
8

85

BASIC I, BASIC II AND
ELECTRON BASIC

There are, at the time of writing, two versions of BBC
BASIC available for the BBC Microcomputer, known
officially as BASIC and BASIC II. In this book,
however, they are referred to as BASIC I and BASIC II
respectively, and the name BASIC is used as a general
term to cover either. This chapter looks at the
differences between the two which affect the
assembler programmer and provides BASIC I
versions of the new directives and keyword.

The BASIC provided on the Electron can be
assumed to be BASIC II. The BASIC routines given
elsewhere in this book will all work on machines
containing BASIC II and can be adapted to work with
BASIC I as well.

8.1 Distinguishing BASIC I from BASIC II
To find out if you have BASIC I or BASIC II press
BREAK and then type REPORT. BASIC II will give
the message:

(C)1982 Acorn

Whereas BASIC I will produce:

(C)1981 Acorn

8.2 The main differences between BASIC I and
BASIC II
The main differences between the two BASICs which
concern assembler programmers are:

OPT
In BASIC I only the lowest two bits in the OPT
statement are significant; if the lowest bit is set then
the machine code is listed and if the next bit is set
error messages are reported. The other bits are
ignored. However, in BASIC II the third bit is
significant as well; it is used to produce code which
will execute somewhere other than the assembled
position. If the third bit is set (OPTs 4 to 7) then the
code is assembled at the value of O% (the code
origin), not at P%. However, all the JMP's etc. will be
set up as if it is going to execute at P%, and so it is an
easy matter to relocate the code. This is particularly
useful if, for example, you had written a routine
which had to work in ROM, or some other space
which is not normally accessible. Note that if this
option is used then as the code is produced both O%
and P% are incremented, otherwise just P% is
incremented.

EQUB, EQUW, EQUD and EQUS
Four assembler directives have been introduced in
BASIC II which are not present in BASIC I. These new
directives are EQUB, EQUW, EQUD and EQUS which
stand for 'equate byte', 'equate word' (2 bytes),
'equate double word' (4 bytes) and 'equate string' (0 -
255 bytes). These each take a single argument, and
put its value into the assembly code at P% (also
incrementing P% by the correct amount), e.g.

86

BASIC I, BASIC II AND ELECTRON BASIC

EQUB &FE Put '&FE' at P%

EQUW oswrch Put contents of 'oswrch'
 at P% and P%+1

EQUD 0 Set the next four bytes
 to zero

EQUS "Fred"+CHR$(13) Put 'Fred'+Carriage Return
 in memory starting at P%

OSCLI
A new kevword, OSCLI, has been introduced which
takes as its argument an expression, which it then
passes to the operating system command line
interpreter. This is not directly useful in assembler
source code, but is useful when saving or loading
variable amounts of data, or when sending variable
FX commands. For example the following routine sets
up soft key 0 to contain the string 'LIST+ERL+
[RETURN]':

PROCkey (0, "LIST "+STR$ERL+"|M")
.
.
DEFPROCkey(number, A$)
OSCLI("KEY " + STR$number + " " + A$)
ENDPROC

Another example is to SAVE a BASIC program by
typing

87

BASIC I, BASIC II AND ELECTRON BASIC

OSCLI("SAVE <filename> " STR$˜PAGE + " " + STR$˜TOP)

Note: this is exactly the same as the BASIC
command SAVE <filename>. Note also the use of
'STR$˜' here to convert a hexadecimal number to a
string.

8.3 BASIC I versions of EQUB, EQUW, EQUD and
EQUS
Macros can be set up in BASIC I to emulate these
directives:

EQUB
DEF FNequb(byte)
?P% = byte
P% = P% + 1
= pass

EQUW
DEF FNequw(word)
?P% = word AND &FF
P%?1 = word DIV &100
P% = P% + 2
= pass

EQUD
DEF FNequd(doubleword)
!P% = doubleword
P% = P% + 4
= pass

EQUS
DEF FNequs(string$)
$P% = string$
P% = P% + LEN(string$)
= pass

Note that 'FNequs' will put the string into memory
from 'P%' on, and will also set the byte following the
string to a &D byte (RETURN character), although
the next mnemonic assembled will overwrite this. In
the event that this is a problem, 'FNequs' could be
rewritten so that only the string is put into memory,
and nothing more. This is left as an exercise for the
reader.

8.4 BASIC I version of OSCLI
The following routine can be used in exactly the same
way as OSCLI is used in BASIC II, e.g.

88

BASIC I, BASIC II AND ELECTRON BASIC

Note that 'cli' is an ATOM string which should be
DIMensioned at the start of the program, e.g. DIM cli
64

PROCoscli("SAVE <filename> " + STR$˜PAGE + " " +
STR$˜TOP

DEFPROCoscli($cli)
LOCAL X%, Y%
X% = cli AND &FF
Y% = (cli AND &FFOO) DIV &100
CALL oscli oscli is at &FFF7
ENDPROC

