
Penguin Books

Creative Assembler
How To Write Arcade Games

As one of Acornsoft's games programmers, Jonathan Griffiths
was responsible for such widely popular programs as Snapper
and JCB Digger for the BBC Microcomputer Model B and Acorn
Electron He has prepared a cassette program, which can be used
in conjunction with this book, available from Acornsoft Limited,
c/o Vector Marketing Ltd, Denington Industrial Estate,
Wellingborough, Northants NN8 2RL.



Acknowledgements 
Thanks are due to David Johnson-Davies for
providing an earlier version of the first few chapters,
Jim Dobson and Jeremy Bennett for helping in the
writing of this book, and to Philippa Bush and
Sharron Fellows for editing it Also, thanks are due to
Orlando M. Pilchard (Q.C.), Chris Jordan, Paul
Hudson,Peter Cockerell, Dominic Verity, Jeremy San,
Robert Macmillan, Paul Fellows, John Collins, Simon
Hughes and Mark Holmes for proof reading.

This book was written and prepared on a BBC
Microcomputer Model B using the VIEW word
processor.

This book is dedicated to all the staff at Acornsoft.



CREATIVE ASSEMBLER
How To Write Arcade Games

Jonathan Griffiths

Penguin Books



The Penguin Acorn Computer Library is a joint venture, produced by Acornsoft Limited (in
association with Pilot Productions Limited), and published by Penguin Books Limited.

Penguin Books Ltd, Harmondsworth, Middlesex, England
Penguin Books, 40 West 23rd Street, New York, New York, 10010, U.S A.
Penguin Books Australia Ltd, Ringwood, Victoria, Australia
Penguin Books Canada Ltd, 2801 John Street, Markham, Ontario, Canada L3R 1˜
Penguin Books (N.Z.) Ltd, 182-190 Wairau Road, Auckland 10, New Zealand

First published 1984

Copyright © Acornsoft Limited, 1984

All rights reserved

Set in Palatino by Repro Graphics, 61 Cromwell Road, Southampton

Colour origination by RCS Graphics Ltd, 39-40 Springfield Mills, Farsley, Pudsey, Leeds, and
MRM Graphics, 61 Station Road, Winslow, Bucks

Made and printed in Spain by Printer industria grafica s.a., Sant Vicenc dels Horts, Barcelona
D.L.B. 1517O-1984

Line illustrations by Rob Shone
Original photography by Nick Wright

Except in the United States of America, this book is sold subject to the condition that it shall
not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without
the publisher's consent in any form of binding or cover other than that in which it is
published and without a similar condition including this condition being imposed on the
subsequent purchaser



CONTENTS

INTRODUCTION 9

SECTION 1

1 DATA STORAGE 15
1.1 Hexadecimal notation
1.2 Binary notation and bits
1.3 Memory locations and bytes
1.4 More about memory locations
1.5 Negative numbers - two's complement
1.6 Storing text

2 CARRYING OUT INSTRUCTIONS 25
2.1 The CPU
2.2 Machine code v assembler
2.3 The accumulator and the carry flag
2.4 Writing an assembler program
2.5 Executing a machine-code program
2.6 Adding two-byte numbers
2.7 Subtraction
2.8 Comments
2.9 Printing a character
2.10 Immediate addressing
2.11 Using addresses

3 JUMPS, BRANCHES AND LOOPS 39
3.1 Jumps
3.2 The zero and negative flags
3.3 Conditional branches
3.4 Two pass assembly
3.5 X and Y registers
3.6 Iterative loops
3.7 Comparing values
3.8 Using the control variable
3.9 Conditional assembly

5



6

4 LOGICAL OPERATIONS, SHIFTS AND ROTATES 53
4.1 Logical operations
4.2 The BIT instruction
4.3 Rotates and shifts

5 ADDRESSING MODES 59
5.1 Indexed addressing
5.2 String types
5.3 Summary of addressing modes

6 THE STACK 69
6.1 Using the stack
6.2 How the CPU stores addresses
6.3 Recursion

SECTION 2

7 MACROS 79
7.1 Generating and calling a macro
7.2 Macro parameters
7.3 Conditional assembly in macros
7.4 Labels in macros

8 BASIC I, BASIC II and ELECTRON BASIC 85
8.1 Distinguishing BASIC I from BASIC II
8.2 The main differences between BASIC I and BASIC II
8.3 BASIC I versions of EQUB, EQUW, EQUD and EQUS
8.4 BASIC I version of OSCLI

9 OPERATING SYSTEM ROUTINES AND SPECIAL EFFECTS 89
9.1 OSBYTE and OSWORD
9.2 Revectoring operating system routines
9.3 Screen scrolling
9.4 Palette handling
9.5 Interrupts, events and BREAKS



10 LARGE ASSEMBLER PROGRAMS 105
10.1 Source files and the master compiler program
10.2 Saving source files
10.3 Macro source files
10.4 Initialisation file

11 PROGRAM STRUCTURE 113
11.1 Where to start
11.2 Self-documenting code
11.3 Parameters
11.4 Size of routines
11.5 Conditional assembly in an aid to debugging
11.6 Lower case variable names
11.7 Constants
11.8 Lookup tables
11.9 Use of absolute addresses

SECTION 3

12 UTILITIES FOR ASSEMBLER PROGRAMS 123
12.1 Input/output
12.2 Analogue to digital routines
12.3 Numerical routines
12.4 Miscellaneous
12.5 General purpose macros
12.6 BASIC routines for use with assembler

13 GRAPHICS 145
13.1 Shape designer - DESIGN
13.2 Plotting a shape on the screen

14 EXAMPLE GAME 159

APPENDIX A 171

APPENDIX B 177



8



9

INTRODUCTION

The BASIC assembler which is available on the BBC
Microcomputer and Acorn Electron is a very
powerful tool for programmers. It provides a
comprehensible interface between the programmer
and the machine code language which the 6502
processor itself uses. Hence the programmer is able to
control the machine more directly using assembler.

The main reason why people write programs in
assembler rather than BASIC is probably because of
the speed difference between the two. Assembler
instructions can be executed extremely quickly, a
program written in BASIC will take between 10 and
100 times as long. Hence assembler is particularly
useful for games' programmers since it enables them
to move missiles and creatures across the screen
quickly and smoothly. If BASIC was used to calculate
the new coordinates of each object and draw them at
those positions then movement would tend to occur
in jerky leaps.

However, speed is not the only factor to be taken
into consideration. Assembler programming gives
you more power to solve a problem than BASIC does.
All high-level languages require programs to have a
certain structure and this puts constraints on
programs written in that language.



10

Sceptics may advise against using assembler on
the grounds that it is too complex. It is true that
operations such as multiplication and division which
are easy to perform in BASIC are not as
straightforward in assembler. For what might be
considered a trivial task, for example multiplying a
number by three, several assembler instructions are
required instead of just a single BASIC one. A further
problem is that there are no FOR ... NEXT or REPEAT
... UNTIL loops in assembler; if you require a loop
you must set one up yourself. The same applies to
floating point arithmetic -- assembler only supports
integer calculations.

My advice is that you ignore these sceptics. It isn't
difficult to learn to program in assembler. The
programs look much less like English than BASIC I

'Rocket Raid' — an excellent
example of the use of the
assembler.



ones do but nevertheless to someone who knows the
language they are easy to understand. Like learning
to do anything else, all that is required is a certain
amount of knowledge and a lot of practice. This book
has been written to provide the knowledge -- the rest
is up to you.

The book is divided into three sections, each of
which has a different task to perform. The first part
aims to introduce the more useful assembler
instructions available for the 6502 processor, giving
simple examples of how they can be used. The second
part introduces some of the more complex
programming techniques which are aimed in
particular at people writing large assembler
programs. The third part is aimed mainly at the
games' programmer. It provides many useful routines
and finally shows how these can all be linked
together to produce a complete game.

11

INTRODUCTION


