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Preface

This is the second of two books on machine code for the BBC Micro.
Because the first,Discovering BBC Micro Machine Code, assumed only
minimal prior knowledge of the subject, no attempt was made to delve into
the more difficult (but powerful) addressing modes offered by the 6502
assembler. Neither was it considered prudent to devote space to hardware,
even those aspects which directly influence application software such as the
user port, the Tube and the 1 MHz bus.

For continuity reasons, this book, besides repairing some of the omissions
mentioned above, treats many of the relevant subjects again but in more detail
and, as the title suggests, from a more advanced viewpoint. The word
'advanced' should be interpreted in the relative sense - relative, that is, to the
level maintained in the first book.

The elements of binary have been relegated to an appendix to prevent
polluting the main text yet again. Binary, to machine code enthusiasts, is
rather like the repeal of the corn laws to students of history lacking in
glamour but necessary for continuity. Many microcomputer enthusiasts have
come from the ranks of the electronic hobbyist and will have an interest in
computer control of electronic gadgets. However, not all readers would share
their enthusiasm so, like binary, the treatment of TTL logic devices is given
in an appendix also.

The self-test questions may help those who may not be too sure whether
they have understood what they have read . . . a situation quite common when
reading any 'explanation' of microprocessor behaviour patterns.

Numerous machine code routines are included which should help readers
to understand the more difficult parts of the text. Some of the lengthy
programs will be found to have direct practical value, in business, educational
or leisure fields. However, because it is impossible to anticipate bizarre
applications, they have been written in a way which should encourage
individual tailoring.

The sensible way to employ machine code in the BBC machine is to use it
in segments within a BASIC program. It would be pointless, and certainly
masochistic, to write entire programs in machine code. The BASIC in the
BBC machine is good but there are times when the demands of speed and
memory economy justify a temporary leap into machine code and back. The
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programs in this book, which have been well-tested, are primarily designed to
be used in this way. They are indeed, no more than machine code segments.
However, in order for them to RUN and to encourage experimentation, they
have been spliced into an outer BASIC framework, As for the choice of
programs, no apologies are made for the almost total absence of arithmetical
routines. Although it is traditional to include routines for multiplication,
division, etc., it is doubtful whether they are of much interest to
microcomputer users.

An entire chapter, however, is devoted to sort routines because this is one
of the areas where the advantage of machine code over BASIC becomes most
impressive.

With regard to graphics, the reader is presented with two options, one
using the resident service routines and the other using direct screen
addressing. The latter option is recognised as being contrary to establishment
guidance but, if there are some beneficial results to justify the risk, who
cares?

A. P. and D. J. Stephenson



Chapter One
Architecture of the BBC
Machine

Background material

Although not strictly essential, the would-be machine code programmer will
find it helpful to take some interest in the hardware layout of the computer
and the historical events which led up to the present design. Such interest
need not extend to detailed electronics because it is possible to gain a fair
understanding of the overall system without it.

The hardware of any microcomputer can be described as a collection of
integrated circuits (chips) and a few separate (discrete) components such as
resistors, capacitors and transistors stuck on a printed circuit board (the pcb).
Communication with the outside world (peripherals) is via an assortment of
plugs or sockets accessible from the back. Some computers may have more
memory than others, may have more plugs and sockets and perhaps a few
more chips than others but it would be difficult to pinpoint any profound
differences in the hardware design.

von Neumann's influence
A computer, whether it is one of the mainframe giants or a small one
designed for home use, will in all probability be a 'von Neumann machine'
(discussed in Chapter 3). That is to say, it will be designed in accordance with
fundamental principles laid down by the eminent mathematician of that name.
Although it has always been fashionable to credit Charles Babbage with the
'discovery' of the computer, it is questionable whether his contraption of
cogwheels and levers had any real effect on the evolution of the modern
computer. It was left to von Neumann to set out the first 'block schematic',
suggest the main data flow paths and the timing sequences required to build a
practical automatic digital computer. Because of his contribution to computer
science, John von Neumann (1903-1957) is affectionately known in many
quarters as the 'father of the computer' although, like all leaders of a team, he
probably received a disproportionate share of the credit.

It is sad that all great men eventually have their greatness disputed. In
recent years, poor old von Neumann, or rather his principle, has been
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attacked. It is said by some that computing progress has been stifled by
slavish adherence to his original concepts ofsequential data flow. They argue
that in spite of the enormous improvements in computer power which have
taken place over the last four decades, these have been due mainly to
improvements in computingcomponents rather than developments in
computing science. To some extent, this is true. In the case of internal
memory, for instance, there is no fundamental difference between the old
magnetic core memory with its thousands of ferrite rings wire- knitted
together and the modern semiconductor RAM chip. Similar comparisons can
be made between the central processor of the earlier machines and the modern
variety. The valves gave way to discrete transistors which in turn gave way to
boards full of logic chips. Eventually, the central processor, particularly in the
case of the minicomputer and microcomputer, became available as the single-
chip 'microprocessor'. In spite of all this it would be true to say that apart
from enormous reductions in cost and size, most modern computers are not
profoundly different in principle to their World War II ancestors; they are still
van Neumann machines.

The computer generations
Some attempt has been made to classify computers into so-called
'generations'. The early machines which used valves belonged to the First
Generation, those which used discrete transistors became the Second
Generation. When integrated circuits replaced discretes the Third Generation
was born (in the mid-sixties). The first integrated circuits contained between
four to ten simple logic gates per chip which, at the time, was heralded as an
exciting breakthrough in technology. The most famous chip in that era was
the 7400 quad NAND gate, manufactured by Texas Instruments, and one of a
family of chips known as the 'TTL logic series'. It is still going strong at the
time of writing. Before the marvel of TTL had time to be digested, Silicon
Valley in California produced its next bombshell 'Large Scale Integration' or
LSI which earned the name of the Fourth Generation. LSI chips were first
produced as semiconductor read/write memories. They were in fact 'dynamic
RAMs' and were directly responsible for the virtual death of the traditional
core memory.

The micro processor
In 1971, Intel launched the firstmicroprocessor which, quite unexpectedly,
changed the entire nature of computing. It was unexpected in the sense that
the device was never intended to be used in any other way than as acontrol
element in digital-operated machinery. Instead, the 4004 sparked off a full
scale development spree as engineers began to appreciate the enormous
potential of such a device. Silicon Valley became split into fragments, with
new firms each rushing to improve on the success of the 4004. The first
improvement was Intel's 8080, closely followed by Motorola's 6800 and the
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Zilog Z80. The microprocessor used in the BBC machine is the 6502 which,
as we shall see later, may be considered as a modified 6800. Apart from the
original 4004, which was a four-bit microprocessor, the others mentioned
above are eight bits wide or, to use technical language, they have a 'word
length' of eight-bits. This means that all data transfers into or out of the
microprocessor take place in bunches of eight binary bits. In relation to the
more traditional computers, a word length of eight bits is embarrassingly
small and places a heavy responsibility on the designer of the software
operating system. It is complicated process to handle data efficiently,
particularly when the data is in the form of large mumbers greater than 255
decimal. The only way it can be done is to handle numbers by eight-bit
instalments which is time-consuming and therefore reduces computing power.

16-bit microprocessors
Over the last few years, a number of 16-bit microprocessors have appeared on
the market although they have yet to enjoy the low prices resulting from mass
marketing. Owners of the BBC machine will be aware of the Second
Processor options, one of which is boasting the presence of a 16-bit
microprocessor, the 16032. Not only is the 16032 a true 16-bit chip, some of
the internal registers can handle 32 bits at a time. The resulting power of the
BBC machine will then be equivalent to a minicomputer, rather than a
microcomputer. When considering the cost of the 16-bit second processor
(which admittedly is rather high) it should be remembered that the computing
power available will be out of this world at least the microcomputing world.
Those who are considering the purchase of the Second Processor option
would be advised to think carefully before buying the 'cheaper' B-bit versions.
They will be using either another 6502 or a Z80. Of course, there will be a
great improvement, apart from the extra 64 K of memory but the
improvement will not be revolutionary. The I6-bit version will cost more than
twice as much but will elevate the system to an entirely new dimension. From
the viewpoint of the machine code programmer, the advantages will be even
more apparent. It is dangerous to prophesy future market tendencies but it is
quite probable that there will be an astonishing demand for the 16-bit
processor. In fact, it may be a case of history repeating itself. The original
miscalculation was the false estimate of the relative popularities of the Model
A and the Mode! B. In spite of the £100 extra in price, the demand for the
Model B was much higher than for the Model A, and was one of the factors
which contributed to the chaos during the launching year of the BBC system.

Software development
Improvements in software have not kept pace with hardware improvements. It
is unlikely that they ever will. Machines are being built with frightening
power and it is becoming increasingly difficult to produce software of
sufficient complexity to exploit fully the hardware available. The computing
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world is currently obsessed with the new breed of computers being designed,
alleged to have built-in intelligence. These will represent theFifth
Generation. Already we are subjected to a new crop of buzzwords relating to
'artificial intelligence' or AI. Whether or not it is sensible to credit a computer
(even a fifth generation species) with intelligence before even humans have
agreed on a definition of their own intelligence is questionable. In any case,
what is exactly meant by 'artificial'? Perhaps we shall soon have artificial
plastic!

Hardware of the BBC Micro

Although the User Guide and the advertisement brochures fist ail the various
input} output facilities available, it will do no harm to repeat some of it here
with some extra details aimed at the machine code programmer. When
programming in BASIC, or indeed any high level language, it is not
necessary, perhaps not even advisable, to worry much about the mysteries
under the bonnet. In the case of machine code programming you cannot
afford to be totally ignorant of the machine itself. Although the resident
assembler provides some protection from the harsh realities of life beneath
the keyboard it is still very much a game of battling directly with a primitive
machine.

Removing the top cover
Even if you have no experience with electronic equipment you should not
hesitate to remove the top cover of the machine and have a good look at what
lies beneath. It is an easy task if carried out as follows, although it should be
pointed out that technically the guarantee would be invalidated so be very
careful!

(1)  Switch off at the wall and remove the three-pin plug from the socket.
(2)  Wait for half a minute to allow stored charges to decay.
(3)  Locate the two fixing screws at the back of the case (probably marked
FIX) and remove them.
(4)  Locate the two fixing screws underneath the case at the front, beneath the
keyboard (probably marked FIX), and remove them.
(5)  Carefully lift away the top case, exposing the circuit board beneath.

When ready to replace the cover again, take care that you don't bend or
damage the three tiny red fights at the left of the space-bar. They are
supported only by their own connecting wires and it is easy to trap them
beneath the cover.

Locating the components
The dominant sight, when first exposing the interior, is the shiny aluminium
(or perhaps steel) box which occupies a large area at the left. This is the
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'power pack' which converts the dangerously high (230-240 volts) mains
supply into low voltages supplying power to the various components on the
circuit board. The supplies are +5V at 3.75 A, -5V at 0.lA, +12V at l.25A. All
these voltages are with respect to ground (zero volts). Such low voltages are
not dangerous so all areas of the board outside the metal cased power pack
offer no electric shock hazards to the human finger. In spite of this, it is
unwise to poke around too much because your fingers could cause damage to
some of the delicate components on the board. Some of the chips, particularly
the large ones, are very susceptible to static charges which can accumulate on
the fingers although, theoretically, they are immune once they are secured in
the circuit board.

At the top right-hand corner is a small metal box marked with the
manufacturer's trade mark ASTEC. This is the UHF modulator which, if you
are relying on a TV as the screen output device, modulates the logic voltages
from the board onto an ultra high frequency signal, which is interpreted by the
TV as a bona fide aerial signal. The output is via a coaxial cable outlet at the
back marked UHF OUT, If you are using a purpose-built monitor rather than
a TV, there are two alternative outputs. One of these is a 'composite video'
marked VIDEO OUT and is intended to accommodate some makes of black
and white monitors. The interface components include one of the few discrete
transistors used. According to the circuit details on page 504 of the User
Guide it appears impossible to obtain colour output unless a small
modification is made. The remaining screen output is the RGE (Red Green
Blue) interface and is the most efficient method of energising a colour
monitor, providing a direct and uncluttered signal. The Microvitec colour
monitor would use the RGB output

Sending characters to screen output
As far as machine code programming is concerned, irrespective of the
particular output in use, characters can be sent direct to a screen address by
use of an STA instruction or, preferably, by OSWRCH. It is appreciated that
these code words will have little meaning to those who are entirely new to
machine code. ST A in machine code is similar to POKE and OSWRCH is a
resident operating system subroutine, standing for Operating System WRite
CHaracter. Our reason for prematurely introducing these machine code terms
is to emphasise a golden guideline of the BBC machine:

Always use the official operating system subroutines to send or
receive data to peripherals

This means avoiding absolute addressing of peripherals (no poking). Note
carefully that this is a guideline and not a rule. The reason behind it is tied up
with the second processor - should you ever buy one. Any software you write



6 Advanced Machine Code Techniques for the BBC Micro

using absolute and addressing of peripherals may not work when the second
processor is connected. It should be mentioned that direct access to screen
addresses will produce faster responses than using OSWRCH.

The ROM chips
Once the top case has been removed, as previously described, the keyboard
can be lifted off by undoing the two exposed nuts. If the removal is merely to
examine the components beneath, it is not essential to unplug the keyboard. In
fact it is unwise to plug and unplug any microcomputer connections more
frequently than necessary. Beneath the keyboard to the right and near the
bottom are five sockets for ROM chips. Except for the few thousand early
models, only two of these sockets will be inhabited. The socket at the extreme
left houses a I6-pin ROM which is the BASIC language interpreter. Next to
this is the Operating System ROM. You should ensure that this ROM is the
'latest Series I' model because some of the earlier types had a slightly suspect
operating system called 'Version 0.1'. It is easy to find out which operating
system you have by entering *HELP followed by RETURN. The response
should be:

OS 1.20

A response such as OS 0.1 indicates that the old ROM is resident.

Bank-switching
The remaining three sockets are left blank for additional ROMs. There are
many firms which supply special ROMs which can be plugged into the vacant
sockets: for example, Acorn's word processor called 'View' or the other
popular word processor� called 'Wordwise' marketed by Computer Concepts.
There are also several language ROMs available and many application
ROMs. The total direct addressing space available on the 6502
microprocessor is 64K. The operating system takes 16K, the BASIC language
ROM occupies another 16K and the remaining 32 K on the Model B machine
is devoted to RAM. This means there is no direct addressing space left for
any additional ROMs. The method employed to escape from the impasse is a
technique known as bank-switching. This allows the resident BASIC
language ROM to be 'switched out' and replaced by one of the special ROMs.
Thus it is an 'A or B but not both' situation. Bank-switching is software-
controlled which normally defaults to BASIC under power-up conditions.
However, if additional ROMs are in place, the operating system will be aware
of it (or them) and the new default condition on power-up is to the ROM in
the right-most position. For example, if Wordwise is plugged into any one of
the vacant sockets, the default condition on power-up will be Wordwise
instead of BASIC. To switch over to BASIC it will be necessary to enter*
BASIC or the abbreviated form *B.
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The response to the BASIC command *HELP will now be modified as
foliows:

WORDWISE

OS 1.20

The response indicates that Wordwise has priority over BASIC on power-up
because it is displayed first. If the relative priorities are found in practice to be
irksome the situation can easily be changed by swopping over the two ROMs
so that the BASIC ROM is right-most. The unprecedented popularity of the
BBC machine has stimulated professional programmers with the result that
many other high-level languages are available in ROM form including
PASCAL, FORTH and LISP.

PROM programmers
An alternative use for the spare sockets is to enable you to insert your own
EPROMs. They can be bought in blank form; that is to say, they have no
programs 'firmed' in. With the aid of special kits called EPROM
programmers, it is possible to transfer a machine code program from RAM to
the EPROM which can then be plugged into one of the spare sockets. There is
one small snag, however. Make sure that all bugs are removed before you
transfer it to EPROM because you cannot change parts of the program. It is
anal! or nothing process. If there is a bug in the EPROM, it is necessary to
erase the entire contents and start again. The erasure process requires the chip
to be exposed for a certain time in a special box containing an ultra-violet
lamp. A fully erased EPROM contains '1's in every bit position so all the
addressed locations contain FF (hex). A discussion on hex notation appears in
Chapter 3.

The user port

The BBC machine has standard interfaces for printers, disk, cassette etc. and
also caters for individual needs by means of the user port. This is a multipin
socket outlet accessible from the underside of the case. It is completely
undedicated and is therefore free to activate any device you choose -
providing you know how to make the correct connections and are able to
write suitable software.

Although the port behaves as an independent set of outlets, it is actually
one half of a complex input} output chip called a Versatile Interface Adaptor
(VIA for short) bearing the type number 6522. The two halves of the VIA are
referred to as the 'A' and 'B' sides. The B side is dedicated to the parallel
printer interface and the A side is the user port. The port is essentially a ten-
wire interface between the computer and the world outside. Eight of the wires
are used for data and two for controlling the data. Any one of the data wires
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can be programmed to behave as either an input or an output, which
obviously adds to the versatility. It is worth examining some of the
possibilities:

(1)  Assuming a device could be switched ON or OFF by simple logic, we
could independently control eight of them. They would all be programmed
initially as outputs.
(2)  Any one of eight devices could send a logic signal back to the computer.
(3)  They would all require initial programming as inputs.
(4)  Three devices could be controlled by the computer and five could send
signals back.
(5)  By employing simple decoding chips, it would be possible to control any
one of 256 output devices. Conversely, any one of 256 devices could send a
signal to the computer.
(6)  Two devices each requiring four inputs could be driven in parallel.

With regard to the two control wires mentioned above, one is always an input
but the other can be programmed as an input or output. The input control wire
can be used to initiate an interrupt sequence. That is to say, an input signal
can cause the present program to be interrupted and a jump made to an
entirely different program. (Interrupts are discussed in Chapter 2,) The use of
interrupts can be a hazardous exercise because the entire operating system is
already controlled by interrupts. For example, when the computer is switched
on and a flashing cursor is displayed, the machine appears docile and in a
resting state. This is far from true. In fact there is a furious battle going on in
the operating system. Every few milliseconds, the display system rudely
interrupts whatever is going on (most probably waiting for a key to be
pressed) to repaint the screen picture. The screen display only appears
stationary to the eye because every single dot, which makes up the 'picture', is
repainted many times per second. Due to the persistence of normal vision, a
screen picture need only be repainted every few milliseconds so there is
ample time in between for the computer to carry out your orders in a series of
interrupted instalments.

Interrupt requests

If the order involves the use of a peripheral, such as a cassette tape recorder or
a printer, it is probable that the operating system will handle them by yet
another interrupt sequence. The question of relative priorities then arises. For
example, what should happen if the printer sends a signal to interrupt while
the system is already in an interrupt condition, such as repainting the screen?

In real life, the needs of certain people have priority claims over the needs
of others in order to maintain a well-ordered, stable society. A similar
arrangement has been found to work well in computing systems. Certain
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interrupts must be considered to have higher precedence than others and
permission to interrupt must be granted first rather than allowing a
disorganised free-for-all. The 6502 microprocessor is fitted with interrupt
request logic which, in conjunction with appropriate software, can maintain
tranquillity. When an interrupt request signal from a peripheral appears on a
control input line, it is passed, via the VIA, to the microprocessor. A certain
bit in the processor (called the 'interrupt mask bit') is examined. If the mask
bit is a '0', the interrupt is allowed. If, however, the bit is in the '1' state the
request is noted but activation is delayed until such time as the mask bit is
reset to zero. The actual setting or resetting of the mask bit is, of course, the
responsibility of the programmer. We shall see later that the 6502
microprocessor has two instructions for defining the state of the mask bit. To
set the mask to '1', the instruction is SEI (SEt I bit). To reset the mask to '0',
the instruction is CLI (CLear I bit). The mask is referred to as the 'I bit' in
6502 language.

Serial and parallel interfaces

Most computers, including the BBC model, use the ASCII code to represent
characters. Each character requires one byte (a byte is eight binary bits).
There are two ways of sending these characters along wires to, say, a printer
some distance away:

(a)  Parallel transmission, in which eight wires are used to send every
bit of the code simultaneously.
(b)  Serial transmission, in which the eight bits are sent, one behind the
other, along a single wire.

It is worth examining the relative merits of the two systems because the BBC
machine provides provisions for both serial and parallel feeding of
peripherals. Superficially, it would appear that parallel transmission would be
much faster, eight times faster than serial. This is true but in most cases,
particularly where printers are concerned, the difference is seldom of any
interest because the weakest link in the chain is the printer rather than the
transmission delay along the wires. Thus, if we run the same printer by serial
transmission and then change to parallel (assuming the printer allows either
option) we will find no difference in printing speed. The cogs and levers still
take up more than 99% of the printing time. Traditionally, serial transmission
dominated the scene, particularly for feeding the now almost obsolete
Teletype, a two-way device which combined a sending keyboard, a paper tape
reader/punch and a printer. It was Centronics, a company which specialises in
printers, which contributed to the popularity of the parallel transmission. In
fact, their design for allocating the various control functions has been copied
and virtually standardised by what is known as the Centronics interface. The
BBC has a parallel Centronics interface although it is simply labelled above
the socket as the 'Printer'.
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The RS423 interface
The BBC Micro also has provisions for a serial interface via the socket
labelled 'RS423' which now deserves some explanation. As stated above, the
Teletype was the standard peripheral in earlier days and the serial interface
was known as the '20mA current loop' because it demanded a current of 20
milliamps from the computer to drive the printer relays. This was in the days
when computers were massive things and 20 milliamps was a negligible drain
on the relatively enormous power supplies of the time. When logic chips
arrived on the scene, operating on almost negligible current, 20 milliamps just
to drive the printer started to become almost absurd. One of the results was
the formation of a new serial 'standard' called the RS232 interface which
demanded only a small current drive. In fact it would be better to consider it
as a voltage rather than a current driven system. The RS423 interface is
almost identical (in fact compatible) with the RS232 but in many respects it is
superior. There is always an upper limit on the length of wires between the
sending and receiving end of a serial transmission line. The RS423 allows a
longer length than the RS232.

Although the printer has featured in the above discussion on the RS423, it
is a general purposeinterrupt driveninterface, capable of linking any device
which requires a serial interface. For example, it can be used to connect two
BBC machines together so they can mutually converse with each other.
Figure 1.1 shows the interconnections required between the two sockets. In
addition to the wiring shown, small software routine is necessary before the
two machines can talk to each other.

E A

D C B

RS423 RS423

E A
D C B

1st Machine 2nd Machine

Fig. 1.1. Connecting two BBC machines together

The serial nature of RS423 data requires some rather complex logic
operations. One difficulty, inherent in all serial transmissions, is the method
of establishing some form of marker signal to indicate the three distinct parts
of the message - for example, the quiescent state in between characters, the
start of a character and its end. This is handled by the 'start' and 'stop' bits at
either end of the 8-bit character string. For some time now, manufacturers of
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microprocessors have always supplied ready-made solutions to such problems
in the shape of specialised chips. The common name for the class of chip
which handles the serial transmission of data is 'Asynchronous Serial
Interface Adaptor' (ASIA for short). The particular species in the BBC
machine is the 6850. This chip converts the g-bit parallel output from the
computer data bus into serial form. It also generates the start and stop bits,
together with the correct timing circuitry. The 6850 is to serial interfacing as
the 6522 is to parallel; that is to say, the ASIA and the VIA are serial and
parallel interfaces respectively.

Analogue to digital conversion

Digital computers are designed to operate in a restricted, but nevertheless
predictable,two-state environment Voltages are either in the '1' state (about +
5 volts) or in the '0' state (about 0 volts). Conditions in the world outside have
no such restrictions. Physical variables, such as wind, temperature, pressure,
electrical voltages etc., can assume a wide range of values. A voltage which
somehow is made proportional to a particular physical quantity is called a
voltage analogue of that quantity. Thus, if a wind velocity over the range 0 to
100 miles per hour were represented by a voltage between 0 and 10, the
scaling factor would be 10 miles per volt. The particular gadget which
converted the wind speed to voltage would be termed atransducer and, in its
most simple form, could be an electrical generator with the shaft driven by
wind blades. Linearity of the scale would obviously depend on a strictly
proportional relationship between shaft speed and output voltage. However, a
program could easily be written to account for non-linearity in any transducer.

The BBC machine has a special analogue to digital input socket marked
'Analogue In'. It enables any one of four analogue input channels to be
converted to a digital number. Unfortunately, this facility, if some of the
popular computing magazines are to be believed, appears to be used almost
entirely for waggling games paddles. This is a pity because the interface is
suitable for a wide range of applications. Figure 1.2 shows how to wire up a
simple circuit in order to experiment with the converter.

The top diagram, Fig. 1.2(a), shows the connections between a 10K
potentiometer (known in electronic circles as a 'pot') and the 15-pin
Analogue-In socket at the rear of the machine. It enables any voltage between
0 volts and a nominal 1.8 volts to be applied to the analogue-to-digital input
by twiddling the knob on the pot. A word of warning is not out of place here.
The wiring from the pot should never be soldered directly to the pins on the
computer socket. Always use a plug and socket connection. There are many
firms that supply the correct socket already attached to a ribbon cable.
Soldering direct to the machine's Analogue-In socket is crude and
unprofessional. In fact this warning applies to all external connections
because there is always a danger of the leads shorting together by wisps of
solder. The output from the pot is connected to pin 15 which is Channel 0
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although there is no reason why any of the other three possible channels could
not be used.

Analogue in socket(a)

10K Linear pot

(b)

11

15

5

10K pot

1.8 volts

Analogue ground

Y ref

D9

D7

D6

R71
2K5

+ 5 volts

8 7 6 5 4 3 2 1

15 14 13 12 11 10 9

Fig. 1.2. Analogue to digital hook-up.

Figure 1.2(b) is for the benefit of those who feel happier if they know what
they are doing. The circuitry to the left of the dotted line is within the
computer. The 1.8 voltage reference line is obtained internally from a divider
chain across the +5 volt supply to ground. The three silicon diodes are in
series with each other, providing a total forward voltage drop of about 1.8
volts. Silicon diodes have the useful property of dropping about 0.6 volts
when in forward conduction and within reason, irrespective of the current
through them. However, it would be unreasonable toexpectexactly 1.8 volts
output to the pot.
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The wiring can be tested out with a simple few lines in BASIC as
described under the keyword ADVAL on pages 202-204 in the User Guide.
(Machine code versions appear later.)

Using the four channels
The chip performing the analogue conversion to digital is an interrupt-driven
D7002: a standard, but nevertheless sophisticated, component. It converts the
analogue input voltage into a 12-bit binary number so each additional bit
increases the number by an increment of 1/4096. It allows any one of four
input voltage channels to be measured. Figure 1.3 shows how to experiment
with four controlling pots.

11

5

Channel 1 Channel 2 Channel 3 Channel 4

7 12 415

Fig. 1.3. Four-channel control.

The four pots are in parallel across the reference supply (pin 11 and 5) with
sliders connected to the channel input, pins 15, 7, 12 and 4. If 10K pots are
used, the total load of 2.5K is a little on the heavy side. The current limiting
resistance, R71, shown previously in Fig. 1.2, causes the voltage to the
stabilising diodes to be pulled down to a rather low value of 2.5 volts. The
next highest preferred value of pot would be a reasonable compromise. The
four controls can be tested immediately by the following simple BASIC lines:

   10  MODE 7 :Channe1=1
   20  REPEAT
   30  Ana logue=ADVAL(Channe l )
   40  PRINTTTAB(5 ,10+Channe1) "Channe l  nu
mber  " ;Channe l ,Ana logue
   50  K=INKEY(100)
   60  Channe l  =Channe l  +1
   70  IF  Channe l>4  THEN Channe l=1
   80  UNTIL  2=3
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The program will continuously display all four channel readings in the form
of 5-digit decimal numbers, the readings changing as the pots are varied. Line
50 is to slow up the changes to prevent blurring. It is interesting to try out the
above even if you have not wired anything to the Analogue-in socket. The
display will show four numbers, varying in the region of 50000. The reason
for this is the open-circuit condition of the input channels causing an
indeterminate 'floating-to-high' state. As the User Guide explains (page 202),
the internal operating system has allowed for possible replacement of the
D7002 by a higher resolution version, so the digitised range appears as 0 to
65520 instead of 0 to 4095. As a result, the readings go up in increments of 16
rather than 1.

Floppy disk controller

Floppy disks pose a greater interfacing problem to both the hardware and
software engineer than the relatively simple cassette tape backing store. A
special disk controller chip, the 827 I, is responsible for the primary hardware
interface. The repertoire of extra commands required to make full use of the
disk filing system is buried in a special ROM, known as the DOS (Disk
Operating System) or the DFS (Disk Filing System). The necessary power to
drive the disk motor and the disk electronics is supplied from a 40-pin socket
beneath the keyboard.

Memory mapping and page numbers
The peripheral devices so far discussed are standard to the model B, with the
exception of the disk interface components which are optional extras. All
peripherals are memory-mapped, meaning they are all accessed as if they
were normal memory locations rather than responding to special machine
code instructions. Thus, the floppy disk controller chip 'resides' at the five
memory locations &FE80, &FE81, &FE82, &FE83 and &FE84. The '&'
prefix indicates that the numbers are in hexadecimal rather than decimal. The
hexadecimal (hex for short) counting system is widely used in machine code
work, particularly when referring to machine addresses. If hex is unfamiliar to
you, see page 71 of the User Guide or skip to Appendix A of this book. A
complete hexadecimal address consists of four hex digits. The first two digits
are best thought of as the page number and the second two digits as the
position on the page. Referring back to the five addresses occupied by the
floppy disk controller, we could say they are all on page &FE of the memory
map.

Sheila addresses

The machine addresses for all the peripheral interface chips so far discussed
are on page &FE. This particular page has been given the rather charming
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name of Sheila. Thus the Sheila address band is between &FE00 to &FEFF.
The positions on the page are allocated as follows:

6845 CRT controller: &FE00 to & FE01
In BASIC, this is accessed by the VDU 23 command. For example, VDU 23;
R, V: 0; 0; 0 places the value V into register R of the CRT controller.

6845 ASIA: &FE08 to &FE09
This is where the parallel/serial conversion is carried out when accessing the
cassette tape or the RS423.

Serial ULA: &FE10
ULA stands for 'Uncommitted Logic Array' which would imply it can be used
for anything! It is one of the new breed of 'miracle' chips, containing the
groundwork necessary to build a logic system of any desired form. In the
initial stages of manufacture, it is rightly named an uncommitted logic array.
However, before it leaves the factory the customer supplies further
information which turns the previously uncommitted array into a
conglomerate of committed functions. Thus, although the name ULA sticks,
those in the BBC machine are certainly committed arrays. This particular
ULA helps in the organisation of serial peripheral devices.

Video ULA : &FE20 to &FE21
The logic buried in this chip is responsible for much of the superb graphic and
colour facilities available.

Paged ROM controller : &FE30
This is a simple decoder chip (74LS161) used to switch over the paged ROMs
referred to earlier.

The internal VIA : &FE40 to &FE4F
There are two 6522 VIAs in the machine. This one is designated 'internal'
because it is used for several purposes, indirectly concerned with the control
of input and output.

The external VIA : &FE60 to &FE6F
This 6522 is dedicated to the parallel printer interface (Centronics) and the
user port. The 6522 VIA consists of two, almost identical, halves. The 'A' side
is committed to the printer and the 'B' side to the user port. As can be seen
from the address range, the 6522 requires sixteen machine addresses in order
to make full use of it. One function carried out on the 'A' side is the interrupt-
driven clock used in the TIME keyword when in BASIC. The timers on the
'B' side are available for users' programs.

The floppy disk controller : &FE80 to &FE84
This is the home of the 8271 chip mentioned earlier.

Data link controller: &FEA0 to &FEA3
This is an advanced chip containing much of the logic required to control the
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Econet communications interface. It is part of the optional extras offered.

Analogue to digital converter : &FEC0 to &FEC2
This is the D7002 chip previously discussed.

At this point, it is worth repeating the earlier warning regarding the
dangers of directly addressing any of these machine locations. However, the
warning was in the nature of advice rather than a rule. There is nothing illegal
in direct accessing the peripheral devices although, apart from the user port, it
is unlikely that you will ever find the need to circumvent the resident
operating system subroutines. The above information and addresses were
primarily intended as background information. However, there will always be
a few of the more intrepid readers who may feel a desire to 'improve' on the
operating system, even at the risk of crashing or jeopardising the smooth
running of a future second-processor.

Fred addresses and the 1 MHz Bus

Sheila addresses are concerned with what may be broadly described as
standard peripherals. The BBC machine, however, caters for more ambitious
schemes, such as Teletext, Prestel, dealer's test kits, etc. There is a multipin
socket beneath the machine known as the 'I MHz Bus' which caters for these
optional additions to the system. These are allotted addresses in the band &
FC00 to &FCFF. This band (page &FC) is named Fred, a less charming name
than Sheila but still quite novel. The individual allocations within Fred are as
follows:

Dealer's test equipment: &FC00 to &FC0F
Testing and fault diagnosis of the BBC machine is rendered easier for dealers
by a special box of tricks known as PET (no connection with Commodore's
famous family of micros). PET stands for Progressive Establishment Tester
and occupies sixteen locations within Fred's band.

Teletext : &FC10 to &FC13
Most readers will know that a Teletext adapter can be bought, enabling a
range of free software to be down-loaded directly into the RAM locations
from BBC transmissions. It is also possible to call up and incorporate any of
the standard Teletext pages in your own programs. An updated list of the
software available currently appears on page 701 of Teletext.

Prestel : &FC14 to &FC1F
Prestel is the Rolls Royce version of Teletext, providing access to an
enormous, and still growing, storehouse of information. The information
comes via the normal telephone system so it requires a rnodem (modulator
and demodulator). A modem provides the necessary conversion from
computer logic signals to audio tones, suitable for passing down a telephone
line. The coupling is acoustical, rather than wired, in order to circumvent the
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rules relating to unauthorised interference with telephone equipment. Prestel
is two-way in action, meaning you can also send your own messages back to
Prestel. There is one snag of course - you have to pay for telephone calls and
also an extra charge on top for certain of the Prestel pages.

Test equipment : &FC80 to &FC8F
Some more allocations for testing purposes.

Reserved for user's applications : &FCC0 to &FCFE
There is an ever-growing range of hardware available designed to plug into
the 1 MHz bus. As can be seen from above, a generous range of addresses are
left vacant for the purpose, sixty-three in fact.

ROM paging register : &FCFF
This is a single byte address used for paging different ROMs. (See JIM
address band.)

JIM addresses and the 1 MHz bus

The address band &FD00 to &FDFF is called JIM and is primarily designed
for connecting up alternative memory chips (up to 64K of RAM or ROM) via
the I MHz bus. Note that the word 'alternative' is used rather than 'extra'
because the full 64 K can only be page-accessed in competition with the
resident 64K. Connecting up the memory is not a task you should attempt
unless you feel confident or, preferably, have gained some experience with
decoding logic (some general information on logic can be found in Appendix
A). In the meantime, it is worth mentioning that the solitary address &FCFF,
called the 'paging register' in the Fred band, will be found to have important
significance to the decoding network.

Wiring details of the 1 MHz bus

Page 503 of the User Guide gives a diagram of the connections to the 1 MHz
bus. However, a scaled down version is shown in Fig. 1.4 which tends to
emphasise the decoding problem.

There are several abbreviations in the diagram which may demand
translation. One of the more depressing features of computer hardware is the
proliferation of abbreviations which designers use. T o the designer, the letter
groups may be 'plain English' because of familiarisation. To the non-expert,
they present a fearsome obstacle to progress, made worse by the lack of
standardisation.

The 1 MHz socket pins are labelled the same as on page 503 of the User
Guide but make no attempt to show the correct orientation of the
corresponding pin numbers. You must refer to the original diagram in the
User Guide if you intend to use the bus. The position of the 6502
microprocessor has been included in order to gain an overall perspective of
the bus. Discussion of the wiring can be treated under three headings, the
address bus, the data bus, and finally the control lines.
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The address bus

There are 16 wires on the address bus of the 6502 microprocessor, labelled
A0 to A15. Only the 8 lower order wires, however, A0 to A7 are brought out
to the I MHz bus. In order to provide the bus with high current drive, a
74LS244 non-inverting buffer (IC71) is used. The chip has no logic function
but the wires are electrically stronger when they emerge. The address bus is
one-way only. That is to say, signals can only pass from the microprocessor.

The data bus

The 8 wires, D0 to D7, from the microprocessor pass the 1 MHz bus via a
two-way non-inverting buffer (IC72). This is a 74LS245, a more complicated
buffer than the one used on the address bus because it must allow signals to
pass to and from the microprocessor. Obviously, it cannot pass signals both
ways at once so it must be controlled to either READ (pass data to the
microprocessor) or WRITE (pass data from the microprocessor). The control
terminal on the chip is labelled T/R which means 'Transmit/Receive'. Why
wasn't it labelled R/W to make it tie up with READ and WRITE? The answer
is due to the general purpose nature of logic chip design. A bidirectional
buffer could have many uses apart from reading and writing to and from
memory so it uses the wider terms 'transmit/receive'. Another control on the
buffer is labelled CE which stands for 'Chip Enable'. This allows the entire
chip to be switched ON/OFF or, using established jargon, enabled or disabled.
Thus, the buffer can be placed in any one of three states, the READ state, the
WRITE state or completely OFF altogether. When in the OFF state, the
microprocessor data bus is completely unaware of its existence. It is said to be
'floating'.

The control lines

The address and data buses are well-defined entities. By comparison, the
control fines of any computer system always seem an unruly mess. Odd-
looking single lines carrying funny labels appear to wander around different
parts of the microcomputer in an undisciplined manner. The sheer complexity
of the complete microcomputer wiring means that only parts of it can be
shown at once. This means that some of the control fines appear to end
abruptly, only to appear again on another diagram, apparently starting from
nowhere! To assist bewilderment, some of the address wires may be used to
'control' and data wires may even be used for addressing purposes. There are
no short-cuts to understanding, it's merely a case of methodical plodding
through each control and gradually becoming accustomed to the strange-
looking abbreviations. Referring to Fig. 1.4 again and dealing with the easier
parts first:

The power lines
The bus supplies a +5V and a 0V line for your external use although it is not
to be treated as an inexhaustible source of power. However, it should be
ample for running extra memory and/or a reasonable collection of logic chips.
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Reset fine (labelled NRST)
It is important that all parts of the computer and any equipment you may add
on to the I M Hz bus begin in step with each other. The microprocessor sends
out a master reset signal which, in 6502 data sheets, is labelled RST. The bar
over the top is a well-standardised method of indicating reverse logic, the bar
standing for the word 'not', indicating that reset action will occur on a logic 0
rather than a logic 1 (for further details on logic, see Appendix A). For some
obscure reason, the 1 MHz bus uses the prefix 'N' instead of the bar, to
indicate reverse logic. So the line which starts off from the microprocessor as
RST, emerges out of the bus as NRST (the N meaning 'not').

Read/write control (labelled R/NW)
The 6502 microprocessor labels the line R/W. This indicates that a logic 1 on
the fine cause a READ and a logic 0 causes a WRITE. Note it is used to
control the T/R terminal of the two-way buffer as well as providing an
external line to the 1 MHz bus.

The 1 MHz clock (labelled 1 MHzE)
The source of the oscillator, known as the 'clock', is not shown. It may be
required for external projects which require timing synchronisation with the
resident clock system. It is worth mentioning at this point that the resident
'master clock' is 2 MHz, so external projects run at half speed. This is not a
bad thing because the lower the frequency, the less critical you need be on the
choice of components.

Analogue in
This allows an additional signal to be picked up and fed to the audio circuits
of the computer, Any signal here is superimposed on any other audio signals.
It is not an extra channel. The rms signal voltage must not exceed3 millivolts
or distortion and possibly damage may occur.

Interrupt request (labelled NIRQ)
This caters for external projects which rely on interrupt procedures, such as
an extra 6522 VIA, or perhaps the more simple 6520 PIA. It enters the
microprocessor under the labelIRQ which means Interrupt ReQuest. As the
bar over the top shows, it recognises only a logic 0. Although not shown on
the diagram, there are several other contenders for interrupt. Because there is
only a single line available, the various interrupt inputs are normally wire-
ored (see Appendix A).

Non-maskable interrupt (labelled as NNMI)
This is brought out for external use but using it is fraught with danger of a
crash. A signal on this line could endanger the operating system which
expects to have exclusive rights to it. You are strongly advised to forget that it
even exists!

Fred and JIM (labelled as NPGFC and NPGFD respectively)
NPGFD stands for Not PaGE FD, indicating that it is logic 0 active. Earlier
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discussions on FRED and JIM described them as particular pages (&FC and
&FD) in memory. It now seems odd that single wires should have similar
names. The answer is that the data lines D0 to D7 on the 1 MHz bus must
only be activated when either of these pages are addressed - that is to say,
only when the higher order pair of the hex digit addresses are FC or FD.
Figure 1.4 gives no indication of the source of the FRED and JIM wires, but it
is evident that they must somehow be fed from a decoder which senses when
the higher order address lines (A8 to A15) carry the binary code
corresponding to &FC or &FD. Full technical drawings of the BBC machine
are difficult to obtain, so Fig. 1.5 is offered as one way the decoding might
have been arranged.

Fred

Jim

Address bus
A15 A8

Fig. 1.5. Decoder for producing Fred and Jim.

The decoding uses NAND gates which deliver a logic 0 only when all inputs
are at logic I. The binary pattern for &FC is 1111 1100 so two logic inverters
are necessary from fines A8 and A9. The binary pattern for &FD is 1111
1101 so only one logic inverter is required from address line A9.

Referring back to Fig. 1.4, the Jim and Fred lines are fed, via two diodes,
to the chip enable (CE) pin on the two-way data buffer. Note that this pin has
a tiny 'bubble' at the input which is a standard symbol indicating that reverse
logic is required. (This explains why a NAND instead of an AND gate was
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used in Fig. 1.5.) Thus, the data bus is only routed to the I MHz bus when the
chip is enabled by prior selection of Fred or Jim.

A few words of explanation may be needed with regard to the two diodes.
In conjunction with the 3.3K resistor (R108), they form an OR gate for
reverse logic. The register normally pulls CE high to +5 V, disabling the
buffer chip. When a logic 0 from either Fred or Jim appears at the cathodes,
the appropriate diode conducts and pulls the CE pin down towards 0 volts
which enables it.

Suggestions for 1 MHz bus projects

The previous explanation of the bus will be interesting only to those who use,
or have a yearning to construct their own extension systems. It is surprising
how newcomers to machine code often become more interested in hardware
projects even if they have previously showed little curiosity. This is because
machine code programming probably creates more interest in computing
theory and logic systems than BASIC or most high level languages. The I M
Hz bus is beautifully designed for expanding the capabilities of the machine
and experimenting. It would be a shame if your socket is always left vacant
and collecting dust. Assuming you have never before tackled logic design or
construction, the following advice may get you started:

(1)  Obtain a copy ofApplication Note 1: The 1 MHz Bus from Acorn. This
gives a well detailed description of the bus although you may find it a little
heavy-going in parts.
(2)  Scan through magazines which cater for both hardware and software.
Electronics and Computing is a good example, and it is usually refreshingly
free from articles by games fanatics.
(3)  Study Appendix A of this book and supplement it with one of the many
books available on logic theory. Jan Sinclair'sBeginner's Guide to Digital
Electronics is excellent
(4)  Get a friend, or become friendly with someone, who is knowledgeable in
the field of electronics. There are usually one or two of these types lurking
around your local computer club. However clever you become at logic
design, you may require some expertise in electrical matters, if only to avoid
damage to the equipment. Soldering plugs, sockets and 1C pins is not quite
the simple exercise we are sometimes led to believe.

Almost any device can be switched ON or OFF by computer instructions
providing it is controlled by a logic 1 or a logic 0. The device can be a simple
lamp, the jib or winding gear of a crane, the points on a model railway or
even one of the many chips available in the '74' series described in Appendix
A. From now on, it will be assumed that the term 'device' islogic controlled
so it is unnecessary to burden the mind with its particular function.
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Address decoding

If there are several different devices, each one must have an associated code
acting as an identifier. This code will be the device 'address'. The 1 MHz bus
is equipped with address wires A0 to A7 which can be tapped for supplying
the two least significant hex digits of the address. The two most significant
hex digits have already been decided for us since the I M Hz bus is restricted
to page FC for device control. As explained previously, the line marked
NPGFC is available on the bus to enforce this page. There are 256 different
address codes possible on one page according to the binary pattern set up on
A0 to A7. That is to say, the address range of our page FC extends in theory
from &FC00 to &FCFF. However, we should restrict the coding of our
special devices to the small band set aside for User Applications, &FCC0 to
&FCFE. It is comforting to know that decoding A0 to A7 is easily achieved
by special decoder chips available in the 74 series. These decoders are general
purpose but skilfully designed for slipping neatly into a variety of systems.
Figure 1.6 shows a possible hook up for driving any one of eight devices.

1
2
3

4

5

6

8 16

Select

Enable

1MHz bus

A7 A5 A3 A1
A6 A4 A2 A0 NPGFC 0V + 5V

15
14
13
12
11
10

9
7

FCF0
FCF1
FCF2
FCF3
FCF4
FCF5
FCF6
FCF7

Fig. 1.6. Selecting any one of eight devices.

The 74LS138 is a well-known decoder chip. It has eight individual output
lines, only one of which can be 'activated' at any one times The output chosen
to be active depends on the binary pattern applied to the threeselect lines.
However, whatever the select pattern applied, the chip will still not be
functional until all threeenable lines are correctly driven. The combination of
selection and enabling can be used to provide unique address decoding for
each of the outputs. Working out address decoding is an art which is essential
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for those who intend to design their own add-on boards, so the following step-
by-step explanation of Fig. 1.6 is worth studying carefully. The explanation is
limited to one of the outputs (pin 15) labelled as address FCF0:

● The line NPGFC, already supplied from the I MHz bus, is passed directly
to pin 5, pulling it down to 0 V and, because this pin has a 'bubble', is
correctly ena bled. Thus, apart from anything else, the chip only comes alive
when the first two hex digits of the address are FC (Fred in other words).
● The address lines A4, A5, A6 and A7 provide the inputs to a NAND gate.
This only gives logic 0 out if all four inputs are logic 1. But pin 6 requires a
logic I to enable it (no bubble at input) so the NAND gate output is inverted
in order to correctly enable pin 6. So we conclude that the third hex digit of
the address must be F (because 1111 is F) to ensure that pin 6 is enabled. We
have now established the first three hex digits of the address FCF0.
● If the last hex digit is 0, the four address wires A0,A1,A2 and A3 must all
be logic 0. Note that A3 is connected to pin 4 which is a bubble input and
enabled only by a logic 0. The remaining three address fines are connected to
the select pins. The internal design of the 74LS138 is such that logic 0 on all
three select pins activates only pin 15 and is therefore correctly labelled
FCF0.

Thus, to switch ON any device connected to pin 15 of the decoder chip, all
we have to do is to specify address &FCF0.

If all this appears difficult, it may help if you-pencilled in the binary
pattern for F0 on the eight address lines as follows:

A7 A6 A5 A4 A3 A2 A1 A0
1 1 1 1 0 0 0 0

Tracing the '1's and '0's back to the decoding chip will confirm that the chip is
fully enabled (with pin 15 activated) only by the address &FCF0.

What about the other seven outputs? The only difference will be the
pattern on the three select fines driven from A0, A1 and A2. The internal
design of the decoder chip ensures the following behaviour:

A2 A1 A0 Output selected (hex address)

0 0 0 pin 15 FCF0
0 0 1 pin 14 FC1F

0 1 0 pin 13 FCF2

0 1 1 pin 12 FCF3

1 0 0 pin 11 FC1F

1 0 1 pin 10 FCF5

1 1 0 pin 9 FCF6

1 1 1 pin 7 FCF7
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Although Fig. 1.6 has been built around the addresses &FCF0 to &FCF7, we
could have chosen any other set of eight contiguous addresses in Fred's user
application band (&FCC0 to &FCFE). For example, suppose for some reason
we wished to position the decoder in the eight addresses &FCE0 to &FCE7.
The third hex digit would now be E (binary 1110) instead of F (binary 1111).
The only change, therefore, would be a logic 0 on address line A4 instead of a
logic 1. Thus the circuit remains the same except for one extra inverter in
between A4 and the NAND gate.

Note from Fig. 1.6 that the data bus is not involved. Switching on the
selected advice is simply a case of mentioning the address in a machine code
instruction; any data transfers by READ or WRITE action are incidental to
device action. We could say that the device is 'address' rather than 'data'
driven.

Sending parallel data externally

Some devices only require a single logic line to activate them (simple lamp or
electric motor). Others, may require a number of data lines as, for example,
an 8-bit digital to analogue converter. Driving such devices would involve the
data bus as well as the address bus. As far as address decoding is concerned,
we could enable the device from any one of the outputs in Fig. 1.6 or, in fact,
up to eight separate ones if the necessity arises. Figure 1.7 shows how the
device-select action is combined with the data bus.

1MHz bus

Parallel data out Vcc

EnableClock

8 bit latch 0V

+ 5V 0V

Any decoded line
(example FCF0)

D6 D4 D2 D0
D7 D5 D3 D1

Parallel data out

Fig. 1.7. An 8-bit latch as an example of a device.
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An 8-bit latch is a kind ofbuffer between the data source (in this case the
data bus) and the device which requires it. The device only accepts the data
when a terminal called the clock changes state. Because the clock input in
Fig. 1.7 has a bubble, clocking the data takes place when the change is from
logic I to logic 0. In the quiescent state (device not yet selected) the parallel
data out is that which remained from the last time the latch was clocked: it is
'historic' data. However, whenever &FCF0 is addressed (goes from logic 0 to
logic 1), the inverter in the line causes the clock to go from logic 1 to logic 0.
The information on the data bus then passes through to the parallel output
lines. To summarise: when &FCF0 is addressed, the device immediately
receives new information from the data bus,overwriting the previous
information. As a matter of interest, the machine code line to place the
contents of the accumulator into the output lines is:

STA &FCF0

The system recognises the instruction is to act on the 1 MHz bus devices
because the first two hex digits of the address is the Fred page.

1MHz bus
+ 5V 0V

D6 D4 D2 D0
D7 D5 D3 D1

Enable

Digital to analogue converter

FCF2
(or any other)

Analogue out

Fig. 1.8. Converting digital information to analogue 
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Figure 1.8 is another example of a device requiring the data bus, which is
needed, of course, for receiving the digital data.

Although the BBC machine is not equipped with a digital to analogue
converter, it is easy to hook one on the 1 MHz bus. There are several types
available so the diagram contains only sufficient detail for the understanding
of the system. The diagram shows the data bus directly connected to the D/A
converter and enabled by one of the decoded addresses. This, of course, could
be one of the lines from a 74LS138 (as shown earlier in Fig. 1.6). An
instruction to produce analogue output could be:

STA &FCF2

This will cause the output voltage to assume a valueproportional to the
digital number in the accumulator.

Using the R/NW line

Up to this point, the devices described have all delivered outputs, from the
computer to the outside world. However, many systems may include one or
more input devices passing data from the outside world to the computer. One
obvious example is an analogue to digital converter. There are two dangers
inherent in the design of input devices. The first is obvious: make sure that
the voltages coming from the outside world are within the allowed maximum
(usually within the range 0 V to 5 V). The second danger is more obscure. If
an input device is enabled, it normally places data on the address bus. Thus
the instruction should READ from the data bus (an LDA for example). But if,
by mistake, we WRITE (an ST A, for example) there is a conflict of loyalties
on the data bus because two independent sets of data are trying to gain
control, This could damage some of the circuits. The remedy is either to
become an infallible programmer (we have never yet met one) or incorporate
something on the lines shown in Fig. 1.9.

In Fig. 1.9, a NAND gate is fed by the R/NW line and the decoded device
address. The output from the gate is logic 0 only if both inputs are logic 1.
Therefore, even if the device address is correct (FCF4 in the example) the
R{NW fine must be logic 1 which is present only if the instruction is to
READ. If, in error, the programmer causes a WRITE action, the R/NW line is
turned to logic 0 and the N AND output rises to logic I. Because the device in
Fig. 1.9 has a bubble at the enable input, the input device is not enabled.
Thus, it is now impossible to jam the data bus by trying towrite to an input
device. If the device had no enable bubble (and some of them haven't), it
would be necessary to include an inverter in the N AND output fine. This
latter point illustrates how easy it is to be 'one inversion out' when designing
logic systems. Y on can never be just a little bit out (as in analogue design). It
is either dead right or dead wrong!
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FCF4
(or any other)

R/NW D7 D0

Enable

Any input device

1MHz bus

Figure 1.9. Gating the READ/WRITE line to input devices

Using Jim to access auxiliary memory

Fred is used for attaching a variety of extra gadgets to the 1 MHz bus. Jim is
virtually dedicated to the sole purpose of adding on auxiliary blocks of
memory. Up to the full 64K of RAM, ROM or mixtures of RAM and ROM
can be page accessed. For full details, it is advisable to obtain the Acorn
leaflet on the 1 MHz bus but, in the meantime, Fig. 1.10 shows the general
idea.

As mentioned previously, a sixteen-wire bus is required to cover a 64K
memory system. Only eight-address wires, A0 to A7, are provided on the 1
MHz bus so it is not surprising that the solution to such a problem involves
some strange goings-on. Examining Fig. 1.10 reveals that thelower order
addresses are supplied by the legitimate address bus. The higher order
address, A8 to A15 is obtained by 'borrowing' the data bus. How can the data
bus (which is required to pass data to an address) simultaneously supply part
of the address as well? The simple answer is that it can't. The secret lies in the
8-bit latch. The programmerfirst supplies the higher order address (the page).
This is then automatically clocked into the latch, supplying A8 to Al5 in the
ROM/RAM. The figure shows that latch clocking is achieved by the special
decoded line FCFF. It also shows that the entire ROM/RAM memory
structure is only enabled by using the Jim address band, detected by the
NPGFD line on the 1 MHz bus. Although the enabling pin is marked 'valid
memory address' (instead of 'enable'), the effect is identical.

There is naturally a small penalty to pay for all this jiggery pokery. It takes
a little longer to read or write to a location in the extended memory,
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particularly if the desired address isoutside the current page (outside the
'page boundary'). Some provisional details of the coding are now given in the
hope of clarifying some of these points:

Clock

8 bit latch

valid
address

64K
ROM/RAM

D7

D0

NPGFD

1MHz bus

Jim

FCFF

R/W

R/NWA7 A0 D7 D0

A15

A8

A7

A0

Programming procedure:

●First store the page part of the address in the reserved location &FCFF
(called the paging register).
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●Then perform the desired data transfer to any position on that page by
reading or writing into the address band &FD00 to &FDFF.

Example: to store the number 13 hex in address &3567 of the extended
memory.

LDA #&13 \load A with &13
LDX #&35
STX &FCFF \store page address in paging register 
STA &FD67 \store A in address &67 of page &35

The paging register location, &FCFF is the odd man out in the Fred band
because it is used for Jim.

It is unnecessary to keep loading the paging register each time, providing
the addresses lie on the same page. If the next address lies on a different page,
then the paging register must be reloaded.

Summary

1. Machine code programming can be tackled with more confidence if
backed by some knowledge of hardware.

2. If your machine still has the old 0.1 series ROM, get it changed to the 1.2
or any of the 1.X series as soon as possible.

3. The priority on power-up is vested in the ROM occupying the rightmost
of the five sockets.

4. The designer's advice is to access the peripheral interfaces by resident
subroutines, OSBYTE, OSWORD, etc. This is good advice but need not
be taken too seriously during the learning stage of machine code
programming.

5. The operating system handles standard peripherals by a process of
orderly interrupts6. An interrupt request (IRQ) is granted only if the
mask bit (in the microprocessor) has not been set to '1'. A non-maskable
interrupt, or NMI ignores the mask bit.

6. Parallel interfaces transmit or receive a complete byte at a time, requiring
8 wires to carry the information. Serial interfaces pass only single bits,
one after the other, on a single line.

7. The RS423 (an improved version of the older RS232) is a serial interface
which can handle certain printers, telephone signals via a modem or act
as a data link between other computers.

8. A 6850 chip handles serial and a 6522 chip handles parallel interfacing.
9. The A/D conversion chip, a D7002, allows any one of four varying

(analogue) input voltages to be represented as a digital number.
10. The heart of the floppy disk interface is the 8271 controller chip.
11. Memory maps divide the 64K total into 64 pages. A machine address is a

four-hex-digit number. The left-hand pair is the page and the right-hand
pair the address on the page.
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12. One page of memory contains 256 addressable locations (this is exactly
100 in hex notation).

13. Sheila is page FE, occupying the address band &FE00to &FEFF. It is
reserved for accessing all interfaces built into the machine.

14. Fred is page FC, occupying the address range &FC00 to &FCFF. It is
reserved for any specialised hardware fed from the 1 MHz bus, such as
dealer's test equipment, Teletext, Prestei, etc.

15. A small area of the Fred page is reserved for the user's special
applications, &FCC0 to &FCFE.

16. The 1 MHz bus (see Fig. 1.4) provides eight address lines, A0 to A7 and
eight data wires via a two-way buffer (IC72). A 5 volt power supply and
special lines are also provided.

17. The special lines on the 1 MHz bus include:
NNMI and NIRQ provide interrupt inputs to the microprocessor. They
are activated by logic 0.
NRST delivers logic 1 during a READ instruction and logic() during a
WRITE.
NRST delivers a logic 0 when reset is activated.
NPGFC delivers a logic 0 whenever page FC (Fred) is addressed.
NPGFD delivers logic 0 whenever page FD (Jim) is addressed. (The data
buffer is only enabled if either Jim or Fred pages are addressed. The 1
MHz clock is an oscillator, sychronised to the 2 MHz microprocessor
clock but running at half the frequency. Analogue-in is connected to the
sound channels. Any signal supplied isadded to any other programmed
sound. It is not a separate channel.

18. Detailed information on the 1 MHz bus can be obtained from Acorn corn
puters.

19. Jim is the FD page, occupying the address range &FD00to &FDFF. It
caters for a 64 K memory expansion.

20. Some devices require only a simple ON/OFF drive obtained by a simple
decoder from the address bus. The data bus is not required.

21. A 74LS138 is a useful decoding chip, capable of activating any one of
eight devices. The address for each device is determined by the '1's and
'0's applied to the select and enabling inputs.

22. Devices which deliver data from the outside world (input devices) should
be gated with the read} write line (R{NW) in case a WRITE instruction
is given in error (see Fig. 1.9).

Self test

1.1  If a ROM or EPROM is 'empty', what hex number appears when you
read any location?

1.2  You might expect a parallel printer interface to be eight times quicker
than a serial. Why is there virtually no difference?

1.3  State an advantage of the RS423 serial interface over the earlier
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RS232.
1.4  Name a device which could convert, say, atmospheric pressure

readings to a proportional voltage.
1.5  What approximate voltage gives full-scale reading at the analogue/

digital input?
1.6  What is the highest hex page number?
1.7  What specialised names are given to pages FC, FD and FE?
1.8  The user port and the Centronics printer interface are fed by a 6522

VIA. On which side of the VIA is the user port?
1.9  How would you find out which version of ROM operating system is

installed?
1.10  Which instruction in the 6502 will prevent IRQ being granted?
1.11  Passing an ASCII character via the RS423 interface requires ten bits.

Why? 
1.12  What is the approximate voltage across a silicon diode when in

forward conduction?
1.13  With reference to Fig. 1.6, what address would activate pin 12 if the

inverter to pin 6 was omitted in error?
1.14  With reference to Fig. 1.8, if the maximum output is 2.55 volts, what

output voltage is obtained when the digital data is 3F hex?
1.15  With reference to Fig. 1.7, assume the data bus is 4F hex and the latch

output is also 4F. Supposing the data bus now changes to 5F, what is
the output from the latch prior to the arrival of the clock pulse?

1.16  With reference to Fig. 1.4 some pins on the 6502 have a bar across the
label. What is the significance?

1.17  Some logic chips have a pin labelled CE. What does this mean?
1.18  The address band within F red allotted to User Applications is &FCC0

to &FCFE. How many different addresses are within this band?
1.19  The last address in the Fred band is &FCFF. What is significant about

this special address?
1.20  Sheila addresses are reserved for . . . ?
1.21  Jim addresses are reserved for . . . ?
1.22  Fred addresses are reserved for . . . ?



Chapter Two
The 6502 Microprocessor

Useful abbreviations and conventions

lsb = least significant bitmsb = most significant bit
Bit position within a byte are 7 6 5 4 3 2 1 0
Bit 0 is the lsb. Bit 7 is the msb.
A = the accumulator. X = register X. Y = register Y.
P = process status
register.

PC = program counter PCL = low byte
of PC.

PCH = high byte of PC. SP = stack pointer. ALU = arithmetic
and logic unit.

AR = address register of
AR.

ARL = low byte AR. ARH = high byte
of AR.

Process status flags:
N = negative (bit 7). V = overflow (bit 6). B = break (bit 4).
D = BCD (bit 3). I = interrupt (bit 2),
Z = zero (bit 1). C = carry (bit 0).

The 6502 versus the Z80

The 6502 and the Z80 8-bit microprocessors have retained their popularity
with personal computer manufacturers for many years. Their popularity is
likely to remain until the approaching 16-bit revolution is established. Both
the 6502 and the Z80 have good and bad features which are fairly equally
distributed. The Z80 has sometimes been praised as the more powerful of the
two but, in the absence of a satisfactory definition of 'power' this praise has
little substance. If by 'power' we mean execution speed then neither type is
superior. Some types of program can execute faster on the Z80; others
execute faster on the 6502. Because of this it is not wise to pay too much
attention to 'benchmark' tests. Comparison tests for computers have about the
same reliability index as intelligence tests for humans: they tend to test the
tester more than the testee. The Z80 has a powerful marketing advantage
because of its downward compatibility with the Intel 8080. The widely used
disk operating system CP/M, for which an enormous amount of commercial
software has been written, is based on the 8080 instruction set, so any
microcomputer which runs on the 6502 could be said to be disadvantaged in
this respect. The justification for discussing the Z80 at all in this book (which
is supposed oriented towards the 6502!) is because one of the Second
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Processor options runs on the Z80. There will be a choice of another 6502, a
Z80 or the new 16-bit 16032. Because of this, it is considered reasonable to
include occasional references to all three microprocessors. The Motorola
6800 was the ancestor of the 6502. Apart from the indirect addressing modes
which are unique to the 6502, they are, in many respects, similar.

Address bus
6502 Microprocessor

Data bus

A8 - A15
(high byte)

A  - A0 7

(low byte)
ROM

D  - D0 7

RAM

SCREEN
display
section

Peripherals

Various external lines

Fig. 2.1. Position of the 6502 in relatwn to the external bus dewces.
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6502 architecture

It is possible to delve straight into machine code programming without
troubling very much about the technical details of the 6502. Indeed, the
introductory book Discovering BBC Micro Machine Code plunged straight
into a program on page 8. This book is the sequel, intended to fill up some of
the gaps left in both the software and hardware treatment It pays dividends in
the long run if the internal behaviour of a microprocessor is understood. It can
also be interesting for its own sake.

It is better to begin by reviewing the microprocessor in relation to other
main components of the system, as shown in Fig. 2.1. The operating system
and BASIC language ROMs each have a capacity of 16K bytes (type number
13 128). They are connected across the address and data buses. Note that the
address bus is shown split down the middle because it is important always to
bear in mind that a 4-hex digit address code is handled by the microprocessor
in two halves, the lines A0to A7 (low-byte) and lines A8 to A13 (high-byte).

The RAM complement is not so straightforward because of the reduced
packing density within the chip. Each RAM chip in the BBC machine, (type
number 4816) stores only 16K bits (not bytes) so it is necessary to use sixteen
of these chips to form a storage system of 32K bytes. (The Electron uses four
of the new 64K bit RAMs to produce the total 32K bytes.) Another factor
contributing to complexity is the 'dynamic' nature of the memory. The correct
title for this class of reach write memory is DRAM, the 'D' prefix standing for
dynamic. Due to the need for reducing current consumption and maximising
packing density, each bit is stored within the inter-electrode capacity of MOS
transistors (see Appendix A). The stored information, however, is a transient
affair, leaking away in a few milliseconds. Consequently, each stored bit must
be periodically recharged in order to compensate for the leakage. This
process, called 'refreshing' is inherent in the hardware design and is not the
responsibility of the programmer. However, the refresh-cycle takes up extra
time. DRAMs are therefore a compromise in which access time is sacrificed
in order to increase packing density and reduce cost. It is worth mentioning
that the BBC and Electron systems are not alone in employing DRAMs.
Nearly all microcomputers have, and still do, use them. The alternative would
be to use static RAMs but the cost would be prohibitive and they would
occupy a greater space on circuit boards. Having noted this, DRAMs will still
be referred to as RAMs: distinction is academic. Note that, unlike the ROM
chips, the feed to the data bus is bidirectional. 

6502 systems are memory-mapped so it is not surprising that keyboard,
screen display and the input: output interfaces are strung across the address
and data buses as if they were memory chips. In the case of the screen
display, the dotted line on the figure indicates the additional data path
between the area of RAM dedicated to the screen display circuits. To avoid
cluttering the diagram, the various signal fines forming the 'control bus' are
not shown.
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Inside the 6502

Figure 2.2 shows reasonable, but by no means complete, details of the paths
between the various registers. Such paths within the microprocessor are often
called highways because they ramify over the chip area to provide a kind of
long distance communication.

program counter

1 Stack pointer

H L X Y

Accumulator

Instruction Reg.

6502 Microprocessor

Decode Matrix

Micropram ROM

IRQ

NMI

RES

Control lines to
gates

H L

Address  register

Data register

N V B D I Z C

Address bus = highway gatesControl bus Data bus R/W

Arithmetic
and

Logic Unit
(ALU)

Fig 2.2. 6502 registers and highways

The chaos is only apparent. Control lines (not shown) operate the input and
output gates of each separate register, ensuring that only one pair is allowed
access to the highway at any one time. For example, during the machine code
instruction TAX, only register A output gate and register X input gate are
open to the data highway, allowing the contents of A to be transferred to X.

The majority of instructions we give to microprocessors aredata transfers,
either between internal registers or between registers and the external RAM,
ROM or peripherals. Some instructions, such as ADC (add with carry)
perform arithmetical operations on the data but the data still has to be fetched
from somewhere else. Even a simple instruction like INX (increment contents
of X) involves a transfer because the X register is not equipped for altering
itself. Instead, the contents of X must be transferred along the highway to the
arithmetic section and subsequently returned.
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Directly programmable internal registers

It is assumed that many readers will already be aware of the various registers
and their functions but, for the sake of continuity a brief description follows
together with the standard abbreviations subsequently used in all references.
A distinction is made betweendirectly programmable and the other registers
which, although playing a vital role, remain in the background, unseen by the
programmer.

Accumulator (A)
This register has a supreme role. It is the only one capable of performing
arithmetic processing. This is evident from Fig. 2.2 which shows that, in
addition to the usual connection to the highway, there is a direct and exclusive
link to the Arithmetic and Logic Unit (ALU). It is involved in transfers to and
from memory and acts as interim data storage during arithmetic and logic
operations. For example, during a simple addition of two numbers (ADC), the
first number must pass to the accumulator and is then 'entered' to a holding
register within the ALL]. The second number then enters A, the addition is
carried out and the result sent back to A. Those used to scientific calculators
in the Hewlett-Packard range will recognise the inherent Reverse Polish (RP)
action.

It is worth digressing a little to explain RP. A Polish mathematician
proposed a new method of expressing arithmetic, the essence of which was
placing the operator (+, - ,× etc.) after, instead of in between, variables. For
example, instead of writing A+ B to indicate addition, he proposed that it
should be written AB+. Because his name was quite unpronounceable (and
almost unspellable in English) his system has become known simply as
Reverse Polish Notation (RPN or simply RP). The influence of von Neumann
on the evolution of the computer was mentioned in Chapter 1. He suggested
that the arithmetic system of digital computers would operate most efficiently
if based on RPN. Thus the ALU of the BBC machine, in common with nearly
all other computers, requires the two variables first; the add operator is then
activated and the result passed to A, replacing the previous contents.

The dominance of the accumulator over other registers is evident from the
instruction set of the 6502. However, the fact that onlyone accumulator is
present gives ammunition for the protagonists of the rival Z80 which boasts
eight accumulator-type registers. A single accumulator does tend to be
restrictive in organising efficient machine code.

The X and Y registers
Like the accumulator, the X register and the Y register (subsequently referred
to as X and Y) are both 8 bits wide. They have three primary uses in
programming.

(1)  They make up for the inconvenience of the solitary accumulator.
Important data residing in A can be transferred temporarily by the use of
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TAX or TAY and later, when A is free, transferred back using TXA or TYA.
(2)  They can act as up-counters or down-counters for setting up machine
code loops. This is due to the ease with which they can be incremented or
decremented by the instructions INX, DEX, INY or DEY. It is curious that
the designers failed to provide an equivalent instruction for incrementing or
decrementing A. The only way is by the relatively inefficient method of
adding or subtracting 1, using ADC or SBC.
(3)  They are fundamental to the technique known asaddress modification by
indexing. When using an indexed addressing mode (denoted in assembly
form by a comma followed by X or Y), the data in the X or Y register is
automatically added to the data in the operand.

The resultant is interpreted as the address of the required data. This idea
was pioneered by a team at Manchester University and, at the time,
represented a huge step forward in computer science. They called the index
register the 'B box', presumably to differentiate it from the accumulator A.
Previous to this, altering the operand address in loops was cumbersome. It
involved loading the operand from inside the program, incrementing it and
then storing it back in the original position. In other words, it was necessary
to alter the program in order to modify an address. Indexed addressing is so
much cleaner to work with and certainly less error-prone. Most of the
indexable instructions in the 6502 allow a choice of using either X or Y for
indexing. Although indexed addressing is later dealt with in detail, there is no
harm in a little anticipation for the benefit of those who are new to the idea.
So, consider an example in which register X contains 30, and we write LDA
100,X.

The simple instruction LDA 130, however. would have the equivalent
effect. They would both load the contents of address 130 into A. The
advantage of the indexed over the simpler form will be apparent when
organising loops invoking action on consecutive addresses.

This discussion should help to explain why the address bus, as well as the
data bus, has access to the ALU. This should be understandable now it is
recognised that the index register contents have to be added to the operand.
After all, address modification by indexing produces a computed address and
only the ALU can truly compute.

The process status register (P)
If we define a register as an internal mermory location for holding or
processing data, then the process status register (P) is not a register at all. It is,
in fact, a collection of isolated flip-flops (see Appendix A), each capable of
storing one bit. Each bit is called a 'flag' because it conveys certain
information in yes no form either for the benefit of the machine or the
programmer. After most instructions, the relevant flags are updated,
depending on the result. There is no connection, either in the hardware or
software aspects, between different flags. in spite of this, it is convenient and
conventional to refer to it as a register. It is important to the programmer to
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understand the exact significance of each flag, under what conditions they are
set or reset, which are under the control of the microprocessor and which are
directly programmable.

The N bit: If this is 1, the last result contained a 1 in bit 7 position. The N bit
is often misleadingly called the 'sign bit' because two's complement arithmetic
recognises bit 7 as the sign rather than magnitude. If the number is unsigned
binary, the N flag merely indicates the state of bit 7. It is automatically set or
reset and is not directly programmable. BMI (branch if minus) and BPL
(branch if plus) are the relevant branch instructions conditional on the state of
the N bit Most instructions leave the N bit updated as part of the execution
routine The notable exceptions being STA, STX, STY, TXA, and ail branch
and jump instructions (see Appendix C for complete coverage). LSR is
unique in that the N bit is always reset to 0, irrespective of the result.

The V bit: If this bit is 1, it indicates that the last arithmetic instruction caused
two's complement overflow due to the result being outside the capacity of a
single byte. It can be tested by the conditional branch instructions, BVS or
BVC. It is of no significance to the programmer when using unsigned binary
because bit 7 of the result represents magnitude rather than sign. In this case,
it can be ignored. However, the V bit also plays a major role in the BIT test
instruction, assuming the same state as bit 6 of the data being tested.

It is possible to directly clear the V bit to 0 by the instruction CLV
although there is no corresponding instruction to directly set it to 1. Only the
instructions ADC, SBC, BIT, PLP, RTI and CLV affect the V bit.

The B bit: This is set to 1 when a BRK instruction is encountered. Its
significance is limited almost entirely to interrupt sequences. It cannot be
directly programmed.

The D bit: The 6502 can perform arithmetic on straightforward binary
numbers or on BCD (Binary Coded Decimal) numbers. The programmer
decides this by the use of either SED (set decimal) which makes D=1 or CLD
(clear decimal) which makes D=0. The arithmetic mode currently in use
remains until the D bit is altered. The default mode is D=0. The instructions
which affect the D bit are CLD, SED, PLP, and RTI.

The I bit: This is called the interrupt mask bit or the interrupt inhibit. It is
inspected by the microprocessor when an interrupt request is received from a
peripheral source. If it is 1, the request is not granted. It can be directly set to
1 by SEI (set interrupt) or cleared to 0 by CLI (clear interrupt). These
instructions are vital when designing the software for peripheral interfaces,
most of which will be interrupt-driven. The instructions which affect the I bit
are BRK, CLI, SEI, PLP and RTI.

The Z bit: This is the zero bit, and is set to 1 when a result is 0. This is worth
emphasising strongly because it is often interpreted back to front. If a result is
non-zero, the Z bit goes to 0. It can be tested by the branch instructions, BEQ
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(branch if equal to zero) or BNE (branch if not equal to zero). There are no
instructions which can directly effect it. Most instructions affect the Z bit. The
exceptions include TXS, STA, STX, STY and the branch and jump
instructions.

The C bit:This is the carrv bit, and is set to I when a carry out from the msb
is detected. Instead of the bit 'dropping on to the floor' it is popped into the C
bit. It can also be thought of as the ninth bit, particularly in shift and rotate
instructions. It can be tested by the branch instructions BCS (branch if carry
set) or BCC (branch if carry clear). It can also be directly programmed by
SEC which sets C to 1 or CLC which clears C to 0. Instructions which affect
the C bit are ADC. SBC, ASL, LSR, ROL, ROR, SEC, CLC, PLP, RTI,
CMP, CPX and CPY.

It is clear from the above that the process status register flags have a
profound effect on program behaviour. The majority of errors encountered,
particularly when setting the terminating conditions for loop exit, are due to
misinterpreting the behaviour of the flag bits. Unless you are already
confident in this area you would do well to reread the above treatment several
times.

The stack pointer (SP) 
This is an S'-bit register, dedicated to the automatic control of a special area
in page one in RAN! memory designated the 'stack'. Its function is as an
address generator. It is impossible to describe the stack pointer fully without
describing the stack itself. Because the stack is so important in its own right,
discussion of its anatomy will be postponed. It is sufficient at this point to
grasp the following essentials:

(1)  The contents of SP are interpreted by the microprocessor as the address
of the currently vacant location in the stack.
(2)  To ensure the address is always on page 1, rather than page 0, a
permanent 1 is hard wired at the msb end of SP acting as a ninth bit. Thus. if
SP itself contains 0000 0011 (0003 hex). the address is interpreted as if it
were 1 0000 0011 (0103 hex). That is to say, address 3 on page 1 rather than
address 3 on page 0.
(3)  SP can be loaded initially to any address on page 1 but the method is a
little cumbersome. There is no actual instruction to load SP directly. It is
necessary first to load X and then transfer it to SP by the instruction TXS.
This may seem a chore but in practice it may only have to be done once,
during the initialisation phase of a complete machine code program. In fact, it
would be generally unwise to tamper with SP at all when using the assembler
because it will have been initialised by the ROM operating system. However,
if you are brave enough to attempt circumvention, SP is normally initialised
to FF hex in order to utilise the entire stack area.
(4)  Once initialised, the use of the stack is simplicity itself. If you want
temporarily to save the contents of the accumulator, without having to
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specify a storage address, just push it on to the stack with PHA (Push A). To
retrieve it again, pull it back with PLA (Pull A). It is not possible to push X
or Y directly. but it can be done piecemeal by first using TXA or TYA.
(5)  The stack is a LIFO, meaning Last In First Out, memory so you must pull
data back with this in mind. After every push, SP decrements by 1 in order
for the next push to operate on a new vacant location. When data is to be
pulled back, SP first increments by 1 (in order to point to the last stored item)
before the pull operates. The stack pointer automatically 'rises' with each
push and 'falls' with each pull so there is no need to bother with SP (see Fig.
2.3). You can forget the existence of the stack pointer providing you
remember that thelast item pushed onto the stack from A will always be the
first item pulled back into A.
(6)  The stack can only hold one page 256 bytes, that is. If you overflow the
stack, there is no friendly warning as m BASIC. All that happens is a 'wrap
around' effect. For example, if SP is initially set to FF hex and data keeps
piling on the stack, SP eventually reduces to 00. The next decrement wraps
around to FF again causing weird and unexpected results. However, a 256
byte stack is normally more than ample for most programs and overflow
conditions should be rare.
(7)  In addition to its use as a temporary dumping ground for general work,
the stack plays a s-ital role in both subroutines and interrupts. When a
subroutine is called by means of JSR,. the two bytes forming the return
address (which will be in the program counter) are pushed onto the stack high
byte first, low byte second. When the subroutine ends (with RTS), the return
address is pulled back from the stack (low byte first, high byte second) and
passed to the program counter, allowing the body of the program to resume
again.

Stack pointer

Accumulator

Limits
of STACK

00FF

0100

0101

0102

01FC

01FD

01FE

01FF

0200

0201
35

1 FC next vacant

35

data

data

Fig. 2.3. The stack and stack pointer
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Registers which are not directly programmable

In any microprocessor, some of the most important registers remain
transparent (or at least translucent) to the programmer. That is to say,
instructions are not provided which make direct reference to them. In fact, the
more important a register, the less likely is the programmer allowed direct
access. In the 6502, the unseen registers (refer back to Fig. 2.2) are the
Program Counter (PC), the two address registers ADL, ADH and the
instruction Register (IR).

The Program Counter (PC)
This enjoys the honour of being the only 16-bit register in the 6502. If there is
an established register hierarchy, then PC is the undisputed candidate so its
function deserves strong emphasis:

The contents of the Program Counter is always the address of the
next instruction byte to be executed.

The 16-bit length allows reference to any address in the entire 64K range.
Once a stored program is commanded to 'start execution', the following

automatic sequence begins:

(1)  The contents of PC is transferred to the address bus and the first
instruction byte at that address is loaded into the computer and 'processed'.
(2)  The PC then increments by 1.
(3)  The PC is again transferred to the address bus and the next instruction
byte is loaded and 'processed'.

The sequence continues indefinitely, sweeping through the program bytes like
a scythe until halted legitimately or an illegal code is reached. The sequence
makes no distinction whatsoever between program and data. It is up to the
programmer to arrange the instruction bytes in consecutive address order and
organise either a break (BRK) or an orderly return to the operating system
loop. If the PC is allowed to reach data bytes it will interpret these as
instructions which the 6502 will either attempt to execute or crash in despair.

It is all very well describing the sequence but how does PC know where
the program starts? When entering a program under the direction of the
assembler, there is no problem. It is simply a case of knowing the starting
address of a program and assigning this to the reserved variable P%5. In other
words, Pg$ appears to the user of the assembler as PC. But this convenience
is by courtesy of the software built into the operating system ROM. As a
matter of fact, the actual mechanism of loading the PC gives rise to a
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disturbing question which strikes at the root of stored program sequence
control. This is the question: How is it possible to load PC with the starting
address of the program unless there is already a program capable of
performing the load action?

This is a chicken and egg situation because we can't fall back on the
'operating system'. The operating system is also a program so how was this
loaded originally? There have been, and still are, various solutions to the
problem although we are only concerned here with the method inherent in the
6502 microprocessor. When the reset line (RES) is momentarily grounded
(usually arranged to coincide with the closing of the power-on switch) the
following series of events take place:

(1)  All peripherals connected to the reset fine are initialised to an orderly
'start-up' state. The interrupt mask is set to I to prevent the possibility of an
interrupt during the start-up sequence.
(2)  PC is loaded with the data which happens to be resident in the special
addresses &FFFC (low byte) and &FFFD (high byte). These are called the
start-up vectors.
(3)  PC commences program execution because it now contains thestarting
address of the program.

From the above, it is evident that the writers of the operating system must
ensure that the correct starting address is in &FFFC and &FFFD. It is equally
evident that they must be in ROM (RAM can only be loaded with data by a
program which already exists). Note that the concept of a vectored address
allows the system programmer complete freedom to position the program
anywhere. It would have been easier, of course, for microprocessor designers
to lay down a mandatory starting address, say, 'all programs must start at
address &0000'. This would allow PC to be initialised by a simple zero reset.
However, the vectored address approach is flexible and we should remember
that infinite flexibility has always been the goal of computer scientists. There
are three vectored addresses in the 6502 and, for completeness, these are
shown in the following table:

6502 vectored addresses

Vector address Function

&FEEA and &FFEE Non-maskable interrupt

&FFFC and &FEED Start-up/reset

&FFEE and &FFFF Interrupt request

Although PC ensures that instructions are normally accessed and executed in
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consecutive address order, there are times when the sequence must be broken.
When a jump or conditional branch instruction is encountered, the current
contents of PC are altered drastically. In the case of an absolute jump, the
entire contents of PC are replaced by the instruction operand. Branch
instructions, however, use relative addressing rather than absolute. The
operand is in the nature of an offset which is added to, rather than replacing,
the existing contents of PC. Since the offset is in two's complement binary
(allowing positive or negative numbers) it is still possible to branch forward
or backward.

The Instruction Register (IR)
The first byte of all machine code instructions is the operation code
(abbreviated to 'op-code'). The code, which is different for every instruction
and addressing mode, carries two vital pieces of information:

(1)  What kind of operation is required.
(2)  How many operand bytes (if any) are still required to complete the
instruction.

On receipt of the code from memory (known as the FETCH phase) it is routed
via the highways to 1K where it is held pending execution. If the decoding
reveals that the instruction requires no further operand bytes (such as TXA,
TAX etc.), the instruction sequence enters the EXECUTE phase. If, on the
other hand, decoding reveals that one or more operand bytes must follow, the
sequence remains in the FETCH phase until the complete instruction has been
received from memory.

The Data Register (DR)
The data bus carries information downwards from the microprocessor when
writing to memory and upwards to the microprocessor when reading from
memory. Because of this, DR operates as a bidirectional holding register,
controlled by the R/W fine. You will remember, from earlier discussions, that
when R/W is in the high state (logic 1) the DR would be switched to the
READ direction, and to the WRITE direction when in the low state (logic 0).
The power levels on the raw bus are weak and external buffers may be needed
to boost the power. A full 64 K of memory with additional peripheral loads
could lead to degradation of logic levels (see Appendix A).

Whilst on the subject of the data bus, it is convenient to discuss the effect
of data-jamming. It is essential that all memory and peripheral devices
connected directly to the data bus arc equipped with 'tristate' outputs. That is
to say, when the devices are in the disabled state, their connections to the data
bus should be electrically impotent. Tristate devices ensure this by effectiveiy
open-circuiting the outputs during the disabled state.
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The Address Register (ARL and ARH)
A 4-hex digit address describes a 16-bit logic pattern on the address wires A0
to A 15. The address information can originate from several possible sources.
It could originate from A, the output of the ALU or even the data bus. From
whatever source, it will eventually be routed along the highway, ending up in
the address register. This register is split into two halves, each contributing a
byte to the two-byte address. The lower order byte (A0 to A7) is held in ARL
and the high order byte (A8 to A15) in ARH. As discussed earlier, the high
byte determines the page address and the low byte the address on the page.
The individual lines on the address bus are direct outputs of the registers.
They are, of course, always outputs so the R/W control line is not involved. It
should also be noted that, unlike the data bus, devices connected to the
address bus need not be tristate. This is because the address bus is always an
output from the microprocessor intended to feed only the address decode
circuits of memory or peripheral den ices. Only the address registers can
supply the bus so there is no possibility of data jamming by alternative logic
voltage sources.

The microprogram

The term 'microprogram' has nothing to do with programs written for a
microcomputer. In fact, microprograms are those which are buried inside the
silicon of the microprocessor chip itself! It may surprise some readers that
every instruction in the repertoire (about 200 in the 6502) requires its own
special micro program. A simple machine code instruction like LDA &72 is
simple only from the viewpoint of the human intellect. In contrast, logic
circuits (which are baffled if required to answer any question with other than
yes or no) require considerable assistance in dealing with LDA &72. They
need micro-instructions, fed one at a time in order to open and close the
appropriate register gates and activate the control fines. These micro-
instructions must be given in the correct sequential order for every individual
instruction. Since a sequential set of instructions is, by definition, a program,
then it becomes evident that the earlier statement is justified:Every
instruction needs its own microprogram.

We do not propose to examine in detail each of these microprograms. This
would take more space than this book allows. However, it is interesting to
examine a possible microprogram for the simple instruction mentioned
previously: LDA &72 will LoaD A with the data stored at address &72 on
page 0 hex. This instruction consists of two bytes, which we will assume are
residing at addresses &2E34, &2E35. The microprogram will first have to
fetch these two bytes from memory.

The FETCH phase:
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PC, having just dealt with the last byte of the preceding instruction, will
already have been incremented to &2E34. A typical sequence would be:

(1)  The contents of PC pass to ARL and ARH.
(2)  The R/W line goes or remains high, causing the op-code (LDA) to be
read from memory and passed. via the data bus, to DR.
(3)  The contents of DR are then passed to [R and the instruction is decoded.
From this decoding, the system now 'knows' there is a single operand byte to
follow. PC is incremented to &2E35.
(4)  The contents of PC pass to ARL and ARH.
(5)  The memory is again read, causing the first operand byte (&72) to enter
DR.
(6)  PC is again incremented.

The complete instruction is now lodged in the microprocessor registers,
ending the FETCH phase. The EXECUTE phase now begins.

The EXECUTE phase:

(7) The operand (&72) in DR is passed, via the highway, to ADL. ADH is
cleared to zero (because it is a page 0 address).
(8) The memory is read, and the data at address &72 is passed to DR.
(9) The contents of DR are passed to A.

The instruction has now been executed with the PC left pointing to the
address of the first byte of the next instruction.

The instruction chosen in the example was particularly simple and yet the
micro program was quite involved. It is left to the imagination to visualise the
microprogram for ADC (&72),X (post-indexed indirect addressing).

Microprogrammers are a specialist breed and usually employed on the
design staff of the chip manufacturer. It is fortunate that the brief outline
above on microprogramming was included as a topic of interest only. The
normal machine code programmer takes each complete instruction for granted
and is oblivious to the existence of the internal microprogram steps. If we call
machine code a low-level language, then microprogramming is at ground-
level!

The decoding matrix

Figure 2.2 shows the decode matrix. Its function is to accept the op-code held
in IR, decode it, and finally output a pattern of bits on the various gate and
timing controls. This pattern will be different for every step in the
microprogram. If this function is analysed carefully, we may come to the
conclusion that the decode matrix will behave like a miniature computer with
a number of fixed programs inside. We can relate IR to the 'program counter'.
The op-code is only the starting address of the relevant microprogram. The
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'words' read out from the ROM are the bit patterns supplying the various
register gates and controls. These patterns wfll vary for each step of the
microprogram. The gate controls are all hard wired to the various registers.
This wiring is omitted from Fig. 2.2 to prevent an already complex diagram
from becoming incomprehensible.

Sub-pulses of the clock
It is not always appreciated that the clock pulses, which in the 6502 arc
running at 2 MHz (0.5µs period), are split up within the decode matrix.
Several sub-pulses are formed, each sub-pulse initiating each step of the
microprograms. Within the matrix, the clock pulses are merely the 'low-
frequency' envelope of the sub-pulses

The Arithmetic and Logic Unit

Addition, subtraction and logical instructions will obviously be the
responsibility of the ALU. However, in the interests of versatility, nearly all
data is made to pass through the ALL] irrespective of the particular
instruction. For example, data can pass through the ALU without change by
adding zero. This may seem time-wasting but is justifiable from a wider
viewpoint of a wider system. For example, address modification by indexing
involves adding the contents of X or Y to the operand so the ALU is directly
involved.

The 6502 is incapable of multiplication, division or exponential
operations. It is not alone in this respect. It is very rare to find 8-bit
microprocessors capable of performing any arithmetic instructions other than
addition. Even subtraction is achieved by the roundabout way of adding the
complement.

Before criticising these limitations. it should be remembered that the
microprocessor was designed with the primary objective of controlling
electrically operated devices and a primitive instruction repertoire was quite
sufficient for the purpose. It was never intended to be the brain of a general
purpose computer. However. if a machine can add, it is fairly easy to write
subroutines which can multiply, divide and handle exponentials. Users of
BASIC, or indeed most other high level languages, are unaware of the
primitive capabilities of the microprocessor although they have to pay for it
by reduced execution speed. Software solutions are always much slower than
hardware implementation.

The new breed of 16-bit microprocessors are virtually second generation
products many of which are including instructions which perform direct
multiplication and division at an impressive speed.

The design of an ALU is based on a parallel binary adder which can be
considered as the prototype. With this as a basic building block, it is a
relatively simple exercise in logic to arrange gates for implementing
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exclusive-or (EOR), logical anding (AND) and the inclusive-or (ORA)
functions. Finally, it would only require 'function select' inputs to complete
the transformation. Four of these, driven by the output word from the control
matrix, could activate any one of 16 functions.

Software Interrupt (BRK)

The details of all machine code instructions are given in the relevant chapter
but it us convenient at this stage to introduce the BRK instruction. Interrupts
are normally the prerogative of peripheral devices but BRK us software
initiated. Superficially, it just stops the computer but a dig beneath the surface
reveals some interesting side-effects. The instruction takes 7 clock cycles to
complete the following steps:

(1)  It sets the B Hag in the process status register (P).
(2)  Adds 2 to PC
(3)  Sets the I and B bit in P then pushes P on stack
(4)  Loads contents of &FFEE into PCL and FFFF into PCH.

The motive behind this seeming complexity is to aid the writing of software
error traps during program development. It is commmon practice to put BRK
at strategic 'bug-hazard' points. This would be useless if the sole function of
break was to kill all program flow completely. However, it will be seen from
the above that a convenient loop-hole is prepared. Providing a routine is
written, with the start address residing in the Break Vector at &FFEE/&FFFF,
control is automatically diverted to the routine rather than stopping dead. The
routine must establish, by pulling P back from the stack, that the B bit was set
as a result of a true BRK rather than a genuine peripheral interrupt.

Summary

1. Both the Electron and the BBC machine use the 6502 and both use the
same machine code assembler.

2. The 6502 does not allow disk software written under CP j M. To utilise
CP/M, the BBC Second Processor controlled by the Z80 microprocessor
is required.

3. The BBC machine uses sixteen type 48l6 chips to form 32K of RAM.
4. All internal registers communicate by means of input} output gates at the

entrance to the highways. The gate controls ensure that only data from
one register output occupies a common highway.

5. Not all registers in the 6502 are directly programmable.
6. The single accumulator (A) is the only register equipped with arithmetic

facilities. There are no incrementing or decrementing instructions.
7. X and Y registers are used as transfer registers to and from A, loop
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counters and indexed addressing modes.
8. Address modification by indexing consists of adding X (or Y) to the

operand address.
9. The process status register (P) is a collection of seven independent flag

bits, each signalling some important result. Most instructions keep P
updated. Conditional branch instructions depend on certain flags.

10. The N flag = 1 if bit 7 is set. The Z bit = 1 on a zero result. Neither are
directly programmabie.

11. The V bit = 1 on a two's complement overflow result It can be ignored if
the data is unsigned binary. The V bit copies bit 6 during the BIT test. It
can be directly programmed by CLV and SEV.

12. The B bit = 1 if an interrupt occurs as a result of BRK.
13. The D bit can only be directly programmed. SED makes D=11 causing

subsequent numerical data to be processed in BCD format. CLD makes
D=0 causing subsequent numerical data to be processed in BCD format

14. SEI sets the I bit, preventing interrupt when requested by IRQ. It is
cleared by CLI.

15. The C bit sets to 1 on detecting a carry-out from the msb. The C bit can
act as a ninth data bit.

16. The stack is any dedicated area in page 1 of RAM. PSH pushes A to
stack. PLA pulls A back from stack.

17. The address of the next vacant stack address is maintained by SP.
18. SP is automatically incremented after a push and decremented before a

pull. This causes the stack to rise and fall.
19. The contents of SP can be initialised or changed only by means of TXS.
20. Access to the stack must obey the rule, last in first out.
21. The stack is used by subroutines to hold the return address, pending RTS.
22. The program counter (PC) is the only I6-bit register and is not directly

programmable. It is in supreme control of the program sequence by
always pointing to the next byte in the program.

23. PC is altered directly by JMP. An offset may be added by relative
address action during conditional branches.

24. A pulse on the reset line (RST) initialises peripheral devices to zero. PC
is then loaded by the contents of the address pointed to by the start-up
vector at &FFFC, &FFFD.

25. The instruction register (IR) holds the op-code fetched from memory.
26. The op-code defines the instruction type and carries information on the

number of operand bytes to follow.
27. The data register (DR) is a bidirectional buffer between the data bus and

the highways.
28. Devices which deliver outputs to the data bus must be tristate.
29. The address register is in two halves, ADL and ADH, holding low and

high bytes of address respectively.
30. Each instruction is fetched and executed by an individual microprogram.
31. Microprograms are built into the 6502, and selected by the op-code

currently resident in IR.
32. Each step of the micro program outputs a series of bits on the control
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fines, opening the appropriate highway gates, R/W lines, etc. in the
correct sequence.

33. A microprogram is divided into the FETCH phase which, apart from the
number of bytes fetched, will be similar for all instructions. The
EXECUTE phase is different for each instruction.

34. The 2 MHz clock pulses are subdivided within the decode matrix to form
many sub-pulses. Sub-pulses are used for timing the individual steps of a
microprogram.

35. The ALU is built round a parallel binary adder. Subtraction is achieved
by adding the two's complement. EOR, ORA and AND operations are
incorporated by modified addition.

36. Multiplication, division and exponentiation is not catered for. They are
relegated to software solutions.

37. BRK provides software interrupt. It sets the B bit and I bit, pushes the
status register to stack and loads the contents of the break-vector
locations into PC

Self test

2.1  What kind of RAMs require refreshing?
2.2  Why are static RAMs unpopular in microcomputers?
2.3  What is meant by 'memory-mapped peripherals'?
2.4  How is incrementation performed in the X and Y registers?
2.5  In what important respect does the accumulator differ from other

registers?
2.6  What is the effective address (in hex) if Y contains &04 and the

instruction is LDA &2CFF,Y?
2.7  Why is the process status register a non-typical register?
2.8  Which flag bits can be directly programmed?
2.9  There are two Hag bits which can only be changed by direct

programming. Which are they?
2.10  Which flag bits cannot be directly programmed?
2.11  Under what circumstances can a programmer safely ignore the status

of the V bit?
2.12  Apart from detecting overflow, what other significance has the V bit?
2.13  If the Z bit is 0, what can you deduce from this?
2.14  Which flag can be treated as a 'ninth' bit'?
2.15  Whereabouts in the system is the stack?
2.16  How can the stack pointer be initially loaded?
2.17  Is the stack pointer automatically incremented before or after PLA?
2.18  If data items A, B and C are pushed onto the stack in that order, which

item is pulled back first?
2.19  During a subroutine call by JSR, the two-byte return address is pushed

to stack. Which byte is pushed first, high or low byte'?
2.20  From which register does the return address (mentioned in 2.19)
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originate?
2.21  What address is left in the program counter after a byte is fetched?
2.22  Name the control line which defines the direction of the data register?
2.23  How does a micro program differ from a conventional program?
2.24  In what register is the op-code held during decoding?
2.25  How can a programmer detect whether an interrupt was caused by a

peripheral request or by software?
2.26  For which microprocessor instruction set was CP/M written?



Chapter Three
The 6502 Instructions and
Addressing Modes

Initial terms and definitions

Some readers will be aware of the following points but repetition is not
always valueless. In any case, the terms used to describe aspects of machine
code are far from standardised. The previous book,Discovering BBC Micro
Machine Code, examined each separate instruction in reasonable detail and it
would be pointless to go over the same ground here. Instead, the complete
instruction set is relegated to Appendix C which should be consulted
frequently during reading this and subsequent chapters. When programming
in higher level language such as BASIC, an individual order to the computer
is called astatement. For example, Energy=Mass*C^2 is an example of a
statement.

In machine code, orders given to the computer are by means of
instructions. Instructions are primitive and many are needed to form the
familiar high level statements. An instruction will normally consist of anop-
code to indicate the required action and anoperand to indicate where the data
is to be found. Sometimes, the location of the data will be obvious from the
op-code but, in the general case, an operand is required.

There are several ways in which the operand can specify the location of
the data. They are known asaddressing modes and there are thirteen of them
in the 6502 although not all of these are available to every instruction.
Because one byte is used for the op-code it would be possible to have 256
different ones. However, 90 of the possible combinations are reserved for
'future expansion' (illegal in other words). This leaves 166 valid instructions
to choose from. The task of selecting the most suitable op-code is less
bewildering than it appears from the figures. There are only 56completely
different instructions. It is the available addressing modes for each instruction
which multiply the choice.

The op-codes are specified by means of a pair of hex digits. There is a
different op-code for every variation of addressing mode. However, the hex
coding is really of academic interest because all machine code on the BBC
machine will be entered by means of the resident assembler. The details of the
assembler will be discussed fully in Chapter 4. The most useful property of an
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assembler is the facility to enter op-codes in three-lettermnemonic form. The
desired addressing mode is indicated by the form in which the operand is
written. The repertoire of instructions is set out formally in Appendix C.
Consequently, the purpose of this chapter will be to explain the symbols, to
define the addressing modes and to offer guidelines on the choice of a
particular instruction and the most suitable method of addressing.

Factors influencing choice

It is not easy to give a specific answer to the question 'What is the correct
instruction to use here?' The choice is very often a compromise between
execution speed, memory economy and the demands of structure. Newcomers
to machine code may be quite satisfied if their subroutine works at all but it
soon becomes apparent that there are good and not so good variants. It is
popularly supposed that a program written in machine code will always be
much faster and take less memory than the BASIC version. This is a
reasonable generalisation but not a universal truth. A poorly written machine
code program could be slower than the BASIC equivalent Even if it is faster,
it is well to remember that a speed advantage, to have any real meaning, must
be assessed on human, rather than machine, time scales. If a BASIC version
runs in one second and the machine code version runs in a millisecond, the
advantage is academic rather than visible. The items of information needed to
assess the merits of each instruction are as follows:

(1)  What does it do? This information is conveyed by a three-letter
mnemonic such as LDA or ADC. Although the mnemonic itself conveys a
reasonable idea of what the instruction does, it is primarily intended as an aid
to the interpretation of a listing. It cannot cover all the subtleties. It is
necessary to augment the mnemonic by either a verbal definition or by a
loosely standardised format known as operational symbols (discussed later).
(2)  What addressing modes are available?
(3)  What flags in the process status register are altered (updated)? Ignorance
or confusion in this area is the cause of many an intractable bug. (4) How
many clock cycles does it consume? The BBC machine runs at 2 MHz so
each clock cycle is half a microsecond. The number of clock cycles is
influenced more by the addressing mode than the actual instruction. Clock
cycle tune is particularly critical. If the instruction is within a loop which
resolves many times. Outside a loop, it is seldom important enough to
influence choice.
(4)  How many bytes are in the instruction? All instructions take at least one
byte because they all have an op-code. The operand, however, can be absent
altogether, one byte long, or two bytes long. Knowledge of the number of
bytes required can be helpful. For example, it can be a matter of doubt in
certain circumstances whether to write &004B or &4B in the operand. They
are mathematically the same but an incorrect choice can cause havoc to the
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program.
(5)  What is the hex op-code? Programming will always be performed with
the aid of the assembler which uses mnemonic op-codes. However, it is still
necessary at times to be aware of the hex coding for every instruction because
the assembled machine code program will include it. It is easy to use an
incorrect address mode by mistake when writing the operand but the hex
code, which is specific for the addressing mode, might highlight the error
during debugging. It is interesting, but not particularly rewarding, to write out
the hex code in binary. It gives an insight into the mind of the microprocessor
designer because some intriguing patterns emerge which can give a clue to
the micro program within the chip.
(6)  What is the correct syntax for the operand? This depends on the
addressing mode and the rules are rigid, nacre so than in BASIC. The
assembler does its best but it would be foolish to add user-friendliness to its
list of virtues. Make a mistake and you are on your own!

Operational symbols

Universities have traditionally considered computing and data processing
subjects to be the prerogative of the mathematics department. The computer is
useful as a tool in mathematics so it was considered only natural that
computing should be taught by mathematicians. Whether this has helped or
hindered progress may be arguable. There is no denying that a mathematical
brain was behind the establishment of operational symbols.

How do we describe exactly what an instruction will do, bearing in mind
that there must be one, and only one, interpretation? Normal language is one
way; perhaps the obvious way. But, to a mathematician, normal language
lacks precision and is difficult to formulate concisely without using a lot of ifs
and buts. Operational symbols are concise and unequivocal. They explain
what the instruction does but make no attempt to explain the meaning of the
operand. This is understandable because the meaning of an operand depends
only on the addressing mode chosen. For example, the instruction LDA. will
have the same operation symbols whether it is using immediate, zero page,
absolute, indexed or indirect addressing. The general pattern of operational
symbols is of the form:

Action → Result

The arrow denotes the direction of data transfer and is preferable to the
sign sometimes used. The abbreviations used for the registers are those
already used but M is used to represent the data specified by the operand.

As a simple example, the instruction STA could be described as follows:

A → M
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This means 'Store a copy of the contents of the accumulator in the address
specified by the operand'. Note that the arrowpoints from the source to the
destination and only the destination contents are over-written by the new
data; the source data is preserved.

To take a little more complex example, the instruction ADC could be
described concisely as follows:

A+M+C → A

This means 'Add together the present contents of the accumulator, the data
specified by the operand, and the carry bit, then place the result in the
accumulator' 

The shift and rotate instructions are fearsome looking. For example, the
instruction ASL (which is Arithmetic Shift Left) has the operational
symbolism:

C ← (7. . .0) ← 0

The bracketed expression indicates the bits within a byte numbered 0 to 7.
The action shows that a zero enters from the right and overspill from bit 7
goes into the carry.

Classification of instructions

There are many ways of classifying instructions. Appendix C simply lists
them in alphabetical order by mnemonic group. This is useful as a quick
reference but is by no means a scientific classification. Appendix C2
classifies them according to the flags affected in the processor status register
and can be quite useful. Appendix C4 is an attempt to classify them according
to 'popularity'. It is undeniable that some instructions out of the 56 are used a
lot, some are used at times and a few are used spasmodically. Unfortunately,
the choice of instructions to perform a given task is very much an individual
affair. Some programmers have a particular liking for a certain subset. Indeed,
it is often possible to recognise a friend's handiwork from the listing which
can be almost a fingerprint. Because of the individual character, Appendix C4
can be no more than the author's personal choice although it might help those
who are initially bewildered.

In this chapter, the instructions will be introduced (rather than classified),
according to need. No account will yet be taken of the various addressing
modes under each mnemonic.
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Finding temporary homes for data

Due to the single accumulator in the 6502, it is often necessary to find a
temporary home for existing data. There are several choices:

(1)  Transfer A to another register by the use of TAX or TAY and later
restore by TXA or TYA. This is the simple and speedy solution because they
are both single-byte instructions, taking only two clock cycles. The trouble is
that existing data in the X and Y registers may also be valuable and must not
be overwritten. X and Y are often totally committed for indexing or loop
counting.
(2)  Push A to stack by using PHA and retrieve later by PLA. These are
single-byte instructions but they take three clock cycles. It is important to
bear in mind the LIFO (last in first out) nature of the stack. Mistakes in the
order of retrieval could result in false data entering A. Another danger, of
course, is stack overflow although this should be a comparatively rare event.
(3)  Store A in a memory location by use of ST A and retrieve it with LDA.
This will take three clock cycles if the location is on page zero and four on
any other page (indexing and indirect addressing can take five or six cycles).

Performing arithmetic

There are only two direct arithmetical instructions, ADC and SBC for
addition and subtraction respectively. The carry is always involved and, to
avoid introducing garbage carries left over from a previous operation, it is
important to be aware of the following rules:

(1)  Before using ADC, the carry should normally be cleared with CLC.
(2)  Before using SBC, the carry should normally be set with SEC.

Although in some circumstances the carry can be treated as the 'ninth bit', it
should be borne in mind that this is purely a way of looking at it. Obviously,
this ninth bit is not transferred by STA, TAX or TAY.

Addition and subtraction of single byte numbers are, of course, severely
limited in the range of the result (255 in unsigned binary and +127 and -128
in two's complement binary). Fortunately, the carry bit allows double or
multiple byte numbers to be added or subtracted because it can act as the
continuity element between the msb of one byte and the lsb of the next. Thus,
the carry is only cleared before the two lower order bytes are added. The
higher order byte additions will include the carry over (if any) from any
previous process so it would be fatal to clear the carry first.

It is important not to forget that there are two arithmetic modes depending
on the D flag being set or cleared. The default condition is D = 0, which is the
normal two's complement binary arithmetic mode. It is wise, though, to
ensure the default condition by initialising with CLD at the head of a
program. On the rare occasions when decimal (BCD) mode is required then
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the initialisation begins with SED, but remember this modecontinues until
cancelled again.

Multiplication and division is possible by a tongue-in-the-cheek method
using ASL and LSR respectively. The operations are limited to integral
powers of two. Watch must be kept on overspill from the ms b in
multiplication and the lsb in division.

Subject to overspill into the carry, shifting left by ASL will multiply by
two each time so four consecutive ASL operations will multiply the existing
data by 16. Division by two is achieved by LSR although we must remember
that the overspill from the right (from the lsb) goes into the carry. As a matter
of interest, the reason why LSR is named Logical Shift Right is due to this
very reason. It is arithmetically absurd for carry status to be in the lsb
position, hence it is deemed to be 'logical' shift. This is in contrast to ASL
(Arithmetic Shift Left) where the carry action is at the msb end. Unless the
programmer is sure, from previous knowledge of the data, multiplication and
division by these instructions must check for the presence of a carry after
each use. There will be exceptions, of course, such as when multiple-byte
precision is used. In these circumstances, the carry will be providing
continuity between the component bytes when used in conjunction with ROL
or ROR.

Clearing memory and registers

There are no instructions in the 6502 which can clear any of the registers or
memory locations to zero. The usual way to clear registers is to store zero in
them. To clear memory locations, a previously zeroed register can be stored
in them. Those who are fascinated by novelty may be attracted by the
following little snippet:

Exclusive-oring data with itself always results in all zeros.

For example, if A contains &9D and we write EOR #&9D, the accumulator
result is &00. (To confirm, write out the example in binary form.)

Up-counting and down-counting

Counting is essentially an adding-by-one operation and implies 'upcounting'.
It is also calledincrementing. Down-counting is subtracting by one. It is also
calleddecrementing. The X and Y registers can be counted up or down by the
single byte instructions INX, INY, DEX and DEY, each taking only two
clock cycles. Data in memory can be incremented or decremented by means
of INC or DEC but not economically. They each take five to seven cycles
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depending on the addressing mode in use.
The accumulator is left out in the cold, lacking an increment or decrement

instruction. It can, of course, be done by adding or subtracting 1 which, like
DEX or INX only takes two clock cycles, but it requires two bytes even for
the immediate addressing mode. There is also the possibility that the carry
might have to be cleared first which, if forgotten, could lead to a mystery bug.
An alternative is some roundabout method such as T AX then INX then TXA,
providing of course, that X (or Y) is free.

Counting is an essential part of loop control. The number of loop revs can
be achieved either by starting with N andcounting down to zero or starting
with I andcounting up to N. The advantage of the count down method is that
testing for loop exit can be achieved with BNE or BPL. Unfortunately, it is
very easy to be 'one out' in the count down. If we count up to N, an extra
comparison instruction such as CPX, CPY or CMP is required to check the
exit condition but the method may have the advantage of seeming more
'natural' and errors by one are less likely.

Processing particular bits

There will be times when it will be required to operate on one or more
particular bits within a byte, rather than on the entire byte. We may wish to
ensure, say, that bit 3 is set to 1 without altering the remaining bits. The
possible operations fall into three main groups,clearing bits to zero, setting
bits to 1 and finally,changing bits. This is achieved by using one of the three
'logical' instructions AND, ORA and EOR in conjunction with the appropriate
mask word in the operand. The action is always on the accumulator.

To clear selected bits:

Use AND with an operand mask as follows: '1's in the mask will leave
corresponding bits unchanged. '0's in the mask will ensure that corresponding
bits are 0.

To set selected bits:

Use ORA with an operand mask as follows: '0's in the mask will leave
corresponding bits unchanged. 'l's in the mask will ensure that corresponding
bits are 1.

To change selected bits:

Use EOR with operand mask as follows: '0's in the mask will leave
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corresponding bits unchanged. '1's in the mask will ensure that corresponding
bits are changed.

The explanation for the above behaviour can be found in Appendix A under
the heading Logic Gates. However, the following examples may help in
understanding how to work out the correct mask:

(a)  To ensure that bit 5 in the accumulator is a 0, use AND #&DF (the mask
in binary is 1101 1111).
(b)  To ensure that bits 2 and 6 in the accumulator are '1's, use ORA #&44
(the mask in binary is 0100 0100).
(c)  To ensure that bit 3 in the accumulator is changed, use EOR #&08 (the
mask in binary is 0000 1000).

One's complement of accumulator
It is sometimes necessary toflip all the bits in a byte (i.e. produce the one's
complement). Assuming the data is already in the accumulator, this can be
done by exclusive-oring as foflows:

EOR #&FF or EOR #255

Two's complement of accumulator
The two's complement is obtained by adding 1 to the above. Unfortunately,
we can't add the 1 by incrementing because the result is in the accumulator.
The only way is to follow with ADC #1, making sure to clear the carry first.
The coding is as follows:

EOR #&FF
CLC
ADC #1

Since the two's complement of X is 0-X, an alternative method is simply to
subtract the number from zero. This is, by definition, the two's complement
but would entail storing the data first before loading the accumulator with 0.

Finding the state of a particular bit
It is sometimes important, particularly in peripheral control, to find out the
state of one particular bit within a byte. This can be done by loading the byte
into the accumulator, erasing all bits except the one of interest, then testing
for zero. If the result is non-zero, the bit must have been a 1. For example,
suppose we are interested in bit 3, the coding could be:

LDA data
AND #08 (0000 1000)
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BNE etc.

An alternative method, which only works if bit 6 or bit 7 is involved, is the
BIT test. For example, we can start by writing:

BIT data ('data' is an arbitrary address)

This copies bit 6 and bit 7 of the data into the V and N bits respectively. This
can be followed by BVS or BMI as required. The BIT instruction takes 3
clock cycles if data is on page zero but otherwise 4 cycles. As a bonus, the bit
test also logically ANDs the data into the accumulator. If this is a nuisance
rather than a bonus, the accumulator should be stored first. Because of this,
use of the BIT test is not a commonly used instruction.

Besides the three logical instructions AND, ORA and EOR, the shift and
rotate instructions LSR, ASL, ROR and ROL are also used to play around
with bits. LSR and ASL should be thought of as 'open-loop' operations
because bits are lost if the carry is already full. In contrast, ROR and ROL are
'closed-loop' because the bit pattern circulates. They can all play an important
role in peripheral work and some off-beat requirements. The shift and rotate
instructions are unique in having 'accumulator' addressing. Thus, they can act
on the accumulator or a memory location. If the action is required on the
accumulator, the mnemonic must be followed by A. For example, to shift the
accumulator right, we must write LSR A. When using accumulator
addressing, no operand is necessary (the 'A' is not a true operand and does not
consume a byte). Because of this, it should be noted (because it is a common
mistake) that the shift and rotate instructions must either have an operand or
an 'A'. For example, a naked LSR is illegal.

Double byte multiplication
This provides a useful exercise in shift and rotate operations. Although ASL
and ROL both multiply by two. the carry can be a problem if they are not
chosen wisely. No carry must be allowed to enter the lower order byte from
the right so ASL is appropriate. On the other hand, the higher order byte must
take into consideration the carry from the right so ROL must be used.
Assuming the data is in two bytes of memory, the coding would be:

ASL low-byte
ROL high-byte

Double byte division
The opposite is required here. Thus, the higher order byte must be attacked
first and a carry must not be allowed to enter from the left. This suggests LSR
as the first step. The lower order byte must receive a carry (if any) from the
left so the correct instruction here is ROR, Assuming that the data is in two
bytes of memory, the coding is therefore:
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LSR high-byte
ROR low-byte

Branching techniques

The equivalent of the dreaded GOTO in BASIC is JMP. The jump to a new
part of the program is unconditional and, because JMP has a two-byte
operand, can reach any part of the 64 K memory map. Appendix C lists seven
conditional branch instructions. A common cause of a programming bug is an
incorrectly used branch test allowing an unexpected loophole. The following
points are worth emphasising:

(1)  Branch instructions themselves haveno effect on the processor status
register. Thus, two different branch instructions can follow one another so the
original data can be tested for two conditions.
(2)  BMI or BPL should only be used if data is represented in two's
complement binary. They are meaningless in unsigned binary because there
is no differentiation into positive or negative sets.
(3)  Before using a branch, make certain that thelast operation actually
updates the bits you are testing. In other words, check up on Appendix C2
which includes a classification of all instructions according to their effect on
the processor flag bits. For example, it may be pointless to use BCC after
DEX because only the N and Z flag bits are updated.

The limits of +127 byte forward or -128 bytes backwards have been covered
elsewhere. If the branch is beyond range (which should not be often) the
customary solution is to combine the branch with a JMP. For example,
suppose the branch is to be BNE LOOP and the label 'LOOP' is out of range.
The conventional way out is as follows:

BEQ SKIP
JMP LOOP

.SKIP

Note that the opposite test (BEQ) is used instead of BNE so the jump is leap-
frogged to the label SKIP.

Comparisons

It is often required to compare two numbers in order to set the status flags
without altering the contents of the register. There are three instructions
which perform this task, all of which set the N, Z and C flags:

CMP, which compares memory with the contents of the accumulator.
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CPX, which compares memory with the contents of the X register.
CPY, which compares memory with the contents of the Y register.

The comparisons are done by subtracting the memory data from a copy of the
register in question. The operational symbolism is therefore A-M, X-M or Y-
M respectively. It is easy to get mixed up with the direction of the subtraction,
so note carefully that the subtraction is from the register. A suitable branch
instruction must follow a comparison (otherwise there would be no point in
asking for the comparison). It is possible to get in some funny mix-ups. The
following examples may help in choosing the correct branch:

(1)  To check if the register is less than memory, follow with BCC.
(2)  To check if the register is equal to memory, follow with BEQ.
(3)  To check if the register isgreater than memory, follow with BEQ first
then BCS.
(4)  To check if the register isgreater than or equal to memory, follow with
BCS.

Addressing modes

Commencing with a definition, an addressing mode is the significance to be
attached to the operand part of the instruction. Addressing modes available on
the 6502 can be conveniently divided into three groups: non-indexed, simple
indexed, and indirect indexed. Most of these modes may already be familiar
to most readers, especially those who have read Discovering BBC Micro
Machine Code. However, some revision or restatements are advisable, if only
to maintain continuity during the lead-up to the rather nasty (nasty to grasp,
that is) indirect addressing modes. Appendix C3 classifies instructions
according to the addressing modes available.

Implied addressing
This is the simplest addressing mode in the repertoire because memory is not
involved, neither is an operand required. They are all single byte instructions,
conveying full information by the op-code alone. They all refer to internal
operations on the 6502 registers. Because most of them only take two clock
cycles, they are, or should be, the popular choice wherever possible

Instructions which allow implied addressing and consume only two clock
cycles are: CLC, CLD, CLI, CL V, DEX, DEY, INX, INY, NOP, SEC, SED,
SEI, TAX, TAY, TSX, TXA and TXS.

The following take more than two clock cycles: BRK, PHA, PHP, PLA,
PLP, RTI, and RTS.
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Immediate addressing
Memory is not involved because the operand is the data. All instructions
using immediate addressing consume two bytes: one for the op-code and one
for the operand. The standard assembler prefix to denote this mode is the
symbol (if). For example:

LDA #32 or LDA #&20

Both are using immediate addressing. The first example is loading the
decimal number 32 into the accumulator while the second example loads hex
20. Whether to use hex or decimal is optional but the guiding rule is to choose
the more natural form for the purpose in use. For normal numerical work,
decimal would be the preferred notation but for AND, EOR or ORA masks,
hexadecimal has more meaning. Although it may seem to be stating the
obvious, the largest numerical operand is 255 or &FF because immediate
addressing only allows a single byte operand. Risking another obvious
statement, the assembler would be very unhappy if we tried to load negative
numbers in the form LDA #32.

Immediate addressing is used for constants, particularly in conjunction
with comparison instructions at the end of a loop as, for example, CMP #20.
The constant must, of course, be known to the programmer at the time of
writing. In BASIC, we are usually extolled to avoid constants within the body
of the program, the advice being to assign them to a variable at the head of
the program. Such advice is not necessarily sound when applied to machine
code because this would mean a trip to memory to obtain the data. The power
of immediate addressing lies in the fact that memory is not involved: the data
is immediately available in the instruction, providing, as said before, the
programmer knows it at the time of writing.

There are eleven instructions which allow immediate addressing: ADC,
AND, CMP, CPX, CPY, EOFL LDA, LDX, LDY, ORA and SBC.

Absolute addressing
We should begin by sorting out some of the confusing terms used by different
authorities. The term 'direct' addressing is often used loosely when the
operand refers to theaddress of data, rather than the data itself. Thus, the
instruction LDA &0034 is an example of 'direct' addressing (note there is no
'#' prefix). The instruction causes the contents of address &0034 to be placed
in the accumulator. However, bearing in mind that 6502 has a 64K memory
map, it will be evident that addresses between &0000 and &D0FF would
result in an inefficient use of memory space if the full four-hex digit address
were mandatory. Since the data bus is only eight bits wide, the
microprocessor would need to make two trips down the address and up the
data bus to collect the full operand. The first two leading zeros are useless
passengers.

To improve the efficiency, the address space is broken down into two
domains. As mentioned in an earlier chapter, addresses within the range &
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0000 to &OOFF are designated the page zero domain, to distinguish them
from all other addresses &0100 to &FFFF. With regard to the terms used, the
Motorola 6800 (the ancestor of the 6502) used the term 'direct' addressing
instead of zero-page addressing and 'extended' addressing to cover the rest.
Many machine code programmers, brought up on the 6800, had to readjust to
the change in terminology. Returning to the 6502, the term 'absolute'
addressing is applied to addresses, anywhere in the 64K memory map. In
other words, absolute addressing requires four hex digits, while zero-page
addressing only requires two. Instructions using absolute addressing require
three bytes, one for the op-code and two for the operand.

There are 21 instructions which allow absolute addressing. These are:
ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA,
LDX, LDY, LSR, ORA, ROL, ST A, STX and STY.

Zero-page addressing
The concept of zero-page (sometimes called page-zero) is so important that it
justifies emphasising the boundaries once again.

Zero-page is the address range &00 to &FF or 0 to 255

There are reasons why this page deserves special treatment. There are obvious
speed advantages, due to the single byte operand. This also leads to a saving
in program memory space. Another reason is that the more complex
addressing modes (to be dealt with later) require address pointers which must
be in zero-page. Perhaps the most disappointing aspect is the scarcity of
available space. The operating system, not surprisingly, occupies the vast
majority of zero-page. In fact there are only thirty-two locations guaranteed
free under all circumstances in the BBC machine:

Free space in zero-page is between &70 and &8F inclusive

Because of the restricted space, it is essential, before planning any
ambitious machine code systems, to choose zero-page locations with care.
The apparent speed advantage; is not, in itself, sufficient to justify
squandering locations. In fact, it is sound philosophy to treat zero-page
locations in the same fight as registers as valuable and scarce commodities, A
good rule is to use zero-page for the most frequently used variable data.
Sometimes, it may be wise to use zero-page for data within a loop, even if it
means temporarily transferring it from an absolute address and then back
again. The advantage of this approach may be appreciated more readily if we
examine a few figures. Suppose a variable data item, located in an absolute
address, is in the middle of a long loop which revolves 10000 times. Suppose
we then transfer it temporarily to zero-page before entering the loop by using:
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LDA &xxxx (absolute, 4 clock cycles)
STA &xx (zero-page, 3 clock cycles)

After the loop ends, the status quo can be regained with:

LDA &xx (zero-page, 3 clock cycles)
STA &xxxx (absolute, 4 clock cycles)

The four extra instructions for the complete transfer have taken a total of 14
clock cycles and consumes an extra 10 bytes of programming space. The
saving within the loop, however, would be 1 cycle per rev, leading to a total
saving of 10000 - 14 = 9986 clock cycles. We shall see later that indirect
address pointers in zero-page will take two bytes each and many of these may
be required in a program of even moderate complexity.

Relative addressing
The intimate details of relative addressing are only of vital importance if the
only method of entry is via a machine code monitor. Since the BBC machine
has the advantage of assembler input, it is not necessary to spend quite so
much time on the subject. It would not be wise, however, to skip the subject
altogether. If we did, the hex columns of the assembler output could often
look mysterious.

Relative addressing is only used withbranch instructions. In fact,
forgetting the assembler for a moment, relative addressing is the only method
possible in branch instructions. Using hex machine code as an example,

BEQ &04

The literal meaning is 'If equal to zero, branch 4 bytes forward'. The term
'relative' refers to the program counter. If the branch conditions are satisfied,
the program counter (which always contains the address of the next program
byte) has 04 added to it. This causes the next byte executed to be 04 bytes
ahead, relative to the previous position. In other words, the operand indicates
the number of bytes to be skipped. To branch backward, the two's
complement is required (see Appendix A) so, to branch 04 bytes back, the
instruction would be BEQ &FC. Clearly, the calculation of the correct
operand is an error-prone exercise. The assembler takes all the drudgery out
of relative addressing by allowing the operand to be a label instead of a
relative address. We can use,

BEQ Loop

This works, subject to the proviso that the line, to which we wish to branch, is
prefixed with the 'Loop' label (naturally, the choice of label is arbitrary). The
assembler is hiding from us the fact that relative addressing is being used.
Instead, it appears as a simple 'branch to label' operation which is far less
error-prone than grappling with relative addressing.
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As for the timings of relative addressing, these will depend on whether or
not the branch is taken. If taken, a branch takes 3 clock cycles or, if across a
page boundary, 4 clock cycles. If it is not taken, the branch takes 2 clock
cycles.

The extra cycle when a page boundary is crossed is due to the alteration to
the high- as well as low-byte of the addresses. If speed is very critical, a
programmer should watch the hexadecimal assembly listing closely to see if a
page boundary is crossed. For example, suppose the program counter was
showing &05FC prior to a branch. If the relative branch is &04 ahead, the
new program counter reading would be &0600, therefore there has been a
boundary crossing between page 5 to page 6 which consumes an extra clock
cycle. If such a branch was in the middle of a loop which revolves N times, it
would be sensible to manipulate the coding, or alternatively relocate, so that
the branch range was limited to the same page, and saving N clock cycles. It
is surprising how attention to such small details can result in a material gain
in execution speed. Although terribly wasteful in terms of memory, it is better
to cut loops out altogether and resort to straight-in-line coding if speed is
absolutely vital. In most cases, this will be little more than an idealistic
solution.

Indexed addressing
Although briefly discussed elsewhere, the concept of indexed addressing
deserves detailed treatment. As far as the BBC assembler is concerned, the
indexing mode is denoted by a comma following the operand, followed in
turn by X or Y. For example:

LDA &2356,X or LDA &75,Y

Both are examples of indexed addressing but the first is using an absolute
address and the second is using a zero-page address. The contents of the X (or
Y) register is automatically added to the operand address before the
instruction operates on the resultant address. It is well to recap on the terms
used in indexed addressing:

(a)  The base address is the address as stated in the operand.
(b)  The relative address is the contents of index register (X or Y).
(c)  The absolute address is the sum of the base and relative addresses.

As an example, assume that X contains 3 and that the instruction LDA &34,X
is written. Thebase address is 34, therelative address is 3 and theabsolute
address is 34+3=37. Alternatively, the term 'effective' is often used in place of
'absolute'.

Two forms of indexed addressing are recognised:

(1)  Absolute indexed, when the operand is any address in the 64K memory
map. The instructions allowing X as the index register are ADC, AND, ASL,
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CMP, DEC, EOR, INC, LDA, LDY, LSR, ORA, ROL, SBC, and STA. The
Y index register can be used in ADC, AND, CMP, EOR, LDA, LDX, ORA,
SBC and STA
(2)  Zero-page indexed, when the operand is on page-zero. The instructions
which allow X as the index register are ADC, AND, ASL, CMP, DEC, EOR,
INC, LDA, LDY, LSR, ORA, ROL, SBC, STA and STY. There are only two
instructions which allow the Y register for indexing. They are LDX and STX.

A mysterious bug can occur when using zero-page indexed addressing if the
contents of X plus the operand address come to more than 255 or &FF.
Clearly the single byte operand cannot hold numbers of this value so a wrap-
around takes place. For example, if the instruction is LDA &FE and X
contains 2, the arithmetical sum would be &100. The wrap-around action,
however, will mean that the first hex digit is dropped and the absolute address
will be &00 instead of &100.

Indexing allows any item in a block of data to be addressed by suitable
adjustment of the index register. The operand of an indexed instruction (the
base address) can be the address of the first item in the block or the last,
depending on convenience or the programmer's whim. For example, if the
base address is to be the start of the block, the index register can be
incremented (by INX) within the loop until the last item is reached. On the
other hand, it may be more convenient to choose the end of the data as the
base address,. in which case the index register is decremented (by DEX) until
the first item is reached. Decrementation of the index register towards zero is
generally recognised to be the more efficient method because the end-ofloop
test can be carried out by a simple branch, such as BNE. The incrementation
method demands a comparison (CPX or CPY) before the branch test.
However, program legibility is sometimes more important than speed. There
is a natural inclination to count up towards a finite limit rather than to count
down towards zero and there is less chance of being 1 out in the count.

Besides accessing a data block sequentially, indexing is useful forlookup
tables. For example, imagine a table of sines (or other mathematical
functions) between, say, 0 and 89 degrees to be stored in a data block and the
base address is where sin(zero) is located. The table can be accessed by

LDA base, X

If the required angle is in X, the sine of the angle will be in the accumulator.
The limitation of 8 bits for each sine will only give an accuracy to about two
decimal places unless multi-byte working is used. Also, the programmer must
take account of the decimal point when interpreting the result. Obviously, it
would be absurd to use this method in place of the resident BASIC trig
functions unless high speed access is vital.

Indexing is really address modification made easy. Besides being
interesting, it is worth examining an alternative method (which was,
historically, used before index registers were thought of) involving direct
modification of the operand. This consists of loading the operand of an
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instruction into the accumulator (or other register), changing its value and
then returning it to the previous location. To see how this works, consider the
following line:

STA blogs

The operand has an arbitrary symbolic address. If this were in a loop and we
wished to store the next item in blogs+1 without using indexing, it could be
achieved as follows:

.Modify STA blogs
INC Modify+1

Note that the original line has now been given an arbitrary label 'Modify'
which is where the op-code STA is stored, so blogs must be located in the
next address, modify+ I. The next line increments the contents of blogs+1 so
we have achieved 'address modification' by a roundabout method. If the
change is to be more than just a simple increment say, adding 7 the coding
could be as follows:

.Modify STA blogs
LDA Modify+1
ADC #7
STA Modify+1

Such direct alteration of an operand by the program itself is sometimes
useful, but it is not a practice to be recommended. Listings of machine code
are never easy to follow and these sorts of tricks can only add to the general
confusion. It is worth emphasising that the primary function of an index
register lies in the ability to alter theeffect of an operand and withoutaltering
the operand itself. One disadvantage of the 6502, which soon becomes
evident in the early stages of programming, is the limit of 8 bits. This, of
course, restricts the range of addresses which can be scanned by indexing
even when absolute indexing is used.

Indirect addressing
Mastering any subject consists of systematically overcoming the various
intellectual hurdles which appear during a course of study. Student dropouts
may occur when a hurdle is reached which is just too high. In machine code
programming, there are many hurdles to overcome but the one which is
responsible for the greatest student drop-out ratio is the concept ofindirect
addressing. Indexing is relatively easy to grasp once the advantages of
address modification are realised but the following definition may help in
understanding why difficulties arise in indirect addressing.

An indirect address is the address of an address.
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In assembly language, indirect addressing is indicated by enclosing the
operand in parentheses as follows:

LDA (operand)

Note that although the operand is indeed an address, it is where the computer
must go to find the address of the data. We shall continue for the moment to
use LDA in examples, but it should be mentioned that simple indirect
addressing as described above is only available with one instruction, JMP.
Providing this is borne in mind, there is no harm in continuing with LDA in
the initial stages. Consider the instruction:

LDA (&70)

Because of the parentheses, &70 is an indirect address, referring the computer
to go to adouble-byte address &70 (low-byte) and &71 (high-byte). This
double-byte address is known as theaddress pointer because it 'points' to
where the required data is located. Continuing with the examples, suppose
that address &70 contains &35 and address &71 contains &0D. Returning
now to the original instruction, LDA (&70), it should now be apparent that
the contents of address &0D35 will be loaded into the accumulator. We will
further assume that &0D35 contains &56.

Let us recap, using this example to illustrate the terms once more:

The instruction was LDA (&70).
The indirect address is &70.
The address pointer is &0D35.
The data pointed to and finally loaded into the accumulator is &56.

Figure 3.1 may help in the understanding of the above example.

0D35 56

35

0d

70

71

Accumulator result

56

LDA (&70)

Memory

Fig 3.1. Data flow in indirect addressing.

When first introduced to the idea of indirect addressing, it is difficult to grasp
the use of it. It appears to be a complicated and tortuous path to follow,
merely to place data in the accumulation For instance, it is understandable,
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and pertinent, to ask why the line in the above example couldn't have been
written in the simpler absolute addressing form:

LDA &0D35

After all, it may be argued, both forms would have identical effects. They
would both load the same item of data into the accumulator, but the second
form would not be wasting a valuable location (&70) in zero-page and would
certainly be quicker to execute. The answer to this lies in the ability of
indirect addressing to alter the effect of an operand without altering the
operand itself. You will remember that this quality was the fundamental
justification for the use of indexed addressing. If the address pointer is
changed in any instruction using indirect addressing, the effect of the
instruction acts on a different location. This has far-reaching advantages,
particularly when writing general purpose machine code subroutines. Clearly,
when writing a subroutine intended to act on a block of data, it would be
restrictive to force the writer of the program using the subroutine to always
place the data in a fixed memory block. However, with indirect addressing,
all that is necessary is for the main program to know where the address
pointer is (&70 and &71 in our previous example) and load it with the
starting address of the data block. This flexibility means that the writer of the
machine code subroutine need have no knowledge of the whereabouts of the
eventual data block.

Before proceeding further, it should be remembered that the descriptions
so far have been simplified by assuming that a 6502 has the instruction LDA
(operand). Apart from the single instruction, JMP, simple indirect addressing
is not supported. Instead, we have the added benefit (and unfortunately, the
added complication) of indirect addressing combined with indexing. In fact,
there are two forms to choose from, called 'indirect indexed' and 'indexed
indirect'.

Indirect indexed addressing
This is the form most often required. Only the Y index register is allowed in
this mode. The assembler form is:

LDA (operand), Y

The operand is single byte and therefore can only refer to a zero-page address.
The only difference between this mode and simple indirect addressing is

the addition of the Y register contents to the address pointer. That is to say,
the operand still defines where a double-byte pointer is located but the pointer
is modified by theaddition of the Y register contents. As an example, assume
that the following line is written:

LDA (&70),Y

Also assume that the contents of address &70 contains &35, address &71
contains &0D and the Y register contains &02. The effective address pointer
will be &0D35 + &02 = &0D37. The effect of the instruction is therefore to
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load the contents of address &0D37 into the accumulator. The example
figures can be used to define a few more terms connected with indirect
indexing:

The instruction was LDA (&70),Y.
The base address pointer was &0D35.
The relative offset in Y was &02.
The effective address pointer was &0D37.

Figure 3.2 illustrates the example.

84

35

0D

0D37

70

71 LDA (&70),Y

Accumulator result

84

Y register

02

Fig 3.2. Data flow in indirect indexed addressing.

Indirect indexed addressing allows the effect of the operand to be altered
in either of two ways, by changing the base address pointer, by altering the
contents of the Y register or both. The index register should be looked upon
as an optional extra because there is no need to use it actively. For example, if
Y is reset to &00, the instruction,

LDA (&70),Y

has the same effect as the simple (but fictitious) indirect addressing example
given earlier:

LDA (&70)

However, an obvious use of indirect indexing lies insequencing througha
block of data items by incrementing or decrementing the Y register. It is
helpful to distinguish simple indexed loops from indirect indexed loops by
considering under what circumstances they would be used:

(a)  Use simple indexing if the base address is known and constant.
(b)  Use indirect indexing if the base address is not known at the time of
writing or is liable to require changing.

One advantage of indirect addressing not yet mentioned is the ability to
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reach any part of the 64K memory map by use of asingle-byte operand. This
is because the address pointer in zero-page is double-byte (16 bits).

The following example is outline coding to perform a process on a block
of memory with just sufficient detail to illustrate indirect indexed addressing.
Assume that the address of the first data item has been prior assigned to the
address pointer in &70 (low-byte) and &71 (high-byte) and the length of the
block minus 1 is 20.

LDY #20
.data LDA (&70),Y

.

.
process
.
.
DEY
BPL data
.
rest of program

The example should require little explanation, except perhaps to note that
the indexing proceeds downwards towards zero, so the processing begins with
the last data item and finishes with the first. As mentioned earlier, a
downwards scan enables the end of the loop to be tested without the use of a
CPY.

Some variations in the jargon exist. The alternative name for indirect
indexed (and in some ways more informative) is 'post-indexed' indirect
addressing because the indexing is done after the indirect address has been
found. Also, address pointers are sometimes called address vectors.

Indirect indexed addressing is available with ADC, AND, CMP, EOR,
LDA, ORA, SBC, and STA. They ail take 5 dock cycles except STA which
takes 6. If a page boundary is crossed, they take an extra clock cycle.

Indexed indirect addressing
This mode doesn't enjoy quite the same measure of popularity as indirect
indexed. The assembler form is:

LDA (operand, X)

Note carefully the position of the parentheses, that X is inside instead of
outside and only X is allowed for indexing. As before, the operand must be
single-byte so can only refer to a zero-page address.

X is shown within parentheses to emphasise the manner in which indexing
is carried out. The behaviour of indexed indirect addressing is as follows:
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The address of the pointer in indexed indirect addressing is the sum
of the operand and the contents of X.

This definition may explain why an alternative name of this mode is
'preindexed' indirect addressing. To aid understanding,. first study the
following numerical example:

LDA (&70,X)

In the first instance, assume that X is zero. The pointer is then the double
byte address which happens to be in &70 (low-byte) and &71 (high-byte).
However, if we assume that X contains &02, the address pointer is located at
the double-byte address &72 and &73. Proceeding with this example, suppose
that &72 contains &35 and &73 contains &0D, the instruction would load the
accumulator with the contents of address &0D35. The example is illustrated
in Fig. 3.3.
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35

0D

0D37

72

73

96

02

Accumulagor result

LDA (&70, X)

X register

Fig. 3.3. Data flow in indexed indirect addressing.

Until familiarity is gained, it is easy to get mixed up with the two indirect
modes because of the relatively superficial differences in the assembler form.
In order to emphasise the difference in form and effect, it is worth viewing
the two side by side:

Indirect indexed (post-indexed indirect) addressing keeps the pointer
at a constant location but uses Y indexing to modify the pointer
value.

Indexed indirect (pre-indexed indirect) addressing uses X indexing
to modify the operand, and hence, the location of the address
pointer.
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As hinted earlier, indexed indirect addressing is not a commonly used
mode. One area in which it is valuable is in handling peripheral interrupts.
The course of a program can often depend on the particular peripheral which
has requested interrupt. For example, the data sent to a printer will originate
from a different area than the data sent to a digital-to-analogue converter.
Assuming there are two peripherals on line, then we can arrange to have two
separate address pointers to service them, located in zero-page. Suppose these
double-byte addresses occupy the four locations &72,&73 and &74, &75 and
consider the following line:

STA (&70,X)

The value placed in X must be that which modifies the operand to locate
the desired address pointer. Care should be taken when calculating the value
of X. The indirect address pointer is a two-byte address, so X must be
changed by two at a time, otherwise the instruction above will define the
high-byte instead of the low-byte. For example, if X is initially zero, the
address pointer selected is located at &72, &73. If X is incremented only
once, there is a foul-up because the address pointer is taken to be &73, &74
which is the high-byte of the first pointer and the low-byte of the second.

Apart from handling peripherals, indexed indirect addressing can be used
to simulate the CASE statement found in some of the structured languages or
the ON GOTO in BASIC. Control can be switched to separate machine code
processes, each switched by a unique address pointer. The value in X
determines which process is activated.

Indexed indirect addressing is available with ADC, AND, CMP, EOR,
LDA, ORA, SBC and STA

Summary

1. A machine code instruction always has an op-code but not all have
operands.

2. The op-code defines the required action; the operand indicates where
data is to be found.

3. Addressing modes are various ways in which operands express location
of data.

4. The computer recognises only binary op-codes expressed as two hex
digits but the resident assembler allows three-letter mnemonic groups.

5. The precise effect of an instruction is more concise if written in
operational symbolism rather than words.

6. During transfers, source data remains intact but old data at the destination
is overwritten.

7. In normal use, the carry is cleared before adding but set before
subtracting.

8. In double or multiple byte arithmetic, clear carry only before adding the
lowest order bytes and set carry only before subtracting the lowest order
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bytes.
9. Memory or registers are cleared by a load zero.

10. There are no CLR instructions. There are no instructions to increment or
decrement A.

11. Use AND to clear, ORA to set and EOR to change selected bits within a
byte.

12. To flip over all bits, exclusive or with &FF
13. To produce two's complement, flip first and then add 1.
14. To find the state of a single bit, mask out uninteresting bits using AND

and test for zero.
15. The BIT test copies bit 6 and 7 of the data into V and N bits respectively

and ANDs the data into A.
16. LSR has the carry bit at the lsb end; AS R has the carry bit at the msb

end.
17. Only shift and rotate instructions have accumulator-addressing.
18. In double-byte multiplication, use ASL for low-order and ROL for high-

order byte.
19. In double-byte division, use LSR first for the high-order then ROR for

the low-order byte.
20. The current state of the process status register determines whether or not

a branch takes place.
21. Branch instructions themselves do not affect the process status register.
22. BMI and BPL are only useful if two's complement binary is used.
23. If the branch is out of range, combine with JMP.
24. In comparisons (CMP, CPX or CPY), the data is subtracted from the

register in order to set flags but the original contents are restored.
25. To check if the register is less, use BCC; to check if equal use BEQ; to

check if greater, use BEQ first then BCS.
26. Implied addressing has no operand.
27. Immediate addressing is when the operand, which must be single byte, is

the data.
28. Absolute addressing is when the operand, which must be double-byte. is

the address of the data.
29. Zero-page addressing is when the operand, which must be single byte, is

the page-zero address of the data.
30. There are only 32 addresses guaranteed left free by the operating system,

&70 to &8F inclusive.
31. Relative addressing, used only with branch instructions, is when the

operand signifies how many bytes away is the next instruction.
32. Two's complement arithmetic is used to cover forward and backward

branches. With the assembler, branch-to-label is possible.
33. Absolute indexed addressing is when the operand (which must be double

byte) plus the index register, is the address of the data.
34. Zero-page indexed addressing is when the operand (which must be single

byte) plus the index register, is the address of the data.
35. In an indexed instruction, the operand defines the base address, the index

register the relative address. The sum of the two is the absolute or
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'effective' address.
36. The operand in simple indirect addressing is the address of the lower

order byte of a two-byte address pointer. Only JMP offers this mode.
37. JMP excepted, address pointers can only reside in zero-page (page zero).
38. Indirectly indexed addressing modifies the address pointer by the

addition of Y. The assembler operand format is (operand), Y.
39. Indexed indirect addressing modifies the address of the address pointer

by the addition of the X register. The operand assembler format is
(operand,X).

40. Address pointers are also called vectors.

Self test

3.1  Using three fines, multiply data in the accumulator by 3.
3.2  Write the instruction to clear bit 5 in the accumulator.
3.3  Write the instruction to change bits 3 and 6 in the accumulator.
3.4  Write the instruction to set bit 2 in the accumulator.
3.5  If the accumulator initially contains 17, what will it contain (in hex)

after EOR #&FF?
3.6  What is wrong with LDA #&23DF?
3.7  Which 6502 register is involved in relative addressing?
3.8  In the BBC machine, where are the 32 free locations in page-zero

(answer in decimal address range)?
3.9  If the effective address in the instruction EOR &73,X is &84, what is

the relative address in hex?
3.10  Name the one instruction in the 6502 which offers non-indexed

indirect addressing.
3.11  Which index register is allowed in indexed indirect addressing?
3.12  What addressing mode is being used in STA (&75),Y?
3.13  In the instruction ADC (&73),Y where is the high-byte of the address

pointer located if Y contains 6?
3.14  In the instruction ADC (&73,X) where is the low-byte of the address

pointer located if X contains 6?
3.15  What is an alternative name for indexed indirect addressing?



Chapter Four
Handling the Resident
Assembler

The assembler format

An assembler is essentially a piece of software which aids the writing of
machine code. Most personal computers offer only the crudest facilities for
using machine code. Some only have a 'machine code monitor'. Others are
even less equipped and the only way to enter a machine code program is by
means of a boring and error-prone series of POKEs. It is not surprising that
few owners of such machines develop a strong attraction for machine code.
Of course, assemblers for most popular microcomputers are available on tape
or disk but it is a sad fact of life that external software which has to be loaded,
particularly from tape, is often too much trouble. Initially, it may be used with
enthusiasm but the inevitable 'tape-inertia' syndrome eventually relegates the
tape to its coffin.

Assemblers vary in sophistication and the facilities offered for debugging.
It is unusual for a personal computer to be equipped with a resident
assembler. No doubt manufacture's of machines for this market have
previously assumed that few buyers, other than the completely dedicated,
would be interested in any programming language other than BASIC. Acorn,
conscious that interest in machine code would grow, included a resident
assembler in the Atom, a practice which they have continued in the BBC
machine.

The assembler used is unique because it is 'wedged' inside the BASIC
chip. The position of the assembler inside the language system ensures easy
transition between BASIC and machine coding. Machine code splices within
a BASIC program are recognised by thelarge square brackets[ and ]. (These
appear on the screen as left- and right-pointing arrows in Mode 7 on the BBC
machine.) Although the assembler lacks many of the refinements found in
traditional mainframe-oriented software, it is perfectly adequate and quite
easy to use. In fact, some features of its design could be considered superior
to classical assemblers. Although many readers will already be familiar with
the facilities offered, it is necessary, for the sake of continuity, to devote a
little space to the following overview.
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Mnemonic op codes
Bearing in mind the function of an assembler defined at the beginning of this
chapter, the foremost requirement of any assembler is the substitution of
meaningful letter groups for the instruction op-codes. Thus, to transfer X to
A, the hex machine code is &8A (see Appendix C1). The assembler allows us
to write TXA instead. All mnemonic op-codes are three-letter groups

Numerical operands
Numerical values in operands are assumed to be decimal. If the number is to
be interpreted as hex, they must be prefixed with the & character.

Operand variables
The most remarkable and useful property of the assembler is the {attitude
allowed with variables. The following deserves emphasis:

Any legitimate BASIC variable or expression can be used in the
operand.

Examples:

100 LDA LOCK
110 LDA LOCK+1
120 LDA #ASC("Y" )
130  LDA #BASE DIV 256
140 LDA #BASE MOD 256
150 LDA #SQR(4)

These are all expressions which the assembler will accept although the
following common sense provisos apply:

(1)  The operand expression must be capable of intelligent decoding. That is
to say, the resultant must be an address or data acceptable as an operand.
(2)  Registers (A, in the above examples) can only hold one byte so it will be
up to the programmer to ensure that the data, represented by the variables, is
within this limit.
(3)  It is essential that the variables bepre-defined in the BASIC program
area. For example, we cannot write A=30 inside an area enclosed by the
square brackets [....].
(4)  Although BASIC expressions can be used, BASIC commands are most
definitely illegal. The assembler would ruthlessly reject lines like PRINT A
or DEF PROCsort. BASIC commands or statements must be confined to the
BASIC area.

BASIC variables and expressions can also be used in jump operands such
as:

JMP START+7

This will cause a jump to the address found by adding 7 to the contents of
the variable START.
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Branch labels
The previous chapter, dealing with branch instructions and relative
addressing, stressed the difficulties associated with counting the number of
bytes forward or backwards to reach the desired branch destination. The
assembler, to a large extent, offers relief by allowing the use oflabels. Thus
the assembler disguises the inherent relative addressing and substitutes a
straightforward 'branch to label'. For example, we can write:

BNE Sor t

Here 'Sort' is the branch operand, referring to a label appearing somewhere in
the program.

The label is recognised as such by the assembler because it must begin
with a full-stop as shown in the following example:

CLC
.BACK LDA Number1
ADC Number2
BEQ F in ish
ROR A
BNE BACK
.F in ish  RTS

The coding obviously has no practical value so it would be pointless to
key in. Note the full-stop before the two labels and note also that there must
be no full-stop when the label is an operand directive. The layout is valid but
considerable latitude is allowed. For example, it could be re-written as
follows:

CLC
.BACK
LDA Number1
ADC Number2
BEQ F in ish
ROR A
BNE BACK
.F in ish  RTS

Notice that the label can stand alone or be on the same line as the
instruction, providing there is at least one space separation. The label,
although existing within the assembled coding, can also be considered to be a
normal BASIC variable. It is, after all, an address and therefore a simple
numeric. We could, for instance, discover this address (when out of the
assembler and back in BASIC) by writing PRINT BACK or PRINT Finish. A
problem arises, which we shall deal with later, when assembling coding in
which branches are made to forward positions.

Remarks
Remarks, which programmers feel are necessary to explain coding, must be
distinguished by either the semicolon or the back slash (\). For example:
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LDA (po in te r ,Y)  \ Ind i rec t  load ing

We shall use the back slash because it seems a more meaningful symbol and
also because the semicolon is strongly associated with the PRINT statement
in BASIC. Remember that the back slash in the BBC machine Mode 7
appears on the screen as a funny '½' character.

Multi-statements
As in BASIC, more than one assembly instruction can be placed on one line
by using the full colon as a separator. For example:

[
CLC:ADC Number :ADC #4 :RTS
]

It must be appreciated that the square brackets, which enclose assembly
coding, have the status of an instruction, even though they are categorised as
'pseudo instructions'.

Writing many statements per line is popular in BASIC because programs
appear shorter in length and less bytes are squandered in storing line numbers.
In assembly code, although the length of the program still appears less, there
is no real saving because the action of assembly produces the same final
object program. Another disadvantage of multi-statements per line is the
decrease in readability. A program written in assembly code is not exactly an
easy thing to decipher (even for the writer!) and cramming a lot on one line
increases the confusion, besides leaving less room for remarks.

Storing assembly code
When writing a BASIC program, we have no worries about where it will be
stored in memory. It is left entirely to the operating system, which stores it in
accordance with built-in rules. However, when a piece of assembly code is
written, the assembler has no such built-in authority. It is up to the
programmer to provide guidance on the desired starting location of the
program in memory. Naturally, the guidance given must steer clear of the
RAM space already earmarked by the operating system. There are several
reasonably free areas in the BBC machine, besides space made artificially by
shifting the BASIC text and variable areas around. Before discussing the
details of free spaces, it is important to stress the vital importance of one of
the special resident integer variables P%. As readers are already aware, the
complete set of these twenty-seven special variables are labelled @%,A% ...
Z%. They ail occupy fixed locations and can be picked up at any time by the
operating system or assembler. Returning to P%,

The contents of P% are taken as the address of the next item of
machine code.

Thus, to locate a program anywhere in memory, it is simply a case of loading
the starting address of the first byte into P%. After each byte is stored, Pf%; is
automatically incremented by one in readiness for the next byte. In fact, it is
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convenient to relate P£% to the microprocessor program counter.
The setting of P% must be carried out in the BASIC part of the composite

program. For example:

10 P%=&900
20 [
30    \
40    \
50    \Assembly  cod ing
60   \
70    \
80  ]
90  REM res t  o f  BASIC

This would store the first byte of assembly code (wedged between BASIC) in
the hex address 0D00. It is possible to use variable names when loading P%
so we could have written the top bit of the previous example as:

10 START%=&0D00
20 P%=START%

Instead of committing P% to a fixed machine address, it is possible to
delegate some of the responsibility to the operating system. Page 237 of the
BBC User Guide tells us that the Dimension statement can be twisted a little
in order to accommodate byte arrays. For example:

DIM STRRT% 99
P%=START%

This will reserve 100 bytes for assembly code, the first byte located in
START% (START% is, of course an arbitrary name). It is important to
recognise the unusual character of the DIM statement in fine 100. There are
indeed two variations from the normal BASIC statement for dimensioning
arrays. The first point to notice is the absence of the brackets around the 99
although the space before 99 is mandatory. The second point, less vital but
still useful to know, is that START%, should not be thought of as the 'name
of the array'. It is merely the labelled address of where the first byte is stored.
The storage area, like the normal DIM statement, is 'dynamic'. That is to say,
it moves up or down depending on the number of fines in the BASIC area.
However, the actual machine address of the first byte in the example above
can always be ascertained by a command, such as PRINT START%. The
snag in using the DIM statement is the fact that you have to make an
intelligent guess as to the number of bytes in your coding. The best way is to
make a preliminary estimate and then add, say, twenty more for luck because
it doesn't matter if you over-estimate. However, if you are a stickler for
having things dead right, it is easy to count the bytes after the final debugging
and alter the DIM number accordingly.

Other ways of finding space for assembly code are by the use of the
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pseudo variables TOP and PAGE. Space (for example 256 bytes) can be
found below the BASIC program by using PAGE in the following manner:

100 PRGE=PAGE+256
110 P%=P8GE-256

The first line pushes PAGE upwards, and therefore the start of the BASIC
program. This will reserve 256 bytes for the assembly coding which, as fine
110 suggests, starts at the old PAGE position. If we wish to reserve some of
the assembly area for, say, 20 data bytes, line 110 can be written as:

110 P%=PAGE-236

This leaves 20 bytes for data, the first item being in PAGE and the last in
PAGE+19. The assembly program will follow, beginning at PAGE + 20.

If we use LOMEM, the program and (or data can be positioned between
TOP (the top of the BASIC program) and LOMEM (where BASIC stores its
variables). (See the memory map on page 501 of the BBC User Guide.) For
example:

100 LOMEM=LOMEM+256
110 P%=TOP

This will reserve 256 bytes for assembly coding, the first byte being in
TOP. The User Guide warns us not to attempt to alter LOMEM in the middle
of a program or the interpreter will lose track of the variables.

Fixed locations which are potentially free
There is nothing wrong with storing assembly programs and data
'dynamically' as described above. However, storing in a fixed location has, at
least, a psychological advantage. You always know exactly where the
program is stored and this can be comforting. The trouble with fixed storage
in the BBC Micro is its scarcity.

The BBC machine has plenty of fixed free space providing that some of
the normal and expansion facilities are sacrificed. For example, page &0D is
perfectly safe and is actually described in the User Guide as space for 'user-
supplied resident routines'. Unfortunately, this is subject to the proviso that no
disk interface is used. It is also possible to use page &0C if we are prepared to
sacrifice user-defined character definitions. Page &0B is yet another page
available but this time we will lose the facility of programming those
delightful red function keys. Use of any of these pages will therefore depend
on individual needs, but it is useful to know that three contiguous pages are
potentially free, representing a total memory range &0B00 to &0DFF. This is
a hefty 768 bytes which, in machine code terms, is capable of supporting a
complex program.

However, for those with disk or other expansion options it is advisable to
steer clear of fixed locations altogether. It is safer to use the DIM statement.
Any subsequent programs given which use fixed locations (to simplify
explanations) can always be modified to DIM methods.
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Operating the assembler code

To execute a BASIC program, we use the keyword RUN. To execute a
machine code program we use the keyword CALL. Both RUN and CALL are
BASIC keywords, a fact which serves to emphasise the close relationship
between the assembler and the BASIC interpreter. The simple word CALL is
very powerful because it combines the role of parameter-passing with
machine code execution. Before delving into great detail, it is useful to study
the following sequence of events starting with the source code and ending
with the final execution:

1. A source code listing

   10  P%=&D01
   20  [
   30  LDA #99
   40  STA &0DFF
   50  ]
   60  PRINT:PRINT"The con ten ts  o f  &0DFF
is  " ;?&0DFF

Line 10 positions the code in page &0D, a quite arbitrary decision. Lines
30 and 40 are the assembly code which loads the accumulator with decimal
99 then stores it in &0DFF. Line 60 is BASIC and prints out the contents of
this address, using the byte indirection operator.

2. Running the program

When we type RUN, the result is:

0D00
0D00 A9 63     LDA #99
0D02 8D FF 0D STA &0DFF

The contents of address &0DFF is 13.
This is the work of the assembler and indeed is called an assembly listing.

It has produced the correct machine code from our mnemonic source code.
The first column is the hex address of thefirst byte on that line. The second
column is the hex machine code consisting of the op-code, followed by the
operand. Notice that the two-byte operand is low-byte, high-byte form and
appears back to front. The third column is our original source code.

Note carefully that we have RUN but the machine code doesn't appear to
have worked because the printout is 13 instead of the expected 99. This is
because the machine code has only been assembled that is to say, it has only
been converted from our source code to a pure machine code form. But we
have not yet told the code to be executed! Thus, the 'answer' we got of 13 was
merely garbage that happened to be in &0DFF. If you try it, you will have a
different garbage number (unless the law of averages break down). So, we
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need another step.

3. Executing the rnachine code with CALL

CALL &0D01

Nothing visible happens but the machine code has been executed. To prove it,
RUN the program again. This will produce exactly the same results as the
previous RUN but with one important difference. The BASIC fine at the
bottom will now read:

The contents of address &0D01 is 99

The steps shown above have deliberately been separated in order to
emphasise the difference between the assembly and the call processes. In
practice, the CALL would normally be included under a line number in the
program rather than activated by a separate command. For example, the
listing above could be written:

   10  P%=&0D01
   20  [
   30  LDA #99
   40  STA &0DFF
   45  RTS
   50  ]
   55  CALL &0D01
   60  PRINT:PRINT"The con ten ts  o f  &0DFF
is  " ;?&0DFF
   70  END

Apart from the extra CALL line, notice that RTS has been squeezed in. This
should be considered the normal way to terminate machine code routines in
order to ensure smooth controlback to BASIC after the code has been
executed. Without RTS, an error message from the assembler might (probably
will) appear. Now when we type RUN, the program will automatically
assemble the code, line 55 will execute it and RTS returns control back to
BASIC at line 60.

Controlling the assembler output
Thepseudo operationOPT controls the activities of the assembler. It is fully
described in the User Guide but is repeated (with less detail) here.

The format is OPT pass, where pass is a variable which can be 0, 1, 2 or 3.

If pass 0, the assembly listing is suppressed and no errors are reported.
If pass=1, only assembly errors are suppressed.
If pass=2, only assembly listing is suppressed.
If pass=3, nothing is suppressed
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It is important to remember that OPT is not a BASIC keyword,
consequently it is only legal within the square bracket area. If OPT is not
used, it defaults to OPT 3. Since the previous examples have not used OPT,
the assembly listing appeared and assembly errors might also have appeared.
It is often inconvenient and purposeless to display these except during the
development and debugging stage.

The forward branch problem and 2-pass assembly
If a branch instruction directs control backwards to a labelled line, the
assembler can cope immediately because it has picked up the address of the
label on the way. However, if the branch directs to a forward address, the
assembler is confused. To see why, imagine what happens in the following
piece of code:

110 BNE exit
120   :
130   :
140 .exit

The main job of the assembler is to change mnemonic op-codes and operands
into equivalent hex numbers and addresses. So what happens when it reaches
line 110? It can easily look up its conversion table to find the hex code for
BNE (it is D0). But it can't determine the hex address of the operand because
it hasn't yet reached fine 140. Its intelligence is just not equal to the situation,
so it gives up.

The BBC assembler is not peculiar in this respect It is a common problem
in all but the most sophisticated versions. The standard way out is to give the
assembler two goes at it, a trick known as two-pass assembly. The first pass
collects all the labels and addresses and the second pass uses them to produce
the final assembly.

It would be boring and error-prone if the operator always had to assemble
programs twice. Fortunately, the FOR/NEXT loop in BASIC can be left to do
the donkey-work. The following piece of code includes a simple forward
branch and illustrates the two-pass assembly technique: FOR pass=0 TO 3
STEP 3

100 FOR pass=0 TO 3  STEP 3
110 P%=&0D00
120 [
130  OPT pass
140 LDA #3
150 CMP #3
160 BEQ F in ish
170 NOP
180 .F in ish  RTS
190 ]
200  NEXT pass
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210 CALL &0D00
220 END

The code itself is purposeless and barely worth explaining. It is easy to see
that the forward branch, (the object of the example), will always take place.
Line 170 could have been any useless instruction so NOP is exceptionally
well-qualified. Note the following points:

(1)  The FOR loop ensures that OPT 0 applies during the first pass. We don't
want a listing and we certainly don't want the inevitable error 'unknown label'
to appear.
(2)  During the second pass, OPT 3 applies so the assembly listing appears
and any errors (there shouldn't be any now) are reported.
(3)  The assigning of P% isinside the FOR loop. This ensures that the second
pass starts again on the same piece of code. If P?% was assigned before the
FOR statement, the second pass would try and assemble code following on
from the first pass with unpleasant results.
(4)  The NEXT statement which closes the FOR loop must beoutside the
square brackets.
(5)  If assembly code is intermixed with BASIC lines, it is necessary to
include an appropriate OPT each time, otherwise it would default to OPT 3.

Using variable names
The facility to predefine memory locations with BASIC variables and use
them in assembly code should be exploited to the full. Any dodge which
makes assembly code look less formidable is worthwhile, even if it does
squander a few BASIC lines. For example:

Number1=&70
Number2=&71

Having defined these locations, the variable names can be used in assembly
operands, rather than absolute hex addresses. The following example, which
adds two numbers (limited to single byte), illustrates some of the interchanges
possible between BASIC and assembler:

 10  DIM START% 40
 20  CLS
 30  INPUT"Enter  f i r s t  number  "Number1
 40  INPUT"Enter  second number  "Number2
 50  Resu l t=&70
 60  P%=START%
 70 ]
 80  CLC
 90  LDA #Number1
100 ADC #Number2
110 STA Resu l t
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120 RTS
130 ]
140  CALL START%
150 PRINT ?Resu l t

Just for a change, the program is stored by courtesy of DIM, instead of
using fixed free space. It is easy to get mixed up with the address of data and
the data itself. For example, it may not be obvious why lines 90 and 100 must
have the hash mark denoting immediate addressing. Note also that line 150
prints the contents of 'Result'. If 'Result' was printed, it would be an address
rather than data in that address.

Macros

A macro is short for macro-instruction, a facility offered in some assemblers,
whereby a block of instructions performing some task can be defined by
name, and later treated as if it were a single instruction. Superficially, this
description resembles an ordinary subroutine so it is important to compare
them with a view to spotting the differences.

A subroutine is written once, stored in some fixed location and called up
by a special jump (JSR). A macro, on the other hand, is assembled in machine
code each time it is used in the body of the program. For example, suppose
the following is a macro in a fictitious (and using an equally fictitious format)
machine:

Macro  TDX.
DEX
DEX
DEX
End Macro

The macro is first defined and given some arbitrary name (TDX in
example). The macro is then written (three consecutive decrements in the
example% The macro is then terminated. From now on, anytime we use
TDX, the assembler will include the three instructions in the coding. Note that
there is no 'jump' action. The macro is inserted in line every time. Because
there is no time wasted in calling and returning from a subroutine, a macro
has a higher execution speed.

   10  REM Procedures  used as  macros
   20  DIM START% 40
   30  P%=START%
   40  [ :LDA #1 : ]
   50  PROCsh i f t le f t3
   60  [ :STA &70: ]
   70  PROCsh i f t le f t3
   80  [ :STA &71
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   90  RTS
  100  ]
  110  CALL START%
  120 PRINT?&70
  130  PRINT?&71
  140  END
  150  DEF PROCsh i f t le f t3
  160  [ :ASL A:ASL A:ASL A: ]
  170  ENDPROC

>RUN
19EF
19EF A9 01     LDA #1
19F1
19F1 0A       ASL A
19F2 0A       ASL A
19F3 0A       ASL A
19F4
19F4 85  70     STA &70
19F6
19F6 0A       ASL A
19F7 0A       ASL A
19F8 0A       ASL A
19F9
19F9 85  71     STA &71
19FB 60        RTS
         8
        64

Program 4.1. Procedures used as macros.

Now for the crunch. There is no macro facility in the BBC machine, at
least not directly. However, it is possible to wangle it by exploiting BBC
BASIC% most powerful asset, theProcedure. Instead of naming a macro, we
name a procedure. Defining the macro is replaced by DEF PROCname.
Naturally, we must define the procedure in BASIC and use it in BASIC, but
the assembler is undaunted providing the square brackets are used correctly.

To illustrate, Program 4.1 loads the accumulator with 1 and then uses a
simple 'macro' to produce three shift Lefts on the accumulator. The macro is
used twice, so the accumulator is shifted 6 times. After R UN, the assembly
listing appears. You will notice that the three ASL instructions are indeed
assembled in-line each time the 'macro' is used. This example should
emphasise the difference between macros and subroutines. We have stated
that a macro is faster and yet, from the assembly listing it is not too obvious
why. Actually, the time it takes actually to assemble macros may indeed be
longer than assembling the equivalent subroutine. Once assembled (which
only has to be done once) however, the execution is faster with macros
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because no time is wasted in jumping and returning (JSR takes 6 clock cycles
and so does RTS). Against this, however, it should be realised that macros use
up memory for the assembly code each time they are called.

The main hazard, when using procedures to simulate macros, is failing to
observe the rules of the square brackets when dodging in and out of BASIC.
The brackets can be round the wrong way or in the wrong places. Program 4.1
above uses a standardised format with the brackets enclosing the procedure
call and on the same line.

As with normal procedure calls and definitions, it is possible to pass
formal parameters into the assembly enclosure. For example, we can define a
procedure as follows:

500 DEF PROCsubt rac t (number1 ,number2)
510 [
520  SEC
530 LDA number1
540 SBC number2
550 ]
560  ENDPROC

Once such a procedure is defined, it can be used to subtract, say, contents
of Tax from Gross by using:

PROCsubtract(Gross,Tax)

Naturally, such a simple procedure can only handle a single byte subtraction
but this is irrelevant it is the principle that matters.

Conditional assembly
This technique, like macros, is commonplace in professional mainframe
assemblers. It simply means that certain changes can be made in assembly
code without having to reassemble each time. Again like macros, it is not
directly available on the BBC machine but can be simulated by a mixture of
BASIC and machine code. As a simple example, it may be that during
program development we would like to try the effect of X=4 or X=40 in the
same program. A simple IF/THEN/ELSE spliced in the right place would do
the job nicely:

IF Speed=slow THEN [ : LDX #4: ] ELSE [ : LDX #40: ]

Passing parameters via registers

There are various ways of passing parameters from the main program (which
could be BASIC) to a machine code subroutine. The simplest, but not always
the most advisable, is via registers. The three most important resident
subroutines, OSRDCH, OSWRCH and OSBYTE (discussed in a later
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chapter) all use registers for parameter passing. OSRDCH and OSWRCH use
the accumulator; OSBYTE uses the accumulator and the X and Y index
registers.

Apart from the enforced use in resident subroutines, registers are not the
ideal medium for passing parameters. The 6502 is not generous as far as they
will already be holding variable data although, of course, the stack can be
used as a temporary store while the registers are being used. Fortunately,
alternatives are available in the shape of the JSR and CALL statements.

Passing parameters with CALL

The CALL statement is far more powerful than has been indicated earlier in
the chapter. For example, we can use:

CALL NAME, G%, A$, Blogs

This shows that, in addition to actually calling (executing) machine code, it is
possible to pass a variety of mixed parameters (integer variables, string
variables and floating point variables and even single byte numbers) to the
assembly code. Essential information on the parameters is passed to a special
memory block located in the BBC machine at &0600 onwards. This block
contains the following information: 

&0600 number of parameters passed in CALL statement

&0601 low byte address of first parameter
&0602 high byte address of first parameter
&0603 code for parameter type

&0604 low byte address of second parameter
&0605 high byte address of second parameter
&0606 code for parameter type

&0607 low byte address of third parameter
&0608 high byte address of third parameter
&0609 code for parameter type

This sequence is repeated for any further parameters. The parameter code
which has been referred to above is as follows:

0 8-bit byte (example ?Z)
4 32-bit integer variable (example Volts%)
5 byte floating-point number (example Blogs)
81 string variable (example Name$)
80 string at a defined address (example $Name)

The reference above to simple variables, also applies to array variables: For
example, A9%(3), C(3) or B$(5).
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The parameter block format always begins with the number of variables
attached to the CALL. Thereafter, three bytes of information are given for
each variable. If, for example, there are five variables in all, there will be 1+
(3×5)=16 bytes of information, starting at &0600 and ending at &060F. It is
worth stressing that the information given is not the data itself but the address
to which the data has been transferred. These addresses are not constant and
only the operating system will be aware of them. When such a situation arises
(in which only addresses are given) the data can be easily obtained by the use
of indirect addressing. All that needs to be done is to treat the address
information as pointers which can be passed to page-zero for use by indirect
address action. It is possible to avoid indirect addressing to obtain this data by
a series of LDAs and STAs but it is messy and inefficient.

It is easy to be confused by all this so it is essential to attack the subject in
gentle steps. We begin by writing a few fines of code just to test that the
CALL statement is indeed operating as described above. This code is shown
in Program 4.2.

To keep the first example simple, only one parameter is passed in line 20.
It is spread out in hex in order to appreciate the result more readily. Since we
are demonstrating CALL, there must be some bit of machine code to call, so
to maintain simplicity it is sufficient to use a NOP (we are not, at this stage,
interested in the particular code). Line 90 is in BASIC and calls up the code,
passing G% to the system. Lines 110 to 130 print out (in hex) the contents of
the parameter block. On first running the program, it stops at line 140 and
displays the assembly code and the contents of the parameter block which
have the following significance:

11 number of parameters passed (just G%) 
1C low-byte address of where the first byte of G% is stored
4 high-byte address
4 parameter code (4=four-byte integer)

   10  REM Pass ing  var iab les  v ia  CALL
   20  G%=&010234567
   30  P%=&0D00
   40  START=P%
   50  [
   60  NOP
   70  RTS
   80  ]
   90  CALL START,G%
  100 PRINT
  110  FOR B lock=&0600 TO &0603
  120  PRINT~?Block
  130  NEXT
  140  END
  150  Po in te r=&041C
  160  FOR Data=Po in te r  TO Po in te r+3
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  170  PRINT ~Data ,~?Data
  180  NEXT

>RUN
0D00          
0D00 EA       NOP
0D01 60        RTS

         1
        1C
         4
         4
>GOTO150
       41C        67
       41D        45
       41E        23
       41F         1

Program 4.2. Passing variables via the CALL statement.

Thus, we are now in the position of knowing that our data has been stored in
address &041C. You may see from this why it was necessary to stop the
program at line 140. The preliminary RUN gave us the address information.
A GOTO 150 then executes the bottom program which displays the contents
of the four addresses &041C to&041F. The original G% has therefore been
successfully recovered although in the conventional reverse order (low-byte
first). It would have been possible to use the indirection operator (!) instead of
the FOR/NEXT loops but the display would have packed horizontally instead
of being in more readable, vertical separation steps.

The next program (Program 4.3) goes a step further by showing indirect
address pointers picking up parameter data from the call statement. The idea
is to pass the address given in the parameter block at &0600, 0601 to the page
zero addresses &70, &71 where they will act as the address pointer. The
program is best understood by starting at the three lines of BASIC at the
bottom (I 60 to 180 inclusive). The objective, again deliberately kept simple,
is to input an integer variable (Volts%), pass it through the CALL procedure
and print it out again, merely to prove the points described above. At the top
of the program three preliminary assignments are made but you should
particularly note line 20. It is a convention that the label, assigned to the
lowest byte, is used to refer to the whole number, irrespective of the number
of bytes. Lines 70 to 100 transfer the address information (where Volts{?£ is
stored) into the two zero-page addresses. Notice the economy of using
POINTER and POINTER+ I for the low- and high-byte respectively. This is
why only the low-byte pointer was assigned in line 20. This little dodge is
useful and will appear frequently in subsequent examples.

   10  REM Pass ing  var iab les  v ia  CALL (2 )
   20  POINTER=&70
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   30  RESULT=&80
   40  START=&0C00
   50  P%=START
   60  [
   70  LDA &0601 \S to re  LB/HB
   80  STA POINTER  \Address  o f  vo l ts
   90  LDA &0602    \ i n  zero  page
  100  STA POINTER+1
  110  LDA #0
  120  LDA (POINTER) ,Y  \ ind i rec t  address
  130  STA RESULT
  140  RTS
  150  ]
  160  INPUT"ENTER INTEGER "Vo l ts%
  170  CALL START,Vo l ts%
  180  PRINT"THE INTEGER PASSED WAS "?RESULT

Program 4.3. Passing variables and use of Indirect address pointers.

Line 120 is the most important of all because it illustrates the beauty of
indirect addressing. Index register Y is first cleared because it has no meaning
in this context All we want is simple indirect addressing without indexing.
Although indirect indexed addressing us used, we could have substituted
indexed indirect addressing providing that the X register, instead of the Y
register, was cleared initially.

Proceeding another step further, Program 4.4 adds two single-byte
numbers, both of them passed via the CALL statement. BASIC is used to
input the two numbers into A% and B% and then passed to the system by
means of CALL ADD, A%, B%. Since there are two variables, we reserve
space for the address pointers in page-zero. The two assignments for this
(appropriately labelled 'FIRST' and 'SECOND') are made in line 30. Space is
also reserved for RESULT in line 40. Lines 90 to 120 transfer the address
information of A% in &0601, &0602 to &70 and &71. Lines 130 to 160
perform a similar task for B%. After clearing Y and the carry bit, lines 190 to
210 perform the addition, again using indirect addressing.

Program 4.4. Single-byte addition.

   10  REM 8-b i t  in teger  add i t ion
   20  MODE 4
   30  F IRST=&70:SECOND=&72
   40  RESULT=&80
   50  ADD=&0C00
   60  FOR PASS=0 TO 3  STEP 3
   70  P%=ADD
   80  [OPT PASS
   90  LDA &0601
  100  STA F IRST
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  110  LDA &0602
  120  STA F IRST+1
  130  LDA &0604
  140  STA SECOND
  150  LDA &0605
  160  STA SECOND+1
  170  LDY #0
  180  CLC
  190  LDA (F IRST) ,Y  \Add pos  in tegers
  200  ADC (SECOND) ,Y  \ ind i rec t  address
  210  STA RESULT,Y \ Indexed address
  220  RTS: ]
  230  NEXT
  240  PRINT
  250  PRINT"Add i t ion  o f  two  uns igned in t
egers  " :PRINT
  260  INPUT"F i rs t  uns igned in teger  " ,A%
  270  INPUT"Second uns igned in teger  " ,B%
  280  CALL ADD,A%,B%
  290  PRINT"Add i t ion=  " ;?RESULT

Although unnecessary (there are no forward branches in the assembly code),
the two pass assembly process has been included for the first time. It is a good
habit to cultivate, even when unnecessary, in order to maintain consistency in
program layout.

Passing variables by means of USR

Although CALL is ideal for passing parameters to the assembler, it lacks the
facility for directly returning parameters back from the assembler. The USR
function is sometimes a more convenient, although less versatile, option. The
general format of the USR function is as follows:

Result=USR(calling address)
Examples: D%=USR(START), Blogs=USR(&0D00)

Unlike CALL, the parameters to be passed must first be assigned to the
four resident integer variables. A%, X%, Y% and C%. When USR is used,
the information in these variables is transferred to the microprocessor
registers of the same name with C% going into the Carry flag. The transfer is
subject to the following provisos:

(1)  Only the low order bytes of A%, X% and Y% can be passed to A, X and
Y registers.
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(2)  Only the least significant bit of C% can be passed to the C flag in the
processor status register.

   10  REM 8b i t  INTEGER ADDITION
   20  REM DEMONSTRATING USR
   30  MODE4
   40  STORE=&70
   50  ADD=&0C00
   60  FOR PASS=0 TO 3  STEP 3
   70  P%=ADD
   80  [OPT PASS
   90  STX STORE     \STORE X REG
  100  LDX #0         \SET HIGH BYTE TO 0
  110  CLC
  120  ADC STORE
  130  BCC FINISH    \ INCREMENT RESULT
  140  INX           \H IGH BYTE IF  CARRY
  150  .F INISH       \ IS  SET
  160  RTS: ]
  170  NEXT PASS
  180  PRINT
  190  PRINT"ADDITION OF TWO UNSIGNED 8b i
t  INTEGERS"
  200  PRINT
  210  INPUT"FIRST UNSIGNED 8b i t  INTEGER 
" ,A%
  220  INPUT"SECOND UNSIGNED 8b i t  INTEGER
" ,X%
  230  RESULT=USR(&0C00)
  240  RESULT=RESULT AND &0000FFFF
  250  REM MASK OUT UNWANTED BITS
  260  PRINT"ADDITION= " ;RESULT

Program 4.5. 8-bit integer addition called by USR

After exit from the assembly code, a four-byte integer is returned to the
result-variablesupplied by the user. This integer is the composite contents of
the four registers P, Y, X, A in that order. For example, suppose we used :

Blogs=USR(START)

Suppose also that the assembly code, on exit, left the registers with the
following contents:

A=&FC, X=&67, Y=&FF and P (the process status register)=&03
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On exit, the variable Blogs would contain &03FF67FC winch, you will do
well to note, is in the reverse order. The fact that the contents of the P register
form the most significant byte of the result is, in some respects, unfortunate.
This register is normally dedicated to flag bits and some degree of fiddling is
necessary if it is ever called upon (indirectly) to contribute meaningful
numerical information to the result-parameter.

Program 4.5 illustrates the use of [JSR by adding two single-byte numbers
in A% and X% respectively. The two numbers entered from the keyboard are
placed in A% and X% by the BASIC fines 210, 220 before calling the code
with {JSR. When two single-byte numbers are added, the result may spill
over to two bytes but never more. Therefore the two higher order bytes of the
four-byte result are so much garbage. Line 240 erases these bytes by use of
the AND mask. There were no difficulties with the P register because it held
one of the garbage bytes. However, many programs would require data
contribution from P. There are only two instructions, PHP and PLP, which
have direct action on the total contents of P. These can only push and pull to
and from the stack. If we assume that the data to be placed in P initially rests
m A, the following two lines of code illustrate a simple way out:

PHA \Push A to  s tack
PLP \pu l l  A  to  P

Although the method looks simple, there is a hidden danger. It can turn
out to be a hazardous business to interfere with the processor status,
particularly if the program allows interrupts. The original status, however, is
restored by an RTS but care may be needed to preserve P before using the
above.

USR or CALL?

The respective merits of USR and CALL can be summarised as follows:

CALL:

(a)  CALL can pass any number of parameters, limited only by the available
space from &0600 onwards.
(b)  The parameters are not restricted to integers. They can be any of the data
forms, including string array variables.
(c)  The magnitude of the variables passed is not restricted to single bytes.
(d)  There is no provision in the CALL format for directly passing a result
parameter (if there is one) back to the calling program. It must be arranged
within the coding.

USR:

(a)  Only three single-byte integers and one isolated bit can be passed as
parameters to the subroutine
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(b)  A four-byte result can be directly returned.

Indirection operators

The indirection operators form a grey area between high level language and
machine code. They are similar to PEEK and POKE operations in traditional
BASIC but are more versatile. However, this versatility is obtained at the
expense of user-friendliness. The symbolism and format used can feel
awkward for users hooked on BASIC. As far as machine code is concerned,
the indirection operators are a boon because of the ease with which byte data
can be pushed around memory. The definitions and format are well described
in the user guides so only a brief outline (for the sake of continuity) is
justified.

There, are three operators and all may be taken to mean 'the contents of ...'.
For example, ?&0D00, means 'the contents of address &0D00' .A 'word' is
taken to mean four bytes at consecutive addresses.

Byte indirection (?)
Word indirection (!)
String indirection ($)

All three operators must be placed before the address to which they refer.
Some examples follow:

Byte indirection

(a) ?&X=&23 (b) ?&0D00=5 (c) ?current=&456 (d) ?208=46 (e) PRINT ?X
(f) PRINT ~&0C00
Note in (c) above that only the lower order byte (56) is assigned to 'current';
the 4 is dropped because there is no room for it in a single byte.

Word indirection

One example is sufficient:
!&0D00=&23456789
89 goes into &0D00,67 into &OD01, 45 in &0D02 and 23 in &0D03.

String indirection

$&0D00="ABC" is an example worth examining in detail. The ASCII code
for A (65) will be poked into &0D00, ASCII for B (66) in &01301 and ASCII
for C in &0D02. Note that the dollar sign comes first to distinguish it from a
normal string variable.
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Saving and loading machine code

If the machine code is written within a BASIC program enclosed in the usual
square brackets, it can be saved or loaded in the normal way (SAVE"name"
or LOAD"name"). However, once the machine code has been assembled (and
you know the address of the first byte), it can be saved and loaded separately
from the BASIC parts. The formats are as follows:

To save machine code:

*SAVE"name" start-address end-address+1 (addresses will be assumed hex).
For example, if a machine code subroutine called "sort" is located between &
0D00 and &0D20 inclusive, it can be saved by:

*SAVE"sort" 0D00 0D21

There is an alternative format:

*SAVE"sort" starting-address number-of-bytes

The above example would then read:

*SAVE"sort" 0D00 +21

To load machine code:

The format is:

* LOAD"name"

The code will be loaded into the same address band as when saved. An
alternative format is:

*LOAD"name" first-address

This is used (rarely) if, for some reason, it is required to load the code into a
hex address, different to that used when the code was saved.

To run machine code:

The majority of machine code is likely to be called from within an outline
BASIC program. If, however, the code is self-supporting it can be run by
using:

*RUN "name"
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Summary

1. Assembly code within BASIC must be enclosed within [ ].
2. Hex op-codes are replaced by three-letter mnemonic groups.
3. All numerics are assumed decimal unless preceded by &.
4. Operands can be absolute numeric or any legitimate BASIC variable

expression but not BASIC commands.
5. Registers can only hold one byte so any excess high order operand digits

are dropped.
6. BASIC variables cannot be assigned within assembly code.
7. Conditional branch destination can be to a symbolic label.
8. A branch destination label must be preceded by the full-stop. There must

be no full-stop when the label is in the operand position.
9. Each statement on the same line must have the full colon as a delimiter.

10. P% is special. The contents will be the address of the first byte of the
assembly code. 

11. Assembly code can be located by either absolute addressing, by modified
DIM statement, below BASIC by using PAGE or between the end of
BASIC program and the start of the 'variable space' by use of LOMEM.

12. The BASIC keyword RUN assembles any machine code present but only
CALL can execute it.

13. CALL can be a statement within BASIC or a separate command.
14. OPT is a pseudo operation (not a BASIC keyword) so is valid only

within the square brackets.
15. OPT defaults to OPT 3 which instructs the assembler to produce a hsting

and to report any errors.
16. A fully debugged, tested program would normally be run under OPT O.
17. Assembly code which contains a branch to a forward (higher) address

requires two passes through the assembler.
18. A P% assignment must be inside the FOR loop for two-pass assembly
19. Macros, although not directly available in the assembler, can be

implemented by using procedures.
20. The square brackets, denoting assembly code are legal within DEF

PR0C.
21. Macros, implemented by procedures, require a temporary exit from the

assembler.
22. Conditional assembly is not directly available but can be implemented by

the IF THEN ELSE structure.
23. Parameters can be passed to assembly subroutines by CALL or USR.
24. In the BBC machine, the address band beginning at &0600 is the

parameter-block used by CALL.
25. The parameter-block contains only the address of the parameters not the

parameters themselves.
26. The parameter begins with the number of parameters. Three items for

each parameter then follow.
27. The first and second items give the low- and high-byte address and the

third gives the parameter type.
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28. The parameter type code is 0 for single byte. 4 for four-byte integer, 5 for
five-byte floating point variable.

29. The parameter type code 80 is for defined address strings and 81 is for
normal string variables.

30. Because the CALL parameter block contains only addresses of data, the
data is easily recovered by using indirect addressing.

31. Before using indirect addressing, Y (or X) are usually zeroed and
parameter addresses transferred to page zero.

32. Parameters passed by USR are by A%, X%, Y% into the same named
6502 registers. The lsb of C% is passed to the carry bit in P (process
status register).

33. The result of USR action (if any) is passed to any designated integer
variable.

34. The USR result is the combined contents of P, Y, X and A as they were
on exit from the subroutine.

35. The most significant byte of the USR result is that contributed by P.
36. Indirection operators ?, !, $ before a variable refer to single-byte, four-

byte and string respectively.
37. The presence of * before SAVE or LOAD indicates that the actions refer

to assembly code programs.
38. Provision exists within *LOAD for loading assembly programs into a

different address block from that used when *SAVE was used.
39. When using *SAVE, either the last address+1 of the block is stated or the

number of bytes.

Self Test

4.1  What is the error in the following segment of code?
LDA Number:.Label CLC:ADC #&20:BNE .Label

4.2  RUN, CALL and OPT. Which of these are pseudo-operations?
4.3  What is the default number in OPT n?
4.4  If the only branch instruction in a code section was BNE &83, would it

require two-pass assembly?
4.5  Some code is called with CALL name F%, Blogs. State:

(a) The hex number stored in address &0600
(b) The contents of address &0603.
(c) The contents of address &0606

4.6  The result variable, returned by a USR call, was &12345678.
(a) What number was in the X register?
(b) What number was in the process status register?

4.7  Using the word indirection operator, write a BASIC statement which
will print out in hex the contents of address 34587.



Chapter Five
Multi-byte Loops

Two-byte operations

Single-byte working is ideal for illustrating the basic principles of the 6502
or, indeed any other 8-bit microprocessor. However, machine code programs
of practical value must assume that numbers will greatly exceed the capacity
of a single byte. Multi-byte (or multi-precision) working is the software
solution. In other words, an 8-bit microprocessor can by using suitable
software, simulate a microprocessor of (theoretically) any desirable word
length. There are penalties, of course, the most important being increased
execution time and extra programming involved in arranging the component
bytes. The programs in this chapter are kept simple since they are only
intended as guidance on the formation of loops involving rev counts greater
than 255.

Incrementing a two-byte number
Incrementing the loop counter (in cases where the number of revs round the
loop exceeds 256) poses problems associated with two-byte numbers. The
following segment of code is a simple solution:

INC NUMBER
BNE SKIP
INC NUMBER+1
.SKIP

NUMBER is the low order byte of the loop counter and NUMBER+1 the
high order byte. While the count remains less than 255, only the low order
byte is incremented because of the branch to SKIP.

Decrementing a two-byte number
The following is as economical (in execution time) as any:

SEC
LDA NUMBER
SBC #1
STA NUMBER
BCS SKIP
DEC NUMBER+1
.SKIP
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Note that SBC is used for decrementing the low-order byte instead of DEC.
This is because:

(a)  DEC will not affect the carry flag,
(b)  The Z flag cannot be used because the high-byte is only decremented
when the low-byte has passed through zero.

Adding two single-byte numbers
Even when the numbers are individually within the capacity of a single byte,
a double-byte result must be allowed for. The following segment allows for
this:

LDA #0
STA SUM+1
CLC
LDA NUMBER1
ADC NUMBER2
STA SUM
BCC SKIP
INC SUM:1
.SKIP

Adding a single byte number to a double-byte number
The following short program illustrates how a single-byte number can be
added to a double-byte number:

CLC
LDA NUMBER1
ADC NUMBER2
STA NUMBER1
BCC SKIP
INC NUMBER+1
SKIP

The example programs which follow will pass parameters by means of the
CALL statement and, consequently, will take advantage of indirect indexed
addressing. It would be possible, and perhaps simpler, to make use of the
word-indirection operator. However, the advantages of indirect addressing,
the concept of address pointers and the power of the CALL statement justify
the extra programming work. This is a useful habit to acquire, since most
machine code routines will ultimately be called from BASIC. We shall use
the word-indirection operator only in a BASIC print role.
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Four-byte operations

Simple four byte addition
Integer variables in the BBC and Electron occupy four bytes. The flowchart
shown in Fig. 5.1 illustrates the addition of two 32-bit integers.

ADD INTEGERS, A
BYTE AT A TIME

(INDIRECT INDEXED)

BYTE COUNT
= ZERO?

TO BASIC

INC Y

DECREMENT BYTE
COUNTER

CLEAR Y INDEX
CLEAR CARRY

SET BYTE COUNT TO
4

GET ADDRESSES
OF A% AND B%

STORE FIRST
STORE SECOND

(ZERO PAGE)

FROM BASIC

NO

Figure 5.1. 32-bit integer addition

The flowchart begins at the point where the two variables to be added
(A% and B%) have been received from the CALL statement in BASIC with
their addresses passed to the parameter block at &060(% These addresses
now become the address pointers 'FIRST' and 'SECOND' which are
transferred to zero-page locations.

The four-byte loop is then initialised by:

(a)  setting the Y index to 0 (ready for the low order byte in each integer),
(b)  setting the loop counter (X) to 4,
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(c)  clearing the carry.

Each time round the loop, the following actions occur:

(a)  The corresponding bytes of each integer are added using indirect
indexing and taking the carry bit mto consideration.
(b)  The byte sum is transferred to 'RESULT'. this time using indexed
addressing
(c)  The Y index is incremented ready for action on the next higher order
byte.
(d)  The loop counter (X) is decremented.

The loop exits after the most significant byte pair has been added which is
when the loop count has reached zero. The control then passes back to
BASIC.

   10  REM 32b i t  INTEGER ADDITION
   20  MODE4
   30  F IRST=&70:SECOND=&72
   40  RESULT=&80
   50  ADD=&0C00
   60  FOR PASS=0 TO 2  STEP 2
   70  P%=ADD
   80  [OPT PASS
   90  LDA &0601 \STORE ADDRESSES
  100  STA F IRST \OF BASIC INTEGERS
  110  LDA &602 \A% AND B% IN
  120  STA F IRST+1 \ZERO PAGE
  130  LDA &0604
  140  STA SECOND
  150  LDA &0605
  160  STA SECOND+1
  170  LDY #0
  180  LDX #4  \SET BYTE COUNTER
  190  CLC
  200  .ADDLOOP
  210  LDA (F IRST) ,Y  \ADD INTEGERS
  220  ADC (SECOND) ,Y  \A  BYTE AT A T IME
  230  STA RESULT,Y \USING INDIRECT
  240  INY \ INDEXED ADDRESSING
  250  DEX \BRANCH ADDLOOP
  260  BNE ADDLOOP \ IF  BYTE CTR=0
  270  RTS: ]
  280  NEXT PASS
  290  CLS
  300  INPUT"FIRST INTEGER  " ,A%
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  310  INPUT"SECOND INTEGER " ,B%
  320  CALL ADD,A%,B%
  330  PRINT"ADDITION= " ; !&80

Program 5.1. 32-bit integer addition

The complete assembly coding is given in Program 5.1. It can be deduced
from line 30 of Program 5.1 that the address pointers FIRST and FIRST+1
occupy &70 and &71. Also SECOND and SECOND+1 address pointers
occupy &72 and &73. The RESULT, in &80 and &81 is the data itself, not an
address pointer. This is confirmed by line 230 which shows that simple
indexed (not indirect) addressing is used for RESULT.

Simple four-byte subtraction
Because of the close similarity with the previous program, a flowchart was
not considered necessary, so only the listing is given in Program 5.2.

   10  REM 32b i t  INTEGER SUBTRACTION
   20  MODE4
   30  F IRST=&70:SECOND=&72
   40  RESULT=&80
   50  SUBTRACT=&0C00
   60  FOR PASS=0 TO 2  STEP 2
   70  P%=SUBTRACT
   80  [OPT PASS
   90  LDA &0601 \STORE ADDRESSES
  100  STA F IRST \OF BASIC INTEGERS
  110  LDA &0602 \A% AND B% IN
  120  STA F IRST+1 \ZERO PAGE
  130  LDA &0604
  140  STA SECOND
  150  LDA &0605
  160  STA SECOND+1
  170  LDY #0
  180  LDX #4  \SET BYTE COUNTER
  190  SEC
  200  .ADDLOOP
  210  LDA (F IRST) ,Y  \SUBTRACT INTEGERS
  220  SBC (SECOND) ,Y
  230  STA RESULT,Y \USING INDIRECT
  240  INY \ INDEXED ADDRESSING
  250  DEX \BRANCH ADDLOOP
  260  BNE ADDLOOP \ IF  BYTE CTR<>0
  270  RTS: ]
  280  NEXT PASS
  290  CLS
  300  INPUT"FIRST INTEGER  " ,A%
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  310  INPUT"SECOND INTEGER " ,B%
  320  CALL SUBTRACT,A%,B%
  330  PRINT"SUBTRACT= " ; !&80

Program 5.2. 32-bIt Integer subtraction.

Multiple byte loop (up-counting)
It is useful to have a skeleton program for performing a certain process n
times where n is not limited to 256. Figure 5.2 shows the outline flowchart,
with the particular process left undefined. No attempt is made in the flowchart
to discriminate between low-byte and high-byte components of CYCLE and
NUMBER. To do so would entail extra detail which could weaken, rather
than clarify, the impact of the flowchart.

EXIT

INCREMENT
CYCLE

(2 BYTES)

SET UP NUMBER
IN ZERO PAGE

INITIALISE
CYCLE TO ZERO

CYCLE = NUMBER
?NO

PROCESS

Fig. 5.2. Flowchart for up count.

Program 5.3 is an implementation of the flowchart in Fig. 5.2 and will
print the letter H on the screen 1024 times.

   10  REM MULTIPLE BYTE LOOP(UPCOUNTING)
   20  MODE4
   30  CYCLE=&70:NUMBER=&72
   40  ?&72=0:?&73=4
   50  START=&0C00
   60  FOR PASS=0 TO 2  STEP 2
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   70  P%=START
   80  [OPT PASS
   90  LDA #0  \ IN IT IALISE CYCLE
  100  STA CYCLE \COUNTER TO ZERO
  110  STA CYCLE+1 \ (2  BYTES)
  120  .LOOP
  130  LDA #&48 \PRINT A "H"  ON THE
  140  JSR &FFEE \SCREEN.
  150  INC CYCLE \ INCREMENT THE CYCLE
  160  BNE SKIP \COUNTER BY 1
  170  INC CYCLE+1 \ (2  BYTES)
  180  .SKIP
  190  LDA NUMBER \COMPARE NUMBER OF
  200  CMP CYCLE \CYCLES REQD TO CYCLE
  210  BNE LOOP \COUNTER IF  NOT EQUAL
  220  LDA NUMBER+1 \BRANCH TO LOOP
  230  CMP CYCLE+1 \ (2  BYTES)
  240  BNE LOOP
  250  RTS: ]
  260  NEXT PASS
  270  CALL START

Program 5.3. Mulfiple-byte loop (up-counting).

NUMBER (in Program 5.3) is the number of times the process is to be
completed. CYCLE is the current loop count. Line 30 assigns the two bytes of
CYCLE to &70 and &71, and NUMBER to &72 and &73. Purely for
purposes of illustration, NUMBER has been initialised to a constant value of
1024 by fine 40. This is done by setting the low-byte of NUMBER to 0 and
the high-byte to 4 (equivalent to 4×256).

The process, used as an example (painting H on the screen), occupies lines
130 and 140 and uses the resident subroutine OSWRCH which is at address
&FFEE.

Multiple-byte loop (down-counting)
Providing the sole criterion is that a process is carried out the requisite
number of times, it matters little whether the loop counter starts at zero and
increments or starts with a finite number and decrements towards zero.
However, as discussed in a previous chapter, the decrement method
(downcounting), is both simpler and faster in execution. No comparison
instructions appear and therefore there will be no need to assign NUMBER.
Program 5.4 is identical in objective to the previous program but uses this
down-counting method.

   10  REM MULTIPLE BYTE LOOP (DOWNCOUNTI
NG)
   20  MODE4
   30  CYCLE=&70
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   40  ?&70=0:?&71=4
   50  START=&0C00
   60  FOR PASS=0 TO 2  STEP 2
   70  P%=START
   80  [OPT PASS
   90  LDA #&48 \PUT A "H"  ON THE
  100  JSR &FFEE \SCREEN
  110  SEC
  120  LDA CYCLE \DECREMENT CYCLE
  130  SBC #1  \COUNTER BY 1
  140  STA CYCLE \ (2  BYTES)
  150  BCS SKIP
  160  DEC CYCLE+1
  170  .SKIP
  180  LDA CYCLE
  190  BNE START \COMPARE CYCLE COUNTER
  200  LDA CYCLE+1 \TO ZERO,  IF  NOT EQUAL
  210  BNE START \BRANCH TO START
  220  RTS: ]
  230  NEXT PASS
  240  CALL START

Program 5.4. Multiple-byte loop (down-counting)

It is worth comparing the two programs side by side to dispel lingering
doubts as to which is the more elegant.

Adding an array of integers

Program 5.5 adds four-byte integer numbers held in a BASIC array
(ARRAY%) For testing purposes only, ARRA Y£% is filled with random
integers of mixed sign, the number of integers being entered by the user. An
example computer RUN is shown at the end of the listing. It helps if the
flowchart, shown in Fig. 5.3 is studied first.

   10  REM 32b i t  INTEGER ARRAY SUMMATION
   20  MODE 4
   30  NUMBER=&70:POINTER=&72
   40  RESULT=&80
   50  SUM=&0C00
   60  FOR PASS=0 TO 2  STEP 2
   70  P%=SUM
   80  [OPT PASS
   90  LDA &0601 \GET NUMBER OF
  100  STA RESULT \ INTEGERS IN
  110  LDA &0602 \ARRAY
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  120  STA RESULT+1 \STORE IN NUMBER
  130  LDY #0
  140  LDA (RESULT) ,Y
  150  STA NUMBER
  160  INY
  170  LDA (RESULT) ,Y
  180  STA NUMBER+1
  190  LDA &0604 \GET START
  200  STA POINTER \ADDRESS OF ARRAY
  210  LDA &0605 \STORE IN POINTER
  220  STA POINTER+1
  230  LDA #0  \ IN IT IALISE 4
  240  STA RESULT \BYTES FOR RESULT
  250  STA RESULT+1 \TO ZERO
  260  STA RESULT+2
  270  STA RESULT+3
  280  .LOOP
  290  LDY #0
  300  LDX #4  \SET BYTE COUNTER
  310  CLC
  320  .ADDLOOP \ADD SUCCESSIVE
  330  LDA (POINTER) ,Y  \ INTEGERS A BYTE
  340  ADC RESULT,Y \AT A T IME,STORE
  350  STA RESULT,Y \CUMUL'VE RESULT
  360  INY
  370  DEX \DEC BYTE COUNTER
  380  BNE ADDLOOP
  390  CLC
  400  LDA POINTER \ADD 4  TO POINTER
  410  ADC #4
  420  STA POINTER
  430  BCC SKIP
  440  INC POINTER+1
  450  .SKIP
  460  LDA NUMBER \DECREMENT
  470  SEC \NUMBER BY 1
  480  SBC #1
  490  STA NUMBER
  500  BCS SKIP2
  510  DEC NUMBER+1
  520  .SKIP2
  530  LDA NUMBER \ IF  NUMBER IS  NOT
  540  BNE LOOP \ZERO THEN BRANCH
  550  LDA NUMBER+1 \TO LOOP(2  BYTES)
  560  BNE LOOP
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  570  RTS: ]
  580  NEXT
  590  CLS
  600  INPUT"HOW MANY RANDOM INTEGERS " ,N
UMBER%
  610 DIM ARRAY%(NUMBER%)
  620  FOR N%=1 TO NUMBER%
  630 ARRAY%(N%)=RND/1000000
  640  PRINT ARRAY%(N%)
  650  NEXT
  660  PINT:PRINT
  670  CALL SUM,NUMBER%,ARRAY%(1)
  680  PRINT"SUM= " ; !RESULT
  690  PRINT:PRINT
  700  PRINT"CHECK USING BASIC"
  710  PRINT
  720  SUM=0
  730  FOR N%=1 TO NUMBER%
  740 SUM=SUM+ARRAY%(N%)
  750  NEXT
  760  PRINT"CHECK= " ;SUM

>RUN

HOW MANY RANDOM INTEGERS ?5
       681
     20966
     10485
     -2851
     -2610

SUM= 26671

CHECK USING BASIC

CHECK= 26671
Program 5.5. Integer array summation.

The program is the first one in this book which illustrates the speed of
machine code. When assessing the speed, it should be realised that the filling
of the array and the scrolled display of the numbers is carried out in BASIC.
The speed referred to applies only to the machine code portion which
performs the actual addition. A parallel addition check is carried out in



Chapter Five Multi-byte Loops 111

BASIC, primarily for speed comparisons. To compare the machine code
speed with the BASIC equivalent, run the program with 4000 integers instead
of with 5 as shown in Program 5.5 and note that the machine code sum
appears almost instantaneously after the numbers stop scrolling. The BASIC
check on the addition takes many seconds. The program should be fairly easy
to follow from the comments on the listing. It uses some of the coding blocks
previously discussed.

NUMBER=0
(2 BYTES)

DECREMENT NUMBER BY 1
(2 BYTES)

ADD 4 TO POINTER
(2 BYTES)

BYTE COUNT=0
1 BYTE

DECREMENT BYTE COUNTER
(4 BYTES)

ADD SUCCESSIVE INTEGER BYTES
STORE CUMULATIVE SUM IN RESULT

(4 BYTES)

SET BYTE-COUNTER TO 4

INITIALISE RESULT TO ZERO
(4 BYTES)

GET START ADDRESS OF BASIC
INTEGER ARRAY

STORE IN POINTER (2 BYTES)

GET NUMBER OF INTEGERS
IN BASIC ARRAY

STORE IN NUMBER (2 BYTES)

START

RTS

Fig. 5.3. Flowchart of Program 5.5
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Summary

1. The 6502, in common with most microprocessors, has a word length of
8-bits, limiting the magnitude of signed integers to +127 and 128 and
unsigned integers to 255.

2. The 8-bit word length is merely a hardware limitation, easily overcome
by means of software.

3. Separate 8-bit words can be considered 'joined' end to end in order to
simulate long word lengths. The simulation is perfect in most respects
except execution time.

4. Incrementing a double-byte number proceeds initially with the low-order
byte. The high-order byte is incremented only when the count goes over
the top from 255 (&FF) to zero (&00).

5. Decrementing a double-byte number is similar but SBC is preferable to
DEC because a carry rather than a zero is required for the inner loop test.

6. Most machine code programs are entered from BASIC, so loop
parameters can be easily passed by use of CALL.

7. Integer variables in BASIC occupy 4 bytes (32 bits).
8. In signed integer work, the sign bits in the three lower order bytes are

ignored. Only the highest order byte carries real sign information.
9. When performing loop counts, it is normally more efficient to count

down towards zero rather than up towards a finite number.
10. When estimating the speed of the example programs, remember that the

BASIC sections, which call and initialise the machine code, squander
most of the execution time.

Self Test

5.1  A two-byte counter is holding 770 decimal. Write the bit pattern in the
high-order byte.

5.2  A two-byte counter is holding 1801 decimal. Write the bit pattern in
the low-order byte.

5.3  A four-byte counter is holding -1. What hex number is the highest
order byte holding?

5.4  Signed integers in the BBC machine occupy four bytes. What is the
largest positive number possible (to the nearest million)?

5.5  If two single-byte numbers of opposite sign are added, could the result
ever exceed the capacity of a single byte.



Chapter Six
Sort Routines

Apart from personal interest and/or intellectual stimulation, there is little
point in adopting a partisan approach to machine code. It is pointless to view
BASIC, particularly BBC BASIC, as a language inferior to machine code.
The two should complement, rather than rival, each other. Once familiarity
and confidence is gained in handling machine code, it will gradually become
clear which parts of a BASIC program should be relegated to machine code
and which parts can be handled quite adequately in BASIC.

There can be no doubt, however, that one area in data processing which
calls out for machine code solutions is sorting data into numerical or
alphabetical order. It has been stated that approximately 30% of all
commercial computing time is spent on some kind of sorting activity. An
ordered system of any kind represents a 'high energy' system. Since the
equation for energy in physics is power multiplied by time, we would
therefore expect that programs which sort data will make heavy demands on
computing time.

The physical power of a given computer is fixed by the hardware, which
in turn depends on such things as the clock frequency, word length and the
sophistication built into the central processor (in the BBC, the central
processor is the 6502). Although in no way meant as criticism, the machine,
and indeed most other microcomputers likely to be found in the average
borne, arc slow in terms of 'mips' (million instructions per second). The BBC
machine is rated at about 0-5 mips. In contrast, some of the modern
mainframe giants have reached a speed approaching 100 mips with a word
length of 64 bits and it is confidently expected that this figure will be
substantially beaten by the forthcoming breed of fifth generation machines.
Returning to present day reality, there is nothing we can do about the
limitations imposed by the hardware of our machine. The only method of
attack is to use software which takes the fullest advantage of the machine.

This chapter is devoted entirely to the problem of machine code sorting
routines. A simple bubble sort, limited to single byte data, was introduced in
the previous book,Discovering BBC Micro Machine Code. The following
programs treat the sorting problem in more detail and will include the sorting
of arrays of four-byte BASIC integers, strings, floating point numbers and
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two-dimensional string arrays. It will also include routines which sort fixed
length multi-field records. They are given complete with BASIC parameter
passing lines so they can be entered and exhaustively tested. It should be
pointed out that the machine code portion of the listings will stand alone as
subroutines, providing that:

(a)  the correct parameters are passed from any BASIC program;
(b)  the code is lodged either in one of the safe areas (not necessarily the
areas used in our listings) or dynamically, above or below BASIC, by the use
of the DIM statement.

All the programs in this chapter are concerned with sorting data into either
numerical or alphabetical order and will be useful in compiling indexes,
customer lists, domestic accounts, hobby collections (butterflies, stamps,
beetles) etc. They could also be employed as routines within general purpose
filing systems to store or retrieve information according to some
predetermined order.

Bubble sort of a BASIC integer array

The bubble sort is well-known but often despised because it is slow. It is one
of the simplest sort routines to understand and, providing there are not too
many elements in the array, can be acceptable if written in machine code. It
provides a good starting point for handling multibyte integers.

Because the programs which follow are intended to be used in conjunction
with BASIC, via CALL parameters, it is important to understand how the
interpreter allocates variable space.

How integer array variables are stored
The four bytes, allocated to each integer array variable, are arranged as
follows:

increasing memorysign bit
(bit 7)

4 3 2 1

MSB LSB
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RETURN

DECREMENT NUMBER BY 1 (2 BYTES)

INCREMENT CYCLE (2 BYTES)

SWAP INTEGERS A BYTE AT A TIME (4 BYTES)

SET SWAP FLAG

IN ORDER

COMPARE INTEGERS

ADD 4 TO POINTER 1 AND STORE IN POINTER 2
(2 BYTES)

POINTER 2 BECOMES POINTER 1 (2 BYTES)

OBTAIN START ADDRESS OF INTEGER ARRAY
FROM CALL PARAMETER BLOCK AND STORE IN

POINTER 2 (2 BYTES)

SET FLAG TO ZERO (1 BYTE)
SET CYCLE TO ZERO (2 BYTES)

DECREMENT NUMBER BY 1 (2 BYTES)

GET NUMBER OF INTEGERS IN BASIC ARRAY
FROM CALL PARAMETER BLOCK AND STORE IN
NUMBER (2 BYTES)

START

CYCLE = NUMBER
(2 BYTES)

SWAP
FLAG CLEAR

(1 BYTE)

NUMBER=0
(2 BYTES)

8

9

10

11

12
NO

YES

1

2

3

4

5

6

7

NO

YES

Fig. 6.1. Flowchart for integer array bubble sort.
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Each integer of the array is then stored sequentially, so in effect, each element
has an address 4 bytes in advance of the previous integer.

The machine code routine is executed from BASIC via the CALL
statement:

CALL SORT, NUMBER%, ARRAY%(1)

Of course, the above variable names are arbitrarily chosen but they must be in
the above order where:

SET BYTE
COUNTER TO 4

SET CARRY FLAG

DECREMENT
BYTE COUNTER

CARRY FLAG
SET

SET SWAP FLAG

SWAP INTEGERS
A BYTE AT A TIME

(4 BYTES)

SUBTRACT 1st
INTEGER BYTE FROM

2nd INTEGER BYTE

BYTE COUNTER
=0

7

NO

YES

Fig. 6.2. Expansion of block 7 in Fig. 6.1.
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SORT=the start address of the routine
NUMBER%=the number of elements in the array
ARRAY%(1) the first usable element in the array

The zero element is best left vacant for headings, etc.
The flowchart for the routine is given in Fig. 6.1. As can be seen, the

algorithm consists basically of an inner control loop and an outer control
loop. The pairs of integers are repeatedly incremented, compared (and if
necessary swopped) in the inner loop. The largest integer in the list always
'bubbles' through to the last position. It will no longer be necessary to involve
this integer again, so the outer loop count may be reduced by one. On the next
inner loop series of cycles, the next largest integer 'bubbles' through to the last
but one position in the list and so on, until the list is fully sorted. The
maximum number of comparisons is approximately equal to half the square
of the array size. The execution time can be reduced if the list is not too
disordered by the use of a swop flag technique as shown in the flowchart.
Note from the flowchart that the blocks have been numbered for reference
purposes. Block 7 is shown expanded in Fig. 6.2. The listing corresponding to
the flowchart is given in Program 6.1

Program 6.1. Bubble sort of an unsigned 32-bit integer array

   10  REM BUBBLE SORT OF ARRAY OF
   20  REM 32b i t  UNSIGNED INTEGERS
   30  NUMBER=&70:CYCLE=&72:POINTER1=&74
   40  POINTER2=&76:FLAG=&78
   50  DIM SORT 500
   60  FOR PASS=0 TO 2  STEP 2
   70  P%=SORT
   80  [OPT PASS \** * * * * * * * * * * * * *
   90  LDA &0601 \SET NUMBER OF
  100  STA CYCLE \BASIC INTEGERS
  110  LDA &0602 \ IN  ARRAY AND
  120  STA CYCLE+1 \STORE IN NUMBER
  130  LDY #1
  140  LDA (CYCLE) ,Y
  150  STA NUMBER+1
  160  DEY
  170  SEC
  180  LDA (CYCLE) ,Y \ * * * * * * * * * * * * * * *
  190  SBC #1 \DECREMENT
  200  STA NUMBER \NUMBER
  210  BCS OUTERLOOP \** * * * * * * * * * * * * *
  220  DEC NUMBER+1
  230  .OUTERLOOP \** * * * * * * * * * * * * *
  240  LDA #0 \ IN IT IALISE
  250  STA FLAG \SWOP FLAG AND
  260  STA CYCLE \CYCLE TO ZERO
  270  STA CYCLE+1
  280  LDA &0604 \ * * * * * * * * * * * * * * *
  290  STA POINTER2 \STORE FIRST INT
  300  LDA &0605 \ADDRESS TEMP IN
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  310  STA POINTER2+1 \POINTER2
  320  . INNERLOOP \** * * * * * * * * * * * * *
  330  LDA POINTER2+1 \TRANSFER
  340  STA POINTER1+1 \POINTERS
  350  LDA POINTER2 \POINTER1 =
  360  STA POINTER1 \POINTER2
  370  CLC \
  380  ADC #4 \ADD 4  TO
  390  STA POINTER2 \POINTER 1  AND
  400  BCC SKIP \STORE IN
  410  INC POINTER2+1 \POINTER2
  420  .SKIP \ * * * * * * * * * * * * * * *
  430  LDX #4 \SUBTRACT INT 'S
  440  LDY #0 \A  BYTE AT A
  450  SEC \TIME (4  BYTES)
  460  .COMPLOOP \KEEPING TRACK
  470  LDA (POINTER2) ,Y \OF CARRY FLAG
  480  SBC (POINTER1) ,Y \AT COMPLETION
  490  INY
  500  DEX
  510  BNE COMPLOOP \BRANCH NOSWOP
  520  BCS NOSWOP \ IF  CARRY SET
  530  DEY
  540  STY FLAG \SET SWOP FLAG
  550  .SWOPLOOP \** * * * * * * * * * * * * *
  560  LDA(POINTER1) ,Y \SWOP INTEGERS
  570  TAX \A BYTE AT A
  580  LDA(POINTER2) ,Y \T IME
  590  STA(POINTER1) ,Y
  600  TXA
  610  STA(POINTER2) ,Y
  620  DEY
  630  BPL SWOPLOOP
  640  .NOSWOP
  650  INC CYCLE \* * * * * * * * * * * * * * *
  660  BNE SKIP2 \ INCREMENT
  670  INC CYCLE+1 \CYCLE
  680  .SKIP2 \ * * * * * * * * * * * * * * *
  690  LDA CYCLE \COMPARE CYCLE
  700  CMP NUMBER \TO NUMBER.  IF
  710  BNE INNERLOOP \<> BRANCH TO
  720  LDA CYCLE+1 \ INNERLOOP
  730  CMP NUMBER+1
  740  BNE INNERLOOP
  750  LDA FLAG \ IF  SW.FLG CLEAR
  760  BEQ FLAGCLEAR \BR.  FLAGCLEAR
  770  LDA NUMBER \** * * * * * * * * * * * * *
  780  SEC \DECREMENT
  790  SBC #1 \NUMBER
  800  STA NUMBER
  810  BCS SKIP3
  820  DEC NUMBER+1
  830  .SKIP3 \ * * * * * * * * * * * * * * *
  840  LDA NUMBER \COMPARE NUMBER
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  850  BNE OUTERLOOP \TO ZERO
  860  LDA NUMBER+1 \BRANCH IF  <>  TO
  870  BNE OUTERLOOP \OUTERLOOP
  880  .FLAGCLEAR
  890  RTS: ]
  900  NEXT PASS
  910   
  920  REM BASIC IS  FOR TESTING ONLY
  930  MODE4
  940  CLS
  950  INPUT"NUMBER OF INTEGERS " ,NUMBER%
  960 PRINT
  970  DIM ARRAY%(NUMBER%)
  980  FOR N%=1 TO NUMBER%
  990 ARRAY%(N%)=RND(10000)
 1000 PRINT ARRAY%(N%)
 1010 NEXT
 1020 PRINT
 1030 PRINT "SORTING"
 1040 PRINT
 1050 START%=TIME
 1060 CALL SORT,NUMBER%,ARRAY%(1)
 1070 t ime%=TIME-START%
 1080 FOR N%=1 TO NUMBER%
 1090 PRINT ARRAY%(N%)
 1100 NEXT
 1110 PRINT
 1120 PRINT"SORTING TIME= " ; t ime%/100; "  
SECONDS"

Although the listing is supplied with outline remarks, here is a more
detailed breakdown:
Lines 30-40 set up the zero-page labelled locations referred to in assembly
code.
Lines 90-220 obtain the address of the BASIC variable NUMBER£% from
the CALL parameter block and temporarily store it in CYCLE. Using indirect
indexed addressing, the data is picked up, decremented by 1 and stored in
NUMBER and NUMBER+1 (low-byte and high-byte respectively). Note,
that zero-page locations must be used for indirect indexed addressing.
Lines 240-270 initialise the swop FLAG and CYCLE counter to zero.
Lines 280-310 store the address of the first integer in the array temporarily in
POINTER2. This is picked up from the CALL parameter block.
Lines 320-360 copy POINTER2 contents into POINTER1.
Lines 370-410 add 4 to POINTER1 and store the result in POINTER2.The
reason why 4 is added is so that POINTER2 is the address of the next integer
in the array: that is to say, 4 bytes onwards.
Line 430 initialises the byte counter to 4. The X register is used for this (see
below).
Lines 450-520 subtract the integers with carry, a byte at a time, keeping the
result of the fourth bytes in the accumulator. Notice that the X register and
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DEX is used for byte counting. This is because a CPY instruction would
corrupt the carry flag during the subtraction processes. If the carry flag is set
at the end of the subtraction, no swop is required. This method only works for
unsigned integers.
Line 530 sets the byte counter for the swop process. DEY is used to set this to
3 since the current value of Y is 4.
Line 540 stores the Y register contents as a swop flag in FLAG (any nonzero
quantity would do here).
Lines 560 to 630 swop the integers, a byte at a time, starting with the high-
byte. Notice that the X register is used as a temporary storage location as this
is the most economical in execution time since TAX uses only two machine
cycles, whereas the alternatives PHA or STA require 3 cycles.
Lines 650-680 increment the CYCLE counter by 1. The coding given is an
economical way to do this in terms of execution time.
Lines 690-740 compare the low-byte of CYCLE and NUMBER. If the resuit
is non-zero, a branch is made to the label INNERLOOP. If the result is zero,
the program 'falls through' to compare the high-byte in the same manner.
Lines 750-760 check if the swop FLAG is clear. If so, a branch to
FLAGGLEAR is made.
Lines 770-820 decrement NUMBER by 1 (2 bytes, of course).
Lines 840 to 870 check if NUMBER has reached zero, first checking the low-
byte with branching to OUTERLOOP if not true- otherwise 'falling through'
to compare the high-byte.
Lines 920-1120 are pure BASIC just for test and familiarisation purposes.
They first print out a random integer array, call the machine code routine and
then print out the sorted result together with the time taken. See Table 6.1 at
the end of this chapter for a compendium of timing data.
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Bubble sort of a BASIC string array

SWAP STRING INFORMATION BLOCK A BYTE AT
A TIME (4 BYTES)

SET SWAP FLAG

END OF
STRING 2

COMPARE CHARACTER COUNTER TO LENGTH 2
(1 BYTE)

END OF
STRING 1

COMPARE CHARACTER COUNTER TO LENGTH 1
(1 BYTE)

INCREMENT CHARACTER COUNTER

ASCII CODES
EQUAL

DESCENDING
ASCII

ORDER

COMPARE CURRENT STRING 1 AND STRING 2
ASCII CODES

INITIALISE CHARACTER COUNTER TO ZERO

OBTAIN ADDRESSES AND LENGTH OF STRINGS
FROM STRING INFORMATION BLOCK.

STORE STRINGS 1 AND 2 (2 BYTES EACH) AND
LENGTH 1 AND 2 (1 BYTE EACH)

YES

NO

YES

NO

7

Fig. 6.3. Block 7 expansion for string array sort
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This routine is capable of sorting a BASIC string array, where the string
elements can vary in length up to the legal maximum of 255.

How string arrays are stored
When a string array is set up by the interpreter, four bytes are used in a
similar manner to integers. These bytes are not the strings themselves but
length details and the address of where the string is actually stored. These
four bytes are referred to as a String Information Block, the details of which
follow:

increasing memory

string
length

maximum
length

high byte low-byte

Start address

4 3 2 1

The actual string, consisting of the ASCII codes in sequential memory
locations, is stored from the starting address given in bytes I and 2 above. A
string array is formed by a series of such string information blocks, stored
sequentially in memory. Therefore, if we want to swop strings (such as during
a string sort) it is necessary only to swop the string information blocks since
these tell the system where the strings are stored. This makes programs
involving machine code sorting much easier to program since most of the
work has already been done by the interpreter. Byte 3 of the String
Information Block gives the maximum number of characters allowed before
discarding original reserved space. [his data is rarely used in practice, except
in 'housekeeping' or garbage disposal programs and consequently is of no
present interest to us. Byte 4 of the String Information Block gives the actual
length of the string in bytes (characters).

The CALL parameter block is first set up in BASIC and requires the
following variables in the CALL statement:

CALL SORT, NUMBER%, ARRAY$(1)

The above call is in the same form as that of the previous call, except that
ARRAY$(1) is used.

The flowchart is essentially the same as Fig. 6.1 with one proviso, the
details of block 7. The flowchart, showing the amendment is given in Fig.
6.3. The listing is given in Program 6.2.

Program 6.2. String array bubble sort.

   10  REM  STRING ARRAY BUBBLE SORT
   20  REM WITH VARIOUS LENGTH STRINGS
   30  NUMBER=&70:CYCLE=&72:POINTER1=&74
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   40  POINTER2=&76:FLAG=&78:s t r ing1=&79
   50  s t r ing2=&7B: leng th1=&7D
   60  leng th2=&7E
   70  DIM SORT 500
   80  FOR PASS=0 TO 2  STEP 2
   90  P%=SORT
  100  [OPT PASS \** * * * * * * * * * * * * *
  110  LDA &0601 \GET NUMBER OF
  120  STA CYCLE \BASIC STRINGS
  130  LDA &0602 \ IN  ARRAY AND
  140  STA CYCLE+1 \STORE IN NUMBER
  150  LDY #1
  160  LDA (CYCLE) ,Y
  170  STA NUMBER+1
  180  DEY
  190  SEC
  200  LDA (CYCLE) ,Y \ * * * * * * * * * * * * * * *
  210  SBC #1 \DECREMENT
  220  STA NUMBER \NUMBER
  230  BCS OUTERLOOP
  240  DEC NUMBER+1
  250  .OUTERLOOP \** * * * * * * * * * * * * *
  260  LDA #0 \ IN IT IALISE
  270  STA FLAG \SWOP FLAG AND
  280  STA CYCLE \CYCLE TO ZERO
  290  STA CYCLE+1 \* * * * * * * * * * * * * * *
  300  LDA &0604 \STORE START
  310  STA POINTER2 \ADDRESS OF
  320  LDA &0605 \$  INF BLOCK IN
  330  STA POINTER2+1 \POINTER2 TEMP.
  340  . INNERLOOP \** * * * * * * * * * * * * *
  350  LDA POINTER2+1 \TRANSFER
  360  STA POINTER1+1 \POINTERS
  370  LDA POINTER2 \POINTER1=
  380  STA POINTER1 \POINTER2
  390  CLC \* * * * * * * * * * * * * * *
  400  ADC #4 \ADD 4  TO
  410  STA POINTER2 \POINTER1 AND
  420  BCC SKIP \STORE IN
  430  INC POINTER2+1 \POINTER2
  440  .SKIP \ * * * * * * * * * * * * * * *
  450  LDY #0 \OBTAIN ADDRESS
  460  LDA (POINTER1) ,Y \AND LENGTH OF
  470  STA s t r ing1 \EACH PAIR
  480  LDA (POINTER2) ,Y \OF STRINGS
  490  STA s t r ing2
  500  INY
  510  LDA (POINTER1) ,Y
  520  STA s t r ing1+1
  530  LDA (POINTER2) ,Y
  540  STA s t r ing2+1
  550  LDY #3
  560  LDA (POINTER1) ,Y
  570  STA leng th1
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  580  LDA (POINTER2) ,Y
  590  STA leng th2
  600  LDY #0 \ * * * * * * * * * * * * * * *
  610  .COMPLOOP \COMPARE STRINGS
  620  LDA (s t r ing2) ,Y \A  CHARACTER AT
  630  CMP (s t r ing1) ,Y \A  T IME IF
  640  BCC SWOP \NECESSARY
  650  BNE NOSWOP
  660  INY
  670  CPY leng th1
  680  BEQ NOSWOP
  690  CPY leng th2
  700  BEQ SWOP
  710  BNE COMPLOOP
  720  \ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  730  .STAGE \OUT OF RANGE
  740  BNE OUTERLOOP \BRANCH PATCH
  750  \ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  760  .SWOP
  770  LDY #3
  780  STY FLAG \SET SWOP FLAG
  790  .SWOPLOOP \** * * * * * * * * * * * * *
  800  LDA(POINTER1) ,Y \SWOP STRING
  810  TAX \ INFORMATION
  820  LDA(POINTER2) ,Y \BLOCK A BYTE AT
  830  STA(POINTER1) ,Y \A  T IME(4  BYTES)
  840  TXA
  850  STA(POINTER2) ,Y
  860  DEY
  870  BPL SWOPLOOP
  880  .NOSWOP \** * * * * * * * * * * * * *
  890  INC CYCLE \ INCREMENT
  900  BNE SKIP2 \CYCLE
  910  INC CYCLE+1
  920  .SKIP2 \ * * * * * * * * * * * * * * *
  930  LDA CYCLE \COMPARE CYCLE
  940  CMP NUMBER \TO NUMBER
  950  BNE INNERLOOP \ IF  <>  BRANCH
  960  LDA CYCLE+1 \TO INNERLOOP
  970  CMP NUMBER+1
  980  BNE INNERLOOP
  990  LDA FLAG \ IF  SW.FLAG CLEAR
 1000 BEQ FLAGCLEAR \BR.  FLAGCLEAR
 1010 LDA NUMBER \** * * * * * * * * * * * * *
 1020 SEC \DECREMENT
 1030 SBC #1 \NUMBER
 1040 STA NUMBER
 1050 BCS SKIP3
 1060 DEC NUMBER+1
 1070 .SKIP3
 1080 LDA NUMBER \** * * * * * * * * * * * * *
 1090 BNE STAGE \ IF  NUMBER <>0
 1100 LDA NUMBER+1 \BRANCH OUTERLOOP
 1110 BNE STAGE \VIA STAGE
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 1120 .FLAGCLEAR
 1130 RTS: ]
 1140 NEXT PASS
 1150  
 1160 REM BASIC IS  FOR TESTING ONLY
 1170 CLS
 1180 MODE4
 1190 INPUT"NUMBER OF STRINGS " ,NUMBER%
 1200 PRINT
 1210 DIM ARRAY$(NUMBER%)
 1220 FOR N%=1 TO NUMBER%
 1230 s t r ing$=" "
 1240 FOR Z%=1 TO RND(10)
 1250 K$=CHR$(RND(26)+64)
 1260 s t r ing$=s t r ing$+K$
 1270 NEXT Z%
 1280 ARRAY$(N%)=s t r ing$
 1290 PRINT ARRAY$(N%)
 1300 NEXT N%
 1310 PRINT
 1320 PRINT "SORTING"
 1330 PRINT
 1340 START%=TIME
 1350 CALL SORT,NUMBER%,ARRAY$(1)
 1360 t ime%=TIME-START%
 1370 FOR N%=1 TO NUMBER%
 1380 PRINT ARRAY$(N%)
 1390 NEXT
 1400 PRINT:PRINT"NUMBER=" ;NUMBER%
 1410 PRINT
 1420 PRINT"SORTING TIME= " ; t ime%/100; "  

All that is now required is to explain the differences between Program 6.2
and Program 6.1. In this latter routine, POINTER1 and POINTER2 are the
address pointers to the String Information Blocks of the pair of strings. A
further level of indirect indexed addressing is necessary to pick up the actual
string characters since the String Information Block supplies only the address
of where the string is stored.

Lines 460-540 pick up the start addresses of the pair of strings, using indirect
indexed addressing. The addresses are stored in string1 and string2 (zero-page
locations).
Lines 550-590 pick up the fourth bytes of both the String Information Block
and store them in length1 and length2 Line 600 sets the character counter to
zero (Y register).
Lines 610-710 compare the ASCII codes of the pair of strings picked up by
indirect indexed addressing. On comparison, as soon as the ASCII codes are
found to be in descending order, the strings are immediately swopped. If the
ASCII codes are found to be in ascending order, then no swop is required. 
Line 660 increments the character counter. 
Lines 670-680 compare the length of the first string (length1) to the character
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counter. If they are equal, no swop is required.
Lines 690-700 compare the length of the second string (length2) to the
character counter. If they are equal, a swop is initiated.
Line 710 forces the branch to COMPLOOP which compares the next
characters in the pair of strings, and so on.
Lines 730-740 are an out-of-range branch patch and, ideally, should not be
there. It is due to the 128 byte displacement limit in relative addressing. This
occurs in Line 1110.

Merge sort of BASIC integer array

Although the bubble sort routines given earlier are fast for small numbers of
elements, the execution time increases alarmingly when in excess of about a
hundred elements. To see the delay on high numbers, try running Program 6.1
with 1000 integers. You could well wait 45 seconds before the sort is
completed. A far better solution is to use a merge sort algorithm. We noted
earlier that the bubble sort is fairly efficient if only a small number of
elements are to be sorted. We also noted that the use of a swop flag system
significantly speeds up the execution of a bubble sort of a roughly ordered
list. The merge sort algorithm takes advantage of both these virtues.
Essentially, the array to be sorted is split up into small sets which are bubble
sorted. These are merged to form larger sets which will be roughly in order.
These larger sets are bubble sorted and merged to form even larger sets and so
on until we are left with one large, roughly ordered list. This is finally bubble
sorted, which will be efficient due to the points made earlier. A flowchart for
a version of a merge sort is given in Fig. 6.4.

There is a danger of becoming intoxicated with verbosity in an attempt to
explain the intricate details of a merge sort. A better grasp of the principles
can be obtained by a Trace Table. In fact, any program which is difficult to
follow will benefit from such an analysis. The idea is to follow the program
through with arbitrary test data, keeping track of what happens to the various
'key' locations such as loop counters, etc. A Trace Table for the flowchart is
given in Fig. 6.5. The unsorted array uses 8 random integers and shows how
they would be sorted at various stages of the trace. Notice how the array
becomes more and more ordered as each outer loop cycle is completed.
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CYCLES = ZERO
(2 BYTES)

DECREMENT CYCLE (2 BYTES)

INCREMENT LOOPCOUNT (2 BYTES)

ADD 4 TO BOTH POINTER 1 and POINTER 2
(2 BYTES)

SWAP INTEGERS A BYTE AT A TIME (4 BYTES)

SET SWAP FLAG

IN ORDER

COMPARE INTEGERS

MULTIPLY SIZE BY 4 (2 BYTES) THEN ADD TO
POINTER 1 AND STORE RESULT IN POINTER 2

(2 BYTES)

OBTAIN START ADDRESS OF INT ARRAY FROM
CALL PARAMETER BLOCK AND STORE IN

POINTER 1 (2 BYTES)

SET LOOPCOUNT TO ZERO (2 BYTES)
SET SWAP FLAG TO ZERO (1 BYTE)

STORE NUMBER – SIZE IN CYCLES (2 BYTES)

DIVIDE SIZE BY 2 (2 BYTES)

FIND NEXT POWER OF 2 >= NUMBER. STORE IN
SIZE (2 BYTES). STORE RESPECTIVE INDEX IN

POWER (1 BYTE)

GET NUMBER OF BASIC ARRAY INTEGERS FROM
CALL PARAMETER BLOCK
STORE IN NUMBER (2 BYTES)

SWAP
FLAG CLEAR

(1 BYTE)

11

NO

NO

YES

NO

NO
12

14

1

2

3

4

5

6

7

8

9

10

13

LOOPCOUNT
= CYCLES
(2 BYTES) DECREMENT POWER (1 BYTE)

POWER = ZERO

RTS

Fig. 6.4. Merge sort of an Integer array.

If the flowchart and trace table have been understood, Program 6.3 should be
reasonably easy to decipher. In this program, there is provision for sorting
signed integers. An expansion of Block 8 of the flowchart (Fig. 6.4) is given
in Fig. 6.6, showing the extra details required.
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TRACE TABLE FOR A MERGE SORT

LOCATION
LABELS

Value after 1st
outer loop
completed

Value after 2nd
outer loop
completed

Value after 3rd
outer loop
completed

NUMBER 8 8 8

POWER 2 1 0

SIZE 4 2 1

CYCLES 4 6 7

Unsorted array Array after 1st
outer loop
completed

Array after 2nd
outer loop
completed

Array after 3rd
outer loop
completed

5 5 3 1

8 6 1 2

3 3 4 3

1 1 2 4

7 7 5 5

6 8 6 6

4 4 7 7

2 2 8 8

Fig 6.5. Simple Trace Table of merge sort algorithm.
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NO

NO

YES

SET SWAP FLAG

SWAP INTEGERS A BYTE AT A TIME (4 BYTES)

UPDATE N FLAG WIH SIGN OF ACCUMULATOR

REVERSE SIGN BIT OF ACCUMULATOR

OVERFLOW
FLAG SET

BYTE COUNTER
=ZERO

DECREMENT BYTE COUNTER

SUBTRACT 1st INTEGER BYTE
FROM 2nd INTEGER BYTE

SET BYTE COUNTER TO 4

RESULT
POSITIVE

8

Fig 6.6. Expansion of Block 8 in Fig. 6.4.
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Program 6.3. Merge sort of an array of signed 32-bit integers

   10  REM MERGE SORT OF ARRAY OF
   20  REM SIGNED 32b i t  INTEGERS
   30  NUMBER=&70:POINTER1=&72:POWER=&74
   40  POINTER2=&75:SIZE=&77:LOOPCOUNT=&7
9:FLAG=&7B:STORE=&7C:CYCLES=&7E
   50  DIM SORT 500
   60  FOR PASS=0 TO 2  STEP 2
   70  P%=SORT
   80  [OPT PASS \** * * * * * * * * * * * * *
   90  LDA &0601 \GET NUMBER OF
  100  STA STORE \BASIC INTEGERS
  110  LDA &0602 \ IN  ARRAY AND
  120  STA STORE+1 \STORE IN NUMBER
  130  LDY #0
  140  STY SIZE+1
  150  STY POWER \ALSO INIT IALISE
  160  LDA (STORE) ,Y \S IZE AND POWER
  170  STA NUMBER
  180  INY
  190  STY SIZE
  200  LDA (STORE) ,Y
  210  STA NUMBER+1
  220  .S IZELOOP \** * * * * * * * * * * * * *
  230  INC POWER \FIND NEXT POWER
  240  CLC \OF 2  >=  NUMBER
  250  ASL SIZE \STORE IN SIZE
  260  ROL SIZE+1
  270  SEC
  280  LDA SIZE
  290  SBC NUMBER
  300  LDA SIZE+1
  310  SBC NUMBER+1
  320  BCC SIZELOOP
  330  .OUTERLOOP \** * * * * * * * * * * * * *
  340  CLC \DIVIDE SIZE
  350  LSR SIZE+1 \BY 2
  360  ROR SIZE
  370  SEC \** * * * * * * * * * * * * *
  380  LDA NUMBER \SUBTRACT SIZE
  390  SBC SIZE \FROM NUMBER
  400  STA CYCLES \STORE IN CYCLES
  410  LDA NUMBER+1
  420  SBC SIZE+1
  430  STA CYCLES+1
  440  .MIDLOOP \** * * * * * * * * * * * * *
  450  LDA #0 \ IN IT IALIE
  460  STA FLAG \SWOP FLAG AND
  470  STA LOOPCOUNT \LOOPCOUNT
  480  STA LOOPCOUNT+1
  490  LDA &0604 \ * * * * * * * * * * * * * * *
  500  STA POINTER1 \STORE FIRST INT
  510  LDA &0605 \ADDRESS IN
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  520  STA POINTER1+1 \POINTER1
  530  LDA SIZE \* * * * * * * * * * * * * * *
  540  STA STORE \MULTIPLY SIZE
  550  LDA SIZE+1 \BY 4  AND ADD
  560  STA STORE+1 \ADD TO POINTER1
  570  LDX #2 \STORE RESULT IN
  580  .MULT4 \POINTER2
  590  CLC
  600  ASL STORE
  610  ROL STORE+1
  620  DEX
  630  BNE MULT4
  640  CLC
  650  LDA POINTER1
  660  ADC STORE
  670  STA POINTER2
  680  LDA POINTER1+1
  690  ADC STORE+1
  700  STA POINTER2+1
  710  . INNERLOOP \** * * * * * * * * * * * * *
  720  LDX #4 \SUBTRACT ONE
  730  LDY #0 \ INTEGER FROM
  740 SEC \THE OTHER AND
  750  .COMPLOOP \KEEP THE MOST
  760  LDA (POINTER2) ,Y \S IGNIFICANT
  770  SBC (POINTER1) ,Y \BYTE OF RESULT
  780  INY \ IN ACCUMULATOR
  790  DEX \FOR SIGN BIT
  800  BNE COMPLOOP
  810  BVC NOOVERFLOW \REVERSE SIGN
  820  EOR #&80 \BIT  IF  OVERFLOW
  830 .NOOVERFLOW \OCCURS.
  840  TAX \UPDATE N FLAG
  850  BPL NOSWOP \N CLEAR,NOSWOP
  860  DEY
  870  STY FLAG
  880  .SWOPLOOP \** * * * * * * * * * * * * *
  890  LDA (POINTER1) ,Y \SWOP INTEGERS
  900  TAX \A BYTE AT A
  910  LDA (POINTER2) ,Y \T IME
  920  STA (POINTER1) ,Y
  930  TXA
  940  STA (POINTER2) ,Y
  950  DEY
  960  BPL SWOPLOOP
  970  BMI  NOSWOP
  980  \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  990  .STAGE1 \OUT OF RANGE
 1000 BNE MIDLOOP \BRANCH PATCHES
 1010 .STAGE2
 1020 BNE OUTERLOOP
 1030 \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1040 .NOSWOP \** * * * * * * * * * * * * *
 1050 INC LOOPCOUNT \ INCREMENT
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 1060 BNE SKIP \LOOPCOUNT
 1070 INC LOOPCOUNT+1
 1080 .SKIP \ * * * * * * * * * * * * * * *
 1090 LDA POINTER1 \ADD 4  TO
 1100 CLC \POINTER1
 1110 ADC #4
 1120 STA POINTER1
 1130 BCC SKIP2
 1140 INC POINTER1+1
 1150 .SKIP2 \ * * * * * * * * * * * * * * *
 1160 LDA POINTER2 \ADD 4  TO
 1170 CLC \POINTER2
 1180 ADC #4
 1190 STA POINTER2
 1200 BCC SKIP3
 1210 INC POINTER2+1
 1220 .SKIP3 \ * * * * * * * * * * * * * * *
 1230 LDA CYCLES \COMPARE
 1240 CMP LOOPCOUNT \LOOPCOUNT
 1250 BNE INNERLOOP \TO CYCLE
 1260 LDA CYCLES+1 \ IF  <>  BRANCH
 1270 CMP LOOPCOUNT+1 \TO INNERLOOP
 1280 BNE INNERLOOP
 1290 LDA FLAG \ IF  SW.FLG CLEAR
 1300 BEQ FLAGCLEAR \BR.  FLAGCLEAR
 1310 SEC
 1320 LDA CYCLES \** * * * * * * * * * * * * *
 1330 SBC #1 \DECREMENT
 1340 STA CYCLES \CYCLES
 1350 BCS SKIP4
 1360 DEC CYCLES+1
 1370 .SKIP4 \ * * * * * * * * * * * * * * *
 1380 LDA CYCLES \ IF  CYCLES <>0
 1390 BNE STAGE1 \THEN BRANCH
 1400 LDA CYCLES+1 \TO MIDLOOP
 1410 BNE STAGE1 \VIA STAGE1
 1420 .FLAGCLEAR \** * * * * * * * * * * * * *
 1430 DEC POWER \DECREMENT POWER
 1440 BNE STAGE2 \ IF>0 BR.  STAGE2
 1450 RTS: ]
 1460 NEXT PASS
 1470  
 1480 REM BASIC TEST PROGRAM
 1490 MODE4
 1500 CLS
 1510 INPUT"NUMBER OF INTEGERS " ,NUMBER%
 1520 PRINT
 1530 DIM ARRAY%(NUMBER%)
 1540 FOR N%=1 TO NUMBER%
 1550 ARRAY%(N%)=RND/1000
 1560 PRINT ARRAY%(N%)
 1570 NEXT
 1580 PRINT
 1590 PRINT "SORTING"
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 1600 PRINT
 1610 START%=TIME
 1620 CALL SORT,NUMBER%,ARRAY%(1)
 1630 t ime%=TIME-START%
 1640 FOR N%=1 TO NUMBER%
 1650 PRINT ARRAY%(N%)
 1660 NEXT N%
 1670 PRINT
 1680 PRINT"NUMBER= " ;NUMBER%
 1690 PRINT
 1700 PRINT"SORTING TIME= " ; t ime%/100;  "
 SECONDS"

The program breakdown of Program 6.3 is as follows:

Lines 90-120 obtain the address of the BASIC variable NUMBER% from the
CALL parameter block. The address is placed in zero-page locations STORE
(2 bytes).
Lines 130-210 pick up the data by indirect indexed addressing and store it in
NUMBER (zero-page). At the same time, various locations are initialised.
Lines 220-320 are a block of code dedicated to finding the next power of 2, >
= the contents of NUMBER. The result is stored in SIZE (2 bytes). The
corresponding power index is stored in POWER (1 byte). The op-codes ASL
and ROL in conjunction are convenient for 2-byte manipulation of powers of
2.
Lines 330-360 divide SIZE by 2 by shifting right.
Lines 370-430 subtract SIZE from NUMBER and store the result in CYCLES
(2 bytes).
Lines 450-480 initialise LOOPCOUNT (2 bytes) and the swop FLAG to zero.
Lines 490-520 pick up the address of the first element in the array and store it
in POINTER1 (2 bytes).
Lines 530-700 are a block of code which multiplies SIZE by 4 and adds
POINTER1, storing the result in POINTER2. The reason why it is multiplied
by 4 is because each integer occupies four bytes. The multiplication is
achieved by shifting left twice. Line 720 sets the byte counter (X register) to
4.
Lines 730-800 subtract the two integers picked up by indirect indexed
addressing, keeping the result of the most significant byte (which has the sign
bit).
Line 810 checks if the V flag is set. If clear, it skips line 820.
Line 820 assumes that the V flag is set, so reverses the sign bit.
Line 840 updates the N flag to the accumulator contents. Tins is necessary
because DEX, in fine 790, corrupts the N flag. T AX is economical for this
purpose since it uses only 2 cycles.
Line 850 tests the sign of the accumulator and by-passes the swop loop if
positive. This ensures that if both integers are the same, no swopping occurs.
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Lines 890-960 swop the integers, a byte at a time, using indirect indexed
addressing.
Line 970 serves no useful purpose in the program, other than causing a by-
pass of the out of range branch-patch section (lines 990 1020).
Lines 1050-1080 increment LOOPCOUNT.
Lines 1090 1220 add the usual 4 to each of POINTER1 and POINTER2.
Lines 1230-1280 compare LOOPCOUNT to CYCLES, branching to INNER
LOOP if not equal.
Lines 1290-1300 test the swop flag and, if clear, branch to FLAGCLEAR.
Lines 1310-1370 decrement CYCLES.
Lines 1380-1410 compare CYCLES to zero, branching to MID LOOP via
STAGE1, the out of range branch-patch.
Lines 1430-1440 decrement POWER and compare to zero, branching to
OUTERLOOP via STAGE2.
Lines 1480-1700 handle the BASIC test routine described earlier.

Merge sort of a BASIC string array.

The overall structure of Program 6.4 is similar to Program 6.3, the only
difference being the substitution of the string comparison routine (block 8 in
the flowchart). This routine has already been described in detail for the
bubble sort.

Program 6.4. Merge sort of a BASIC string array.

   10  REM MERGE SORT OF STRING ARRAY
   20  REM WITH VARIOUS LENGTH STRINGS
   30  NUMBER=&70:POINTER1=&72:POWER=&74
   40  POINTER2=&75:SIZE=&77:LOOPCOUNT=&7
9:FLAG=&7B:STORE=&7C:CYCLES=&7E
   50  s t r ing1=&80:s t r ing2=&82: leng th1=&8
4: leng th2=&85
   60  DIM SORT 500
   70  FOR PASS=0 TO 2  STEP 2
   80  P%=SORT
   90  [OPT PASS \** * * * * * * * * * * * * *
  100  LDA &0601 \GET NUMBER OF
  110  STA STORE \BASIC INTEGERS
  120  LDA &0602 \ IN  ARRAY AND
  130  STA STORE+1 \STORE IN NUMBER
  140  LDY #0
  150  STY SIZE+1
  160  STY POWER \ALSO INIT IALISE
  170  LDA (STORE) ,Y \S IZE AND POWER
  180  STA NUMBER
  190  INY
  200  STY SIZE
  210  LDA (STORE) ,Y
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  220  STA NUMBER+1
  230  .S IZELOOP \** * * * * * * * * * * * * *
  240  INC POWER \FIND NEXT POWER
  250  CLC \OF 2  >=  NUMBER
  260  ASL SIZE \STORE IN SIZE
  270  ROL SIZE+1
  280  SEC
  290  LDA SIZE
  300  SBC NUMBER
  310  LDA SIZE+1
  320  SBC NUMBER+1
  330  BCC SIZELOOP
  340  .OUTERLOOP \** * * * * * * * * * * * * *
  350  CLC \DIVIDE SIZE
  360  LSR SIZE+1 \BY 2
  370  ROR SIZE
  380  SEC \** * * * * * * * * * * * * *
  390  LDA NUMBER \SUBTRACT SIZE
  400  SBC SIZE \FROM NUMBER
  410  STA CYCLES \STORE IN CYCLES
  420  LDA NUMBER+1
  430  SBC SIZE+1
  440  STA CYCLES+1
  450  .MIDLOOP \** * * * * * * * * * * * * *
  460  LDA #0 \ IN IT IALIE
  470  STA FLAG \SWOP FLAG AND
  480  STA LOOPCOUNT \LOOPCOUNT
  490  STA LOOPCOUNT+1
  500  LDA &0604 \ * * * * * * * * * * * * * * *
  510  STA POINTER1 \STORE FIRST INT
  520  LDA &0605 \ADDRESS IN
  530  STA POINTER1+1 \POINTER1
  540  LDA SIZE \* * * * * * * * * * * * * * *
  550  STA STORE \MULTIPLY SIZE
  560  LDA SIZE+1 \BY 4  AND ADD
  570  STA STORE+1 \ADD TO POINTER1
  580  LDX #2 \STORE RESULT IN
  590  .MULT4 \POINTER2
  600  CLC
  610  ASL STORE
  620  ROL STORE+1
  630  DEX
  640  BNE MULT4
  650  CLC
  660  LDA POINTER1
  670  ADC STORE
  680  STA POINTER2
  690  LDA POINTER1+1
  700  ADC STORE+1
  710  STA POINTER2+1
  720  . INNERLOOP \** * * * * * * * * * * * * *
  730  LDY #0 \OBTAIN ADDRESS
  740  LDA (POINTER1) ,Y \AND LENGTH
  750  STA s t r ing1 \OF EACH OF
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  760  LDA (POINTER2) ,Y \PAIR OF STRINGS
  770  STA s t r ing2
  780  INY
  790  LDA (POINTER1) ,Y
  800  STA s t r ing1+1
  810  LDA (POINTER2) ,Y
  820  STA s t r ing2+1
  830  LDY #3
  840  LDA (POINTER1) ,Y
  850  STA leng th1
  860  LDA (POINTER2) ,Y
  870  STA leng th2
  880  LDY #0 \ * * * * * * * * * * * * * * *
  890  .COMPLOOP \COMPARE STRINGS
  900  LDA (s t r ing2) ,Y \A  CHARACTER AT
  910  CMP (s t r ing1) ,Y \A  T IME IF
  920  BCC SWOP \NECESSARY
  930  BNE NOSWOP
  940  INY
  950  CPY leng th1
  960  BEQ NOSWOP
  970  CPY leng th2
  980  BEQ SWOP
  990  BNE COMPLOOP
 1000 \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1010 .STAGE1 \OUT OF RANGE
 1020 BNE MIDLOOP \BRANCH PATCHES
 1030 .STAGE2
 1040 BNE OUTERLOOP
 1050 \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1060 .SWOP \** * * * * * * * * * * * * *
 1070 LDY #3 \SET SWOP FLAG
 1080 STY FLAG
 1090 .SWOPLOOP \** * * * * * * * * * * * * *
 1100 LDA (POINTER1) ,Y \SWOP STRING
 1110 TAX \ INFORMATION
 1120 LDA (POINTER2) ,Y \BLOCK A BYTE AT
 1130 STA (POINTER1) ,Y \A  T IME(4  BYTES)
 1140 TXA
 1150 STA (POINTER2) ,Y
 1160 DEY
 1170 BPL SWOPLOOP
 1180 .NOSWOP \** * * * * * * * * * * * * *
 1190 INC LOOPCOUNT \ INCREMENT
 1200 BNE SKIP \LOOPCOUNT
 1210 INC LOOPCOUNT+1
 1220 .SKIP \ * * * * * * * * * * * * * * *
 1230 LDA POINTER1 \ADD 4  TO
 1240 CLC \POINTER1
 1250 ADC #4
 1260 STA POINTER1
 1270 BCC SKIP2
 1280 INC POINTER1+1
 1290 .SKIP2 \ * * * * * * * * * * * * * * *
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 1300 LDA POINTER2 \ADD 4  TO
 1310 CLC \POINTER2
 1320 ADC #4
 1330 STA POINTER2
 1340 BCC SKIP3
 1350 INC POINTER2+1
 1360 .SKIP3 \ * * * * * * * * * * * * * * *
 1370 LDA CYCLES \COMPARE
 1380 CMP LOOPCOUNT \LOOPCOUNT
 1390 BNE INNERLOOP \TO CYCLE
 1400 LDA CYCLES+1 \ IF  <>  BRANCH
 1410 CMP LOOPCOUNT+1 \TO INNERLOOP
 1420 BNE INNERLOOP
 1430 LDA FLAG \ IF  SWAPFLG CLEAR
 1440 BEQ FLAGCLEAR \BR.  FLAGCLEAR
 1450 SEC
 1460 LDA CYCLES \** * * * * * * * * * * * * *
 1470 SBC #1 \DECREMENT
 1480 STA CYCLES \CYCLES
 1490 BCS SKIP4
 1500 DEC CYCLES+1
 1510 .SKIP4 \ * * * * * * * * * * * * * * *
 1520 LDA CYCLES \ IF  CYCLES <>0
 1530 BNE STAGE1 \THEN BRANCH
 1540 LDA CYCLES+1 \TO MIDLOOP
 1550 BNE STAGE1 \VIA STAGE1
 1560 .FLAGCLEAR \** * * * * * * * * * * * * *
 1570 DEC POWER \DECREMENT POWER
 1580 BNE STAGE2 \ IF>0 BR.  STAGE2
 1590 RTS: ]
 1600 NEXT PASS
 1620 REM BASIC TEST PROGRAM
 1630 MODE4
 1640 CLS
 1650 INPUT"NUMBER OF STRINGS " ,NUMBER%
 1660 PRINT
 1670 DIM ARRAY$(NUMBER%)
 1680 FOR N%=1 TO NUMBER%
 1690 s t r ing$=" "
 1700 FOR Z%=1 TO RND(10)
 1710 K$=CHR$(RND(26)+64)
 1720 s t r ing$=s t r ing$+K$
 1730 NEXT Z%
 1740 ARRAY$(N%)=s t r ing$
 1750 PRINT ARRAY$(N%)
 1760 NEXT N%
 1770 PRINT
 1780 PRINT "SORTING"
 1790 PRINT
 1800 START%=TIME
 1810 CALL SORT,NUMBER%,ARRAY$(1)
 1820 t ime%=TIME-START%
 1830 FOR N%=1 TO NUMBER%
 1840 PRINT ARRAY$(N%)
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 1850 NEXT N%
 1860 PRINT
 1870 PRINT"NUMBER= " ;NUMBER%
 1880 PRINT
 1890 PRINT"SORTING TIME= " ; t ime%/100;  "
 SECONDS"

Since the overall structure is similar to the previous program, a detailed line
by line analysis is unnecessary. 

Merge sort of an unsigned BASIC floating point array

Programs which handle words or tables often need to sort unsigned floating
point numbers (most numerical values in such programs are unsigned). It is,
therefore, important to have at least an outline understanding of how floating
numbers are stored by the BASIC interpreter. A floating point number
consists of a mantissa and an exponent. Four bytes are allocated to the
mantissa and one byte for the exponent. The most significant bit of the
exponent is the sign bit and is in reverse two's complement. That is to say, a
negative exponent has '0' as the sign bit; a '1' indicates a positive exponent.
The reason for this rather strange practice is that the maximum possible
negative exponent closely approaches zero. This means that zero can be
loosely taken as the most negative exponent. Therefore less negative
exponents through to positive exponents correspond to a progression of
increasingly larger exponents. From a mathematical viewpoint, a mantissa is
always positive so no sign bit is required. Therefore, the sign bit in the
mantissa is used to denote the sign of the entire number in conventional two's
complement form.

How floating point variables are stored
Floating point variables are stored by the interpreter in a five-byte form, the
details of which are below:

increasing memory

Exponent Mantissa (4 bytes)

Overall sign bit of number

Sign bit of exponent

MSB LSB

1 2 3 4 5
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SET SWAP FLAG

SWAP FP NUMBERS A BYTE AT A TIME
(5 BYTES)

SUBTRACT MANTISSA OF FIRST NUMBER FROM
THAT OF SECOND NUMBER

EXPONENTS THE
SAME

COMPARE EXPONENTS OF FIRST FP NUMBER TO
THAT OF SECOND FP NUMBER (1 BYTE)

IN
DESCENDING

ORDER

IN
DESCENDING

ORDER

NO

NO

YES

8

Fig. 6.7. Block 8 expansion for unsigned floating point merge sort

Block 8 of the flowchart in Fig. 6.4 is replaced by Fig. 6.7 . This is the only
essential difference in the algorithm other than the addition of 5 instead of 4
to the address pointers POINTER1 and POINTER2 when appropriate. The
complete listing is shown in Program 6.5 and requires the following BASIC
parameters:

CALL SORT, NUMBER%, ARRAY(1)

The variables used are arbitrary but must be in the order given. The listing is
liberaliy 'remarked' and, hopefully,. should require no further explanation.

Program 6.5. Merge sort of unsigned floating point array

   10  REM    MERGE SORT OF UNSIGNED
   20  REM    FLOATING POINT NUMBERS
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   30  NUMBER=&70:POINTER1=&72:POWER=&74
   40  POINTER2=&75:SIZE=&77:LOOPCOUNT=&7
9:FLAG=&7B:STORE=&7C:CYCLES=&7E
   50  DIM SORT 500
   60  FOR PASS=0 TO 2  STEP 2
   70  P%=SORT
   80  [OPT PASS \** * * * * * * * * * * * * *
   90  LDA &0601 \GET NUMBER OF
  100  STA STORE \BASIC INTEGERS
  110  LDA &0602 \ IN  ARRAY AND
  120  STA STORE+1 \STORE IN NUMBER
  130  LDY #0
  140  STY SIZE+1
  150  STY POWER \ALSO INIT IALISE
  160  LDA (STORE) ,Y \S IZE AND POWER
  170  STA NUMBER
  180  INY
  190  STY SIZE
  200  LDA (STORE) ,Y
  210  STA NUMBER+1
  220  .S IZELOOP \** * * * * * * * * * * * * *
  230  INC POWER \FIND NEXT POWER
  240  ASL SIZE \OF 2  >=  NUMBER
  250  ROL SIZE+1\AND STORE IN
  260  SEC \SIZE
  270  LDA SIZE
  280  SBC NUMBER
  290  LDA SIZE+1
  300  SBC NUMBER+1
  310  BCC SIZELOOP
  320  .OUTERLOOP \** * * * * * * * * * * * * *
  330  LSR SIZE+1 \DIVIDE SIZE
  340  ROR SIZE \BY 2
  350  SEC \** * * * * * * * * * * * * *
  360  LDA NUMBER \SUBTRACT SIZE
  370  SBC SIZE \FROM NUMBER
  380  STA CYCLES \STORE IN CYCLES
  390  LDA NUMBER+1
  400  SBC SIZE+1
  410  STA CYCLES+1
  420  .MIDLOOP \** * * * * * * * * * * * * *
  430  LDA #0 \ IN IT IALIE
  440  STA FLAG \SWOP FLAG AND
  450  STA LOOPCOUNT \LOOPCOUNT
  460  STA LOOPCOUNT+1
  470  LDA &0604 \ * * * * * * * * * * * * * * *
  480  STA POINTER1 \STORE FIRST INT
  490  LDA &0605 \ADDRESS IN
  500  STA POINTER1+1 \POINTER1
  510  LDA SIZE+1 \* * * * * * * * * * * * * * *
  520  STA STORE+1 \MULTIPLY SIZE
  530  LDA SIZE \BY 4  AND ADD
  540  ASL A \SIZE THUS
  550  ROL STORE+1 \OBTAINING AN
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  560  ASL A \EFFECTIVE
  570  ROL STORE+1 \MULTIPLICATION
  580  CLC \OF SIZE BY 5
  590  ADC SIZE \STORE RESULT
  600  ADC POINTER1 \ IN POINTER2
  610  STA POINTER2
  620  LDA STORE+1
  630  ADC SIZE+1
  640  ADC POINTER1+1
  650  STA POINTER2+1
  740  . INNERLOOP \** * * * * * * * * * * * * *
  750  LDY #0 \COMPARE
  760  LDA (POINTER2) ,Y \EXPONENT OF
  770  CMP (POINTER1) ,Y \PAIR OF FP
  780  BCC SWOP \NUMBERS
  790  BNE NOSWOP
  800  LDY #4 \ * * * * * * * * * * * * * * *
  810  SEC \SUBTRACT
  820  .COMPLOOP \MANTISSI
  830  LDA (POINTER2) ,Y \A  BYTE AT A
  840  SBC (POINTER1) ,Y \T IME KEEPING
  850  DEYY \TRACK OF THE
  860  BNE COMPLOOP \CARRY FLAG
  870  BCS NOSWOP \AT COMPLETION
  880  .SWOP \** * * * * * * * * * * * * *
  890  LDY #4 \SET SWOP FLAG
  900  STY FLAG
  910  .SWOPLOOP \** * * * * * * * * * * * * *
  920  LDA (POINTER1) ,Y \SWOP INTEGERS
  930  TAX \A BYTE AT A
  940  LDA (POINTER2) ,Y \T IME
  950  STA (POINTER1) ,Y
  960  TXA
  970  STA (POINTER2) ,Y
  980  DEY
  990  BPL SWOPLOOP
 1000 BMI  NOSWOP
 1010 \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1020 .STAGE1 \OUT OF RANGE
 1030 BNE MIDLOOP \BRANCH PATCHES
 1040 .STAGE2
 1050 BNE OUTERLOOP
 1060 \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1070 .NOSWOP \** * * * * * * * * * * * * *
 1080 INC LOOPCOUNT \ INCREMENT
 1090 BNE SKIP \LOOPCOUNT
 1100 INC LOOPCOUNT+1
 1110 .SKIP \ * * * * * * * * * * * * * * *
 1120 LDA POINTER1 \ADD 5  TO
 1130 CLC \POINTER1
 1140 ADC #5
 1150 STA POINTER1
 1160 BCC SKIP2
 1170 INC POINTER1+1
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 1180 .SKIP2 \ * * * * * * * * * * * * * * *
 1190 LDA POINTER2 \ADD 5  TO
 1200 CLC \POINTER2
 1210 ADC #5
 1220 STA POINTER2
 1230 BCC SKIP3
 1240 INC POINTER2+1
 1250 .SKIP3 \ * * * * * * * * * * * * * * *
 1260 LDA CYCLES \COMPARE
 1270 CMP LOOPCOUNT \LOOPCOUNT
 1280 BNE INNERLOOP \TO CYCLE
 1290 LDA CYCLES+1 \ IF  <>  BRANCH
 1300 CMP LOOPCOUNT+1 \TO INNERLOOP
 1310 BNE INNERLOOP
 1320 LDA FLAG \ IF  SWAPFLG CLEAR
 1330 BEQ FLAGCLEAR \BR.  FLAGCLEAR
 1340 SEC
 1350 LDA CYCLES \** * * * * * * * * * * * * *
 1360 SBC #1 \DECREMENT
 1370 STA CYCLES \CYCLES
 1380 BCS SKIP4
 1390 DEC CYCLES+1
 1400 .SKIP4 \ * * * * * * * * * * * * * * *
 1410 LDA CYCLES \ IF  CYCLES <>0
 1420 BNE STAGE1 \THEN BRANCH
 1430 LDA CYCLES+1 \TO MIDLOOP
 1440 BNE STAGE1 \VIA STAGE1
 1450 .FLAGCLEAR \** * * * * * * * * * * * * *
 1460 DEC POWER \DECREMENT POWER
 1470 BNE STAGE2 \ IF>0 BR.  STAGE2
 1480 RTS: ]
 1490 NEXT PASS
 1510 REM BASIC TEST PROGRAM
 1520 MODE4
 1530 CLS
 1540 INPUT"NUMBER OF FP ELEMENTS " ,NUMB
ER%
 1550 PRINT
 1560 DIM ARRAY(NUMBER%)
 1570 FOR N%=1 TO NUMBER%
 1580 ARRAY(N%)=ABS(RND)*1E-9
 1590 PRINT ARRAY(N%)
 1600 NEXT
 1610 PRINT
 1620 PRINT "SORTING"
 1630 PRINT
 1640 START%=TIME
 1650 CALL SORT,NUMBER%,ARRAY(1)
 1660 t ime%=TIME-START%
 1670 FOR N%=1 TO NUMBER%
 1680 PRINT ARRAY(N%)
 1690 NEXT N%
 1700 PRINT
 1710 PRINT"SORTING TIME= " ; t ime%/100;  "
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 SECONDS"
 1720 PRINT
 1730 PRINT"NUMBER= " ;NUMBER%

Machine code sort routines applied to BASIC multifield
filing progroms

There are two common methods of generating multifield records in BASIC.
One is to use fields of fixed length substrings where the whole record is
stored as one string array element. The other is to create a two-dimensional
string array where the records occupy one dimension and the fields occupy
the other. This is often referred to as the row/column file format. Both have
advantages and disadvantages. The former method is more economical when
storing records since only one String Information block is set up per record by
the interpreter. On the other hand, the BASIC programming can be tedious
and expensive on memory. The latter method makes for concise programming
in BASIC but is heavy on String Information blocks (the number of fields
multiplied by the number of records). It is a matter of personal preference
which method is used, so a machine code merge sort routine to handle each
type of record format will be given. The requirement of any routine of this
type is to sort entire records according to any specified field, therefore
additional calling parameters will be necessary.

Merge sort of multifield fixed length records
The complete source code listing and BASIC test routine are given in
Program 6.6. The overall structure is similar to that of previous routines with
the extra coding 'remarked' on the listing. The machine code call is executed
from BASIC via the call statement:

CALL SORT, NUMBER%,FIELD%,FlELDEND%,ARRAY$(1)

where:

SORT the start address of the routine.
NUMBER%=the number of records in the array
FIELD%,=the first character position of the field in the string array
element
FIELDEND%=the last character position of the field in the string array
element.
ARRAY$(1)=the first usable element in the array.

By convention, the zero element is reserved for headings, labels, etc.

Program 6.6. Merge sort of multifield fixed length records.
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   10  REM MERGE SORT OF MULTIF IELD
   20  REM FIXED LENGTH RECORDS
   30  NUMBER=&70:POINTER1=&72:POWER=&74
   40  POINTER2=&75:SIZE=&77:LOOPCOUNT=&7
9:FLAG=&7B:STORE=&7C:CYCLES=&7E
   50  s t r ing1=&80:s t r ing2=&82:F IELD=&84:
F IELDEND=&85
   60  DIM SORT 500
   70  FOR PASS=0 TO 2  STEP 2
   80  P%=SORT
   90  [OPT PASS \** * * * * * * * * * * * * *
  100  LDA &0601 \GET NUMBER OF
  110  STA STORE \RECORDS IN THE
  120  LDA &0602 \BASIC ARRAY AND
  130  STA STORE+1 \STORE IN NUMBER
  140  LDY #0
  150  STY SIZE+1
  160  STY POWER \ALSO INIT IALISE
  170  LDA (STORE) ,Y \S IZE AND POWER
  180  STA NUMBER
  190  INY
  200  STY SIZE
  210  LDA (STORE) ,Y
  220  STA NUMBER+1
  230  LDA &0604 \ * * * * * * * * * * * * * * *
  240  STA STORE \STORE FIELD
  250  LDA &0605 \START POSITION
  260  STA STORE+1 \ IN F IELD
  270  DEY
  280  LDA (STORE) ,Y
  290  STA F IELD
  300  LDA &0607 \ * * * * * * * * * * * * * * *
  310  STA STORE \STORE FIELD
  320  LDA &0608 \END POSITION
  330  STA STORE+1 \ IN F IELDEND
  340  LDA (STORE) ,Y
  350  STA F IELDEND
  360  .S IZELOOP \** * * * * * * * * * * * * *
  370  INC POWER \FIND NEXT POWER
  380  CLC \OF 2  >=  NUMBER
  390  ASL SIZE \STORE IN SIZE
  400  ROL SIZE+1
  410  SEC
  420  LDA SIZE
  430  SBC NUMBER
  440  LDA SIZE+1
  450  SBC NUMBER+1
  460  BCC SIZELOOP
  470  .OUTERLOOP \** * * * * * * * * * * * * *
  480  CLC \DIVIDE SIZE
  490  LSR SIZE+1 \BY 2
  500  ROR SIZE
  510  SEC \** * * * * * * * * * * * * *
  520  LDA NUMBER \SUBTRACT SIZE
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  530  SBC SIZE \FROM NUMBER
  540  STA CYCLES \STORE IN CYCLES
  550  LDA NUMBER+1
  560  SBC SIZE+1
  570  STA CYCLES+1
  580  .MIDLOOP \** * * * * * * * * * * * * *
  590  LDA #0 \SET SWOP FLAG
  600  STA FLAG \AND LOOPCOUNT
  610  STA LOOPCOUNT \TO ZERO
  620  STA LOOPCOUNT+1 \* * * * * * * * * * * * * * *
  630  LDA &060A \STORE START
  640  STA POINTER1 \ADDRESS OF
  650  LDA &060B \  $  INF.BLOCK IN
  660  STA POINTER1+1 \POINTER1
  670  LDA SIZE \* * * * * * * * * * * * * * *
  680  STA STORE \MULTIPLY SIZE
  690  LDA SIZE+1 \BY 4  AND ADD
  700  STA STORE+1 \ADD TO POINTER1
  710  LDX #2 \STORE RESULT IN
  720  .MULT4 \POINTER2
  730  CLC
  740  ASL STORE
  750  ROL STORE+1
  760  DEX
  770  BNE MULT4
  780  CLC
  790  LDA POINTER1
  800  ADC STORE
  810  STA POINTER2
  820  LDA POINTER1+1
  830  ADC STORE+1
  840  STA POINTER2+1
  850  . INNERLOOP \** * * * * * * * * * * * * *
  860  LDY #0 \OBTAIN ADDRESS
  870  LDA (POINTER1) ,Y \AND LENGTH
  880  STA s t r ing1 \OF EACH OF
  890  LDA (POINTER2) ,Y \PAIR OF STRINGS
  900  STA s t r ing2
  910  INY
  920  LDA (POINTER1) ,Y
  930  STA s t r ing1+1
  940  LDA (POINTER2) ,Y
  950  STA s t r ing2+1
  960  LDY F IELD \ INIT .Yreg  F IELD
  970  DEY
  980  .COMPLOOP \COMPARE FIELDS
  990  LDA (s t r ing2) ,Y \A  CHARACTER AT
 1000 CMP (s t r ing1) ,Y \A  T IME IF
 1010 BCC SWOP \ IF  NECESSARY
 1020 BNE NOSWOP
 1030 INY
 1040 CPY F IELDEND
 1050 BNE COMPLOOP
 1060 BEQ NOSWOP
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 1070 \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1080 .STAGE1 \OUT OF RANGE
 1090 BNE MIDLOOP \BRANCH PATCHES
 1100 .STAGE2
 1110 BNE OUTERLOOP
 1120 \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1130 .SWOP \** * * * * * * * * * * * * *
 1140 LDY #3 \SET SWOP FLAG
 1150 STY FLAG
 1160 .SWOPLOOP \** * * * * * * * * * * * * *
 1170 LDA (POINTER1) ,Y \SWOP STRING
 1180 TAX \ INFORMATION
 1190 LDA (POINTER2) ,Y \BLOCK A BYTE AT
 1200 STA (POINTER1) ,Y \A  T IME(4  BYTES)
 1210 TXA
 1220 STA (POINTER2) ,Y
 1230 DEY
 1240 BPL SWOPLOOP
 1250 .NOSWOP \** * * * * * * * * * * * * *
 1260 INC LOOPCOUNT \ INCREMENT
 1270 BNE SKIP \LOOPCOUNT
 1280 INC LOOPCOUNT+1
 1290 .SKIP \ * * * * * * * * * * * * * * *
 1300 LDA POINTER1 \ADD 4  TO
 1310 CLC \POINTER1
 1320 ADC #4
 1330 STA POINTER1
 1340 BCC SKIP2
 1350 INC POINTER1+1
 1360 .SKIP2 \ * * * * * * * * * * * * * * *
 1370 LDA POINTER2 \ADD 4  TO
 1380 CLC \POINTER2
 1390 ADC #4
 1400 STA POINTER2
 1410 BCC SKIP3
 1420 INC POINTER2+1
 1430 .SKIP3 \ * * * * * * * * * * * * * * *
 1440 LDA CYCLES \COMPARE
 1450 CMP LOOPCOUNT \LOOPCOUNT
 1460 BNE INNERLOOP \TO CYCLE
 1470 LDA CYCLES+1 \ IF  <>  BRANCH
 1480 CMP LOOPCOUNT+1 \TO INNERLOOP
 1490 BNE INNERLOOP
 1500 LDA FLAG \ IF  SWAPFLG CLEAR
 1510 BEQ FLAGCLEAR \BR.  FLAGCLEAR
 1520 SEC
 1530 LDA CYCLES \** * * * * * * * * * * * * *
 1540 SBC #1 \DECREMENT
 1550 STA CYCLES \CYCLES
 1560 BCS SKIP4
 1570 DEC CYCLES+1
 1580 .SKIP4 \ * * * * * * * * * * * * * * *
 1590 LDA CYCLES \ IF  CYCLES <>0
 1600 BNE STAGE1 \THEN BRANCH
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 1610 LDA CYCLES+1 \TO MIDLOOP
 1620 BNE STAGE1 \VIA STAGE1
 1630 .FLAGCLEAR \** * * * * * * * * * * * * *
 1640 DEC POWER \DECREMENT POWER
 1650 BNE STAGE2 \ IF>0 BR.  STAGE2
 1660 RTS: ]
 1670 NEXT PASS
 1690 REM BASIC TEST PROGRAM
 1700 MODE4
 1710 CLS
 1720 INPUT"NUMBER OF STRINGS " ,NUMBER%
 1730 DIM ARRAY$(NUMBER%)
 1740 FOR N%=1 TO NUMBER%
 1750 s t r ing$=" "
 1760 FOR Z%=1 TO 10
 1770 K$=CHR$(RND(26)+64)
 1780 s t r ing$=s t r ing$+K$
 1790 NEXT Z%
 1800 ARRAY$(N%)=s t r ing$
 1810 PRINT ARRAY$(N%)
 1820 NEXT N%
 1830 INPUT"GIVE F IELD START POS.   " ,F IE
LD%
 1840 INPUT"GIVE F IELD END POS.     " ,F IE
LDEND%
 1850 PRINT "SORTING"
 1860 START%=TIME
 1870 CALL SORT,NUMBER%,FIELD%,FIELDEND%
,ARRAY$(1)
 1880 t ime%=TIME-START%
 1890 FOR N%=1 TO NUMBER%
 1900 PRINT ARRAY$(N%)
 1910 NEXT N%
 1920 PRINT"SORTED FIELD BEGINS AT CHARA
CTER   " ;F IELD%
 1930 PRINT"SORTED FIELD ENDS WITH CHARA
CTER   " ;F IELDEND%
 1940 PRINT"NUMBER OF RECORDS= " ;NUMBER%
 1950 PRINT"SORTING TIME= " ; t ime%/100;  "
 SECONDS"

Merge sort of a two-dimensional string array
The interpreter stores the String Information blocks corresponding to
multidimensional string array elements sequentially in memory. The
following series shows the order in which they occur for a two-dimensional
string array:

A$(0,0), A$(0,1), A$(0,2), A$(1,0), A$(1,1), A$(1,2)......A$(R,C)

If a file is DIMensioned in BASIC:
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ARRAY$(ROWNUM%,COLNUM%)

then a file ARRAY$ can be considered as containing ROWNUM% records
and COLNUM% fields. We can define a specific field of a specific record by:

ARRAY$(RECORD%,FlELD%)

If we call the sort routine with

CALL SORT,ROWNUM%,COLNUM%,FIELD%,ARRAY(1,0)

all the necessary parameters required to sort all the records by field are
passed. The complete source code listing and BASIC test routine are shown
in Program 6.7

Since each String Information block occupies four bytes and there are
COLNUM%+1 fields to each record, the sort routine will need to calculate
the number of bytes necessary before swopping the SI blocks corresponding
to each record. This is performed by lines 380 to 480 and the result is stored
in NUMBYTE (1 byte),

The by now familar SI block address pointers POINTER1 and POINTER2
refer to the zeroth dimension of COLNUM% so an offset needs to be
calculated by the routine to point to the required sort field element SI block in
the COLNUN% dimension (remember that 4 bytes offset is required for
each). This is performed by lines 490 to 560 and the result is stored in offset
(1 byte). Using indirect indexed addressing, the offset accesses the required
field SI block position. Plainly, we will need to add NUMBYTE instead of 4
to the previous SI block address pointers in order to access the next record.
Apart from these differences, the overall structure is similar to that previously
described.

The routine can sort records with up to a maximum of 128/4=32 fields
(not much of a handicap in practice). Program 6.7 has been well-tried and
tested in a practical filing system and will sort a computer full or records in
less than a second.

Program 6.7. Merge sort of a two-dimensional string array

   10  REM MERGE SORT OF A TWO
   20  REM DIMENSIONAL STRING ARRAY
   30  REM row/co lumn record  fo rmat
   40  REM sor t ing  en t i re  record  ( row)
   50  REM accord ing  to  any  spec i f ied
   60  REM f ie ld  (co lumn)
   70  NUMBER=&70:POINTER1=&72:POWER=&74
   80  POINTER2=&75:SIZE=&77:LOOPCOUNT=&7
9:FLAG=&7B:STORE=&7C:CYCLES=&7E
   90  s t r ing1=&80:s t r ing2=&82: leng th1=&8
4: leng th2=&85:NUMBYTE=&86:o f fse t=&87
  100  DIM SORT 500
  110  FOR PASS=0 TO 2  STEP 2
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  120  P%=SORT
  130  [OPT PASS \** * * * * * * * * * * * * *
  140  LDA &0601 \GET NUMBER OF
  150  STA STORE \BASIC STRINGS
  160  LDA &0602 \ IN  ARRAY AND
  170  STA STORE+1 \STORE IN NUMBER
  180  LDY #0
  190  STY SIZE+1
  200  STY POWER \ALSO INIT IALISE
  210  LDA (STORE) ,Y \S IZE AND POWER
  220  STA NUMBER
  230  INY
  240  STY SIZE
  250  LDA (STORE) ,Y
  260  STA NUMBER+1
  270  .S IZELOOP \** * * * * * * * * * * * * *
  280  INC POWER \FIND NEXT POWER
  290  CLC \OF 2  >=  NUMBER
  300  ASL SIZE \STORE IN SIZE
  310  ROL SIZE+1
  320  SEC
  330  LDA SIZE
  340  SBC NUMBER
  350  LDA SIZE+1
  360  SBC NUMBER+1
  370  BCC SIZELOOP
  380  LDA &604 \ * * * * * * * * * * * * * * *
  390  STA STORE \GET NUMBER OF
  400  LDA &605 \F IELDS IN
  410  STA STORE+1 \RECORD THEN
  420  LDY #0 \ADD 1  AND
  430  LDA (STORE) ,Y \MULTIPLY BY 4
  440  CLC \STORE RESULT
  450  ADC #1 \ IN  NUMBYTE
  460  ASL A
  470  ASL A
  480  STA NUMBYTE \** * * * * * * * * * * * * *
  490  LDA &0607 \GET SORT FIELD
  500  STA STORE \NUMBER THEN
  510  LDA &0608 \MULTIPLY BY 4
  520  STA STORE+1 \STORE RESULT IN
  530  LDA (STORE) ,Y \o f fse t
  540  ASL A
  550  ASL A
  560  STA o f fse t
  570  .OUTERLOOP \** * * * * * * * * * * * * *
  580  CLC \DIVIDE SIZE
  590  LSR SIZE+1 \BY 2
  600  ROR SIZE
  610  SEC \** * * * * * * * * * * * * *
  620  LDA NUMBER \SUBTRACT SIZE
  630  SBC SIZE \FROM NUMBER
  640  STA CYCLES \STORE IN CYCLES
  650  LDA NUMBER+1
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  660  SBC SIZE+1
  670  STA CYCLES+1
  680  .MIDLOOP \** * * * * * * * * * * * * *
  690  LDA #0 \SET SWOP FLAG
  700  STA FLAG \AND LOOPCOUNT
  710  STA LOOPCOUNT \TO ZERO
  720  STA LOOPCOUNT+1 \* * * * * * * * * * * * * * *
  730  LDA &060A \STORE START
  740  STA POINTER1 \ADDRESS OF
  750  LDA &060B \  $  INF.BLOCK IN
  760  STA POINTER1+1 \POINTER1
  770  LDA #0 \ * * * * * * * * * * * * * * *
  780  STA STORE \MULTIPLY SIZE
  790  STA STORE+1 \BY NUMBYTE
  800  LDX NUMBYTE \AND ADD TO
  810  .MULTLOOP \POINTER1
  820  CLC \STORE RESULT IN
  830  LDA STORE \POINTER2
  840  ADC SIZE
  850  STA STORE
  860  LDA STORE+1
  870  STA SIZE+1
  880  STA STORE+1
  890  DEX
  900  BNE MULTLOOP
  910  CLC
  920  LDA POINTER1
  930  ADC STORE
  940  STA POINTER2
  950  LDA POINTER1+1
  960  ADC STORE+1
  970  STA POINTER2+1
  980  . INNERLOOP \** * * * * * * * * * * * * *
  990  LDY o f fse t \OBTAIN ADDRESS
 1000 LDA (POINTER1) ,Y \AND LENGTH
 1010 STA s t r ing1 \OF EACH OF
 1020 LDA (POINTER2) ,Y \PAIR OF STRINGS
 1030 STA s t r ing2
 1040 INY
 1050 LDA (POINTER1) ,Y
 1060 STA s t r ing1+1
 1070 LDA (POINTER2) ,Y
 1080 STA s t r ing2+1
 1090 INY
 1100 INY
 1110 LDA (POINTER1) ,Y
 1120 STA leng th1
 1130 LDA (POINTER2) ,Y
 1140 STA leng th2
 1150 LDY #0 \ * * * * * * * * * * * * * * *
 1160 .COMPLOOP \COMPARE FIELDS
 1170 LDA (s t r ing2) ,Y \A  CHARACTER AT
 1180 CMP (s t r ing1) ,Y \A  T IME IF
 1190 BCC SWOP \ IF  NECESSARY
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 1200 BNE NOSWOP
 1210 INY
 1220 CPY leng th1
 1230 BEQ NOSWOP
 1240 CPY leng th2
 1250 BEQ SWOP
 1260 BNE COMPLOOP
 1270 \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1280 .STAGE1 \OUT OF RANGE
 1290 BNE MIDLOOP \BRANCH PATCHES
 1300 .STAGE2
 1310 BNE OUTERLOOP
 1320 \ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 1330 .SWOP \ INIT IALISE BYTE
 1340 LDY NUMBYTE \COUNTER TO
 1350 DEY \NUMBYTE
 1360 STY FLAG \SET SWOP FLAG
 1370 .SWOPLOOP \** * * * * * * * * * * * * *
 1380 LDA (POINTER1) ,Y \SWOP STRING
 1390 TAX \ INFORMATION
 1400 LDA (POINTER2) ,Y \BLOCK A BYTE AT
 1410 STA (POINTER1) ,Y \A  T IME T ILL
 1420 TXA \COMPLETE RECORD
 1430 STA (POINTER2) ,Y \ IS  SWOPPED
 1440 DEY
 1450 BPL SWOPLOOP
 1460 .NOSWOP \** * * * * * * * * * * * * *
 1470 INC LOOPCOUNT \ INCREMENT
 1480 BNE SKIP \LOOPCOUNT
 1490 INC LOOPCOUNT+1
 1500 .SKIP \ * * * * * * * * * * * * * * *
 1510 LDA POINTER1 \ADD NUMBYTE TO
 1520 CLC \POINTER1
 1530 ADC NUMBYTE
 1540 STA POINTER1
 1550 BCC SKIP2
 1560 INC POINTER1+1
 1570 .SKIP2 \ * * * * * * * * * * * * * * *
 1580 LDA POINTER2 \ADD NUMBYTE TO
 1590 CLC \POINTER2
 1600 ADC NUMBYTE
 1610 STA POINTER2
 1620 BCC SKIP3
 1630 INC POINTER2+1
 1640 .SKIP3 \ * * * * * * * * * * * * * * *
 1650 LDA CYCLES \COMPARE
 1660 CMP LOOPCOUNT \LOOPCOUNT
 1670 BNE INNERLOOP \TO CYCLE
 1680 LDA CYCLES+1 \ IF  <>  BRANCH
 1690 CMP LOOPCOUNT+1 \TO INNERLOOP
 1700 BNE INNERLOOP
 1710 LDA FLAG \ IF  SWAPFLG CLEAR
 1720 BEQ FLAGCLEAR \BR.  FLAGCLEAR
 1730 SEC
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 1740 LDA CYCLES \** * * * * * * * * * * * * *
 1750 SBC #1 \DECREMENT
 1760 STA CYCLES \CYCLES
 1770 BCS SKIP4
 1780 DEC CYCLES+1
 1790 .SKIP4 \ * * * * * * * * * * * * * * *
 1800 LDA CYCLES \ IF  CYCLES <>0
 1810 BNE STAGE1 \THEN BRANCH
 1820 LDA CYCLES+1 \TO MIDLOOP
 1830 BNE STAGE1 \VIA STAGE1
 1840 .FLAGCLEAR \** * * * * * * * * * * * * *
 1850 DEC POWER \DECREMENT POWER
 1860 BNE STAGE2 \ IF>0 BR.  STAGE2
 1870 RTS: ]
 1880 NEXT PASS
 1900 REM BASIC TEST PROGRAM
 1910 MODE4
 1920 CLS
 1930 INPUT"NUMBER OF RECORDS " ,ROWNUM%
 1940 INPUT"NUMBER OF COLUMNS " ,COLNUM%
 1950 INPUT"SORT WHICH FIELD  " ,F IELD%
 1960 PRINT
 1970 DIM ARRAY$(ROWNUM%,COLNUM%)
 1980 FOR R%=1 TO ROWNUM%
 1990 FOR C%=0 TO COLNUM%-1
 2000 s t r ing$=" "
 2010 FOR Z%=1 TO RND(10)
 2020 K$=CHR$(RND(26)+64)
 2030 s t r ing$=s t r ing$+K$
 2040 NEXT Z%
 2050 ARRAY$(R%,C%)=s t r ing$
 2060 PRINT ARRAY$(R%,C%)
 2070 NEXT C%
 2080 PRINT
 2090 NEXT R%
 2100 PRINT "SORTING"
 2110 PRINT
 2120 START%=TIME
 2130 CALL SORT,ROWNUM%,COLNUM%,FIELD%,A
RRAY$(1 ,0 )
 2140 t ime%=TIME-START%
 2150 FOR R%=1 TO ROWNUM%
 2160 FOR C%=0 TO COLNUM%-1
 2170 PRINT ARRAY$(R%,C%)
 2180 NEXT C%
 2190 PRINT
 2200 NEXT R%
 2210 PRINT
 2220 PRINT"RECORDS= " ;ROWNUM%
 2230 PRINT
 2240 PRINT"SORTING TIME= " ; t ime%/100;  "
 SECONDS"
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Table of sorting times

As a guide to the execution times you can expect from the sorting routines, a
comprehensive table is given below for various array sizes.

Table 6.1: Table of sorting times.

Unsigned integer bubble sort

Number of elements 100 300 1000 2000 3000
Time (secs) reverse order 0.7 5.7 64 253 567
Time (secs) random (average) 0.5 4.3 47 187 418

String bubble sort

Number of elements 100 300 1000
Time (secs) random length strings0.5 4.3 50

Signed integer merge sort

Number of elements 100 300 1000 2000 3000
Time (secs) reverse order 0.09 0.3 1.4 3 5
Time (secs) random (average) 0.3 1.2 8.5 22 47

String merge sort

Number of elements 100 300 1000
Time (secs) random length strings0.2 1.2 8.5

Unsigned floating point merge sort

Number of elements 100 300 1000 2000
Time (secs) random (average) 0.2 1.2 8.0 24

Multi-field fixed length records

Number of records 100 200 300
Time (secs) random 0.2 0.7 1.2

Multi-field unlimited length records (2-dimensional array)

Number of records 100 200 300
Time (secs) 3-field records 0.3 1.2 1.7
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Summary

1. BASIC and machine code mix well in the BBC system.
2. There is little point in using machine code just for its own sake. Use

BASIC for routine tasks which are not time-critical and slip into machine
code for those that are.

3. The standardised unit of computer speed is the 'mip', meaning millions
(of machine code instructions) per second. The BBC machine has an
average speed of 0.5 mips.

4. A speed of 0.5 mips is good for personal microcomputers but slow in
comparison with mainframes. Some can achieve speeds of 100 mips.

5. Sorting data into numerical or alphabetical order occupies about 30%, of
computer time in the commercial and scientific fields.

6. The bubble sort is simple and effective providing the number of items to
be sorted is moderate (not?> 100).

7. Integer array variables occupy 4 bytes. Bit 7 of the highest order byte is
used for distinguishing sign.

8. String arrays are handled by a four-byte String Information Block which
gives string length, maximum length and start address of the array.

9. For sorting large arrays of data items, the bubble method is sjow. A much
faster sort is obtained by the 'merge' method.

10. The merge sort still uses bubble techniques but first splits up the array
into small sets. The sorted sets are then progressively merged into larger
sets until a single sorted set remains.
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Self test

6.1  Name at least five factors which you consider might influence the
processing power of a computer.

6.2  Develop a comprehensive merge sort program which will sort signed
integers, strings or floating point arrays as specified by a CALL
statement.

6.3  Develop a comprehensive bubble sort program which will sort signed
integers, strings or unsigned floating point numbers.

6.4  Develop a routine which will sort signed floating point numbers.
6.5  Develop a bubble sort routine which will sort signed integers.
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Chapter Seven
Using Subroutines, Macros and
Look-up Tables

User subroutines

Mahine code programs which are called from, and intended to return to,
BASIC via RTS are essentially subroutines. However, it is a common
requirement for the machine code program itself to use subroutines, either
user-designed or one of the many resident subroutines embedded within the
operating system. Subroutines designed by the user are called by JSR
followed by an operand, either an absolute machine address (not
recommended) or a destination label. As in BASIC, machine code subroutines
can be nested one within the other. Enthusiasm for high nesting levels should
not be carried to excess or the stack could overflow. Each unreturned JSR
uses up two stack locations, storing the two-byte return address in the
Program Counter. No provision is made in the 6502 for saving the other
registers. It is up to the programmer to make provisions for protecting
valuable register data from corruption by the subroutine. Subroutines are best
avoided altogether within loops which are time-critical. Each JSR squanders 6
clock cycles and RTS another six. It is far better to splice the code within the
main program, even if it means writing the same segment of code several
times.

Resident subroutines

Acorn strongly advise that programs affecting the input/output devices screen,
keyboard, printer, etc.) do so via the appropriate resident subroutines.
Circumvention, by writing your own, is not dangerous but the program may
not work if a second processor is added. This need not be an effective
deterrent. You may never consider owning the second processor. You may
feel that the advantages of writing your own input/output routines outweigh
other considerations. There are certain speed advantages to be gained by
using direct screen addressing techniques. Some fascinating (often bizarre)
graphic displays cun be produced. Objects can be persuaded to move across
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the screen with far less, in fact almost imperceptible, flicker. However, it
should be realised that writing your own code for screen animation is not
going to be easy. The resident subroutines are excellent but we should bear in
mind that design constraints arc inevitable during the development of general
purpose software. In the case of the BBC system, additional constraints are
imposed by the problem of maintaining compatibility with the Tube. It comes
down in the end to a question of personal choice whether you regard or
disregard Acorn's warning. The choice is simple: use the resident subroutines
and feel safe, or bow to the spirit of adventure and experiment with your own.
The designers of the BBC operating system have bent over backwards to
provide free access to most of the ROM's internal anatomy. It would be hard
to find a competitive machine which offers more scope for experimentation.

It would be pointless at this stage to plod wearily through the entire
repertoire of operating system calls. The complete list appears in the User
Guide but, for convenience, has been repeated in slightly different form in
Appendix B.

The practical programs that appear throughout this chapter should be
useful for insertion as subroutines in BASIC programs employing graphics
and sound.

Vectors and indirection

One term which crops up when reading literature on operating system calls is
vector so it is important to be certain of its meaning:

A vector is a word (normally 2 bytes) in memory which contains the
address of a particular routine.

Detailed specifications of routines might include something like:

OSRDCH: Calling address=&FFE0 : Indirected through &0210

The word 'indirected' can be read as 'internally redirected' and, in the
above case, refers to the vector in address &0210. Thus, although we would
call OSRDCH at &FFE0, the code at that address is not OSRDCH but simply
information where OSRDCH can be found.

Why all this apparently needless treasure trail? The answer lies in
flexibility. There are three possibilities for the machine code programmer:

(1)  Intercept the standard operating system call by simply changing the
vector (changing the address in &0210 in the above example). Calling
OSRDCH now at address &FFE0 would call up a different routine, written
by the user.
(2)  Intercept as before but using some preliminary code at the vectored
address to modify the normal call. The original routine could then be re-
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entered.
(3)  Operating system ROMs can be updated or modified without affecting
the original call. All that needs to be changed are the contents of the vector.

Program 7.1. Read text cursor position.

   10  REM RERD TEXT CURSOR POSITION
   20  REM USING RN OSBYTE CALL
   30  MODE6
   40  DIM START 256
   50  OSBYTE=&FFF4
   60  XPOS=&70:YPOS=&71
   70  FOR PASS=0 TO 2  STEP 2
   80  P%=START
   90  [OPT PASS
  100  LDA #&86 \READ CURSOR POSITION
  110  JSR OSBYTE
  120  STX XPOS \STORE X AND Y REG'S
  130  STY YPOS \ IN  ZERO PAGE LOC'S
  140  RTS: ]
  150  NEXT PASS
  160  REM RANDOMISE CURSOR POSITION
  170  VDU31,RND(24) ,RND(24)
  180  CALL START
  190  PRINT"XPOS=" ;?XPOS;"  YPOS=" ;?YPOS;

Program 7.2. Typing practice

   10  REM TYPING PRACTICE PROGRAM
   20  MODE6
   30  DIM START 256
   40  OSASCI=&FFE3:OSRDCH=&FFE0
   50  OSNEWL=&FFE7:OSWRCH=&FFEE
   60  FOR PASS=0 TO 3  STEP 3
   70  P%=START
   80  [OPT PASS
   90  LDA #12
  100  JSR OSWRCH \CLEAR SCREEN
  110  .BEGIN
  120  JSR OSRDCH \ACC=ASCI I (KEY HIT)
  130  CMP #ASC("* " ) \COMP TO " * "  ASCI I
  140  BEQ FINISH \BR.  F INISH IF  =
  150  JSR OSASCI \SEND TO SCREEN
  160  BNE BEGIN \BR.  BEGIN IF  <>
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  170  .F INISH
  180  LDA #7 \ACC=ASCI I  FOR BELL
  190  JSR OSWRCH \OUTPUT ACCUMULATOR
  200  JSR OSNEWL \EXIT  WITH OF L INE
  210  RTS: ]
  220  NEXT PASS
  230  CALL START

Not all the system calls are indirected. Some of those that are include
OSWRCH, OSRDCH, OSCLI, OSBYTE, OSWORD. Nearly all the vectors
are situated in page 2 although there are a few which can extend into page &
0D when using ROM paging Note carefully that page &0D is often referred
to as the 'user subroutine area'.

Three examples, using the simpler routines are given, with outline
explanation, in the three following programs. Program 7.1 reads the current
text cursor position using OSBYTE. Program 7.2 is a simple typing practice
program using OSASCI, OSRDCH, OSNEWL and OSWRCH To exit the
program, enter *. 

Using OSWORD

Program 7.3 is an example using the sound generators with envelope shaping
via a pair of OSWORD calls. Lines 50 to 130 set up the respective parameter
block data at &1E00 (an arbitrary address). The sound parameter block data is
given in line 120 and the envelope parameter block data in line 130. The data
given produce a laser 'zapping' sound, used etensively in many 'shoot out of
the sky' types of game.

Program 7.3. Using the sound generator with envelope shaping.

   10  REM USING THE SOUND GENERATORS
   20  REM WITH ENVELOPE SHAPING
   30  REM (LASER GUN TYPE NOISE)
   40  
   50  P%=&1E00
   60  FOR i tem=1 TO 22
   70  READ D$
   80  D=EVAL(D$)
   90  ?P%=D:P%=P%+1
  100  NEXT i tem
  110  
  120  DATA 1 ,0 ,1 ,0 ,200 ,0 ,3 ,0
  130  DATA 1 ,1 ,0 , -4 ,0 ,0 ,50 ,0 ,42 ,&F0,&FE,
&FE,126,94
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  140  
  150  OSWORD=&FFF1
  160  FOR PASS=0 TO 2  STEP 2
  170  P%=&1D00
  180  
  190  [OPT PASS
  200  LDA #8  \CALL OSWORD WITH 8
  210  LDX #&08 \ IN  THE ACCUMULATOR
  220  LDY #&1E \AND ENV PARA BLOCK
  230  JSR OSWORD \ADDRESS IN X RND Y
  240  
  250  LDA #7  \CALL OSWORD WITH 7
  260  LDX #&00 \ IN  THE ACCUMULATOR
  270  LDY #&1E \AND SOUND PRRA BLOCK
  280  JSR OSWORD \ADDRESS IN X AND Y
  290  
  300  RTS: ]
  310  NEXT PASS
  320  CALL &1D00

Readers will no doubt be aware that this is the assembler equivalent of the
SOUND and ENVELOPE statements used in BASIC. Notice that two bytes
are used for each of the four SOUND parameters which are channel, envelope
number, pitch and duration. The high-bytes are usually zero, except for the
volume/envelope number parameter which can take a negative value, thus
requiring &FF as the high-byte. On the other hand, the 14 envelope parameter
block data items are all single-byte entities.

As a point of interest, alternative data for an explosion, gun shot and
bonus signal are given below.

Explosion data:
120 DATA 0,0,1,0,6,0,5,0
130 DATA 1,10,0,0,0,0,0,0,42,&F0,0,&FE,126,94

Gun shot data:
120 DATA 0,0,1,0,5,0,4,0
130 DATA 1,10,0,0,0,0,0,0,126,-16,0,-16,126,94

Bonus signal data:
120 DATA 1,0,1,0,200,0,50,0
130 DATA 1,1,0,20,0,0,10,0,0,0,0,-127,126,0

Perhaps the most useful to the machine code programmer is OSWRCH so
it deserves more detailed treatment. Any examples given assume that
symbolic operands used, such as OSWRCH itself, have been prior- assigned
in BASIC. Such names are of mnemonic value only. They are not recognised
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by the operating system until equated to a specific machine address, in this
case, &FFFE.

Using OSWRCH

OSWRCH writes the ASCII character code in the accumulator to
'the currently selected' output device.

The term 'currently selected' refers to either the screen, printer or RS423
interface. The default condition is to screen and printer only. Other
combinations can be achieved by a prior call to OSBYTE (see later).

The way OSWRCH works is as follows:

(a)  Calling address &FFEE (indirected via &020F).
(b)  The A,X and Y registers have their contents preserved.
(c)  The C,N,V and Z flags are undefined.

Example 1: LDA #72
JSR OSWRCH \Prints "H" on the screen

Example 2: LDA ASC("H")
JSR OSWRCH

Relating OSWRCH to VDU codes

However, OSWRCH is capable of much more than is suggested above, This
is due to the cunning use of the 32 control codes which extend through the
ASCII range 0 to 31. This code band was left vague when ASCII was
launched way back in primeval times. It was felt that a degree of latitude was
desirable at the bottom end to allow for individual hardware design, All the
graphics facilities available in BASIC can be obtained in machine code by
means of OSWRCH. Page 378 of the User Guide lists the VDU code
summary. VDU statements can, amongst other things, control screen colour,
define graphics windows and various x,y plotting operations. All these can be
achieved in machine code by the use of OSWRCH. Columns 1 and 2 on Page
378 of the User Guide are the decimal and hex ASCII control codes. Column
3 relates to the CTRL keys, and column 4 is more or less useless. Column 5 -
'Bytes extra' - is particularly important for our purpose. All the codes have to
place the appropriate ASCII code in the accumulator before using JSR
OSWRCH. Some, however, require extra trips to OSWRCH, depending on
the number of 'extra bytes'. Codes which demand '0' extra bytes are 'one-trip'
excursions. Examples are:

 LDA #2  \Equ iva len t  to  VDU 2
 JSR OSWRCH \Enab le  p r in te r
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 LDA #16 \Equ iva len t  to  VDU 16
 JSR OSWRCH \C lear  g raph ics  a rea
 LDA #12 \Equ iva len t  to  VDU 12
 JSR OSWRCH \C lear  tex t  a rea

VDU equivalents begin to be a little unruly when there are 'extra' bytes.
Each extra byte involves the setting of another number in the accumulator
and, of course, another trip to OSWRCH. Examples are:

 LDR #17  \VDU 17 ,2
 JSR DBWRCH  \Def ine  tex t  co lour  2
 LDR #2
 JSR OSWRCH

 LDA #22 VDU 22,5
 JSR OSWRCH  \Se t  Mode 5
 LDA #5
 JSR OSWRCH

 LDA #25  \VDU 25 ,0 ,100 ;500;
 JSR OSWRCH \PLOT K,  x ,  y
 LDA #0   \K=0 (move re la t i ve  to
 JSR OSWRCH \ las t  po in t )
 LDA #100  \ x=100 ( low by te )
 JSR OSWRCH
 LDA #0   \ x=0  (h igh  by te )
 JSR OSWRCH
 LDA #244  \ y=244 ( low by te )
 JSR OSRDCH
 LDA #1   \ y=256 (h igh  by te )
 JSR OSWRCH

Users of BBC BASIC will be aware that VDU statements can be chained
together. For example,

VDU 22,2 followed by VDU 24,0;0;1279:,767;
can be written more economically as
VDU 22,2,24,0;0;1279;767;

Although OSWRCH can indeed simulate any VDU statement, there is no
point in denying that its use, particularly when chaining lengthy examples, is
tedious. In short, it appears to be a weary and ponderous task. Consider for a
moment the tedium of typing in scores of LDAs and JSR OSWRCHs
involved in drawing a complex graphics screen. The end listing could
eventually resemble a toilet roll. We need a routine where the computer does
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most of the work for us. There are two main methods of performing this task:
one is to use a BASIC procedure acting as a macro; the other is to create a
look-up table of data bytes that can be accessed by indexed addressing. The
chain of VDU parameters could then be parcelled up neatly within DATA
statements and then assembled into equivalent source code.

The macro approach

First, the macro method will be described. The routine is given in Program
7.4 and is universal whichever BASIC ROM happens to be installed.
However, a simpler version for those with a BASIC II ROM is given in
Program 7.5. This modification is due to the introduction of the EQUS
pseudo op-code.

To be useful, the macro should have the following qualities:

(1)  It should utilise decimal or hex data.
(2)  It should handle single- or double-byte data automatically.
(3)  It should assemble singie-byte labelled locations.
(4)  It should handle positive and negative data elements whether single- or
double-byte in length.

Referring to Program 7.4, an example list of VDU chains is put into
DATA statements in lines 470 and 480. The data sets the text and graphics
windows and constructs a yellow square on a blue backcloth in MODE 2.
Where a two-byte VDU entity is required by the operating system (that is, a
number followed by a ';' rather than a ',') the DATA element must be followed
by a '@' so that the routine can differentiate between the two. Notice that
negative decimal two-byte data can be used which is especially useful in
relative plotting. Armed with this routine, a graphics screen can be planned
out in BASIC and quickly changed to an assembly language version. The
example also shows how labelled locations can be incorporated. The macro
can be used once or many times during an assembly program by coming out
into BASIC and typing PROCvdu(N) where N is the sequential number of
DATA elements you require to incorporate at that particular time. It is
essential, however, to restore the DATA pointer at the start of each pass of the
assembler (line 290).

Program 7.4. Macro assembly of VDU purameters.

   10  REM CONDITIONAL ASSEMBLY PROGRRM
   20  REM FOR CHAINING VDU PRRRMETERS
   30  GOTO240
   40  
   50  DEFPROCvdu(N)
   60  LOCAL D,D$,B,by te , i tem, lby te
   70  FOR i tem=1 TO N
   80  READ D$
   90  IF  RIGHT$(D$,1)="@" THEN B=2 ELSE 
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B=1
  100  D=EVAL(D$)
  110  IF  ASC(D$)>64 THEN [OPT PASS:LDA D
:JSR OSWRCH: ] :GOTO150
  120  IF  D<0 THEN D=(ABS(D)  EOR &FFFF)+1
  130  by te=D MOD 256:PROCform
  140  IF  B=2 THEN by te=D DIV 256:PROCfor
m
  150  NEXT i tem
  160  ENDPROC
  170  
  180  DEFPROCform
  190  IF  by te<> lby te  THEN [OPT PASS:LDA 
#by te : ]
  200  [OPT PASS:JSR OSWRCH: ]
  210  lby te=by te
  220  ENDPROC
  230  
  240  OSWRCH=&FFEE
  250  BCOL=&70:SQCOL=&71
  260  DIM START 256
  270  FOR PASS=0 TO 3  STEP 3
  280  P%=START
  290  RESTORE
  310  [OPT PASS
  320  LDA #3  \SET SQUARE CULOUR
  330  STA SQCOL
  340  LDA #&84 \SET BACKGROUND COLOUR
  350  STA BCOL
  360  ]
  370  PROCvdu(39)
  380  [OPT PASS
  390  \  ANY SOURCE CODE
  400  RTS: ]
  420  NEXT PASS
  430  CALL START
  450  REM DATA IS  A  L IST OF VDU CHAINS
  460  REM YELLOW SQUARE/BLUE BACKGROUND
  470  DATA 22 ,2 ,28 ,0 ,3 ,19 ,1 ,24 ,0@,0@,127
9@,767@,18,0 ,BCOL,16
  480  DATA 18 ,0 ,SQCOL,25 ,4 ,500@,500@,25,
1 ,200@,0@,25,81 ,0@,-200@,25,1 , -200@,0@,2
5,81 ,0@,200@

Program 7.4 takes advantage of the concept of conditional assembly. In
this case, a conditional test is made to see if the next byte of data is the same
as the byte preceding it. If this is so then a LDA #byte will not be required
(since the data byte will already be in the accumulator).

The operation of the program is as follows: The routine reads in each
DATA element and tests for the '@' character termination, setting the variable
B to the number of bytes as appropriate. Line 100 uses EVAL rather than
VAL to evaluate the data string (D$) and places the result into the variable D.
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This fine is necessary when the following situations occur in D$.

(1)  A '&' precedes a number, indicating hexadecimal.
(2)  A labelled location is encountered, in which case the assigned location
address is put into the variable D, assuming, of course, it has been previously
defined.
(3)  The temporary '@' character is ignored (it has outgrown its usefulness).

Line 110 tests whether D$ contains numeric or alpha data. If the data is alpha
- that is, a labelled location - then the accumulator is loaded with the assigned
address since, in this case, we do not want immediate addressing.

Line 120 checks if D is negative so that a two-byte two's complement
form can be generated. Line 130 forms the low-byte and line 140 forms the
high-byte if required. PROCform handles conditional assembly using
immediate addressing.

With the upgraded BASIC II ROM installed, the above program can still
be used but a more convenient version is given in Program 7.5. The
difference is that we need not leave the assembler to use the macro. The
pseudo op-code EQUS can place a string, where positioned, within a
program. If we use the function FNvdu(N) which returns a null string(we do
not want a string returned) then all the goings on of the macro will be
peformed without the complication of leaving the assembler!

This type of modification can be employed in similar programs where
procedures are encountered on breaking out of the assembler. For the sake of
standardisation, the method is not used in further examples since large
numbers of BBC Micro's have BASIC I installed.

Program 7.5. Macro assembly of VDU parameters (BASIC II onwards).

   10  REM CONDITIONAL ASSEMBLY PROGRRM
   20  REM FOR CHAINING VDU PRRRMETERS
   30  GOTO240
   40  
   50  DEF FNvdu(N)
   60  LOCAL D,D$,B,by te , i tem, lby te
   70  FOR i tem=1 TO N
   80  READ D$
   90  IF  RIGHT$(D$,1)="@" THEN B=2 ELSE 
B=1
  100  D=EVAL(D$)
  110  IF  ASC(D$)>64 THEN [OPT PASS:LDA D
:JSR OSWRCH: ] :GOTO150
  120  IF  D<0 THEN D=(ABS(D)  EOR &FFFF)+1
  130  by te=D MOD 256:PROCform
  140  IF  B=2 THEN by te=D DIV 256:PROCfor
m
  150  NEXT i tem
  160  =" "
  170  



Chapter Six Sort Routines 167

  180  DEFPROCform
  190  IF  by te<> lby te  THEN [OPT PASS:LDA#
byte : ]
  200  [OPT PASS:JSR OSWRCH: ]
  210  lby te=by te
  220  ENDPROC
  230  
  240  OSWRCH=&FFEE
  250  BCOL=&70:SQCOL=&71
  260  DIM START 256
  270  FOR PASS=0 TO 3  STEP 3
  280  P%=START
  290  RESTORE
  300  
  310  [OPT PASS
  320  LDA #3  \SET SQUARE CULOUR
  330  STA SQCOL
  340  LDA #&84 \SET BACKGROUND COLOUR
  350  STA BCOL
  360  EQUS FNvdu(39)
  370  RTS: ]
  380  
  390  NEXT PASS
  400  CALL START
  410  
  420  REM DATA IS  A  L IST OF VDU CHAINS
  430  REM YELLOW SQUARE/BLUE BACKGROUND
  440  DATA 22 ,2 ,28 ,0 ,3 ,19 ,1 ,24 ,0@,0@,127
9@,767@,18,0 ,BCOL,16
  450  DATA 18 ,0 ,SQCOL,25 ,4 ,500@,500@,25,
1 ,200@,0@,25,81 ,0@,-200@,25,1 , -200@,0@,2
5,81 ,0@,200@

The look-up table approach

Another approach to this problem is by using a look-up table. Program 7.6
shows the essential differences. For a start, conditional assembly is not used
as in the previous example and the use of labelled locations has been dropped.
The DATA elements in the BASIC routine are split up into the relevant single
bytes and stored as a look-up table from the location labelled 'data' onwards.
The short piece of code at lines 230 to 290 can be placed anywhere within the
source program to access this table sequentially. The term 'look-up' is used
since any element can be looked up by setting the index register to the
required offset from the table base address. It is conventional to place data
tables such as this at the end of a program. The previous example has the edge
on speed but this method is more econormcal in the use of memory locations

Program 7.7 is an example of the type of moving graphics available by
using the macro approach. The program sets up a graphics screen in mode 2
and produces the ubiquitous bouncing ball. by now the standard
apprenticeship exercise in the use of animated graphics. The macro is used a
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line 310 to set up the screen and again at line 980 to form the subroutine
BALL.

Program 7.6 Using data tables for chaining VDU parameters.

   10  REM USING DATA TABLES FOR
   20  REM CHAINING VDU PARAMETERS
   30  GOTO160
   40  
   50  DEFPROCdata tab le (N)
   60  FOR i tem=1 TO N
   70  READ D$
   80  IF  RIGHT$(D$,1)  ="@"  THEN B=2 ELSE
 B=1
   90  D=EVAL(D$)
  100  IF  D<0 THEN D=(ABS(D)  EOR &FFFF)+1
  110  ?P%=D MOD 256:P%=P%+1
  120  IF  B=2 THEN ?P%=D DIV 256:P%=P%+1
  130  NEXT i tem
  140  ENDPROC
  150  
  160  OSWRCH=&FFEE
  170  DIM START 500
  180  FOR PASS=0 TO 3  STEP 3
  190  P%=START
  200  RESTORE
  210  
  220  [OPT PASS
  230  LDY #0  \LOOP OUTPUTS
  240  .LOOP \DATA ITEMS STORED
  250  LDA da ta ,Y  \FROM data  ONWARDS
  260  JSR OSWRCH \BY PROCdata tab le
  270  INY \AND CAN BE REPLACED
  280  CPY #53 \ANYWHERE WITHIN
  290  BNE LOOP \SOURCE CODE PROG.
  300  BEQ FINISH
  310  .da ta
  320  
  320  ]PROCdata tab le (39)
  330  [OPT PASS
  340  .F INISH
  350  RTS: ]
  360  
  370  NEXT PASS
  380  CALL START
  390  
  400  REM DATA IS  A  L IST OF VDU CHAINS
  410  REM YELLOW SQUARE/BLUE BACKGROUND
  420  DATA 22 ,2 ,28 ,0 ,3 ,19 ,1 ,24 ,0@,0@,127
9@,767@,18,0 ,132 ,16
  430  DATA 18 ,0 ,3 ,25 ,4 ,500@,500@,25,1 ,20
0@,0@,25,81 ,0@,-200@,25,1 , -200@,0@,25,81
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,0@,200@

Any Moving Object (MOB) must have an associated velocity. In simple
cases this is little more than an increment added to the object's previous
position so as to calculate its next position on the screen. An acceleration,
incidentally, can be mimicked (position-wise) by adding a further steadily
inreasing increment as new positions are calculated. When the object reaches
a boundary, the velocity (increment) must reverse sign if it is to remain on the
screen. This is straightforward to program in BASIC. In machine code,
however, the object's position on the screen is a two-byte number. You could
be forgiven for thinking that the increment need only he a single-byte number
because of its normally small value. However, this r, not so. Numbers
differing in byte length cannot be added if they are of mixed sign, therefore
we must also have a two-byte increment.

Program 7.7. The ubiquitous bouncing ball.

   10  REM BOUNCING BALL EXAMPLE
   20  GOTO 230
   30  
   40  DEFPROCvdu(N)
   50  LOCAL D,D$,B,by te , i tem, lby te
   60  FOR i tem=1 TO N
   70  READ D$
   80  IF  RIGHT$(D$,1)="@" THEN B=2 ELSE 
B=1
   90  D=EVAL(D$)
  100  IF  ASC(D$)>64 THEN [OPT PAS:LDA D:
JSR OSWRCH: ] :GOTO 140
  110  IF  D<0 THEN D=(ABS(D)  EOR &FFFF)+1
  120  by te=D MOD 256:PROCform
  130  IF  B=2 THEN by te=D DIV 256:PROCfor
m
  140  NEXT i tem
  150  ENDPROC
  160  
  170  DEFPROCform
  180  IF  by te<> lby te  THEN [OPT PASS:LDA 
#by te : ]
  190  [OPT PASS:JSR OSWRCH: ]
  200  lby te=by te
  210  ENDPROC
  220  
  230  OSWRCH=&FFEE:OSBYTE=&FFF4
  240  X=&70:Y=&72:XINC=&74:YINC=&76
  250  BCOL=&78
  260  DIM START 1000
  270  FOR PASS=0 TO 3  STEP 3
  280  P%=START
  290  RESTORE
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  300  REM SET UP SCREEN
  310  PROCvdu(16)
  320  DATA 22 ,2 ,28 ,0 ,3 ,19 ,1 ,24 ,0@,0@,127
9@,767@,18,0 ,132 ,16
  330  
  340  [OPT PASS
  350  LDA #0 \ IN IT IALISE X,Y,XINC
  360  STA X \AND YINC
  370  STA Y
  380  STA XINC+1
  390  STA YINC+1
  400  STA X+1
  410  STA Y+1
  420  LDA #8
  430  STA XINC
  440  STA YINC
  450  
  460  .LOOP
  470  LDA #&13
  480  JSR OSBYTE
  490  LDA #4
  500  STA BCOL
  510  JSR BALL
  520  LDA X
  530  CLC
  540  ADC XINC
  550  STA X
  560  LDA X+1
  570  ADC XINC+1
  580  STA X+1
  590  LDA Y \ADD YINC TO Y
  600  CLC \ (2  BYTES)
  610  ADC YINC
  620  STA Y
  630  LDA Y+1
  640  ADC YINC+1
  650  STA Y+1
  660  LDA #7 \DELETE BALL WITH
  670  STA BCOL \BACKGROUND COLOUR
  680  JSR BALL
  690  LDA Y+1
  700  CMP #3
  710  BCC YONSCR
  720  LDA YINC \FIND 2 's  COMPLIMENT
  730  EOR #&FF \OF YINC (2  BYTES)
  740  STA YINC
  750  LDA YINC+1
  760  EOR #&FF
  770  STA YINC+1
  780  INC YINC
  790  BNE YONSCR
  800  INC YINC+1
  810  .YONSCR
  820  LDA X+1 \CHECK X ON SCREEN
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  830  CMP #5
  840  BCC XONSCR
  850  LDA XINC \FIND 2 's  COMPLIMENT
  860  EOR #&FF \OF XINC (2  BYTES)
  870  STA XINC
  880  LDA XINC+1
  890  EOR #&FF
  900  STA XINC+1
  910  INC XINC
  920  BNE XONSCR
  930  INC XINC+1
  940  .XONSCR
  950  JMP LOOP
  960  
  970  .BALL
  980  ]PROCvdu(13)
  990  DATR 18 ,0 ,BCOL,25 ,4 ,X ,X+1,Y,Y+1,25
,1 ,0@,-8@
 1000 [RTS: ]
 1010 
 1020 NEXT PASS
 1030 CALL START
 1040 END

The program is liberally remarked but one area worthy of further comment
is where the on-screen position checks are made. Referring to the case of the
Y screen boundary checks in lines 690 to 710, the CMP instruction sets the
carry flag if M<=A and clears it if M>A. In this case, the CMP #3 instruction
in line 700 will set the carry flag if the accumulator mntents Y+1>=3. This
will occur when the accumulator contents are between 3 and 255 inclusive (&
3 and &FF). Consequently, the carry flag wfll be clear when the high byte of
the screen position Y+1 takes a value of 0,1, or 2 which are legitimate screen
positions. The end result of the conditional branch in line 710 is that XINC (2
bytes) is only reversed in sign (two's complement) when the carry flag is set.
Therefore, only one comparison is required to test for both the top and bottom
screen boundaries. The screen boundary tests in the other dimension are
conducted in a similar fashion.

Summary

1. High levels of subroutines nesting can overflow the stack.
2. Each unreturned JSR uses two stack locations.
3. Each JSR uses 6 clock cycles and RTS another 6, so a JSR within a loop

can squander time.
4. Resident subroutines, within the ROM operating system, are plentiful

and easy to use in machine code programs.
5. Where the screen display is involved, there are speed advantages to be

gained by using direct screen addressing. However, the program may not
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work through the Tube with the second processor. If you never buy one,
this won't matter anyway.

6. A vector is a two-byte word in memory which is the address of a routine.
7. Some resident subroutines have vectored addresses. Changing the

contents of the vector allows interception to a different routine.
8. Most vectored addresses are in page 2.
9. Graphic facilities are handled by OSWRCH at address &FFEE.

indirected via &020E.
10. The sound generators and envelope shaping are handled by OSWORD.
11. Input data is handled by OSRDCH at address &FFE0, indirected via &

0210.
12. Although the assembler does not offer macro facilities, they can be

simulated by temporary transfer from assembly code to a BASIC
procedure.

13. If the new BASIC II ROM is installed, the EQUS structure can be used
within the assembler for simulating macros and other functions

Self test

7.1  Use the macro procedure to draw a large red square on a yellow
background in MODE 2.

7.2  Use the look-up table method to draw a yellow triangle on a blue
background.

7.3  Program the sound generator to play a scale in F# major.
7.4  Add a keyboard controllable bat routine to intercept the ball in

Program 7.7.



Chapter Eight
Direct Screen Addressing and
Hardware Scrolling

Direct screen addressing overview

Addressing screen locations directly has some advantages over using
operating system subroutines such as OSWRCH. Faster and smoother moving
graphics can be devised. The disadvantage of directly addressing screen
locations (incompatibility with the Tube) has been emphasised before. When
using direct screen addressing, the extra work involved in programming is
considerable. The screen can no longer be considered as a convenient
rectangle of plot points with X, Y coordinates. Instead, the screen is
considered as a block of memory locations, laid out in a form similar to the
screen layout map for MODE 2 shown in Fig. 8.1. In practice, the most
commonly used mode for this method of programming is MODE 2 since the
full sixteen colours are available to the user with a reasonably high resolution
of 160*256 pixels. It is not practicable in a book of this size to discuss all
MODES so direct screen addressing in this chapter will refer entirely to a
MODE 2 screen.

The programs in this chapter should be helpful when writing games or
educational material, particularly those which involve animation. They show
how faster and smoother graphic displays appear when use is made of
machine code routines called from BASIC.

In MODE 2, each screen memory location which is written to will light up
two pixels. If we are happy with a minimum movement of two pixels at a
time in an animated sequence then the whole process simplifies to shifting
bytes around in the screen memory area shown in Fig. 8.1. Any of the sixteen
colours can be selected for each pixel by setting appropriate bits within the
byte written to screen memory. Figure 8.2 shows how this is done and the
relationship to pixels lit on the screen.

Each pixel is represented by a nibble (4 bits) In a somewhat staggered
format as shown. All that is needed is to set each nibble to the required colour
code. These are the standard colour numbers as used in BASIC (0 to 15). If
only one pixel is required to be lit then the other can be set to the relevant
background colour, usuall all zeroes (default black). To reinforce the point,
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try the following simple routine and experiment with the value loaded into the
accumulator in line 40.

 10  MODE 2
 20  P%=&0D00
 30  [
 40  LDA #7   \Load by te
 50  STA &7FF0  \L igh t  up  p ixe l  pa i r
 60  RTS: ]
 70  CLS
 80  CALLL &0D00

3000

3001

3002

3003

3008

3009

300A

300B

3278

3279

327A

327B

3007 300F 327F

3280

7B07

7FF8

7FF9

7FFA

7FFB

7D80

7D81

7D82

7D83

7D88

7D89

7D8A

7D8B

7D87 7D8F 7FFF

Fig. 8.1. The MODE 2 screen map
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Left hand pixel bits

3 3 2 2 1 1 0 0L R L R L R L R

Right hand pixel bits

0 0 0 0 0 1 1 1

Bit setting example

Red Yellow

Pixel pair lit on screen

Fig. 8.2. How a MODE 2 screen byte is set up,

The routine lights up a red pixel to the left of a yellow pixel at the bottom
right-hand corner of the screen. The byte loaded in line 40 consists of the
code fored (1 binary) and the code for yellow (11 binary). These
amalgamated in the form shown in Fig. 8.2 produce a byte 0000 0111.

As an example of how fast direct screen addressing can be, a screen fill
routine is given in Program 8.1. This program sets the whole screen to red by
writing a byte of 0000 0011 to each screen location. Blocks of 128 bytes are
sent to the screen memory by indirect indexed addressing. The reason for this
will become apparent later when we start to whip UFOs and things around the
screen.

Program 8.1. Filling a colour screen.

   10  REM FILL ING A COLOUR SCREEN
   20  REM DIRECT SCREEN LOCATIONS MODE 2
   30  OSWRCH=&FFEE
   40  LOC=&70
   50  DIM START 256
   60  FOR PASS=0 TO 2  STEP 2
   70  P%=START
   80  [OPT PASS
   90  LDA #&16 \SET UP MODE 2
  100  JSR OSWRCH
  110  LDA #2
  120  JSR OSWRCH
  130  LDA #&00 \SET LOC TO SCREEN
  140  STA LOC \START ADDRESS
  150  LDA #&30 \ (2  BYTES)
  160  STA LOC+1
  170  .BEGIN
  180  LDA #3
  190  LDY #&7F
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  200  .LOOP
  210  STA (LOC) ,Y
  220  DEY
  230  BPL LOOP
  240  CLC
  250  LDA LOC \ADD 128 TO LOC
  260  ADC #&80
  270  STA LOC
  280  BCC SKIP
  290  INC LOC+1
  300  .SKIP
  310  CMP #&00 \COMPARE LOC TO END
  320  BNE BEGIN \ADDRESS OF SCREEN
  330  LDA LOC+1 \ IF  NOT THE SAME
  340  CMP #&80 \BRANCH TO BEGIN
  350  BNE BEGIN
  360  RTS: ]
  370  NEXT PASS
  380  CALL START

Colour animation by addressing direct screen locations

In this section, a simple animated sequence will be described which movesu
32 pixel red rectangle from the top to the bottom of the screen smoothh and
without any perceptible flicker. The routine is artificially slowed down by
waiting for the field synchronisation pulse. If this is not done the rectangle
flies across the screen so fast that the TV system cannot reproduced it. This is
not a problem in a large practical game, since many other objects will be
moved in between. However, timing plays an important part in animation if
pleasing results are to be obtained.

The labelled address LOC is set to the screen start address in MODE 2
which is &3000 taking 2 bytes of zero page memory. After waiting for the
frame synchronisation pulse, the red rectangle is placed on the screen with
indirect indexed addressing, scooping up the arbitrary 16 bytes necessary to
form the image. Since in this case we want a red rectangle, the accumulator is
set to &03. The image is then deleted in a similar manner but this time the
accumulator contains the code for black (&00). The value 8 is then added to
the location LOC to calculate the next image position. The reason for this is
to move the image by two pixels to the right. Reference to the MODE 2
screen map in Fig. 8.1 will help here. After checking that the calculated
position is still on the screen, the cycle is restarted. Program 8.2 shows how
single colour objects can be moved over the screen.

Program 8.2. Single colour MOBs.

   10  REM COLOUR ANIMATION BY ADDRESSING
   20  REM DIRECT SCREEN LOCATIONS MODE 2
   30  OSWRCH=&FFEE:OSBYTE=&FFF4
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   40  LOC=&70:COL=&72
   50  DIM START 500
   60  FOR PASS=0 TO 2  STEP 2
   70  P%=START
   80  [OPT PASS
   90  LDA #&16 \SET UP MODE 2
  100  JSR OSWRCH
  110  LDA #2
  120  JSR OSWRCH
  130  LDA #&00 \SET LOC TO SCREEN
  140  STA LOC \START ADDRESS
  150  LDA #&30 \ (2  BYTES)
  160  STA LOC+1
  170  .BEGIN
  180  LDA #3  \SET BOTH PIXEL
  190  STA COL \COLOURS TO RED.
  200  JSR OBJECT
  210  LDA #&13 \WAIT FOR FIELD SYNC
  220  JSR OSBYTE
  230  LDA #0  \SET BOTH PIXEL
  240  STA COL \COLOURS TO BLACK
  250  JSR OBJECT \ (BACKGROUND COLOUR)
  260  CLC
  270  LDA LOC \ADD 8  TO LOC
  280  ADC #&8
  290  STA LOC
  300  BCC SKIP
  310  INC LOC+1
  320  .SKIP
  330  CMP #&00 \COMPARE LOC TO END
  340  BNE BEGIN \ADDRESS OF SCREEN
  350  LDA LOC+1 \ IF  NOT THE SAME
  360  CMP #&80 \BRANCH TO BEGIN
  370  BNE BEGIN
  380  BEQ FINISH
  390  .OBJECT \PLACE OBJECT ON
  400  LDY #&0F \SCREEN (16  BYTES)
  410  LDA COL \ (32  P IXELS)
  420  .LOOP
  430  STA (LOC) ,Y
  440  DEY
  450  BPL LOOP
  460  RTS
  470  .F INISH
  480  RTS: ]
  490  NEXT PASS
  500  CALL START

Multi-colour MOBs

The use of user-defined characters has one drawback - only single colour
characters can be defined. The standard way to get over this is overprinting
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with another character of chosen colour, thus building up the required
multicolour object. This can be a time-consuming process even in assembly
language. The problem does not arise with direct screen addressing. Program
8.3 shows the essential details.

Program 8.3. A UFO as an example of a multi-colour MOB.

   10  REM MULTICOLOUR ANIMATION BY
   20  REM ADDRESSING DIRECT SCREEN
   30  REM LOCATIONS IN MODE2
   40  GOTO140
   50   
   60  DEFPROCdata tab le (N)
   70  FOR i tem=1 TO N
   80  READ D$
   90  D=EVAL(D$)
  100  ?P%=D:P%=P%+1
  110  NEXT i tem
  120  ENDPROC
  130   
  140  OSWRCH=&FFEE:OSBYTE=&FFF4
  150  LOC=&70
  160  DIM START 500
  170  FOR PASS=0 TO 2  STEP 2
  180  P%=START
  190  RESTORE
  200  [OPT PASS
  210  LDA #&16 \SET UP MODE2
  220  JSR OSWRCH
  230  LDA #2
  240  JSR OSWRCH
  250  LDA #&00 \SET LOC TO SCREEN
  260  STA LOC \START ADDRESS
  270  LDA #&30 \ (2  BYTES)
  280  STA LOC+1
  290   
  300  .BEGIN
  310  LDY #&1F \PLACE OBJECT ON
  320  .LOOP2 \SCREEN DEFINED
  330  LDA da ta ,Y  \BY da ta
  340  STA (LOC) ,Y
  350  DEY
  360  BPL LOOP2
  370  LDA #&13 \WAIT FOR FIELD SYNC
  380  JSR OSBYTE
  390  LDA #0  \LENOBJECT ON
  400  LDY #&1F \SCREEN BY BLANKING
  410  .LOOP1 \ IN  BACKGROUND
  420  STA (LOC) ,Y  \COLOUR (BLACK)
  430  DEY
  440  BPL LOOP1
  450  CLC
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  460  LDA LOC \ADD 8  TO LOC
  470  ADC #&8
  480  STA LOC
  490  BCC SKIP
  500  INC LOC+1
  510  .SKIP
  520  LDA LOC \COMPARE LOC TO END
  530  BNE BEGIN \ADDRESS OF SCREEN
  540  LDA LOC+1 \ IF  NOT THE SAME
  550  CMP #&80 \BRANCH TO BEGIN
  560  BNE BEGIN
  570  BEQ FINISH
  580   
  590  .da ta
  600  ]PROCdata tab le (32)
  610  DATA 0 ,0 ,0 ,1 ,3 ,3 ,3 ,0 ,&40,1 ,3 ,3 ,9 ,3
,3 ,2 ,&80,2 ,3 ,3 ,6 ,3 ,3 ,1 ,0 ,0 ,0 ,2 ,3 ,3 ,3 ,0
  620   
  630  [OPT PASS
  640  .F INISH
  650  RTS: ]
  660  NEXT PASS
  670  CALL START

The program differs from the previous one in that a look-up table is used
to form the object's colours. The data consists of 32 sequential bytes (64
pixels) which are ‘looked up’ in a method similar to that described in Chapter
7. Notice that this program is less complex, since only single byte data is
handled by the BASIC procedure. Do not forget the even simpler method
with BASIC II (or later versions) involving EQUS.

The object itself can be planned out on grid paper with up to 128
consecutive bytes, since BPL is used in the loop loading sequence.

Address coordinates

The method described previously is, by virtue of speed, preferred for small
MOBs travelling in a horizontal direction. However, the movement in the
Vertical direction leaves a lot to be desired. Movement by 8 pixels at a time is
not very satisfactory! Furthermore, the height of the MOB is restricted to 8
pixels. The standard method of overcoming these problems is to employ a
routine which translates address coordinates (80*256) to absolute screen
addresses so that discontinuities in the memory map in the X and Y directions
are avoided. The MOl)E 2 screen map consists of a matrix of 80 bytes (2
pixels a byte) in the X direction and 256 bytes in the Y direction making 80*
256=20K bytes in all. If we are satisfied with two-pixel movement in the
horizontal direction as before, the concept of address coordinates can be
envisaged. The screen memory map given earlier is set out in blocks of eight
seqnential addresses. The difference between equivalent positions in any
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adjacent block of 8 in the Y direction is &280 or 640 decimal. Similarly in
the X direction the difference is 8. Therefore the equation to calculate a
unique screen address from an XY address coordinate is given by:

Screen address = &3000 + 8X + 640(Y DIV 8) + (Y MOD 8)

where, &3000 is the screen start address; 8X is the X contribution because
there are 8 address locations difference between adjacent X coordinates,
640(Y DIV 8) specifies the block of eight containing the Y coordinate; and Y
MOD 8 specifies the position in that block of 8. The above equation is
not suited to machine coding in its present form. We need to rearrange the
equation so that all multipliers are, as far as possible. in exact powers of 2.
Any multiplication or division then simplified to shifting bits left or right
respectively. This can be conveniently achieved as follows:

&3000 + 8X + 640(Y DIV 8) + (Y MOD 8) &3000 + 8X + 80(8(Y DIV
8)) + (Y MOD 8)
Let Y1=8(Y DIV 8
= &3000 + 8X + 80Y1 + (Y MOD 8
= &3000 + 8X + 16Y1 + 64Y1 + (Y MOD 8)

The coding of the above is now relatively easy. All (Y DIV 8) means is shift
Y right 3 times, thus losing the 3 least significant bits. Multiplying by 8,
giving 8(Y DIV 8), is then achieved by shifting the result left 3 times. The net
result of all this is just to jose the 3 least significant bits. They have fallen off
the end.

A simpler way of arriving at the same result is to mask out the 3 least
significant bits of Y with AND#&FE. Similarly, all (Y MOD8) means is to
recover the bits we lost in the previous operation by masking out the 5 most
significant bits of Y with AND #&7. The expression 8X is achieved by
shifting X left 3 times. Two bytes will be required to accommodate the result
on the last two shifts.

The 64Y1 expression can be arrived at by shifting Y1 left six times.
However, if you can imagine a two-byte result, shifting Y1 right twice and
storing it as the high-byte of the result will be the exact equivalent. The low-
byte of the result can be set to all zeros.

Two further shifts rrght of the 64Y1 result will divide by 4, giving 16Y1.
However, we must rotate the carry into the low-byte of the result on the last
shift right. The LSR and ROR instructions, respectively, are needed.

Adding the whole lot together gives the required screen address. Program
8.4 (lines 1080 to 1380) shows one way of coding the above.

Program 8.4. Moving more than one shape.

   10  REM MOVING MULTICOLOURED OBJECTS
   20  REM AN IMPROVED METHOD FOR MODE 2
   30  REM USING 80*256 BYTE COORDINATES
   40  GOTO140



Chapter Eight Direct Screen Addressing and Hardware Scrolling 181

   50   
   60  DEF FNdata tab le (N)
   70  FOR i tem=1 TO N
   80  READ D$
   90  D=EVAL("&"+D$)
  100  ?P%=D:P%=P%+1
  110  NEXT i tem
  120  =PASS
  130   
  140  OSWRCH=&FFEE:OSBYTE=&FFF4
  150  XCOORD=&70:YCOORD=&71:w id th=&72:he
igh t=&73:wcount=&74:LOC=&75
  160  STORE=&77:da ta=&79:Yreg=&7B
  170  tab le1=&7C: tab le2=&7E
  180  XCOORD1=&80:YCOORD1=&81
  190  XCOORD2=&82:YCOORD2=&83
  200  DIM START 1000
  210  FOR PASS=0 TO 2  STEP 2
  220  P%=START
  230  RESTORE
  240  [OPT PASS
  250   
  260  LDA #&16 \SET UP MODE2
  270  JSR OSWRCH
  280  LDA #2
  290  JSR OSWRCH
  300  LDA #(shape1 MOD 256)  \STORE SHAPE
  310  STA tab le1  \TABLE
  320  LDA #(shape1 DIV 256)  \ADDRESSES
  330  STA tab le1+1
  340  LDA #(shape2 MOD 256)
  350  STA tab le2
  360  LDA #(shape2 DIV 256)
  370  STA tab le2+1
  380  LDA #0
  390  STA XCOORD1 \ IN IT IALISE BYTE
  400  STA YCOORD1 \COORDINATES OF
  410  LDA #34 \SHAPES
  420  STA XCOORD2
  430  LDA #200
  440  STA YCOORD2
  450   
  460  .LOOP
  470  INC XCOORD1 \UPDATE OF SHAPE
  480  INC YCOORD1 \COORDINATES
  490  DEC YCOORD2
  500  JSR SCREEN
  510  LDA YCOORD2
  520  CMP #80
  530  BNE LOOP
  540  BEQ START
  550   
  560  .SCREEN
  570  LDA tab le1  \STORE ADDRESS OF
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  580  STA da ta  \F IRST SHAPE TABLE
  590  LDA tab le1+1 \ IN  da ta
  600  STA da ta+1
  610  LDA #&13 \WAIT FOR FIELD SYNC
  620  JSR OSBYTE
  630  LDX XCOORD1 \CALL draw SUBROUT'E
  640  LDY YCOORD1 \WITH PARAMETERS IN
  650  JSR draw \X  AND Y REG'S
  660  LDA tab le2
  670  STA da ta  \STORE ADDRESS OF
  680  LDA tab le2+1 \SECOND SHAPE TABLE
  690  STA da ta+1
  700  LDX XCOORD2
  710  LDY YCOORD2 \CALL draw SUBROUT'E
  720  JSR draw
  730  RTS
  740   
  750  .d raw
  760  STX XCOORD \STORE PARAMETERS
  770  STY YCOORD \PASSED
  780  LDY #0
  790  LDA (da ta ) ,Y  \STORE SHAPE'S
  800  STA he igh t  \HEIGHT AND WIDTH
  810  INY \PARAMETERS OBTAINED
  820  LDA (da ta ) ,Y  \FROM DATA TABLE
  830  STA w id th
  840  LDX #2  \X  SAVES Y (TEMP)
  850  .newrow
  860  LDA #0  \CLEAR Yreg  STORE
  870  STA Yreg
  880  LDA w id th  \RELOAD wcount
  890  STA wcount
  900  JSR CALCADDRESS \CALC SCREEN ADDr
  910  .newco lumn
  920  TXA \TRANSFER X TO Y
  930  TAY
  940  LDA (da ta ) ,Y  \PLACE ROWS OF DATA
  950  LDY Yreg  \ INTO SCREEN
  960  STA (LOC) ,Y  \MEMORY UNTIL
  970  TYA \SHAPE IS  COMPLETED
  980  ADC #8
  990  STA Yreg  \Yreg  ENDIFS Y (TEMP)
 1000 INX
 1010 DEC wcount
 1020 BNE newco lumn
 1030 INC YCOORD
 1040 DEC he igh t
 1050 BNE newrow
 1060 RTS
 1070  
 1080 .CALCADDRESS
 1090 LDA #0  \CLEAR LOCATIONS
 1100 STA STORE+1
 1110 STA LOC



Chapter Eight Direct Screen Addressing and Hardware Scrolling 183

 1120 LDA XCOORD \CALC.  8*X
 1130 ASL A
 1140 ASL A
 1150 ROL STORE+1
 1160 ASL A
 1170 ROL STORE+1
 1180 STA STORE
 1190 LDA YCOORD \CALC Y1=8* (YDIV8)
 1200 AND #&F8
 1210 LSR A \CALC 64*Y1
 1220 LSR A
 1230 STA LOC+1
 1240 LSR A \CALC 16*Y1
 1250 LSR A
 1260 ROR LOC \a lso  c lears  car ry
 1270 ADC LOC+1 \CALC 80*Y1
 1280 TAY
 1290 LDA YCOORD
 1300 AND #7 \CALC  Y  MOD 8
 1310 ADC LOC
 1320 ADC STORE \CALCULATE
 1330 STA LOC \CUMMULATIVE RESULT
 1340 TYA \FOR SCREEN ADDRESS
 1350 ADC STORE+1
 1360 ADC #&30
 1370 STA LOC+1
 1380 RTS
 1390  
 1400 .shape1
 1410 OPT FNdata tab le (86)
 1420 .shape2
 1430 OPT FNdata tab le (62)
 1440 RTS: ]
 1450 NEXT PASS
 1460 CALL START
 1470  
 1480 REM THIS IS  THE shape1 DATA
 1490 DATA E,6
 1500 DATA 0 ,0 ,0 ,0 ,0 ,0
 1510 DATA 0 ,0 ,0 ,0 ,0 ,0
 1520 DATA 0 ,0 ,4F,8F,0 ,0
 1530 DATA 0 ,0 ,1 ,2 ,0 ,0
 1540 DATA 0 ,0 ,1 ,2 ,0 ,0
 1550 DATA 0 ,0 ,3 ,3 ,0 ,0
 1560 DATA 0 ,1 ,3 ,3 ,2 ,0
 1570 DATA 0 ,3 ,9 ,6 ,3 ,0
 1580 DATA 0 ,3 ,3 ,3 ,3 ,0
 1590 DATA 0 ,3 ,3 ,3 ,3 ,0
 1600 DATA 0 ,3 ,3 ,3 ,3 ,0
 1610 DATA 0 ,0 ,2 ,1 ,0 ,0
 1620 DATA 0 ,0 ,0 ,0 ,0 ,0
 1630 DATA 0 ,0 ,0 ,0 ,0 ,0
 1640  
 1650 REM THIS IS  THE shape2 DATA
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 1660 DATA A,6
 1670 DATA 0 ,0 ,0 ,0 ,0 ,0
 1680 DATA 0 ,0 ,0 ,0 ,0 ,0
 1690 DATA 0 ,0 ,1 ,2 ,0 ,0
 1700 DATA 0 ,0 ,3 ,3 ,0 ,0
 1710 DATA 0 ,1 ,3 ,3 ,2 ,0
 1720 DATA 0 ,3 ,9 ,6 ,3 ,0
 1730 DATA 0 ,3 ,3 ,3 ,3 ,0
 1740 DATA 0 ,0 ,2 ,1 ,0 ,0
 1750 DATA 0 ,0 ,0 ,0 ,0 ,0
 1760 DATA 0 ,0 ,0 ,0 ,0 ,0

Moving more than one shape

The above program independently moves two shapes on the screen by
accessing two separate data tables with a common draw routine. The shapes
are built up, a data byte at a time, by the subroutine ‘draw’. This subroutine
constructs a shape in a row by row fashion until completely drawn. The
shape's height and width in bytes must be first read in from the data table.
Line 1490 contains this data. The subroutine places the requested shape on
the screen by invoking the CALCADDRESS routine prim to placing each
data byte of a new row into screen memory. There in no need to call
CALCADDRESS for adjacent bytes in a row since simply adding 8 to the
previous address gives the address of the next byte in the row. Two loops are
needed for this and the routine is given in lines 750 In 1060. The relevant data
tables are at the foot of the program but note yet another way of incorporating
data into a machine code program. The statement has FNdatable(86)
following it. Providing the datatable function returns PASS, all BASIC lines
in the function are executed without ‘officially’ leaving the assembler.

A border of background colour, one byte wide in the horizontal and two
bytes in the vertical direction is useful. This ensures that all the bits and
pieces remaining from the last drawn position are automatically erased which
ever direction the shape is moving. On initialisation, the addresses of the
supplied shape tabjes must be stored so that the subroutine SCREEN can
specify which shape to draw. The X and Y address coordinates are then
passed over to the draw subroutine in the X and Y registers respectively.
Lines 560 to 730 are responsible for this. Lines 460 to 540 complete the
program by incrementing the various coordinates of shape1 and shape2 to
update the next drawing positions. The overall structure of the program is
such that more shapes can easily be added.

A study of Program 8.4 (and its remarks) will reveal a few of the essential
techniques for producing action video games.

Hardware scrolling by programming the 6845 CRTC

Hardware scrolling has many uses but ones that immediately spring to mind
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are applications such as word processing and producing moving landscapes in
games programs.

The 6845 CRTC controller has eighteen internal registers of which only
two are of interest to us in this chapter. These are registers 12 and 13 which
together, high-byte and low-byte respectively, are known as the Displayed
Screen Start Address Register. By re-specifying the displayed screen start
address, we can scroll in any direction (wrap around) as long as the register
contains a ‘legal’ screen memory location for the particular MODE used. The
software must ensure that this does not happen or some unpredictable results
will occur! In MODES 0, 1, 2, 3 the 6845 CRTC controller generates 80
characters a line where as in MODES 4, 5, 6 there are 40. These are not
characters as seen on the screen, however. In MODE 2, for instance, a (CRTC
character is only a quarter of a displayed character. The CRTC, then, sees a
MODE 2 screen as 80*32=&0A00 characters. It is important to remember
that the screen address, sent to the displayed screen start register, must be the
actual screen memory location divided by 8. This arises from the CRTC
dealing with characters consisting of 256/32=8 output scan lines in MODE 2.
From now on we will be concentrating exclusively on MODE 2 graphics
screens for the reasons outlined at the beginning of the chapter. There is an
added advantage in that each CRTC character sideways scroll represents only
two pixels’ displacement, producing a very smooth movement.

Sideways scrolling

To scroll the screen one CRTC characten to the left, the screen start address
register must be incremented. Decrementing the register on the other hand,
will scroll the screen one character to the right. There are two ways of
achieving this in assembly langunge. The first is to use the assembler
equivalent of the BASIC VDU 23 command; the other is to address directly
the memory-mapped area SHEILA (256 bytes starting from &FE00).
Incidentally, all the BBC Micro's internal hardware registers are accessible at
these locations.

First, the operating system subroutine method will be described. The
necessary VDU 23 commands to enable sideways scrolling are as follows, if
SCR is the screen address low-byte and SCR+1 is the high-byte:

VDU 23;12 ,SCR;0 ;0 ;0
VDU 23;13 ,SCR+1;0 ;0 ;0

Only the first of the two lines above is necessary if the screen is to be
sideways scrolled left by less than 256 characters since the actual screen start
address in MODE 2 is &3000. The equivalent address. as required by
displayed screen start address register, is &3000/8=&0600. Thus, SCR+1 will
be constant at &06 for 256 bytes or scrolls. The VDU 23 commands can be
conveniently coded in assembly language by our macro developed in Chapter
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7 along with a simple test graphics screen. Program 8.5 shows this method,
the object being to create a continuous sideways scroll to the left.

Program 8.5. Continuous sideways scrolling using operating system
subroutines.

   10  REM SIDEWAYS SCROLLING USING THE
   20  REM OPERATING SYSTEM SUBROUTINES
   30  GOTO240
   40   
   50  DEFPROCvdu(N)
   60  LOCAL D,D$,B,by te , i tem, lby te
   70  FOR i tem=1 TO N
   80  READ D$
   90  IF  RIGHT$(D$,1)="@" THEN B=2 ELSE 
B=1
  100  D=EVAL(D$)
  110  IF  ASC(D$)>64 THEN [OPT PASS:LDA D
:JSR OSWRCH: ] :GOTO150
  120  IF  D<0 THEN D=(ABS(D)  EOR &FFFF)+1
  130  by te=D MOD 256:PROCform
  140  IF  B=2 THEN by te=D DIV 256:PROCfor
m
  150  NEXT i tem
  160  ENDPROC
  170   
  180  DEFPROCform
  190  IF  by te<> lby te  THEN [OPT PASS:LDA 
#by te : ]
  200  [OPT PASS:JSR OSWRCH: ]
  210  lby te=by te
  220  ENDPROC
  230   
  240  OSWRCH=&FFEE:OSBYTE=&FFF4
  250  SCR=&70
  260  DIM START 1000
  270  FOR PASS=0 TO 3  STEP 3
  280  P%=START
  290  RESTORE
  300  PROCvdu(29)
  310  REM SET UP TEST GRAPHICS SCREEN
  320  DATA 22 ,2 ,18 ,0 ,132 ,16 ,18 ,0 ,3 ,25 ,4 ,
500@,500@,25,1 ,200@,0@,25,81 ,0@,-200@,25
,1 , -200@,0@,25,81 ,0@,200@
  330  
  340  [OPT PASS
  350  .BEGIN
  360  LDA #&00 \SET SCR (2  BYTES)  TO
  370  STA SCR \SCREEN START ADDRESS
  380  LDA #&06 \AS SEEN BY THE CRTC
  390  STA SCR+1
  400  .SCROLL



Chapter Eight Direct Screen Addressing and Hardware Scrolling 187

  410  LDA #&13 \WAIT FOR FIELD SYNC
  420  JSR OSBYTE
  430  ]
  440  PROCvdu(7)
  450  [OPT PASS
  460  LDA SCR
  470  BNE OVER
  480  ]PROCvdu(7)
  490  [OPTPASS
  500  .OVER
  510  INC SCR \ INCREMENT SCR
  520  BNE SKIP \ (2  BYTES)
  530  INC SCR+1
  540  .SKIP
  550  LDA SCR \CHECK IF  SCREEN END
  560  BNE SCROLL \ADDRESS AS SEEN BY
  570  LDA SCR+1 \CRTC IS  EXCEEDED
  580  CMP #&10 \ (MEM DIV 8)
  590  BNE SCROLL
  600  BEQ BEGIN \ IF  SO RESTART CYCLE
  610  RTS: ]
  620  NEXT PASS
  630  CALL START
  640   
  650  REM DATA TO SET UP 6845 CRTC REG'S
  660  DATA 23@,13,SCR,0 ,0@,0@,0
  670  DATA 23@,12,SCR+1,0 ,0@,0@,0

When executed the first thing to nolice is that, when an object scrolls off
the left-hand side of the screen, it will appear a character line higher at the
right-hand side. The exception is at the top left of the screen where it will
reappear at the bottom right. To achieve a true sideways scroll, all the
‘current’ bytes on the right-hand side of the screen will need to be moved
down a character line in memory (wrap around). We say ‘current’, because
the screen addresses corresponding to any fixe position on the screen will
change as each hardware scroll is executed. Another option is continuously to
generate a landscape strip a byte wide at the current memory locations
corresponding to the screen's extreme right-hand side, thus overprinting the
above results. All this, however, will be regarded as an exercise.
Experimenting with the programs can be a help here by placing markers at
various known addresses and watching their progressions on the screen when
scrolled. For example, the following could be inserted into Program 8.5:

LDA #3  \ red  marker  (one  by te  w ide)
STA &3000\a t  de fau l t  sc reen  addr .

An annoying flash occasionally occurs when register 12 is updated every
256 scrolls. This is due to the time lag in setting register 12 after register 13
or vice versa. Even waiting for the field synchronisation pulse has little effect
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on this. The problem can be overcome by directly addressing the 6845 CRTC.
The corresponding routine is shown in Program 8.6.

Program 8.6. Sideways scrolling by directly addressing SHEILA locations.

   10  REM PROGRAMMING THE 6845 CRTC
   20  REM SIDEWAYS SCROLLING BY DIRECTLY
   30  REM ADDRESSING SHEILA LOCATIONS
   40  GOTO250
   50   
   60  DEFPROCvdu(N)
   70  LOCAL D,D$,B,by te , i tem, lby te
   80  FOR i tem=1 TO N
   90  READ D$
  100  IF  RIGHT$(D$,1)="@" THEN B=2 ELSE 
B=1
  110  D=EVAL(D$)
  120  IF  ASC(D$)>64 THEN [OPT PASS:LDA D
:JSR OSWRCH: ] :GOTO160
  130  IF  D<0 THEN D=(ABS(D)  EOR &FFFF)+1
  140  by te=D MOD 256:PROCform
  150  IF  B=2 THEN by te=D DIV 256:PROCfor
m
  160  NEXT i tem
  170  ENDPROC
  180   
  190  DEFPROCform
  200  IF  by te<> lby te  THEN [OPT PASS:LDA 
#by te : ]
  210  [OPT PASS:JSR OSWRCH: ]
  220  lby te=by te
  230  ENDPROC
  240   
  250  OSWRCH=&FFEE:OSBYTE=&FFF4
  260  SCR=&70
  270  DIM START 1000
  280  FOR PASS=0 TO 3  STEP 3
  290  P%=START
  300  RESTORE
  310   
  320  REM SET UP TEST GRAPHICS SCREEN
  330  PROCvdu(29)
  340  DATA 22 ,2 ,18 ,0 ,132 ,16 ,18 ,0 ,3 ,25 ,4 ,
500@,500@,25,1 ,200@,0@,25,81 ,0@,-200@,25
,1 , -200@,0@,25,81 ,0@,200@
  350  
  360  [OPT PASS
  370  .BEGIN
  380  LDA #&00 \SET SCR (2  BYTES)  TO
  390  STA SCR \SCREEN START ADDRESS
  400  LDA #&06 \AS SEEN BY THE CRTC
  410  STA SCR+1
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  420  .SCROLL
  430  LDA #&13 \WAIT FOR FIELD SYNC
  440  JSR OSBYTE
  450  LDA #&0D \SEND (R13)  ADDRESS
  460  STA &FE00 \TO ADDRESS REGISTER
  470  LDA SCR
  480  STA &FE01 \SEND SCR TO (R13)
  490  BNE OVER
  500  LDA #&0C
  510  STA &FE00 \SEND (R12)  ADDRESS
  520  LDA SCR+1
  530  STA &FE01 \SEND SCR+1 TO (R12)
  540  .OVER
  550  INC SCR
  560  BNE SKIP \ INCREMENT SCR
  570  INC SCR+1 \ (2  BYTES)
  580  .SKIP
  590  LDA SCR \CHECK IF  SCREEN END
  600  BNE SCROLL \ADDRESS AS SEEN BY
  610  LDA SCR+1 \CRTC IS  EXCEEDED
  620  CMP #&10 \ (MEM DIV 8)
  630  BNE SCROLL
  640  BEQ BEGIN \ IF  SO RESTART CYCLE
  650  RTS: ]
  660  NEXT PASS
  670  CALL START

The 6845 CRTC registers can be accessed directly by storing the required
register address (or number) in the 6845 address register at SHEILA location
&00 (that is, &FE00). The selected register can then be read from or written
to at SHEILA address &01. This is fairly straightforward and details are
documented on the listing.

Vertical scrolling

Vertical scrolling involves no new principles other than adding 80 each time,
the number of 6845 CRTC characters in a line, to the current screen start
address. The listing is shown in Program 8.7 with the necessary details.
Notice that, in this case. the high-byte of the screen start address register is set
each time within the loop since the extra code needed to bypass it would be
counter-productive.

Program 8.7. Vertical scrolling of a MODE 2 graphics screen

   10  REM PROGRAMMING THE 6845 CRTC
   20  REM VERTICAL SCROLLING BY DIRECTLY
   30  REM ADDRESSING SHEILA LOCATIONS
   40  GOTO250
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   50   
   60  DEFPROCvdu(N)
   70  LOCAL D,D$,B,by te , i tem, lby te
   80  FOR i tem=1 TO N
   90  READ D$
  100  IF  RIGHT$(D$,1)="@" THEN B=2 ELSE 
B=1
  110  D=EVAL(D$)
  120  IF  ASC(D$)>64 THEN [OPT PASS:LDA D
:JSR OSWRCH: ] :GOTO160
  130  IF  D<0 THEN D=(ABS(D)  EOR &FFFF)+1
  140  by te=D MOD 256:PROCform
  150  IF  B=2 THEN by te=D DIV 256:PROCfor
m
  160  NEXT i tem
  170  ENDPROC
  180   
  190  DEFPROCform
  200  IF  by te<> lby te  THEN [OPT PASS:LDA 
#by te : ]
  210  [OPT PASS:JSR OSWRCH: ]
  220  lby te=by te
  230  ENDPROC
  240   
  250  OSWRCH=&FFEE:OSBYTE=&FFF4
  260  SCR=&70
  270  DIM START 1000
  280  FOR PASS=0 TO 3  STEP 3
  290  P%=START
  300  RESTORE
  310   
  320  REM SET UP TEST GRAPHICS SCREEN
  330  PROCvdu(29)
  340  DATA 22 ,2 ,18 ,0 ,132 ,16 ,18 ,0 ,3 ,25 ,4 ,
500@,500@,25,1 ,200@,0@,25,81 ,0@,-200@,25
,1 , -200@,0@,25,81 ,0@,200@
  350  
  360  [OPT PASS
  370  .BEGIN
  380  LDA #&00 \SET SCR (2  BYTES)  TO
  390  STA SCR \SCREEN START ADDRESS
  400  LDA #&06 \AS SEEN BY THE CRTC
  410  STA SCR+1
  420  .SCROLL
  430  LDA #&13 \WAIT FOR FIELD SYNC
  440  JSR OSBYTE
  450  LDA #&0D \SEND (R13)  ADDRESS
  460  STA &FE00 \TO ADDRESS REGISTER
  470  LDA SCR
  480  STA &FE01 \SEND SCR TO (R13)
  490  LDA #&0C
  500  STA &FE00 \SEND (R12)  ADDRESS
  510  LDA SCR+1
  520  STA &FE01 \SEND SCR+1 TO (R12)
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  530  CLC
  540  LDA SCR \ADD 80 CHARACTER
  550  ADC #&50 \POSITIONS AS SEEN BY
  560  STA SCR \CRTC(2  BYTES)
  570  BCC SKIP
  580  INC SCR+1
  590  .SKIP
  600  LDA SCR \CHECK IF  SCREEN END
  610  BNE SCROLL \ADDRESS AS SEEN BY
  620  LDA SCR+1 \CRTC IS  EXCEEDED
  630  CMP #&10 \ (MEM DIV 8)
  640  BNE SCROLL
  650  BEQ BEGIN \ IF  SO RESTART CYCLE
  660  RTS: ]
  670  NEXT PASS
  680  CALL START

Summary

1. Machine code graphics can be smoother and faster if direct screen
addressing is used.

2. Mode 2 is popular for coloured graphics because of the 16 variations.
3. In Mode 2, each screen memory location handles two pixels.
4. Movement of objects on the screen can be reduced to shifting bytes

around in memory. This allows a dynamic resolution of two pixels per
byte in Mode 2.

5. The bit pattern within the byte determines the pixel colour.
6. Each pixel within the byte occupies 4 bits (a nibble) so a single pixel

blob of colour is achieved by setting the other nibble to background
colour.

7. Mode 2 screen locations extend from &3000 (top left) to &7FFF (bottom
right).

8. Direct screen addressing is often fast enough to beat the field
synchronisation pulses so a ‘wait until pulse’ trap is often required

9. Moving multicolour objects (MOBs), can be programmed by userdefined
characters but overprinting with another colour is timeconsuming and
causes flickering. This problem does not arise with direct screen
addressing.

10. MOB colours can be achieved by look-up tabies.
11. Hardware scrolling can be achieved by direct action on the 6845 CRTC

controller. Registers 12 and 13 in the controller contain the start address
of the displayed screen. They are within the SHEILA address band.

12. Sideways scrolling to the left can be achieved by incrementing, and to
the right by decrementing, the start address register.

13. Vertical scrolling is achieved by adding 80 to, or subtracting 80 from, the
start address register. This is because there are 80 CRTC characters per
line in Mode 2.
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Self test

8.1  Adapt Program 8.5 to scroll the screen to the right.
8.2  Adapt Program 8.7 to scroll the screen downwards.
8.3  Adapt Program 8.4 to move three MOBs independently.
8.4  Design a MOB of your own which traverses the screen horizontally.



Chapter Nine
Interrupt Techniques and the
User Port

The anatomy of the user port

Superficially, the user port is a 20-pin socket situated at the rear of the
machine. It is rather neglected, only a minority of owners putting it to use.
there are several reasons for this lack of interest In the first place, its use
demands at least a smattering of electronic knowledge and perhaps some
dexterity with a soldering iron. For some reason (snobbery, perhaps?), many
reviewers and critics mention the soldering iron with a slight air of patronage.
This is a pity because once the craze for games begins to wear thin (hopefully
not too far distant in time), practical work, combining computer interests with
home-made electronic gadgetry can open up exciting new possibilities.
Another reason for the neglect may be a failure to appreciate the
sophistication built into the 6522 VIA. This powerful chip provides the
versatility and power of the port. The 20-pin socket is only the visible
interface. To put the port into perspective, it should be considered as a
component of the VIA, the full complement being as follows:

(a)  Sixteen memory-mapped registers.
(b)  Two 16-bit timers (also under software control).
(c)  A serial port
(d)  Two 8-bit parallel ports, referred to as the A and B sides, each with two
handshake control lines.

Apart from one of the 8-bit parallel ports (Side A, which is dedicated to
forming the Centronics printer interface), all the above facilities are freely
available to the user.

Both the user port and the RS423 are undedicated links to the outside
world but the user port is the more complex and, unlike the RS423, obeys no
established protocol. Although there are twenty pins in the socket, only ten
carry information. The rest are either unused or earth return and +5V lines.
The pin connections are shown in Fig. 9.1. In this chapter there will follow
examples of routines rather than programs. They should help you to
experiment with the user port so as to control external machinery, robotic
projects etc.
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Fig. 9.1. Pin connections on the user port

Never use gash wiring when you are experimenting. Resist the temptation to
make both connections to the pins with croc clips or twisted wire. Croc clips
are a boon in 'heavy' engineering hook-ups but getting them to stick on to the
delicate pins of computer plugs (without shorting other pins) requires
patience, dexterity and luck. Luck is not an acceptable commodity where the
user port is concerned. Damage to the port can feed back through the entire
VIA and consequently damage the health of the printer interface. The correct
thing to do, before even contemplating experimentation, is to purchase the
correct ribbon cable and socket which mates with the user port plug. The
cable and plug can be bought a little more cheaply as separate items. The plug
is of the type known as an 'Insulation Displacement Connector' (IDC for
short). All you need is a vice to squeeze the plug directly onto the ribbon
cable, the insulation is automatically pierced and good contact made during
the vice pressure. No solder and no wire strippers are needed! However, if
you are at all squeamish, or don't have a vice (mechanical that is), you can
buy the ribbon cable with the plug already attached.

Before the connection is made to the plug on the user port you should do
something to the other end, the free end of the cable. Don't just leave it
flopping about with bare wires sticking out. Connect them, even if only
temporarily, to some form of positive terminal. This can be a multi pin
connector strip soldered directly to the cable wires. Alternatively, if you
intend to embark on long experimental orgies, it is wise to invest in one of
those boards containing rows of tiny sockets into which you can push
components and wires directly. The best solution of all (although requiring
more outlay) is to invest in one of the more ambitious contraptions on the
market, providing on-board power supplies. For what it's worth, we have used
a Proto-board (trademark) for some years. It provides just about everything
needed for safe experimentation. ICs, even the 40-pin species, resistors,
capacitors, LEDs and wire connecting links can all be pushed directly into
any of the hundreds of tiny holes. The net result is a gadget which allows
quite complex circuitry to be assembled quickly without suffering second
degree burns on the finger tips. Power supply bus bars run round the edges,
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supplied from a 1.0 amp/5V power supply and a pair of +/-15 volt lines, ideal
for supplying op-amp chips needed in hybrid systems.

Although a +5V supply is provided to the port, it should be used with
great care. Remember, the power comes from the long-suffering switched
mode power supply which already is reasonably well-occupied, particularly if
it has to supply a single drive disk. Another useful purchase which quickly
becomes invaluable is one of the 'logic probes'. The power supply for the
probes is taken (via croc clips this time) from the 5 volt computer supply or,
preferably, from the Proto-board. The probe can be placed on any point of the
circuit and will indicate whether it is in the HIGH (logic 1) or LOW (logic 0).
The nature of the indication will vary according to the make but will normally
be the colour of a LED lamp.

Notice from Fig. 9.1 that each signal line has its own independent earth
line. All these earths are already electrically connected together inside the
computer and will, in most cases, be similarly connected at the user device
end of the ribbon cable. A signal line, and its own separate earth line running
next to it behave together as a 'transmission line' with an impedance of the
order of 600 ohms. This technique helps to guard against 'cross talk' between
wires and stray interference induced electromagnetically. The transmission
line concept, however, borders on the tongue-in-cheek because no attempt is
made to terminate the lines with a matched load a necessary practice
according to established theory. However, the ribbon cable connection is
quite satisfactory, providing it is not too long. A couple of metres is probably
the safe limit.

The 6522 VIA registers

Before discussing these, the overall disposition of the user port fines should
be understood. Figure 9.2 is the effective diagram.

The eight data lines are labelled PB0 to FB7. Each one can be separately
programmed as either an input or an output by setting appropriate bits in a
direction register (see later). When programmed as outputs, they deliver the
usual TTL logic levels but are also capable of delivering 1mA at 1.5V. It is
therefore possible to drive silicon transistor pairs in the Darlington
configuration (ie. two transistors connected in series to achieve gain
multiplication). Since a Darlington can have exceptionally high current gains,
it is possible to switch loads approaching, say, 0.5 amp directly. PB7 has a
unique feature. It can be programmed to receive the output of T1, one of the
interval timers on the chip. PB6 is also unique when programmed as an input.
It is possible for the other timer (T2) to count the number of pulses arriving at
the input of PB6.

The handshake (control) lines are CB1 and CR2. These can act as interrupt
inputs or as handshake outputs.
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Figure 9.2. The electrical appearance of the user port.

The VIA internal registers

The VIA responsible for the user port occupies 16 consecutive addresses in
the SHEILA band, starting at &FE60. The following table shows the
addresses in the form of an offset to &FE60. Thus, if the offset number for a
particular register is given as 3, then its absolute address is &FE63. It is better
to think of the address of any individual register as consisting of the base
address (&FE60) plus the offset number of the register. For example, the
address base+5 is tidier than writing this as &FE65. Table 9.1 shows the
location of the registers in the VIA.

Table 9.1 The VIA addresses.

Register offset
no.

Designation Function

0 ORB or IRB Output or input register B
1 ORA or IRA Output or input register A
2 DDRB Data direction register B
3 DDRA Data direction register A
4 TIC-L T1 low-byte latch or T1 low-byte

counter
5 T1C-H T1 high-byte counter
6 T1L-L T1 low-byte latch
7 T1L-H T1 high-byte latch
8 T2C-L T2 low-byte latch or T2 low-byte

counter
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9 T2C-H T2 high byte counter
10 SR Shift register
11 ACR Auxiliary Control Register
12 PCR Peripheral Control Register
13 IFR Interrupt Flag Register
14 IER Interrupt Enable Register
15 ORA/IRA Identical to offset 1 but no handshake

Registers 1 and 3 will normally be left unused because, as stated
previously, they are dedicated to the parallel printer interface. This still leaves
fourteen registers left to grapple with. To understand them all is a formidable
task. It would be demoralising to plod methodically through them in register
order. Far better to attack the most commonly used ones first, the DDRB and
the ORB.

DDRB (Data Direction Register B)
This is addressed at&FE62 (Base+2). The binary pattern initialised in DDR
defines which of the lines PB0-PB7 will behave as outputs and which as
inputs. The rule for direction in this register is as follows;

A '1' defines the corresponding pin as an output and a '0' defines an
input.

Here are some examples:

LDA #&FF \a l l  da ta  l ines  ou tpu ts
STA DDRB

LDA #&0F \PB0-PB3 ou tpu ts
STA DDRB \PB4-PB7 inpu ts

ORB or IRB (Output Register B or Input Register B)
DDRB defines the directivity of the data lines only; it does not define their
actual logic states. For example, just because we have a 1 in bit 7 of the
DDRB, it does not mean FB7 will be in the '1' state. Only the contents of
ORB or IRB control the logic states on the data lines. Thus, when a data line
is programmed as an output, the corresponding bit set into DDRB decides the
logic on the data line. On the other hand, if a line is programmed as an input,
the logic state received from a device on that line is entered into the Input
Register (IRB). If a line is programmed as an input, then any attempt to write
into that line via ORB is ignored.
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Example 1:

LDR #&FF \A l l  da ta  l ines  ou tpu ts
STA DDRB
LDA #&03 \Se t  PB0 and PB1 to  1
STA ORB \ res t  a t  0

Example 2:

LDR #0 \A l l  da ta  l ines  inpu ts
STA DDRB
LDA IRB \Read inpu t  reg .  in to  A

Example 3:

LDA #&F0 \PB4-PB7 ou tpu ts ,
STR DDRB \ res t  inpu ts
LDA #&FF \A t tempt  to  wr i te  1
8TA ORB \ in  a l l  l i nes

Example 3 illustrates the point made earlier that any attempt to write into
lines programmed as inputs will fail. Although we have written &FF in the
instruction, only the higher order nibble will directly affect ORB. The bits in
the output register corresponding to PB0-PB3 will depend on the peripheral
input logic. It is assumed in these examples that DDRB and ORB have been
assigned to &FE62 and &FE60 respectively.

There are two variations of input behaviour depending on whether
'latching' is enabled or disabled. If latching is disabled, the level present at an
input (the relevant PB pin) is read into IRB. If the latch is enabled, the level
read into IRB is that which existed after the 'last active transition' arriving on
CBI (when a pulse of the correct phasing and shape hit CBI input). In other
words, if the conditions existing now are required, then latch must be in the
disabled condition. We only enable latching if we require CBI to act as a
data-valid signal and we wish to ignore levels arriving after the latching. The
latch enabling is carried out on bit 1 of the Auxiliary Control Register (ACR).
If this bit is 1, the input latch on IRB is enabled. If 0, it is disabled. The ACR
(addressed at base+&B) controls many other functions, so it is essential that
programming bit 1 is carried out in such a way that the remaining bits are left
undisturbed. This is where the logic instructions ORA and AND become
useful (refer back to Chapter 3).

To enable the input latch, study the following:

LDA ACR \Obta in  the  ACR
ORA #&02 \OR i t  w i th  0000 0010
STA ACR \B i t - l  i n  ACR is  now I
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To disable the latch:

LDA ACR \Obta in  ACR
AND #&FD \AND wi th  111  1101
STA ACR \B i t -1  in  ACR now 0 .

The two control lines

The control lines CBI and CB2 can be used for a wide range of control
functions apart from initiating interrupt action.

We are concerned at this point only with the VIA registers which are
involved either entirely or partly with these control fines. They will also be
used for defining the kind of signal we wish to initiate the interrupt, These
and other registers in the VIA must be understood first. Any gadget we
construct (or buy) which is going to initiate interrupts will emit an electrical
pulse of fixed characteristics. The pulse (or electrical level) will, of course,
have to conform to TTL protocol but, even so, there are many possible
variants. For example, the initiating signal may be simply the drop in voltage
from HIGH to LOW (a so-called negative-going edge) or it may be from
LOW to HIGH (a positive-going edge). It may even be a narrow downward-
going or an upward-going spike. The VIA is brilliantly designed to cater for
many possible input conditions. Registers can be initialised to accept, as an
active interrupt, one of the above signal patterns but ignore the others. You
may also remember that if an interrupt request is made, it will be refused if
the I bit in the Processor Status Register is 1.

PCR (Peripheral Control Reigster)

The two control, or 'handshake', lines CB1 and CB2 have other functions
besides interrupt. CB1 is always an input but CB2 can be an input or an
output. Although the PCR is an 8-bit register, we shall only treat the lef-thand
four (bits 4 to 7) because the other half is identical and dedicated to the
parallel printer interface. It is also a fraction easier to understand if the bit
pattern is first restricted to the case when CB2 is an input.

When mention is made of the 'active edge', it refers to the setting of the
appropriate flag in another register (IFR). That is to say, the only indication
that an acceptable pulse has appeared on CB1 or CR2 input is the setting of
the appropriate flag.

The terms 'normal' and 'independent', apply only to CB2 and, even then,
only when it is an input. These terms concern the conditions under which the
CB2 flag is reset after it has been set. In the normal mode, the flag remains set
until a READ or WRITE instruction on the data registers, ORB or IRB is
activated (for example, an LDA or STA). In the independent mode, once a
flag is set, READ or WRITE does not reset it. The normal mode is designed
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for handshaking operations between computer and peripheral. The
independent mode is useful for actions not directly involving computer
interraction.

7 6 5 4 3 2 1 0

When CB2 is an input (bit 7 = 0)

Determines CB2 direction.
0 = input, 1 = output

Active edge of CB2 when it
is an input.
0 = active low, 1 = active high.

When CB2 is an input, decides
if it is normal or independent.
0 = normal, 1 = independent.

Active edge of CB1.
0 = active low, 1 = active high.

Behaviour of CB2 when it is an output
CR2 becomes an output if bit 7 of the PCR is set to 1. Clearly, the
significance of bits 6 and 5 is then completely different as can be seen from
the following:

(a)  Let bit 5=0 and bit 6=0. This configures the so-called handshake mode.
CB2 goes LOW by a write operation on ORB and goes HIGH again on an
active transition of the CB1 input signal.
(b)  Let bit 5=1 and bit 6=0. This is the pulse output mode. A negative-going
pulse (goes from HIGH down to LOW then back again) is emitted following
a write operation on ORB. Ideal for gadgetry which is activated by a
negative-going pulse. Just do a dummy write to ORB with an ST A ORB. If
the pulse is in the wrong direction for the gadget, it is a simple matter to
interpose an inverter.
(c)  Let bit 6=1 This is the so-called manual mode because both levels output
on CB2 must be directly programmed. The level on CB2 depends on bit 5. If
bit 5 is 0, CB2 remains LOW. If bit 5 is 1, then CB2 is HIGH. In other words,
providing bit 6 remains at l,CB2 mirrors the state of bit 5.

Before continuing with the next register, some consolidation examples
may help to decipher all this terrible complexity. If you find the above just a
bit too much, don't despair, yet! Just study the following and console yourself
with the fact that the control of sophisticated and versatile equipment (and the
VIA is certainly within this category) can never be easy.



Chapter Nine Interrupt Techniques and the User Port 201

(1) To configure a simple 8-bit input port, with CB1 and CB2 not used:

LDA #0
STA DDRB  \make a l l  8  l i nes  inpu ts

This would be useful for reading a set of push-buttons. Once configured as
above, IRB could be read into the accumulator for processing

(2) A simple 8-bit output port, with CB1 and CB2 not used:

LDA #&FF
STA DDRB  \make a l l  8  l i nes  ou tpu ts

This is used for switching LEDs, etc.

(3) An output port with CB1 to be active high input and CB2 to be active high
input in independent mode:

LDA #&FF  \Make a l l  l i nes  ou tpu ts
STA DDRB
LDA #&70  \se t  0111 in  le f t  ha l f
STA PCR

Note that the right-hand four bits in the PCR (the A side of the VIA dedicated
to the printer) have been tentatively reset to 0. This is not always a safe
procedure because the printer is controlled by the operating system and
should not be altered. The safe way, in the general case, would be to use
masking techniques. For example:

LDA #&FF
STA DDRB
LDA PCR  \Br ing  ou t  PCR
AND #&0F \C lear  le f t ,  keep r igh t
ORA #&70 \0111 in  le f t ; leave  r igh t
STA PCR  \ rep lace  mod i f ied  PCR

(4) PB0-PB4 to be inputs, PB5-PB7 to be outputs. CB1 to be active low
input; CB2 to be a negative-going pulse on a WRITE to the ORB:

LDA #&E0 \1110 0000 in  DDRB
STA DDRB
LDA #&A0 \1010 in  le f t  ha l f
STA PCR \o f  PCR

The previous remarks regarding the printer interface still apply but the extra
coding, if considered important, would be the same as before.

(5) All data lines to be inputs. CB I active high input CB 2 an output in the
manual mode commencing with CB2 LOW.

LDA #0
STA DDRB
LDA #&D0 \1101 0000 in  PCR
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STA PCR

The general concepts of interrupt techniques have been discussed in Chapter
1. You will remember that it is possible for a signal, which could arrive from
an external device, to set in motion a chain of events. Such events (if allowed
to progress) interrupt the present program then bring into play an interrupt
service routine. On completion of this routine, the original program is
rejoined at the point from which it was interrupted. If all goes well, the
interruption and the rejoining goes smoothly. However, there are many
pitfalls to overcome and much to be learned before 'things do go well'.

As might be expected, the computer itself contributes little towards the
task. Apart from recognising the existence of an interrupt, most of the
preparation is the programmer's responsibility. The concept of an interrupt is
based on unpredictability. The computer never knows when it is going to be
interrupted so precautions must be taken to ensure that the interrupt service
routine contains provisions for preserving the contents of all registers (on the
stack is a good a place as any) before corrupting them with the new routine
data. Before the return from interrupt (RTI) the original register data must be
returned. Apart from the loss in time, the original program should not even be
aware of the interruption. With regard to the question of time, there is a well-
established rule in the BBC machine. It is unwise for interrupt routines to last
longer than 2 milliseconds.

The routine is deemed to start at the instant the request is granted and lasts
until the recognition of RTI. The operating system periodically requests
interrupt to service the screen, keyboard and other routine background tasks,
hence the above warning. However, 2 milliseconds is a long time. The clock
is 2 M Hz so it is still possible to squeeze in about 500 machine code
instructions, even if they each take an average of 4 clock cycles.

The IFR (Interrupt Flag Register)

When a signal arrives on CBI or CB2 (if it is an input) it sets an appropriate
flag to I in the ]ER. The significance of each bit in the IFR is as follows:
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Cb2 flag.

7 6 5 4 3 2 1 0

General interrupt status bit.
1 if any interrupt active and enabled.
0 when interrupt condition cleared.

Timer 1 flag.
1 when time out.
0 after reading T1 low-byte counter or
writing T1 high-byte latch.

Timer 2 flag.
Behaves similar t T1 above.

CB1 flag.
Cleared by a read or write of ORB.

Cleared by a read or write of ORB.

Shift register flag.
1 at end of 8 shifts.
Cleared by read or write of SR.

CA1 flag.

CA2 flag.
(behaves as CB2              ).pro rata

(behaves as CB1              ).pro rata

It is possible, and sometimes desirable, to clear directly one or more of the
flags in the IFR. This is done (rather strangely) by writing 'l's into the flag
positions to be cleared. Direct clearing in this manner will normally be
required when the CBI or CB2 inputs are being used for purposes other than
6502 involvement in particular, when using the manual mode (refer back to
PCR). Here are some examples in direct clearing:

(1) Clear CB2 flag

LDA #&0B \0000 1000
STR IFR
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(2) Clear CBI and T2 flags

LDA #&30 \0011 0000
STA IFR

(3) Clear all flags

LDA #&FF \  1111 1111
STR IFR

Bit 7 is the general interrupt status and is the only flag which cannot be reset
(or set) directly. Therefore, the 1 in bit 7 position above is really of no
consequence.

The IER (Interrupt Enable Register)

The bits in this register correspond exactly as described for the previous
register (IFR). It represents a last ditch stand between the various interrupt
request sources and the 6502 IRQ input pin. For example, there may have
been an active signal arriving on, say, CB I. This will have set the CB I flag in
the IFR. However, there may already be another flag or flags set. The 6502
can only accept one interrupt at a time so there is clearly a need for higher
status register which can be programmed to select which flag is to be
recognised (enabled). This is the role of the IER. It operates as follows:

Bits 0-6:
1 = enable
0 = enable

Bit 7:
Like bit 7 in the IFR, this bit is special.
When bit 7 = 0: Each 1 in a bit position is cleared (disabled).
When bit 7 = 1: Each 1 in a bit position enables that bit.
(Zeros in bit positions are left unchanged)

We found this quite terrible to understand. Here are some examples which we
hope will help you:

(1) Enable CB1 interrupt and disable all others:

LDA #&6F \0110 1111
STA IER \B i t -7=0  so  '1 ' s  d isab led
LDA #&90 \1001 0000
STA IER \B i t -7=1  so  b i t -4  enab led

Note that the second pattern is the logical complement of the first. This is not
a coincidence.

(2) Enable Tirner 1, disable the rest and then clear the T1 flag bit in the IFR.
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LDA #&3F \D isab le  a l l  o thers
STA IER
LDA #&CO \1100 0000 to  enab le  T1
STA IER
STA IFR \Reset  T1  f lag  in  IFR

Note the logical complement again.

Organising a system in which only one device is expected to request
interrupts is not too difficult. We can see from the above that the trouble starts
when there are many devices, all requesting interrupt at the same time.
Whatever machinations we employ down at the VIA end, they will always be
subservient to the I bit in the 6502. If this is at I, nothing can barge into the
existing program except, of course, via the NMI input which should be treated
as sacrosanct anyway. It is worth repeating the 6502 instructions directly
concerned with interrupt control:

SEI will set the I bit, preventing interrupts.
CLI will clear the I bit.
BRK will set the B bit, save the Program Counter and the Status Register on
the stack, set the I bit and load the contents of addresses &FFEE and &FFFF
into the Program Counter.
RTI restores the Status Register and the Program Counter from the stack.
Unlike RTS, R does not add 1 to the return address.

The timers and counters

It is always possible to generate delays (time intervals) by loading one or
more of the 6502 instruction registers with the desired delay number and
counting down to zero. This is not always satisfactory because it ties up the
computer. To provide for independent delays and various other pulse-
counting operations, the VIA is equipped with a variety of timers. counters
and latches. They are useful for generating interrupts at regular intervals,
triggering external devices or simulating a real-time environment. The two
timers, T] and T2, are essentially 16-bit counters. Each counter occupies two
consecutive addresses (low and high byte) but T1, the more complex of the
two, has an associated 16-bit latch, consequently occupying a further two
addresses. Before treating the timers in detail, it is useful to begin with an
overview of the possibilities on offer.

(1)  They may be read or written into as six memory locations, four for T1
and two for T2. (See the VIA addresses given earlier in this chapter.)
(2)  Their respective operation modes are governed by bits 5,6 and 7 of the
Auxdrary Control Register (this is treated later).
(3)  Their status, at any time during the counting phase, is obtainable by
examining bits 5 and 6 in the {ER. By 'status' we mean whether or not the
programmed interval has ended (time out).
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(4)  To generate a single time interval, a timer is loaded with the number of
clock pulses required (to generate that interval).
(5)  Pulses arriving on FB6 can be counted until they compare with a
previously loaded number (T2 only). The normal use of PB6 as one of the
eight data lines is, of course, suspended.
(6)  T1 can be used to provide continuous time intervals- The time interval
between pulses will depend on a previously loaded number.
(7)  A single, or continuous series of pulses can be produced on FB7; the
pulse width will be dependent on a previously loaded number. In this mode,
FB7 will not be available as a normal data line.

7 6 5 4 3 2 1 0

The ACR (Auxiliary Control Register)

T1 control
0 = one-shot mode.
1 = free-running mode.

T1 control
0 = Disable PB7 output.
1 = Enable PB7 output.

T2 control
0 = decrement by 6502 system clock.
1 = decrement by input pulses on PB6

Used for controlling Shift-register
(treated separately)

Port B input latch
0 = disable latch, 1 = enable latch.

Port A input latch
0 = disa0 = disable latch, 1 = enable latch.

Timer T2 details
It is clear from the above overview that T2 is more simple than T1. It can
only generate simple time intervals or count pulses arriving on PB6.

The low-byte address of T2 is used to write or read the low-order byte of
the delay number. The T2 interrupt flag is automatically cleared on a read
Interrupt Techniques and the User Port 207 action. The high-byte address is
used to write or read the high-byte of the number. Writing to this address
completes the timer loading, clears the T2 interrupt flag and starts the timing
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operation. On completion of the timing interval, the T2 interrupt flag is set
(bit 5 of IFR). Here are some examples:

(1) To program a delay time, equivalent to 2048 clock pulses

LDA #0  \Ensure  b i t -5=0  fo r  sys tem
STA ACR \c lock  mode
STA T2Lowbyte  \C lear  low-by te
LDA #&08
STA T2Highby te  \Th is  s ta r ts  count
LDA #&20 \0010 0000 mask  fo r  b i t -5
.BACK BIT  IFR \Per fo rms AND mask
BEQ BACK \B i t -5  no t  ye t  se t
LDA T2Lowbyte  \Dummy read c lears  f

(2) To cause delay until 100 pulses have been counted from an external
source on PB6:

LDA #0
STA DDRB \Make da ta  l ines  inpu ts
LDA #&20 \0010 0000
STA ACR \Make b i t -5=0 ,pu lse  count
LDA #&64 \Prepare  fo r  100  pu lses
STA T2Lowbyte
LDA #0
STA T2Highby te  \  Th is  s ta r ts  count
LDA #&20 \0010 0000 mask  fo r  b i t -5
.BACK BIT  IFR \Per fo rms AND mask
BEQ BACK \  B i t -5  no t  ye t  se t
LDA T2Lowbyte  \Dummy read c lears  f

Since these two examples have used the BIT test you may find it necessary to
refer back to chapter 3.

Timer T1 details
This timer has a 16-bit latch as well as the normal 16-bit counter. It is also
possible to generate an output on PB7. There are four different operating
modes, depending on bits 6 and 7 in the ACR. The choice is single-shot or
free-running mode (bit 6) and enable or disable PB7 output (bit 7). Bit 7=0
will disable PB7 output. Bit 7=1 will enable FB7 output. Bit 6=0 is one-shot
mode. Bit 6=1 is free-running mode.

The addressing details and the start and finish of timing are virtually the
same as described under T2 apart from the different addresses and bit 6,
instead of bit 5, for the interrupt flag in the IFR. The free-running mode is
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made possible by the provision of a separate 16-bit latch in the usual low-byte
(T1L), high-byte (T1H) form. These occupy two separate addresses. It is
possible, therefore, to read or write into the latches without affecting the
associated timer count. In the free-running mode, the number in the latches is
automatically re-entered into the timer again and the count restarted. This
makes it possible to generate a wave form of any mark to space ratio on FB7.
This is because the logic level (HIGH or LOW) on FB7 remains fixed within
a timing interval but inverts to the opposite state during the next interval and
so on. Some examples of T1 operations are now given.

(1) To produce a wave form of unity mark to space ratio from PB7 which
carries on indefinitely. The pulse width is to be equivalent to 1024 clock
cycles.

LDA #&FF \Make da ta  l ines  ou tpu ts
STA DDRB
LDA #&C0 \1100 0000(b i t6 ,7  se t  to  1 )

STA ACR \Free- runn ing  mode in  T1
LDA #0
STA T1L \C lear  T1  low by te  la tch
LDA #&04 \&04=1024 dec  in  h igh  by te

STA T1H \S ta r ts  waveform ac t ion

Note carefully that no loop is necessary in the above coding to produce
repetitive action because of the automatic re-entering of the latch into the
timers. The above coding merely triggers off the action and the computer is
then free to carry on with other work. This can be a boon when designing
complex control devices fed from the user port. It is useful to remember that
the flag in the {ER is still a valid signal if the completion of each timing
interval is significant to the rest of the program. It could, of course, be made
to initiate an interrupt service routine.

(2) To produce an output on PB7 after 64535 clock pulses.

LDA #0  \Se t  T1  in  one-sho t  mode
STA ACR
LDA #&FF
STA T1L \&FF in  T1  low by te  la tch
STA T1H \Th is  s ta r ts  t im ing
LDA #&40 \0100 0000 mask  fo r  b i t -6
.BACK BIT  IFR
BEQ BACK \F lag  no t  ye t  se t
LDA T1L \Dummy read to  c lear  f
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The SR (Shift Register)

This will not be one of the commonly used registers. It is more suitable for
serial data transmission, whereas the user port is oriented towards parallel.
However, in the interests of continuity, the following information is given on
the facilities available. As previously stated, bits 2,3 and 4 in the ACR
determine the behaviour of the SR so it is sufficient to limit the discussion to
the eight permutations of the three bits.

ACR bits Effect on Shift Register

000 Disable SR
001 Shift in at Counter 2 rate
010 Shift in at system clock rate
011 Shift in at external clock rate
100 Free running output at Counter 2 rate
101 Shift out at Counter 2 rate
110 Shift out at system clock rate
111 Shift out at external clock rate

Summary of the user port and its functions

Any chapter attempting to explain a device as complex as the user port is an
ordeal for the writer and an even worse ordeal for anyone trying to make
sense of it afterwards! A brief summary is therefore justified.

1. The 16 registers within the 6522 VIA chip are addressed within the band
&FE60 to &FEFF.

2. The chip handles the parallel printer interface on the 'A side' and the user
port on the 'B side'.

3. Any of the eight data fines, PB0 to PB7, can be inputs or outputs
depending on the bit pattern set into the DDRB. FB6 and FB7 have
qualifies unique to the rest

4. Output states on the lines depend on writing to ORB. Input states (which
can be either direct or latched, depending on bit I of the AC R) can be
read from IRB. ORB and IRB share the same address. Trying to write to
an input n, a sterile exercise.

5. Lines CB1 (always an input) and CB2 are for control purposes. They can
be used for handshaking data transfers to or from the eight data fines or
for any other purpose thought desirable. Either of them can be used to set
'interrupt flags' in the {ER. The setting of a flag, however, need not
actually initiate an interrupt.

6. The CB2 direction depends on bit 7 of the PCR.
7. CB1 and CB2 can be programmed (by the PCR) to accept either a falling

or rising edge of a pulse. CR2 can also have its flag in {ER reset
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'normally' (by a read of IRE or a write to ORB) or 'independently'.
8. Two flags in the IFR act as event signals for CBI and CB2. They are

reset automatically on a read of IRB or a write to ORB, They can also be
directly cleared by writing '1's into the flag bits (yes '1'!). Bit 7 of the IFR
is immune to attempts directly to set or reset It is a general signal to
indicate if any flags at all are at 1.

9. The timers T1 and T2 are associated with low- and high-byte counters.
Numbers placed in the counters determine the time intervals. The count
starts and the previous flag (in the IFR) cleared when the highbyte is
loaded. The flag is set after the count number loaded has decreased to
zero.

10. There are many possible modes of timer operation, determined by bits
5,6 and 7 in the ACR.

11. T2 is the simplest of the two. It can generate a delay of N clock pulses,
terminated by a flag, or count input pulses arriving on PB6 input.

12. Tl can be used to provide various continuous waveforms on PB7 output,
independent of continuing computer support. It can also provide simple
delays.

13. A programmable Shift Register is available. mainly for organising serial
data activities.

This completes the treatment of the user port. Although it is under some
control from the central processor (6502), it is clearly capable of carrying out
some operations almost under its own volition. This is why the treatment has,
so far, made little reference to the operating system. The coding examples
given have been in isolation but it is hoped they will at least point the way. It
is worth emphasising again that the flags are often referred to (rather
misleadingly) as 'interrupt flags'. They can cause interrupt (if you let them)
only by enabling the appropriate bit in the I ER. Many interesting projects
designed for attachment to the user port can be handled quite successfully
without involving interrupt action. Nevertheless, this is no excuse for not
attempting simple interrupt routines. The essential thing is to keep them
simple. in fact very simple, during the learning period. It is better to get used
to handling internally generated interrupts before progressing to their
initiation from the user port.

Internally generated interrupts

The BBC operating system is unique in the way it exposes (almost
indecently) its hidden workings to the ordinary user. Not only does it expose
them, it almost demands they are made use of. One example of this is the fist
of FX14 calls at the top of page 426 of the User Guide, which is given more
detailed treatment on page 465. FX calls become OSBYTE calls when in
machine code. Thus, if we wish to take advantage of these calls, we ensure
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that the accumulator contains 14 before calling OSBYTE at &FFF4. There
are seven dynamic conditions, any of which can be chosen to initiate an
interrupt, as set out in Table 9.2

Table 9.2 OSBYTE Event Interrupt Table.
Note: Place 14 in A and Event Number in X before calling &FFEE

Event number
(number in X)

Enable event causing interrupt

0 Output buffer empty
1 Input buffer full
2 A/D conversion complete
3 Character entering input buffer
4 Start of vertical sync pulse
5 Interval timer crossing zero
6 Escape key pressed

A table, similar to the above, applies to disabling interrupts, except that A
must contain 13 instead of 14 before calling OSBYTE.

The interrupts service routine, initiated by any of the above events,
depends on the user and guidelines will be given later. However, the first
problem is how to prepare the operating system to accept the routine and,
what is more important, how to instruct the operating system to jump to it and
return. The steps to ensure smooth linkage can be carried out in the following
order:

(1)  Load A and X then JSR OSBYTE (&FFEE), as selected from the Event
Table above.
(2)  Load the low- and high-byte starting address of your service routine in
the indirection vector locations at &0220 and &0221 respectively. These
addresses can be confirmed from page 465 of the User Guide.

Program 9.1 is a skeleton program to illustrate the above steps. To keep
everything simple, the service routine is a simple jump to OSWRCH which
prints the letter 'Z' whenever the ESCAPE key is pressed.

Lines 100 to 180 prepare everything for a smooth transition to the service
routine. Lines 190 to 230 give the example service routine. The event enabled
is code 6 in the Event Fable, so fines 110 and 120 load 6 in X and 14 in A,
prior to calling OSBYTE. This sets in motion an interrupt to 'SERVICE'
whenever the ESCAPE key is pressed. Lines 140 to 170 are responsible for
placing the starting address of 'SERVICE' in the page two vectors &0220/1
which the operating system reserves for user-supplied interrupt routines.
Since the program uses dynamic storage space allocated by the DIM
statement at the top, it is not possible to know in advance the absolute
addresses of 'SERVICE'. This is why lines 140 and 160 take advantage of the
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MOD and DIV instructions. These sort out the addresses in the form of low-
and high-byte.

Program 9.1. Simple interrupt on event code 6.

   10  REM SIMPLE EVENT INTERRUPT
   20  DIM ITEST 100
   30  OSBYTE=&FFF4:OSWRCH=&FFEE
   40  REM - - - - - - - - - - - - - - - - - - - - -
   50  FOR PASS=0 TO 3  STEP 3
   60  P%=ITEST
   70  REM - - - - - - - - - - - - - - - - - - - - - -
   80  [
   90  OPT PASS
  100  .PREPARE
  110  LDX #6  \Enab le  ESCAPE event
  120  LDA #14
  130  JSR OSBYTE
  140  LDA #Serv ice  MOD 256
  150  STA &220 \Low by te  in te r rup t  vec to r
  160  LDA #Serv ice  DIV 256
  170  STA &221 \H igh  by te  in te r rup t  vec to r
  180  RTS
  190  .Serv ice
  200  PHA:TXA:PHA:TYA:PHA:PHP
  210  LDA #90
  220  JSR OSWRCH
  230  PLP:PLA:TAY:PLA:TAX:PLA
  240  RTS
  250  ]
  260  REM - - - - - - - - - - - - - - - - - - - - -
  270  NEXT

'Service' starts, as all interrupt routines should start, with saving all the
registers on the stack. This is done by line 200 and it is well to note carefully
the order of stacking. The example routine is a simple call to OSWRCH to
write the character 'Z'. Line 230 restores, in reverse order, the registers to
their previous values.

RUN the program first and examine the assembly out, particularly the
addresses for the start of 'SERVICE' which was generated by the DIM
statement.

Then enter CALL PREPARE. The interrupt routine is now activated. This
can be verified by pressing ESCAPE several times and noting the 'Z'. This
routine is permanent (until BREAK) and will appear to remain as part of the
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operating system. For example, type NEW to get rid of the BASIC program
and type in a few lines of another program, say, a simple FOR/NEXT loop.
Whenever ESCAPE key is pressed, the letter 'Z' will still appear.

To counter possible 'so what?' criticism. we must admit that Program 9.1
is not expected to be of the slightest use, apart from pointing the way to event
interrupt handling. To have included a complex program as a service routine
would haw clouded the essential issues. Any coding you choose can be
substituted in the space occupied by fines 210 and 220 (you can always
RENUMBER 10, 100) to get more fine space.) Also, you can change the
event code 6 in line 110 to experiment with other events. Try it with Event 4
in A so that 'SERVICE' interrupts whenever a vertical sync pulse appears
(which is very often!). The screen fills up with Zs until you BREAK.

Peripheral initiated interrupts
Once the general form of Program 9. I is understood, it is comparatively
simple to transfer the idea from Event interrupts to peripheral interrupts. The
peripheral is, of course, the user port. You will remember that an active
transition at the input of either CB! or CB2 (when it is an input) can set a flag
in the IFR. If the corresponding bit in the IER is set to I, the VIA sends the
signal up the IRQ line and, providing the I bit in the process status register is
0, a full-blooded interrupt situation is established. The only difference in
general principle in handling this kind of interrupt is the interrupt vector. It is
no longer &0220/1. Page 466 of the User Guide names the vector as IRQ2V
which is situated at &0206.

Summary

1. The user port is the 'B' half of the VIA. This is an interface to the outside
world, providing a set of 8 data lines (PBO to PB7) and 2 control fines
(CB1 and CB2).

2. The port also supplies a five volt positive supply rail and an earth rail for
each of the data and control lines.

3. There are 16 programmable registers in the VIA, occupying addresses &
FE60 to &FE6F in the SHEILA band.

4. The bits within DDRB determine the direction of the 8 data lines. Data
lines to be outputs must have 'Us, lines to be inputs must have '0%, in the
respect the bit positions.

5. ORB and IRB are the output and input registers for the 8 data lines.
6. Data lines. programmed as inputs by DDRB, are unaffected by attempts

to WRITE directly into them.
7. Input data can be latched or unlatched, depending on whether bit I in the

ACR is 1 or 0 respectively.
8. CB1 is always an input but CB2 can be programmed as an input or as an

output.
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9. Bits 4 to 7 in the PCR are concerned with the behaviour of CBI and CB2.
Bits 0 to 3 are concerned with the A side of the VIA dedicated to the
Centronics printer.

10. The IFR indicates to the programmer, by means of flags- that an active
signal has been detected at CB1 and �' or CB2 input. It also has flags for
detecting time out conditions on the timers T1, T2 and the completion of
8 shifts from the shift register S R.

11. IER is closely associated with IFR on a bit by bit level. A set flag in IFR
can only cause an interrupt request on the IRQ fine if the corresponding
bit in IER is at 1.

12. The timers T1 and T2 are 16-bit counters, T1 having an associated latch.
13. Delays can be achieved, or interrupts generated, at regular intervals by

loading starting numbers into the high- and low-bytes of the counters.
14. PB7 can receive the output of the timers. PB6 can accept input pulses

which can be compared with a number present in T2.
15. It is possible to produce a waveform of arbitrary mark to space ratio at

the output of PB7.

Self test

9.1  What is the absolute hexadecimal address of the IFR?
9.2  What is the absolute hexadecimal address of T2 high-byte counter?
9.3  State the required hexadecimal contents of DDRB if all fines except

PB5 are to be outputs.
9.4  Which of the two control lines can never be an output?
9.5  Assume the CBI flag in the [ER is set. What additional status bits in

the system must be set, or reset. before an actual interrupt occurs?
9.6  How do you enable the input latch on port B?



Appendix A
Binary and Logic

Binary

●Unless otherwise stated, numbers will be assumed to be decimal. Hex
numbers are prefixed by &.
●To aid comprehension, strings of bits may be split into groups of four, but
the space between groups is artificial.
●'X' is used for 'don't care' bits and can mean 1 or 0.
●To 'flip' a bit means to change it from 1 to 0 or vice versa.

Unsigned binary system
Computer languages, whether entered in high level, assembly coding, or
hexadecimal, are incomprehensible to the machine. All information is
converted by the resident operating system to binary bits (1s and 0s).

All number systems, including the familiar decimal, rely on the relative
position of digits to indicate their 'worth'. Each binary digit in a byte is twice
the value of the bit to its right. In pure unsigned binary, the value of each
binary is shown below in both decimal equivalents and powers of two:

128 64 32 16 8 4 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 27 6 5 4 3 2 1 0

or

Examples:

1000 1001 = 137
1001 1111 = 159
1111 1111 = 255

Sometimes, the following tip is useful:
A string of all 1s is 2n-1, where n=number of bits in the string.

Examples:

1111 = 24 - 1 = 15
1111 1111 1111 1111 = 216 - 1 = 65535
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It is advisable, but not essential, to memorise powers of two up to the first
sixteen bit positions. It is convenient to consider them divided into low-byte
and high-byte as follows:

Powers of 2

High-byte Low-byte

n

2 n(32768) (16384)(8192) (4096) (2048) (1024)(512) (256) (128) (64) (32) (16) (8) (4) (2) (1)

15 14 13 12 11 10 9 8 7 6 5 4 2 1 03

Any binary number in the high-byte position is always 256 times its low-byte
value. For example, 0000 1001 would be worth 9 if low-byte, but 256*9 =
2304 if high-byte. Remember, the 6502 always stores 16-bit data in
consecutive memory addresses, low-byte first.

Hexadecimal notation (hex}
Hex uses the 16 characters 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F to describe a
nibble (4 bits):

0000=0 0001=1 0011=2 0011=3
0100=4 0101=5 0110=6 0111=7
1000=8 1001=9 1010=A 1011=B
1100=C 110l=D ll10=E ll11=F

Two hex characters describe a byte. Some examples follow:

1111 0011 = F3  0001 1011 = 1B   1100 1101 =CD 0000 0001 = 01
1111 1111 1111 1111 = FFFF   1000 1100 1010 01111 = 8CA7

Hex arithmetic
Hex is based on powers of 16 so any character, depending on its position,
must be multiplied by the appropriate power of 16 as follows:

163 = 4096   162 = 256   161 = 16   160 = 1

4096 256 16 1
Using H for hex character H H H H

Examples :

&0032=(3*16)+2=50  &00FC (15*16)+12 = 252
&00FF=(15*16)+15 = 255
&203E=(2*4096)+(3*16)+14=8254
&1111=4096+256+16+1=4369
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Signed binary and two's complement
In order to represent both positive and negative numbers in a byte, the msb
(bit 7) is reserved as the 'sign' bit.

The sign bit is 1 for negative and 0 for positive numbers- For example:

0XXX XXXX is positive and 1XXX XXXX is negative.

A negative number is said to be the two's complement of the equivalent
positive and vice versa. There are two ways of obtaining the two's
complement of a binary number:

(1)  First flip all the bits and then add one. Ignore any carry out from msb
end.
(2)  Starting from msb, copy up to and including the first '1' then flip the
remaining bits.

Examples: Number Two's complement
(+7) 0000 0111 1111 1001 (-7)
(+1) 0000 0001 1111 1111 (-1)
(-2) 1111 1110 0000 0010 (+2)

Method 1 can lead to errors when adding the 1, so method 2 is safer.
The two's complement of decimal numbers is found by subtracting from 256.

Example: -1 = 1-256 = 255 = 1111 1111.

The two's complement of hex numbers is found by subtracting from &FF and
adding 1.

Example: -3 = &FF-3 = &FC+1 = &FD

The largest positive number in a byte is + 127 = 0111 1111 = &7F.
The largest negative number is 128 = 1000 0000 = &80.

Notes:

(a)  The larger the negative number, the more binary 0s appear. In two's
complement, everything is reversed, including the relative status of 1s and 0s.
(b)  There are 128 positive and 128 negative numbers. The fact that zero is a
positive number is the reason why there appears to be one more negative than
positive (128,+127).

Binary coded decimal (BCD)
Decimal numbers are awkward when expressed in binary, simply because
base 10 and base 2 don't mix well. BCD is a code which sacrifices efficiency
for decimal compatibility. A byte is divided into two 4-bit groups (nibbles).
Each nibble is coded for numbers from 0 to 9, as follows:
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BCD Decimal

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

The six groups from 1010 to 1111, which are used for the characters A to F in
hex, are illegal in BCD. A single byte can hold decimal numbers in BCD
form only in the range, 0 to 99.

Examples: 0001 0011= 13 0000 01ll=07 1001 1001=99

The efficiency of a code = (number of combinations used)/total
combinations).

In pure binary, all combinations are used, so the efficiency is 100%. In
BCD, only 10 combinations are used out of a total of 16 possible, so the
efficiency is 10/16=63% approximately. When the efficiency within a byte is
calculated, the loss in information content is worse, 100/256 which is not
quite 40%.

Because of the inefficiency of BCD, its use is limited. However, a large
proportion of digital instrumentation delivers, or expects to receive,
information in BCD form. The 6502 microprocessor obligingly processes
BCD arithmetic if the D flag in the processor register is set to 1. However, it
is up to the programmer to ensure that the data entering the arithmetic area is
free from illegal groups.

Logic

Low levels and TTL
Logic chips contain circuits which respond to, or deliver, one of two possible
voltage levels. A certain family of chips (known as TTL) has set a common
standard (see Fig. A.1). All members of the TTL family (there are over 300
different chips) have type numbers beginning with 74 or 74LS. The LS prefix
denotes Low-power Shockty and although similar in logic function they
consume less current and are faster. LS is now recommended for general use
in favour of the traditional 'standard' TTL.

Logic 1 (also known as HIGH) = any voltage within the range +2.8V to
5V.

Logic 0 (also known as a LOW) = any voltage within the range 0V to +
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0.8V.

Voltage
Chip death

Logic 1 HIGH

Logic 0 LOW

Ground

+7

+6

+5

+4

+3

+2

+1

0

Dangerous area

Bad level

Fig. A.1. TTL logic levels

Any voltage in between is called a 'bad level' and will lead to indeterminate
results. Bad levels are usually caused by an output over loadpulling up or
dragging down the voltage. Testing for HIGHs and LOWs at various points in
the system can be done with a voltmeter although one of the various makes of
'logic probe' displaying either a red or green fight is more convenient and less
hazardous.

Logic gates
A gate is essentially a logie-operated switch with one output and one or more
inputs. The combination of logic voltages on the inputs determines the output
state. Although the function of a gate can be described in words, a truth table
with all possible input combinations is concise and unequivocal. Figure A.2
shows the six common gates in their most popular diagrammatic form,
together with the corresponding truth tables. The inverter is not worth a truth
table.

Notes on Fig. A.2:

● The AND gate: output 1 only if all inputs 1.
● The OR gate: output 1 only if one or more inputs are 1.
● The NAND gate: output 0 only if all inputs are 1.
● The NOR gate: output 0 only if one or more inputs are 1.
● The INVERTER: output is reverse of input.
● The EXCLUSIVE OR: output 1 only if inputs are different.
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Fig. A.2. The six primitive gates

Examination of the truth table reveals that it is similar to the OR but
'excludes' the bottom AND line.

Although only two inputs are shown at each gate in Fig. A.2., the TTL
family include gates with as many as eight inputs. The two common chips are
the 7400 quad NAND and the 7404 hex inverter. The pin connections for
these appear in Fig. A.2. The power supply to the chips is marked VCC (+5V)
and Gnd (0V) pin marked Vcc. Chip pin-out diagrams are always drawn
looking down on to the top of the chip.
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Active levels and negation
More complex chips such as decoders, buffers, counters, etc., do not always
recognise a I or HIGH state as being in some way superior to a 0 or LOW
state. Any input terminal which is immune to a I but activated by 0 is said to
be active-LOW. Such terminals are indicated either by (a) a bar over the
terminal label-such as C or clock (the bar is a Boolean symbol for negation -
for example, A is the opposite state to A) or (b) a small circle or 'bubble'.

Dominance of NAND and INVERTER gates
TTL logic is based on the NAND and INVERTER, the other three gates tend
to be under-used and therefore not so readily available. There are three
reasons for their dominance:

(1)  Many of the more complex chips are gated on by a LOW rather than a
HIGH in order to minimise standby current.
(2)  The internal circuitry of TTL gates is such that N AND and inverter
functions arise more naturally and require less components.
(3)  Combinations of NAND and INVERTER can be arranged to simulate
AND and OR gates. An AND is an inverted output N AND. An OR is a
NAND with all inputs inverted. Even the INVERTER is not strictly essentia]
because a N AND, with all inputs strapped or held permanently at 1, behaves
as an INVERTER.

Use of gates
Traditionally, the study of logic has leant heavily on a branch of mathematics
known as Boolean Algebra. It is both a useful shorthand and a powerful tool
in the mathematical analysis of logic. Boolean is still useful but, for the home
enthusiast, the availability of complex integrated circuits has lessened the
need to design and construct systems from an assortment of gates, so time
spent on studying the special algebra may not always be justified.

The main use (now) for logic gates is to 'glue' together the more complex
chips which may be incompatible in some way. For instance, one chip may
deliver a I where a 0 is needed, meriting an inverter in between. Another
possibility is the need to enable a chip only if 'something' else is at 1. Figure
A.3 shows some of the switching arrangements using gates.

Figure A.3(a) shows an AND gate simulating a series switch in the data
path. A serial data stream entering can only pass through the switch if the
control C is HIGH.

If a NAND gate is used, as in Fig. A.3(b), an inverter is needed. Without
the inverter, the serial data stream would still pass if C is held HIGH but
would be in inverted form (called the 'one's or logical complement').

Figure A.3(c) shows how it is possible to enable a chip providing both A
and B inputs are held HIGH. Note that the example chip is marked CE (not
chip enable) which is convenient for the LOW output from the NAND.
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Data in
Data out
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Data in
Data out

C

Data in

Data out 1

Data out 2

C

(a)

(b)

(c)

(d)

(e)

Fig. A.3 Uses of simple gates

Remember that the bar over the CE label is an alternative to the bubble.
The exclusive-OR gate in Fig. A.3(d) provides an easy way of controlling

the phase of the output data. If the control C is held LOW, the output data
stream is a replica of the input. If C is held HIGH, the output data is an
inverted version of the input.
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Figure A.3(c) is a simulation of a single pole, double throw switch
whereby the serial data stream can be diverted to either data out I or data out
2, depending on the state of the control C. If C is held HIGH, the data
emerges from the bottom gate but from the top gate if held LOW. Inverters
would be needed at the outputs if NANDs were used instead of ANDs.

Flip-flops
Logic gates deliver an output state, depending on the present input conditions.
They are combinatorial devices, acting in real time and capable of analysis by
simple Boolean algebra, Flip-flops are in an entirely different class because
their present state depends on some event (usually a logic pulse) which
occurred in the past. From this, it should be easy to conclude that flip-flops
have the ability to memorise. But they can't memorise much. In fact, one flip-
flop can only store a single bit so we would need eight of them to store one
byte of data. A flip-flop which is storing a I is said to be set; if it is storing a
0, it is said to be reset. The four varieties of flip-flop in common use are
shown in Fig. A.4.

(a)

(b)

(c)

Simple SR flip-flop

Toggle flip-flop

(d)

D type flip-flop JK flip-flop

T

Q

Q

Q

SR

Q

Q Q

T

Q Q

D T

Q Q

Q

R S

J T K

Fig A. 4 Types of flip-flop.
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The SR flip-flop.The logic symbol shows it to be a four-terminal black box.
The output state is available at the 'Q' terminal which is set or reset by a
negative-going pulse on S or R respectively The term negative-going means a
sudden drop in voltage from HIGH to LOW. It is important to realise that,
although a transition from HIGH to LOW is required, it is not necessary to
maintain the LOW state. In fact, the easiest way to try it out would be
momentarily to touch the S terminal with a grounded wire. !fit is already in
the set state, nothing will happen. If it is in the reset state. the Q terminal will
go from 0 to 1 and remain in the new state until you flick the R terminal. The
action is similar to the push-on/push-off switch found on table lights it
memorises the last order.

When a RS flip-flop is needed, it is customary to 'make' one from two
cross-strapped NANDs (this only takes half a 7400). As a 'free gift', the Q
terminal is always in the opposite state to Q. Knowledge of this can often
save an inverter.

The T flip-flop. This is often called a 'toggle? because every negative-going
edge of a pulse on F will change the state at Q it toggles the state backwards
and forwards. The waveforms shown on Fig. A-4(b) indicate that a
continuous pulse of frequency f applied to T causes an output frequency of f/
2, illustrating its primary use as a frequency divide-by-two stage. The Q
output will be at the same half-frequency as Q but in the opposite phase.
Direct set and reset terminals, which override T, may also be present in some
types.

The D flip-flop. The D stands for 'Data'. The state at Q is oblivious to the D
state until a trigger pulse arrives at T. When the negative going edge of the
trigger arrives, the state of D (at that time) is passed (latched) into the flip-
flop. In other words, the Q state is always the state which D was, prior to the
arrival of the trigger. The 7475 is a quad D-type latch, containing four
identical D flip-flops. Two of these can be used to latch in a byte of data.

The JK flip-flop.This is a versatile breed of flip-flop, shown in Fig. A.4(d).
The logic state on the J,K terminals decide the eventual state of Q after the
next trigger pulse on T. The action is best described with the aid of the
following truth table:

J K State of Q after next trigger

0 0 No change
0 1 Reset (Q=0)
1 0 Set (Q=0)
1 1 Change
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Note that when J and K are both 0, the flip-flop is paralysed, unable to
respond to any triggers.
If J and K are both held at 1, a trigger will always change the state. In other
words, this perm of J, K transforms it to a T flip-flop.
If J is joined to K by an inverter, it is transformed to a D flip-flop, the J
terminal acting as a D.
From this, it is easy to see why the JK flip-flop was described as versatile.

Finally, it should be mentioned that some diagrams will choose different
labels for the trigger terminal. The terminal we have marked T may, in some
diagrams, be marked clock or just C.

Wired OR and tristate outputs
A microprocessor system is based on the common bus. The output data from
RAM, ROM, etc., are all wired in parallel across the same wires. It is
important that such devices in the disabled state are effectively disconnected
from the common bus. Normal TTL logic allows inputs to be connected
together but under no circumstances must outputs be connected together
unless they are of the class known as open-collector. Figure A.5(a) shows the
idea behind wired-OR connections.

+5V

2.2K

Common bus

(a)

E

E

E

(b)

Fig. A.5. Wired-OR and tristate
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The output stage of normal TTL consists of two transistors in series across
the 5 V supply (known as totem pole) with the gate output emerging from the
centre point. The top transistor is missing in open-collector types and the feed
to the 5 V fine must come from an external pull-up resistor. This allows
several outputs to be connected together, providing they all share the same
pull-up resistor. Many of the popular chips in the TTL family are available in
both standard and open-collector version.

Although wired-OR connections are useful in odd places, the solution is
too messy for computer bus work. The alternative, and cleaner, solution is to
provide chips with tristate outputs as shown in Fig. A.5(b). An extra transistor
is built in to each output line, acting as a series switch and turned on or off by
the enable terminal. When the chip is disabled, the outputs are effectively
removed from the bus. The TTL chips offering tristate outputs are normally
more complex than simple gates. RAM and ROM chips are almost always
tristate.

Mechanical switches
Some disconcerting effects can occur if logic voltages are applied by means
of an ordinary mechanical switch, particularly if the terminal supplied expects
a single pulse. Due to the natural resonance of the operating spring, switches
bounce backwards and forwards several times before coming to rest in the
final position. The evil is called switch-bounce and can be overcome by either
of the following two methods:

(1)  Using an SR flip-flop and a single pole two-way switch as shown in Fig.
A6. The flip-flop can be fashioned from the two strapped-NANDs previously
described.
(2)  Using software, incorporating a few milliseconds delay before
'reading'the state of the switch.

2K 2K

Switch output+ 5V

Q Q

S R

Fig. A.6. Switch de-bounce circuit
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Driving lamps and relays
Small lamps are popular for displaying logic states. All lamps take current
which can be ill afforded in logic work. Incandescent filament lamps are
sluggish and take 50 mA or more. Neons take negligible current but require
about 80 volts before they emit the characteristic red glow. This leaves the
light-emitting diode (LED) as the only serious contender. They give a
reasonable light with about 5mA and only drop about 1.2 volts. They must
always be fed via a series resistor somewhere in the chain in order to ensure
current, rather than voltage, drive. They are best driven from the output of an
inverter as shown in Fig. A.7.

330 ohms

LED
TIL 209

(or equivalent)

Logic 1 here

+ 5V

Fig. A.7. Feeding a LED.

The LED lights when a 1 is applied to the inverter input. The inverter output
then drops to near ground, completing the circuit through the LED. The
output of the inverter is said to be sinking the LED current to ground.

Devices which require current in excess of 20 mA or voltages in excess of
5V cannot be driven from logic circuits without help. This help can be
supplied by the familiar electromagnetic relay, the opto-isolator or a
combination of both. Figure A£ shows some arrangements.

In spite of the glamour associated with the semiconductor age, there are
still uses for the traditional electromagnetic relay. Design methods have
improved and the modern forms are efficient, physically small and take
relatively low currents. Although no different in principle, the variant known
as the reed relay, shown in Fig. A.8(c), is common-place in modern interface
circuitry. The operating contacts are enclosed within a glass tube filled with
inert gas, which prevents the build-up of oxidation products. Because of this,
the contact fife is much higher than in the traditional open-contact relay. The
operating coil is a separate component slipped over the tube and therefore can
cater for a variety of current and impedance requirements.

Relays fulfil two primary requirements of the power interface:

(a)  They allow the weak logic output from the computer to control high
power.
(b)  They electrically isolate the computer from high voltage circuits.
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(c)

operating coil

glass tube

Fig. A.8. Relays and opto-isolator drives.

They must never be used without a reverse diode across the operating coil.
The diode safeguards the logic circuits from induced voltages which appear
when the current is interrupted. Figure A.8(b) shows a typical drive
arrangement, using a common npn transistor as a current amplifier. The
transistor conducts through the operating coil of the relay. The 1K resistor
supplying the requisite base current The presence of the inverter gate means
that the transistor conducts on a logic 0 input and switches off on a logic I.
This is a case of an active-low drive causing a back-to-front action. If this is
undesirable, the remedy is to insert an extra series inverter to bring it right
again or substitute a non-inverting buffer gate. In either case, some form of
logic gate is desirable in home constructed projects rather than a direct raw
feed from the computer output port. Gates are cheap, computers aren't!

The opto-isolator is another popular component in interface work. Like the
electromagnetic relay, the objective is to isolate electrically the computer
from any high power {voltage} current components. In fact, the only
connection is via the light emitted from a small LED falling on the base of a
light-sensitive transistor. They are available singly as 6-pin chips, with the
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diode and transistor buried within the silicon. A typical circuit using a single
opto-isolator is shown in Fig. A.8(a). The RS 305759 is only one of the many
types available in the catalogues.

The box marked 'load' is a blanket term covering any contraption driven
by the isolator. In all probability, this will include yet another transistor
because the opto-isolator introduces a power 'gain.' of less than unity
(typically 0.2). To convert the loss into a gain, some opto-isolators
incorporate two transistors and are classified as Darlington-connected. Some
chips are available which contain four independent opto-isolators so two of
these could handle the output from an 8-bit port.

Schmitt triggers
When the logic state changes from 0 to 1, or vice versa, logic chips expect the
change to be rapid. In other words, the wave form should display, as far as
possible, straight-sided pulses. If the input changes are sluggish, the
behaviour could be impaired, particularly for clock-type inputs . If the input is
obtained from the output of another logic circuit and the wiring between the
two is not too long, there is no problem. However, if the input is obtained
from an analogue, or 'home-made' source, the waveform is probably suspect
and must be cleaned up before qualifying as a legitimate gate input. The 74
logic series has the answer in the form of the schmitt trigger, a standard
circuit which accepts a poor pulse shape and transforms it into a steep-sided
version. Figure A9 shows the gate symbol with typical input and output
waveforms. The 7414 is a hex schmitt inverter, performing in the same way
as a normal inverter but accepts poor waveforms. The schmtt does not protect
against voltages which are out of range. It offers waveform but not voltage
protection.

IN

OUTInverter symbol

Fig. A.9. The schmitt trigger.

With reference to the mention of 'long' wires, it is worth pointing out that
distributed capacity across wires, or between wires and ground, is often a
cause of weird faults. it is sometimes a source of complaint that
manufacturers of peripheral equipment appear to be miserly in the length of
connecting cable supplied. In all fairness, this is not always due to cost
penny-pinching. It is simply a wise precaution to avoid complaints of erratic
behaviour which might arise if the cable length were increased. Apart from
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distributed capacity, the longer the wire, the more chance of picking up stray
induced voltages.

Timer chips
It must be admitted that discussion of these chips is a little out of place here.
The 555 timer chip is not strictly a logic circuit although, if operated from a +
5V supply, it accepts and delivers reasonable TTL voltage states. It is
versatile, very low-priced, and easy to use. We are concerned here only with
its use as a hardware timer. That is to say, a device which, on receipt of a
single narrow pulse, delivers an output HIGH state for a certain time before
reverting to the quiescent LOW state automatically. Figure A10 (a) shows the
pin connections, wiring and waveforms.
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Fig. A.10. The 555 ZN1034E timers.
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The 555 is ideal for cases where a single pulse from the computer can turn
on a device (electric motor, perhaps) but is not required to stop under
computer control. It is realised, of course, that the BBC machine includes
programmable timer facilities so the job could have been entirely software-
controlled without a 555. However, it is good to be aware of alternative
possibilities.

The output pulse-width, which determines the ON .time of the device, is
dependent on the value of C and R according to the following formula:

T = 1.1 CR (where C is in pF and R is in megohms)

For example, if C= 0. IµF and R 100K, the ON time will be 0.011 seconds.
The figures illustrate that the 555 is not generally suitable for long time
periods. It is not recommended to use R values greater than I M, and
capacities of the order of some microfarads means using electrolytics with
wide tolerances. For periods over several seconds up to minutes, it is better to
use one of the more sophisticated timers such as the ZN1034E shown in Fig.
A.10(b). The timing formula is:

T = 2736 CR (where C is in µF and R in megohms)

The multiplication factor 2736 is achieved by an internal l2-bit binary
counter allowing time periods up to an hour or more. A us-gful feature is the
provision of two complementary outputs, marked Q andQ in the diagram. It
is a complex l4-pin chip with some of the pins allocated to external
calibration resistors but only the simplified wiring is shown. To utilise the full
potential, it is worth sending for detailed data sheets.

Decoders
A decoder will have several outputs but only one selected output can be
activated at a time. The particular output depends on the specific combination
applied to the selection input. Three select terminals can provide only eight
different combinations of binary digits, the rule being:

Number of combinations of n bits = 2n

For example, to select any one of sixteen outputs requires four select
inputs. There is a wide range of decoders in the TTL series. In addition to the
select inputs, there will be one or more enabling inputs, allowing decoders to
be linked together. Some of these may be active-high and some active-low. It
is important to realise that all enable inputs must be activated before the chip
becomes 'live'.

Demultiplexers
A demultiplexer routes serial input data to one particular output line and is the
logic equivalent to a single pole multi way switch. Like the decoder, the
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particular output selected depends on the combination supplied to the select
terminals. In fact, a decoder with enable inputs can be used as a demultiplexer
by feeding the data to one which is active-high.

Multiplexers
These are mirror images of demultiplexers. They route any one of many input
data sources to a single output line. The particular input source depends on
the combination applied to the select inputs. The usual enable terminals will
be present in most TTL chips.

Encoders
An encoder delivers a particular binary pattern on the output terminals.
depending on which of the many input lines is activated. For example, there
could be ten inputs, each capable of producing a unique four-bit pattern on the
outputs and acting as a decimal to binary encoder. Most microcomputer
keyboards are decoded by scanning software but some of the more expensive
types are hardware encoded.

Counters
A counter is essentially a device which delivers an output binary pattern
which changes on receipt of each input pulse. The TTL range offers a wide
variety of counters. They may be classified as follows:

Binary counters.The input pulses cause the four-bit output to progress from
0000 to 1111 in a simple binary sequence. The pulse starts the count again at
0000.

BCD counters.The input pulses cause the four-bit output to progress from
0000 to 1001 (0 to 9 decimal). The tenth pulse starts the count again at 0000.

All counters will be supplied with a reset-to-zero input and most supply a
terminal which emits a pulse when the count goes over the top to 0000. This
is useful for cascading the output of one counter to the input of another. Two
binary counters in cascade would then handle counts up to 11111111 (255
decimal) and two BCD counters up to 1001 1001 (99 decimal). There is
another classification according to the direction of count. For example, those
described above are up-counters but some varieties can be persuaded to
down-count. For example, a four-bit binary down-counter has 1111 as the
'reset' state and decreases on each input pulse towards 0D00. Downcounters
are not supplied as such but some of the more sophisticated varieties have a
control terminal which can be maintained HIGH for upcount and LOW for
down-count. It is worth mentioning that an ordinary up-counter can be turned
into a down-counter by inverting the outputs.
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Shift registers
It is self-evident that a shift-register shifts but, as with counters, there are
generic variants depending on the direction of shift (left or right) and whether
the initialised data is applied serially or in parallel. They will ail Binary and
Logic 233 have a 'shift' terminal (marked T or Clock). Every pulse on T shifts
the contents one place, bits being pushed out at one end.

Parallel-in-parallel-outs, known as PIPOs, accept parallel data on the four
inputs, and data is available on the four output lines after the shift pulses have
ended. The new input data is only let in to the register when an enabling level
is applied to the appropriate terminal.

Parallel-in-serial-outs, known asPISOs, are similar to above But the
output data can only be obtained a bit at a time on the serial output line.

Whatever other facilities they posses, shift-registers will always have
serial-in and serial-out terminals. Many varieties exist in the TTL range.
Some handle St-bits and some can shift left or right depending on the state of
a control terminal. The most obvious use for shift-registers is for parallel to
serial or serial to parallel conversion.

Buffer registers
A buffer is a temporary holding register for data, the contents of which are
subject to a latching pulse. Typically, there will be four data inputs, four data
outputs and a terminal which is used to latch in the new data. Data variations
at the input are 'unseen' until a latching pulse is applied when the current data
overwrites the old. Some buffers have tristate outputs and are bi-directional.
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Operating System Calls

Subroutine
(name)

Address
(hex)

Vector
(hex)

Function Register/s
involved

OSWRCH FFEE 20E Write character A
OSRDCH FFE0 210 Read character A
OSNEWL FFE7 - LF and CR to screen A
OSASCI FFE3 - Write character (NL if A=0D) A
OSCLI FFF7 208 Interprets command line X,Y
OSBYTE FFF4 20A All OSBYTE calls and *FX A,X,Y
OSWORD FFF1 20C All OSWORD calls A,X,Y
OSFILE FFDD 212 Load and save file A,X,Y
OSBGET FFD7 216 Load and save data file A,X,Y
OSBPUT FFD4 218 Put byte in file A,Y
OSFIND FFCE 21C Open or close file A,X,Y
OSGBPB FFD1 21A Multiple OSBPUT and

OSBGET
A,X,Y

NVRDCH FFCB - Non-vectored read character
NVWRCH FFC8 - Non-vectored write character
GSREAD FFC5 - Read string character
OSEVEN FFBF - Activate event
GSINIT FFC2 - Initialise string input
OSRDRM FFB9 - Read paged ROM byte
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6502 Complete Instruction Set

Appendix C1
Complete Instruction Set

ADC Add with carry A+M+C→A NZCV

Address mode Op-code Bytes Cycles
Immediate &69 2 2
Zero-page &65 2 2
Zero-page,X &75 2 4
Absolute &6D 3 4
Absolute,X &7D 3 4 or 5
Absolute,Y &79 3 4 or 5
(Indirect,X) &61 2 6
(Indirect),Y &71 2 5

AND And with A A and M→A NZ

Address mode Op-code Bytes Cycles
Immediate &29 2 2
Zero-page &25 2 2
Zero-page,X &35 2 4
Absolute &2D 3 4
Absolute,X &3D 3 4 or 5
Absolute,Y &39 3 4 or 5
(Indirect,X) &21 2 6
(Indirect),Y &31 2 5

ASL Shift left C←(7...0)←0 NZC

Address mode Op-code Bytes Cycles
Accumulator &0A 1 2
Zero-page &06 2 2
Zero-page,X &16 2 6
Absolute &0E 3 6
Absolute,X &1E 3 7

BCC Branch if C=0 Flags unaltered

Address mode Op-code Bytes Cycles
Relative &90 2 3 or 2
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BCS Branch if C=1 Flags unaltered

Address mode Op-code Bytes Cycles
Relative &B0 2 3 or 2

BEQ Branch if Z=1 Flags unaltered

Address mode Op-code Bytes Cycles
Relative &F0 2 3 or 2

BIT A and M, M7→M,M6→V Z,N,V

Address mode Op-code Bytes Cycles
Zero-page & 2 2
Absolute & 3 4

BMI Branch if N=1 Flags unaltered

Address mode Op-code Bytes Cycles
Relative &30 2 3 or 2

BNE Branch if Z=0 Flags unaltered

Address mode Op-code Bytes Cycles
Relative &D0 2 3 or 2

BPL Branch if N=0 Flags unaltered

Address mode Op-code Bytes Cycles
Relative &10 2 3 or 2

BRK Break PC+2 I flag=1

Address mode Op-code Bytes Cycles
Implied &00 1 7

BVC Branch if V=0 Flags unaltered

Address mode Op-code Bytes Cycles
Relative &50 2 3 or 2

BVS Branch if V=1 Flags unaltered

Address mode Op-code Bytes Cycles
Relative &70 2 3 or 2
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CLC Clear Carry C flag = 0

Address mode Op-code Bytes Cycles
Implied &18 1 2

CLD Clear Decimal D flag=0

Address mode Op-code Bytes Cycles
Implied &D8 1 2

CLI Clear I mask I flag=0

Address mode Op-code Bytes Cycles
Implied &58 1 2

CLV Clear overflow V flag=0

Address mode Op-code Bytes Cycles
Implied &B8 1 2

CMP Compare A A-M NZC

Address mode Op-code Bytes Cycles
Immediate &C9 2 2
Zero-page &C5 2 2
Zero-page,X &D5 2 4
Absolute &CD 3 4
Absolute,X &DD 3 4 or 5
Absolute,Y &D9 3 4 or 5
(Indirect,X) &C1 2 6
(Indirect),Y &D1 2 5 or 6

CPX Compare X X-M NZC

Address mode Op-code Bytes Cycles
Immediate &E0 2 2
Zero-page &E4 2 3
Absolute &EC 3 4
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DEC Decrement M M-1→M NZ

Address mode Op-code Bytes Cycles
Zero-page &C6 2 5
Zero-page,X &D6 2 6
Absolute &CE 3 6
Absolute,X &DE 3 7

DEX Decrement X X-1→X NZ

Address mode Op-code Bytes Cycles
Implied &CA 1 2

DEY Decrement Y Y-1→Y NZ

Address mode Op-code Bytes Cycles
Implied &88 1 2

EOR Exclusive OR AexcM→A NZ

Address mode Op-code Bytes Cycles
Immediate &49 2 2
Zero-page &45 2 2
Zero-page,X &55 2 4
Absolute &4D 3 4
Absolute,X &5D 3 4 or 5
Absolute,Y &59 3 4 or 5
(Indirect,X) &41 2 6
(Indirect),Y &51 2 5

INC Increment M M+1→M NZ

Address mode Op-code Bytes Cycles
Zero-page &E6 2 5
Zero-page,X &F6 2 6
Absolute &EE 3 6
Absolute,X &FF 3 7

INX Increment X X+1→X NZ

Address mode Op-code Bytes Cycles
Implied &E8 1 2
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INY Increment Y Y+1→Y NZ

Address mode Op-code Bytes Cycles
Implied &C8 1 2

JMP Jump Flags unaltered

Address mode Op-code Bytes Cycles
Absolute &4C 3 3
Indirect &6C 3 5

JSR Jump Flags unaltered

Address mode Op-code Bytes Cycles
Absolute &20 3 3

LDA Load A M→A NZ

Address mode Op-code Bytes Cycles
Immediate &A9 2 2
Zero-page &A5 2 3
Zero-page,X &B5 2 4
Absolute &AD 3 4
Absolute,X &BD 3 4 or 5
Absolute,Y &B9 3 4 or 5
(Indirect,X) &A1 2 6
(Indirect),Y &B1 2 5 or 6

LDX Load X M→X NZ

Address mode Op-code Bytes Cycles
Immediate &A9 2 2
Zero-page &A5 2 3
Zero-page,Y &B5 2 4
Absolute &AD 3 4
Absolute,Y &B9 3 4 or 5

LDY Load Y M→Y NZ

Address mode Op-code Bytes Cycles
Immediate &A0 2 2
Zero-page &A4 2 3
Zero-page,Y &B4 2 4
Absolute &AC 3 4
Absolute,Y &BC 3 4 or 5
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LSR Logical SR 0→(7...0)→C N=0,ZC

Address mode Op-code Bytes Cycles
Accumulator &4A 1 2
Zero-page &46 2 2
Zero-page,X &56 2 6
Absolute &4E 3 6
Absolute,X &5E 3 7

NOP No operation Flags unaltered

Address mode Op-code Bytes Cycles
Implied &EA 1 2

ORA Inclusive OR A or M→A NZ

Address mode Op-code Bytes Cycles
Immediate &09 2 2
Zero-page &05 2 2
Zero-page,X &15 2 4
Absolute &0D 3 4
Absolute,X &1D 3 4 or 5
Absolute,Y &19 3 4 or 5
(Indirect,X) &01 2 6
(Indirect),Y &11 2 5

PHA Push A Flags unaltered

Address mode Op-code Bytes Cycles
Implied &48 1 3

PHP Push status Flags unaltered

Address mode Op-code Bytes Cycles
Implied &08 1 3

PLA Pull A NZ

Address mode Op-code Bytes Cycles
Implied &68 1 4

PLP Pull status Flags as status

Address mode Op-code Bytes Cycles
Implied &28 1 4
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ROL Rotate L ←(7...0)←C← NZC

Address mode Op-code Bytes Cycles
Accumulator &2A 1 2
Zero-page &26 2 2
Zero-page,X &36 2 6
Absolute &2E 3 6
Absolute,X &3E 3 7

ROR Rotate R →C→(7...0)→ NZC

Address mode Op-code Bytes Cycles
Accumulator &6A 1 2
Zero-page &66 2 2
Zero-page,X &76 2 6
Absolute &6E 3 6
Absolute,X &7E 3 7

RTI Return from I Flags as pulled

Address mode Op-code Bytes Cycles
Implied &40 1 6

RTS Return from SR Flags analtered

Address mode Op-code Bytes Cycles
Implied &60 1 6

SBC Subtract A-M-C→A NZCV

Address mode Op-code Bytes Cycles
Immediate &E9 2 2
Zero-page &E5 2 2
Zero-page,X &7F 2 4
Absolute &ED 3 4
Absolute,X &FD 3 4 or 5
Absolute,Y &F9 3 4 or 5
(Indirect,X) &E1 2 6
(Indirect),Y &F1 2 5 or 6

SEC Set carry C=1

Address mode Op-code Bytes Cycles
Implied &38 1 2
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SED Set decimal D=1

Address mode Op-code Bytes Cycles
Implied &F8 1 2

SEI Set I mask I=1

Address mode Op-code Bytes Cycles
Implied &78 1 2

STA  Store A A→Μ Flags unaltered

Address mode Op-code Bytes Cycles
Zero-page &85 2 3
Zero-page,X &95 2 4
Absolute &8D 3 4
Absolute,X &9D 3 5
Absolute,Y &99 3 5
(Indirect,X) &81 2 6
(Indirect),Y &91 2 6

STX Store X X→Μ Flags unaltered

Address mode Op-code Bytes Cycles
Zero-page &86 2 3
Zero-page,X &96 2 4
Absolute &8E 3 4

STY Store Y Y→Μ Flags unaltered

Address mode Op-code Bytes Cycles
Zero-page &84 2 3
Zero-page,X &94 2 4
Absolute &8C 3 4

TAX Transfer A→X NZ

Address mode Op-code Bytes Cycles
Implied &AA 1 2

TAY Transfer A→Y NZ

Address mode Op-code Bytes Cycles
Implied &A8 1 2
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TYA Transfer Y→A NZ

Address mode Op-code Bytes Cycles
Implied &98 1 2

TSX Transfer SP→X NZ

Address mode Op-code Bytes Cycles
Implied &BA 1 2

TXA Transfer X→A NZ

Address mode Op-code Bytes Cycles
Implied &8A 1 2

TXS Transfer X→SP Flags unaltered

Address mode Op-code Bytes Cycles

Implied &9A 1 2

Appendix C2
6502 Instruction Set: Classification by processor flag

Updates N, Z and C flags:
ADC,ASL,CMP,CPX,CPY,ROL,ROR,SBC.

Updates N and Z flags:
AND,DEC,DEX,DEY,EOR,lNC,INX,INY,LDA,
LDX,LDY,ORA,PLA,TAX,TAY,TYA,TSX,TXA.

Updates N, Z, C and V flags:
ADC,SBC.

Updates N, C and clears N:
LSR.

Op-codes not mentioned above either: (a) have no effect on processor flags
or
(b) set or reset certain flags by direct programming
(CLC,CLD,CLI,CLV,SEC,SED,SEI).
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Appendix C3
6502 Instruction Set: Classification by addressing modes

Immediate:
ADC,AND,CMP,CPX,CPY,EOR, LDA,LDX,LDY,ORA,SBC

Zero-page:
ADC,AND,ASL,BIT,CMP,CPX,CPY,DEC,EOR,INC,LDA,LDX,
LDY,LSR,ORA,ROL,ROR,SBC,STA,STX,STY

Zero-page,X
ADC,AND,AS L,CMP, DEC,EOR,IN C,LDA,LDY,LSR,ORA,ROL,
ROR,SBC,ST A,STY

Absolute:
ADC,AND,ASL,BIT,CMP,CPX,CPY,DEC,EOR,INC,JMP,JSR,
LDA, LDX,LDY,LSR,ORA, ROL,SBC,STA,STX,STY

Absolute,X:
ADC,AND,ASL,CMP,DEC,EOR,INC,LDA,LSR,ORA,ROL,ROR,
SBC,STA

Absolute,Y:
ADC,AND,CMP,EOR,LDA,LDX,ORA,SBC,STA

(Indirect,X):
ADC,AND,CMP,EOR,LDA,ORA,SBC,STA

(Indirect),Y:
ADC,AND,CMP,EOR,LDA,ORA,SBC,STA

Accutmulator:
ASL,LSR,ROL,ROR

Implied:
BRK,CLC,CLD.CLI,CLV,DEX,DEY INX,INY,NOT,PHA,PHP,PLA,
PLP,RTI,RTS,SEC,SED,SEI,TAX,TAY,TSX,TXA.TXS,TYA

Relative:
BCC,BCS,BEQ,BMI,BNE,BPL,BVC,BVS

The following instructions have no effect on status flags:

BCC,BCS,BEQ,BMI,BNE,BPL,BVC,BVS,JMP,JSR,NOP,PHA,PHP,
RTS,STA,STX,STY,TXS
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Appendix C4
6502 Instructions in order of common usage

In common use:
ADC   BCC   BCS   BNE   CLC   CMP   CPX   CPY   DEX   DEY   INX
INY   LDA   LDX   LDY   RTS
SBC   SEC   STA   STX   STY   TAX    TAY   TYA   TXA

Often used:
BEQ   ASL   BMI   BPL   DEC   INC   JMP   JSR   LSR   PLA   PHA   ROL
ROR

Sometimes used:
AND   BIT   BRK   BVC   BVS   CLV   EOR   NOP   ORA

Seldom used:
CLD   PHP   PLP   RTI   SED   SEI   TSX   TXS

The above classification must not be taken too seriously. It is very much a
question of personal preference and programming style. It is doubtful if two
writers would ever agree. However, it may still be useful, particularly if you
are in the initial learning phaseabsolute address: the numerical number
identifying an address. aceumulator: the main register within the
microprocessor and the only one equipped for arithmetic.
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Appendix D
Glossary of Terms

absolute address: the numerical number identifying an address.
accumulator: the main register within the microprocessor and the only one

equipped for arithmetic
ACR: abbreviation for Auxiliary Control Register. One of the VIA registers.
active high: any input which requires a logic I to turn it on.
active low: any input which requires a logic 0 to turn it on.
address bus: the 16 lines from the microprocessor which activate the selected

memory location or device.
address: a number which is associated with a particular memory location.

This number can be in decimal or hexadecimal.
and gate: a gate which delivers a logic I out only if all inputs are logic 1.
anding: using a mask to ensure selected bits become or remain 0.
assembler mnemonics: a three-letter group uniquely defining an op code.
assembler: a program which converts a program written in assembly code to

the equivalent machine code.
base address: the operand address of an indexed instruction.
base: the number of different characters used in a counting system. Decimal

is base 10, binary is base 2 and hex is base 16.
bit: one of the two possible states of a binary counting system, 1 or 0.
block diagram: a simplified diagram of an electrical system using

interconnected labelled boxes.
Boolean algebra: an algebraic notation, introduced by George Boole, for

manipulating two-state logic.
bubble sort: sorting an array by pairs at a time until all data is in order.
bus: a collection of wires having some common purpose such as data bus,

address bus and control bus.
byte: a group of 8 bits.
Centronics: trademark for a standardised parallel interface for printers.
chip: accepted slang for an integrated circuit.
compiler: system software which translates a program written in high level

language into a machine code equivalent. The entire program is translated
before it is run.
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conditional assembly: when parts or all of the assembled code can vary
depending on test conditions.

Darlington: a two-transistor configuration used to multiply the current gain.
data bus:the 8 lines from the microprocessor which carry the data to and

from memory or external devices.
DDRB: abbreviation for Data Direction Register B. One of the VIA registers.
decimal: the normal counting system using the ten characters 0,1,...9.
decoder: a logic device with many possible outputs, only one of which can be

activated at a time. This depends on the logic pattern applied to the 'select'
inputs 

direct addressing: the operand is a two-byte address as distinct from zero
page addressing which is a single byte address. Also called absolute
addressing.

disassembler: a program which will display a machine code program in
assembly language. The opposite process to assembly.

effective address: the sum of the base and relative address.
exclusive or gate: a gate which delivers a logic I only if the inputs are at

different logic states.
exclusive oring:using a mask to ensure that selected bits assume the opposite

state.
firmware: programs already in ROM.
flag: a single bit used to indicate whether something has happened or not (see

program status register).
handshaking: a term used to describe the method of synchronising an external

device to the computer.
hardware: all the bits and pieces of a computer such as the chips, circuit

board, keys, etc. That which you can see, feel and break
hex: see hexadecimal.
hexadecimal: a counting system using sixteen characters 0, 1,...9,A,B,C,D,E,F
high byte: the most significant half of a two-byte number.
high-level language: a language written in the form of statements, each

statement being equivalent to many machine code instructions. BASIC is a
high level language.

IER: abbreviation for Interrupt Enable Register. One of the VIA registers[FR:
abbreviation for Interrupt Flag Register. One of the VIA registers.

immediate addressing: the operand is the data itself rather than an address.
implicit address: see implied address.
implied address: an address which is inherent in the op-code, therefore

requiring no following operand.
index register: either the X or Y register when used to modify an address.
indexed address: an address which has been formed by the addition of an

index register's contents.
indexed indirect addressing: the indirect address is the sum of the operand

and contents of Y.
indirect addressing: the operand refers to an address in page zero which is the

address of the wanted data.
indirect indexed addressing: the indirect address is modified by the addition
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of Y.
instruction register: a register within the microprocessor holding the opcode

during instruction decoding.
integer: a whole number without a fraction.
integrated circuit: a chip containing a number of interconnected circuits.
interpreter: system software which translates and executes each high level

language statement separately. BASIC is normally interpreted although
compiler versions exist.

IRB: abbreviation for Input Register B. One of the VIA registers.
latch: a buffer register which retains old data until new data is enabled.
logic gates: electrical circuits which behave as switches. The input conditions

determine whether the switch is 'open' or 'closed'.
low byte: the least significant half of a two-byte number.
low-level language: a series of codes rather than a language, each line

resulting in one order to the microprocessor.
lsb: the least significant bit in the byte (the right-most bit).
LSI: large scale integration. Normally taken to mean in the order of tens of

thousands of circuits on a single chip. The 6502 microprocessor is LSI.
machine code: strictly, this term should be used for instructions written in

binary; now used loosely to include hex coding and assembly language.
macro: a routine assembled in line each time it is called.
mask: a bit pattern used in conjunction with either AND, EOR or ORA to act

on selected bits within a byte.
merge sort: similar to bubble sort but faster due to progressive halving of the

array before sorting into pairs.
microprocessor: the integrated circuit which is the central processor or 'brain'

of the computer. The BBC machine uses the 6502 species.
microprogram: a program inside the microprocessor which informs it how to

carry out each machine code instruction.
mnemonics: code groups chosen so we can memorise them easily.
MOB: abbreviation for Moving OBject. Any screen object which is destined

to be moved,
msb: the most significant bit in the byte (the leftmost bit).
msi: medium scale integration. Normally taken to mean up to a few hundred

circuits on a single chip.
nibble: a group of 4 bits.
nybble: see nibble.
object code: the translated version of the source code.
one's complement: a number formed by changing the state of all bits in a

register.
op-code: abbreviation for operational code. It is that part of a machine code

instruction which tells the computer what kind of action is required.
operand: that part of a machine code instruction which gives the data or

where to find the data.
operating system: the software already in ROM which is designed to help you

use the computer.
or gate: a gate which delivers a logic out if any one or more inputs are logic
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1.
ORB: abbreviation for Output Register B. One of the VIA registers.
oring: using a mask to ensure selected bits become or remain 1.
OSBYTE: keyword for Operating System Byte. Allows machine code calls to

the operating system.
OSRDCH: keyword for Operating System Read Character. A subroutine for

reading a character from selected input systems.
OSWORD: keyword for Operating System W ord. Similar to OSBYTE but

allows more parameters to be passed.
OSWRCH: keyword for Operating System Write Character. Passes character

to selected output system.
page one address: any address within the range 256 to 511 decimal or 0100 to

01FF hex
PC: see program counter.
PCR: abbreviation for Peripheral Control Register. One of the VIA registers.
PIA: abbreviation for the 6820 Peripheral Interface Adaptor.
pixel: a small picture element.
program counter: the only 16-bit register in the 6502. Contains the address of

the next instruction byte.
program status register: a register containing flag bits which indicate if

overflow, carries, etc. have been caused by the previous instruction.
PSR: see program status register.
read: to examine the existing data in a register or memory location, usually by

means of LDA, LDX or LDY.
relative address: the contents of the index register.
resident assembler: an assembler which is already in ROM when you

purchase the machine.
resident subroutines: those in ROM which you can use, providing you know

their starting address.
ROM: abbreviation for Read Only Memory. Information stored is permanent

even when the power supply is off.
rotate: similar to shift but any bit pushed out from the carry is reinserted at the

other end.
rpn: abbreviation for 'reverse Polish notation', which is concerned with the

order in which numeric variables are processed by a machine.
RS423: a standardised interface which passes data serially along a single line.
scrolling: movement of the screen vertically or horizontally in order to bring

fresh data into view.
shift: to move the bit pattern, one place to the left or right.
signed binary: the binary system which uses the msb as a sign bit.
silicon chip: most chips are fabricated from a silicon base although some of

the super-fast modern varieties may be using a mixture of gallium and
arsenic.

software: general term for all programs.
source code: the program in its high level form.
sprite: a screen object destined to be moved, together with accompanying

coordinate data. Similar to MOB.
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SR: abbreviation for Shift Register.
ssi: small scale integration. Normally taken to mean a few circuits, often

simple logic gates, on a single chip.
subroutine: a program segment which will normally have general-purpose use

and which can be used in other programs.
supply rail: a wire, feeding several components with a specific voltage.
symbolic address: an arbitrarily chosen name used in place of the numerical

address. It is only recognised if it has been previously assigned to this
number .

tristate: logic devices which can be either in the HIGH, LOW or open circuit
state. When in the open circuit state, the output of the device is transparent
to a common bus line.

TTL: abbreviation for Transistor Transistor Logic, a family of compatible
logic chips operating on 5 volts. First launched by Texas Instruments but
soon second-sourced by other manufacturers.

two-pass assembly: passing the source code twice through the assembler.
Essential if branches are to forward addresses.

two's complement: a number formed by adding I to the one's complement.
Used for negative number representation.

unsigned integer: a binary number without using the msb as a sign bit
user port: one of the output sockets which can be used to control your own

special devices.
user subroutines: subroutines which you can make for yourself.
vector: a word in memory containing the address of an operating system

routine.
VIA: abbreviation for the 6522 Versatile Interface Adaptor chip.
volatile memory: one which loses all data when power is interrupted.
write: to piace new data into a register or memory location, usually by means

of STA,STX or STY. The old data is overwritten by the new. 
X register: a general-purpose register which can be used in indexed

addressing.
Y regisier: similar to X register.
zero page address: any address within the range 0 to 255 decimal or 00 to FF

hex.
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Answers to Self Test Questions

Chapter One

1.1  FF.
1.2  Because the delay caused by the electronics, even when using serial

transmission, is negligible in relation to the printer mechanics.
1.3  The transmission cable can be much longer.
1.4  General term is 'transducer'.
1.5  1.8 volts.
1.6  FF.
1.7  FC=FRED. FD=JIM. FE=SHEILA.
1.8  The 'B' side.
1.9  Key *HELP.

1.10  SEL
1.11  8 for ASCII and 2 for START/STOP.
1.12  0.6 volts.
1.13  Any address within the range FC03 to FCE3.
1.14  0.63 volts.
1.15  Same as before, 4F. It doesn't change until the next clock pulse arrives.
1.16  The bar negates the logic. For example, NOT A can be written as A.
1.17  Chip enable.
1.18  63.
1.19  FCFF is the paging register in the FRED band, used for supplying the

JIM page address.
1.20  Resident peripheral interfaces.
1.21  The 1 MHz bus.
1.22  Primarily reserved for extra ROM/RAM.

Chapter Two

2.1  Dynamic (DRAMs).
2.2  Expensive and lower packing density.
2.3  Each peripheral is activated by a specific address (or addresses), other

than by a special op-code.
2.4  By special op-code in the instruction set.
2.5  It supports the true arithmetical operations, addition and subtraction.

Many of the instructions only perform on the accumulator.
2.6  &2D03.
2.7  Each bit is an independent flag.
2.8  D,I and C.
2.9  D,I.

2.10  N, V ,B and Z.



254 Advanced Machine Code Techniques for the BBC Micro

2.11  When working in unsigned binary.
2.12  It is activated by bit 6 of the data during the BIT test.
2.13  The last instruction left non-zero data.
2.14  The C bit
2.15  Page I or RAM.
2.16  Via the X register, using TXS.
2.17  Before.
2.18  C.
2.19  High-byte.
2.20  The program counter.
2.21  The next higher address.
2.22  R/W (sometimes written R/NW).
2.23  Fixed by the microprocessor designers.
2.24  The Instruction Register, IR.
2.25  If by software BRK, the B bit is set in the status register.
2.26  The 8080.

Chapter Three

3.1  STA memory.
ASL A.
ADC memory.

3.2  AND #&DF.
3.3  EOR #&48.
3.4  ORA #&04.
3.5  &EE.
3.6  Double-byte operand not allowed in immediate addressing.
3.7  Program counter.
3.8  112 to 143 inclusive.
3.9  &11.

3.10  JMP.
3.11  X register.
3.12  Indirect indexed.
3.13  &74.
3.14  &79.
3.15  Post-indexed indirect.

Chapter Four

4.1  Full-stop between BNE and Label is wrong.
4.2  OPT.
4.3  3.
4.4  No, because &83 is a negative relative address.
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4.5  (a) 02 (b) 04 (c) 05.
4.6  (a) 56 (b) 12.
4.7  PRINT ~!34587.

Chapter Five

5.1  0000 0011.
5.2  0000 1001.
5.3  &FF.
5.4  2000 million.
5.5  No.

Chapter Six

6.1  Wordlength, clock frequency, instruction repertoire, operating system
and language interpreter.

No formal answers are applicable to tests 6.2 to 6.5, 7.1 to 7.5 and 8.1 to 8.4.

Chapter Nine

9.1  &FE6D.
9.2  &FE69.
9.3  &DF.
9.4  CB1.
9.5  Bit 4 and bit 7 in the IER must be set and the I-bit in the process status

register must be reset.
9.6  Set bit 1 in the ACR.
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data bus 19
data transfers 37
decode matrix 47
decoders 231
demultiplexers 231
direct screen 173
direction register 197
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indirect indexed addressing 70
indirection operators 97
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instructions 52
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internal interrupts 210
interrupt 8
interrupt enable register 204
interrupt flag register 202
interrupt mask 9

Jim 28

LEDs 227
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lsi 2

macros 87
memory mapping 14
merge sorts 126
microprograms 45
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moving objects 169
multi-byte counting 106
multi-colour MOBs 177
multifield sorts 143
multiplexers 232

nibble 173
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operand 52
operand variables 78
operating system calls 234
operation symbols 54
opto-isolator 228

page boundary 29
paging register 30
parameter passing 90
pixel 173
power pack 5
process status register 39
program counter 42
PROM programmers 7
pseudo-variables 82

read/write 20

refreshing 34
relative addressing 65
relays 227
remarks 80
reset fine 20
Reverse Polish 37
ROM chips 6
RS423 10

saving code 98
schmitt trigger 229
screen output 5
second processor 3
Sheila addresses 14
shift registers 232
sideways scrolling 185
Silicon Valley 2
software interrupt 48
sorting times 154
stack pointer 41
static RAM 35
storing code 80
string bubble sort 120
switch bounce 226

timers 205
tristate 225
TTL 2
two's complement 59
two dimensronal sorts 148

UHF 5
UHF modulator 5
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user port 7
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vectors 158
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VIA 7
VIA registers 195

wired-OR 225
word length 3

zero-page add ressing 64
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