
4

53

LOGICAL
OPERATIONS, SHIFTS
AND ROTATES

We have seen previously that each byte or memory
location is made up of eight bits, each of which can be
set to the value 0 or 1. Although the operations we
have considered so far have treated the whole byte as
the smallest quantity being dealt with, many
operations in the computer's instruction set are best
considered as operations which act on eight separate
bits. Some of these perform such important tasks as
changing the case of characters, or multiplying and
dividing.

4.1 Logical operations
Logical operations are performed between the
individual bits of two operands; one of the operands
is always the accumulator and the other is a memory
location or immediate value. In this section three such
operations are introduced; AND, OR and EOR. A
truth table is used to give a compact description of
each operation. This takes two single bit inputs
which, for convenience, we call A and B, and shows
the bit which is produced as a result of ANDing,
ORing or EORing them together. This is known as
Boolean logic after its inventor, George Boole.

AND



Mnemonic Description Symbol
AND AND accumulator with
memory A=A AND M

Truth table:
A B Output

0 0 0
0 1 0
1 0 0
1 1 1

The AND operation sets a bit of the result to a 1
only if the corresponding bit of one operand is a 1
AND the corresponding bit of the other operand is a
1; otherwise the bit in the result is a zero, e.g.

54

LOGICAL OPERATIONS,SHIFTS AND ROTATES

               Hexadecimal        Binary

operand 1          A9         1 0 1 0 1 0 0 1
operand 2          E5         1 1 1 0 0 1 0 1
                   --         ---------------
result of AND      Al         1 0 1 0 0 0 0 1
                   --         ---------------

One way of thinking of the AND operation is that
one operand acts as a 'mask', and only where there
are ones in the mask do the corresponding bits in the
other operand 'show through'; otherwise, the bits are
zero.



OR
Mnemonic Description Symbol
ORA OR accumulator with A=A OR M 

memory

Truth table:

A B Output

0 0 0
0 1 1
1 0 1
1 1 1

The OR operation sets a bit of the result to a I if the
corresponding bit of one operand is a 1 OR the
corresponding bit of the other operand is a 1, or
indeed, if they are both ones; otherwise the bit in the
result is zero, e.g.

55

LOGICAL OPERATIONS,SHIFTS AND ROTATES

          Hexadecimal             Binary

operand 1          A9         1 0 1 0 1 0 0 1
operand 2          E5         1 1 1 0 0 1 0 1
                   --         ---------------
result of OR       ED         1 1 1 0 1 1 0 1
                   --         ---------------

Exclusive-OR

Mnemonic Description Symbol
EOR Exclusive-OR accumulator A=A EOR M 

with memory

Truth table:

A B Output

0 0 0
0 1 1
1 0 1
1 1 0



The Exclusive-OR operation is like the OR
operation, except that a bit in the result is set to I only
if the corresponding bit of one operand is a 1, or if the
corresponding bit of the other operand is a I, but not
if they are both ones, e.g.

56

LOGICAL OPERATIONS,SHIFTS AND ROTATES

          Hexadecimal             Binary

operand 1          A9         1 0 1 0 1 0 0 1
operand 2          E5         1 1 1 0 0 1 0 1
                   --         ---------------
result of EOR      4C         0 1 0 0 1 1 0 1
                   --         ---------------

Another way of thinking of the Exclusive-OR
operation is that a bit of the result is 1 if and only if
the corresponding bits in the operands are different.

Example - converting lower to upper case
The following example converts all characters entered
in lower case to upper case. See Appendix A for the
ASCII character set.

.loop 
   JSR osrdch         Get character 
   AND #&DF           Make case bit zero 
   JSR oswrch         Print it 
   JMP loop           And do it again

Try altering this using the 'ORA' instruction to
convert all characters to lower case. When you have
succeeded in doing this try writing a routine to swap
case.

4.2 The BIT instruction
This instruction is available to test whether individual
bits of a number are set or not.

Mnemonic Description
BIT Compare memory bits with accumulator

The instruction AND's the bits of the accumulator
and the memory. The zero and negative flags are set



or cleared as a result of this operation; Z=1 if the
result was 0 and N = top bit, V = bit 6 of contents of
location.

Hence BIT may be used to test any bit of the memory
by loading the accumulator with a value containing a
1 in the relevant position and 0's everywhere else.
Then the values 0 and 1 for Z show whether the bit
was or was not set respectively, e.g.

LDA #4        4=00000100
BIT addr
BEQ bit-not-set

If addr contained, for example, &43 (01000011)
then the branch would occur. If, however, addr
contained &44 (01000100) then the branch would not
take place. Bit differs from the AND instruction in
that it does not corrupt the accumulator.

4.3 Rotates and shifts
The rotate and shift operations move the bits in a byte
either left or right.

Mnemonic Description 
ASL arithmetic shift left 
ROL rotate left 
LSR logical shift right 
ROR rotate right

The ASL instruction moves all the bits one place to
the left; what was the high-order bit is put into the
carry flag, and a zero is put into the low-order bit of
the byte. The ROL instruction is identical except that
the previous value of the carry flag is put into the
low-order bit instead of zero.

The right shift and rotate right instructions work in
a similar way except that the bits are shifted to the
right.

57

LOGICAL OPERATIONS,SHIFTS AND ROTATES

ASL - Arithmetic shift left one bit

C           7   6   5   4   3   2   1   0      0



Example -- multiplying by two
The most efficient way to multiply a two-byte
number, stored in 'addr' and 'addr + 1', by two, is to
shift the contents of the two bytes one place to the
left. Where 'addr' and 'addr+1' are the addresses of
the locations storing the low and high bytes of the
number being doubled, use the following two
statements:

ASL addr
ROL addr + 1

This works by using the carry to hold the bit that falls
off the end of 'addr', and then using the ROL
statement, which puts the carry into the correct place
in the high-order byte.

58

LOGICAL OPERATIONS,SHIFTS AND ROTATES

LSR - Logical shift right one bit

7   6   5   4   3   2   1   00

7   6   5   4   3   2   1   0       C

7   6   5   4   3   2   1   0 

ROR - Rotate right one bit

C

C


