
2

25

The previous chapter showed how characters and
numbers are represented in the computer's memory,
i.e. how the computer deals with data storage.
However, data on its own is useless to a computer, it
also needs instructions telling it what to do with the
data. This chapter looks at how the computer handles
instructions and explains some of the simpler
assembler instructions which it can use. The
instructions listed refer only to the 6502 processor so
if you have any other sort of processor connected to
your machine, e.g. a Z-80 second processor, this will
have to be disabled before attempting any of the
routines given in this and subsequent chapters.

2.1 The CPU
The Central Processing Unit or CPU is the computer's
brain. It is the most active part of the computer;
although areas of memory can remain unchanged for
hours on end when a computer is being used, the
CPU is working all the time the machine is switched
on. The CPU's job is to read a sequence of instructions
from memory and carry out the operations specified
by those instructions.

The instructions which the CPU acts on are just
values stored in memory locations. The CPU takes a

CARRYING OUT
INSTRUCTIONS



26



byte and interprets it as an instruction, e.g. &18 will
be interpreted to mean 'clear carry flag'; this will be
explained later in this chapter. It then performs the
operation as instructed and goes on to collect the next
byte.

The first byte of all instructions is the operation
code, or 'op-code'. Some instructions, such as the
example above, consist of just the op-code; other
instructions require data on which they must operate.
These instructions therefore consist of two or three
bytes, the first one being the op-code and the other
one or two consisting of data. For example the value
&E6 is translated into the instruction 'increase the
contents of the memory location with the following
one-byte address by one'. Hence the CPU then takes
the next byte from the memory and interprets this,
not as an instruction, but as the address of the
location whose contents are to be incremented. It then
adds one to the number stored in that location.
Having executed this instruction, the CPU then goes
on to the next byte which is taken to represent the
next instruction it must perform.

2.2 Machine code V assembler
The above few paragraphs should have given you the
idea that everything the CPU acts upon is a number
between 0 and &FF (255 decimal); each number being
interpreted by the CPU as an instruction or some data
which an instruction must use. The list of numbers
which are being used are referred to as machine code.
It is possible for us to talk to the computer in its own
language, i.e. program in machine code, but this
would mean that we would have to know which
instructions all the op-codes stand for. Programming
in assembler alleviates the need for learning all these
translations. In assembler each op-code is represented
by a three letter mnemonic, e.g. CLC is used instead
of &18 to give the instruction 'clear carry'. The

27

assembler machine code CPUMnemonic

The CPU, the computer's
brain.

CARRYING OUT INSTRUCTIONS

CPU



computer then converts all the mnemonics into the
corresponding op-codes.
This process is carried out by an assembler and hence
is known as 'assembling'. The program that the
assembler takes as its input is known as the source
code, and the machine code output is referred to as
the object code.

2.3 The accumulator and the carry flag
The accumulator is just a temporary location inside
the CPU which plays a part in many of the operations
performed by the CPU. For example, to add two
numbers together you have to load the first number
into the accumulator from the memory, add in the
second number from memory, and then store the
result somewhere. To do this the following assembler
instructions will be needed:

Mnemonic Description Symbol
LDA load accumulator A=M

from memory
STA store accumulator in M=A

memory
ADC add memory to A=A+M+C 

accumulator with carry
CLC clear carry C=0

The carry is needed to allow numbers greater
than one byte (255 or &FF) to be generated. When an
eight-bit value is added to another eight-bit value the
result could be too great to be represented by eight
bits, e.g. 140 +160 = 300 (>255).

In order to allow for this, the CPU will use the
carry as the ninth bit of the accumulator, and thus the
carry will contain the extra bit. In the above example,
when the numbers 140 and 160 are added together
and the result stored in a memorv location, this
location will contain the value 44 (300 MOD 256). By
using the carry flag you will have a record of whether
the result of the addition was actually the value 44 or
if it was 300. Hence, to avoid confusion, clear the
carry before performing any additions.

2.4 Writing an assembler program
Enter the following assembler program:

10 DIM P% 100

28

CARRYING OUT INSTRUCTIONS



20[
30 LDA &80
40 CLC
50 ADC &81
60 STA &82
70 RTS
80]
90 END

The meaning of each line in this assembler
program is as follows:

10 The DIM statement is not an assembler mnemonic;
it is a BASIC instruction to tell the assembler
where to put the assembled machine code by
DIMensioning off an area of memory for it. The
DIM statement is followed by a number (not in
brackets) and the statement reserves this number
of bytes for the machine code which will be
generated. As a rough guide to the amount of
room needed count the number of assembler
instructions used, treble it and reserve at least this
number of bytes.

The BASIC variable P% is used by the assembler
as a location counter to specify the next free
address. Hence the statement sets P0/o to the
lowest address of the reserved block of memory
and then as each byte of machine code is
generated, P0/o increases by one byte so that it
always points to the next free location.

20 The '[' symbol is an 'assembler delimiter' which
has to be used immediately before the first
assembler statement to tell the BASIC interpreter
that the following statements will be in assembler
rather than BASIC.

30 Load the accumulator with the contents of the
memory location whose address is &80. (The
contents of the memory location are not changed.) 

40 Clear the carry flag.

50 Add the contents of location &81 to the
accumulator with the carry. (Location &81 is not
changed by this operation.)

29

CARRYING OUT INSTRUCTIONS

m
em

or
y

D
IM

pr
og

ra
m

Address

CLC

LDA

ADC

STA
accumulator

N

&82

M

&81

L

&80



60 Store the contents of the accumulator to location
&82. (The accumulator is not changed by this
operation.)

70 The RTS instruction will usually be the last
instruction of any program; it causes a return to
BASIC from the machine-code program. The
mnenomic stands for 'return from subroutine'.

80 The ']' symbol is an assembler delimiter which has
to be used after the last assembler instruction to
tell the interpreter that the following statements
will be in BASIC.

90 The END statement is not an assembler
mnemonic; it just denotes the end of the program.

Now type RUN and the assembler program will
be assembled; the assembled code being inserted
directly in memory at the address specified by P%.
An 'assembler listing' will be printed out to show the
machine code the assembler has generated to the left
of the corresponding assembler mnemonics:

>RUN
OE5D
OE5D A5 80    LDA &80
OE5F 18       CLC
0E60 65 81    ADC &81
0E62 85 82    STA &82
0E64 60       RTS 

                   operand 
             mnemonic statement 
       instruction data/address 
   instruction op code
location counter statement

The program has been assembled in memory
starting at &0E5D, immediately after the program
text. This address may be different when you enter
the example program if you have inserted extra
spaces into the program or if you have filing systems
other than cassette in your machine, but that will not
affect any other part of the listing. All the numbers in

30

CARRYING OUT INSTRUCTIONS



the listing are in hexadecimal; thus &18 is the op-code
for the CLC instruction, and &A5 is the op-code for
LDA when the number being loaded is not given
directly but is obtained by looking in the memory
location whose one-byte address is given. Hence this
LDA instruction consists of two bytes; the first byte is
the op-code, and the second byte is the address; &80
in this case.

Another method of finding out where the
machine code is, is to find out where 'TOP' is by
typing

PRINT ˜TOP

This value gives the address of the memory
location immediately after the program text. Since the
machine code follows on straight after the text this
address is the one corresponding to the first
instruction, &A5. Thus the machine code is stored in
memory as follows:

A5 80 18 65 81 85 82 60

TOP

When 'RUN' was typed this assembled the
assembler program and put the machine code
produced into the computer's memory, however it
did not execute the program. The method for doing
this is described below.

2.5 Executing a machine-code program
To execute the machine-code program at TOP, type

CALL TOP

Nothing obvious will happen except for the '>'
prompt being printed again on the screen. This
indicates that the computer has finished executing the
program and hence the contents of locations &80 and
&81 will have been added together and the results
placed in &82.

You can verify this by setting the contents of &80
and &81 to certain values by typing, for example

31

CARRYING OUT INSTRUCTIONS



?&80=7 : ?&81=9

If you wish you can also set the contents of &82 to 0.
Now type

CALL TOP

and then look at the contents of &82 by typing

PRINT ?&82

The result is 16 (in decimal); the computer has just
added 7 and 9 and obtained 16!

2.6 Adding two-byte numbers
Try executing the program for different numbers in
&80 and &81. You might like to try the following:

?&80=140 : ?&81=160
CALL TOP

We saw earlier in this chapter that if an addition
generates a number greater than 255 then the result
stored in the memory location specified will be that
number modulo 256. Hence the result in this case will
be 44 rather than 300. Here is the calculation in
hexadecimal: 

 160       &A0 
 140       &8C 
-----     -----
 300      &12C
-----     -----

Only two hex digits can fit in one byte, so the '1' of
&12C is lost, and only the &2C is retained. Luckily
the '1' carry is retained for us in the carry flag as was
mentioned earlier, though we didn't see then how to
use this. The example below shows how the two
numbers can be treated as being two-byte numbers
and added together using the carry to produce a two-
byte number which is the complete answer. This
method can be extended to any number of bytes since
the carry flag makes it a simple matter to add
together two numbers as large as we please. Modify
the program already in memory by retyping lines 50

32

CARRYING OUT INSTRUCTIONS



to 120, if you wish (leaving out the comments to the
right of the assembler text). Here is the modified
program:

33

CARRYING OUT INSTRUCTIONS

 10 DIM P% 100
 20[
 30   LDA &80  Low byte of one number
 40   CLC           Clear carry flag
 50   ADC &82  Low byte of other number
 60   STA &84  low byte of result
 70   LDA &81  High byte of one number
 80   ADC &83  High byte of other number
 90   STA &85  High byte of result
100   RTS
110]
120 END 

Assemble the program:

>RUN
0E6E 
0E6E AS 80   LDA &80 
0E70 18      CLC 
0E71 65 82   ADC &82 
0E73 85 84   STA &84 
0E75 AS 81   LDA &81 
0E77 65 83   ADC &83 
0E79 85 85   STA &85 
OE7B 60      RTS

Now set up the two numbers as follows:

?&81=&8C : ?&81=&00
?&82=&A0 : ?&83=&00

Finally, execute the program by typing

CALL TOP

and look at the result, printing it in hexadecimal this
time for convenience:

PRINT ˜?&84, ˜?&85

The low byte of the result is &2C, as was obtained
before using the one-byte addition program, but this



time the high byte of the result, &1, has been correctly
obtained. The carry generated by the first addition
was added into the second addition, giving

0 + 0 + carry = 1

Try some other two-byte additions using the new
program.

2.7 Subtraction
The subtract instruction is just like the add
instruction, except that there is a 'borrow' if the carry
flag is zero. Therefore to perform a single-byte
subtraction the carry flag should first be set with the
SEC instruction.

Mnemonic Description Symbol
SEC set carry flag C=1 
SBC subtract memory from A A=A-M-(1-C) 

with carry

34

CARRYING OUT INSTRUCTIONS

Example
      10 DIM P% 100
      20[
      30 LDA &80         Low byte of first number
      40 SEC                     Initialise carry flag
      50 SBC &82         Low byte of other number
      60 STA &84         Low byte of result
      70 LDA &81         Now do high bytes
      80 SBC &83
      90 STA &85
100   RTS                Return
110]
120 END

Note that the above program is very similar in
structure to the addition example in section 2.6.

2.8 Comments
There are two methods of putting comments in
assembler programs. The first of these, which is used
in previous examples, is to put the comment after an
assembler instruction, separated from it by one or
more spaces, e.g.

60    STA &84   Low byte of result



Alternatively a statement may start with a
backslash (\), in which case the remainder of that
statement is ignored, e.g.

65  \Now for the high bytes

Note that a colon (:) will end the comment and
start a new assembler statement, for example line 60
could be replaced by

60  \Low byte of result : STA &84

2.9 Printing a character
The computer contains routines for the basic
operations of printing a character to the VDU, and
reading a character from the keyboard, and these
routines can be called from assembler programs.

Name Address Function
OSWRCH &FFEE Puts character in

accumulator 
to output (VDU)

OSRDCH &FFE0 Reads from input (keyboard) 
into accumulator

In each case all the other registers are preserved.
The names of these routines are acronyms for
'operating system write character' and 'operating
system read character' respectively. These routines
are executed with the instruction JSR (jump to
subroutine).

A detailed description of how the JSR instruction
works will be left until the following chapter.

The following program outputs the contents of
memory location &80 as a character to the VDU,
using a call to the subroutine OSWRCH:

10 DIM P% 100
20 oswrch=&FFEE
30[
40   LDA &80
50   JSR oswrch
60   RTS
70]
80 END

35

CARRYING OUT INSTRUCTIONS



The variable 'oswrch' is used for the address of the
OSWRCH routine. Assemble the program, and then
set the contents of &80 to &21 by typing

?&80=&21

Then execute the program using

CALL TOP

and an exclamation mark will be printed out before
returning to the computer's prompt character,
because &21 is the code for an exclamation mark. An
alternative method of setting the contents of location
&80 to &21 is therefore

?&80=ASC"!"

Try executing the program with different values
in &80, with values chosen from the table of ASCII
values in Appendix A.

2.10 Immdiate addressing
In the previous example the instruction

LDA &80

loaded the accumulator from the location whose
address is &80, this is known as 'absolute'
addressing. The location was then set to contain &21,
the code for an exclamation mark. If at the time the
program was written it was known that an
exclamation mark was to be printed in would be
more convenient to specify this in the program as the
actual data to be loaded into the accumulator.
Fortunately an 'immediate' addressing mode is
provided which achieves just this. Change the
instruction to

LDA #&21

where the '#' (hash) symbol specifies to the assembler
that immediate addressing is required. Assemble the
program again, and note that the instruction op-code
for 'LDA #&21' is &A9, not &A5 as it was previously
for the absolute addressing. The op-code of the
instruction specifies to the CPU whether the
following byte is the actual data loaded, or the
address of the location containing the data.

36

CARRYING OUT INSTRUCTIONS



2.11 Using addresses
So far when a value has been saved, a numerical
address has been used to define where it is to be
stored, e.g.

STA &80

A better method of giving an address is to use a
variable name, e.g.

STA addr

In this case 'addr' must be specified at the
beginning of the program, e.g.

addr = &80

This method is better than the previous one since
it makes the program easier to understand, i.e. an
address can be given a relevant name, e.g. 'xlowbyte'
or 'yhighbyte'. In addition, changing the location of a
value becomes easier, since only the initial
specification need be altered rather than every
occurence of that value throughout the program.

The locations used must be chosen carefully to
avoid corrupting operating system or BASIC
workspace. The memory map in Appendix A should
help to show which locations can be used in different
circumstances. Also there are some locations which
are always free when using BASIC; these are &70 to
&8F.

37

CARRYING OUT INSTRUCTIONS



38

CARRYING OUT INSTRUCTIONS


