
5

59

ADDRESSING MODES

So far we have met two addressing modes. One of
these is absolute addressing as in

LDA addr

which, when executed, loads the accumulator with
the contents of the location whose address is 'addr'.
The other is immediate addressing as in

LDA #&81

which, when executed, loads the accumulator with
the actual value &81.

However, other addressing modes exist and one of
the most important, 'indexed addressing', is
introduced here prior to a summary exposition of all
the addressing modes available to the 6502 processor.

5.1 Indexed addressing
In this addressing mode one of the index registers (X
or Y) is added to the address as an offset which gives
the precise location for the stored data. For example,
we can write:

LDA addr, X

If X contains zero this instruction will behave just
like 'LDA addr'. However, if X contains 1 it will load
the accumulator with the contents of 'one location
further on from addr'. Since X can contain any value
from 0 to 255, the instruction 'LDA addr,X' gives you
access to 256 different memory locations. If you are
familiar with BASIC's byte vectors you can think of
'addr' as the base of a vector, and of X as containing
the subscript, e.g.

addr?7 = 12

is equivalent to

LDA #12
LDX #7
STA addr, X

5.2 String types
Two examples of the use of indexed addressing are
given below, both involving strings. There are two
string types available for use in BASIC and
assembler; ATOM strings and Microsoft strings. An
ATOM string is a string of characters terminated by a
RETURN character. The name which identifies the
string is preceded by a dollar ($) sign and the strings
can be easily set up in BASIC, e.g.

$name = "Fred"

ATOM strings must have an area of memory set
aside for them. This can be done, as in the examples,
by using a DIM statement. The characters making up
the string are then stored in the location identified by
the name of the string. This is very useful as the
address of each character is then also known.

A Microsoft string is a string of characters
preceded by a byte which gives the length of the
string. In this case, the name of the string has a dollar
($) sign after it. It is more flexible than the ATOM
string because it can contain RETURN characters. Its
disadvantage is that all the characters making up the
string are stored in locations chosen by BASIC, hence
the addresses of these are not known.

Example - print inverted-case string
The following program uses indexed addressing to

60

ADDRESSING MODES

print out a string of characters terminated by a
carriage return (which is represented in the memory
by &D), swapping case as it prints out each character.

61

 10 DIM string 256, code 100
 20 oswrch = &FFEE
 30 FOR pass = 0 TO 3 STEP 3
 40 P% = code
 50[OPT pass
 60.enter
 70 LDX #0 Set index to zero
 80.loop
 90 LDA string,X Get characters from string
100 CMP #&D Is it end of string ?
110 BEQ return If so, end
120 EOR #&20 Else invert case bit
130 JSR oswrch Print it
140 INX Increment index
150 BNE Loop If string Longer than 256
160.return
170 RTS then end anyway
180]
190 NEXT pass
200 END

Assemble the program by typing RUN, and then
try the program by entering:

$string = "Test String"
CALL enter

Example-- index subroutine
Another useful operation, easily performed in a
machine-code routine, is looking up a character in a
string and returning its position in that string. The
following subroutine reads in a character, using a call
to the OSRDCH read-character routine, and saves in
'? found' the position of the first occurrence of that
character in '$target'. This is exactly the same as the
BASIC '?found =INSTR("ABCDEFGH",GET$)'.

 0 REM Index Rooutine
 10 DIM target 25,P% 100
 20 osrdch=&FFE0 : $target="ABCDEFGH" : found = &70

ADDRESSING MODES

 30[
 40.enter
 50 JSR osrdch Get character
 60 LDX#(LEN($target)-1) Length of string
 70. Loop
 80 CMP target,X Compare character
 90 BEQ match Got a match
100 DEX Try again
110 CPX #255 Until end of string
120 BNE loop
130.match
140 INX The position in the
150 STX found string is stored
160 RTS Return
170]
180 END

62

The routine is entered at '.enter', and as it stands it
looks for one of the letters A to H.

5.3 Summary of addressing modes
The following sections summarise all addressing
modes that are available on the 6502, some of which
have been met already.

Immediate addressing
Use immediate addressing when the data for an
instruction is known at the time of writing the
program. In this mode the second byte of the
instruction contains the actual eight-bit data to be
used by the instruction. The '#' symbol denotes an
immediate operand.

Examples: LDA #value
CPY #flag + 2

LDA #7

Instruction

A9 07

A: 07

ADDRESSING MODES

Absolute addressing
Use absolute addressing when the effective address,
to be used by the instruction, is known at the time the
program is being written. In this mode the two bytes
following the op-code contain the 16-bit effective
address to be used by the instruction, the low byte
being given first, followed by the high byte.

Example: LDA address

Zero page addressing
Zero page addressing is a subset of absolute
addressing. They are similar in that the instruction
specifies the effective address to be used; the
difference between them is that in absolute
addressing the address used can be anywhere,
whereas in zero page addressing the address is in
zero page, i.e. from &0000 to &00FF. Hence this
address is only one byte rather than two. The
assembler will automatically produce zero-page
instructions.

Examples: JSR Loop
ASL &9A

63

LDA &3010

Instruction

AD 10 30

A: 34

&3010: 34

Data

LDA &80

Instruction

A5 80

A: 34

&0080: 34

Data

ADDRESSING MODES

Indexed addressing
Indexed addressing is used to access a table of
memory locations by specifying them in terms of an
offset from a base address. The base address is known
at the time that the program is written; the offset,
which is provided in one of the index registers, can be
calculated by the program.

In all indexed addressing modes one of the eight-
bit index registers, X and Y, is used in order to
calculate the effective address to be used by the
instruction. Five different indexed addressing modes
are available, and are listed below.

Absolute indexed addressing
The simplest indexed addressing mode is absolute
indexed addressing. In this mode the two bytes
following the instruction specify a 16-bit address
which is to be added to one of the index registers to
form the effective address to be used by the
instruction.

Examples: LDA tabLe,X
LDX palette,Y
INC score,X

Zero,X indexed addressing
Here, the second byte of the instruction specifies an
eight-bit address, which is added to the X-register to

64

LDA &3120,X

Instruction

B1 20 31

A: 78

&3132: 78

Data

X: 12

ADDRESSING MODES

give a zero-page address to be used by the
instruction.

Note that in the case of the LDX instruction a
'zero,Y' addressing mode is provided instead of the
'zero,X' mode.

65

LDA &80,X

Instruction

B6 80

A: 78

&0082: 78

Data

X: 02

Examples: LSR &80,X
LDX addr,Y (where addr+Y is in zero page)

Indirect addressing
It is sometimes necessary to use an address which is
actually computed when the program runs, rather
than being an offset from a base address or a constant
address. In this case indirect addressing is used.

Indirect addressing is distinct from direct
addressing (i.e. absolute, indexed, etc) in that the
address specified after the mnemonic is used to refer
to a location where the final address will be found.
Thus the machine does not go directly to the address,
but instead it goes indirectly, via the address given.

The indirect mode of addressing is available for
the JMP instruction. Thus control can be transferred to
an address calculated at the time the program is run.

Examples: JMP (&2800)
JMP (addr)

ADDRESSING MODES

For the dual-operand instructions ADC, AND, CMP,
EOR, LDA, ORA, SBC and STA, two different modes
of indirect addressing are provided: preindexed
indirect, and post-indexed indirect. Pure indirect
addressing can be obtained, using either mode, by
first setting the respective index register to zero.

Pre-indexed indirect addressing

Examples: STA (zerotable,X)
EOR (&60,X)

This mode of addressing is used when a table of
effective addresses is provided in zero page; the X
index register is used as a pointer to select one of
these addresses from the table.

In pre-indexed indirect addressing the second byte of
the instruction is added to the X register to give an
address in zero page. The two bytes at this zero-page
address are then used as the effective address for the
instruction.

66

LDA (&70,X)

Instruction

A1 70

&0075: 23 30 &3023: AC

Data

X: 05

A: AC

ADDRESSING MODES

Post-indexed indirect addressing
This indexed addressing mode is like the absolute,X
or absolute,Y indexed addressing modes, except that
in this case the base address of the table is provided
in zero page, rather than in the bytes following the
instruction.

In post-indexed indirect addressing the second
byte of the instruction specifies a zero-page address.
The two bytes at this address are added to the Y index
register to give a 16-bit address which is then used as
the effective address for the instruction.

Examples: ADC (&66),Y
CMP (pointer),Y

This last addressing mode is very useful. An example
of its use is given in the program below, which will
only work on a machine without a second processor
attached. It clears the screen.

67

LDA (&70),Y

Instruction

A1 70

&3553: 23

Data

Y: 10

A: 23

&0070: 43 35

 10 DIM MC% 100
 20 addr=&70

ADDRESSING MODES

 30 FOR pass =0 TO 2 STEP 2
 40 P%=MC%
 5O[OPT pass
 60.cls
 70 LDA #&58 High byte of start address
 80 STA addr+1
 90 LDY #0 Low byte of address,
100 STY addr and value to write to screen
110 TYA Put zero (black) into A
120.clsloop
130 STA (addr),Y Store zero
140 INY
150 BNE clsloop do 256 times
160 INC addr+1 Increment hi byte of adress
170 LDX addr+1 Set status register to addr
180 BPL clsloop Compare with top of RAM
190 RTS
200]
210 NEXT pass
220 MODE 4
230 COLOUR 129
240 CLS White out screen
250 A=GET Wait for a key
260 CALL cls Black out screen
270 COLOUR 128
280 END

68

ADDRESSING MODES

