
SECTION 3

121

122

12

123

UTILITIES FOR
ASSEMBLER
PROGRAMS

This chapter consists of a number of routines which
are designed to be used in any assembler program.
Typical calls are given for each, as are the values to be
passed to the routines in the registers, and those
values to be returned by them.

Note that these routines are not meant to be
complete programs and cannot be run without
additional code being added, e.g. assignment of
values to any addresses being used and all the
necessary assembler directives. If you wish to use any
of these routines inside your own programs then the
comments to the right of the assembler statements
may be omitted. If the routines contain any BASIC
commands then any comments to the right of these
must be left out or preceded by REM statements.

12.1 Input/Output
Print BCD number -- printnumber
The 6502 microprocessor can perform arithmetic in
two ways. These are binary (normal addition), and
binary coded decimal (BCD). In the second method,
each byte is split up into two nibbles, each of which
can hold a decimal digit (0 to 9). Thus the largest
number that can be held in one byte using this
method is 99. The advantage of this method is that it

is easier to output a binary coded decimal number in
decimal than it is to output a straight binary number
in decimal.

The following routine takes a BCD number in the
accumulator and prints it, with leading zero
suppression, at the current cursor position.

On entry, A contains the number to be pnnted, Y
contains the leading zero flag (0 for no suppression,
else suppress zeros), and X contains the ASCII code of
the character to be printed in place of leading zeros.

A typical call to print out a two-byte BCD number,
with leading zeros being replaced by spaces, would
be:

124

UTILITIES FOR ASSEMBLER PROGRAMS

LDX #ASC" " Set Leading zero character to space
LDY #&FF Set Leading zero fLag
LDA highbyte Get top byte of number
JSR printnumber Print it
LDA lowbyte Get bottom byte of number
JSR printnumber Print it
 .
 .

On exit X has been preserved and A and Y will
have been corrupted.

.print number
 PHA Save number
 OPT FNrotateacc (4) Get top digit (See section 8.2)
 JSR printit Print it
 PLA Restore number
 AND #&0F Get bottom digit
.printit Fall through
 BNE validchar If non-zero print
 TYA Check zero flag
 BNE leadingzero If set must be leading zero
.validchar Digit ok
 LDY #&00 Clear zero flag
 ORA #ASC"0" Add in ASCII zero
 JMP oswrch Print, and return
.Leadingzero
 TXA Get leading zero character
 JMP oswrch Print and return

Keyboard scan -- inkey
This routine can be called to detect if a key is being
held down at a particular instant; it uses INKEY of
negative numbers.

On entry, X specifies the key to be tested. For
details of the values for each key, see the table of
INKEY negative numbers in Appendix A.

A typical call would be:

LDX #£firstkey
JSR inkey
BNE keypressed

On exit, the zero flag is set or cleared depending
upon the key's position at the time of testing. This
routine does NOT go via the keyboard buffer. A and Y
will have been preserved.

125

UTILITIES FOR ASSEMBLER PROGRAMS

.inkey
 PHA Save A
 TYA Save Y
 PHA
 LDY #&FF Negative numbers
 LDA #&81 osbyte &81 is INKEY
 JSR osbyte Do it
 PLA Restore Y
 TAY
 PLA Restore A
 CPX #&00 Adjust zero flag
 RTS and return

Sound
Sound routines are always useful in games programs.
The routine below works by using a table to hold all
the sounds that it is to play, and, on entry, the number
of the sound to be played is given. To set up the table,
the following could be used:

FOR offset = 0 TO <number of sounds> * 8 STEP 2
READ sndbuff!offset
NEXT offset
DATA 1,-15,200,2O
DATA 3,1,150,10
DATA etc.

Where 'sndbuff' is the table to be filled with
sounds, on entry, A holds the number of the sound to
be played. X and Y are irrelevant.

A typical call would be:

LDA #£firingsound
JSR sound

on exit, all registers will have been corrupted.

126

UTILITIES FOR ASSEMBLER PROGRAMS

.sound
 ASL A Multiply sound number by 8
 ASL A
 ASL A
 ADC #FNlo(sndbuff) add in address of sound table
 TAX Put low byte of addres in X
 LDY #Fnhi(sndbuff) Get hi byte in Y
 BCC nohibyte If carry then X and Y correct
 INY Else increment hi byte
.nohibyte
 LDA #&07 Osword 7 is SOUND
 JMP osword Do it and return

Print strings
ATOM style string -- atomstring
ATOM strings are defined as being groups of
characters terminated by a RETURN character (&0D).

On entry, X and Y hold the start address in
memory of the string to be printed (X holds low byte,
and Y holds high byte). A is irrelevant.

A typical call would be:

LDX #FNlo(hiscorestring)
LDY #FNhi(hiscorestring)
JSR atomstring

On exit, all registers will have been corrupted.

.atomstring
 STX stringptr Address of string to be printed
 STY stringptr + 1 is given in X and Y
 LDY #&00 Y is pointer along the string
.atomstringloop
 LDA (strinqptr),Y Get next character from string

 JSR oswrch Print it
 INY Increment pointer
 CMP #&0D Is character return
 BNE atomstringloop No? go back to start of loop
 RTS return

127

UTILITIES FOR ASSEMBLER PROGRAMS

Microsoft style strings -- microsoftstring
Microsoft strings are defined as being groups of
characters, preceded by a byte giving the length of the
string. A microsoft string can be set up as follows:

.fredstring
 EQUB LEN(fred$)
 EQUS fred$

On entry, X and Y hold the start address of the string
(X holds low byte, Y high byte). A is irrelevant.

A typical call might be:

LDX #FNlo(fredstring)
LDY #FNhi(fredstring)
JSR microsoftstring

On exit, all registers will have been corrupted.

.microsoftstring
 STX stringptr Address of string to be printed
 STY stringptr + 1 is given in X and Y
 LDY #&00 Set pointer to length byte
 LDA (stringptr),Y Get length of string
 STA len Save length
.stringloop
 INY Loop counter
 LDA (stringptr),Y Get next character from string
 JSR oswrch Print it
 CPY len Printed all chars?
 BNE stringloop No, go back to start of loop
 RTS Else return

Centre a string -- centre
This routine will centre up microsoft strings on the
current line of the cursor. The reason that only
microsoft strings can be centred using this routine is
that their length is far more accessible than the length

of an atom string, although the routine could be
adapted for atom strings.

The BASIC equivalent of the routine given below
is:

128

UTILITIES FOR ASSEMBLER PROGRAMS

PRINT SPC((screenwidth - LEN(A$)) DIV 2);A$

On entry, X and Y point to the string to be centred,
and A is irrelevant.

A typical call would be:

LDX #FNho(string) Point to string
LDY UFNhi(string)
JSR centre Centre it

On exit, all registers will have been corrupted.

.centre
 STX stringptr Save Low byte of start address
 STY stringptr + 1 Save high byte of start address
 LDY #&00 Prepare to get Length byte
 LDA #screenwidth Get screen width
 SEC
 SBC (stringptr),Y Subtract length
 LSR A Divide by 2
 TAX And transfer it to X
 LDA #ASC" " Stand by to print X spaces
.centre loop
 JSR oswrch Print a space
 DEX Decrement counter
 BNE centreloop and loop until counter is zero
 LDX stringptr Restore string pointers
 LDY stringptr+1
 JMP microsoftstring And print the string

Move cursor to X, Y -- printtab
This is a very simple routine to move the text cursor
to X, Y. It simulates BASIC's 'PRINT TAB (X, Y)'.

On entry, X and Y hold the X and Y coordinates of the
position that the text cursor is to be moved to, A is
irrelevant.

A typical call might be:

LDX #xcoord
LDY #ycoord
JSR printtab

On exit, X and Y will be preserved, and A will have
been corrupted.

129

UTILITIES FOR ASSEMBLER PROGRAMS

.printtab
 LDA #31 VDU 31 (move textcursor to X,Y)
 JSR oswrch
 TXA Send X coordinate
 JSR oswrch
 TYA Send coordinate
 JMP oswrch Do it and return

Double height characters - double
This next routine will only work in Teletext mode,
and is thus only suitable for the BBC microcomputer.

The BASIC equivalent of this routine is:

DEF PROCdouble(A$)
vpos% = VPOS : pos% = P0S
FOR string% = 0 TO 1
PRINT TAB(pos%, vpos% + string%);CHR$&8D; A$;
 CHR$&8C;
NEXT string%
ENDPROC

On entry, X and Y point to the string that is to be
printed in double height, A is irrelevant.

A typical call would be:

LDX #FNlo(string)
LDY# FNhi(string)
JSR double

On exit, all registers will have been corrupted.

.double
 STX stringptr Save start address of string
 STY stringptr +1
 LDA #&86 Read text cursor position
 JSR osbyte
 STX pos and store it
 STY vpos
 LDX #&02 Print string twice

 STX count
.double loop
 LDX pos Move cursor to X,Y
 LDY vpos
 JSR printtab
 LDA #&8D Teletext code for Double height
 JSR oswrch
 LDX stringptr Restore string start address
 LDY stringptr + 1 Either 'microsoft' or 'atom'
 JSR string To centre string JSR centre
 LDA #&8C Teletext Normal height code
 JSR oswrch
 INC vpos Move down a line
 DEC count Done it twice yet
 BNE doubleloop If not then do it again
 RTS Else return

130

UTILITIES FOR ASSEMBLER PROGRAMS

Palette handling - ospalette
This routine performs VDU 19, Y, A, 0, 0, 0.

On entry, Y contains the logical colour to be
defined, A contains the physical colour to change Y to.
(See section 9.4 for details of palette handling.) X is
irrelevant.

A typical call might be:

LDY #logicalcolour
LDA #physicalcolour
JSR ospalette

On exit, Y and X have been preserved, A has been
set to zero.

.ospalette
 PHA Save physical colour
 LDA #19 VDU 19
 JSR oswrch
 TYA Get logical colour
 JSR oswrch VDU it
 PLA Get physical colour
 JSR oswrch VDU it
 LDA #&00 Pad out with zeroes
 JSR oswrch
 JSR oswrch
 JMP oswrch and return

Another routine for those of you with Electrons or
BBC micros with 1.0 or 1.2 Operating Systems is to
change the palette with OSWORD 12. This has the
advantage of being able to be called from an interrupt
routine.

131

UTILITIES FOR ASSEMBLER PROGRAMS

.ospalette
 STY paletteblock Same format as VDU 19
 STA paletteblock
 LDX #FNIo(paletteblock) Note that all registers
 LDY #FNhi(paletteblock) are corrupted
 LDA #12
 JMP osword

This is called in the same manner as before. Note
that the 'paletteblock' must contain zeros in the last
three locations before the routine is called.

Wait for flyback - vsync
The next routine is a must for animation. It will wait
for the electron beam inside the VDU (Visual Display
Unit) to reach the top of the screen in BBC
Microcomputers or the bottom of the screen in Acorn
Electrons, and will then return. This is when all
shapes should be updated to avoid flickering.

On entry, all registers are irrelevant.

A typical call would be:

JSR vsync

On exit, all registers will have been corrupted.

.vsync
 LDA #19 Osbyte 19 is wait for vsync
 JMP osbyte (vertical sync roni sat ion)

or

.vsync This routine is only for Issue 0.10
LDA #&02 Operating Systems on the BBC micro
STA viaier This is at &FE4E
.vloop
BIT viaifr viaifr stands for Versatile
BEQ vloop Interface Adapter Interrupt Flag
LDA #&82 Register, which is at &FE4D
STA viaier
RTS

12.2 Analogue to digital routines
Analogue to digital value -- adval
This routine reads any A to D channel.

On entry, X holds channel to be read. Y and A are
irrelevant.

A typical call might be:

132

UTILITIES FOR ASSEMBLER PROGRAMS

LDX #1 Get value of channel 1
JSR adval

On exit, the value is returned in Y and X (Low byte
and high byte respectively).

.adval
LDY #0 Get ADVAL (X)
LDA #&80
JMP osbyte

Joystick handler --joystick
This routine reads either of the two joysticks
connected to the A to D converter. Note that the
sensitivity of the reading is dependant upon the
value of the constant 'joyrange' (0 - insensitive to
127 - very sensitive). The variables 'xcoord' and
'ycoord' are user variables.

On entry, X holds the number of the joystick to
be read (1 or 3). A and Y are irrelevant.

A typical call might be:

LDX #1 Get readings of first joystick
JSR joystick

On exit, all registers will have been corrupted.

.joystick
 STX temp Preserve joystick number
 JSR adval Get horizontal reading
 LDX temp Restore joystick number
 CPY #joyrange Is reading within Limit ?
 BCS tryleft See if within other limit
.right
 INC xcoord Go right
.tryleft

 CPY #256-£joyrange Is reading within limit ?
 BCC getotherpot No, try vertical component
.left
 DEC xcoord Go left
.getotherpot Get vertical component
 INX Get adval (joystick + 1)
 STX temp Preserve as before
 JSR adval Get reading
 LDX temp Restore joystick number
 CPY #joystick All this is as above
.down except that y coordinate
 DEC ycoord is being adjusted
.tryup
 CPY #256- joyrange
 BCC tryfire
.up
 INC ycoord
.tryfire Get fire button
 TXA Halve X (for fire button
 LSR A mask)
 STA temp (ADVAL (0) AND X DIV 2)
 LDX #0 Get ADVAL (0)
 JSR adval
 TXA X holds fire button status
 AND temp AND with mask
 BEQ exit Not held down, then exit
.fire
 JSR firebullet Else do something exit
.exit
 RTS Return

133

UTILITIES FOR ASSEMBLER PROGRAMS

Oscilloscope
The program displays the four A to D channels as
four different colours (colours 1 to 4). This program
will only work on the BBC Microcomputer Model B,
as it uses MODE 2, the Analogue to Digital converter,
and Hardware scroll. The program also only reads the
top eight bits of each channel, as the graphics vertical
resolution is only 256. Sampling of the channels takes
places every 1/50 of a second.

Some of the ideas in this program can be adapted
to other programs. Note the modular construction,
with each module as small as possible, so that it could
be debugged easily during development.

 10 REM Oscilloscope V1
 20 DIM code 512 Set aside area for code
 30 PROCassemble Assemble code
 40 MODE 2 Set up screen mode
 50 CALL oscilloscope Call machine code
 60 END
 70
 80 DEF PROCassemble
 90 osbyte = &FFF4 Set up variables
 100 oswrch = &FFEE constants
 110 top = &80 Zero page allocation
 120 screen = top + 2
 130 temp = screen + 2
 140 DIM colour 3,sidebuffer 255 Define vectors
 150 !colour = &030C0F30 Fill colour vector
 16O FOR pass = 0 TO 2 STEP 2
 170 P% = code
 18O[OPT pass
 190.osciIloscope Entry point
 200 JSR clearsidebuffer
 210 JSR readchannels
 220 JSR vsync
 230 JSR scrollscreen
 240 JSR writeside
 250 JMP oscilloscope
 260
 270.clearsidebuffer
 280 LDA #0 Set buffer to 0
 290 TAY Buffer is a page long
 300.clearloop
 310 STA sidebuffer,Y
 320 DEY
 330 BNE clearloop
 340 RTS
 350
 360.readchannels
 370 LDX #4 Get four chanels
 380.loop JSR adval
 390 LDA colour-1, X Get channel coour
 400 STA sidebuffer, Y Put reading in buffer
 410 DEX Get next channel
 420 BNE Loop
 430 RTS
 440
 450. vsync

134

UTILITIES FOR ASSEMBLER PROGRAMS

 460 LDA # 19 See section 12.1 for
 470 JMP osbyte OS 0.10 vsync routine
 480
 490.scrollscreen
 500 LDA top Top = 16 bit address
 510 STA temp
 520 LDA top+1 Store top DIV 8 in the
 530 LSR A 6845 CRTC chip. See
 540 ROR temp section 9.3 for
 550 LSR A details of screen
 560 ROR temp scrolling
 570 LSR A
 580 ROR temp
 590 LDX #12 Register 12 & 13
 600 JSR os6845 hold start addres of
 610 LDX # 13 memory to be displayed
 620 LDA temp
 630 JSR os6845
 640 # Now increment top
 650 CLC Adjust variable that
 660 LDA top holds start address
 670 ADC #8
 680 STA top
 690 LDA top + 1
 700 ADC #0
 710 BPL validaddress
 720 SEC Allow for wraparound at
 730 SBC #&50 &3000 / &8000 barrier
 740.validaddress
 750 STA top+1
 760 RTS
 770
 780.writeside Dump buffer to screen
 790 LDX #&FF Start at top of buffer
 800 LDY #0 Set offset to zero
 810 LDA top Add &270 to top
 820 CLC to right-hand side of
 830 ADC #&70 the screen
 840 STA screen
 850 LDA top+1
 860 ADC #2
 870 BPL validaddress2
 880 SEC Again allow for
 90 SBC #&50 wraparound
 900.validaddress2

135

UTILITIES FOR ASSEMBLER PROGRAMS

 910 STA screen+1
 920.outerloop
 930 LDA sidebuffer,X Get next byte from buffer
 940 STA (screen),Y Store to screen
 950 DEX Adjust buffer pointer
 960 INY Every 8 bytes down,
 970 CPY # 8 the program must add in
 980 BNE outerloop &280 to the address ,in
 990 LDY #0 order to move to the next
1000 LDA screen line
1010 CLC
1020 ADC #&80
1030 STA screen
1040 LDA screen + 1
1050 ADC # 2
1060 BPL validaddress3
1070 SEC
1080 SBC #&50
1090.validaddress3
1100 STA screen + 1
1110 CPX #&FF Buffer all transferred to
1120 BNE outerloop screen ?
1130 RTS
1140
1150.adval
1160 TXA Preserve channel pointer
1170 PHA
1180 LDY # 0 Get adval(X)
1190 LDA #&80
1200 JSR osbyte
1210 PLA Restore channel pointer
1220 TAX
1230 RTS
1240
1250.os6845
1260 PHA Perform
1270 LDA #23 VDU23; X, A, 0; 0; 0;
1280 JSR oswrch To put A into 6845
1290 LDA #0 register X
1300 JSR oswrch
1310 TXA
1320 JSR oswrch
1330 PLA
1340 JSR oswrch
1350 LDX #6

136

UTILITIES FOR ASSEMBLER PROGRAMS

1360 LDA #0
1370.pad
1380 JSR oswrch
1390 DEX
1400 BNE pad
1410 RTS
1420]
143ONEXT pass
1440 ENDPROC

137

UTILITIES FOR ASSEMBLER PROGRAMS

12.3 Numerical routines
MOD -- mod
This routine can be useful when rounding numbers
down, or when the remainder of a value is wanted,
and the AND instruction cannot be used (e.g. value
MOD 3). Note that this method is not one to be
recommended for anything other than single byte
operations, as the method of repeated subtraction
would then be too slow. Also, there is no error
checking procedure, so setting Y to 0 would cause the
routine to loop forever.

On entry, A holds dividend, and Y holds the
divisor. X is irrelevant.

A typical call might be:

LDA #dividend
LDY #divisor
JSR mod

On exit, A holds the remainder, X and Y are
preserved.

.mod Performs A = A MOD Y
 STY temp Store divisor in temporary location
 SEC Set carry (for subtraction)
.modloop
 SBC temp Repeatedly subtract Y from A
 BCS modloop until A becomes less than zero
 ADC temp Add divisor (Note carry clear)
 RTS and return

Random number generator -- rnd
A routine which is always useful for games programs
is a random-number generator. The following routine
generates a pseudo-random number in A.

The seed for the random number is three bytes
long. This seed can be initialised before using the

routine, in order to generate a fixed sequence of
numbers. Note that the seed should never contain
zero in all three bytes as then the routine will
continually give zero.

On entry, all registers are irrelevant.

A typical call would be:

JSR rnd

On exit, A holds the next pseudo-random number.
X and Y are preserved.

138

UTILITIES FOR ASSEMBLER PROGRAMS

.rnd
 LDA seed Get low byte of shift register
 AND #&48
 ADC #&38
 ASL A
 ASL A
 ROL seed + 2
 ROL seed + 1
 ROL seed
 LDA seed
 RTS

12.4 Miscellaneous
Cyclic redundancy check - CRC
Cyclic redundancy checks can be useful for error
detection when comparing blocks of data.

Using the program below you can give any block
of memory a 'unique' two-byte signature. Thus you
can check that two copies of a program are identical,
by seeing if they have the same signature. This
method is very secure, as it is very unlikely that two
different blocks of memory would give the same
signature.

 0 REM CRC calculator
 10
 20 signature = &70
 30 addr = signature + 2
 40 endaddr = addr + 2
 50 DIM code 200
 60 FOR pass = 0 TO 2 STEP 2
 70 P%=code

 80 [OPTpass
 90.crc
100 LDA #0 Iinitialise signature
110 STA signature
120 STA signature+1
130.mainloop
140 JSR crcbyte Get crc for each byte
150 INC addr 16 bit increment
160 BNE nohibyte
170 INC addr+1
180.nohibyte
190 LDA addr If at last address
200 CMP endaddr then end,
210 BNE mainloop Else do another byte
220 LDA addr+1
230 CMP endaddr+1
240 BNE mainloop
250 RTS
260
270.crcbyte
280 LDY #0
290 LDA (addr),Y Get byte
300 LDX #8 8 bits in a byte
310.loop
320 LSR A Do crc
330 ROL signature
340 ROL signature+1
350 BCC nextbit
360 PHA
370 LDA signature
380 EOR #&2D
390 STA signature
400 PLA
410.nextbit
420 DEX get new bit in byte
430 BNE loop
440 RTS
450]
460 NEXT pass
470 INPUT "start address &"start$
480 !addr = EVAL("&"+start$)
490 INPUT"Length &"length$
500 !endaddr = EVAL("&"+length$+"+&"+start$)
510 CALL crc
520 PRINT "Signature is &";˜!signature AND &FFFF

139

UTILITIES FOR ASSEMBLER PROGRAMS

12.5 General purpose macros
Get low byte -- FNlo
DEF FNhi (value) value AND &FF

An example call is

LDA #FNlo(table)

Get hi byte --FNhi
DEF FNhi (value) (value AND &FF00) DIV &100

An example call is

LDY #FNhi(string)

Reserve space -- FNspace

140

UTILITIES FOR ASSEMBLER PROGRAMS

DEF FNspace(amount)
P% = P% + amount
0% = 0% + amount This line is only relevant on BASIC
 II or electron
= pass

An example call is

.table
 OPT FNspace(500)

16 bit addition -- FNadc
Provides 16 bit addition.

A typical call might be:

OPT FNadc(&3000, &2000, &2004)

This would add the contents of &2000 (low byte) and
&2001 (high byte) to the contents of &3000 (low byte)
and &3001 (high byte) and store the result in locations
&2004 and &2005.

 DEF FNadc(operandl, operand2, result)
[OPT pass
 LDA operand1
 CLC
 ADC operand2
 STA result
 LDA operand1+1
 ADC operand2+1
 STA result+1

]
= pass

16 bit subtraction -- FNsbc
Provides 16 bit subtraction

A typical call would be

OPT FNsbc(&3000, &2000, &2004)

This would subtract the contents of &2000 (low
byte) and &2000 (high byte) from the contents of
&3000 (low byte) and &3001 (high byte) and store the
result in locations &2004 and &2005.

141

UTILITIES FOR ASSEMBLER PROGRAMS

 DEF FNsbc(operand1, operand2,result)
[OPT pass
 LDA operand1
 SEC
 SBC operand2
 STA result
 LDA operand1+1
 SBC operand2+1
 STA result+1
]
= pass

Debugging macro -- FNdebug
This can be inserted anywhere in the sources code to
provide an indication of which path the processor has
taken through the program. When executed, the
routine will make a 'Bleep' sound and wait for a key
to be pressed before continuing. All registers are
preserved.

A typical call would be

OPT FNdebug

 DEF FNdebug
[OPT pass
 PHP Save all registers
 PHA
 TYA
 PHA

 TXA
 PHA
 LDA #7 Make 'Bleep' sound
 JSR oswrch
 LDX #1 Flush keyboard buffer
 LDA #15
 JSR osbyte
 JSR osrdch Wait for a key
 PLA Restore all registers
 TAX
 PLA
 TAY
 PLA
 PLP
]
 = pass

142

UTILITIES FOR ASSEMBLER PROGRAMS

16 bit rotation -- FNshift
This provides a 16-bit shift instruction.

A typical call might be

OPT FNshift(&2034, TRUE, 2)

which would shift locations &2034 and &2035 right
twice.

 DEF FNshift(addr, right, number)
 LOCAL shift
FOR shift 1 TO number
 IF right [OPT pass :LSR addr +1 :ROR addr :]
 ELSE [OPT pass ASL addr: ROL addr + 1:]
NEXT shift
 = pass

12.6 BASIC routines for use with assembler
Double height -- PROCdouble

The next two routines can be used to produce double
height characters in MODEs 0,1,2,4 and 5. MODEs 3
and 6 (and 7 on the Acorn Electron) have gaps
between lines which make it impossible to do double
height. To centre the String, type 'PRINT TAB
((screenwidth DIV 2) - LEN(A$) DIV 2,VPOS); after
'LOCAL I%'. Note that 'block' is a global array which
should be DIMensioned at the start of the program,
using, for example, DIM block 9. Note also that 'char'

is the character to be defined, in this case it is always
224. The routine currently prints out the characters as
it redefines them, although it is possible to suppress
this.

143

UTILITIES FOR ASSEMBLER PROGRAMS

DEFPROCdouble (A$)
LOCAL I%
 FOR I% = 1 TO LEN(A$)
PROCchar(ASC(MID$(A$,I%,1)),224)
NEXT I%
ENDPROC

DEFPROCchar (C%,char)
LOCAL A%,X%,Y%,J%,I%
?block = C%
A% = 10
X% = FNlo(block)
Y% = FNhi(block)
CALL osword osword is at &FFF1
FOR J% = 0 TO 1
 VDU 23, char
 FOR I% = 2 TO 9
 VDU block?(J% * 4 + I% DIV 2)
 NEXT I%
VDU char,10,8
NEXT J%
VDU 11,11,9
ENDPROC

Find string in program -- FROCfind
This next routine will find all occurrences of a
specified string in the BASIC program, and print out
the line numbers in which the string occurs. In its
present form, the routine will not find BASIC
keywords (FOR, REPEAT, PROC, etc). To allow for
this it will be necessary to store the string as a line of
BASIC, which could then be used as the target string
in the search. So type PROCfind ($(PACE + 4)). This
will find the string specified in the first line of the
program, which should be line 0 to avoid the routine
searching for the wrong string. The first line of the
routine can now be changed to 'DEFPROCfind', as
the parameter is now in line 0. Note that the first IF
statement is only needed in BASIC I.

DEFPROCfind (A$)

LOCAL Z%,A%
Z% = PAGE
REPEAT A% = Z% + 4
 IF LEN ($A%) >= LEN (A$) IF INSTR($A%,A$)
 PRINT Z%?1 * 256 + Z%?2: Z% = Z% + Z%?3
UNTIL Z%?1 > &7F
ENDPROC

144

UTILITIES FOR ASSEMBLER PROGRAMS

