
SECTION 2

77

78

7

79

MACROS

If an assembler programmer wants to use a block of
instructions several times during a single program
then this block only needs to be entered once. There
are then two methods of using this block when it is
needed. The first is to put a label before it and an RTS
instruction at the end, and reference it as a subroutine
using the JSR instruction which was described earlier.
In this case the CPU will 'jump' to the label when it
reaches the JSR and 'jump' back again when it reaches
the RTS at the end of the subroutine.

The alternative method is to turn the block of
instructions into a macro, the method for doing this
will be explained later. Essentially what this does is to
give this block of instructions a name and, when the
assembler comes across this name, it inserts the
instructions of the macro into the object code which it
is producing so that the CPU does not have to
perform any jumps when it is executing the code.

Hence the main difference between macros and
subroutines is that subroutines are called at run-time
and macros are called at assembly time.

The advantage of macros is that they are faster
than subroutines since no jumps are needed during

execution. The disadvantage is that if the macro is to
be used several times, the resulting machine code
program will have to contain multiple copies of the
instructions represented by the macro, and thus be
long. Using a subroutine would only require one
copy of the instructions. Macros can be more useful
than just an aid to save typing however, and this
chapter explains some of their other features. Further
examples can be found in section 12.5 (General
purpose macros).

7.1 Generating and calling a macro
Consider the sequence of instructions:

ROR A : ROR A : ROR A : ROR A

This simply shifts the upper nibble of the
accumulator into the lower nibble. A macro with the
name 'FNrotateacc' containing this sequence can be
set up outside the assembler program as follows:

 DEF Fnrotateacc
[OPT pass
 ROR A : ROR A ROR A : ROR A
] :=pass

This macro can then be called from inside the
assembler with the statement

OPT FNrotateacc

The OPT statement is being used here as a dummy
statement, simply to call FNrotateacc and have no
other effect. We therefore arrange for the value of the
function to be 'pass', which should be the value used
in the initial OPT statement. Therefore on reaching
this statement the assembler will generate the
machine code corresponding to the assembler
instructions of the macro, and place this in the object
code. Then it will move on to the next instruction of
the assembler program.

The flow of control when the program is being
typed will look something like this:

80

MACROS

The machine code produced will be as follows:

A5 81 LDA addr addr = &81
6A ROR A
6A ROR A
6A ROR A
6A ROR A
85 81 STA addr

7.2 Macro parameters
Macros can take parameters, thus the previous
example could be rewritten in such a way that it
could rotate the accumulator any number of times (as
long as this number is greater than 0):

 DEF FNrotateacc(rotate)
 FOR number 1 TO rotate
[OPT pass
 ROR A
]
 NEXT number
 = pass

So, to rotate the bits in any memory location any
number of times to the right, simply set up a macro as
follows:

81

MACROS

LDA addr

DEFFNrotateacc
ROR A
ROR A
ROR A
ROR A
:=pass

OPT FNrotateacc

STA addr

 DEF FNrotate(address, rotate)
 FOR number = 1 TO rotate
[OPT pass
 ROR address
]
 NEXT number
 =pass

A typical call might be

OPT FNrotate(&3000, 4)

This would generate machine code to rotate right
four times the bits in location &3000.

7.3 Conditional assembly in macros
Macros can also be constructed to contain conditional
instructions, so that they will assemble different
pieces of code according to the parameters passed.
For example, the following macro works out the
shortest way of rotating the accumulator left:

82

MACROS

DEF FNoptimumrotate(rotate)
IF rotate < 1 THEN = pass
IF rotate < 5 THEN FOR number = 1 TO rotate :
 [OPT pass : ROL A:]:Next number
 ELSE FOR number = 1 TO (9 - rotate) :
 [OPT pass : ROR A:]:Next number

= pass

7.4 Labels in macros
Labels cannot be used in the normal way inside
macros. Consider, for example, the macro given
below:

 DEFFNstar
[OPT pass
 LDX addr
 BEQ exclamation
 LDA #ASC"*"
 JSR oswrch
.exclamation
 LDA #ASC"!"
 JSR oswrch
] : =pass

When the assembler reaches the 'BEQ exclamation'
loop instruction on the second pass, it will give the
offset the same address of the label which was set up
the first time around. If forward referencing is not
used then this problem will not occur, but it is still
undesirable to use label names time and again. The
program becomes very difficult to follow and to
debug.

To use labels in macros that are called from more
than one place, it is necessary to set up tables of
labels. Thus if the label 'start' is used in a macro, an
array called 'start' would have to be DIMensioned at
the beginning of the program together with as many
elements as the number of times the macro is called. If
the macro with 'start' in it was called three times from
within the program, the statement 'DIM start(2)'
would have to be inserted before the first call to that
macro took place. Also, each call to the macro would
have to pass a parameter which contained a number
(0,1 or 2) so that the correct label would be used. To
illustrate:

 DEF FNmacro(fred,jim,no)
[OPT pass
 LDA fred
 LDY jim
.start(no)
 JSR oswrch
 DEY
 BNE start(no)
]
=pass

The above macro will print the contents of 'fred' as
an ASCII character, 'jim' times. By convention the
label number is always passed as the last parameter,
and it is also a good idea to have all the macros using
the same variable to hold the number (in this case
'no').

A typical call to the above macro might be

OPT FNmacro(addr, 45, 1)

This would use the label 'start(1)'.

83

MACROS

84

