7 Three-Dimensional Coordinate
Geometry

Before we lead on to a study of the graphical display of objectsin three-
dimensional space, we first have to come to terms with the three-dimensional
Cartesian coordinate geometry. Asin two-dimensional space, we arbitrarily fix a
point in the space, named the coordinate origin (or or origin for short). We then
imagine three mutually perpendicular lines through this point, each line going off
to infinity in both directions. These are the x-axis, the y-axis and the z-axis. Each
axisisthought to have a positive and a negative half, both starting at the origin;
that is, distances measured from the origin along the axis are positive on one side
and negative on the other. We may think of the x-axis and y-axisin the same way
aswe did for two-dimensional space, both lying on the page of this book say, the
positive x-axis ‘horizontal’ and to the right of the origin, and the positive y-axis
‘vertical’ and above the origin. This just leaves the position of the z-axis: it hasto
be perpendicular to the page (sinceit is perpendicular to both the x-axis and the
y-axis). The positive z-axis can be into the page (the so-called | eft-handed triad
ofaxes) or out of the page (the right-handed triad). In this book we aways use
the left-handed triad notation. What we say in the remainder of the book, using
left-handed axes, has its equivalent in the right-handed system - it does not
matter which notation you finally decide to use as long as you are consistent.

We specify ageneral point p in space by a coordinate triple or vector (X, Y,
Z), where the individual coordinate values are the perpendicular projections of
the point on to the respective x-axis, .y-axis and z-axis. By projection we mean
the unique point on the specified axis such that aline from that point to pis
perpendicular to that axis.

Initially there are two operations we need to consider for three-dimensional
vectors.Suppose we have two vectors, p; = (Xq, Y1, Z) and p, = (Xo, Yo, ) then

scalar multiple: we multiply the three individual coordinate values by a scalar
number k

kpy = (kX xq, kX yg, kx 29)

vector addition: we add the x-coordinates together, then the y-coordinates and
finally the z-coordinates to form a new vector

PL¥P2= (X + X Y1+ Y2 2 +2)
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Definition of a Straight Line

A straight linein three-dimensional space that passes through two points such as
P1 = (Xq, Y1, Z1) and p, = (X, Yo, 2) IS the next object to be defined. We may do
this by describing the coordinates of ageneral point p = (X, Y, 2)

(X=X * (Y2 = Y1) = (Y = y1) X (X2 = %)

Y-y)*x(Z-2)=(z-2z) x (Y2~ Y1)

(z2=29) X (X = %) = (X=Xg) X (2~ 71)

Although these are three equations in three unknowns, we shall see that they are
inter-related (or so-called linearly dependent) and so there is no unique solution
(that is natural since we are generating a general point on the line, not just one
point). These equations enable us to calculate two of the coordinatesin terms of a
third (see example 7.1).

Aswith two dimensions, thisis not the only way of representing aline, in fact
the second way we introduce is possibly more useful. The general point on the
line is represented as a vector that is dependent on only one real number |, and is
given as the vector sum of two scalar multiples ofvectors:

P(W) = (1 - W)py + Hp, Where —co <p<oo
That is

P S (L= ) XX+ U XX, (L= ) XYy + U XY, (L= ) X2 + U X 2)

Thisform is exactly equivalent to the two-dimensional parametric form of aline
that we saw in chapter 3. Here we place W in brackets after p to demonstrate the
dependence of p on p; however, when this concept has been fully investigated,
then (p) will beignored. Note that when P = O the equation returns point p; and
when p = 1it gives point p,.

We may rewrite this vector expression as

p(W) = py + (P2 = Py)

Like its counterpart in two dimensions, p, is called a base vector and (p, — p;) a
directional vector. Again we see the dual interpretation of avector. A vector may
be used to specify a point uniquely in three-dimensional space, or it may be
considered as a general direction, namely any line parallel to the line that joins
the origin to the vector (considered as a point). We can move dong alinein one
of two directions, so we say that the direction from the origin to the point has a
positive sense, and the direction from the point to the origin has a negative sense.
Hence vecotrsd = (X, y, 2) and —d = (=X, -y, —2) represent the same linein space
but their directions are of opposite senses. We define the length of a vector d = (x,
Y, 2) (sometimes called its modulus, or absolute value) as | d |, and the distance of
the point vector from the originis

|d1=V6¢ +y2+2)
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So any point on theline p + pd is found by moving to the point p and then
travelling along alinethat is parallel to the direction d, adistance of p | d | inthe
positive sense of d if p is positive, and in the negative sense otherwise. Note that
any point on the line can act as a base vector, and the directional vector may be
replaced by any non-zero scalar multiple of itself.

If the directional vector d = (x, y , Z) makes angles of 6x, By and 6z with the
respective positive x-direction, y-direction and z-direction, then

X1y:z=cos6y:cosb,: cosb,

which means that
d=(A x cos6,, A x cos B, A x cos 6,) for someA.

We know from the properties of three-dimensional geometry that
cos?8, + cos?8, + cos?9, = 1

Hence A =|d|, and if the directional vector has unit modulus (that is, modulus =

A = 1), then the coordinates of this vector must be cos 6,, cos 8,, cos 6,. The
coordinates of adirectional vector given in thisway are called the direction
cosines of the set of linesthat is generated by the vector. In generd, if the
direction vector isd = (X, y, 2) then the direction cosines are

(e )

Example 7.1
Describe thelinejoining (1, 2, 3) to (-1, 0, 2), by using the three methods
shown so far
The general point (, y, Z) on the line satisfies the equations
x-D)x(0-2=(y-2x(-1-1)
(Y-2)x(2-3)=(z-3)x(0-2)
(z-3)x(-1-1)=(xx-1)x(2-3)

That is
—-2X+2y=2 (7.2)
-y +2z=4 (7.2
-2X+x=-5 (7.3)

Note that equation (7.1) is —2 times the sum of equations (7.2) and (7.3). Thus we
need consider only these latter two equations, to get

X=2z-5
y=2x-4



Three-dimensional Coordinate Geometry 135

Hence the general point on the line depends only on one variable, in this case z,
anditisgiwnby (2z-5, 2z -4, 2). Thisresult can easily be checked by noting
that when z= 3 we get (1, 2, 3) and when z= 2 we get (-1, 0, 2), the two original
points that define the line.

In vector form the general point on the line (depending on ) is

P =(1-(1,23)+pu(-1,02)=(1-21,2-21,3-})

Again the coordinates depend on just one variable (1), and to check the validity
of this representation of aline we note that p(0) = (1, 2, 3) and p(1) = (-1, 0, 2).
If we put the line into base/directional vector form we see that

P =(1,2,3) +u(-2,-2,-1)

with (1, 2, 3) asthe base vector and (-2, -2, —1) asthe direction (which
incidently has modulus V(4 + 4 + 1) = V9 = 3). We also noted that any point on
the line can act as a base vector, and so we can give another form for the general
point on thisline, p' :

P H)=(-1,02) +u(-2-2-1)
We can change the directional vector into its direction cosine form (-2/3, -2/3, —
1/3) and represent the line in another version of the base/direction form:

P WE (A, 2, 3) + u(-23, -2/3, -1/3)
Naturally the same m value will give diff$rent points for different representations
of theline; for example p(3) = (-5, -4, 0), p' (3 (-7,-6,-1)andp' ' (B)-1, 0,
2). The direction of this line makes angles of 131.81 degrees (= cos™ (-2/3)),

131.81 degrees and 109.47 degrees (= cos-1 (—1/3)) witln the positive x-
direction, y-direction and z-direction respectively.

TheAngle between Two Directional Vectors

In order to calculate such an angle we first introduce the operator -, the dot
product or scalar product. This operates on two vectors and returns a scalar (real)
result thus:

Pead=(Xp Y12 (X V2 ) =X X Xo + Y1 X Yo+ 2 X 2

If p and g are both unit vectors (that is, they are in direction cosine form), and q
isthe angle between the lines, then cos 6 = p ¢ g (see chapter 3 for the equivalent
two-dimensional relationship). In general, therefore, the angle between two
directional vectors p and g (we can assume they meet at the origin) is

cos1 _p . _q
el lal

Obvioudly p and g are mutually perpendicular directionsif and only if ps q=0.
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Definition of Plane

The plane is the next object we must consider in three-dimensional space. The

general point x = (X, Y, z) on the plane is given by the vector equation:
nex=k

where k isascalar, and n isthe directiona vector of the set of lines that are
perpendicular to (or normal to) the plane (see example 7.2). If aisany point on
the plane then naturally n « a = k and so by replacing k in the above equation, we
may rewrite it as

nex=nea or n*(x-a)=0

Thislatter equation is self-evident from the property of the dot product - two
mutually perpendicular lines have zero dot product. For any point X = (X, Y, 2) in
the plane that is not equal to a, we know that (x — a) can be considered as the
direction of alinein the plane. Since n isnormal to the plane, and incidently
perpendicular to every linein the plane, thenn « (x — &) = cos(1v2) = 0.

By expanding the original equation of the plane with normal n = (ny, n,, n3),
we get the usual coordinate representation of a plane:

(N, Ny, Ng) » (X, Y, 2) =Ny XX+ Ny xy+Ngx2) =K

Note that two planes with normals n and m (say) are paralel if and only if one
normal is ascalar multiple of the other, that isif n = Am for some A # 0.

The Point of Intersection of aLineand a Plane

Suppose the lineis given by b + pd and the plane by n ¢ x = k. Since the point of
intersection lies on both the line and the plane we have to find the unique value
of u (if one exists) for which

ne (b+pud) =k
that is

p=(k=neb)/(ned)providedne dz0
n e d=0if theline and plane are parallel and so either there is no point of
intersection or thelineisin the plane.

The Distance of a Point from a Plane

The distance of apoint p; from aplanen ¢ x = kiis the distance of p, from the
nearest point p, on the plane. Hence the normal from the plane at p, must pass
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through p;. Thisline can be written p; + pun, and the p value that defines p, is
such that

H=(k=nepy/(nen)
from the equation above, and the distance of the point p, = p; + un fromp, is
uxn|=lk=nepy/|n]

In particular, if p; isthe origin O then thc distance of the plane from the origin is
| k|/|n|. Furthermore, if n isadirection cosine vector we see that the distance
of the origin from the planeis| k |, the absolute value of the real number k.

Example 7.2
Find the point of intersection of thelinejoining (1, 2, 3) to (-1, 0, 2) with the
plane (0, -2, 1) « x =5, and also find the distance of the plane from the origin.

n=(0,-21)

b=(1273)
d=(-1,0,2)-(1,23)=(-2,-2,-1)
nN=b=0x1+2x2+1x3)=-1
n=d=(0x-2+-2x-2+1x-1)=3

hence the m value of the point of intersection is (5 — (—1))/3 = 2, and the point
vector is

1,2,3)+2(-2,-2,-1)=(-3,-2, 1)

and the distance from the originis 5/ | n | = 5/V5 = V5.

The program givenin listing 7.1 enables us to calculate the point of
intersection (array P) of aline and a plane. The line has base vector B and
direction D, and the plane has normal N and plane constant K. Note that, since
we are working with decimal numbers, and thus are subject to rounding errors,
we cannot check if a dot product is zero. We can find only if it is sufficiently
small to be considered zero, and what is meant by sufficiently small isleft to the
programmer (on the BBC micro about six places after the decimal point is
reasonable).

The Paint of I ntersection of Two Lines

Suppose we have two linesb; + pd; and b, + Ad,. Their point of intersection, if it
exists (if the lines are not coplanar or are parallel then they will not intersect), is
identified by finding unique values of m and | that satisfy the vector equation
(three separate coordinate equations):

by +ud; = b, + Ad,
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Listing 7.1

100 REM I ntersection of line and plane

110 DIM B(3),D(3), N(3), P(3)

119 REM input line and plane data

120 CLS : PRINT TAB(O0, 2)," Intersection of |line and plane
130 I NPUT" Base vector of line ", B( 1) , B(2), B(3)

140 INPUT" Direction vector of line ",D(1),D(2),D(3)

150 | NPUT" Nornal to plane " N(l) N( 2) N(3)

160 | NPUT" Pl ane constant "

170 DOT=N(1)*D(1) +N(2)* D(2)+N(3) D( 3)

179 REM output |ine and plane data

180 CLS

190 PRI NT TAB(O, 5); "Base vector of line "

200 PRINT TAB(0.6) " (";B(1);",";B(2);",";B(3);")"
210 PRINT TAB(O0,8);"Direction vector of line "
220 PRI NT TAB(0,9);"(";D( 1), " D(2); ", " D(3) )"
230 PRI NT TAB(O, 11);"Norma| to pI ane "

240 PRINT TAB(O, 12);"("; N(1); TNC2); T NC3) )"
250 PRI NT TAB(O, 14);"Pl ane const ant " K

260 PRI NT TAB(O, 18);"Point of intersection”

269 REM find point of intersection

270 | F ABS(DOT) <0. 000001 THEN PRI NT TAB(22,18) "does not exist" : GOTO 330
280 MU=(K- N(1)*B(1) N(2)*B(2)-N(3)*B(3))/DOr

290 FOR 1 %1 TO 3

300 P(1% B(I%+NU*D(I°/<)

310 NEXT |

320 PRI NT TAB(O 19); "("'P(l) "Lty P(2) S P(3); )"

330 PRINT TAB(O, 22); : STOP

Three equations in two unknowns means that for the equations to be meaningful
there must be at least one pair of the equations that are independent, and the
remaining equation must be a combination of these two. Two lines are parallel if
onedirectional vector isascalar multiple of the other. So we take two
independent equations, find the values of L and A (we have two equations in two
unknowns), and put them in the third equation to see if they are consistent.
Example 7.3 will demonstrate this method, and listing 7.2 isaway of
implementing it on a computer. The first line has base and direction stored in
arrays B and D, and the second line in C and E: the calculated point of
intersection goesinto array P.

Note that if the two independent eguatioils are

ag Xxm+dp xA=by
Ay Xxm+agxA=h,

then the determinant of this pair of equations, A = a;1 X ay, - a1, X a1 Will be
non-zero (because the equations are not related), and we have the solutions:

M= (8 x by —ag; x bp)/A and A = (ayy x by —ay x by)/A
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Listing 7.2

100 REM Intersection of two |ines

110 DIM B(3), D(3), C(3), E(3), N(3), P(3)

120 CLS : PRINT TAB(1,2)"Intersection of two |ines", SPC(9)
129 REM input data on two |ines

130 I NPUT" Base vector of first line ",B(1), B(2), B(3)

140 INPUT" Direction vector of first Ilne " D(l) D(2) D(3)
150 | NPUT" Base vector of second line "C(1),

160 | NPUT" Direction vector of second |ine " E( 1) E( 2), E(3)
169 REM out put data on two |ines

170 CLS

180 PRI NT TAB(O, 5); "Base vector of fi rst line "

190 PRI NT TAB(O, 6);"("; B(1); i B(2); ;B(3);")"

200 PRI NT TAB(O, 8);"Di rectl on vect or of f| rst I ine "
210 PRINT TAB(O,9);" ( ;D(1); ;D(2);", ", D(3);")"

220 PRI NT TAB(O, 11) Base vector of second line "

230 PRINT TAB(O, 12);"(";C(1);",";C(2); ;C(3); )"
240 PRI NT TAB(O, 14); "D rect|on vect or of second line "
250 PRINT TAB(O, 15);"("; E(1); TE(2); JE(3);")"

260 PRI NT TAB(O, 18);" Point of intersection”

269 REM find independent equations

270 FOR | %1 TO 3

280 J%=(1 % MOD 3) +1

290 DELTA=E(1 % *D(J% - E(J% *D(1%

300 | F ABS(DELTA) >0. 000001 THEN GOTO 330

310 NEXT | %

319 REM find point of intersection

320 PRI NT TAB(22 18) "does not exist" : GOTO 410

330 ME(E(19Q*(C(IN-B(IJNW)-E(IN*(C(1%-B(1%))/DELTA
340 LAVBDA=(D(1 9% *(C(IN-B(JNW)-D(JN*(C(1%-B(1%))/DELTA
350 K% (J% MOD 3) +1

360 | F ABS(B( K% +MJ D( K% - C( K% - LAVBDA* E(K% ) > 0. 000001 THEN GOTO 320
370 FOR | %1 TO 3

380 P(19% =B(1% +MFD(1%

390 NEXT | %

400 PRINT TAB(O, 19);"(";P(1);",";P(2);",";P(3);")"

410 PRI NT TAB(O, 22); : STCP

Example 7.3

Find the point of intersection (if any) of

@ (1, 1,1)+p2 1,3)with (0,0, 1) + A(-1, 1, 1)

(b) (2,3, 4) + (1, 1, 1) with (-2, =3, -4) + (1, 2, 3)
In (a) the three equations are

1+24 =0-A (7.4)
1+py =0+A (7.5)
1+3u =1+A (7.6)

From equations (7.4) and (7.5) we get p = —2/3 and A = 1/3, which when
substituted in equation (7.6) gives 1 + 3 x (=2/3) = —1 on the left-hand side and 1
+ 1 x (1/3) = 4/3 on the right hand side, which are obviously unequal so thelines
do not intersect.

From (b) we get the equations
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2+u=-2+ A 7.7
3+p=-3+2\ (7.9
4+p=-4+3\ (7.9

and from equations (7.7) and (7.8) we get p = -2 and A = 2, and these values also
satisfy equation (7.9) (Iefr-hand side = right-hand side = 2). So the point of
intersection is

(2,3,4)-2(1,1,1) = (-2, -3,-4) + 2(1,2,3) = (0,1, 2)

The Plane through Three Non-collinear Points

In order to solve this problem we must introduce a new vector operator, X the
vector product, which operates on two vectors p and q (say) giving the vector
result

P X q= (Py, P2, P3) X (Gy, G, G3) = (P2 X Gz = P2 X Op, P3 X Gy ~ Py X U3,

P X0 = P2 %0y
If pand g are non-parallel directional vectorsthen p X qisthe directional vector
that is perpendicular to both p and g. It should also be noted that this operation is
non-commutative. That is, in general for given values of p and q we note that p X
g% q X p; these two vector products will represent directions on the same line
but with opposite sense. For example (1, 0, 0) X (0, 1, 0) = (0, O, 1) but (0, 1, 0)
X (1,0,0)=(0,0,-1); (0,0, 1) and (0, O, —1) are both parallel to the z-axis (and
so perpendicular to the directions (1, 0, 0) and (0, 1, 0)), but they are of opposite
sense. Usting 7.3 gives amain program that calls the procedures ‘ vecprod’ (for
the vector product of two vectors L and M returning vector N) and ‘ dotprod’
(which calculates the dot product DOT of the vectors L and M).

Suppose we are given three non-collinear points p;, p, and ps. Then the two
vectors p, — p; and p; — p; represent the directions of two lines that are
coincident at p;, both of which liein the plane that contains the three points. We
know that the normal to the plane is perpendicular to every linein the plane, in
particular to the two lines mentioned above. Also, because the points are not
collinear, p, — p; # p3 — Py, the normal to the planeis (p, — p;) X (p3 — py), Since
p; liesin the plane the equation is

((P2=pPD X(p3—PY) * (X—p) =0

Example 7.4
Give the coordinate equation of the plane through the points (0, 1, 1), (1, 2, 3)
and (-2, 3, -1).



Three-dimensional Coordinate Geometry 141

Listing 7.3

100 REM Exanpl e of dot/vector product

110 DlML(3) N[3) N( 3) : CLS

120 PRI NT TAB(O, ) Exanpl e of dot/vector product"”, SPC(10)
130 I NPUT" Vector L ", L(1),L(2),L(3)

140 | NPUT" Vector M " M1).M2).M3)

150 CLS : PROCvecprod

160 PRINT TAB(O,5);"Vector L "

170 PRINT TAB(0,6) ;" (*;L(1):","iL(2):", "I L(3);")"
180 PRINT TAB(O, 8);" Vector M

190 PRI NT TAB(O, 9) UMD M)t M) ) "
200 PRI NT TAB(O, 1) Vector Pr oduct "

210 PRINT TAB(O, 12);"("; N(1); TN(2); N(3);
220 PRINT TAB(O, 14); Dot Pr oduct " FNdot pr od

230 PRINT TAB(O, 22) : STOP

300 REM vecprod

310 DEF PROCvecpr od

320 LOCAL | % J% K%

330 FOR 1 %1 TO 3

340 J% (1 % MOD 3) +1 K%;(J%N[JD 3) +1

350 N(19% =L(J% *M K% - LK% *MJ%
360 NEXT 1%
370 ENDPRCC

400 REM dot prod
410 DEF FNdot prod=L(1)*M 1) +L(2) *M 2) +L(3) *M 3)

Thisis given by the general point x = (X, y, z) where
(((1,2,3)-0,1, 1) X((-2.3,-1)-(0, 1, 1)) * (x ¥, 2
-0,1,1)=0
that is
((1,1,2) X (-2,2,-2))* (x,y—-1,z-1) =0
or
(-6,-2,4)° (x,y-1,z-1)=0
which in coordinate form is —6x — 2y + 4z— 2 = 0 or in the equivalent form 3x +
y-2z=-1
The Point of Intersection of Three Planes

We assume that the three planes are defined by equations (7.10) to (7.12) below.
The point of intersection of these three planes, b = (x, y, z), must bein al three
planes and satisfy
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nye X= kl (710)
n2 *X= k2 (711)
Nge X= k3 (712)

Wher_e Ny = (N1, Ny, ”13)_' Ny = (Nyy. Nyy, _nza) and_ N3 = (Ngy, Ngp, N33). We can
rewrite these three equations as one matrix equation

N1 My M3 X ks
Ny Ny N XAtyl=1k
Ny N Ng3 z ks

and so the solution for b is given by the column vector

X N N ng\-1 ky
Yy =] N N2 Ny X ko
z Ny Nz Ngs ks

So any calculation that requires the intersection of three planes necessarily
involves theinversion of a3 x 3 matrix. Listing 7.4 gives the Adjoint method of
finding NINV, the inverse of matrix N. It also returns variable SNG which equals
0if Nisnon-singular and 1 otherwise.

Listing 7.4

500 REM Find NINV, the inverse of 3x3 matrix N
usi ng the Adjoint method
510 DEF PROC nv
520 LOCAL | % J% NI % NNI %
529 REM find DET, determ nant of N
530 DET=0 : NI %2 : NNl %3
540 FOR 1 %1 TO 3
550 DET=DET+N(1, 1% *(N(2, NI % *N( 3, NNI % - N(3, NI % *N( 2, NNI % )
560 NI % NNl % : NN % (NN % MOD 3) +1
570 NEXT | %
579 REMif DET zero then N singul ar
580 | F ABS( DET) <0. 000001 THEN SNG=1 : ENDPROC ELSE SNG=0
589 REM cal cul ate NI NV
590 NI %2 : NN %3
600 FOR 1%1 TO 3
610 NJ%2 : NNJ%3
620 FOR J%1 TO 3

630 NINV(J% | % =( N( NI % NJ%) * N NNI % NNJ% - N( NI % NNJ% * N( NNI % NJ99 ) / DET

640 NJ%NNJ% : NNJ% (NNJ% MOD 3) +1
650 NEXT J%
660 NI %NNI % : NNl % (NNl % MOD 3) +1
670 NEXT | %
680 ENDPRCC
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Again in the program to solve this problem (listing 7.5), vectors are represented
as one-dimensional arrays, thus array B will contain the solution of the equations
(b); array K will contain the plane constants. We are given the normals n4, n, and
nsintheformof a3 x 3array N, so the valuesin B are found by the following
code. Obviously if any two of the planes are parallel or the three meet in aline,
then SNG equals 1 and there is no unique point of intersection.

Listing 7.5

100 REM I ntersection of three planes

110 DI M N(3, 3), NI NV( 3, 3), K(3), B(3)

120 CLS : PRINT TAB(O, 2),"Intersection of three planes", SPC(10)
129 REM input data on planes put in arrays N and K

130 FOR | %1 TO 3

140 PRINT"I nput nornal and constant for plane ";1%
150 INPUT N(1% 1), N(1%2),N(1%3),K(1%

160 NEXT | %

169 REM out put data on pl anes

170 CLS

180 PRINT TAB(2, 5); "PLANE No. CONSTANT NORNVAL"
190 ROW7
200 FOR 1 %1 TO 3

210 PRI NT TAB(O, ROW, 1% K(1 9, " ("
N(T% 1) ", " N(19%2);", " N(1%3);")"

220 ROMROM2

230 NEXTI %

239 REMfind NINV, the inverse of N and B, point of intersection
240 PRI NT TAB(O, 14);"Point of intersection”

250 PROC nv

260 | F SNG THEN PRI NT TAB(22,14) "does not exist" : GOTO 340

270 FOR 1%1 TO 3

280 B(19% =0

290 FOR J%1 TO 3

300 B(1% =B(1% +NI NV( 1% J% *K(J%

310 NEXT J%

320 NEXT 1%

330 PRINT TAB(O, 15);"("; B(1);
340 PRINT TAB(O, 22); : STOP

"M B(2): M, " B(3) )"
Example 7.5
Find the point of intersection of thethreeplanes (0, 1,1) e x=2,(1,2,3) * x=4
and(1,1,1) ¢ x=0.
In the matrix furm we have

011 X 2
12 3 x y = 4
111
Theinverse of 0 1 1 is -1 0 1
1 2 3 2 -1 1
1 1 1 —1 1 -
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and so
X -1 0 1 2 2
y] =12-1 1 x 4 1={o
z 1 1 -1 0 2

This solution is easily checked: (0,1,1) - (-2,0,2)=2,(1,2,3)-(-2,0,2) =4
and (1, 1, 1) - (-2, 0, 2) = 0, which means the point (-2, 0, 2) lieson dl three
planes and so is their point of intersection.

TheLineof Intersection of Two Planes

L et the two planes be

PeX=(Py P2 P3) * X=kg
and

qe X=(0y, G Ga) * X =k

We assume that the planes are not parallel, and so p # g for al A. Theline
common to the two planes naturally liesin each plane, and so it must be
perpendicular to the normals of both planes (p and g). Thus the direction of this
line must bed = p X q and the line can be written in the form b + pd where b can
be any point on the line. In order completely to classify the line we have to find
one such b. We find a point that is the intersection of the two planes together with
athird that is neither parallel to them nor cuts them in acommon line. By
choosing a plane with normal p x g we shall satisfy these conditions (and
remember we have already calculated this vector product). We still need avalue
for ks but any value will do, so we take k; = 0 in order that this third plane goes
through the origin. Thus b is given by the column vector

P1 P2 P3 - ky
b= S 02 a3 x [ k
PoX03=P3* 0y P3XU—P1X03 PLX0~P2%0; 0

Find the line that is cominon to the planes (0, 1, 1) e x =2and (1, 2, 3) * x = 2.
p=(0,1,1)andg=(1,2,3),andsopXgq=(1x3-1x2,1x1-0x3,0x
2-1x1)=(1,1, - 1). Werequire the inverse of

1 1-1 1 1 -1
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and hence the point of intersection of the three planesis

5 2 1 2 -6 -2

1 1
5 4 -1 1 X 2 = 3 6 = 2
1 1 -1 0 0 0

and thelineis (-2, 2,0) + u(1, 1, -1).
It is easy to check this result, because all the points on the line should lie both
planes:

(0,1,1)* ((-2,2,0) + p(L, 1, -1))

=(0,1, 1)+ (=2,2,0)+u(0,1, 1) (1, 1, -1) = 2forall p
and

(1,23 ((-2,2,0) + (1, 1,-1))

=(0,1,1)+ (-2,2,0) + u(1,2,3) (1,1, -1) = 2foral p

The program to solve this problem is given aslisting 7.6; note that it is very
similar to the previous program. Also note that arrays are not explicitly used for p
and q - these values are stored in the first two rows of array N. Array B holds the
base vector of the line of intersection, but we do not place d in an array because
the values are already in the third row of N.

Functional representation of a Surface

In our study of two-dimensional space in chapter 3 we noted that curves can b
represented in afunctional notation. Thisidea can be extended into three
dimensions when we study surfaces. The simplest form of surfaceis an infinite
plane with normal n = (ny, n,, n3), which we have seen can be given as
coordinate equation:

Nex-kK=nxx+n,xXy,+nzgxz-k=0

This can be written in functional form for agenera point x = (X, y, 2) on the
surface:

f)=f(x,y,2=n xx+n,xy+ngxz-k=nex-k

which isasimple expression in variables x, y and z(x). This enables usto divide
al the points in space into three sets, those with f(x) = O (the zero set), those with
f(x) < 0 (the negative set) and those with f(x) > O (the positive set). A point x lies
on the surface if and only if it belongs to the zero set. If the surface divides space
into two halves (each half being connected, that is any two pointsin agiven half
can be joined by a curve that does not cross the surface) then these two halves
may be identified with the positive and negative sets. Again beware, there are
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Listing 7.6

100 REM I ntersection of two planes

110 DlMN(3 3), NINV(3, 3) K(3), B(3)

120 CLS : PRINT TAB (0,2),"Intersection of two planes", SPC(10)
129 REM i nput plane information

130 FOR 1 %1 TO 2

140 PRINT"Input normal and constant for plane ";1%
150 INPUT N(1% 1), N(1% 2), N(I1% 3), K(19%
160 NEXT 1%

169REM find third rows of N and K directional vector of the
line of intersection is (N(3 l) N(3,2),N(3,3))

170 N(3,1)=N(1,2)*N(2, 3)-N(1, 3)*N( 2, 2)

180 N(3.2)=N(1. 3)*N(2. 1)-N(1, 1) *N( 2. 3)

190 N(3,3)=N(1,1)*N(2,2)-N(1,2)*N(2,1)

200 K(3)=0

209 REM out put pl ane information

210 CLS

220 PRI NT TAB(2,5);"PLANE No. CONSTANT NORVAL"

230 ROWT

240 FOR 1%1 TO 2

250 PRINTTAB(ORCW 1% K(19,
N % 1) N9 D) ","'N(I%3) e
260 ROMROM2

270 NEXTI %

279 REM conpare with listing 7.5

280 PRINT TAB(O, 13);"Line of intersection”
290 PROG nv

300 | F SNG THEN PRI NT TAB(22,13) "does not exist" : GOTO 410
310 FOR | %1 TO 3

320 B(19% =0

330 FOR J%1 TO 3

340 B(19% =B(1% +NI NV(I% J% *K(IN

350 NEXT J%

360 NEXT | %

369 REM out put |ine of intersection

370 PRI NT TAB(O, 15); "Base vector"

380 PRINT TAB(O,16);"(";B(1);",":B(2);",";B(3);")"

390 PRINT TAB(O, 18);"Directional vector"

400 PRINT TAB(0,19);"(";N(3,1);",";N(3,2);",";N(3,3);")"
410 PRINT TAB(O, 22); : STOP

many surfaces that divide space into more than two connected volumes and then
it isimpossible to relate functional representation with connected sets; for
examplef(x, y, 2) = cos(y) — sin(x2 + z2). There are, however, many useful well-
behaved surfaces with this property, the sphere of radius r for example:

f)=r2—|x2
that is
fxy,9=r2-x2-y2-2

If f(x) = O then x lies on the sphere, If f(x) < O then x lies outside the sphere, and
if f(x) > 0 then x lies inside the sphere.
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The functional representation of a sufaceis avery useful concept. ut can be
used to define sets of equations that are necessary in calculating the intersections
of various objects. The major use, however, is to determine whether or not two
points p and g (say) lie on the same side of a surface that divides space into two
parts. All we need to do is compare the signs of f(p) and f(q). If they are of
opposite signsthen alinejoining p and g must cut the surface. Some examples
are now given.

Isa point on the same side of a plane asthe origin?
Suppose the plane is defined (as earlier) by three non-collinear points p,, p, and
ps. Then the equation of the planeis

((P2=P1) X (P3=Pp) * (X —p1) =0
We may rewrite thisin functional form

f(x) = ((P2 = PD) X (P3 = PY)) * (X =Py

So al we need do for apoint e (say) isto compare f(e) with f(O), where O isthe
origin. We assume here that neither O nor eliein the plane.

We shall see that thisideawill be of great use in the study of hidden surface
algorithms.

Example 7.7
Arethe origin and point (1, 1, 3) on the same side of the plane defined by points
0,1,1),(1,2,3)and (-2, 3, -1)?

From example 7.4 we see that the functional representation of the planeis

f(x)=(-6,-2,4)« (x-(0,1, 1))
Thus

f(0,0,0) =—(-6,-2,4)+ (0,1,1) =-2
and

f(1,1,3)=(-6,-2,4)+ ((1,1,3) - (0,1, 1)) =2
Hence (1, 1, 3) lies on the opposite side of the plane to the origin and so aline
segment that joints the two points will cut the plane at a point (1 - ) (0, 0, 0) +
u(d, 1, 3) whereO<p < 1.
Isan oriented convex polygon of verticesin two dimensional space clockwise or
anticlockwise?
We start by assuming that the polygon is atriangle that is defined by the three
vertices py = (Xq, Y1), P2 = (X0, Yo) and ps = (X3, Ya). Although these points are in
two-dimensional space we can assume they lie in the x/y plane through the origin

of three-dimensional space by giving them all az-coordinate value of zero. We
systematically define the directions of the edges of the polygon to be (p, — py).
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(p3 — o) and (p1 — py). Sincetheselines al lie in the x/y plane through the origin
we know that for al i = 1, 2 or 3 and for some real numbersri that depend on i

P+ = P) X (Pi+2-pis) =(0,0,19)

Thisis because this vector product is perpendicular to the x/y plane and so
only z-coordinate values may be non-zero. The addition of subscriptsis modulo
3. Because the vertices were taken systematically, note that the signs of theser;
values are always the same; but what is more important, if the p; values are
clockwise then ther; values are all negative, and if the p; values are
anticlockwise ther; values are al positive.

Given an oriented convex polygon we need only consider the first three
verticesto find if it is clockwise or anticlockwise. This technique will prove to be
invaluable when we deal with hidden line/surface algorithms later in this book.
Listing 7.7 allows us to find whether or not three ordered two-dimensional
vertices form an anticlockwise triangle.

Listing 7.7

100 REM Orientation of 2-D triangle

110 DI M X(3), Y(3)

119 REM input data on triangle

120 CLS : PRINT TAB(O, 3)"TRI ANGLE DEFI NED BY VERTI CES"
130 ROWE2

140 FOR | %1 TO 3

150 PRI NT TAB(O0, 20) "Type in coordinates of vertex ";1%
160 | NPUT X(19%, Y(1%

170 PRINT TAB(O, 21), SPC(32)

180 ROMROM-3

189 REM out put data on triangle

190 PRINT TAB(0, ROW "VERTEX ;1%

200 PRI NT TAB(O, ROM1);"("; X(1%;",";Y(1%;")"

210 NEXT | %

219 REM formtwo directional vectors (DX1,DYl, 0) and (DX2, DY2, 0)
220 DX1=X(2)-X(1) : DY1=Y(2)-Y(1)

230 DX2=X(3)-X(2) : DY2 Y(3) Y(2)

240 PRINT TAB(O, 15);"IS "

249 REM check sign of z-coordinate of the vector product
250 I F DXl* DY2- DX2* DY1>0 THEN PRI NT "ANTI -

260 PRI NT "CLOCKW S|

270 PRINT TAB(O, 20), SPO(32) . STOP

Example 7.8
Why isthe polygon given in example 3.4 anticlockwise?

The vertices (considered in three dimensions) are (1, 0, 0), (5, 2, 0), (4, 4, 0)
and (-2, 1, 0). The directions of the edges are (4, 2, 0), (-1, 2, 0), (-6, -3, 0) and
(3,-1,0).

(4,200 X (-1,2,0) =(0,0, 10)
(-1,2,0) X (-6,-3,0)=(0, 0, 15)
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(-6,-3,0)X (3,-1,0) =(0,0, 15)
(3,-1,0) X (4,2,00 =(0,0,10)

Since these are all positive, the orientation of the polygon is anticlockwise. But
be careful, if you lose this consistent order for calculating the vector product you
can get the wrong answer. For example

(-6,-3,0) X (4,2,0)=(0, 0, 0) - thelines are parallel!
or

(-1,2,0) X (3,-1, 0) =(0, 0, -5) - the edges have been taken out of
sequence.

Complete Programs

| Listing 7.1 (intersection of line and plane). Data required: a base vector
(B(1), B(2), B(3)) and direction vector (D(1), D(2), D(3)) for theline, a
normal (N(1), N(2), N(3)) and constant K for the plane. Try (1, 2, 3), (0, 2,
-1), (1, 0, 1) and 2 respectively.

Il Listing 7.2 (intersection oftwo lines). Data required: a base and direction
vectors for the two lines, (B(1), B(2), B(3) ) and (D(1), D(2), D(3)), and
(C(2), C(2), C(3)) and (E(1), E(2), E(3)). Try (1, 2, 3), (1, 1, -1), and (-1,
1,3),(4,0,1).

Il Listing 7.3 (" main program’ , ‘vecprod’ and ‘dotprod' ). Datarequired: two
vectors (L(1), L(2), L(3)) and (M(1), M(2), M(3)). Try (1, 2, 3), (1,1, -1).

IV Listings 7.4 (' inv' ) and 7.5 (intersection of three planes). Data required:
normal (N(1, 1), N(1, 2), N(1, 3)) and constant K(1) for the three planes, 1
<1<3.Try(1,2,3),0,(1,1,-1),1,(1,0,1), 2.

V Listings7.4 (" inv' ) and 7.6 (intersection of two planes). Data required:
normal (N(1, 1), N(1, 2), N(1, 3)) and constant K(1) for the two planes, 1
<1<2.Try(1,2,3),0,(1,1,-1),1.

VI Listing 7.7 (orientation of two-dimensional triangle). Data required: the
vertices (X(1),Y(1),1<1<3.Try (1, 2), (2,3) and (-1, 1).



