
9

77

OPERATING SYSTEM
ROUTINES AND
SPECIAL EFFECTS

A whole book would be needed to describe all the
features of the operating system and the routines it
contains. This chapter briefly introduces two
operating system calls, 'OSBYTE' and 'OSWORD'.
Between them, they perform a wide variet of tasks. It
then shows how operating system routines can be
intercepted and replaced by user defined ones.
Finally it takes a look at some of the special effects
which can be obtained using either the operating
system commands or specialised hardware provided
by the BBC Microcomputer and Acorn Electron.

9.1 OSBYTE and OSWORD
OSBYTE - &FFF4
OSBYTE calls can be used to access several operating
system routines. The particular routine is selected by
the number passed in the accumulator. The X and Y
registers are used to pass any parameters needed to
the routine and to pass back any results which may
be produced as a result of the call, e.g.

LDA #12
LDX #10
JSR osbyte

will call OSBYTE 12 which sets the keyboard auto
repeat rate, in this case to 10 centiseconds.
LDA #129
LDX #&9D
LDY #&FF
JSR osbyte

will call OSBYTE 129 which performs the INKEY
function, in this case it is being called with a negative
value (&9D = -99) and performs a keyboard scan to
see if the key with this value, the Space bar, is being
pressed.

On exit, X and Y contain &FF if the key being
scanned was pressed and 0 otherwise.

*FX calls are used to access OSBYTE calls from
BASIC. In this case the values of the registers are
passed in the following way:

*FX 12,10

This will have the same effect as the first example.

However *FX calls do not return results so it is not
appropriate to replace the second example given by a
*FX call.

OSWORD - &FFF1
OSWORD routines are similar to OSBYTE routines,
the difference being that parameters are not passed in
the X and Y registers, instead they are passed in a
parameter block, and the X and Y registers are used to
contain the address of this block, e.g.

LDA #2
LDX #&80
LDY #&00
JSR osword

This calls OSWORD 2 which sets the value of the
system clock to the five byte value which is stored in
memory starting at the address &0080.

LDA #1
LDX #&80
LDY #&00
JSR osword

78

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

This calls OSWORD 1 which reads the system
clock, the five byte value being returned in memory
starting at the address &0080.

9.2 Revectoring operating system routines
Many of the operating system routines are not
entered directly by jumping to their position in the
ROM, instead they are entered via addresses stored in
the RAM.

For example, to use the operating system write
character routine (OSWRCH) (the instruction which
has been used in previous examples is JSR &FFEE).
Location &FFEE, however, contains not the start of
the routine, but the instruction JMP (&20E), since the
address of the code for OSWRCH is stored in
locations &20E and &20F in RAM. These locations are
known as the 'vector' for this routine.

Accessing routines indirectly, via vectors in the
RAM has several advantages. In different operating
systems the entry position of the routine may alter,
but this will not affect the user since the instructions
JSR &FFEE or JMF (&20E) will still access it. The
difference will be dealt with by the operating system
which will store the correct addresses in locations
&20E and &20F.

In addition the user can intercept any of the
routines by 'revectoring' them. For example he could
change the contents of &20E and &20F so that they
contained the address of a user defined routine. One
use of this is shown below.

Pretty Printer -- prettyprint
When printing text to the screen it is often difficult to
ensure that words will not be broken at the end of the
line. The following routine achieves this. When linked
in, it will buffer characters up to a space or carriage
retum character, and then only output the characters
on the same line if there is room without splitting
them. Note that the routine does not deal with control
characters (codes less than 32) that have trailing
characters. The routine should be linked into the
OSWRCH vector at &20E - &20F, by typing

79

!&20E =!&2OE AND &FFFF0000 OR prettyprint

Notice that the variable 'linelength' is set to the length

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

of the line (19, 39 or 79,depending on the screen mode
selected).

On entry A holds the character to be printed. X and
Y are irrelevant.

A typical call would be any call to OSWRCH.

On exit all registers have been preserved.

An example of the output of this is: (40 column
screen)

80

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

This text is Prettily Printed This text
is Prettily Printed This text is
Prettily Printed This text is Prettily
Printed This text is Prettily Printed

.prettyprint
 PHA
 STX savedx Save X register
 LDX pointer Get line pointer
 CMP #ASC" " Is it a space ?
 BEQ isspace
 STA buffer,X Store character
 INX Increment pointer
 CPX # linelength Is buffer full ?
 BNE exit If not, get next character
 STX pointer Update pointer
 BEQ newline Branch always
.isspace
 CPX #0
 BEQ exit
 JSR getpos
 LDX #0 Set X to zero for printbuffer
 LDA pos Get cursor position(x-coord)
 CLC
 ADC pointer Get cursor x+pointer
 CMP #£linelength If >= linelength
 BCS newline print buffer
 LDA pos If cursor is at beginning
 BEQ printbuffer of a line print the buffer
 LDA #ASC " " Else print a space
 JSR printchar
 JMP printbuffer and print the buffer

.newline
 LDA #13
 JSR printchar
 LDA #10
 JSR printchar
.printbuffer
 LDA buffer,X Get characters
 JSR printchar print characters
 INX increment pointer
 CPX pointer if line pointer<> line end
 BNE printbuffer then get next character
 LDX #0
.exit
 STX pointer Save pointer
 LDX savedx Restore X register
 PLA Restore A
 RTS And Return
.getpos
 TYA
 PHA Save Y
 LDA #&86 Osbyte 86 is read cursor position
 JSR osbyte Returns pos and vpos in X and Y
 STX pos X holds X coordinate of cursor
 PLA Restore Y
 TAY
 RTS
.printchar
 JMP (oldoswrch) oldoswrch holds original contents
 of &20E and &20F

81

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

9.3 Screen Scrolling
On both the BBC Microcomputer and the Acorn
Electron, there are two screen-scrolling methods
known as software scrolling and hardware scrolling.
Software scrolling is often slow. If you define a text
window to cover the whole screen (VDU 28,0,24,39,0
in MODES 6 or 7 only) and then scroll and screen (by
moving the cursor off the bottom of the screen), you
will notice the scrolling slowing down as it attempts
to move all the screen memory up a line. An

alternative and faster method of scrolling has been
incorporated in the hardware.

A section of each computer incorporates a register
designed to hold the start of screen memory.. In the
BBC machine it is the 6845 CRTC (Cathode Ray Tube
Controller), and in the Electron it is a section of the
ULA (Uncommitted Logic Array). To employ this
screen-scrolling method, it is only necessarv to
change the number in the register. On the next
vertical sync, the new screen will be displayed
starting at that number. To scroll the screen up on the
BBC machine, simply type:

82

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

MODE 6
VDU 23; 12, &0C; 0; 0; 0; VDU 23; 13, &28; 0; 0; 0;

and on the Electron

MODE 6
?&FE02 = &A0 : ?&FE03 = &30

To explain: on the BBC machine there are in fact
two registers which control hardware scroll. These are
registers 12 and 13. Register 12 contains the high byte
of the start address, and register 13 contains the low
byte. Things are not quite this simple however, as the
start address held in the two registers is only to the
nearest 8 bytes (1 character cell in the MODEs 0 to 6),
and so the number put into the registers is the start
address, DIV 8. In the above example, the new
address is &6000 + 40 * 8 (=&6140) DIV 8, which is
&C28, and so we put &C in register 12 and &28 in
register 13.

On the Electron things are not quite the same. The
address held in the hardware is not to the nearest 8
bytes, but to the nearest 64 bytes.

The value to put into the Electron's ULA is the
address of the top of the screen, divided by 2. The two
registers are at &FE02 and &FE03 (low byte and high
byte). The address, &6140, is written there by
working out &6140 DIV 2 (=&30A0), and then writing
the low and high bytes of the new value into the
registers.

You will have noticed that the hardware scroll

operation is not exactly the same as that of the
operating system scroll, in that the top line is filled
not with spaces but with what was on the bottom line
when the process began. This is because the memory
map will 'wrap round', as in the following diagram;

83

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

0 1 2 3 37 38 39

 0 &6140 &6148 &6150 &6268 &6270 &6278

 1 &6141 &6149 &6151 &6269 &6271 &6279

 2 &6142 &614A &6152 &626A &6273 &627B

 3 &6143 &614B &6153 &626B &6273 &627C

 4 &6144 &614C &6154 &626C &6274 &627C

 5 &6145 &614D &6155 &626D &6275 &627D

 6 &6146 &614E &6156 &626E &6277 &6?7E

 7 &6147 &614F &6157 &626F &6277 &627F

 8 &6280 &6288 &6290 &64E8 &64F0 &64F8

.
.

24*8+6 &7F46 &7F4E &7F56 &606E &6076 &607E

24*8+7 &7F47 &7F4F &7F57 &606F &6077 &607F

9.4 Palette handling
Both the BBC Microcomputer and the Acorn Electron
provide a palette facility in the 'soft' screen modes.
On the Electron all modes are 'soft' screen modes, but
on the BBC machine Teletext (MODE 7) has no palette
facility. The idea is that each mode can display a
certain number of colours at any one time (16 in
MODE 2, 4 in MODE 5 and so on).

Essentially the palette provides a mapping
between the screen memory and what appears on the
screen. The screen memory contains logical colours,
and these are represented by the palette as physical
colours which you see displayed on the screen. Thus
in MODE 1, where there are four logical colours, each
can be represented as any of the sixteen physical
colours which these computers are capable of
producing. Use the VDU19 statement to tell the
computer how to represent a particular logical colour
as a particular physical colour, i.e.

84

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

VDU 19, logical colour, physical colour;0;

For example

VDU 19,1,3;0;

This tells the computer to display all occurences of
logical colour 1 in its memory as physical colour 3
(Yellow). Think of the palette as a mapping of
physical colours onto logical colours, where all that
the VDU 19 statement does is to simply change the
mapping. The illustration below should make this
clear;

Mode

Logical
colour
number Physical colour

0 Black
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6 Cyan
7 White
8 F(lashing) black/white
9 F red/cyan
10 F green/magenta
11 F yellow/blue
12 F blue/yellow
13 F magenta/green
14 F cyan/red
15 F white/black

0,3,4,6

1,5

0
1

0
1
2
3

Another way of changing the palette is to call
OSWORD with A set to 12. In this you simply set up a
block of 5 bytes to this format:

paletteblock logical colour
paletteblock+1 Physical colour
paletteblock+2 0
paletteblock+3 0
paletteblock+4 0

Then OSWORD is called in the normal manner
(with X and Y pointing to the parameter block,
'paletteblock' in this case). This has precisely the same
effect as VDU 19, except that it is faster and also may
be called from an interrupt or Event routine (See
Interrupts below).

OSWORD 12 is not available on BBC machines with
OS 0.10.

9.5 Interrupts, events and BREAKs
Interrupts
Both the BBC Microcomputer, and the Acorn Electron
run under interrupt'. Interrupts allow the machine to
update its own internal variables, without the user
even realising that their program is not in complete
control.

On the 6502 there is an interrupt request pin (IRQ)
which, when a signal hits it, tells the processor that an
interrupt request has occurred. The 6502 then has the
option of ignoring the interrupt. This decision is
made by the state of an interrupt flag. If the flag is set,
then the interrupt will be ignored, otherwise the
operating system will deal with it.

The interrupt flag can be altered with the two
assembler instructions:

MnemonicDescription
SEI set interrupt disable flag
CLI clear interrupt disable flag (Default state)

Note that the interrupt flag should not really be
altered, as then all interrupt driven devices
(keyboard, flashing colours, sound, etc.) would stop
working.

There are two interrupt vectors provided by the

85

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

operating system. These are IRQ1V (at &204), through
which all interrupt requests are passed, and IRQ2V
(at &206), through which any unrecognised interrupts
are passed. Normally, IRQ2V would be used, but if
you want to update your own device before the
operating system can act, then you should use IRQ1V.
The routine must first handle the interrupt, then
disable the device that caused the interrupt, and
finally, it must perform a 'JMF (oldIRQIV)' (where
'oldIRQ1V' is the old contents of IRQI V). This should
only be used if there is no other way of achieving the
desired effect.

One way to set up interrupts on the BBC
Microcomputer is by the User 6522 VIA (Versatile
Interface Adapter). This has two timers, which can be
set to count down from any particular 16-bit value,
and to cause an interrupt request on reaching zero.
Also, it will be necessary to write a routine to handle
this, and to put the address of the entry point of the
routine in the correct vector (in this case IRQ2V). Note
that the routine must perform an 'RTI' in order to
transfer control back to the operating system. RTI
stands for return from interrupt.

All this might seem a bit messy, and so a second kind
of interrupt peculiar to the BBC microcomputer and
Electron has been implemented. This second kind of
interrupt is called an Event. (It is not implemented on
BBC Microcomputers with OS 0.1).

Events
These operate in a similar way to interrupts in that
they are totally transparent (undetectable by the user
program) and are indirect, via a vector (at &220).

Certain occurrences within the machine have
events associated with them, and these events can be
trapped by the user. These are:

0 — Buffer empty, where X gives buffer identitv
1 — Buffer full, where X gives buffer identity and Y

holds character that could not be stored.
2 — Keyboard interrupt
3 — ADC conversion complete
4 — Start of TV field pulse (vertical sync)
5 — Interval timer crossing zero
6 — Escape condition detected
7 — R5423 receive error

86

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

8 — Remote procedure call detected (on Econet)

Events can be selectively disabled and enabled
with OSBYTEs 13 and 14, where X specifies the event.
Note that the default state is all events disabled.

Example event handler:

87

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

 10 REM Event handler
 20
 30 vsynccounter=&70
 40 DIM code 100
 50 FOR pass = 0 TO 2 STEP 2
 60 P%=code
 70[OPT pass
 80.event
 90 PHP Preserve status
100 CMP #4 Is event for us?
110 BNE notvsync If not, then return
120 INC vsynccounter Count vsyncs
130.notvsync
140 PLP Restore status
150] RTS Return
160]
170 NEXT pass
180
190 eventvec=&220
200 ?eventvec=FNlo(event)
210 eventvec?1=FNhi(event)
220 *FX 14 4
230 END
240
250 DEF FNlo(value) = value AND &FF
260
270 DEF FNhi(value) = (value AND&FF00) DIV 256

BRKs
The 6502 supports a BRK instruction. This generates a
software interrupt, which is similar to the interrupt
request described earlier, except that it cannot be
disabled. BASIC and the operating system use BRKs
for flagging errors. This means that the BRK handler

will print an error message. The standard format of
the BRK error message is;

BRK instruction (op-code is &00)
Fault number (one byte)
Fault message (string of characters terminated by a
zero byte)

Thus it is possible to put error messages in a program,
and have them printed out by the BRK handler
(which, incidentally, is normally handled by the
language). This can be useful for debugging
purposes. A useful macro for this is:

 DEF FNerror(err, error$)
[OPT pass
 BRK Cause BREAK
 EQUB err Fault number
 EQUS error$ Error message
 EQUB 0 Message terminator
]
=pass

A typical call to this would be:

OPT FNerror(60, "Hello")

where '60' is the fault number, and 'Hello' is the
message to be printed when that BRK is activated.

It is, of course, possible to write your own BRK
handler, by simply putting the start address of a
suitable routine in the BRK vector (&202). For
example, the following routine prints out all registers
at a BRK:

88

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

 0 REM BREAK Handler
 10
 20 oswrch = &FFEE
 30 osnewl = &FFE7
 40 stringptr=&70
 50 exit=stringptr
 60 temp=strinqptr+2
 70 exit = !&202
 80 DIM code 200
 90 FOR pass = 0 TO 2 STEP 2

 100 P% = code
 110[OPT pass
 120.header
 130 EQUS " A X Y PC N V U B D I Z C"
 + CHR$10 + CHR$ 13
 140.break
 150 TYA X and Y
 160 PHA Push all registers so
 170 TXA they may be printed out
 180 PHA
 190 LDA &FC Get accumulator
 200 PHA
 210 JSR osnewl go onto a new line
 220 LDX #FNlo(header) Print "A X Y PC..
 230 LDY #FNhi(header)
 240 JSR atomstring
 250 PLA Get accumulator
 260 JSR hexandspace Print it and a space
 270 PLA Get X register
 280 JSR hexandspace Print it and a space
 290 PLA Get Y register
 300 JSR hexandspace Print it and a space
 310 LDA &FE FE an FD hold the
 320 JSR printhex program counter where
 330 LDA &FD the BREAK occured
 340 JSR hexandspace
 350 PLA Status register
 360 JSR printbinary Print P in binary
 370 JMP exit Return to old error
 380 handler
 390.hexandspace
 400 JSR printhex Print A in hexadecimal
 410 LDA #ASC" " Print a space,
 420 JMP oswrch then return
 430
 450 PHA Save accumulator
 460 LSR A Get top nibble
 470 LSR A
 480 LSR A
 490 LSR A
 500 JSR print Print top hex digit
 510 PLA Get bottom nibble
 520 AND #&OF
 530.print Print bottom hex digit
 540 CMP #&0A
 550 BCC notalpha If not 0..9 get char
 560 ADC #6 Carry is set here (add 7)
 570.notalpha
 580 ADC #&30 Convert to ASCII

89

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

 590 JMP oswrch Print and return
 600
 610.printbinary
 620 LDX #8 Eight bits per byte
 630.binaryloop
 640 ASL A Get a bit
 650 STA temp Print either 0 or 1
 660 LDA #ASC"0"
 670 BCC printzero
 680 LDA #ASC"1"
 690.printzero
 700 JSR oswrch Print 0 or 1
 710 LDA #ASC" " followed by a space
 720 JSR oswrch
 730 LDA temp
 740 DEX
 750 BNE binaryloop Get next bit
 760 RTS Return
 770
 780.atomstring
 790 STX stringptr Address of string
 800 STY stringptr+1 is given in X and Y
 810 LDY #&I00 Y is pointer along string
 820.atomstringloop
 830 LDA (strinqptr),Y Get next character
 840 JSR oswrch Print it
 850 INY Increment pointer
 860 CMP #13 Is it a RETURN
 870 BNE atomstringloop If not, repeat loop
 880 RTS Else return
 890
 900]
 910 NEXT pass
 920 !&202=!&202 AND &FFFF000O OR break
 930[OPT 2
 940.test
 950 LDA #&01
 960 LDX #&23
 970 LDY #&45
 980 SED
 990 CLC
1000 BRK
1010 EQUB 75
1020 EQUS "HELLO"
1030 EQUB 0
1040]
1050 CALL test
1060
1070 DEF FNIo(value)=value AND &FF

90

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

1080
1090 DEF FNhi(value)=(value AND &FF00)DIV &100

>RUN

 A X Y PC N V U B D I Z C
01 23 45 1BB6 0 0 1 1 1 0 0 0
HELLO at line 1050
>

91

OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS

92

