TAB(30, 31) ; X; : PRI NTTAB(34, 31) ; " , " ; Y;
 889 REM i f not s i ngl e st ep mode t hen keep moni t or i ng cur sor keys
 unl ess f 4 has been pr essed whi l e cur sor i s st at i onar y
 890 I F M=0 AND (S>1 OR NOT I NKEY(- 21)) THEN 830
 899 REM i n cont i nuous mode cur sor i s r emoved when poi nt i s ent er ed
 900 I F M=0 THEN OX=- 1 : OY=- 1 : PROCcr oss
 910 ENDPROC

1000 REM cr oss
1010 DEF PROCcr oss
1019 REM er ase cr oss at Ol dX and Ol dY pl ace new cr oss at X and Y

Diagrams and Data Graphs 111

1020 MOVE 0,OY : DRAW 1280,OY : MOVE 0,Y : DRAW 1280,Y
1030 MOVE OX,0 : DRAW OX,1024 : MOVE X,0 : DRAW X,1024
1040 ENDPROC

1100 REM fill
1110 DEF PROCfill(X1,Y1,X2,Y2,X3,Y3)
1120 IF ((Y1 DIV 4)=(Y2 DIV 4) AND (Y1 DIV 4)=(Y3 DIV 4))
 THEN MOVEX1,Y1 : DRAWX2,Y2 : DRAWX3,Y3 : ENDPROC
1130 MOVE X1,Y1 : MOVE X2,Y2 : PLOT 85,X3,Y3
1140 ENDPROC

1200 REM save
1210 DEF PROCsave
1220 PROCtext(1)
1230 INPUT "FILENAME ",F$
1240 A$="*SAVE """+F$+""" 3000 7B00"
1249 REM use Command Line Interpreter to execute A$
1250 $32512=A$: X%=0 : Y%=127 : CALL &FFF7
1260 PROCtext(0)
1270 ENDPROC

1300 REM load
1310 DEF PROCload
1320 PROCtext(1)
1330 INPUT "FILENAME ",F$
1340 A$="*LOAD """+F$+""" 3000"
1349 REM use Command Line Interpreter to execute A$
1350 $32512=A$: X%=0 : Y%=127 : CALL &FFF7
1360 PROCtext(0)
1370 ENDPROC

1500 REM initdims
1510 DEF PROCinitdims
1520 ENDPROC

1600 REM initprompt
1610 DEF PROCinitprompt
1619 REM read prompts for keys for up to six levels of prompting
1620 DIM P$(5,3)
1630 FOR I%=0 TO 5 : FOR J%=0 TO 3
1640 READP$(I%,J%)
1650 NEXT J%:NEXT I%
1660 DATA"SAVE","LOAD","ERASE","ETC."
1670 DATA"","","",""
1680 DATA"","","",""
1690 DATA"","","",""
1700 DATA"","","",""
1710 DATA"","","",""
1720 ENDPROC

2000 REM key0
2010 DEF PROCkey0
2019 REM light key up when pressed & redisplay key
 as normal when finished
2020 PROClight(0,2,0)
2029 REM perform action approriate to level when pressed.
 If OL is different to LEVEL either by LEVEL change or
 resetting OL to -1 prompts are refreshed.
2030 IF LEVEL=0 THEN PROCsave : OL=-1
2040 IF LEVEL=1 THEN PROChisto : OL=-1
2050 PROClight(0,1,3)
2060 ENDPROC

112 Advanced Graphics with the BBC Model B Microcomputer

2200 REM key1
2210 DEF PROCkey1
2219 REM see key0
2220 PROClight(1,2,0)
2230 IF LEVEL=0 THEN PROCload : OL=-1
2240 PROClight(1,1,3)
2250 ENDPROC

2400 REM key2
2410 DEF PROCkey2
2419 REM see key0
2420 PROClight(2,2,0)
2430 IF LEVEL=0 THEN PROCtext(1) : INPUT "ARE YOU SURE ",A$
 : PROCtext(0) : OL=-1 : IF A$="Y" OR A$="y" THEN CLG
2440 PROClight(2,1,3)
2450 ENDPROC

2600 REM key3
2610 DEF PROCkey3
2619 REM see key0
2620 PROClight(3,2,0)
2630 PROClight(3,1,3)
2640 ENDPROC

2800 REM key4
2810 DEF PROCkey4
2819 REM see key0 but same action taken at any LEVEL
2820 PROClight(4,2,0)
2830 PROCtext(1) : INPUT"NEW POSITION X,Y ",X,Y : PROCtext(0)
2840 OL=-1 : PROClight(4,1,3)
2850 ENDPROC

Exercise 6.1
Change the ‘cursor’ procedure so that the standard cursor keys may be used with
the shift key held down. In this case the crosswires are to move in character
block steps about the graphics area.

The Four Diagram Construction Programs

Havng dealt with level 0 we now look at the four separate programs, each of
which must be individually merged with listing 6.1 to produce the required
DIAGRAM CONSTRUCTOR. Those who have system OS 1.0 and above will
find that they do not have enough memory to hold and mn each of these four
programs. What they must do is create the program, strip the REMs, save it, and
reload it after typing PAGE = &1100. This will give them enough memory for
loading and running. Now we shall look at each of the four programs in turn.

Histograms
Histograms (or bar-charts) can be constructed by our programs to any height and
in any colour. Since we know how many addressable points are available on the
screen we can formulate a method for calculating the spacing and

Diagrams and Data Graphs 113

width of bars once we know their number. The first part of the ‘histo' gram
procedure (listing 6.2, which is used in conjunction with listing 6.1) is called by
pressing f9 on level 1; f3 (ETC.) returns you to level 0. It immediately asks for
the range of the vertical data (two integers in increasing order), creates the
vertical scale, draws the horizontal and vertical axes, labels the vertical and then
asks for the number of bars. Then the width of the bars and the size of the gaps
between the neighbouring bars are calculated by a method similar to the scaling
of the screen for two-dimensional graphics. For each bar the machine needs to
know its height, and the inner and outer colours. On receiving these data the
procedure uses the area-filling PLOT 85 option to colour in the bar. When the
diagram is complete you must return to level 0 and SAVE the picture. Then load
in the labelling program (listings 6.1 and 6.6), reLOAD the picture on level 0 and
then on the lower levels add the necessary labels and headings.

Figure 6.1

Example 6.1

Figure 6.1 for example, a diagram that presents the annual rainfall in Egham, was
constructed (unlabelled) and saved, then reloaded with the general adjustment
program (see later) and labels added until it was in the form above.

114 Advanced Graphics with the BBC Model B Microcomputer

Listing 6.2

1500 REM initdims

1600 REM initprompt
1670 DATA"HISTOGRAM","","","ETC."

2000 REM key0
2040 IF LEVEL=1 THEN PROChisto : OL=-1
2050 PROClight(0,1,3)
2060 ENDPROC

2800 REM key4

3000 REM histo
3010 DEF PROChisto
3020 PROCtext(2) : INPUT"Range of vertical "YB," to "YT : PROCtext(0)
3030 IF YB>=YT THEN 3020
3040 YSCALE=640/(YT-YB)
3049 REM draw axes
3050 GCOL 0,3 : MOVE 208,864 : DRAW 208,208 : DRAW 1184,208
3060 YDIF=(YT-YB)/4 : TICK=YB
3069 REM put ticks & labels on y-axis
3070 FOR I%=1 TO 5 : TK=INT(TICK+0.5)
3080 Y=5*32*I%+48 : MOVE 208,Y : DRAW 196,Y : ROW=INT((1024-Y)/32)
3089 REM make sure label is sensible and correct length
3090 A$=STR$(TK) : IF LEN(A$)>3 THEN A$=LEFT$(A$,3)
 : IF TK>999 OR TK<-99 THEN A$="***"
3100 IF LEN(A$)<3 THEN REPEAT A$=" "+A$:UNTIL LEN(A$)=3
3110 PRINT TAB(3,ROW);A$: TICK=TICK+YDIF
3120 NEXTI%
3130 PROCtext(2) : INPUT"NO. OF BARS "NB : PROCtext(0)
3139 REM calculate width of bars and gaps to fit x-axis
3140 XSCALE=976/NB : GAP=XSCALE/3 : WID=XSCALE-GAP
3149 REM get details and display each of the bars
3150 FOR I%=1 TO NB
3160 PROCtext(2) : PRINT"DATA FOR BAR ";I%;
3170 INPUT":"D,"INNER COL "C,"OUTER COL "OC : PROCtext(0)
3179 REM calculate bottom-left and top-right corners of block
3180 GCOL 0,C : X1=208+GAP/2+(I%-1)*XSCALE : X2=X1+WID : Y1=208
3190 IF D<=YB THEN Y2=212 : GOTO 3210
3200 D=D-YB : Y2=Y1+INT(D*YSCALE+0.5)
3209 REM fill in bar in inner colour
3210 PROCfill(X1,Y1,X2,Y2,X1,Y2) : PROCfill(X1,Y1,X2,Y2,X2,Y1)
3219 REM outline bar in outer colour
3220 GCOL 0,OC : MOVE X1,Y1 : DRAW X1,Y2 : DRAW X2,Y2
 : DRAW X2,Y1 : DRAW X1,Y1
3230 NEXT I%
3240 ENDPROC

Diagrams and Data Graphs 115

Exercise 6.2
Write variations on this standard ‘histo’ procedure that can be substituted into the
complete package as and when required. For example write a procedure that
draws the histogram as a set of pairs of bars. The space between any two bars
that form a pair should be half the distance between neighbouring bars that do
not form a pair. Use this to construct diagrams that are similar to figure 6.2.

Figure 6.2

Example 6.2
In listing 6.3 we give an example of such a replacement ‘histo’ procedure. This
version of ‘histo’ (using a variation on the fake-perspective cube procedure from
chapter 1) produces an apparently three-dimensional graph. Two data values are
requested for each bar, a MAXimum and a MINimum; the maximum bar is
drawn behind the minimum bar. This program can be used to create charts
similar to figure 6.3 which shows the monthly temperature variation in Egham.

Exercise 6.3
There are many, many more possible variations, for example drawing bars above
and below a central line in order to display fluctuations in currency exchange
rates. See the Money Programme on BBC2 for ideas. The fundamental notions
we have introduced here should enable you to produce histograms to your own
specifications.

116 Advanced Graphics with the BBC Model B Microcomputer

Listing 6.3

1500 REM initdims

1600 REM initprompt
1670 DATA"HISTOGRAM","","","ETC."

2000 REM key0
2040 IF LEVEL=1 THEN PROChisto : OL=-1
2050 PROClight(0,1,3)
2060 ENDPROC

2200 REM key1

2400 REM key2

2600 REM key3
2630 LEVEL=(LEVEL+1) MOD 2
2640 PROClight(3,1,3)
2650 ENDPROC

2800 REM key4

3000 REM histo
3010 DEF PROChisto
3020 PROCtext(2) : INPUT"Range of vertical "YB," to "YT : PROCtext(0)
3030 IF YB>=YT THEN 3020
3040 YSCALE=640/(YT-YB)
3049 REM draw axes
3050 GCOL 0,3 : MOVE 208,864 : DRAW 208,208 : DRAW 1184,208
3060 YDIF=(YT-YB)/4 : TICK=YB
3069 REM put ticks & labels on y-axis
3070 FOR I%=1 TO 5 : TK=INT(TICK+0.5)
3080 Y=5*32*I%+48 : MOVE 196,Y : DRAW 208,Y : MOVE 248,Y+40
 : DRAW 168,Y-40 : ROW=INT((1024-Y)/32)
3089 REM"make sure label is sensible and correct length
3090 A$=STR$(TK) : IF LEN(A$)>3 THEN A$=LEFT$(A$,3)
 : IF TK>999 OR TK<-99 THEN A$="***"
3100 IF LEN(A$)<3 THEN REPEAT A$=" "+A$:UNTIL LEN(A$)=3
3110 PRINT TAB(3,ROW);A$: TICK=TICK+YDIF
3120 NEXT I%
3130 PROCtext(2) : INPUT"NO. OF BARS "NB : PROCtext(0)
3139 REM calculate width of bars and gaps to fit x-axis
3140 XSCALE=976/NB : GAP=XSCALE/3 : WID=XSCALE-GAP
3149 REM get details and display each pair of bars
3150 FOR I%=1 TO NB
3160 PROCtext(2) : PRINT"DATA FOR BAR ";I%;
3170 INPUT":"D,D1 : PROCtext(0)
3180 C=1 : OC=3 : VDU19,2,4,0,0,0
3189 REM calculate bottom-left and top-right corners of blocks
3190 GCOL 0,C : X1=208+GAP+(I%-1)*XSCALE : X2=X1+WID : Y1=208
3200 IF D<=YB THEN Y2=212 : GOTO 3220
3210 D=D-YB : Y2=Y1+INT(D*YSCALE+0.5)
3219 REM draw back block in 3d then change colour and do front
 block over the top
3220 PROCfake3d(X1,Y1,X2,Y2) : C=2
3230 D1=D1-YB : Y2=Y1+INT(D1*YSCALE+0.5)
3240 X2=X2-WID/3 : X1=X1-WID/3 : Y1=Y1-WID/3 : Y2=Y2-WID/3
3250 PROCfake3d(X1,Y1,X2,Y2)
3260 NEXT I%
3270 ENDPROC

Diagrams and Data Graphs 117

3400 REM fake3d
3410 DEF PROCfake3d(X1,Y1,X2,Y2)
3419 REM draw rectangle defined by coordinates of its diagonal
3420 PROCquad(X1,Y1,X1,Y2,X2,Y2,X2,Y1)
3429 REM add rhombus to top and side to simulate a 3d box
3430 PROCquad(X2,Y1,X2,Y2,X2+WID/3,Y2+WID/3,X2+WID/3,Y1+WID/3)
3440 PROCquad(X1,Y2,X2,Y2,X2+WID/3,Y2+WID/3,X1+WID/3,Y2+WID/3)
3450 ENDPROC

3500 REM quad
3510 DEF PROCquad(XA,YA,XB,YB,XC,YC,XD,YD)
3519 REM fill in a quadrilateral in colour C
 and outline it in colour OC
3520 GCOL 0,C : MOVE XA,YA : MOVE XB,YB
3530 PLOT 85,XD,YD : PLOT 85,XC,YC
3540 GCOL 0,OC : DRAW XD,YD : DRAW XA,YA
3550 DRAW XB,YB : DRAW XC,YC
3560 ENDPROC

Figure 6.3

Pie-charts
The pie-chart is a favourite with economists and biologists who delight in telling
us how big each slice of our capital expenditure cake is, or alternatively which
fungi are growing on it. The usual requirements of a pie-chart program are that it
should draw ‘pies’ of variable radii, it must be possible for some slices to be
pulled out from the centre, and provision must be made for these slices to be
filled-in or cross-hatched. A pie-chart and associated procedures are given in
listing 6.4. It is entered by pressing f0 on level 1; pressing f3 (ETC.) returns you

118 Advanced Graphics with the BBC Model B Microcomputer

to level 0. The program first requires the number of pie-slices and the individual
data values; the sum of values is used to establish an angular scale for the pie-
chart. The ‘pie’ is centred by the crosswires, that is, by using the cursor keys to
position it, and the coordinates are entered with f4 (showing white). The radius
ofthe pie-chart (in addressable points) is then INPUT. Each slice is centred with
the cursor; any displacement ofthe cursor from the centre ofthe ‘pie’ is treated as
a distance along the bisector of the slice and not as an absolute position. With
each new section the cursor re-appears at the original centre ofthe ‘pie’. Then the
program enquires if you wish to hatch the ‘pie’ (x, y, b, n?) in the x-direction, y-
direction, both or neither (this is explained in a moment); should you wish to
hatch a slice then the program asks for further information about the position of
the hatching lines and the distance between them. It then requests the inner and
outer colour of the pie-slice and finally draws it. Figure 6.4 was generated using
this procedure, the ‘hatch' ing procedure below and the labelling program. After
the picture is complete you return to level 1 .

Figure 6.4

Hatching
Hatching latching the area of a pie-slice involves the intersection of a line with
the boundaries of the slice. To make the calculations simpler we shall hatch only
with lines in the horizontal or vertical directions, or both. Furthermore we only
hatch ‘pies’ that subtend angles less than or equal to π radians (180 degrees)

Diagrams and Data Graphs 119

Listing 6.4

1500 REM i ni t di ms
1520 DI M D(20) , Z(4)
1530 ENDPROC

1600 REM i ni t pr ompt
1670 DATA" PI E- CHART" , " " , " " , " ETC. "

2000 REM key0
2040 I F LEVEL=1 THEN PROCpi e : OL=- 1
2050 PROCl i ght (0, 1, 3)
2060 ENDPROC

2200 REM key1

2400 REM key2

2600 REM key3
2630 LEVEL=(LEVEL+1) MOD 2
2640 PROCl i ght (3, 1, 3)
2650 ENDPROC

2800 REM key4

3000 REM pi e- char t
3010 DEF PROCpi e
3020 PROCt ext (2) : I NPUT" No. OF SEGMENTS " NB : SUM=0
3029 REM get dat a f or al l sect i ons
3030 FOR I %=1 TO NB
3040 PRI NT" DATA " ; I %; : I NPUT" : " D(I %) : SUM=SUM+D(I %)
3050 NEXT I %
3060 PROCt ext (0)
3069 REM use t he cur sor t o i ndi cat e t he cent r e of t he pi e- char t
3070 PROCpr ompt (5) : PRI NT TAB(0, 31) ; " CENTRE PI E" ;
3080 PROCl i ght (4, 3, 1) : PROCcur sor (0) : PROCl i ght (4, 1, 3)
3090 XC=X : YC=Y
3100 PROCt ext (1) : I NPUT" RADI US (i n addr essabl e poi nt s) " R :
PROCt ext (0)
3110 SCALE=2* PI / SUM : A1=PI / 2
3119 REM i f cur sor i s moved f r om cent r e movement i s t r eat ed as
 al ong bi sect or of angl e subt ended by segment
3120 FOR I %=1 TO NB
3130 PROCt ext (1) : PRI NT" CENTRE SEGMENT " ; I %; : PROCt ext (0)
3140 PRI NT TAB(30, 31) ; X; : PRI NT TAB(34, 31) ; " , " ; Y;
3150 PROCi ni t cur sor (XC, YC) : PROCl i ght (4, 3, 1) : PROCcur sor (0) :
PROCl i ght (4, 1, 3)
3159 REM make sur e pi e j oi ns up and get scal e s i ze of segment
3160 I F I %=NB THEN A2=- 3* PI / 2 : ANG=A1- A2
 ELSE ANG=SCALE* D(I %) : A2=A1- ANG
3170 I F X=XC AND Y=YC THEN 3200
3179 REM deal wi t h di spl acement
3180 A3=A1- ANG/ 2 : DI ST=SQR((X- XC) ^2+(Y- YC) ^2)
3190 X=I NT(XC+DI ST* COS(A3) +0. 5) : Y=I NT(YC+DI ST* SI N(A3) +0. 5)
3199 REM i s hat chi ng t o be al ong t he ' x ' axi s, ' y ' axi s, ' b' ot h
 or ' n' ot at al l
3200 PROCt ext (1) : I NPUT" HATCH (x, y, b, n) " H$
 : I F ASC(H$) <96 THEN H$=CHR$(ASC(H$) +32)
3209 REM what spaci ng bet ween l i nes and what i ni t i al of f set
3210 I F H$<>" n" THEN I NPUT " JUMP" JUMP, " FROM " FROM
3220 I NPUT" I NNER COLOUR" , I C, " OUTER COLOUR" , OC

120 Advanced Graphics with the BBC Model B Microcomputer

3229 REM fill in segment
3230 GCOL 0,IC : X1=X+INT(R*COS(A1)+0.5) :
Y1=Y+INT(R*SIN(A1)+0.5)
3240 MOVE X1,Y1 : ADIF=-10/R
3250 FOR T=A1+ADIF TO A2 STEP ADIF
3260 MOVE X,Y : PLOT 81,COS(T)*R,SIN(T)*R
3270 NEXT T
3279 REM make sure filled in to end of segment
3280 MOVE X,Y : XS=INT(COS(A2)*R+0.5) : YS=INT(SIN(A2)*R+0.5)
 : PLOT81,XS,YS
3289 REM draw outline round segment
3290 GCOL 0,OC : MOVE X,Y : DRAW X1,Y1
3300 FOR T=A1+ADIF TO A2 STEP ADIF
3310 DRAW X+COS(T)*R,Y+SIN(T)*R
3320 NEXT T
3329 REM make sure outline goes to edge of segment
3330 DRAW X+XS,Y+YS : DRAW X,Y
3340 IF H$="n" THEN 3370 ELSE A2S=A2
3349 REM deal with hatching if the segement is more than half
circle
 treat as two parts
3350 IF ANG>PI THEN A2=A1-PI : X2=2*X-X1 : Y2=2*Y-Y1 :
PROChatch(H$) : X1=X2 : Y1=Y2 : A1=A2 : A2=A2S
3360 PROCtext(0) : X2=X+XS : Y2=Y+YS : PROChatch(H$)
3370 A1=A2
3380 NEXT I%
3390 ENDPROC

3400 REM hatch
3410 DEF PROChatch(H$)
3419 REM easy way to get both ways
3420 IF H$="b" THEN PROChatch("x") : PROChatch("y") : ENDPROC
3430 IF H$="y" THEN PZ=X : PT=Y : Z1=X1 : T1=Y1 : Z2=X2 : T2=Y2
3440 IF H$="x" THEN PZ=Y : PT=X : Z1=Y1 : T1=X1 : Z2=Y2 : T2=X2
3449 REM find the max. and min. coordinates for lines which pass
 through segment.
3450 T=PI/2 : MAX=0 : MIN=0
3460 IF H$="x" THEN V=COS(A1) ELSE V=SIN(A1)
3470 IF MAX < V THEN MAX=V ELSE IF MIN > V THEN MIN=V
3480 IF T>A1 THEN REPEAT : T=T-PI/2 : UNTIL T<=A1
3490 IF T<A2 THEN 3530
3500 IF H$="x" THEN V=COS(T) ELSE V=SIN(T)
3510 IF MAX < V THEN MAX=V ELSE IF MIN > V THEN MIN=V
3520 T=T-PI/2 : GOTO3490
3530 IF H$="x" THEN V=COS(A2) ELSE V=SIN(A2)
3540 IF MAX < V THEN MAX=V ELSE IF MIN > V THEN MIN=V
3550 NMIN=INT(INT(R*MIN+1)/JUMP)*JUMP+FROM
3559 REM for lines which cross segment find intersections
 with radii and arc
3560 FOR E=NMIN TO MAX*R STEP JUMP
3570 C=0 : DENOM=T1-PT : IF DENOM=0 THEN 3600
3580 MU=E/DENOM : IF MU<0 OR MU>1 THEN 3600
3590 C=C+1 : Z(C)=PZ+MU*(Z1-PZ)
3600 DENOM=T2-PT : IF DENOM=0 THEN 3640
3610 MU=E/DENOM : IF MU<0 OR MU>1 THEN 3640
3620 C=C+1:Z(C)=PZ+MU*(Z2-PZ)
3629 REM if more than two points of intersection found,
 delete duplicates
3630 IF C=2 AND Z(1)=Z(2) THEN C=1
3640 IF C<>2 THEN 3670
3650 IF H$="y" THEN MOVE Z(1),E+PT : DRAW Z(2),E+PT : GOTO 3730
3660 IF H$="x" THEN MOVE E+PT,Z(1) : DRAW E+PT,Z(2) : GOTO 3730

Diagrams and Data Graphs 121

3670 DISC=R*R-E*E : IF DISC<0 THEN 3730
3680 DISC=INT(SQR(DISC)+0.5)
3690 ZZ=PZ+DISC : AZ=DISC : PROCin : IF IN THEN C=C+1 : Z(C)=ZZ
3700 ZZ=PZ-DISC : AZ=-DISC : PROCin : IF IN THEN C=C+1 : Z(C)=ZZ
3710 IF C>2 AND Z(1)=Z(2) THEN Z(2)=Z(3)
3720 IF C>=2 THEN 3650
3730 NEXT E
3740 ENDPROC

3800 REM in
3810 DEF PROCin
3819 REM if angle lies between angles of ends of segment then
 point of intersection is on the arc of the segment
3820 IF H$="x" THEN BZ=E : EZ=AZ ELSE BZ=AZ : EZ=E
3829 REM find angle from centre to point of intersection
3830 IF BZ=0 THEN PHI=-PI/2 : IF EZ>0 THEN PHI=-PHI
3840 IF BZ<>0 THEN PHI=ATN(EZ/BZ) : IF BZ<0 THEN PHI=PHI-PI
3849 REM IN is true if PHI is between angles of edges
3850 IN=(PHI<=A1) AND (PHI>=A2)
3860 ENDPROC

at the centre. For obtuse angles the ‘pie’ is treated as two pieces, the first
subtending π radians at the centre. The ‘pie’ procedure enquires whether the
hatching is to be horizontal (answer ‘x'), vertical (answer ‘y'), both ways (answer
‘b') or neither (answer ‘n').

The pie sections we are considering are each bounded by two line segments
and a circular arc. We must find which part of a hatching line (if any) lies inside
this segment. Because the ‘pie’ does not subtend an angle greater than p radians
at its centre there are only four possibilities:

(1) A line may miss the pie altogether.
(2) It may intersect the arc at two points.
(3) It may intersect the arc and one ofthe line segments.
(4) It may intersect both line segments.

The special cases where the line coincidently cuts the arc and a line segment
at the same point may be included in one of the above four possibilities. The
explanation of the hatching algorithm is given with reference to horizontal
hatching; the vertical follows in an equivalent manner. We first find the
MAXimum and MINimum y-values ofpoints within the ‘pie’ section. Then we
consider all horizontal hatching lines with equations of the form Y = k * JUMP +
FROM between these limits (0 ≤ FROM ≤ JUMP − 1). For each hatching line we
calculate the two points of intersection with the extended line segments and then
check whether their MU values lie between 0 and 1, that is, whether the
intersection is between the centre of the circle and the arc. Next we find the two
points of intersection of the hatching line with the complete circle that contains
the arc and then check whether they lie on the arc. From these we can find the
two points of intersection of the pie section and the hatching line, and these are

122 Advanced Graphics with the BBC Model B Microcomputer

then joined. This whole process is programmed in listing 6.4 and an example of
its use is given in figure 6.4 above. Note that if we set the JUMP to a number that
is not the size of a whole number of pixels (in addressable points) we get unusual
candy-stripe or dotted hatching.

Graphs
As our third exainple of graphical data presentation we must consider scientific
graphs of functions and graphs of discrete points, called by f9 at level 1 (listings
6.1 and 6.5). Such diagrams require coordinate axes that need be neither of fixed
size nor offixed scale. The program requests the lower and upper x-value and y-
value of the data. Then a standard method is used to decide on the placing of a
particular axis: if zero should lie in the range of the graph then the axis passes
through that point, otherwise it lies on the edge of the graphics area, closest to
zero. Five marks are then placed along each axis and if automatic labelling is
specified then the corresponding scale value is written close to each mark. The
need for accuracy in scientific graphs necessitates the use of as many characters
as possible across the screen. The BBC Model B has only 40 characters across
the screen and 32 up it, so previously loaded ‘thin’ characters (character set 4
from chapter 5) are placed two per character block, enabling us to draw 80
characters on each line. When numbers are to be printed as ‘thin’ ‘label’s they
need to be converted into strings and made consistent in lgth and/or decimal
accuracy. This is achieved by the procedure ‘number’ (listing 6.5).

Exercise 6.4
Write an extended ‘number’ procedure that allows you to specify the format of
the string to be printed. One way of doing this is to enter a string that contains a
template for the number format, for example the string ‘##.###’ could specify a
number with two digits before the decimal point and three decimal places after it.
Also see the @% option in the user manual.

The choice is now offered between entering a functional representation of
points on a continuous curve, and entering a set of discrete data points to be
joined in a saw-tooth twe pattern by straight lines. In the functional section of the
procedure the program asks for an algebraic expression for the function, which
may include the standard in-built functions (like SIN or COS) as well as Nur own
functions. The height of the point on the curve above each pixel point on the X-
axis is calculated, and these points are joined by lines.

In the discrete section the number of data points is INPUT, followed by the
individual X and Y coordinates which are sorted into ascending order of the X
coordinate. Consecutive points are then joined by lines. One example of each
type of diagram is given. Figure 6.5 shows a typical continuous cosine curve and
figure 6.6 shows discrete scientific data that illustrate the pH levels of a river.

Diagrams and Data Graphs 123

Listing 6.5

1500 REM initdims
1520 DIM X(100),Y(100)
1530 ENDPROC

1600 REM initprompt
1670 DATA"GRAPH","","","ETC."

2010 DEF PROCkey0
2040 IF LEVEL=1 THEN PROCgraph : OL=-1
2050 PROClight(0,1,3)
2060 ENDPROC

2200 REM key1

2400 REM key2

2600 REM key3
2630 LEVEL=(LEVEL+1) MOD 2
2640 PROClight(3,1,3)
2650 ENDPROC

2800 REM key4

3000 REM graph
3010 DEF PROCgraph
3020 PROCtext(2)
3030 REPEAT : INPUT"X GOES FROM "XB,"TO "XT : UNTIL XT>XB
3040 REPEAT : INPUT"Y GOES FROM "YB,"TO "YT : UNTIL YT>YB
3050 INPUT"AUTOMATIC LABELLING (Y/N) ",L$: PROCtext(0)
3060 XSCALE=1024/(XT-XB) : YSCALE=704/(YT-YB)
3069 REM draw axes through origin or on side closest to origin
3070 IF YT<0 THEN YO=896 ELSE IF YB>0 THEN YO=192
 ELSE YO=INT(-YB*YSCALE+192.5)
3080 IF XT<0 THEN XO=1152 ELSE IF XB>0 THEN XO=128
 ELSE XO=INT(-XB*XSCALE+128.5)
3090 MOVE XO,192 : DRAW XO,896 : MOVE 128,YO : DRAW 1152,YO
3100 XDIF=(XT-XB)/4 : YDIF=(YT-YB)/4
3109 REM put five ticks along each axis with 'thin' labels
3110 X=XB : Y=YB : FOR J=1 TO 5
3120 PX=INT((X-XB)*XSCALE+128.5) : PY=YO
3130 MOVE PX,PY-8 : DRAW PX,PY+8
3139 REM calculate text positions
3140 TX=PX DIV 32 -1 : TY=(1024-PY) DIV 32+1
3150 IF L$="Y" THEN PROCthin(1,TX,TY,STR$(X))
3160 PX=XO : PY=INT((Y-YB)*YSCALE+192.5)
3170 MOVE PX-8,PY : DRAW PX+8,PY
3180 TX=PX DIV 32 +1 : TY=(1024-PY) DIV 32-1
3190 IF L$="Y" THEN PROCthin(1,TX,TY,STR$(Y))
3200 X=X+XDIF : Y=Y+YDIF : NEXT J
3210 PROCtext(2)
3220 REPEAT : INPUT"CONTINUOUS OR DISCRETE ",D$: UNTIL D$="C" OR D$="D"
3230 IF D$="D" THEN 3330
3239 REM section to plot graph of a function
3240 INPUT"F(X): Y="F$
3249 REM evaluate function for X to find point on curve
3250 X=XB : Y=EVAL(F$) : IY=INT((Y-YB)*YSCALE+192.5)
3260 MOVE 128,IY
3269 REM repeat for values of X one pixel apart
3270 FOR I%=128 TO 1152 STEP 4

124 Advanced Graphics with the BBC Model B Microcomputer

3280 X=(I%-128)/XSCALE+XB
3290 Y=EVAL(F$) : IY=INT((Y-YB)*YSCALE+192.5)
3300 DRAW I%,IY
3310 NEXT I% : X=640 : Y=512
3320 ENDPROC
3329 REM come here if points to be joined are to be input
3330 INPUT"NO. OF POINTS "NP
3339 REM get all points
3340 FOR I%=1 TO NP
3350 PRINT"X(";I%;"),Y(";I%;") "; : INPUTX(I%),Y(I%)
3360 NEXT I%
3369 REM use simple bubble-sort to get points in ascending order
 of X-coordinate
3370 FOR I%=1 TO NP-1 : FOR J%=I%+1 TO NP
3380 IF X(J%)<X(I%) THEN T=X(J%) : X(J%)=X(I%) : X(I%)=T
 : T=Y(J%) : Y(J%)=Y(I%) : Y(I%)=T
3390 NEXT J% : NEXT I%
3399 REM find scale coordinates of first point and draw symbol
3400 X=INT((X(1)-XB)*XSCALE+128.5) : Y=INT((Y(1)-
YB)*YSCALE+192.5)
3410 MOVE X,Y : PROCsymbol(X,Y)
3419 REM repeat for other points joining them up
3420 FOR I%=2 TO NP
3430 X=INT((X(I%)-XB)*XSCALE+128.5) : Y=INT((Y(I%)-
YB)*YSCALE+192.5)
3440 DRAW X ,Y : PROCsymbol(X,Y)
3450 NEXT I%
3460 ENDPROC

3500 REM symbol
3510 DEF PROCsymbol(X,Y)
3519 REM draw a little square round X,Y to mark it
3520 MOVE X+8,Y+8 : DRAW X-8,Y+8 : DRAW X-8,Y-8
 : DRAW X+8,Y-8 : DRAW X+8,Y+8 : MOVE X,Y
3530 ENDPROC

4000 REM thin
4010 DEF PROCthin(M,X,Y,A$)
4019 REM output a numeric string using thin characters
4020 LOCAL I%,A%,P$
4030 A%=2^(4+M) : VDU 5
4040 MOVE X*A%,1023-Y*32
4050 FOR I%=1 TO LEN(A$) : P$=MID$(A$,I%,1)
4060 IF P$>="0" AND P$<="9" THEN VDU (80+ASC(P$)) : GOTO 4080
4070 IF P$="+" THEN VDU 144 ELSE IF P$="-" THEN VDU 145
 ELSE VDU 146
4080 MOVE (X+I%/2)*A%,1023-Y*32
4090 NEXT I%
4100 VDU 4
4110 ENDPROC

Exercise 6.5
It has been noted that the only requirement fur such graphs is a set of coordinates
in ascending order of X which are then joined up. This set can be created in any
manner: by a series of READ statements or by a multi-line calculation in a user-
defined function FNf, which can be drawn by simply typing Y = f(X) instead of
just using functions provided by the system. DEFine an FN that allows the graph
of SIN(X)/X to be drawn; avoid the calculation of SIN (0)/0!

Diagrams and Data Graphs 125

Figure 6.5

Figure 6.6

126 Advanced Graphics with the BBC Model B Microcomputer

Diagram adjustment and labelling
Having drawn diagrams we now need simple control over the superimposition of
labels and other graphics objects on them. This requires procedures for drawing
lines and shapes, even perhaps for filling in the shapes (listing 6.6). On level 1
we have the options SKETCH (f9), LINE (fl), SHAPE (f2), ETC. (f3) and the
Cursor adjustment (f4). SKETCH enables you to sketch in small details. The
cursor keys move the crosswires around the screen, and if ‘P’ is pressed
simultaneously then a trail is left behind (compare with listing 1.8). fD returns
you to level 1. It would be very tedious to sketch in every pixel for a large block
of the screen. Instead we use a set of procedures that draw lines and draw and/or
fill triangles, boxes, polygons and circles. The LINE option uses the ‘line’
procedure which specifies two points on the screen by using the cursor, and then
draws a line between them. It also demonstrates some of the other procedures
that are provided for this part of the diagram package, such as ‘mark’ which
places a small cross on the screen to show previous positions of the cursor.

SHAPE takes us down to level 3 with options DRAW (f9), FILL (fl) or BOTH
(f3) which specifies the mode of colouring: outline only (f0), solid area only (fl)
or both (f2). This leads on directly to level 4 with options TRIANG (f0), BOX
(fl), CIRCLE (f2) and POLY (f3). The first two options allow us to draw a
triangle or a quadrilateral with corners entered via the cursor. CIRCLE draws a
circle with centre and radius given by the cursor. POLY draws a regular polygon
with centre and radius specified by the cursor and the angle that one of the
vertices makes with the horizontal given as a multiple of PI, and then returns to
level 1. ETC. (f3) leads directly to level 2 which defines labels and the colours in
use. LABEL (f0) enters the ‘label’ procedure which asks for Normal, Thin or
Graphics characters and the string to be printed. Note that references are
regularly made to the level 0 procedures, and to the ‘thin’ procedure (taken liom
listing 5.4). Naturally we must first place the ‘thin’ characters in character set 4
position between &C00 and &D00. Obviously you can create other characters
(such as a ‘thin’ π) and as long as you place them in set 4 they can be printed out
by ‘label' .

COLOUR (fl) changes the foreground and/or background colours of labels.
GCOL (f2) changes the Graphics and outline colours. ETC. (f3) leads you back
to level 0. In most of these levels if the pseudo-soft key f4 is coloured red then
you can INPUT a new position for the cursor rather than use the cursor keys.

Exercise 6.6
Draw a picture ofyour BBC micro, or perhaps a scene like that given at theend of
chapter 1. Adapt your program from exercise 1.3 for use as a procedure to draw
an n-sided polygon by using the ‘cursor’ to enter the n points.

If you have a graphics pad then you can copy rough sketches from the pad
into the machine. You should then write programs to tidy up these pictures, that
is to straighten lines and to smooth out curves.

Diagrams and Data Graphs 127

Listing 6.6
1500 REM initdims

1600 REM initprompt

1670 DATA"SKETCH","LINE","SHAPE","ETC."
1680 DATA"LABEL","COLOUR","GCOL","ETC."
1690 DATA"DRAW","FILL","BOTH",""
1700 DATA"TRIANG","BOX","CIRCLE","POLY"

2000 REM key0
2040 IF LEVEL=1 THEN PROCsketch
2050 IF LEVEL=2 THEN PROClabel
2060 IF LEVEL=3 THEN OUTLINE=TRUE : FILL=FALSE : LEVEL=4 : GOTO 2080
2070 IF LEVEL=4 THEN PROCtriang : LEVEL =1
2080 PROClight(0,1,3)
2090 ENDPROC

2200 REM key1
2240 IF LEVEL=1 THEN PROCline : OL=-1
2250 IF LEVEL=2 THEN PROCtext(1) : INPUT "BACKGROUND ",BC,
 "TEXT COLOUR ",TC : PROCtext(0) : OL=-1
2260 IF LEVEL=3 THEN OUTLINE=FALSE : FILL=TRUE: LEVEL=4 : GOTO 2280
2270 IF LEVEL=4 THEN PROCbox : LEVEL=1
2280 PROClight(1,1,3)
2290 ENDPROC

2400 REM key2
2440 IF LEVEL=1 THEN LEVEL=3 : GOTO 2480
2450 IF LEVEL=2 THEN PROCtext(1) : INPUT "GCOL ",GC,
 "OUTLINE COLOUR ",OC : PROCtext(0) : OL=-1
2460 IF LEVEL=3 THEN OUTLINE=TRUE : FILL=TRUE : LEVEL=4 : GOTO 2480
2470 IF LEVEL=4 THEN PROCcircle : LEVEL=1
2490 ENDPROC

2600 REM key3
2630 IF LEVEL<3 THEN LEVEL=(LEVEL+1) MOD 3
2640 IF LEVEL=4 THEN PROCtext(1) : INPUT "No. OF SIDES",N,"ANGLE PI*"A
 : ANG=PI*A : PROCtext(0) : PROCpoly(N,ANG) : LEVEL=1
2650 PROClight(3,1,3)
2660 ENDPROC

2800 REM key4

3000 REM sketch
3010 DEF PROCsketch
3020 REPEAT
3030 PROCcursor(1)
3040 IF INKEY(-56) THEN GCOL 3,GC : PLOT69,X,Y : GCOL 3,3
3050 PROCcross : OX=-1 : OY=-1 : PROCcross
3060 UNTIL INKEY(K(0))
3070 ENDPROC

3100 REM label
3110 DEF PROClabel
3120 PROClight(4,3,1) : PROCcursor(0) : PROClight(4,1,3)
3130 PROCtext(1) : INPUT"LABEL TYPE (N,T,G) ",T$
 : INPUT"LABEL ",A$: PROCtext(0)
3140 COLOUR 128+BC : COLOUR TC : GCOL 0,TC
3150 IF T$="T" THEN PROCthin(1,X/32,(1024-Y)/32,A$) : GOTO 3180
3160 IF T$="N" THEN PRINT TAB(X/32,(1024-Y)/32);A$
3170 IF T$="G" THEN MOVE X,Y : VDU 5 : PRINT A$: VDU 4

128 Advanced Graphics with the BBC Model B Microcomputer

3180 OL=-1
3190 ENDPROC

3200 REM point
3210 DEF PROCpoint(A$)
3220 PROClight(4,3,1) : PROCtext(1) : PRINTA$; : PROCtext(0)
3230 PROCcursor(0) : SOUND1,-15,200,1
3240 PROClight(4,1,3)
3250 ENDPROC

3300 REM mark
3310 DEF PROCmark(X,Y)
3320 GCOL3,3 : MOVE X-12,Y-12 : DRAW X+12,Y+12
3330 MOVE X+12,Y-12 : DRAW X-12,Y+12
3340 ENDPROC

3400 REM line
3410 DEF PROCline
3420 PROCpoint("START") : A=X : B=Y : PROCmark(A,B)
3430 PROCpoint("END") : PROCmark(A,B)
3440 MOVE A,B : GCOL 0,GC : DRAW X,Y
3450 ENDPROC

3500 REM triang
3510 DEF PROCtriang
3520 PROCpoint("FIRST") : A=X : B=Y : PROCmark(A,B)
3530 PROCpoint("SECOND") : C=X : D=Y : PROCmark(C,D)
3540 PROCpoint("FINAL") : PROCmark(A,B) : PROCmark(C,D)
3550 GCOL0,GC : IF FILL THEN PROCfill(X,Y,A,B,C,D) : GCOL 0,OC
3560 IF OUTLINE THEN MOVE X,Y : DRAW A,B : DRAW C,D : DRAW X,Y
3570 ENDPROC

3600 REM box
3610 DEF PROCbox
3620 PROCpoint("FIRST") : A=X : B=Y : PROCmark(A,B)
3630 PROCpoint("SECOND") : C=X : D=Y : PROCmark(C,D)
3640 PROCpoint("THIRD") : E=X : F=Y : PROCmark(E,F)
3650 PROCpoint("FINAL") : PROCmark(A,B) : PROCmark(C,D)
 : PROCmark(E,F)
3660 GCOL0,GC : IF FILL THEN PROCfill(X,Y,A,B,E,F)
 : PROCfill(A,B,E,F,C,D) : GCOL 0,OC
3670 IF OUTLINE THEN MOVE X,Y : DRAW A,B : DRAW C,D : DRAW E,F : DRAW X,Y
3680 ENDPROC

3700 REM poly
3710 DEF PROCpoly(N,PHI)
3720 PROCpoint("CENTRE") : A=X : B=Y : PROCmark(A,B)
3730 PROCpoint("RADIUS") : PROCmark(A,B)
3740 R=SQR((X-A)^2+(Y-B)^2)
3750 OX=A+COS(PHI)*R : OY=B+SIN(PHI)*R
3760 FOR I=PHI TO 2*PI+PHI+PI/N STEP 2*PI/N
3770 X=A+COS(I)*R : Y=B+SIN(I)*R
3780 IF FILL THEN GCOL 0,GC : PROCfill(A,B,X,Y,OX,OY)
3790 IF OUTLINE THEN GCOL 0,OC : MOVE OX,OY : DRAW X,Y
3800 OX=X : OY=Y
3810 NEXT I : PROCinitcursor(A,B)
3820 ENDPROC

3900 REM circle
3910 DEFPROCcircle
3920 PROCpoly(100,0)
3930 ENDPROC

Diagrams and Data Graphs 129

4000 REM thin
4010 DEF PROCthin(M,X,Y,A$)
4020 LOCAL I%,A%,P$
4030 A%=2^(4+M) : VDU 5
4040 MOVE X*A%,1023-Y*32
4050 FORI%=1 TO LEN(A$) : P$=MID$(A$,I%,1)
4060 IF P$>="0" AND P$<="9" THEN VDU (80+ASC(P$)) : GOTO 4080
4070 IF P$="+" THEN VDU 144 ELSE IF P$="-" THEN VDU 145 ELSE VDU
146
4080 MOVE (X+I%/2)*A%,1023-Y*32
4090 NEXT I%
4100 VDU 4
4110 ENDPROC

Complete Programs

To clarify the use of the programs given in this chapter we have underlined
typical responses in the examples below. All the listings should be loaded with
PAGE = &1100. Also use the REM stripper.

I Listings 6.1 and 6.2.
Type f3 (ETC.), f0 (histogram)
Rang of vertica1 0 to 100, number of bars 6
Data for bar 1: 75, inner colour 1, outer colour 3
Data for bar 2: 60, inner colour 0, outer colour 2
Data for bar 3: 88, inner colour 2, outer colour 1
Data for bar 4: 23, inner colour 3, outer colour 1
Data for bar 5: 17, inner colour 3, outer colour 1
Data for bar 6: 97, inner colour 1, outer colour 2
f3 (ETC.), f0 (SAVE), Filename? PIC1

II Listings 6.1 and 6.3.

Type f3 (ETC.), f0 (histogram/second type)
Range of vertical 0 to 200, number of bars 4
Data for bar 1: 166, 84
Data for bar 2: 100, 44
Data for bar 3: 80, 33
Data for bar 4: 40, 10
f3 (ETC.), f0 (SAVE), Filename? PIC2

III Listings 6.1 and 6.4.

Type f3 (ETC.), f0 (pie-chart), number of segments 4
Data 1: 4

130 Advanced Graphics with the BBC Model B Microcomputer

Data 2: 3
Data 3: 2
Data 4: 3
Centre pie by using cursors, and enter with f4
Radius in addressable points 400
Centre segment 1 by using cursors and f4
Hatch? X, JUMP 8 FROM 1, inner colour 3, outer colour 1
Centre segment 2 using curors and f4
Hatch? N, , inner colour 0, outer colour 3
Centre segment 3 by using cursors and f4
Hatch? B, JUMP 12 FROM 0 ,inner colour 1, outer colour 3
Centre segment 4 by using cursors and f4
Hatch? Y, JUMP 11 FROM 0, inner colour 0, outer colour 2
f3 (ETC.), f0 (SAVE), Filename? PIC3

IV Listings 6.1 and 6.5

Type f3 (ETC.), f0 (graph)
X goes from −10 to 10
Y goes from −1 to 1
Automatic labelling (Y/N) N
Continuous or Discrete, C
F(X): Y = COS(X)
f3 (ETC.), f0 (SAVE), Filename? PIC4

V Listing 6.1 and 6.6

Type f1 (LDAD), Filename? PIC1
f3 (ETC.), f3 (ETC.), note ETC. twice!
f1 (COLOUR), background 3, text colour 1, f3, f3
f2 (SHAPE), f2 (BOTH), f0 (TRIANG)
FIRST (use cursor and f4)
SECOND (use cursor and f4)
FINAL (use cursor and f4), f3
f0 (LABEL), cursor to position and f4
label type (N, T, G)? N
LABEL: HELLO FOLKS
f3 (ETC.) f0 (SAVE), Filename? PIC5

Diagrams and Data Graphs 131

132 Advanced Graphics with the BBC Model B Microcomputer

Diagrams and Data Graphs 133

