
3

39

JUMPS, BRANCHES
AND LOOPS

When an assembler program has been assembled and
is being executed, the address of the next instruction
to be executed is kept in a register called the 'program
counter'. All the programs met so far have been
executed in the order that the instructions were
written, so the program counter has just steadily
increased until it reached the last instruction. This
chapter introduces the jump and branch instructions
which can make the program counter jump over
instructions or move back to previous ones to execute
them again. These instructions make it possible to
implement loops and perform different instructions
depending on the outcome of previous ones.

3.1 Jumps
Ordinary jumps

Mnemonic Description
JMP jump to instruction whose address is

given

The JMP instruction is followed by the address of
the instruction to be executed next, e.g.

JMP &E48 or JMP addr

Instead of describing the address by a number, we
can use a 'label' to indicate to the assembler where we
want to go. In the assembler, labels are variables
prefixed with a full stop (.).

 10 oswrch =&FFEE
 20 DIM P% 100
 30[
 40.enter
 50 LDA #ASC"*"
 60.Loop
 70 JSR oswrch
 80 JMP Loop
 90]
100 END

When the program is assembled the address
corresponding to the label '.loop' will be inserted in
the machine code. When the code is executed the
value of the program counter will be set to this
address and the CPU will collect its next instruction
from the location with that address and will continue
executing from there.

The label '.enter' at the start of the program has been
included so that this label can be called in order to
execute the program. This is a better way of executing
a program than calling TOP since TOP doesn't always
point to the first machine code instruction. This is true
for the above example since TOP will point to the
assignment statement 'oswrch=&FFEE'.

40

' * ' ' * ' ' * ' ' * ' ' * ' ' * '

JUMPS, BRANCHES AND LOOPS

The program will output an asterisk (*), and then
jump back to the previous instruction. The program
has become stuck in an endless loop! Compare this
program with the following BASIC program:

10 A = ASC"*"
20 VDU A
30 GOTO 20

A flowchart for this program is as follows:

To get out of the BASIC loop you press ESCAPE.
This will not automatically halt machine code
programs, however. To exit from a machine code loop
without losing the program you must press BREAK,
and then type 'OLD' to retrieve the original program.

Jumps to subroutines

Mnemonic Description
JSR jump to subroutine

Examples of this instruction have been used
previously. Like the JMP instruction it is followed by
a two-byte address, e.g.

41

Load A with '*'

Print from A

START

JUMPS, BRANCHES AND LOOPS

JSR oswrch

In this case the address of the instruction directly
following the JSR instruction in the code is noted, and
then the value of the program counter is set to the
address of 'oswrch'. The CPU will go to this address
for its next instruction and start executing the code
from there until it meets an RTS. This will set the
program counter to the address which was noted
earlier so that the CPU can then continue executing
the code following the JSR instruction. Subroutines
jumped to can either be part of the assembler
program or, as in this example, sub-routines which
exist in the operating system memory.

3.2 The zero and negative flags
There are several flags in the CPU which can be set or
cleared depending on the outcome of certain
instructions. The carry flag was introduced in the
previous chapter, this is set or cleared as the result of
an ADC (add with carry) instruction. Another very
useful one is the zero flag, called Z. This is set if the
result of the previous operation gave zero, and is
cleared otherwise, e.g.

LDA &80

would set the zero flag if the contents of &80 were
zero.

Similarly the negative flag, N, is set if the result of
the previous operation was negative in two's
complement notation, i.e. if the top bit was set, e.g.

LDA &80

would set the negative flag if the number stored in
location &80 was greater than 127 (01111111).

The conditions of all the flags are stored in a byte
called the status register (P), and each flag is
represented by one bit: e.g. the top bit of the status
register is set if N=1 and the bottom bit is set if C=I.

3.3 Conditional branches
Conditional branches enable the program to act on
the outcome of an operation. There are eight different
branch instructions, six of which are introduced.

42

JUMPS, BRANCHES AND LOOPS

Mnemonic Description Status
BEQ branch if equal to zero (ie Z=1)
BNE branch if not equal to zero (ie Z=0)
BCC branch if carry clear (ie C=0)
BCS branch if carry set (ie C=1)
BPL branch if plus (ie N=0)
BMI branch if minus (ie N=1)

The conditional branch instructions test the state of
the various condition flags, e.g. the zero flag and
negative flag. If the condition is not satisfied then it
carries on executing, but if the condition is satisfied
then the computer goes to the place indicated by the
byte following the branch op-code. This byte is stored
as a relative address, thus if you say

BCS notzero

the assembler works out the difference (in bytes)
between the current instruction and the place where
the label '.notzero' is, and puts this value after the op-
code. This means that the value of this byte is used, in
conjunction with the address of the current
instruction, to tell the CPU where to go next.

Because only a single byte is allowed in this
relative addressing mode, the branch instructions can
only point to one of 255 nearby bytes. The two's
complement representation of numbers is used to
give the offset relative to the current address.
Branches which point forwards are restricted to 0-127
bytes beyond the current location. The value of the
byte following the op-code for these is then 0-127.
Branches which point backwards to places at lower
addresses in memory require a negative value to be
added to the current location. These use the numbers
128-255 to represent the values -128 to -1.

The JMP instruction does not use relative
addressing; it is followed by two bytes which specify
the absolute address which will be the destination.
Hence the branch instruction is shorter than the jump
instruction, the jump being three bytes long (op-code
and two-byte address) and the branch being two
bytes long (op-code and one-byte offset). This
difference is automatically looked after by the
assembler.

The following simple program will print an

43

JUMPS, BRANCHES AND LOOPS

exclamation mark if 'character' contains zero, and a
star if it does not. The comments to the right of the
assembler statements may be omitted when you enter
the program.

44

 10 DIM P% 100
 20 character=&80
 30 oswrch = &FFEE
 40[
 50.enter
 60 LDA character
 70 BEQ exclamation If zero print '!'
 80 LDA #ASC"*" Star
 90 JSR oswrch Print it
100 RTS Return
110.exclamation
120 LDA #ASC"!" ExcLamation mark
130 JSR oswrch Print it
140 RTS Return
150]
160 END

A flowchart for this program is as follows:

START

 Look at
location &80

 is
it zero
 ?

Print '*' Print '!'

END END

JUMPS, BRANCHES AND LOOPS

Note that the above program can be made shorter,
by replacing the instructions

JSR oswrch
RTS

with the single instruction

JMP oswrch

Replacing JSR and RTS instructions by a JMP to a
subroutine reduces the size of both a source program
and the object code it produces, and hence increases
execution speed.

Now assemble the program by typing RUN. You
should get the message:

No such variable at Line 70

This is because the assembler processes the mnemonic
instructions in the order in which they are listed in
the program. Therefore when it encounters 'BEQ
exclamation' it has not yet found the label
exclamation' so it cannot work out the offset which is
required in the following byte. This is known as the
forward-reference problem, and is easily overcome
using the method of two-pass assembly which is
explained below.

3.4 Two-pass assembly
When a program contains forward references it needs
to be assembled twice. During the first pass of the
assembler the addresses of all the labels are noted so
that during the second pass the offsets of the branch
instructions can be included. And the assembler must
be told not to worry when, during the first pass, it
comes across errors of the sort indicated above.

This can be done using the OPT statement, an
assembler directive which has a single parameter for
which the following values are possible:

OPT 0 No error messages, and no listing
OPT 1 No error messages, and listing
OPT 2 Error messages reported, and no listing
OPT 3 Error messages reported, and listing (Default)

45

JUMPS, BRANCHES AND LOOPS

Thus to suppress messages and a listing on the
first pass, and to restore them on the second pass, we
need to use OPT 0 and OPT 3 respectively. This can
be effected by placing the directive inside a FOR ...
NEXT loop, which goes from 0 to 3 in steps of 3. Then

the value of the control variable is used as the
parameter of the OPT statement. So, to alter the
program which was given above, simply enter these
lines:

 10 DIM code 100
 23 FOR pass = 0 TO 3 STEP 3
 26 P% = code
 30[OPT pass
145 NEXT pass

This time the error message will not be produced and
the correct offset will be calculated for the branch
instruction.

Note lines 10 and 26, which replace the old 'DIM
P% 100' statement. P% must be reset to the starting
value each time that the code is assembled.

46

JUMPS, BRANCHES AND LOOPS

Now execute the program by typing

CALL enter

and verify that the program behaves as it should for
different values in &80.

3.5 X and Y registers
The CPU contains two registers, called the X and Y
registers, in addition to the accumulator. As with the
accumulator, there are instructions to load and store
the X and Y registers:

Mnemonic Description Symbol
LDX load X register from memory X=M
LDY load Y register from memory Y=M
STX store X register to memory M=X
STY store Y register to memory M=Y

However, unlike the accumulator, the X and Y
registers cannot be used as one of the operands in
arithmetic instructions; they have their own special
uses which will be outlined later.

The X and Y registers are particularly useful as the
control variables in iterative loops, because four
special instructions exist which will either increment
(add 1 to) or decrement (subtract 1 from) their values.

Mnemonic Description Symbol
INX increment X register X=X+1
INY increment Y register Y=Y+1
DEX decrement X register X=X-1
DEY decrement Y register Y=Y-1

Note that these instructions do not affect the carry
flag: incrementing &FF will give &00 without
changing the carry bit. The zero and negative flags
are, however, affected by these instructions.

3.6 Iterative loops
The iterative loop enables the same set of instructions
to be executed a fixed number of times, e.g.

 10 DIM P% 100
 20 oswrch = &FFEE
 30[
 40.enter
 50 LDX #8 Initialise X

47

JUMPS, BRANCHES AND LOOPS

 60 LDA #ASC"*" Code for star
 70. Loop
 80 JSR oswrch Output star
 90 DEX Count it
100 BNE loop All done?
110 RTS
120] : END

A flowchart for the program is as follows:

48

JUMPS, BRANCHES AND LOOPS

START

X = 8

Print "*"

Subtract 1
from X

X = 0
 ?

END

yes

no

Assemble the program by typing RUN. This
program prints out a star, decrements the X register,
and then branches back if the result after
decrementing the X register is not zero. Consider
what value X will have on successive trips around the
loop and predict how many stars will be printed out;
then execute the program with 'CALL enter' and see
if your prediction was correct. (If you were wrong, try
thinking about the case where X was initially set to 1
instead of 8 in line 50.)

How many stars are printed if you change the
instruction on line 50 to 'LDX #0'?

3.7 Comparing values
In the previous example the condition X=0 was used
to terminate the loop. Sometimes we might want to
count up from 0 and terminate on some other
specified value. The compare instruction can be used
to compare the contents of a register with a value in
memory; if the two are the same, the zero flag will be
set. If they are not the same, the zero flag will be
cleared. The compare instruction also affects the carry
flag by setting it to 1 if the register is greater than or
equal to the value in memory, and 0 otherwise.

Mnemonic Description Symbol
CMP compare accumulator with A-M

memory
CPX compare X register with X-M

memory
CPY compare Y register with Y-M

memory

Note that the compare instruction does not affect
its two operands, it just changes the flags as a result
of the comparison.

The next example again prints eight stars, but this
time it uses X as a counter to count upwards from 0 to
8.

 10 DIM P% 100
 20 oswrch=&FFEE
 30[
 40.enter
 50 LDX #0 Start at zero
 60.loop

49

JUMPS, BRANCHES AND LOOPS

 70 LDA #ASC"*" Code for star
 80 JSR oswrch Output star
 90 INX Next X
100 CPX #8 All done?
110 BNE loop If not then repeat
120 RTS Else return
130]
140 END

In this program X takes the values 0, 1, 2, 3, 4, 5, 6,
and 7. The last time around the loop X is incremented
to 8, and the loop terminates. Try drawing a flowchart
for this program.

3.8 Using the control variable
In the previous two examples X was simply used as a
counter, and so it made no difference whether we
counted up or down. However, it is often useful to
use the value of the control variable in the program.
For example, we could print out the character in the X
register each time around the loop. The order in
which we want the characters would then determine
whether we count up or down. We therefore need a
way of transferring the value in the X register to the
accumulator so that it can be printed out by the
OSWRCH routine. One way would be to execute:

STX tempaddr
LDA tempaddr

where 'tempaddr' is not being used for any other
purpose. However, there is a more convenient way,
using one of four new instructions:

Mnemonic Description Symbol
TAX transfer accumulator to X X=A

register
TAY transfer accumulator to Y Y=A

register
TXA transfer X register to A=X

accumulator
TYA transfer Y register to A=Y

accumulator

Note that the transfer instructions only affect the
register being transferred to.

50

JUMPS, BRANCHES AND LOOPS

The following example prints out the alphabet by
making X cover the range A to Z.

51

JUMPS, BRANCHES AND LOOPS

 10 DIM P% 100
 20 oswrch = &FFEE
 30[
 40.enter
 50 LDX #ASC"A" Start with the Letter A
 60.loop
 70 TXA Put it in the accumuLator
 80 JSR oswrch Print it
 90 INX Next one
100 CPX # (ASC"Z"+1) Finished ?
110 BNE loop If so - continue
120 RTS Else return
130]
140 END

All these examples could have used Y as the control
variable instead of X in exactly the same way.

3.9 Conditional assembly
Assembler source text can contain tests, and assemble
different statements depending on the outcome of
these tests. This is especially useful where slightly
different versions of a program are needed for many
different purposes. Rather than creating a different
source file for each different version, a single variable
can determine the changes using conditional assembly,
e.g.

 10 DIM CODE%100
 20 char=&70
 30 oswrch=&F FEE
 40 osrdch=&FFEO
 50 beLL=7 Bleep = VDU 9
 60 prompt=ASC":"
 70 INPUT"bell",beLL$ Input 'bell$'
 80 bellflag=INSTR("Yy",bell$) bellflag' is true if
 90 FOR pass=0 TO 3 STEP 3 bell$ = 'y' or 'Y'
100 P%=CODE%
110[OPTpass
120.enter
130]

140 IF bellflag THEN [OPT pass:LDA #bell :JSR oswrch:]
150[OPT pass
160 LDA #prompt Load A with ':' prompt
170 JSR oswrch Print from A
180 JSR osrdch Read in a character
190 STA char store it at char and
200 JSR oswrch print it out
210 RTS
220]
230 NEXTpass

52

JUMPS, BRANCHES AND LOOPS

When this program is run it asks if you want the
computer to bleep or not and sets 'bellflag'
accordingly. Then when the machine code is executed
it inputs a character from the keyboard, bleeping if
'bellflag' is set to remind you that an input is
required, and prints out a character corresponding to
the first key pressed. This character is also saved at
the address 'char'.

