
11

113

PROGRAM
STRUCTURE

The aim of this chapter is to help you write a large
assembler program. It gives several tips how to
produce structured and readable code which can be
debugged easily.

11.1 Where to start
There are two entirely different approaches which can
be used when producing a structured program. The
first is to work out what the program is going to do
and what it is going to look like before you start
writing any code. Then you can start by writing the
main loop which, for a game, could look something
like this:

.enter
 JSR initialise
.restart
 JSR setupscreen
.main
 JSR plotshapes
 JSR checkcollisions
 JSR keyboardscan
 JSR updatecoordinates
 JSR checkifdead

 BNE main loop
 DEC Iives
 BNE restart
 RTS

Although, at this stage, the subroutines have not
been defined, it is obvious from their names what
they are meant to do. The next task is to write these
subroutines, again breaking them down into simpler
routines if this is possible.

Since the main loop is the top level in the overall
structure, this method is known as 'top-down'
approach. Its advantage is that you know what you
are aiming at right from the start. You shouldn't need
any 'fixes' in the subroutines to make up for the fact
that when you wrote them you didn't make them
apply to all cases eventually required.

The alternative method is to start by writing the
individual routines and then to add the code which
joins them together into the final program. The
advantage of this method is that all routines can be
tested individually before very much effort has gone
into the program. Consider how much time would be
wasted if you used the first method and completed
the whole program except for one routine which
proved impossible to write in such a way that it
performed satisfactorily.

In practice most people use a mixture of the two
methods, so that any demanding routines are written
first; then the top-level is written, followed by the rest
of the program.

11.2 Self-documenting code
Long, directly referential variable names are a good
idea when writing a program as they make the
program more intelligble, e.g. 'JSR
updatecoordinates' is better than 'JSR label2'. These
may make the source code longer, but the problem
can be overcome by splitting up the code into
separate sections and compiling these individually as
described in chapter 10 (Large assembler programs).
Note that the fewer JMP's there are, the easier it is to
follow the flow of control. Hence, using macros rather
than subroutines also helps to increase the clarity of
the code.

114

PROGRAM STRUCTURE

11.3 Parameters
Parameter passing is also recommended in assembler,
for precisely the same reasons as it is in BASIC, viz. It
enables a single block of code to be used for more
than one purpose. However, the method of achieving
this is somewhat different. Parameters are usually
passed in the three registers A, X and Y, or
alternatively the X and Y registers are used to specify
an address of an information block, and the A register
then holds some other information. A third method is
to pass parameters in specified locations, so enabling
an arbitrary number of parameters to be passed. This
method doesn't support nesting or recursion,
however.

The CALL statement
This statement, which is used to transfer control from
a BASIC program to a machine code program, can
also pass parameters. When it is used, the bottom
bytes of the BASIC variables A%, X% and Y% are
transferred to the A, X and Y registers respectively.
Also the lowest bit of C% is transferred to the carry
flag.

Control is passed to the address given after the
CALL statement and any parameters following this
address are put into the parameter block starting at
&600. The parameter block is of the following format:

&600 Number of parameters
&601 Parameter address (low byte)
&602 Parameter address (high byte)
&603 Parameter type
&604 Parameter address (low byte)

The parameter types are as follows:

Type 0 8-bit byte
Type 4 32-bit word
Type 5 40-bit floating point string
Type 128 ATOM string
Type 129 Microsoft string

In the case of a string parameter the address given
points to a 'string information block', which contains
the following:

Start address of the string
Number of bytes allocated

115

PROGRAM STRUCTURE

Current length of string

An example of a CALL statement is

CALL enter,fred,A$

This would cause the machine code from 'enter' to be
executed and the parameters 'fred' and 'AS' would be
described in the parameter block as follows:

116

PROGRAM STRUCTURE

| 02 | C7 | 0E | 05 | DO | 0E | 81 | ?? | ?? | ?? |

 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609

The USR function
Another way of transferring control to a machine
code routine is via the USR function. The differences
between CALL and USR are that USR returns a result,
a four-byte number consisting of the Status, Y, X and
A registers (most significant byte to least significant
byte), and takes only one parameter which is the
address to which control is transferred.

11.4 Size of routines
All routines, whether in BASIC or assembler, should
be as small as possible, so that they can be seen easily
in their entirety. This is another real help when
debugging. Debugging is often overlooked when
estimating the time needed to write a program, and
yet it is probably true to say that at least 50% of the
time taken to write a program is taken up with
debugging.

11.5 Conditional assembly as an aid to debugging
Conditional assembly can be used to insert extra
instructions which print out intermediate values
during debugging: these statments can be removed
when the program is finally assembled. To do this a
logical variable ('flag' in the following example) is
given the value FALSE during debugging and TRUE
otherwise. In the following example, if 'flag' is FALSE
a routine to print the value of the accumulator in
hexadecimal notation is assembled, and calls to this
routine is inserted at two relevant points in the test
program.

 10 REM print hex digits
 20 DIM code 100
 30 oswrch = &FFEE
 4O FOR pass = 0 TO 3 STEP 3
 50 P% = code
 60[OPT pass
 70.enter CLC : ADC #&40 :]
 80 IF flag = FALSE [OPT pass : JSR debug :]
 90[OPT pass
100 BEQ exit : SBC #&10 :]
110 IF flag = FALSE [OPT pass : JSR debug :]
120 [OPT pass
130.exit RTS :]
140 IF flag THEN 360
150[OPT pass
160 # print hex digits
170.print
180 AND #&0F Get bottom four bits
190 CMP #&0A if less then 10 then miss
200 BCC P% + 4 the next instruction
210 ADC #&06 Add 7 (6 + carry)
220 ADC #ASC"0 " ADD ADC (0)
230 JMP oswrch Write the character
240 # print A in hex
250.debug
260 PHA
270 PHA
280 LSR A Exchange top four bits
290 LSR A for bottom four bits
300 LSR A
310 LSR A
320 JSR print Print out first hex character
330 PLA
340 JSR print Print second hex character
350 PLA Restore original value of A
360 RTS Return
370]
38ONEXT pass

117

PROGRAM STRUCTURE

The program works by finding out whether or not
the four bits corresponding to each hex digit represent

a number less than ten. If it is less than ten then the
value ASC ("0") is added and the character, which will
be a number 0... 9 will be printed. If it is greater than
or equal to ten then a number equivalent to ASC ("A-
10") is added so that ten will be printed as A, eleven
as B etc.

For debugging purposes this program is
assembled by typing

15 flag = FALSE
RUN

The program can then be executed for various
values of A% by typing

A% = &12 : CALL enter

The final version of the program is assembled,
without the debugging aids, by typing

15 flag = TRUE
RUN

11.6 Lower case variable names
As a convention, lower case is used for variable
names. Most people consider this to make the code
more readable. It also means that there is no chance of
using variable names that conflict with BASIC's
keywords e.g. 'print' can be used as a variable name,
even though PRINT cannot).

11.7 Constants
Constants are used to give names to numbers which
will be used several times throughout a program.
They help to make the code easier to understand, e.g.

LDX #initial-lives

explains far better what is happening than

LDX #3

Using constants has another advantage - if a value
needs to be changed and constants have been used,
only the definition of the constant would need to be
altered, rather than every occurrence of that value.

Some languages support constants and variables

118

PROGRAM STRUCTURE

as totally different data types, and make it impossible
to change the value of the constant. BASIC does not
treat variables and constants differently (except for
it's own constants, e.g. PI) and so it is up to the
programmer to make sure that any constants defined
retain their value. One convention used for this is to
prefix all constants with a pound (£) sign as a
reminder.

11.8 Lookup tables
Lookup tables are useful when converting one value
to another. As an example consider the following:

LDY index
LDA table, Y

In this example the value of A is dependent upon
the value of Y. The example consists of a table of
values, starting at 'table'.

Note that the above assembler is directly
equivalent to the BASIC 'A=table?index'.

The values in 'table' could be the values of a
palette, for example

119

PROGRAM STRUCTURE

.table
 EQUB &3 # Colour 0 is yellow
 EQUB &1 # Colour 1 is red (default)
 EQUB &6 # Colour 2 is cyan
 etc.

Thus lookup tables should be used wherever it is
necessary to produce a value from another value, but
only when there is no simple realationship between
the two.

11.9 Use of absolute addresses
A mark of a good assembler program is that it will
contain no absolute addresses in the assembler source
code. Thus, if a data table starts at location &30F6, a
constant should be set up initially to have the value
&30F6, and the constant used in the assembler code,
not the number &30F6. This follows on from the
above points, and also makes the code easier to read
and alter.

120

