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INTRODUCTION

The BASIC assembler which is available on the BBC
Microcomputer and Acorn Electron is a very
powerful tool for programmers. It provides a
comprehensible interface between the programmer
and the machine code language which the 6502
processor itself uses. Hence the programmer is able to
control the machine more directly using assembler.

The main reason why people write programs in
assembler rather than BASIC is probably because of
the speed difference between the two. Assembler
instructions can be executed extremely quickly, a
program written in BASIC will take between 10 and
100 times as long. Hence assembler is particularly
useful for games' programmers since it enables them
to move missiles and creatures across the screen
quickly and smoothly. If BASIC was used to calculate
the new coordinates of each object and draw them at
those positions then movement would tend to occur
in jerky leaps.

However, speed is not the only factor to be taken
into consideration. Assembler programming gives
you more power to solve a problem than BASIC does.
All high-level languages require programs to have a
certain structure and this puts constraints on
programs written in that language.
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Sceptics may advise against using assembler on
the grounds that it is too complex. It is true that
operations such as multiplication and division which
are easy to perform in BASIC are not as
straightforward in assembler. For what might be
considered a trivial task, for example multiplying a
number by three, several assembler instructions are
required instead of just a single BASIC one. A further
problem is that there are no FOR ... NEXT or REPEAT
... UNTIL loops in assembler; if you require a loop
you must set one up yourself. The same applies to
floating point arithmetic -- assembler only supports
integer calculations.

My advice is that you ignore these sceptics. It isn't
difficult to learn to program in assembler. The
programs look much less like English than BASIC I

'Rocket Raid' — an excellent
example of the use of the
assembler.



ones do but nevertheless to someone who knows the
language they are easy to understand. Like learning
to do anything else, all that is required is a certain
amount of knowledge and a lot of practice. This book
has been written to provide the knowledge -- the rest
is up to you.

The book is divided into three sections, each of
which has a different task to perform. The first part
aims to introduce the more useful assembler
instructions available for the 6502 processor, giving
simple examples of how they can be used. The second
part introduces some of the more complex
programming techniques which are aimed in
particular at people writing large assembler
programs. The third part is aimed mainly at the
games' programmer. It provides many useful routines
and finally shows how these can all be linked
together to produce a complete game.
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