
13

145

GRAPHICS

This chapter is all about fast shape drawing. Like
everything else, shapes such as space invaders are
stored as a series of numbers in the computer's
memory This chapter consists of two main sections.
The first contains a routine which is designed to be
used independent of any other program. It allows a
shape to be designed, and produces the relevant
numbers representing that shape. The second
contains two routines which are meant to be included
as part of an assembler program. While the program
is running, these routines convert the numbers in the
memory back into the original shape and plot this
shape on the screen at a stated position. These
routines have been highly optimised for fast
animation.

Some knowledge of graphics is assumed, up to
User Guide level. Those of you without this
knowledge are recommended to read the Acornsoft
book, Creative Graphics, which gives a clear
illustration of the graphics facilities available on the
BBC Microcomputer and Acorn Electron.

13.1 Shape designer - DESIGN
The BASIC program below can be used to design
hapes which can be plotted on the screen using the

routines described later in this chapter. Remember
that smaller shapes are plotted faster so if vou wish to
move several shapes on the screen at once it is better
not to make them too large. The program is only
suitable for a BBC Model B, or Electron.

The keys used by this program are:

0,1,..,E,F Colours 0 to 15
V and H Vertical and horizontal reflections
L and S Load and Save shapes
Cursor keys For moving the cursor around
SY% Height of 'pixels' in large shape.
shape Byte vector to hold shape.
cursor X X co-ordinate of cursor in 'pixels'.
cursor Y Y co-ordinate of cursor in 'pixels'.
command$ String containing commands.

String containing keys for colours.
colour$ Colours are specified by presssing key

corresponding to Hexadecimal digit.
Note state of CAPS LOCK or SHIFT
keys is irrelevant.

key$ Holds key pressed.
length Holds length of shape data.
C% Zero if command, else holds colour

key plus one.

146

 0 REM Design Program
 10
+--+
|Top Level. Note that FNinitialise returns the mode |
|as MODEs cannot be defined in FNs or PROCs |
+--+
 20 MODE FNinitialise
 30 PROCmainloop
 40
+--+
|Set up global variables, especially those that are |
|relevant to the screen mode selected. |
+--+
 50 DEF FNinitialise
 60 lenshape 300
 70 DIM shape lenshape
 80 REPEAT
 90 INPUT "Mode (0 - 2) ?" mode
 100 UNTIL mode >=0 AND mode <=2
 110 RESTORE 230

GRAPHICS

 120 FOR I% = 0 TO mode
 130 READ pixbits
 140 NEXT I%
 150 RESTORE 240
 160 FOR I% = 0 TO mode
 170 READ W%
 180 NEXT I%
 190 RESTORE 250
 200 FOR I% = 0 TO mode
 210 READ pixelperbyte
 220 NEXT I%
 230 DATA 1, 2, 4
 240 DATA 2, 4, 8
 250 DATA 8, 4, 2
 260 INPUT "Width in X-direction:" NX%
 270 INPUT "Width in Y-direction:" NY%
 280 byteNX% = NX%DlVpixelperbyte
 290 byteNY% = NY%-1
 300 SX% = (1024 DIV NX%) AND &FFF0
 310 SY% = (1024 DIV NY%) AND &FFF8
 320 PROCclear
 330 cursorX = 0 : cursorY = 0
 340 *FX 4 1
 350 command$ = "VvHhLlSs" + CHR$&88 + CHR$&89 +
 CHR$&8A + CHR$&8B
 360 colour$ = "001!2""3#4$5%6&7'8(9)AaBbCcDdEeFf"
 370 length = NX% * NY% * pixbits DIV 8
 380 = mode
 390
+--+
|Main loop. Get a key, and then test to see if it |
|is legal. If the key is legal, then pass it on to |
|the rest of the routine, which then calls the |
|relevant routine(s). |
+--+
 400 DEF PROCmainloop
 410 PROCcursor
 420 REPEAT
 430 REPEAT
 440 keyS = GETS
 450 UNTILINSTR(colour$,key$) OR INSTR(command$,key$)
 460 C% = (INSTR(colour$, key$) + 1) DIV 2
 470 IF C% THEN PROCcolour(C%-1) ELSE ON
 INSTR(commandS, key$) GOSUB 670, 670, 780, 780,

147

GRAPHICS

 630, 630, 650, 650, 510, 540, 570, 600
 480 UNTIL FALSE
 490 ENDPROC
 500
+--+
|Handle cursor control keys, making sure that the |
|cursor does not go off the side of the screen. |
+--+
 510 IF cursorX > 0 THEN PROCdocursor(-1,0)
 520 RETURN
 530
 540 IF cursorX < NX% - 1 THEN PROCdocursor(1,0)
 550 RETURN
 560
 570 IF cursorY > 0 THEN PR0Cdocursor(0,-1)
 580 RETURN
 590
 600 IF cursorY < NY% - 1 THEN PR0Cdocursor(0,1)
 610 RETURN
 620
+--+
| Handle saving/loading of shapes |
+--+
 630 PROCload : VDU 22, mode : PR0Cshape(FALSE,
 byteNX%,byteNY%) : PR0Cdisplay : RETURN
 640
 650 PROCsave : VDU 22, mode : PROCshape(FALSE,
 byteNX%,byteNY%) : PROCdisplay : RETURN
 660
+--+
| Reflect the shape in Y=maximum Y / 2 |
+--+
 670 FORI%=0 TO NX%-1
 680 FORJ%=0 TO (NY%-1)DIV2
 690 temp=FNpoint (I%,J%)
 700 PROCplot(I%,J%,FNpoint(I%,NY%-1-J%))
 710 PROCplot(I%,NY%-1-J%,temp)
 720 NEXTJ%
 73C NEXTI%
 740 PROCshape(TRUE,byteNX%,byteNY%)
 750 PROCdisplay
 760 RETURN
 770

148

GRAPHICS

+---+
| Reflect the shape in X maximum X / 2 |
+---+
 780 FORJ%=0 TO NY%-1
 790 F0RI%=0 TO (NX%-1)DIV2
 800 temp=FNpoint(I%,J%)
 810 PROCpIot(I%,J%,FNpoint(NX%-1-I%,J%))
 820 PROCplot (NX%-1-I%,J%,temp)
 830 NEXTI%
 840 NEXTJ%
 850 PROCshape(TRUE,byteNX%,byteNY%)
 860 PRoCdisplay
 870 RETURN
 880
 890 DEF PROCplot(X,Y,col)
 900 GCOL 0,col
 910 PLOT 69, X * W% + 1024, Y * 4 + 640
 920 ENDPROC
 930
 940 DEF FNpoint(X,Y)
 950 = POINT(X * W% + 1024, Y * 4 + 640)
 960
+---+
| Plot a large square at the cursor position, looking |
| at the final size version at the side of the screen |
| to find the colour. |
+---+
 970 DEF PROCsq(X, Y)
 980 GCOL 0, FNpoint(X,Y)
 990 MOVE X * SX%, Y * SY%
1000 PLOT 0, SX% - 4, 0
1010 PLOT 81, 4 - SX%, SY% - 4
1020 PLOT 81, SX% - 4, 0
1030 ENDPROC
1040
+---+
| Display whole shape |
+---+
1050 DEF PROCdisplay
1060 LOCAL X, Y
1070 FOR X = 0 TO NX% - 1
1080 FOR Y = 0 TO NY% - 1
1090 PROCsq(X,Y)
1100 NEXT Y

149

GRAPHICS

1110 NEXT X
1120 PROC cursor
1130 ENDPROC
1140

+---+
| Plot the box cursor at the cursor position |
+---+
1150 DEF PROCcursor
1160 VDU 5
1170 GCOL 3,3

1180 MOVE SX% * (cursorX + .25), SY% * (cursorY + .25)
1190 PLOT 1, SX% DIV 2 - 4, 0
1200 PLOT 1, 0, SY% DIV 2 - 4
1210 PLOT 1, 4 - SX% DIV 2, 0
1220 PLOT 1, 0, 4 - SY% DIV 2
1230 ENDPROC
1240
+---+
| Get a shape from the filing system |
+---+
1250 DEF PROCload
1260 LOCAL I%, channel
1270 PROCshape(TRUE,byteNX%,byteNY%)
1280 channel = FNopen(TRUE)
1290 IF channel = FALSE ENDPROC
1300 PROCclear
1310 FOR I% = 0 TO (byteNX% * NY%)-1
1320 shape? I% = BGET#channel
1330 NEXT I%
1340 CLOSE #channel
1350 ENDPROC
1360
+---+
| Write a shape to the filing system |
+---+
1370 DEF PROCsave
1380 LOCAL I% , channel
1390 PROCshape (TRUE, byteNX% ,byte NY%)
1400 channel = FNopen(FALSE)
1410 IF channel = FALSE ENDPROC
1420 FOR I% = 0 TO (byteNX% * NY%) -1
1430 BPUT#channel,shape? I%
1440 NEXT I%
1450 CLOSE #channel

150

GRAPHICS

1460 ENDPROC
1470
+---+
| Utility used by PROCload and PROCsave to open a file|
+---+
1480 DEF FNopen(in)
1490 LOCAL W$
1500 VDU 22,7
1510 INPUT "File name ?"W$
1520 IF W$ = "" = FALSE
1530 IF in THEN = OPENIN(W$) ELSE OPENOUT(W$)
1540
+---+
| Plot point on final size shape and also plot |
| square on main screen. |
+---+
1550 DEF PROCcolour(colour)
1560 PROCcursor
1570 PROCplot(cursorX,cursorY,colour)
1580 PROCsq(cursorX,cursorY)
1590 PROCcursor
1600 ENDPROC
1610
+---+
| Wipe previous cursor from screen update cursor's |
| X and Y coordinates, and then plot the cursor at |
| new coordinates |
+---+
1620 DEF PROCdocursor(X,Y)
1630 PROCcursor
1640 cursorX = cursorX + X
1650 cursorY = cursorY + Y
1660 PROCcursor
1670 ENDPROC
1680
+---+
| Clear the array used to hold the shape |
+---+
1690 DEF PROCclear
1700 LOCAL clear
1710 FOR clear = 0 TO lenshape-4 STEP 4
1720 clear!shape=0
1730 NEXT clear
1740 ENDPROC

151

GRAPHICS

1750
+---+
| Either write final size shape from shape array or |
| put final size shape into shape array |
+---+
1760 DEFPROCshape(flag, X, Y)
1770 LOCAL I%, J%, tempx, tempy
1780 FOR I% = 0 TO X
1790 FOR J% = 0 TO Y
1800 tempx=I%+1024 DIV 16
1810 tempy=((J%+640 DIV 4)EOR&FF)DIV8
1820 PROCaccess(flag, (tempy*&280+tempx*8+((J%
 AND 7)EOR 7)+&3000), Y+1, J%, I%)
1830 NEXT J%
1840 NEXT I%
1850 ENDPROC
1860
+---+
| Get/put byte from/to final shape. |
+---+
1870 DEF POCaccess(flag,addr , Y , J% , I%)
1880 IF flag THEN shape/(I%*Y+(Y-J%-1))=?addr ELSE
 ?addr=shape?(I%*Y+(Y-J%-1))
1890 ENDPROC

152

GRAPHICS

Variables Used:

lenshape Maximum length of shape (in bytes).
mode Holds graphics modeseected.
I% General loop control variable.
J% General loop control variable.
pixbits Number of bits per pixel.
pixelperbyte Holds number of pixels per byte.
W% Width of pixels in graphics co-ordinates
NX% Width of shape
NY% Height of shape
byteNX% Width of shape (in bytes)
byteNY% Height of shape (in bytes)
SX% Width of pixels In larga shape
SY% Height of pixels in large shape.
shape Byte vector to hold shape.
cursorX X co-ordinate of cursor in pixels.
cursorY Y co-ordinate of cursor in 'pixels'.
command$ String containing commands.
colour$ String containing keys for colours

Colours are specified by pressing key

corresponding to Hexadecimal digit.
Note state of CAPS LOCK or SHIFT
keys is irrelevant.

key$ Holds key' pressed.
length Holds length of shape data.
C% Zero if command, else holds colour key

plus one.

13.2 Plotting a shape on the screen
To plot a shape on the screen at a specified position it
is necessary to have two routines; one to convert the
X and Y coordinates to a memory location on the
screen, and another routine to plot a shape at that
address.

Two routines are given below which perform these
tasks. The method chosen can only be used for
plotting shapes to a resolution of 80 by 256 in MODEs
0, 1 and 2. The routines work by Exclusive ORing the
shape onto the screen. This has two main advantages
over other methods (such as writing the shape on the
screen or ORing the shape with the screen memory).
The first advantage is that the detail under the shape
is not lost when the shape is unplotted, the second is
that the same routine can be used for both plotting
and unpotting.

Convert X, Y coordinate to screen address -- getaddr
This routine doesn't write anything to the screen, all
that it does is generate an address where a shape
might then be written to the screen, or read from the
screen. It will generate an address for MODEs 0, 1
and 2, allowing for hardware scroll. The algorithm
used is given at the end of the listing so that the code
can be adapted for MODEs 4 and 5.

On entry, X holds the X coordinate (0 79), Y holds the
Y coordinate (0 - 255), and A is irrelevant.

A typical call might be:

LDX xcoord
LDY ycoord
JSR getaddr

On exit, X will be preserved, Y and A will have been
corrupted. The resultant address is left in 'addr' and
'addr+1' (low byte, high byte) which must be in zero
page. Other locations used are 'temp' (1 byte) and

153

GRAPHICS

'top' (2 bytes). For speed, these locations should also
be in zero page.

154

GRAPHICS

.getaddr
 LDA #&00 Set hi byte of address
 STA addr+1 to zero
 TYA Invert Y coordinate
 EOR #&FF and save to stack
 PHA
 OPT FN rotateacc(3) Divide Y cordinate by 8
 TAY and leave in Y
 LSR A Adjust carry for * &280
 STA temp Save Y/16 in temp
 LDA #&00 Set bottom byte of address to
0
 ROR A Put carry into top bit
 ADC top and add in top of screen
 PHP Save carry flag
 STA addr Store result in addr
 TYA Get Y/8
 ASL A Double it for top byte
 ADC temp of addr. Add in Y/16
 PLP Restore carry
 ADC top+1 and add in top of screen
 STA addr+1
 LDA #&00 Set temp to zero
 STA temp
 TXA Get X coordinate
 ASL A Perform two byte multiply
 ROL temp by 8 because of memory
 ASL A map
 ROL temp
 ASL A
 ROL temp
 ADC addr Add in rest of result so
 STA addr far, and store it
 LDA temp
 ADC addr+1
 BPL ok Check for hardwar scroll
 SEC If over 3000-8000 boundary
 SBC #&50 then correct address
.ok
 STA addr+1 And store it
 PLA Restore inverted Y coord
 AND #&07 Get row number in computed
 ORA addr column, and add it in

 STA addr
 RTS Return

155

GRAPHICS

Some words of explanation:

The algorithm used to calculate the screen memory
address is:

addr = X * 8 + ((Y EOR &FF)
AND 7) + &280 * ((Y EOR &FF
)DIV 8)+ top

where X and Y are the coordinates. The reason Y is
inverted is so that the bottom of the screen is treated
as 0, even though the memory map is the other way
round. There are 640 bytes per character line on the
display, which is &280 in hex. The variable 'top' is
normally set to &3000, except when hardware scroll is
taking place. In most applications this will be
irrelevant, and so 'top' may be set up at the beginning
of the program and then forgotten about. The Y AND
7 and Y DIV 8 operations are performed because of
the memory map of the screen, DIV 8 is performed to
get to the start of the current character cell, and AND
7 to get to the current byte in the character cell:

top +0 +8 +&10 +&18 +&20 +&28
+0 +-------+-------+-------+-------+-------+.....
+1 +-------+-------+-------+-------+-------+.....
+2 +-------+-------+-------+-------+-------+.....
+3 +-------+-------+-------+-------+-------+.....
+4 +-------+-------+-------+-------+-------+.....
+5 +-------+-------+-------+-------+-------+.....
+6 +-------+-------+-------+-------+-------+.....
+7 +-------+-------+-------+-------+-------+.....
+&280 +-------+-------+-------+-------+-------+.....
+&281 +-------+-------+-------+-------+-------+.....

Plotting a shape at a given screen coordinate - doplot
This routine works in conjunction with the above
routine for plotting a shape at a given X, Y screen
coordinate.

On entry, all registers are irrelevant. The parameters
passed are:

counter -- holds number of bytes in the shape
addr -- holds screen address to put shape
depth -- holds height of shape
shape -- start address of shape in memory

('shape' must be in zero page.)

On exit, all registers may have been corrupted, but
all parameters will have been preserved.

156

GRAPHICS

.doplot
 LDY #&00 Set shape offset to zero
 LDA addr+1 Push screen sddress onto
 PHA stack for later use
 LDA addr
 PHA
 LDA depth Get depth of shape
 STA rowcounter
 LDA addr Put offset in character
 AND #&07 cell into Y
 STA offset
 LDA addr Adjust address accordingly
 AND #&F8 Go to top of character cell
 STA addr
 STY temp
.innerloop
 LDY temp
 LDA (shape),Y Get byte from shape
 INY
 STY temp
 LDY offset
 EOR (addr),Y
 STA (addr),Y
 INY Y holds offset on screen
 CPY #&08 bottom of character cell
 BEQ block if so then go down a line
.nobIoc
 STY offset
 DEC rowcounter
 BNE innerloop
.nextblock
 LDA shape

 CLC
 ADC depth
 STA shape

 BCC nohi
 INC shape+1
.nohi
 CLC Go to the top of the next
column
 PLA by resetting address to top
 ADC #&08 of current column, and
 STA addr moving to nect character
 PLA cell
 ADC #&00
 BPL nobound1

 SEC
 SBC #&50
.nobound1
 STA addr+1
 DEC counter Easier to DEC counter in
 BNE doplot two place and test
 RTS
.block
 LDY #&00 Go down a line
 LDA addr addr = (addr + &280)
 CLC
 ADC #&80
 STA addr
 LDA adr + 1
 ADC #&02
 BPL noboundary If the contents of addr are
 SEC greater than &8000 then
 SBC #&50 subtract &5000
.noboundary
 STA addr + 1
 BNE nolock Always jump

157

GRAPHICS

Interfacing getaddr and doplot - plotshape
The number of parameters may be cut down by
having a 'front end' attached to the start of the doplot
routine which would make interfacing easier.

On entry to 'plotshape' A would hold the number
of the shape to be plotted and X and Y would hold the
X and Y coordinates at which the shape is to be
plotted.

A typical call to 'plotshape' would be:

LDY #0 Get first shape

TYA
PHA Preserve shape number
LDA xcoord,Y Get x coordinate
TAX
LDA ycoord,Y Get y coordinate
TAY
PLA Get shape number back
JSR plotshape Plot shape

158

GRAPHICS

On exit from 'plotshape' all registers may have
been corrupted, although all internal parameters
('depth', 'counter', etc.) will have been preserved.

.plotshape
 PHA Save shape number
 JSR Getaddr Get address
 PLA Restore shape
 TAY
 LDA shapeloaddr,Y Set up parameters
 STA shape This assumes that
 LDA shapehiaddr,Y the User has set
 STA shape + 1 up the relevent
 LDA shapesize,Y tables
 STA counter (shape loaddr,
 LDA shapedepth,Y shapesize, etc)
 STA depth

