
6

69

THE STACK

The 6502 processor supports a hardware stack. This is
an important part of the computer which can be used
both by the CPU and the programmer. This chapter
looks at how the stack can be used and how it
performs its task.

6.1 Using the stack
A hardware stack is simply a set of memory locations
(&100 to &1FF) which are reserved by the processor.
These locations can be used as temporary storage
locations. Up until now, when we have wanted to
store a value, we might have used.

STA tempaddr

And to recall the value which was in the accumulator
at that time, the instruction

LDA tempaddr

Loading the accumulator with the value from
'tempaddr' does not alter the value stored in
'tempaddr'. Hence the number may be recalled
several times. When storing a value on the stack,
however, the situation is different. The value to be
stored is 'pushed' onto the stack and when it is

wanted again, it is 'pulled' off into a register - a one-
time only operation.

The stack is a LIFO structure, these initials stand
for 'last-in, first-out', which means that the first item
put on the stack will be at the bottom and so will be
the least readily available, whereas the last item on
the stack will be at the top and will be the first one to
be pulled off it.

The four instructions which a programmer can use
to access the stack are:

Mnemonic Description
PHA push the contents of A onto the stack
PLA pull a value off the stack and store it in A
PHP push the contents of the status register P
PLP pull a value off the stack and store it in P

A stack pointer is used to manage the stack. This is
a register which contains the address of the top
location being used. For example, on encountering a
PLA instruction, the accumulator is loaded from the
memory location pointed to by the stack pointer and
then the stack pointer is automatically moved back
one location. Whenever a PHA instruction is

70

last-in first-out

'Last-in, first-out'; the stack
forbids the use of any item other
than in that order.

THE STACK

executed, the accumulator is stored in the memory
location pointed to by the stack pointer and then the
stack pointer is moved on to the next location.

Example
The following series of pushes and pulls leaves the
stack in a state which is shown below:

LDA #78
PHA
LDA #79
PHA
PLA
LDA #80
PHA

Note that the value 79 which was pushed onto the
stack and then pulled off it again no longer occupies a
location on the stack.

To see why the stack is used as a temporary
storage place in preference to a memory location such
as tempaddr', consider the two alternative sections of
assembler below:

PHA STA tempaddr
LDA addr LDA addr

71

Stack pointer points
to next free space

Last value pushed
onto the stack

Previous value
pushed onto the stack

80

78

THE STACK

CLC CLC
ADC #12 ADC #12
STA addr STA addr
PLA LDA tempaddr

These both produce the same result when executed
but the one on the left will produce less code. This is
because the LDA and STA instructions consist of
either two or three bytes, one for the op-code and one
or two for the address. The PHA and PLA
instructions, however, just consist of an op-code.

Note that if more than one value is stored on the
stack at once, care must be taken when these values
are retrieved. Because it is a LIFO structure, the
values must be taken off the stack in the opposite
order to how they were placed on it, e.g.

72

PHA save accumulator
TXA prepare to save X
PHA save X
.
.
PLA restore value
TAX transfer to X the last vaLue pushed
PLA restore accumulator

When using the stack it is very important to pull as
many values as you push. Otherwise confusion can
arise as we will see below.

6.2 How the CPU stores addresses
The stack is used by the CPU as well as by the
programmer. On encountering a JSR instruction, the
address of the instruction following the JSR is stored
so that the CPU knows where to start executing from
when it comes to the end of the subroutine. This is
done by pushing the two bytes of the address onto
the stack so that they can be retrieved when the RTS
is reached. Thus a routine which is entered with a JSR
and finishes with RTS should always pull the same
number of bytes as are pushed otherwise the value
obtained from the top of the stack by the RTS will not
be the correct return address, e.g.

.entersubroutine

THE STACK

PHA
LDA addr
CLC
ADC #12
RTS

When the RTS is reached the CPU will pull two
values off the stack, and put them into the program
counter. However, as one of these values is the value
pushed with the 'PHA', the program counter will
almost certainlv contain the wrong address. This will
mean that the CPU will start trying to execute
instructions at the wrong address and do something
undefined by the designers of the 6502.

6.3 Recursion
One of the most important reasons for using a stack to
hold the addresses of subroutine returns is that
recursion is then automatically supported.

A recursive subroutine is one which calls itself.
This can be a very powerful feature and enables a
programmer to implement tree structures as shown
below.

Using trees
A tree in computing is normally pictured as follows:

Note that it is usually drawn with the 'root' at the
top.

73

root

node

branch

THE STACK

In order to print out all the elements (root and nodes)
in the tree, you must write a routine which prints out
an element and then goes down a branch to the
element beneath it. If there isn't an element below,
then it goes back up one level and sees if there is an
alternative branch from there. For the above tree the
order that the elements would be visited, assuming
that the routine shows a preference for right-hand
branches, is:

A BASIC routine to do this is as follows:

74

1

2

3

45

68

7

9

10

DEFPROCtree (element)
PRINT value(element)
IF right(element) THEN PROCtree(right(element))
IF left(element) THEN PROCtree(left(element))
ENDPROC

This assumes that each element has three things
known about it: its value, the element that its right
branch leads to (FALSE if no branch) and the element
that its left branch leads to (FALSE if no branch).
These should be stored in three arrays whose names
are 'value', 'right' and 'left'.

The routine can be called using

PROCtree(0)

THE STACK

The assembler version of this is:

75

.enter
 LDX #0 Start at root (zeroth element)
.tree
 LDA value,X Get value of element
 JSR printnumber See section 13.1 for details
 LDA right,X Is there a right branch?
 BEQ tryleft If not, try a left one
 TAX
 JSR tree Else take that branch
.tryleft
 LDA Left,X Is there a left branch?
 BEQ backup If not, go back up one level
 TAX
 JSR tree backup Else take that branch
 RTS Return

In this case the block of memory locations starting
with the address 'value' should contain the values of
each element in turn: those starting at 'right' should
contain the element to which each one's right-hand
branch leads, and 'left' the element to which each
one's left-hand branch leads.

THE STACK

76

