
Chapter Seven
Using Subroutines,
Macros and Look-up
Tables

User subroutines

Mahine code programs which are called from, and intended to return to,
BASIC via RTS are essentially subroutines. However, it is a common
requirement for the machine code program itself to use subroutines, either
user-designed or one of the many resident subroutines embedded within the
operating system. Subroutines designed by the user are called by JSR
followed by an operand, either an absolute machine address (not
recommended) or a destination label. As in BASIC, machine code
subroutines can be nested one within the other. Enthusiasm for high nesting
levels should not be carried to excess or the stack could overflow. Each
unreturned JSR uses up two stack locations, storing the two-byte return
address in the Program Counter. No provision is made in the 6502 for saving
the other registers. It is up to the programmer to make provisions for
protecting valuable register data from corruption by the subroutine.
Subroutines are best avoided altogether within loops which are time-critical.
Each JSR squanders 6 clock cycles and RTS another six. It is far better to
splice the code within the main program, even if it means writing the same
segment of code several times.

Resident subroutines

Acorn strongly advise that programs affecting the input/output devices
screen, keyboard, printer, etc.) do so via the appropriate resident subroutines.
Circumvention, by writing your own, is not dangerous but the program may
not work if a second processor is added. This need not be an effective
deterrent. You may never consider owning the second processor. You may
feel that the advantages of writing your own input/output routines outweigh
other considerations. There are certain speed advantages to be gained by
using direct screen addressing techniques. Some fascinating (often bizarre)

graphic displays cun be produced. Objects can be persuaded to move across
the screen with far less, in fact almost imperceptible, flicker. However, it
should be realised that writing your own code for screen animation is not
going to be easy. The resident subroutines are excellent but we should bear in
mind that design constraints arc inevitable during the development of general
purpose software. In the case of the BBC system, additional constraints are
imposed by the problem of maintaining compatibility with the Tube. It comes
down in the end to a question of personal choice whether you regard or
disregard Acorn's warning. The choice is simple: use the resident subroutines
and feel safe, or bow to the spirit of adventure and experiment with your own.
The designers of the BBC operating system have bent over backwards to
provide free access to most of the ROM's internal anatomy. It would be hard
to find a competitive machine which offers more scope for experimentation.

It would be pointless at this stage to plod wearily through the entire
repertoire of operating system calls. The complete list appears in the User
Guide but, for convenience, has been repeated in slightly different form in
Appendix B.

The practical programs that appear throughout this chapter should be
useful for insertion as subroutines in BASIC programs employing graphics
and sound.

Vectors and indirection

One term which crops up when reading literature on operating system calls is
vector so it is important to be certain of its meaning:

A vector is a word (normally 2 bytes) in memory which contains the
address of a particular routine.

Detailed specifications of routines might include something like:

OSRDCH: Calling address=&FFE0 : Indirected through &0210

The word 'indirected' can be read as 'internally redirected' and, in the above
case, refers to the vector in address &0210. Thus, although we would call
OSRDCH at &FFE0, the code at that address is not OSRDCH but simply
information where OSRDCH can be found.

Why all this apparently needless treasure trail? The answer lies in
flexibility. There are three possibilities for the machine code programmer:

(1) Intercept the standard operating system call by simply changing the vector
(changing the address in &0210 in the above example). Calling OSRDCH
now at address &FFE0 would call up a different routine, written by the user.

158 Advanced Machine Code Techniques for the BBC Micro

Program 7.1. Read text cursor position.
>L I ST
 1 0 REM RERD TEXT CURSOR POSI TI ON
 2 0 REM USI NG RN OSBYTE CAL L
 3 0 MODE6
 4 0 DI M START 2 5 6
 5 0 OSBYTE=&FFF4
 6 0 XPOS=&7 0 : YPOS=&7 1
 7 0 FOR PASS=0 TO 2 STEP 2
 8 0 P%=START
 9 0 [OPT PASS
 1 0 0 L DA # &8 6 \ READ CURSOR POSI TI ON
 1 1 0 J SR OSBYTE
 1 2 0 STX XPOS \ STORE X AND Y REG' S
 1 3 0 STY YPOS \ I N ZERO PAGE L OC' S
 1 4 0 RTS:]
 1 5 0 NEXT PASS
 1 6 0 REM RANDOMI SE CURSOR POSI TI ON
 1 7 0 VDU3 1 , RND(2 4) , RND(2 4)
 1 8 0 CAL L START
 1 9 0 PRI NT" XPOS=" ; ? XPOS; " YPOS=" ; ? YPOS;

(2) Intercept as before but using some preliminary code at the vectored
address to modify the normal call. The original routine could then be re-
entered.
(3) Operating system ROMs can be updated or modified without affecting the
original call. All that needs to be changed are the contents of the vector.

Program 7.2 Typing practice
>L I ST
 1 0 REM TYPI NG PRACTI CE PROGRAM
 2 0 MODE6
 3 0 DI M START 2 5 6
 4 0 OSASCI =&FFE3 : OSRDCH=&FFE0
 5 0 OSNEWL =&FFE7 : OSWRCH=&FFEE
 6 0 FOR PASS=0 TO 3 STEP 3
 7 0 P%=START
 8 0 [OPT PASS
 9 0 L DA # 1 2
 1 0 0 J SR OSWRCH \ CL EAR SCREEN
 1 1 0 . BEGI N
 1 2 0 J SR OSRDCH \ ACC=ASCI I (KEY HI T)
 1 3 0 CMP # ASC(" * ") \ COMP TO " * " ASCI I
 1 4 0 BEQ FI NI SH \ BR. FI NI SH I F =
 1 5 0 J SR OSASCI \ SEND TO SCREEN
 1 6 0 BNE BEGI N \ BR. BEGI N I F <>
 1 7 0 . FI NI SH
 1 8 0 L DA # 7 \ ACC=ASCI I FOR BEL L
 1 9 0 J SR OSWRCH \ OUTPUT ACCUMUL ATOR
 2 0 0 J SR OSNEWL \ EXI T WI TH OF L I NE
 2 1 0 RTS:]
 2 2 0 NEXT PASS

159Using Subroutines, Macros and Look-up Tables

 230 CALL START

Not all the system calls are indirected. Some of those that are include
OSWRCH, OSRDCH, OSCLI, OSBYTE, OSWORD. Nearly all the vectors
are situated in page 2 although there are a few which can extend into page
&0D when using ROM paging Note carefully that page &0D is often referred
to as the ' user subroutine area' .

Three examples, using the simpler routines are given, with outline
explanation, in the three following programs. Program 7.1 reads the current
text cursor position using OSBYTE. Program 7.2 is a simple typing practice
program using OSASCI, OSRDCH, OSNEWL and OSWRCH To exit the
program, enter *.

Using OSWORD

Program 7.3 is an example using the sound generators with envelope shaping
via a pair of OSWORD calls. Lines 50 to 130 set up the respective parameter
block data at &1E00 (an arbitrary address). The sound parameter block data
is given in line 120 and the envelope parameter block data in line 130. The
data given produce a laser ' zapping' sound, used etensively in many ' shoot out
of the sky' types of game.

Program 7.3. Using the sound generator with envelope shaping.
>LIST
 10 REM USING THE SOUND GENERATORS
 20 REM WITH ENVELOPE SHAPING
 30 REM (LASER GUN TYPE NOISE)
 40
 50 P%=&1E00
 60 FOR item=1 TO 22
 70 READ D$
 80 D=EVAL(D$)
 90 ?P%=D:P%=P%+1
 100 NEXT item
 110
 120 DATA 1,0,1,0,200,0,3,0
 130 DATA 1,1,0,-4,0,0,50,0,42,&F0,&FE,&FE,126,94
 140
 150 OSWORD=&FFF1
 160 FOR PASS=0 TO 2 STEP 2
 170 P%=&1D00
 180
 190 [OPT PASS
 200 LDA #8 \CALL OSWORD WITH 8
 210 LDX #&08 \IN THE ACCUMULATOR
 220 LDY #&1E \AND ENV PARA BLOCK
 230 JSR OSWORD \ADDRESS IN X RND Y
 240
 250 LDA #7 \CALL OSWORD WITH 7

160 Advanced Machine Code Techniques for the BBC Micro

 260 LDX #&00 \IN THE ACCUMULATOR
 270 LDY #&1E \AND SOUND PRRA BLOCK
 280 JSR OSWORD \ADDRESS IN X AND Y
 290
 300 RTS:]
 310 NEXT PASS
 320 CALL &1D00

Readers will no doubt be aware that this is the assembler equivalent of the
SOUND and ENVELOPE statements used in BASIC. Notice that two bytes
are used for each of the four SOUND parameters which are channel, envelope
number, pitch and duration. The high-bytes are usually zero, except for the
volume/envelope number parameter which can take a negative value, thus
requiring &FF as the high-byte. On the other hand, the 14 envelope parameter
block data items are all single-byte entities.

As a point of interest, alternative data for an explosion, gun shot and bonus
signal are given below.

Explosion data:
120 DATA 0,0,1,0,6,0,5,0
130 DATA 1,10,0,0,0,0,0,0,42,&F0,0,&FE,126,94

Gun shot data:
120 DATA 0,0,1,0,5,0,4,0
130 DATA 1,10,0,0,0,0,0,0,126,-16,0,-16,126,94

Bonus signal data:
120 DATA 1,0,1,0,200,0,50,0
130 DATA 1,1,0,20,0,0,10,0,0,0,0,-127,126,0

Perhaps the most useful to the machine code programmer is OSWRCH so
it deserves more detailed treatment. Any examples given assume that
symbolic operands used, such as OSWRCH itself, have been prior- assigned
in BASIC. Such names are of mnemonic value only. They are not recognised
by the operating system until equated to a specific machine address, in this
case, &FFFE.

Using OSWRCH

OSWRCH writes the ASCII character code in the accumulator to ' the
currently selected' output device.

161Using Subroutines, Macros and Look-up Tables

The term ' currently selected' refers to either the screen, printer or RS423
interface. The default condition is to screen and printer only. Other
combinations can be achieved by a prior call to OSBYTE (see later).

The way OSWRCH works is as follows:

(a) Calling address &FFEE (indirected via &020F).
(b) The A,X and Y registers have their contents preserved.
(c) The C,N,V and Z flags are undefined.

Example 1: LDA #72
JSR OSWRCH \Prints "H" on the screen

Example 2: LDA ASC("H")
JSR OSWRCH

Relating OSWRCH to VDU codes

However, OSWRCH is capable of much more than is suggested above, This
is due to the cunning use of the 32 control codes which extend through the
ASCII range 0 to 31. This code band was left vague when ASCII was
launched way back in primeval times. It was felt that a degree of latitude was
desirable at the bottom end to allow for individual hardware design, All the
graphics facilities available in BASIC can be obtained in machine code by
means of OSWRCH. Page 378 of the User Guide lists the VDU code
summary. VDU statements can, amongst other things, control screen colour,
define graphics windows and various x,y plotting operations. All these can be
achieved in machine code by the use of OSWRCH. Columns 1 and 2 on Page
378 of the User Guide are the decimal and hex ASCII control codes. Column
3 relates to the CTRL keys, and column 4 is more or less useless. Column 5 -
' Bytes extra' - is particularly important for our purpose. All the codes have to
place the appropriate ASCII code in the accumulator before using JSR
OSWRCH. Some, however, require extra trips to OSWRCH, depending on
the number of ' extra bytes' . Codes which demand ' 0' extra bytes are ' one-trip'
excursions. Examples are:

162 Advanced Machine Code Techniques for the BBC Micro

LDA #2 \Equivalent to VDU 2

JSR OSWRCH \Enable printer

LDA #16 \Equivalent to VDU 16

JSR OSWRCH \Clear graphics area

LDA #12 \Equivalent to VDU 12

JSR OSWRCH \Clear text area

VDU equivalents begin to be a little unruly when there are ' extra' bytes.
Each extra byte involves the setting of another number in the accumulator
and, of course, another trip to OSWRCH. Examples are:

 LDR #17 \VDU 17,2
 JSR DBWRCH \Define text colour 2
 LDR #2
 JSR OSWRCH

 LDA #22 VDU 22,5
 JSR OSWRCH \Set Mode 5
 LDA #5
 JSR OSWRCH
 LDA #25 \VDU 25,0,100;500;
 JSR OSWRCH \PLOT K, x, y
 LDA #0 \K=0 (move relative to
 JSR OSWRCH \last point)
 LDA #100 \x=100 (low byte)
 JSR OSWRCH
 LDA #0 \x=0 (high byte)
 JSR OSWRCH
 LDA #244 \y=244 (low byte)
 JSR OSRDCH
 LDA #1 \y=256 (high byte)
 JSR OSWRCH

Users of BBC BASIC will be aware that VDU statements can be chained
together. For example,

VDU 22,2 followed by VDU 24,0;0;1279:,767;
can be written more economically as
VDU 22,2,24,0;0;1279;767;

Although OSWRCH can indeed simulate any VDU statement, there is no
point in denying that its use, particularly when chaining lengthy examples, is
tedious. In short, it appears to be a weary and ponderous task. Consider for a
moment the tedium of typing in scores of LDAs and JSR OSWRCHs
involved in drawing a complex graphics screen. The end listing could
eventually resemble a toilet roll. We need a routine where the computer does
most of the work for us. There are two main methods of performing this task:

163Using Subroutines, Macros and Look-up Tables

one is to use a BASIC procedure acting as a macro; the other is to create a
look-up table of data bytes that can be accessed by indexed addressing. The
chain of VDU parameters could then be parcelled up neatly within DATA
statements and then assembled into equivalent source code.

The macro approach

First, the macro method will be described. The routine is given in Program
7.4 and is universal whichever BASIC ROM happens to be installed.
However, a simpler version for those with a BASIC II ROM is given in
Program 7.5. This modification is due to the introduction of the EQUS
pseudo op-code.

To be useful, the macro should have the following qualities:

(1) It should utilise decimal or hex data.
(2) It should handle single- or double-byte data automatically.
(3) It should assemble singie-byte labelled locations.
(4) It should handle positive and negative data elements whether single- or
double-byte in length.

Referring to Program 7.4, an example list of VDU chains is put into DATA
statements in lines 470 and 480. The data sets the text and graphics windows
and constructs a yellow square on a blue backcloth in MODE 2. Where a two-
byte VDU entity is required by the operating system (that is, a number
followed by a ' ;' rather than a ' ,') the DATA element must be followed by a ' @'
so that the routine can differentiate between the two. Notice that negative
decimal two-byte data can be used which is especially useful in relative
plotting. Armed with this routine, a graphics screen can be planned out in
BASIC and quickly changed to an assembly language version. The example
also shows how labelled locations can be incorporated. The macro can be
used once or many times during an assembly program by coming out into
BASIC and typing PROCvdu(N) where N is the sequential number of DATA
elements you require to incorporate at that particular time. It is essential,
however, to restore the DATA pointer at the start of each pass of the
assembler (line 290).

Program 7.4. Macro assembly of VDU purameters.
>LIST
 10 REM CONDITIONAL ASSEMBLY PROGRRM
 20 REM FOR CHAINING VDU PRRRMETERS
 30 GOTO240
 40
 50 DEFPROCvdu(N)
 60 LOCAL D,D$,B,byte,item,lbyte

164 Advanced Machine Code Techniques for the BBC Micro

 70 FOR item=1 TO N
 80 READ D$
 90 IF RIGHT$(D$,1)="@" THEN B=2 ELSE
B=1
 100 D=EVAL(D$)
 110 IF ASC(D$)>64 THEN [OPT PASS:LDA D
:JSR OSWRCH:]:GOTO150
 120 IF D<0 THEN D=(ABS(D) EOR &FFFF)+1
 130 byte=D MOD 256:PROCform
 140 IF B=2 THEN byte=D DIV 256:PROCfor
m
 150 NEXT item
 160 ENDPROC
 170
 180 DEFPROCform
 190 IF byte<>lbyte THEN [OPT PASS:LDA
#byte:]
 200 [OPT PASS:JSR OSWRCH:]
 210 lbyte=byte
 220 ENDPROC
 230
 240 OSWRCH=&FFEE
 250 BCOL=&70:SQCOL=&71
 260 DIM START 256
 270 FOR PASS=0 TO 3 STEP 3
 280 P%=START
 290 RESTORE
 310 [OPT PASS
 320 LDA #3 \SET SQUARE CULOUR
 330 STA SQCOL
 340 LDA #&84 \SET BACKGROUND COLOUR
 350 STA BCOL
 360]
 370 PROCvdu(39)
 380 [OPT PASS
 390 \ ANY SOURCE CODE
 400 RTS:]
 420 NEXT PASS
 430 CALL START
 450 REM DATA IS A LIST OF VDU CHAINS
 460 REM YELLOW SQUARE/BLUE BACKGROUND
 470 DATA 22,2,28,0,3,19,1,24,0@,0@,127
9@,767@,18,0,BCOL,16
 480 DATA 18,0,SQCOL,25,4,500@,500@,25,
1,200@,0@,25,81,0@,-200@,25,1,-200@,0@,2
5,81,0@,200@

Program 7.4 takes advantage of the concept of conditional assembly. In
this case, a conditional test is made to see if the next byte of data is the same
as the byte preceding it. If this is so then a LDA #byte will not be required
(since the data byte will already be in the accumulator).

The operation of the program is as follows: The routine reads in each
DATA element and tests for the ' @' character termination, setting the variable
B to the number of bytes as appropriate. Line 100 uses EVAL rather than
VAL to evaluate the data string (D$) and places the result into the variable D.

165Using Subroutines, Macros and Look-up Tables

This fine is necessary when the following situations occur in D$.

(1) A ' &' precedes a number, indicating hexadecimal.
(2) A labelled location is encountered, in which case the assigned location
address is put into the variable D, assuming, of course, it has been previously
defined.
(3) The temporary ' @' character is ignored (it has outgrown its usefulness).

Line 110 tests whether D$ contains numeric or alpha data. If the data is alpha
- that is, a labelled location - then the accumulator is loaded with the assigned
address since, in this case, we do not want immediate addressing.

Line 120 checks if D is negative so that a two-byte two' s complement form
can be generated. Line 130 forms the low-byte and line 140 forms the high-
byte if required. PROCform handles conditional assembly using immediate
addressing.

With the upgraded BASIC II ROM installed, the above program can still
be used but a more convenient version is given in Program 7.5. The
difference is that we need not leave the assembler to use the macro. The
pseudo op-code EQUS can place a string, where positioned, within a
program. If we use the function FNvdu(N) which returns a null string(we do
not want a string returned) then all the goings on of the macro will be
peformed without the complication of leaving the assembler!

This type of modification can be employed in similar programs where
procedures are encountered on breaking out of the assembler. For the sake of
standardisation, the method is not used in further examples since large
numbers of BBC Micro' s have BASIC I installed.

Program 7.5. Macro assembly of VDU parameters (BASIC II onwards).
>LIST
 10 REM CONDITIONAL ASSEMBLY PROGRRM
 20 REM FOR CHAINING VDU PRRRMETERS
 30 GOTO240
 40
 50 DEF FNvdu(N)
 60 LOCAL D,D$,B,byte,item,lbyte
 70 FOR item=1 TO N
 80 READ D$
 90 IF RIGHT$(D$,1)="@" THEN B=2 ELSE
B=1
 100 D=EVAL(D$)
 110 IF ASC(D$)>64 THEN [OPT PASS:LDA D
:JSR OSWRCH:]:GOTO150
 120 IF D<0 THEN D=(ABS(D) EOR &FFFF)+1
 130 byte=D MOD 256:PROCform
 140 IF B=2 THEN byte=D DIV 256:PROCfor
m
 150 NEXT item
 160 =""
 170

166 Advanced Machine Code Techniques for the BBC Micro

 180 DEFPROCform
 190 IF byte<>lbyte THEN [OPT PASS:LDA#
byte:]
 200 [OPT PASS:JSR OSWRCH:]
 210 lbyte=byte
 220 ENDPROC
 230
 240 OSWRCH=&FFEE
 250 BCOL=&70:SQCOL=&71
 260 DIM START 256
 270 FOR PASS=0 TO 3 STEP 3
 280 P%=START
 290 RESTORE
 300
 310 [OPT PASS
 320 LDA #3 \SET SQUARE CULOUR
 330 STA SQCOL
 340 LDA #&84 \SET BACKGROUND COLOUR
 350 STA BCOL
 360 EQUS FNvdu(39)
 370 RTS:]
 380
 390 NEXT PASS
 400 CALL START
 410
 420 REM DATA IS A LIST OF VDU CHAINS
 430 REM YELLOW SQUARE/BLUE BACKGROUND
 440 DATA 22,2,28,0,3,19,1,24,0@,0@,127
9@,767@,18,0,BCOL,16
 450 DATA 18,0,SQCOL,25,4,500@,500@,25,
1,200@,0@,25,81,0@,-200@,25,1,-200@,0@,2
5,81,0@,200@

The look-up table approach

Another approach to this problem is by using a look-up table. Program 7.6
shows the essential differences. For a start, conditional assembly is not used
as in the previous example and the use of labelled locations has been
dropped. The DATA elements in the BASIC routine are split up into the
relevant single bytes and stored as a look-up table from the location labelled
' data' onwards. The short piece of code at lines 230 to 290 can be placed
anywhere within the source program to access this table sequentially. The
term ' look-up' is used since any element can be looked up by setting the index
register to the required offset from the table base address. It is conventional to
place data tables such as this at the end of a program. The previous example
has the edge on speed but this method is more econormcal in the use of
memory locations

Program 7.7 is an example of the type of moving graphics available by
using the macro approach. The program sets up a graphics screen in mode 2
and produces the ubiquitous bouncing ball. by now the standard

167Using Subroutines, Macros and Look-up Tables

apprenticeship exercise in the use of animated graphics. The macro is used a
line 310 to set up the screen and again at line 980 to form the subroutine
BALL.

Program 7.6 Using data tables for chaining VDU parameters.
>LIST
 10 REM USING DATA TABLES FOR
 20 REM CHAINING VDU PARAMETERS
 30 GOTO160
 40
 50 DEFPROCdatatable(N)
 60 FOR item=1 TO N
 70 READ D$
 80 IF RIGHT$(D$,1) ="@" THEN B=2 ELSE
 B=1
 90 D=EVAL(D$)
 100 IF D<0 THEN D=(ABS(D) EOR &FFFF)+1
 110 ?P%=D MOD 256:P%=P%+1
 120 IF B=2 THEN ?P%=D DIV 256:P%=P%+1
 130 NEXT item
 140 ENDPROC
 150
 160 OSWRCH=&FFEE
 170 DIM START 500
 180 FOR PASS=0 TO 3 STEP 3
 190 P%=START
 200 RESTORE
 210
 220 [OPT PASS
 230 LDY #0 \LOOP OUTPUTS
 240 .LOOP \DATA ITEMS STORED
 250 LDA data,Y \FROM data ONWARDS
 260 JSR OSWRCH \BY PROCdatatable
 270 INY \AND CAN BE REPLACED
 280 CPY #53 \ANYWHERE WITHIN
 290 BNE LOOP \SOURCE CODE PROG.
 300 BEQ FINISH
 310 .data
 320
 320]PROCdatatable(39)
 330 [OPT PASS
 340 .FINISH
 350 RTS:]
 360
 370 NEXT PASS
 380 CALL START
 390
 400 REM DATA IS A LIST OF VDU CHAINS
 410 REM YELLOW SQUARE/BLUE BACKGROUND
 420 DATA 22,2,28,0,3,19,1,24,0@,0@,127
9@,767@,18,0,132,16
 430 DATA 18,0,3,25,4,500@,500@,25,1,20
0@,0@,25,81,0@,-200@,25,1,-200@,0@,25,81
,0@,200@

168 Advanced Machine Code Techniques for the BBC Micro

Any Moving Object (MOB) must have an associated velocity. In simple
cases this is little more than an increment added to the object' s previous
position so as to calculate its next position on the screen. An acceleration,
incidentally, can be mimicked (position-wise) by adding a further steadily
inreasing increment as new positions are calculated. When the object reaches
a boundary, the velocity (increment) must reverse sign if it is to remain on the
screen. This is straightforward to program in BASIC. In machine code,
however, the object' s position on the screen is a two-byte number. You could
be forgiven for thinking that the increment need only he a single-byte number
because of its normally small value. However, this r, not so. Numbers
differing in byte length cannot be added if they are of mixed sign, therefore
we must also have a two-byte increment.

Program 7.7. The ubiquitous bouncing ball.
>LIST
 10 REM BOUNCING BALL EXAMPLE
 20 GOTO 230
 30
 40 DEFPROCvdu(N)
 50 LOCAL D,D$,B,byte,item,lbyte
 60 FOR item=1 TO N
 70 READ D$
 80 IF RIGHT$(D$,1)="@" THEN B=2 ELSE
B=1
 90 D=EVAL(D$)
 100 IF ASC(D$)>64 THEN [OPT PAS:LDA D:
JSR OSWRCH:]:GOTO 140
 110 IF D<0 THEN D=(ABS(D) EOR &FFFF)+1
 120 byte=D MOD 256:PROCform
 130 IF B=2 THEN byte=D DIV 256:PROCfor
m
 140 NEXT item
 150 ENDPROC
 160
 170 DEFPROCform
 180 IF byte<>lbyte THEN [OPT PASS:LDA
#byte:]
 190 [OPT PASS:JSR OSWRCH:]
 200 lbyte=byte
 210 ENDPROC
 220
 230 OSWRCH=&FFEE:OSBYTE=&FFF4
 240 X=&70:Y=&72:XINC=&74:YINC=&76
 250 BCOL=&78
 260 DIM START 1000
 270 FOR PASS=0 TO 3 STEP 3
 280 P%=START
 290 RESTORE
 300 REM SET UP SCREEN
 310 PROCvdu(16)
 320 DATA 22,2,28,0,3,19,1,24,0@,0@,127

169Using Subroutines, Macros and Look-up Tables

9@,767@,18,0,132,16
 330
 340 [OPT PASS
 350 LDA #0 \INITIALISE X,Y,XINC
 360 STA X \AND YINC
 370 STA Y
 380 STA XINC+1
 390 STA YINC+1
 400 STA X+1
 410 STA Y+1
 420 LDA #8
 430 STA XINC
 440 STA YINC
 450
 460 .LOOP
 470 LDA #&13
 480 JSR OSBYTE
 490 LDA #4
 500 STA BCOL
 510 JSR BALL
 520 LDA X
 530 CLC
 540 ADC XINC
 550 STA X
 560 LDA X+1
 570 ADC XINC+1
 580 STA X+1
 590 LDA Y \ADD YINC TO Y
 600 CLC \(2 BYTES)
 610 ADC YINC
 620 STA Y
 630 LDA Y+1
 640 ADC YINC+1
 650 STA Y+1
 660 LDA #7 \DELETE BALL WITH
 670 STA BCOL \BACKGROUND COLOUR
 680 JSR BALL
 690 LDA Y+1
 700 CMP #3
 710 BCC YONSCR
 720 LDA YINC \FIND 2's COMPLIMENT
 730 EOR #&FF \OF YINC (2 BYTES)
 740 STA YINC
 750 LDA YINC+1
 760 EOR #&FF
 770 STA YINC+1
 780 INC YINC
 790 BNE YONSCR
 800 INC YINC+1
 810 .YONSCR
 820 LDA X+1 \CHECK X ON SCREEN
 830 CMP #5
 840 BCC XONSCR
 850 LDA XINC \FIND 2's COMPLIMENT
 860 EOR #&FF \OF XINC (2 BYTES)
 870 STA XINC
 880 LDA XINC+1
 890 EOR #&FF

170 Advanced Machine Code Techniques for the BBC Micro

 900 STA XINC+1
 910 INC XINC
 920 BNE XONSCR
 930 INC XINC+1
 940 .XONSCR
 950 JMP LOOP
 960
 970 .BALL
 980]PROCvdu(13)
 990 DATR 18,0,BCOL,25,4,X,X+1,Y,Y+1,25
,1,0@,-8@
 1000 [RTS:]
 1010
 1020 NEXT PASS
 1030 CALL START
 1040 END

The program is liberally remarked but one area worthy of further comment
is where the on-screen position checks are made. Referring to the case of the
Y screen boundary checks in lines 690 to 710, the CMP instruction sets the
carry flag if M<=A and clears it if M>A. In this case, the CMP #3 instruction
in line 700 will set the carry flag if the accumulator mntents Y+1>=3. This
will occur when the accumulator contents are between 3 and 255 inclusive
(&3 and &FF). Consequently, the carry flag wfll be clear when the high byte
of the screen position Y+1 takes a value of 0,1, or 2 which are legitimate
screen positions. The end result of the conditional branch in line 710 is that
XINC (2 bytes) is only reversed in sign (two' s complement) when the carry
flag is set. Therefore, only one comparison is required to test for both the top
and bottom screen boundaries. The screen boundary tests in the other
dimension are conducted in a similar fashion.

Summary

1. High levels of subroutines nesting can overflow the stack.
2. Each unreturned JSR uses two stack locations.
3. Each JSR uses 6 clock cycles and RTS another 6, so a JSR within a loop

can squander time.
4. Resident subroutines, within the ROM operating system, are plentiful

and easy to use in machine code programs.
5. Where the screen display is involved, there are speed advantages to be

gained by using direct screen addressing. However, the program may
not work through the Tube with the second processor. If you never buy
one, this won' t matter anyway.

6. A vector is a two-byte word in memory which is the address of a
routine.

171Using Subroutines, Macros and Look-up Tables

7. Some resident subroutines have vectored addresses. Changing the
contents of the vector allows interception to a different routine.

8. Most vectored addresses are in page 2.
9. Graphic facilities are handled by OSWRCH at address &FFEE.

indirected via &020E.
10. The sound generators and envelope shaping are handled by OSWORD.
11. Input data is handled by OSRDCH at address &FFE0, indirected via

&0210.
12. Although the assembler does not offer macro facilities, they can be

simulated by temporary transfer from assembly code to a BASIC
procedure.

13. If the new BASIC II ROM is installed, the EQUS structure can be used
within the assembler for simulating macros and other functions

Self test

7.1 Use the macro procedure to draw a large red square on a yellow
background in MODE 2.

7.2 Use the look-up table method to draw a yellow triangle on a blue
background.

7.3 Program the sound generator to play a scale in F# major.
7.4 Add a keyboard controllable bat routine to intercept the ball in Program

7.7.
7.5 Employ the user-definable character method for plotting the ball in

Program 7.7.

172 Advanced Machine Code Techniques for the BBC Micro

