
21

Readnum

Here is a program that will give your kids practice in reading and
understanding numbers, for it asks in English for a digital equivalent.
For example, 'Type seven thousand three hundred and fifty eight'.
The user is then expected to type 7358. The program will handle any
number of digits from one to nine, so that young children can start to
handle problems like, 'Type three', while older children will have
things like 'Type seventy seven million, three hundred and four
thousand, nine hundred and twenty'.

If the input is incorrect, help is at hand, for the program will say,
'I asked you for eighty seven. You typed 800 - eight hundred'. In this
way, the number values are constantly reinforced and results are
guaranteed.

The program is written around the subroutine starting at line 380.
It is recursive, which is to say that it constantly calls itself as a
subroutine. This definition immediately brings to mind two
questions: (a) how do you get out of it, and (b) what is the purpose?

The first is no great trouble. One simply counts the number of
recursive calls and ensures that there are the same number of
RETURN commands encountered. The purpose of a recursive
routine is to save programming space when the same operations or
sequence of operations are to be performed repeatedly on data.

When we look at a set of digits such as 12345 and translate it as
'twelve thousand, three hundred and forty five', we have scanned
the set of digits with the eye, starting from the right, and broken it
down into groups of three. Each group of three has a name -
thousands, millions - and within the group the digits are again given
names such as hundreds, tens and units. The highest pair of digits
that can be expressed as a single word - twelve, fifteen, or twenty - is
detected, and as a postscript we add the name of the group.

To do the job, a computer program must follow the same rules,
and since the operations performed on each group are the same, the
program becomes recursive.

'Readnum' was first developed when a parent expressed concern
that her child could not read numbers. It was altered slightly for 26
Programs for Your Micro (Newnes Technical Books, 1982), and is
here altered again to take advantage of the colour and double-size
print offered by the BBC computer. It will find a variety of uses in the
educational field, but even if you never use the program, it is worth
'hand-running' simply in order to get a feel for what a recursive
program is and how it operates.

The bulk of the program listing is either straightforward or, in the
case of the procedures, described elsewhere in this book, so we can
move straight to a consideration of the subroutine.

Let us take for our example the value given - 12345. (You can try
other, larger, numbers for yourself.) On entry into the routine at line
380, N contains our value 12345. At line 400 we are routed to line
500, where S is given the value 12345 and N is reduced to 12. This
is our new N and the subroutine calls itself again, so we start back at
380.

This time, we pass line 400 and at 410 are routed to line 620.
The READ pointer is restored to the beginning of the data (at line
770) by the RESTORE statement of line 620, and then we are routed
to line 690. Lines 640 and 650 cause 'twelve' to be written into A$,
and then calls PROCS and PROCD cause the word 'twelve' to be
printed on the screen. Going back to line 660, a RETURN statement
is encountered. Unreeling itself, BASIC will find that its last GOSUB
command was encountered at line 510, so command returns to the
line following, at 520, which causes a printout of the word
'thousand'.

78 Readnum

At line 540, N is given a new value by picking up the old value
from the variable S and removing the thousands value. We are left
with 345, and line 570 causes the process to repeat.

Again I recommend hand-running the program, using different
numbers. The experience will teach you more about recursive
subroutines than will a million words of text.

Variables

D% Digits in the problem
PR% Number of current problem
N% Value chosen for current problem
N1 Copy of above
A$ General print string
TR% User's tries
V Numeric value of user's input
Q$ Dummy
N$ User's input as string
B Billions held over
M Millions held over
S Thousands held over
H Hundreds held over

Readnum 79

 10 REM - Readnum
 20 MODE7
 30 PROCDBL(5,5,131,"READING NUMBERS")
 40 PRINTTAB(6);CHR$131;"_______________"
 50 PRINT"How many digits should the highest"
 60 PRINT"number have? (6 digits = 999999 maximum,";
 70 PRINT"but the program will handle any number"
 80 PRINT"of digits from 1 to 9.)"
 90 REPEAT:INPUT'"Your choice",D%:UNTIL D%>=1 AND D%<=9
 100 REPEAT:INPUT"How many problems",PROB%:UNTIL PROB%>=1
 110
 120 REM - Game loop
 130
 140 TR%=0:FOR PR%=1 TO PROB%
 150 CLS:N=RND(10^D%)-1:N1=N
 160 PRINT'CHR$133;"Problem ";PR%
 170 PROCDBL(0,3,131,"Type the number -"):PRINT:A$=""
 180 TR%=TR%+1:IF D%=1 AND N=0 PROCS("nought"):GOTO200
 190 GOSUB380

 200 PROCS("."):PRINTTAB(12,15);:PROCBOX(D%,4)
 210 IF V<>N1 GOTO250
 220 PROCP:PROCDBL(13,18,129,CHR$136+A$)
 230 PROCWARBLE:PROCDBL(12,22,130,"Press RETURN...")
 240 INPUT Q$:GOTO310
 250 CLS:PROCDBL(0,1,133,"I asked you for")
 260 N=N1:GOSUB380:PROCS(".")
 270 PROCDBL(0,11,133,"You typed "+N$)
 280 N=V:GOSUB380
 290 PROCDBL(0,22,129,"Press RETURN to try again...")
 300 INPUT Q$:CLS:N=N1:GOTO160
 310 NEXT PR%
 320 CLS:PROCDBL(5,7,131,"The End")
 330 PRINT'''"You did the"''PR%-1;" problems in ";TR%;"
tries."
 340 END
 350
 360 REM - Print numbers in English
 370
 380 IF N>1E9 GOTO420
 390 IF N>1E6 GOTO440
 400 IF N>1E3 GOTO500
 410 IF N>99 GOTO560 ELSE GOTO620
 420 B=N:N=INT(N/1E9):GOSUB380:PROCS("billion")
 430 N=B-INT(B/1E9)*1E9:IF N=0 RETURN ELSE PRINT:PRINT
 440 M=N:N=INT(N/1E6)
 450 GOSUB380
 460 PROCS("million")
 470 N=M-INT(M/1E6)*1E6
 480 IF N=0 RETURN
 490 PRINT:PRINT
 500 S=N:N=INT(N/1E3)
 510 GOSUB380
 520 PROCS("thousand")
 530 PRINT:PRINT
 540 N=S-INT(S/1000)*1000
 550 IF N=0 RETURN
 560 H=N:N=INT(N/100)
 570 GOSUB620
 580 PROCS("hundred")
 590 N=H-INT(H/100)*100
 600 IF N=0 RETURN
 610 PROCS(" & ")
 620 RESTORE
 630 IF N>15 GOTO690
 640 FOR D=1 TO N+1
 650 READ A$:NEXT D
 660 A$=A$+" ":PROCS(A$):IF N<21 RETURN
 670 N=INT(N/10)*10
 680 IF N=0 RETURN
 690 IF N>19 GOTO730
 700 FOR D=1 TO N-9:READ A$:NEXT D
 710 IF N=18 A$="eighteen":GOTO660
 720 A$=A$+"teen":GOTO660
 730 FOR D=1 TO INT(N/10)+15:READ A$:NEXT

80 Readnum

 740 A$=A$+" ":PROCS(A$):N=N-INT(N/10)*10
 750 IF N=0 RETURN ELSE GOTO620
 760
 770 DATA no,one,two,three,four,five,six,seven,eight,nine
 780 DATA ten,eleven,twelve,thirteen,fourteen,fifteen
 790 DATA twenty,thirty,forty,fifty,sixty
 800 DATA seventy,eighty,ninety
 810
 820 DEFPROCDBL(X%,Y%,C%,X$)
 830 PRINTTAB(X%,Y%);CHR$141;CHR$C%;X$
 840 PRINTTAB(X%,Y%+1);CHR$141;CHR$C%;X$:ENDPROC
 850
 860 DEFPROCS(X$)
 870 PROCD(POS,VPOS)
 880 PRINTCHR$(11);
 890 ENDPROC
 900
 910 DEFPROCD(X%,Y%)
 920 IF X%>3 GOTO960
 930 PRINTTAB(0,Y%);CHR$141;CHR$131
 940 PRINTTAB(0,Y%+1);CHR$141;CHR$131
 950 X%=X%+2
 960 PRINTTAB(X%,Y%);X$
 970 PRINTTAB(X%,Y%+1);X$;
 980 ENDPROC
 990
 1000 DEFPROCBOX(L%,C%)
 1010 V%=VPOS:W%=POS
 1020 PRINTTAB(W%,V%-1);CHR$(C%+144);"7";
 1030 FOR I%=0 TO L%+1:PRINT"£";:NEXT:PRINT"k"
 1040 PRINTTAB(W%,V%+1);CHR$(C%+144);"u";
 1045 FOR I%=0 TO L%+1:PRINT"p";:NEXT:PRINT"z"
 1050 PRINTTAB(W%,V%);CHR$(C%+144);"5"
 1060 PRINTTAB(W%+L%+3,V%);CHR$(C%+144);"j"
 1070 PRINTTAB(W%+2,V%);CHR$135;
 1080 FORZ%=1TOD%:PRINT".";:NEXT
 1090 PRINTTAB(W%+3,V%);:N$=""
 1100 G$=GET$:IF ASC(G$)=13 THEN 1130
 1110 IF LEN(N$)>=D% THEN N$=LEFT$(N$,D%-1):PRINTCHR$8;
 1120 PRINTG$;:N$=N$+G$:GOTO1100
 1130 V=VAL(N$):ENDPROC
 1140
 1150 DEFPROCWARBLE
 1160 FORS%=1TO20:SOUND1,-12,30,1
 1170 SOUND1,-12,100,1:NEXT:ENDPROC
 1180
 1190 DEFPROCP
 1200 ON RND(6) GOTO1210,1220,1230,1240,1250,1260
 1210 A$="Right!":ENDPROC
 1220 A$="Hooray!":ENDPROC
 1230 A$="Clever old you!":ENDPROC
 1240 A$="Great!":ENDPROC
 1250 A$="Smashing!":ENDPROC
 1260 A$="How about that!":ENDPROC

Readnum 81

