
BBC Micro Programs in
BASIC
Derrick Daines

Newnes Technical Books

Newnes Technical Books
is an imprint of the Butterworth Group
which has principal offices in
London, Boston, Durban, Singapore, Sydney, Toronto, Wellington

First published in 1984

© Butterworth & Co (Publishers) Ltd, 1984
Borough Green, Sevenoaks, Kent TN15 8PH, England

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, including photocopying and recording, without the
written permission of the copyright holder, application for which should be
addressed to the Publishers. Such written permission must also be obtained before
any part of this publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of Net Books and may
not be re-sold in the UK below the net price given by the Publishers in their
current price list.

British Library Cataloguing in Publication Data

Daines, Derrick
BBC Micro programs in BASIC
1. Electronic games 2. BBC Microcomputer
--Programming 3. Basic (Computer program language)
I. Title
794.8'028'5424 GV1469.2
ISBN 0-408-01415-6

Photoset by Butterworths Litho Preparation Department
Printed in England by Whitstable Litho Ltd, Whitstable, Kent

Library of Congress Cataloging in Publication Data

Daines, Derrick
BBC Micro programs in BASIC
1. BBC Microcomputer--Programming 2. Basic
(Computer program language) I. Title II. Title:
B.B.C. Micro programs in B.A.S.I.C.
QA76.8.B35D35 1984 001.64'.2 83-23712

ISBN 0-408-01415-6

Contents

1 Introduction 1
2 Quickdraw and 100 metres sprint 7
3 Market day 9
4 Pattern maker 11
5 Time bomb 13
6 Bicycle wheel 16
7 Plates 18
8 Tuttle - a screen turtle 21
9 Score 26

10 Greed 29
11 Pakistani pool 32
12 Slide 35
13 Get that bird! 39
14 Torpedo run 43
15 Series 48
16 Word squares 52
17 Derby 58
18 Bingo 64
19 Anagram 64
20 Simon 74
21 Readnum 77
22 Snap 82
23 Pontoon 87
24 Scribble 93
25 Cape Horn 100
26 Reverse Polish calculator 108
27 Moses 114

The publishers gratefully acknowledge the assistance of Pace
Software Supplies Ltd, X-Data Ltd and Cumana Ltd in the preparation
of this book.

1

Introduction

Anyone can write a long program; what is really difficult is to write
an interesting program in only one line. That is why I make no
apologies for opening this book with what may well be the shortest
games program on record. Oh, it really works - and it's interesting,
too, for it times your reactions to the nearest one-hundredth of a
second. Try it at any time, especially when you've had a few drinks!
When prompted, tap any key as fast as you can.

Here is the entire listing:

F.X=1TORND(1000):N.:P."GO!":TI.=0:X$=GE.:P.TI./100;" secs."

One is able to write like that because Acorn have provided the BBC
Microcomputer with two interesting and useful features that affect us
both - myself as the writer and you as the reader of this book. The
first is that any number of statements may be placed in one multi-
command line, extending to no less than six print lines on the
screen, with automatic wrap-around taking place at the end of the
line. This means that in many published listings there are some fairly
heavy-looking blocks of text to be copied into your computer. I have
tried to avoid that, but here and there this avoidance in fact
lengthens the listing because particular logic structures cannot be
used. Therefore, although expert readers will be able to shorten the
listings a little; neophytes will find them easier to read and
understand.

The second point is that the BBC computer allows shortened
forms of command, like 'P.' for 'PRINT', 'E.' for 'ENDPROC', and so
on. It is well worth your while knowing these, for they can cut your
typing time enormously. They are listed in the User Guide.

If you wish to check the single-line program above, the following
is the extended form; at least it allows you to follow more easily

what the program does. Line 10 ensures a random start, eliminating
anticipation.

10 FOR X=1 TO RND(1000):NEXT
20 PRINT"GO!!"
30 TIME=0
40 X$=GET$
50 PRINT "You took ";TIME/100;" seconds"

Of course, the game is not perfect, and we ought to include an
*FX15,1 command at the end of line 30, but at least it illustrates the
point: that writers have to steer a narrow course between on the one
hand making listings so dense that they become impossible to
understand - and easy to lose your way in - and on the other hand
making them so spread out that the book is soon filled and the reader
does not get full value for money.

There is another point of particular interest to owners of OS
versions 1.0 and up: the use of the colour graphics commands in
Mode 7. By holding down the SHIFT key and pressing the Function
Keys f1 to f9, various print colours are obtained. Unfortunately this
cannot be shown in printed form, as the single byte thus stored in the
program creates havoc when received by printers - usually a
graphics symbol is printed, but anything goes. For this reason, these
commands are shown in full as PRINT CHR$(129), etc. Readers may
make a considerable saving in typing time and effort by substituting:

CHR$129 SHIFT-f1 (Read text)
CHR$130 SHIFT-f2 (Green text)
CHR$131 SHIFT-f3 (Yellow text)
CHR$132 SHIFT-f4 (Blue text)
CHR$133 SHIFT-f5 (Magenta text)
CHR$134 SHIFT-f6 (Cyan text)
CHR$135 SHIFT-f7 (White text)
CHR$136 SHIFT-f8 (Flashing text)
CHR$137 SHIFT-f9 (Steady text)
Another very welcome feature of the BBC machine is that it

supports procedures. This not only encourages good programming
practice, but enables sections of the program to be tested and proved
in isolation. As an example of this, on page 4 are listed a number of
interesting and useful procedures that are used many times in this
book. It is recommended that the reader types and saves them once
only - on disk or tape - and reloads them when starting to copy a
new program. The method is:
(a) Copy the procedures exactly as printed
(b) Type *SPOOL PROCS (Return)
(c) If using tape, start recording
(d) Type LIST (Return)
(e) When list is finished, type *SPOOL (Return).

2 Introduction

The procedures are then stored on tape or disk in ASCII format
(not BASIC). When starting the copy of a new listing from this book,
rewind the tape and type:

*EXEC PROCS (Return)

Start the tape and the procedures will be loaded in. If desired, the
procedures could be SAVEd and LOADed as a BASIC program, but
the advantage of doing it in the way outlined is that they can be
added to an existing program at any time, without destroying what is
already in memory.

PROCTITLE
The procedure prints a title in double height, with a decorative
design above and below. The design is in blue, with the title yellow.
The only parameter that needs passing to it is the title X$, with the
procedure automatically placing it in the centre. Please note that the
procedure works in Mode 7 only; indeed, the calling program might
include a MODE 7 command, which could clear the screen and
prepare for the title.

PROCDBL
This procedure is in the User Guide and I have altered it slightly so
that the position on the screen is determinable - the X% and Y%
values passed - as is the colour C%. The text to be printed in double
height is passed in X$.

PROCBOX
A longish procedure, but enormously useful. It will print a box of any
size, in any colour, in any position on the screen, outlining it with a
strong line. In addition, it will if desired print a number of white dots
within the box to indicate the maximum number of input characters
allowable, and accept input, overprinting the dots. Deletion is
allowed up to the time when RETURN is pressed, while if the user
attempts to enter more characters than the program allows, the
ultimate character is altered. In other words, the user cannot
overflow the box.

Mode 7 graphics are used. The parameters passed are:
X% Horizontal tab position of left edge
Y% Vertical tab of bottom edge minus 1
L% The length: the number of character spaces allowed inside
H% The height: the number of lines allowed inside
C% Colour: from 145 to 151 for white to read
F% Flag, where 0 = input desired, 1 = no input
On exit, X$ holds the input line, if any, and this will be tested by the
calling routine.

Introduction 3

10000 DEFPROCTITLE(X$)
10010 PRINTCHR$132;STRING$(19,"Oo")
10020 PROCDBL((36-LEN(X$))/2,3,131,X$)
10030 PRINT'CHR$132;STRING$(19,"Oo")
10040 ENDPROC
10050
10060 DEFPROCDBL(X%,Y%,C%,X$)
10070 PRINTTAB(X%,Y%);CHR$141;CHR$C%;X$
10080 PRINTTAB(X%,Y%+1);CHR$141;CHR$C%;X$
10090 ENDPROC
10100
10110 DEFPROCBOX(X%,Y%,L%,H%,C%,F%)
10120 LOCALV%,W%,I%,J%:REM - MODE7 ONLY
10130 PRINTTAB(X%,Y%);
10140 V%=VPOS:W%=POS:PRINTTAB(W%,V%-H%);CHR$C%;"7";
10150 FORI%=0TOL%+1:PRINT"£";:NEXT:PRINT"k"
10160 PRINTTAB(W%,V%+1);CHR$C%;"u";
10170 FORI%=0TOL%+1:PRINT"p";:NEXT:PRINT"z"
10180 FORJ%=V%-H%+1TOV%:PRINTTAB(W%,J%);CHR$C%;"5":NEXT
10190 FORJ%=V%-H%+1TOV%
10200 PRINTTAB(W%+L%+3,J%);CHR$C%;"j":NEXT
10210 IF F%GOTO10320
10220 PRINTTAB(W%+2,V%);CHR$135;
10230 FORI%=1TOL%:PRINT".";:NEXT
10240 PRINTTAB(W%+3,V%);:X$=""
10250 G$=GET$:IF ASCG$=13 GOTO10320
10260 IF LENX$=L%OR ASCG$=127 GOTO10280
10270 PRINT G$;:X$=X$+G$:GOTO10250
10280 IF X$="" GOTO10250
10290 X$=LEFT$(X$,LENX$-1):PRINTCHR$8;
10300 IF ASCG$<>127 GOTO10270
10310 PRINT".";CHR$8;:GOTO10250
10320 ENDPROC
10330
10340 DEFPROCRET
10350 PRINTTAB(5,19);CHR$131;"Press";
10360 PRINTCHR$132;CHR$157;CHR$129;"RETURN ";CHR$156;
10370 G$=GET$:CLS:ENDPROC
10380
10390 DEFPROCWARBLE
10400 FORS%=1TO20:SOUND1,-12,30,1
10410 SOUND1,-12,100,1:NEXT:ENDPROC
10420
10430 DEFPROCBOING
10440 SOUND 0,-15,80,2:FOR S%=-15 TO 0
10450 SOUND1,S%,20+S%,2:NEXT:ENDPROC

PROCRET
The instruction to the user, 'Press RETURN', is so often used that it is
well worth while having a little procedure to give it and to wait until
a key is pressed. This procedure prints a very attractive and eye-

4 Introduction

catching instruction, with 'Press' in yellow, and 'RETURN' in red on
a dark blue background. No parameters are passed to the procedure,
but the TAB position may require alteration to suit different
circumstances.

PROCWARBLE
A little sound routine used as an audible signal that the user has won
a game or done something good.

PROCBOING
Another little sound for the opposite effect. It sounds rather like a
recalcitrant sofa spring and nobody can doubt its message!

Close examination of the above procedures in various parts of the
book will reveal small but significant differences here and there. This
is because I have taken the view that readers interested in only one
or two programs will not wish to duplicate these procedures as
outlined above and so will not need some of their features;
PROCBOX is a case in point. In the individual listings, therefore, I
have included only those features needed by that particular program.
If you copy the listings as shown you may be confident that they will
run correctly. On the other hand, if you follow the method outlined
above, re-using the saved procedures, the programs will still run
correctly, although features will be included in a particular program
that may not be used within it.

A good illustration of this is PROCBOX, which in its complete
form allows the user to type an input within the box, the length of
input being indicated by the number of white dots. Many of the
listed programs do not require this facility, which (together with the
necessary ability to delete or correct an input before RETURN)
makes PROCBOX rather long. The listings not requiring an input of
this nature therefore do not show this part of PROCBOX.

In the pursuit of readability, I have spread out the listings a little
by the insertion of empty lines. These show a line number only.
Empty lines may cause a little bewilderment to newcomers, because
of course if you type a line number only, followed by RETURN,
nothing is recorded. Moreover, if there was a line with that number,
it is now erased! In fact, the empty lines are easy to achieve: if you
wish to incorporate them into your own programs for the purpose of
breaking up the listings and making them easier to read, the trick is
to type the line number and then one or more spaces, before
pressing RETURN.

One other trick to aid readability - which unfortunately we
cannot show in printed form - is to incorporate colour into REM
statements. If you do this, note that the colour byte mentioned earlier
MUST be preceded by inverted commas:

Introduction 5

250 REM " This remark is in colour

where the CHR$131 byte (or whatever) follows the inverted
commas. It is also worth noting that, if a line is never processed
during run time, the REM is not needed, so that

250 " This remark can be in colour
260 " and so can this, as long as they are not processed.

are perfectly OK and will always show in colour when the program
is listed. Such lines are very usefully placed before procedures in
long programs and allow you to scan a listing swiftly. For obvious
reasons, these tricks have not been incorporated in the current
listings.

Tired of all that typing? All of the programs listed in this book are
available on cassette from:

Leasalink Viewdata Ltd
Electron House
Bridge Street
Sandiacre
Nottingham NG10 5BA

Leasalink are also main distributors for the BBC computer.

6 Introduction

