
SECTION 1

13

14

1

15

DATA STORAGE

Before you can start writing programs in assembler
you need to know a few things about how data is
stored inside the computer and how that data can be
accessed and changed. This chapter looks at the ways
in which you can enter numbers from the keyboard
and the notation which the computer uses to store
these values in its memorv.

1.1 Hexadecimal notation
To most people it seems natural to use base ten when
dealing with numbers. We have ten digits; 0,1, ... 8,9,
and can use these to represent numbers as large as we
please by making the value of a digit depend on
which column it is in. Thus, when we consider the
number 171 the first '1' represents 100, and the
second '1' represents just one. Moving a digit one
column to the left multiplies its value by ten; this is
why our system is called base 10 or decimal.

When entering numbers into a computer you can
still use base 10 if you wish, but another base -- base
16 -- is also available. For reasons which should
become clear as you read through this chapter, base
16 (or hexadecimal) is far more suitable for working
with computers. Hence it is advisable at this stage to
spend some time becoming familiar with this number
system.

In base 16 we need 16 different symbols to
represent the 16 different 'hexadecimal digits'. For
convenience we retain the symbols 0 to 9, and use the
letters A to F to represent the values of ten to fifteen.

16

Another difference between base 10 and base 16 is
what happens to a digit or hexadecimal digit when it
is shifted one column to the left. Whereas we have
seen that in base 10 this multiplies the value of the
digit by ten, in base 16 it multiplies the value by
sixteen. Hence 10 in hexadecimal represents the value
sixteen.

Having two bases in which we can work can lead
to confusion. Consider, for example, the number 10;
as we have seen this can represent either of the values
ten or sixteen depending on whether it is being
interpreted as a decimal or hexadecimal number. We
need a method of specifying whether a number is
decimal or hexadecimal. Normally we do this by
prefixing hexadecimal numbers with an ampersand
(&), e.g.

&B1

The 'B' has the value 16*11 because it is in the second
column to the left, and the '1' represents 1 unit; the
number therefore has the decimal value 176 + 1, i.e.
177.

&123

The '1' is in the third column to the left, so it has the
value 16*16*1, the '2' has the value 16*2 and the '3'
has the value 3. Adding these together produces 256 +
32 + 3, i.e. 291

There is no real need to learn how to convert
between hexadecimal and decimal because the
computer can do it for you, as shown below.

Converting hexadecimal to decimal
To print out the decimal value of a hexadecimal
number, such as &123, type

PRINT &123

Hexadecimal digit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 150
1 2 3 4 5 6 7 8 9 A B C D E F0

Decimal value

DATA STORAGE

The answer, 291, is printed out.

Converting decimal to hexadecimal
To print, in hexadecimal, the value of a decimal
number, type

PRINT ˜&123

The answer, 7B, is printed out. The number printed
will be in hexadecimal notation, but note that the
computer doesn't use the symbol '&' when it is
printing hexadecimal numbers. In this case it is
obvious that the answer is a hexadecimal number but
for an answer such as 79 you would need to know
which base you requested the computer to use to be
able to interpret the result correctly.

The symbol twiddle or, more accurately, ti(de) ˜
means 'print in hexadecimal'; thus writing

PRINT˜123

will print 123.

1.2 Binary notation and bits
Although the computer can accept numbers in either
decimal or hexadecimal notation, it uses neither of
these two systems for storing the numbers in its
memory. The computer's memory consists of
electronic circuits that can be put into one of two
different states. The two states are normally
represented as 0 and 1, but they are often referred to
by different terms as listed below:

 0 1
 zero one
 low high
clear set
 off on
false true

The circuits are said to be in a 'bistable state', i.e.
they are always in one of two possible states. When
the digits 0 and 1 are used to refer to these two states
they are termed 'binary digits', or 'bits' for brevity.

17

DATA STORAGE

With two bits, e.g. M and N, four different states
can be represented:

M N
1
2
3
4

0
0
1
1

0
1
0
1

With a 'nibble', which is four bits, 16 different
values can be represented (16 = 2ˆ4). This means that
a hexadecimal digit can be represented by a four-bit
binary number. The hexadecimal digits and their
binary equivalents are shown in the following table:

Decimal Hexadecimal Binary
0 0 0 0 0 0
1 1 0 0 0 1
2 2 0 0 1 0
3 3 0 0 1 1
4 4 0 1 0 0
5 5 0 1 0 1
6 6 0 1 1 0
7 7 0 1 1 1
8 8 1 0 0 0
9 9 1 0 0 1
10 A 1 0 1 0
11 B 1 0 1 1
12 C 1 1 0 0
13 D 1 1 0 1
14 E 1 1 1 0
15 F 1 1 1 1

Any hexadecimal number can be converted into its
binary representation by the simple procedure of
converting each hexadecimal digit into the
corresponding four bits, for example

18

Hexadecimal

Binary

&19

0001 1001

DATA STORAGE

Thus the binary equivalent of &19 is 00011001, (or
leaving out the leading zeros which are irrelevant,
11001).

1.3 Memory locations and bytes
The computer's memory is made up of a number of
'locations', each capable of holding a value. The size
of each memory location is normally referred to as a
'byte'. Each byte can hold an eight-bit number, which
means that it can store any one of 256 (2ˆ8) different
values; 0... 255.

We have seen already that each hexadecimal digit
requires four bits to specify it. A byte, since it contains
eight bits, can therefore represent any hexadecimal
number between 0 and &FF.

The bits in a byte are usually numbered for
convenience, as follows:

19

Bit 0 is often referred to as the 'low-order bit' or
'least-significant bit', and bit 7 as the 'high-order bit'
or most-significant bit'.

1.4 More about memory locations
Somehow it must be possible to distinguish between
one location and another. Houses in a town are
distinguished by each of them having a unique
address. Even when the occupants of a house change,
the address of the house remains the same. Similarly,
each location in a computer has a unique 'address'
consisting of a number which remains unchanged
even when the contents of the memory location are
altered. Thus we can speak of the 'contents of location
100' as being the number found in the location whose
address is 100. The memory locations start from

DATA STORAGE

bit number 7 6 5 4 3 2 1 0

byte 0 0 0 1 1 0 0 1

address 0 and could look something like this:

An address can be one or two bytes long. This
means that addresses can cover the range 0 to &FFFF.
For a detailed look at which part of the memory each
address corresponds to see the memory maps in
Appendix A.

Examining memory locations
We can look at the contents of some memory
locations in the computer using the query (?)
operator. The reference '?X' means use the value of X
as the address of the location under consideration.
Hence the reference '?&FFEE' means that we are
concerned with the location whose address is &FFEE.
To look at this location type

PRINT ?&FFEE

This prints out the value found at the location
specified, which in this case should be the number
108. Any memory location can be examined in this
way and all of them will contain a number between 0
and 255.

It is often convenient to look at several memory
locations in a row; for example, to list the contents of
the 32 memory locations from &70 upwards, type

20

0 1 2 3

27 35 6 3

Address

Decimal value of the number being stored

FOR N = 0 TO 31 : PRINT ?(N+&70); : NEXT N

An alternative way of writing this is

FOR N=0 TO 31 : PRINT N?&70; : NEXT N

This method is tidier than the other and gives identical
results; i.e. for each of the values of N between 0 and 31, N

DATA STORAGE

is added to the number &70 to give the address of the
location whose contents are to be printed out. This
should result in the contents of 32 memory locations
being listed on the screen.

Changing memory locations
It is possible to change the number stored at a
particular memory location by assigning a new value
to it. As an example try changing the contents of &70.
First, print the contents of this address; the value
there will be whatever was in the memory when the
computer was switched on since the computer does
not use this location for storing any of the variables it
is working with. To change the contents to 7, type

?&70=7

To verify the change, type

PRINT ?&70

Try setting the contents of this memory location to
other numbers. Setting the contents to a number
greater than 255 or &FF will result in the number
entered modulo 256 being stored there, for example

?&70=600
PRINT ?&70

This will print out

88 (600 MOD 256)

A word of warning: Before you change the
contents of any other memory locations be sure that
you know what you are doing. Although it is quite
safe to look at almost any memory location in the
computer, care must be exercised when changing any
of them. The example given here uses a specific
location which is not used by the computer; if you
change any other location you may lose any program
you have in memory or confuse the computer to such
an extent that it proves necessary to reset it by
pressing BREAK to make it accept any further
commands.

1.5 Negative numbers - two's complement
Although the values stored in the memory locations
are between 0 and 255 these can be used to represent

21

DATA STORAGE

both positive and negative numbers. To do this two's
complement representation is used. To represent a
number using this system we first have to consider
what its positive counterpart is in binary notation. For
example to find out how -5 would be stored consider
the number

+5 = 00000101

We then find the complement of this, i.e. change
each 0 into a 1 and each 1 into a 0, e.g.

complement of +5 = 1111010

Finally we add one:

 11111010
 + 1

 11111011

This gives us the two's complement representation
of -5.

We can now try adding together +5 and -5 to see if
they give us 0.

 00000101
 11111011

(1) 00000000

Ignoring the 1 which has overflowed gives us the
result, zero, which we were expecting.

Note that when representing numbers using two's
complement notation a single byte can represent any
number between -128 and +127. The left-hand bit is 1
if the number is negative and 0 otherwise. Zero is
classed as a non-negative number.

1.6 Storing text
If locations can only hold numbers between 0 and
255, how is text stored in the computer's memory?
The answer is that numbers are used to represent the
different characters. Hence text is stored simply as a
sequence of numbers in successive memory locations.
The computer does not become confused about

22

DATA STORAGE

whether a number is representing an actual number
or a character since the context will always make it
clear how it should be interpreted.

The unique number corresponding to each
character is given by its ASCII code (American
Standard Code for Information Interchange). To find
the ASCII code of a given character the ASC function
can be used, for example type

PRINT ASC "A"

and the number 65 will be printed out. This means
that the character 'A' is represented internally by the
number 65. If you try repeating this process for B C D
..... you will notice that there is a certain regularity.
The same is true for a b c d ... and the sequence 1 2 3 4
....

A full table of the ASCII codes used to represent all
the characters is given in Appendix A.

23

DATA STORAGE

24

DATA STORAGE

