
Matrix Representation of
Transformations on Two-Dimensional
Space

In chapter 2 we saw the need to translate pictures of objects about the screen.
Rather than perpetually to change the screen coordinate system, it is conceptually
much easier to define an object in the simplest terms possible (as vertices in the
form of pixel or coordinate values, together with line and area information that is
related to the vertices), and then transform the object to various parts of the
screen but keeping the screen coordinate system fixed. We shall restrict ourselves
to linear transformations (see below). It will often be necessary to transform a
large number of vertices, and to do this efficiently we use matrices. Before
looking at such matrix representations we should explain exactly what we mean
by a matrix, and also by a column vector. In fact we restrict ourselves to square
matrices: to 3 × 3 (said 3 by 3) for the study of two-dimensional space, and later
we use 4 × 4 matrices when considering three-dimensional space. Such a 3 × 3
matrix (A say) is simply a group of real numbers placed in a block of 3 rows by 3
columns: a column vector (D say) is a group of numbers placed in a column of 3
rows:

A11 A12 A13 D1

A21 A22 A23 and D2

A31 A32 A33 D3

A general entry in the matrix is usually written Aij the first subscript denotes the
ith row, and the second subscript the jth column (for example, A23 represents the
value in the second row of the third column). The entry in the column vector, Di,
denotes the value in the ith row. All these named entries will be explicitly
replaced by numerical values and it is important to realise that the information
stored in a matrix or column vector is not just the individual values but it is also
the position of these values within the matrix or vector. Naturally BASIC
programs are written along a line (no subscripts or superscripts) and hence
matrices and vectors are implemented as arrays and the subscript values appear
inside round brackets following the array identifier. 
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Matrices can be added. Matrix C = A + B, the sum of two matrices A and B,
and is defined by the general entry Cij; thus:

Cij = Aij + Bij   1 ≤ i,  j ≤ 3 

Matrix A can be multiplied by a scalar k to form a matrix B:

Bij = k × Aij   1 ≤ i, j ≤ 3 

We can multiply a matrix A by a column vector D to produce another column
vector E thus

Ei = Ai1 × D1 + Ai2 × D2 + Ai3 × D3 = ∑k Aik × Dk   where 1 ≤ i, k ≤ 3

The ith row element of the new column vector is the sum of the products of the
corresponding elements of the ith row of the matrix with those in the column
vector.

Furthermore, we can calculate the product (matrix) C = A × B of two matrices
A and B:

Cij = Ai1 × B1j + Ai2 × B2j + Ai3 × B3j = ∑k Aik × Bkj   where 1 ≤ i, j, k ≤ 3

We take the sum (in order) of the elements in the ith row of the first matrix
multiplied by the elements in the jth column of the second. It should be noted that
the product of matrices is not necessarily commutative, that is A × B need not be
the same as B × A. For example

0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0

0 0 1 × 0 1 0 = 1 0 0 but 0 1 0 × 0 0 1 = 0 0 1

1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0

Experiment with these ideas until you have enough confidence to use them in the
theory that follows. For those who want more details about the theory of matrices
we recommend books by Finkbeiner (1978) and by Stroud (1982).

There is a special matrix called the indentity matrix I (sometimes called the
unit matrix) :

1 0 0

I = 0 1 0

0 0 1

Also for every matrix A we can calculate its determinant det(A): 

det(A) =A11 × (A22 × A33 − A23 × A32) + A12 × (A23 × A31 − A21 × A33)

+ A13 × (A21 × A22 − A22 × A31)

Any matrix whose determinant is non-zero is called non-singular, and those
whose determinant is zero are called singular. All non-singular matrices A have
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an inverse A−1, which has the property that A × A−1 = I and A−1 × A = I. For
methods of calculating an inverse of a matrix see Finkbeiner (1978); also see
listing 7.4 in chapter 7 which uses the Adjoint method.

We shall now consider the transformation of points in space. Suppose a point
(x, y) - ‘before’ - is transformed to (x', y') - ‘after’ . We shall completely
understand the transformation if we can find equations that relate the ‘before’ and
‘after’ points. A linear transformation is one that defines the ‘after’ point in terms
of linear combinations of the coordinates of the ‘before’ point (that is, the
equations contain only multiples of x, y and additional real values); the
transformation includes neither non-unit powers, nor multiples of x and y, nor
other variables. Such equations may be written as

x' = A11 × x + A12 × y + A13

y' = A21 × x + A22 × y + A23

The A values are called the codficients of the equation. As we can see, the result
of the transformation is a combination of multiples of x-values, y-values and
unity. We may add another equation:

1 = A31 × x + A32 × y + A33

For this to be true for all values of x and y, we see that A31 = A32 = 0 and A33 = 1.
Although this may seem a pointless exercise, we shall see that it is in fact very
useful. For if we set each point vector (x, y) (also called a row vector for obvious
reasons) in the form of a three-dimensional column vector

x

y

1

then the above three equations can be written in the form of a matrix multiplied
by a column vector:

x' A11 A12 A13 x

y' = A21 A22 A23 × y

1 A31 A32 A33 1

So if we store the transformation as a matrix, we can transform every required
point by considering it to be a column vector and premultiplying this by the
matrix.

Many writers ofbooks on computer graphics do not like the use ofcolumn
vectors. They prefer to extend the row vector, that is (x, y), to (x, y, 1) and post-
multiply the row vector by the matrix so that the above equations in matrix form
become 
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A11 A21 A31

(x', y', 1) = (x, y, 1) × A12 A22 A32

A13 A23 A33

Note that this matrix is the transpose of the matrix of coefficients in the
equations. This causes a great deal of confusion among those who are not
confident in the use of matrices. It is for this reason that we keep to the column
vector notation in this book. As you get more practice in the use of matrices it is
a good idea to rewrite some (or all) of the following transformation procedures in
the other notation. It is not really important which method you finally use as long
as you are consistent. (Note that the transpose B of a matrix A is given by Bij =
Aij where 1 ≤ i, j ≤ 3.)

Combinations of Transformations

A very useful property of this matrix representation of transformations is that if
we wish to combine two transformations, say transformation (= matrix) A
followed by transformation B, then the combined transformation is represented
by their product C = B × A. Note the order of multiplication - the matrix that
represents the first transformation is premultiplied by the second. This is because
the final matrix will be used to premultiply a column vector that represents a
point, and so the first transformation matrix must appear on the right of the
product and the last on the left. (If we had used the row vector method then the
product would appear in the natural order from left to right - this is the price we
pay for identifying the transfonnation matrix with the coefficients ofthe
equation.)

So we need to introduce a procedure ‘mult2’ (see listing 4.1) which forms the
product of two matrices. The BASIC computer language does not allow the
transmission of array parameters into procedures, so we must invent an efficient
means of coping with this limitation. We assume that all matrix multiplication
operates on matrices A and R to give the produht matrix B, and when the product
is obtained B is copied back into R. The reason for the choice of identifiers and
the final copy will become evident as we progress. We also need a procedure
‘ idR2’ (see listing 4.1) which sets R to the identity matrix. Should we need to
form the product ofa sequence of matrices we first set R = I and then for each of
the matrices, from right to left, we name each A and call the procedure ‘mult2’ in
turn. At the end of the process R contains the matrix product of the sequence.

All natural transformations may be reduced to a combination of three basic
forms of linear transformation: translation, scaling and rotation about the
coordinate origin. It should also be noted that all valid applications of these
transformations return non-singular matrices. The procedures that follow 
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Listing 4.1

9100 REM mult2
9110 DEF PROCmult2
9120 LOCAL I%,J%,K%
9130 FOR I%=1 TO 2
9140 FOR J%=1 TO 3
9150 B(I%,J%)=A(I%,1)*R(1,J%)+A(I%,2)*R(2,J%)
9160 NEXT J%
9170 B(I%,3)=B(I%,3)+A(I%,3)
9210 NEXT I%
9220 FOR I%=1 TO 2
9230 FOR J%=1 TO 3
9240 R(I%,J%)=B(I%,J%)
9250 NEXT J%
9260 NEXT I%
9270 ENDPROC

9300 REM idR2
9310 DEF PROCidR2
9320 R(1,1)=1 : R(1,2)=0 : R(1,3)=0
9330 R(2,1)=0 : R(2,2)=1 : R(2,3)=0
9340 ENDPROC

generate a matrix called A for each of the three types of transformation, so that
each transformation procedure can be used in conjunction with ‘mult2’ to
produce combinations of transformations.

Translation

 A ‘before’ point (x, y) is moved by a vector (TX, TY) to (x' , y' ) say. This
produces the equations

x' = 1 × x + 0 × y + TX

y' = 0 × x + 1 × y + TY

so the matrix that describes this transformation is

1 0 TX

0 1 TY

0 0 1

A procedure, ‘ tran2’, for generating such a matrix A given the values TX and TY
is given in listing 4.2. 
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Listing 4.2

9000 REM tran2
9010 DEF PROCtran2(TX,TY)
9020 A(1,3)=TX : A(2,3)=TY
9030 A(1,1)= 1 : A(1,2)= 0
9040 A(2,1)= 0 : A(2,2)= 1
9050 ENDPROC

Scaling

The x-coordinate of a point in space is scaled by a factor SX, and the y-
coordinate by SY, thus

x' = SX × x + 0 × y + 0

y' = 0 × x + SY × y + 0

giving the matrix

SX 0 0

0 SY 0

0 0 1

Usually SX and SY are both positive, but if one or both are negative this creates
a reflection as well as a scaling. In particular, if SX = −1 and SY = 1 then the
point is reflected about the y-axis. A program segment, ‘scale2’, to produce such
a scaling matrix A given SX and SY is given in listing 4.3. 

Listing 4.3

8900 REM scale2
8910 DEF PROCscale2(SX,SY)
8920 LOCAL I%,J%
8930 FOR I%=1 TO 3
8940 FOR J%=1 TO 3
8950 A(I%,J%)=0
8960 NEXT J%
8970 NEXT I%
8980 A(1,1)=SX : A(2,2)=SY : A(3,3)=1
8990 ENDPROC
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Rotation about the Origin

If we rotate a point in an anticlockwise direction (the normal mathematical
orientation) about the origin by an angle θ then the equations are

x' = sin θ × x − sin θ × y + 0

y' = sin θ × x − cos θ × y + 0

and the matrix is

cos θ −sin θ 0

sin θ cos θ 0

0 0 1

The procedure, ‘ rot2’, to produce a rotation matrix, A, for an angle θ is given in
listing 4.4.

Listing 4.4

8600 REM rot2
8610 DEF PROCrot2(THETA)
8620 LOCAL I%,J%
8630 FOR I%=1 TO 3
8640 FOR J%=1 TO 3
8650 A(I%,J%)=0
8660 NEXT
8670 NEXT
8680 A(3,3)=1
8690 CT=COS(THETA) : ST=SIN(THETA)
8700 A(1,1)=CT : A(2,2)=CT
8710 A(1,2)=-ST : A(2,1)=ST
8720 ENDPROC

Inverse Transformations

For every transformation there is an inverse transformation that will restore the
points in space to their original position. If a transfomiation is represented by a
matrix A, then the inverse transformation is represented by the inverse matrix 
A−1. There is no need to calculate this inverse by using listing 7.4, we can find it
directly by using listings 4.2, 4.3 and 4.4, with parameters derived from the
parameters of the original transformation:

(1) A translation by (TX, TY) is inverted by a translation by ( TX, −TY). 
(2) A scaling by SX and SY is inverted by a scaling by 1/SX and 1/SY (naturally
both SX and SY are non-zero, for otherwise the two-dimensional space would
contract into a line or a point).
(3) A rotation by an angle θ is inverted by a rotation by an angle −θ. 
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(4) If the transfonnation matrix is a product of a number of translation, scaling
and rotation matrices A × B × C × . . . × L × M × N (say), then the inverse
transfomtation matrix is

N−1 × M−1 × L−1 × . . . C−1 × B−1 × A−1

Note the order of multiplication!

The Placing of an Object

We are often required to draw a given object at various points on the screen, and
arbitrary orientations. It would be very inefficient to calculate by hand the
coordinates of vertices for each position of the object and input them to the
program. Instead we first define an arbitrary but fixed coordinate system for two-
dimensional space, which we shall call the ABSOLUTE system. Then we give
the coordinates of the vertices of the object in some simple way, usually about
the origin, which we call the SETUP position. Lines and areas within the object
are defined in terms of the vertices. We can then use matrices to move the
vertices of the object from the SETUP to the ACTUAL position in the
ABSOLUTE system. The lines and areas maintain their relationship with the
now transformed vertices. The matrix that relates the SETUP to the ACTUAL
position will be called P throughout this book (we sometimes give it a letter
subscript to identify it uniquely from other such matrices). Because of the
restriction of not passing arrays as paraineters into subprograms, we shall not
normally explicitly generate array P, instead it will be implicitly used to update
the array R.

Looking at the Object

Thus objects in a scene can be moved relative to the ABSOLUTE coordinate
axes. When observing such a scene, the eye is assumed to be looking directly at
at (DX, DY) of the ABSOLUTE system and the head tilted through an angle a
(ALPHA). It would be convenient to assume that it is looking at the origin and
there is no tilt of the head (we call this the OBSERVED position). Therefore we
generate another matrix that will transform space so that the eye is moved from
its ACTUAL position to this OBSERVED position. The ACTUAL to
OBSERVED matrix is named Q throughout this book, and is achieved by first
translating all points in space by a vector (−DX, −DY), matrix A, and then
rotating them by an angle −α, matrix B (note the minus signs!). Thus Q = B × A,
which is generated in procedure ‘ look2’, given as listing 4.5. Normally we do not
calculate Q explicitly since, as usual, it is used to update R; however, if it is
necessary to use the values of the matrix repeatedly then obviously it is sensible
to store Q. 
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Listing 4.5

8200 REM look2
8210 DEF PROClook2
8220 CLS : INPUT"(DX,DY) ",DX,DY
8230 INPUT"ALPHA ",ALPHA
8240 PROCtran2(-DX,-DY) : PROCmult2
8250 PROCrot2(-ALPHA) : PROCmult2
8260 ENDPROC

Drawing an Object

Combining the SETUP to ACTUAL matrix P, with the ACTUAL to OBSERVED
matrix Q, we get the SETUP to OBSERVED matrix R = Q × P (we shall always
use R to denote this matrix _ and remember R is always the result of our ‘mult2’
procedure). transforming all the SETUP vertices by R, with the corresponding
movement ofline and area information, means that the coordinates of the object
are given relative to the observer who is looking at the origin of the ABSOLUTE
coordinate system with head upright, and who is in fact really looking at a
graphics screen. So we identify the ABSOLUTE coordinate system with the
system of the screen to find the position of the vertices on the screen, and then
draw the vertices, lines and areas that compose the object. In practice this is
achieved by a construction procedure which uses matrix R. It will set up the
vertex, line and area information, transform the vertices by using R, and perhaps
finally draw the object; see exatnple 4.1 below. Later we shall see that there are
certain situations where it is more elcient to store the vertex, line and area
information. For exanple, the vertex coordinates can be stored in arrays X and Y,
line information in a two-dimensional array LIN or area information in a two-
dimensional array FACET. Vertices may be stored in their SETUP, ACTUAL or
OBSERVED position - it really depends on the context of the program. This
SETUP to ACTUAL to OBSERVED method will enable us to draw a dynamic
series of scenes - objects can move relative to the ABSOLUTE axes, and to
themselves, while simultaneously the observer can move independently around
the scene. To start with, however, we shall consider the simplest case of a fixed
scene.

Complicated Pictures - the ‘Building Block’ Method

We can draw pictures that contain a number of similar objects. There is no need
to produce a new procedure for each occurrence of the object, all we do each
time is to calculate a new SETUP to OBSERVED matrix and enter this into the
same procedure. Naturally we shall require one procedure for each new type of
object in the picture. The final picture is achieved by the execution of a
procedure that is named ‘scene2’ which will be called from the standard main
program (listing 4.6). This main program defines the MODE of the picture,
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centres the graphics area after having input HORIZ and VERT, and then calls
‘scene2’.

Listing 4.6

100 REM MAIN PROGRAM
110 MODE 1
120 INPUT"HORIZ,VERT",HORIZ,VERT
130 PROCstart(3,0)
140 PROCsetorigin(HORIZ/2,VERT/2)
150 PROCscene2 
160 STOP

‘ scene2’ declares all the necessary arrays and then, if required, calls ‘ look2’ to
generate Q; if more than one object is to be drawn then we store Q. For each
individual object (or block) we calculate a matrix P and call the required
construction procedure using R = Q × P. All the blocks finally build into the
finished picture. To distinguish between different occurrences of these matrices
in what follows, we sometimes add a subscript to the names P and R.

This modular approach for solving the problem of defining and drawing a
picture may not be the most efficient, but from our experience it does greatly
clarify the situation for beginners, enabling them to ask the right questions about
constructing a required scene. Also when dealing with animation we shall see
that this approach minimises problems in scenes where not only are the objects
moving relative to one another, but also the obsever himself is moving. Naturally
if the head is upright then matrix Q can be replaced by a call to ‘setorigin’ which
changes the screen coordinate system. Or if the eye is looking at the origin, head
upright, then Q is the identity matrix I, so it plays no part in transforming the
picture and the ‘ look2’ procedure may be ignored. We shall make no such
assumptions and work with the most general situation: it is a useful exercise
throughout this book for the reader to cannibalise our programs in order to make
them more elcient for specific cases. It is our aim to explain the concepts in the
most general and straightforward terms, even if it is at the expense of efficiency
and speed. The reader can return to these programs when he is ready and fully
understands the ideas of transfonning space. Later we shall give some hints on
how to mitke these changes, but at the moment this would only confuse the issue.

However, the most important reason for this modular approach will be seen
when we come to drawing pictures of three-dimensional objects. We shall define
these three-dimensional constructions as an extension of the ideas above and full
understanding of two-dimensional transformations is essential before we can go
on to higher dimensions.

Example 4.1
Consider a simple flag SETUP that consists of three coloured areas and two lines
that are defined by vertices (labelled 1 to 12) taken from the set (5, 5), (−5, 5), 
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(−5, −5), (5, −5), (4, 5), (−4, 5), (−5, 4), (−5, −4), (−4, −5), (4, −5), (5, −4) and (5,
4). The three areas (or facets) are given by vertices 1, 2, 3, 4 (facet 1), 1, 5, 8, 3,
9, 12 (facet 2) and 2, 7, 10, 4, 11, 6 (facet 3). The two lines are given by vertices
1, 3 (line 1) and 2, 4 (line 2). This information is stored in a DATA statement and
recalled when required. See figure 4.1 , which shows a flag that was drawn on a
screen 16 units by 12 units; the SETUP to ACTUAL matrix is the identity and the
ACTUAL to OBSERVED matrix is such that the observer is looking at the origin
with head upright. Listing 4.7 gives the necessary procedure ‘scene2’ which
moves the object into position and takes a general view, and listing 4.8 is the
required construction procedure ‘flag’. Note that ‘flag’, which uses matrix R to
transform the vertices (and hence the object) into their OBSERVED position,
does not store the vertex values for this position in a permanent data-base.
Instead the values are kept in arrays X and Y for the duration of the procedure
and if the procedure is re-entered to draw another flag then these array locations
are used again. 

Figure 4.1

Listing 4.7

 6000REM"scene 2 / flag not stored, single view
 6010DEF PROCscene2
 6020DIM X(12),Y(12),A(3,3),B(3,3),R(3,3)
 6030PROCidR2 : PROClook2
 6040PROCflag
 6050ENDPROC
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Figure 4.2

Listing 4.8

 6500 REM flag / data not stored
 6510 DEF PROCflag
 6520 LOCAL I%,XX,YY
 6530 RESTORE 6540
 6540 DATA 5,5, -5,5, -5,-5, 5,-5, 4,5, -4,5, -5,4, -5,-4, -4,-5, 
           4,-5, 5,-4, 5,4
 6550 FOR I%=1 TO 12 : READ XX,YY
 6560 X(I%)=R(1,1)*XX+R(1,2)*YY+R(1,3)
 6569 REM"READ facet information
 6570 Y(I%)=R(2,1)*XX+R(2,2)*YY+R(2,3)
 6580 NEXT I%
 6589 REM draw red base of flag
 6590 GCOL0,1
 6599 REM READ line information
 6600 MOVE FNX(X(2)),FNY(Y(2)) : MOVE FNX(X(1)),FNY(Y(1))
 6610 PLOT85,FNX(X(3)),FNY(Y(3)) : PLOT85,FNX(X(4)),FNY(Y(4))
 6619 REM draw two yellow diagonal stripes
 6620 GCOL0,2
 6629 REM READ vertex information and move it into position
 6630 MOVE FNX(X(1)),FNY(Y(1)) : MOVE FNX(X(5)),FNY(Y(5))
 6640 PLOT85,FNX(X(12)),FNY(Y(12)) : PLOT 85,FNX(X(8)),FNY(Y(8))
 6650 PLOT85,FNX(X(9)),FNY(Y(9)) : PLOT85,FNX(X(3)),FNY(Y(3))
 6660 MOVE FNX(X(2)),FNY(Y(2)) : MOVE FNX(X(6)),FNY(Y(6))
 6670 PLOT85,FNX(X(7)),FNY(Y(7)) : PLOT85,FNX(X(11)),FNY(Y(11))
 6680 PLOT85,FNX(X(10)),FNY(Y(10)) : PLOT85,FNX(X(4)),FNY(Y(4))
 6689 REM draw two red diagonal lines
 6690 GCOL0,1
 6700 MOVE FNX(X(1)),FNY(Y(1)) : DRAW FNX(X(3)),FNY(Y(3))
 6710 MOVE FNX(X(2)),FNY(Y(2)) : DRAW FNX(X(4)),FNY(Y(4))
 6720 ENDPROC
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Example 4.2
Suppose we wish to draw figure 4.2, which includes four flags labelled (a), (b),
(c) and (d) on a screen that is 240 units by 180 units. For simplicity in this picture
we shall assume that Q is the identity matrix, so the head is upright and the eye
looks at the SETUP origin. Flag (a) is placed identically at its SETUP position
(that is, Ra = 1) whereas flag (b) is moved from its SETUP to ACTUAL position
by the following transformations:

(1) Scale the figure with SX = 4 and SY = 2, so producing matrix A.
(2) Rotate the figure tltrough π/6 radians, so giving matrix B.
(3) Translate the figure by TX = 30 and TY = 15, so producing matrix C.

4 0 0 √3/2 −1/2 0 1 0 30

A = 0 2 0 B = 1/2 √3/2 0 C = 0 1 15

0 0 1 0 0 1 0 0 1

The complete transformation is given by Rb = Q × Pb = I × Pb = Pb = C × B × A
(note the order of matrix multiplication, and that the subscript distinguishes the
placing of flag (b) from the others).

If instead we used the order A × B × C (giving matrix Pd), then
2√3 −1 30 2√3 −2 60√3 − 30

Pb = 2 √3 15 Pd = 1 √3 15√3 + 30

0 0 1 0 0 1

which are obviously two different transformations. Matrix Rd = Q × Pd = I × Pd
produces flag (d). Note how this flag is not symmetrical about two mutually
perpendicular axes as are the other three flags; be very careful with the use of the
scaling transformation - remember scaling is defined about the origin and this
will cause distortions in the shape of an object that is moved away from the
origin!

To illustrate this example further we shall show how to calculate the
ACTUAL position of the four corners of flag (b) on the screen by setting the
coordinates in the form of a column vector and premultiplying it by matrix Rb = I
× Pb. For example

2√3 −1 30 5 10√3 + 25

2 √3 15 × 5 = 5√3 + 25 etc

0 0 1 1 1

When returned to normal vector form we see that the four vertices (5, 5), (−5, 5),
(−5, −5) and (5, −5) have been transformed to (10√3 + 25, 5√3 + 25), ( −10√3 +
35, −5√3 + 5), and (10√3 + 35, −5√3 + 25) respectively. 
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Flag (c) is flag (b) reflected in the line 3y = −4x − 9. This line cuts the y-axis
at (0, −3) and makes an angle α = cos−1(−3/5) = sin−1(4/5) = tan−1(−3/4) with the
positive x-axis. If we move space by a vector (0, 3), matrix D say, this line will
go through the origin. Furthermore, if we rotate space by −α, matrix E say, the
line is now identical with the x-axis. Matrix F can reflect the flag in the x-xis, E−1

puts the line back at an angle α with the x-axis, and finally D−1 returns the line to
its original position. Matrix G = D−1 × E−1 × F × E × D will therefore reflect all
the ACTUAL vertices of flag (b) about the line 3y = −4x − 9 and Rc = 1 × Pc = G
× Pb can therefore be used to draw flag (c). That is we use matrix Pb to move the
flag to position (b) and then G to place it in position (c):

1 0 0 −3/5 4/5 0 1 0 0

D = 0 1 3 E = −4/5 −3/5 0 F = 0 1 0

0 0 1 0 0 1 0 0 1
and

−48 − 14√3 7 − 24√3 −642
1

Pc = — 14 − 48√3 24 + 7√3 −669
25

0 0 25

Figure 4.2 is drawn by using the new ‘scene2’ procedure of listing 4.9 : note
tliat this ‘scene2’ does not call ‘ look2’, since it is assumed that the eye is looking
the origin with the head erect. The main program and the ‘ flag’ procedure, as
well as all the other graphics package procedures, stay unchanged.

Listing 4.9

6000 REM scene 2 / 4 flags not stored fixed view
6010 DEF PROCscene2
6020 DIM X(12),Y(12),A(3,3),B(3,3),R(3,3)
6029 REM flag a)
6030 PROCidR2 : PROCflag
6039 REM flag b)
6040 PROCscale2(4,2) : PROCmult2
6050 PROCrot2(PI/6) : PROCmult2
6060 PROCtran2(30,15) : PROCmult2
6070 PROCflag
6080 PROCtran2(0,3) : PROCmult2
6089 REM flag c)
6090 THETA=FNangle(-3,4)
6100 PROCrot2(-THETA) : PROCmult2
6110 PROCscale2(1,-1) : PROCmult2
6120 PROCrot2(THETA) : PROCmult2
6130 PROCtran2(0,-3) : PROCmult2
6140 PROCflag
6149 REM flag d)
6150 PROCidR2
6160 PROCtran2(30,15) : PROCmult2
6170 PROCrot2(PI/6) :PROCmult2
6180 PROCscale2(4,2) : PROCmult2
6190 PROCflag
6200 ENDPROC
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Exercise 4.1
In order to convince yourself that this program may be used to deal with the
general situation, you should run this program using non-zero values of DX, DY
or a so that the ACTUAL to OBSERVED matrix Q is not the identity matrix.
Your ‘scene2’ procedure should call ‘ look2’ to calculate Q, which must be stored.
Then for each object in the scene, in turn, calculate the SETUP to ACTUAL
matrix P (which ‘mult2’ places in R), premutliply it by Q (which has to be copied
into matrix A for use with ‘mult2’) and finally enter the construction procedure
with the product matrix R = Q × P.

Exercise 4.2
Use the above procedures to draw diagrams that are similar to figure 4.2, but
where the number, position and direction of the flags are read in from the
keyboard. You can produce procedures to draw more complicated objects, we
have chosen a very simple example so that the algorithms would not be obscured
by the complexity of objects. The above method can deal with as many vertices,
lines and coloured areas as the Model B can handle within time and storage
limitations.

Exercise 4.3
By using loops in the program we can draw ordered sequences of the objects; for
example, they may all have the same orientation but their points of reference (the
origin in the SETUP position) may be equally spaced along any line p + µq. We
can set up a loop with index parameter µ and draw one flag for each pass through
the loop. For each value of µ we can alter the parameters of translation in a
regular way within the loop (using µ, p and q). The new values of these
parameters are used to calculate a different SETUP to ACTUAL matrix for each
occurrence, and this moves the object into a new ACTUAL position. R = Q × P =
I × P is used to observe and draw each object on the screen. With these ideas,
construct a line of flags on the screen.

Efficient Use of Matrices

It is obvious that whatever combination of transfomations we use, the third row
of every matrix will always be (0 0 1), If we work with only the top two rows of
the matrix this will make our procedures much more efficient. We still keep 3 × 3
rather than 2 × 3 matrices (which is really all we need), because we may have
previously written other procedures that assume 3 × 3 matrices. ReDIMensioning
the arrays could lead to array bound errors in the earlier procedures - the cost of a
few extra real numbers per matrix is a small price to pay to avoid errors. It is also
more efficient to use explicit statements rather than loops. Listings 4.1, 4.2, 4.3
and 4.4 are rewritten as listings 4.1a, 4.2a, 4.3a and 4.4a, respectively, to make
use of these facts. 
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Listing 4.1a

9100 REM mult2
9110 DEF PROCmult2
9120 LOCAL I%,J%,K%
9130 FOR I%=1 TO 2
9140 FOR J%=1 TO 3
9150 B(I%,J%)=A(I%,1)*R(1,J%)+A(I%,2)*R(2,J%)
9160 NEXT J%
9170 B(I%,3)=B(I%,3)+A(I%,3)
9210 NEXT I%
9220 FOR I%=1 TO 2
9230 FOR J%=1 TO 3
9240 R(I%,J%)=B(I%,J%)
9250 NEXT J%
9260 NEXT I%
9270 ENDPROC

9300 REM idR2
9310 DEF PROCidR2
9320 R(1,1)=1 : R(1,2)=0 : R(1,3)=0
9330 R(2,1)=0 : R(2,2)=1 : R(2,3)=0
9340 ENDPROC

Listing 4.2a

9000 REM tran2
9010 DEF PROCtran2(TX,TY)
9020 A(1,3)=TX : A(2,3)=TY
9030 A(1,1)= 1 : A(1,2)= 0
9040 A(2,1)= 0 : A(2,2)= 1
9050 ENDPROC

Listing 4.3a

8900 REM scale2
8910 DEF PROCscale2(SX,SY)
8920 A(1,1)=SX : A(2,2)=SY
8930 A(1,2)= 0 : A(1,3)= 0
8940 A(2,1)= 0 : A(2,3)= 0
8950 ENDPROC

Listing 4.4a

8600 REM rot2
8610 DEF PROCrot2(THETA)
8620 CT=COS(THETA) : ST=SIN(THETA)
8630 A(1,1)= CT : A(2,2)=CT
8640 A(1,2)=-ST : A(2,1)=ST
8650 A(1,3)=  0 : A(2,3)= 0
8660 ENDPROC
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The construction offigure 4.2 may seem rather contrived since the position of
the objects was chosen in an arbitrary way. However, in most diagrams the
positioning of objects will be well defined, the values being implicit in the
diagram required. Example 4.3 illustrates this.

Example 4.3
Write a program to draw an ellipse that has major axis A and minor axis B, an
that is centred at the point (CX, CY). The major axis makes an angle θ (THETA)
with the positive x-direction. Note that the order of transformations is important:
first rotate and then translate. If we wish to draw ellipses with major axis
horizontal then we need not use matrices, we can stay with the procedure set in
exercise 2.5 and use ideas that are similar to those in listing 2.9. Dsting 4.10
gives a ‘scene2’ procedure that reads in data about the ellipse calculates the
SETUP to OBSERVED matrix and then calls the construction procedure ‘ellipse’
to draw the ellipse.

Listing 4.10

6000 REM scene2 / ellipse not stored : fixed view
6010 DEF PROCscene2
6020 DIM A(3,3),B(3,3),R(3,3)
6029 REM major axis A, minor axis B centre (CX,CY),
         angle THETA
6030 INPUT"A,B,CX,CY,THETA",A,B,CX,CY,THETA
6040 PROCidR2 : PROCrot2(THETA) : PROCmult2
6050 PROCtran2(CX,CY) : PROCmult2
6060 PROCellipse(A,B)
6070 ENDPROC
6500 REM"ellipse / points not stored
6510 DEF PROCellipse(A,B)
6520 LOCAL I%,ALPHA,ADIF,XX,YY,XPT,YPT
6529 REM find points (XX,YY) on the ellipse with
         major axis A, minor axis B and placed in
         position using matrix R
6530 XPT=R(1,1)*A+R(1,3) : YPT=R(2,1)*A+R(2,3)
6540 PROCmoveto(XPT,YPT)
6550 ALPHA=0 : ADIF=PI/50
6560 FOR I%=1 TO 100
6570 ALPHA=ALPHA+ADIF
6580 XX=A*COS(ALPHA) : YY=B*SIN(ALPHA)
6590 XPT=R(1,1)*XX+R(1,2)*YY+R(1,3)
6600 YPT=R(2,1)*XX+R(2,2)*YY+R(2,3)
6610 PROClineto(XPT,YPT)
6620 NEXT I%
6630 ENDPROC

Exercise 4.4
Write a procedure fur drawing an individual matrix-transformable object (in this
case the astroid shown in figure 4.3a) and then use the matrix techniques to draw
combinations of these objects (as in figure 4.3b). An astroid is a closed curve
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with the parametric form (R × cos3θ, R × sin3θ) where 0 ≤ θ ≤ 2π and R is the
radius (the maximum distance from the centre of the object). The parameters
needed by this procedure are the radius of the astroid and the transforming
matrix. Figure 4.3b is the combination of a large number of two diffirent forms of
the astroid. One has radius 1 and is not rotated, the other has radius √2 and is
rotated through π/4 radians

(a) (b)
Figure 4.3

Exercise 4.5
Experiment with these matrix techniques. Write a procedure to generate the
matrix that is needed to rotate points in space by an angle θ about an arbitrary
point (X, Y) in space (not necessarily the origin). Also produce another procedure
to generate the matrix that will reflect points about the general line ay = bx + c
(use the ideas given in example 4.2 for the production of flag (c)).

Storing information about Scenes

It mentioned earlier that certain situations arise when we need to store all the
information about a scene in a large data-base rather than lose the information on
leaving the construction procedure. Our data-base will consist of vertices, lines
and facets, together with information on colour which can be explicitly or
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implicitly stored. Vertices are stored as arrays X and Y, of size greater than or
equal to NOV, the final number of vertices to be stored (these vertices can be
stored in the SETUP, ACTUAL or OBSERVED position: it depends on the
context of the problem).

Line information is stored in a two-dimensional array LIN whose first index is
1 or 2, and whose second index is a number between 1 and a value greater than
or equal to NOL, the final number of lines in the scene. The Ith line joins the two
vertices with indices LIN(1, I) to LIN(2, I); hence this information is independent
of position, it simply says which two vertices are joined by the Ith line. We shall
assume that the colours of lines will be implicitly defined in the program listings.

Information about polygonal areas or facets (≤ NOF in number) may be stored
in a two-dimensional array FACET and two one-dimensional arrays SIZE and
COL. SIZE(J) holds the number of edges in facet J, COL(J) explicitly defines its
colour, and FACET(J, K), where I ≤ J ≤ NOF and I ≤ Κ ≤ SIZE(J), holds the
indices of the vertices that make up the facet. NOV, NOL and NOF values are
initialised in the ‘scene2’ procedure and incremented in the construction
procedures. Note that if we wish to explicitly colour the lines then another array
must be added.

We now no longer require construction procedures to draw lines and facets,
we use them only to create the data-base of lines, vertices, facets etc.
(transformed by the matrix R). After ‘scene2’ has constructed the final scene in
memory it calls another procedure ‘drawit’ to draw the final picture. The ‘scene2’
procedure will be very similar to those mentioned earlier; for example the
procedure for drawing figure 4.2 in this new way will be that given in listing 4.9
with three minor changes listed below:

6020 DIM X(48), Y(48), LIN(2, 8) FACET(6, 12), S1ZE(12), COL(12),
A(3, 3), B(3, 3), R(3, 3)

6030 NOV = 0 : NOL = 0 : NOF = 0 : PROCidR2 : PROCflag

6200 PROCdrawit : ENDPROC

This is used in conjunction with listing 4.11 which gives the ‘flag’
construction procedure (which now merely sets up the data) and the ‘drawit’
procedure.

Suppose we wish to produce different views of the same scene (again we shall
use figure 4.2 as an example), that is, with the same SETUP to ACTUAL
matrices P, but different ACTUAL to OBSERVED matrices Q. The obvious
solution is to create a data-base for the scene with the vertices in the ACTUAL
position (we can use the ‘flag’ procedure of listing 4.11). Now for each new
OBSERVED position we calculate Q and enter it into another ‘drawit’ procedure
(see listing 4.12 - which is different from listing 4.11) which transfers each
vertex from its ACTUAL to its OBSERVED position using Q, stores them in
arrays XD and YD so as not to corrupt the X, Y data-base, and recalls them when 
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Listing 4.11

6500 REM flag / placed in position by matrix R and stored
6510 DEF PROCflag
6520 LOCAL I%,J%,XX,YY,L1,L2,FVAL
6530 RESTORE 6540
6540 DATA 4,1,1,2,3,4,  6,2,1,5,8,3,9,12,  6,2,2,7,10,4,11,6
6550 DATA 1,3, 2,4
6560 DATA 5,5, -5,5, -5,-5, 5,-5, 4,5, -4,5, -5,4, -5,-4, -4,-5, 
          4,-5, 5,-4, 5,4
6569 REM READ facet information
6570 FOR I%=1 TO 3 : NOF=NOF+1 : READ SIZE(NOF),COL(NOF)
6580 FOR J%=1 TO SIZE(NOF) : READ FVAL : FACET(J%,NOF)=FVAL+NOV
6590 NEXT J% : NEXT I%
6599 REM READ line information
6600 FOR I%=1 TO 2 : NOL=NOL+1 : READ L1,L2
6610 LIN(1,NOL)=L1+NOV : LIN(2,NOL)=L2+NOV
6620 NEXT I%
6629 REM READ vertex information and move it into position
6630 FOR I%=1 TO 12 : READ XX,YY : NOV=NOV+1
6640 X(NOV)=R(1,1)*XX+R(1,2)*YY+R(1,3)
6650 Y(NOV)=R(2,1)*XX+R(2,2)*YY+R(2,3)
6660 NEXT I%
6670 ENDPROC

7000 REM drawit
7010 DEF PROCdrawit
7020 LOCAL I%,J%,K% : CLG
7029 REM"draw the NOF facets : explicit colours in array COL
7030 FOR I%=1 TO NOF
7040 GCOL 0,COL(I%)
7050 K%=FACET(2,I%) : MOVE FNX(X(K%)),FNY(Y(K%))
7060 FOR J%=3 TO SIZE(I%)
7069 REM"draw facets
7070 K%=FACET(1,I%) : MOVE FNX(X(K%)),FNY(Y(K%))
7080 K%=FACET(J%,I%) : PLOT 85,FNX(X(K%)),FNY(Y(K%))
7090 NEXT J% : NEXT I%
7099 REM"draw the NOL lines implicit colour 1 (red)
7100 GCOL0,1
7110 FOR I%=1 TO NOL
7120 K%=LIN(1,I%) : PROCmoveto(X(K%),Y(K%))
7130 K%=LIN(2,I%) : PROClineto(X(K%),Y(K%))
7140 NEXT I%
7150 ENDPROC

they are required for drawing. When using this method to construct different
views of figure 4.2 only the ‘scene2’ and ‘drawit’ procedures differ from their
earlier manifestations, and then only slightly. We give them in listing 4.12.

Exercise 4.6
Construct a ‘drawit’ procedure for a flag which uses the ‘triangle’ procedure.

Exercise 4.7
Construct a dynamic scene. With each new view the flags will move relative to
one another in some well-defined manner. The observer should also move in 
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Listing 4.12

6000 REM scene2 / 4 flags stored variable view
6010 DEF PROCscene2
6020 DIM X(48),Y(48),XD(48),YD(48),LIN(2,8),FACET(6,12),
         SIZE(12),COL(12),A(3,3),B(3,3),R(3,3)
6028 REM create a data base of flags in ACTUAL position
6029 REM flag a)
6030 NOV=0 : NOL=0 : NOF=0 : PROCidR2 : PROCflag
6039 REM"flag b)
6040 PROCscale2(4,2) : PROCmult2
6050 PROCrot2(PI/6) : PROCmult2
6060 PROCtran2(30,15) : PROCmult2
6070 PROCflag
6079 REM flag c)
6080 PROCtran2(0,3) : PROCmult2
6090 THETA=FNangle(-3,4)
6100 PROCrot2(-THETA) : PROCmult2
6110 PROCscale2(1,-1) : PROCmult2
6120 PROCrot2(THETA) : PROCmult2
6130 PROCtran2(0,-3) : PROCmult2
6140 PROCflag
6149 REM flag d)
6150 PROCidR2
6160 PROCtran2(30,15) : PROCmult2
6170 PROCrot2(PI/6) : PROCmult2
6180 PROCscale2(4,2) : PROCmult2
6190 PROCflag
6199 REM loop through different views
6200 PROCidR2 : PROClook2
6210 PROCdrawit
6220 GOTO 6200
6230 ENDPROC

7000 REM drawit
7010 DEF PROCdrawit
7020 LOCAL I%,J%,K% : CLG
7029 REM move vertices to OBSERVED position using matrix R
7030 FORI%=1 TO NOV
7040 XD(I%)=R(1,1)*X(I%)+R(1,2)*Y(I%)+R(1,3)
7050 YD(I%)=R(2,1)*X(I%)+R(2,2)*Y(I%)+R(2,3)
7060 NEXT I%
7069 REM draw facets
7070 FOR I%=1 TO NOF
7080 GCOL 0,COL(I%)
7090 K%=FACET(2,I%) : MOVE FNX(XD(K%)),FNY(YD(K%))
7100 FOR J%=3 TO SIZE(I%)
7110 K%=FACET(1,I%) : MOVE FNX(XD(K%)),FNY(YD(K%))
7120 K%=FACET(J%,I%) : PLOT 85,FNX(XD(K%)),FNY(YD(K%))
7130 NEXT J% : NEXT I%
7140 GCOL0,1
7149 REM draw lines
7150 FOR I%=1 TO NOL
7160 K%=LIN(1,I%) : PROCmoveto(XD(K%),YD(K%))
7170 K%=LIN(2,I%) : PROClineto(XD(K%),YD(K%))
7180 NEXT I%
7190 ENDPROC
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some simple way, for example the eye could start looking at the origin, twenty
views later it could be looking at the point (100, 100), and with each view the
head could tilt a further 0.1 radian. You no longer need to INPUT the values cf
(DX, DY) and ALPHA into ‘look2’, instead they should be calculated by the
program.

Exercise 4.8
Construct a scene that is a diagrammatic view of a room in your house - with
schematic two-dimensional drawings of tables, chairs etc. placed in the room.
Each different type of object has its own construction procedure, and the ‘scene2’
procedure should read in data to place these objects around the room. Once the
scene is set produce a variety of views, looking from various points and
orientations. Use the menu technique of chapters 5 and 6 to input information .

Or you can set up a line-drawing picture of a map, and again view it from
various orientations. The number of possible choices of scene is enormous!

We can choose small values for HORIZ and VERT, which has the effect of the
observer zooming up close to parts of a scene, and all external lines will be
conveniently clipped off.

Complete Programs

We group the listings 3.3 (‘angle’), 4.1a (‘mult2’ arid ‘idR2’), 4.2a (‘tran2’), 4.3a
(‘scale2’), 4.4a (‘rot2’), 4.5 (‘look2’) and 4.6 (‘main program’) under the heading
‘lib2’.

I ‘lib1’, ‘lib2’, listings 4.7 (‘scene2’) and 4.8 (‘flag’). Data required: mode,
HORIZ, VERT, DX, DY and ALPHA. Try 1, 24, 18, 1, 1, 0.5. Keep any
five of these values fixed and systematically make small changes in the
other data value. 

II ‘lib1’, ‘lib2’, listings 4.9 (‘scene2’) and 4.8 (‘flag’). Data required: mode,
HORIZ, VERT. Try 1 , 240, 180; 1, 160, 120; 1, 80, 60. 

III ‘lib1’, ‘lib2’ and listings 4.10 (‘scene2’ and ‘ellipse’). Data required:
mode, HORIZ, VERT, A, B, CX, CY, THETA. Try 1, 30, 20, 12, 9, 1, 1,
0.5. Again fix all but one of the values and change the remaining value
systematically.

IV ‘lib1’, ‘lib2’, listings 4.9 (‘scene2’ adjusted as described in the text) and
4.11 (‘flag’ and ‘drawit’). Data required: as II above. LOAD with PAGE =
&1100.

V ‘lib1’, ‘lib2’, listings 4.11 (‘flag’ but not ‘drawit’) and 4.12 (‘scene2’ and
‘drawit’). Data required: mode, HORIZ, VERT, DX, DY, ALPHA. Try 1,
240, 180, 5, 5, 1. Systematically change each of the data values in turn.
LOAD with PAGE = &1100.
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