15 A Worked Example of a Video Game

In this chapter we examine the use of both BASIC and Assembler programining
for animated video games. In general games are expensive, and the players
interest can be short-lived. If players can achieve a reasonable result themselves
then most would prefer to write their own simple video games, and spend their
money only on good-quality sophisticated games. Tape cassette 2 contains an
extensive example of the sort ofgame that most competent programmers can
reasonably expect to write, without going to the extreme of putting the whole
game into machine code. The game itself, RON the ROBOT in the WASTE of
TYME, isatypica ‘shoot-em up’ game; however the techniques we discuss here
could just as easily be applied to ‘bat and ball’ (such as TENNIS) or ‘tactical’
games (such as PAC-MAN). For you to make the most of the explanationsin this
chapter we advise you to get the companion cassette tapes, and LOAD and RUN
these program listings.

The most important part of writing any game is the planning. It is helpful to
draw a plan of the intended screen on graph-paper: sketch in the proposed size
and positions of fixed objects (the background) and the areas to be traversed by
moving objects (the foreground). Both background and foreground are usually
composed of user-defined characters. This should fix a scale for the objects and
will give a general impression of the final game. It isworth spending some time
at this stage to ensure that the proposed action can actualy fit into the graphics
area. Once you have decided on a screen layout you must create the multi-
coloured objects for the foreground and the background by using the
CHARACTER GENERATOR 2 of chapter 5. Before writing any complex code
for moving these characters about you must lirst place them on the screen, both
singly aiid in groups, in order to see what impression they make. We saw that the
fastest way of putting alarge number of characters on the screenisto ‘prynt’
them (see chapter 5). In our program we shall adjust ‘prynt’ so that it draws
strings of characters down the screen.

Exercise 15.1

Alter the CHARACTER GENERATOR 2 program to allow charactersto be
defined in neighbouring blocks of two or four, which will alow compound
shapes to be constructed with ease. This option will need the INPUT of two or

Chapter Title 266

four ASCII codesto tell the program where to store the multiple character data.

Always conceive and write your game programs as modules. Such subtasks
can be programmed separately either in BASIC or directly in assembly code, and
tested individually before they are combined into larger modules or the final
program. Speed is the essence, so that most of the BASIC procedures should be
trandated into machine code for the final version of the game. There are,
however, some sections of the game that do not need speed, such as any
explanatory text before the game starts and some initialisation processes. These
can beleftin BASIC.

Since we are aiming at speed of execution we must make all routines as
explicit as possible. We calculate every possible value at the programming stage
or by apreviously run initialising program. The barest minimum of computation
should be done while the game is being played.

One important technique for minimising the calculation, which we use in the
example program, is the cascade or multiple entry point method. We write
cascade routines which are called by a pointer, each cascade being made up of
separate sections. Only one section is entered per execution of the routine. Inside
the routine the pointer may be changed so that with the next entry a different
section is obeyed. This continues with the pointer usually moving down through
the sections of the cascade until it reaches the bottom, where it will usually be
reset to the top. Such cascades are normally implemented by GOSUB with
variable labelsin BASIC, or asindirect jumps or conditional branching
statements in assembly language. Normally this technique is used on several
cascades which are called from within aloop. This loop describes the major tasks
needed in playing the game. It gives us the ability to carry on different processes
in an interwoven yet independent manner. Apparent parallelism of thissort is
essential for games, where independent events may be following complicated
courses. Effectively the program operates on two or more routines
simultaneously, with one section only from each cascade being executed each
time through the loop.

Consider the following two simple programs run in mode 7, which perform
independent functions. Listing 15.1 waits until akey is pressed and then shoots a
point across the screen. Listing 15.2 continuously moves a cross up the screenin
azig-zag pattern. Both programs use the fast animation techniques that are found
in the game that follows, so it is necessary to slow them down with the *FX,19
command (except on OS 0.1) and REPEAT loops. Excess speed is sometimes a
problem in assembler programs, but only when programs are very simple. We
combine these two programs into a simple loop of cascades. We set pointers
(“cross' and ‘ point’) to the top of the cascades and control entry to the
corresponding cascades by changing their values inside the routines (listing
15.3). In this simple game you type any key and the point moves across the
screen: when the point and cross coincide — SPLAT.

267 Advanced Graphics with the BBC Model B Microcomputer

Listing 15.1

200 REM dot

209 REM fire dot across screen when a is pressed
210 MODE 7 : VDU23, 1, 0; 0;0; 0;

220 PRINT TAB(O, 11);"."

230 A$=CGET$

240 D=0

250 PRINT TAB(D, 11);" " : D=D+1

260 | F D=40 THEN 220

270 PRINT TAB(D, 11);"."

279 REMwait for start of frame to sl ow novenen down
280 *FX19

290 GOTO 250

Listing 15.2

300 REM cross

309 REM continually nbve cross up screen
310 MODE 7 : VDU 23,1,0;0;0;0;

320 X=8 : Y=23

330 PRINT TAB(X, Y);"+"

340 PRINT TAB(X Y);" " : Y=Y-1

350 I F Y<O THEN 320

359 REM nake cross nmpove in zig-zag
360 | F Y>12 THEN X=X+1 ELSE X=X-1
370 PRINT TAB(X Y);"+"

379 REM sl ow down novenent of cross
380 T=TIME : REPEAT UNTIL TI ME>T+2
390 GOTO 340

Listing 15.3

100 REM mai n | oop

110 dot=200 : cross=300 : D=0

120 MODE 7 : VDU23, 1, 0;0;0; 0;

129 REM run nodified dot and cross programs at sane tinme.
130 REPEAT

140 GOSUB dot : GOSUB cross

150 UNTIL FALSE

200 REM dot cascade

210 PRINT TAB(O, 11);"." : dot=220 : RETURN

219 REM now use | NKEY$ to check for keypress so cross can nove.
220 | F | NKEY$(0)="" THEN RETURN

230 D=0 : dot=240 : RETURN

240 PRINT TAB(D, 11);" " : D=D+1

250 | F D=40 THEN dot =210 : RETURN

260 PRINT TAB(D, 11);"."

270 RETURN

300 REM cross cascade

310 X=8 : Y=23

320 PRINT TAB(X, Y);"+" : cross=330 : RETURN
330 PRINT TAB(X, Y);" " : Y=Y-1

340 X=X+1 : PRINT TAB(X Y);"+"

268 Advanced Graphics with the BBC Model B Microcomputer

350 | F Y<=11 THEN cross=380

360 T=TI ME : REPEAT UNTIL TI ME=T+2

370 RETURN

379 REM as cross changes direction check for dot hitting cross.
380 I F Y=11 AND X=D THEN PRI NT TAB(X, Y);"SPLAT!" : END
390 PRINT TAB(X, Y);" " : Y=Y-1

400 | F Y<O THEN cross=310 : RETURN

410 X=X-1

420 PRI NT TAB(X, Y);"+"

430 T=TIME : REPEAT UNTIL TI ME=T+2

440 RETURN

Exercise 15.2

Add alineto the calling loop to reset the pointers to the top of the cascades and
continue the game after a SPLAT, perhaps printing the score (number of hits).
Write a‘ duck-shoot’ game with a hunter who moves left and right under
keyboard control while shooting with a shotgun at ducks that are flying across
the screen.

How to Writea Game

For asimple game as outlined in the above example (and the worm game of
chapter 1) the saving in time and programming effort from using the cascade
technique is significant. We shall now describe a good approach for writing a
non-trivial game by using the aforementioned ideas, with RON as an illustration.
First define and plan your game carefully.

The definition

In our game you are RON, the last robot remaining after a nuclear disaster and
you are trying to rescue the few surviving microcomputers, the BEEBS. While
doing this you must avoid the Mutant Typists (MUTTS) who are trying to stop
you. RON is equipped with aray gun which he can firein any of four directions
(up, down, left, right), although this will not save him if the MUTTS get their
MITTS on him. RON is currently rescuing BEEBS in the WASTE of TYME
where there are many pools of radioactive materials that are fatal to MUTTS and
RON alike, although RON can vapourise these with his ray gun.

The gun has four firing directions that are specified by pressing ‘s for left, ‘d’
for down, ‘f’ for right and ‘€ for up. If ablast from the gun hits either the
MUTTS or the pools they will disappear; however if the MUTTS touch RON he
dies. The movement of RON issimilarly controlled by ‘j’, ‘k’, ‘I’ and ‘i’. A great
deal of time at the planning stage of a game should be given to making the
controls usable, and the keys you chose must be easy to reach. (If you have
joysticks then things are much simpler.)

Just to make things tricky there are occasional appearances of antinuclear
demonstrators (DEMONS) wearing ‘| told you so’ tee-shirts. They are intent on
shooting RON, since it was wry probably al hisfault anyway!

A Worked Example of a Video Game 269

The characters

You need to create single or multiple multi-colour characters for each participant
in agame. This game will be run in mode 2 so we use CHARACTER
GENERATOR 2 to draw the pools, RON, the MUTTs, the BEEBs and the
DEMONs which will all be two characters high. Because we do not want to be
limited to mode 2 character blocks, each object will be stored as the equivalent of
5 characters. (All the characters are stored between ASCI| codes 65 and 89.) The
screen is considered as a coordinate system with x-values from 0 to 79 and y-
values from 0 to 63 (not 0 to 31). We move in half-characters up the screen,
hence the need for 5 characters per object: two are used to draw the object in
normal character block position, but three are needed if it moves up half ablock
since it will range over three blocks. The ‘prynt’ routine has to be changed to
move them about in this fashion. The characters will be stored asfile
RONCHAR.

Theinitialisation

The characters can go anywhere on the screen, but to start with we would like
them to be fairly randomly spread, but without overlapping. So we start with a
BASIC program (stored in file XY DATAP) that finds suitable positions fur 128
objects: 32 BEEBS, 32 pools and 64 MUTTSs. It draws coloured squares on the
screen to show you where they go, yellow for BEEBS, green for pools and
magentafor MUTTSs. If you do not like these positions run the program again.
These are the x/y coordinates of the objects and are placed in store between
locations & 1100 and & 1400. RON has 16 waves of MUTTs to contend with,
each wave containing more than the one before. The positions within awave are
asubset of the total calculated above. The table of data that specifies the number
of occurrences of each object in around is also stored by this program in the
same area of store. Finally the program calculates a table of the addresses of the
beginning of each screen line and stores this as well. Once all the data have been
prepared it is saved asthe file XY DATA.

Thelogo

This section (file BJPRSNT) would probably be written last of all and simply
draws alogo for the game on the screen and follows it with a brief description of
the rules of the game. There is no need to use machine code, BASIC is more than
adequate for this section. When interrupted by pressing ‘S it will load the main
game program (a previously constructed machine-code program) and execute it.

The main game program
We finally come to the main game program (file GAME) which consists of a
loop of calls to cascade routines:

MBEEB moves one BEEB each time through the loop.
CHKEY S checks the keyboard to find any change in direction of RON'’s
movement or when the ray gun has been fired.

270 Advanced Graphics with the BBC Model B Microcomputer

FIRE moves the photon blasts from the gun around the screen.

MMUT moves some of the mutants each time through the loop. Some of
them will change direction to chase RON.

Then the flag KILLED checks whether RON has been killed by aMUTT.
MRON moves RON.

Then the flag DEAD checks to see if RON has hit apool; if so anew RON
appears or the gameis over. (You have three RONs to start with.)

DEMON tellsif ademonstrator is on the screen, in which case we enter the
cascade for its movement. It will use the same FIRE routine as RON.

We then move back to the top of the loop and repeat. Naturally there are a
few other checks, such asto seeif RON has blasted all the MUTTs or if your
scoreis high enough to gain another RON.

In the game we have tried to show an elementary modular way of approaching
the programming of video games in amixture of BASIC and machine code,
where large amounts of data are stored in avariety of tables. The positions for
everything on the screen are stored in large tables of x-coordinates and y-
coordinates and collisions are detected simply by assuming that the background
isall black (zero). Objects are moved by printing them in their new positions and
then by obliterating any leftover parts from their previous positions with blanks.
The missiles are drawn by calculating the appropriate byte(s), and then by
overprinting the data into the byte and out ofthat byte after the shot has passed.
Reprinting often takes less time when removal of the old position can be
combined with the printing at the new (see the sections where RON is moving
vertically). Remember that discretion is the better part of valour and it isfar
better to check for problems and to cover them up, rather than to rewrite your
program and find that another fault has appeared. When trying to remove faults
also remember that a brute-force cover-up will probably be quicker than afancy
fault-avoidance routine.

Thereis no background in this game for the simple reason that it would
necessitate the removal of data from the screen prior to printing. Thiswould be
essential in order to allow the background to be restored after the object in the
foreground had moved on.

By combining these techniques for moving objects and allowing objects to
pass each other, displays of very high quality can be made. Of course for the
really fast and complex gaines efficient machine-code routines with even greater
numbers of look-up tables must be used. However many of the initialisation and
instruction routines can till be in BASIC so do not bother trying to produce
completely machine-code programs unless you wish to sell your games.

Finally, as your games’ programs become more and more interwoven and
cross-connected you must try to keep a simple overview of the game. Use
sensible variable names, put in plenty of comments during devel opment, and
aboveall, Don't Panic!

A Worked Example of a Video Game

271

Complete Programs

| Listing 15.1. Type any key.
Il Listing 15.2. No data required.
Il Listing 15.3. Press any key.

IV See description of tape 2 in the appendix for the video game RON.

