
Registers

This section gives a short description of all the
6502's registers:

Accumulator - A

8-bit general-purpose register, which forms one
operand in all the arithmetic and logical instructions.

Index Register - X

8-bit register used as the offset in indexed and
pre-indexed indirect addressing, or as a counter.

Index Register - Y

8-bit register used as the offset in indexed and
post-indexed indirect addressing modes.

Status Register - P

8-bit register containing the following:

177

APPENDIX B

Bit 0 - Carry flag (C). Set if a carry occurs during
an add operation; cleared if a borrow occurs during
a subtract operation; used as a ninth bit in the
shift and rotate instructions.

Bit 1 - Zero flag (Z). Set if the result of an
operation is zero; cleared otherwise.

Bit 2 - Interrupt disable (I). If set, disables the
effect of the IRQ interrupt. Is set by the
processor during interrupts.

Bit 3 - Decimal mode flag (D). If set, the add and
subtract operations work in binary-coded-decimal
arithmetic; if clear, the add the subtract
operations work in binary arithmetic.

Bit 4 - Break command (B). Set by the processor
during a BRK interrupt; otherwise cleared.

Bit 5 - Unused.

Bit 6 - Overflow flag (V). Set if a carry occurred
from bit 6 during an add operation; cleared if a
borrow occurred to bit 6 in a subtract operation.

Bit 7 - Negative flag (N). Set if bit 7 of the
result of an operation is set; otherwise cleared.

Stack Pointer - S

8-bit register which forms the lower byte of the
address of the next free stack location; the upper
byte of this address is always &01.

Program Counter - PC

16-bit register which always contains the address of
the next instruction to be fetched by the processor.

Assembler mnemonics

The following section lists all the instruction
mnemonics in alphabetical order. Each instruction
is accompanied by a description of the instruction,

178

a symbolic representation of the action performed
by the instruction, a diagram showing the
status-register flags affected by the instruction,
and a list of the permitted addressing modes for
the instruction.

The following symbols are used in this section:

 Symbol: Definition:
 + Addition
 - Subtraction
 & Logical AND
 | Logical OR
 : Logical Exclusive-OR
 ! Push onto hardware stack
 ˜ Pull from hardware stack
 = Assignment
 M Memory location
 (PC+1) Contents of location after op-code
 # Immediate addressing mode
 ˜ No change to flag
 % Change to flag
 1 Set
 0 Cleared
 A Accumulator
 X X Index Register
 Y Y Index Register
 PC Program Counter
 PCL Low byte of Program Counter
 PCH High byte of Program Counter

ADC Add memory to accumulator with carry ADC
A,C=A+M+C N Z C I D V
 % % % ˜ ˜ %
Addressing Assembler Format Bytes Cycles
Immediate ADC # Oper 2 2
Zero Page ADC Oper 2 3
Zero Page,X ADC Oper,X 2 4
Absolute ADC Oper 3 4
Absolute,X ADC Oper,X 3 4*
Absolute,Y ADC Oper,Y 3 4*
(Indirect,X) ADC (Oper,X) 2 6
(Indirect),Y ADC (Oper),Y 2 5*
* Add 1 if page boundary crossed.

179

AND AND memory with accumulator AND
A=A&M
 N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate AND # Oper 2 2
Zero Page AND Oper 2 3
Zero Page,X AND Oper,X 2 4
Absolute AND Oper 3 4
Absolute,X AND Oper,X 3 4*
Absolute,Y AND Oper,Y 3 4*
(Indirect,X) AND (Oper,X) 2 6
(Indirect),Y AND (Oper),Y 2 5*
* Add 1 if page boundary crossed

ASL Arithmetic shift left one bit ASL
--- ----------------- N Z C I D V
|C| <- |7|6|5|4|3|2|1|0| <- 0 % % % ˜ ˜ ˜
--- -----------------

Addressing Assembler Format Bytes Cycles
Accumulator ASL A 1 2
Zero Page ASL Oper 2 5
Zero Page,X ASL Oper,X 2 6
Absolute ASL Oper 3 6
Absolute,X ASL Oper,X 3 7

BCC Branch on carry clear BCC
Branch if C=0 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addresing Assembler Format Bytes Cycles
Relative BCC Oper 2 2*
* Add 1 if branch occurs to same page
 Add 2 if branch occurs to different page

BCS Branch on carry set BCS
Branch if C-1 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Relative BCS Oper 2 2*
* Add 1 if branch occurs to same page
 Add 2 if branch occurs to different page

180

BEQ Branch on result zero BEQ
Branch if Z=1 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Relative BCS Oper 2 2*
* Add 1 if branch occurs to same page
 Add 2 if branch occurs to different page

BIT Test bits in memory with accumulator BIT
A&M, N=M , V=M N Z C I D V
 7 6 M % ˜ ˜ ˜ M
 7 6
Bit 6 and 7 are transferred to the status register. If
the result of A&M is zero then Z=1, otherwise Z=0.

Addressing Assembler Format Bytes Cycles
Zero Page BIT Oper 2 3
Absolute BIT Oper 3 4

BMI Branch on result minus BMI
Branch if N=1 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Relative BMI Oper 2 2*
* Add 1 if branch occurs to same page
 Add 2 if branch occurs to different page

BNE Branch on result not zero BNE
Branch if Z=0 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Relative BNE Oper 2 2*
* Add 1 if branch occurs to same page
 Add 2 if branch occurs to different page

BPL Branch on result plus BPL
 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Relative BPL Oper 2 2*
* Add 1 if branch occurs to same page
 Add 2 if branch occurs to different page

181

BRK Force break BRK
Forced interrupt; PC+2 ! P ! N Z C I D V
 ˜ ˜ ˜ 1 ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied BRK 1 7
A BRK command cannot be masked by setting I.

BVC Branch on overflow clear BVC
Branch if V=0 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Relative BVC Oper 2 2*
* Add 1 if branch occurs to same page
 Add 2 if branch occurs to different page

BVS Branch on overflow set BVS
Branch if V=1 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Relative BVS Oper 2 2*
* Add 1 if branch occurs to same page
 Add 2 if branch occurs to different page

CLC Clear carry flag CLC
C=0 N Z C I D V
 ˜ ˜ 0 ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied CLC 1 2

CLD Clear decimal mode CLD
D=0 N Z C I D V
 ˜ ˜ ˜ ˜ 0 ˜
Addressing Assembler Format Bytes Cycles
Implied CLD 1 2

CLI Clear interrupt disable bit CLI
 N Z C I D V
 ˜ ˜ ˜ 0 ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied CLI 1 2

182

CLV Clear overflow flag CLV
V=0 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ 0
Addressing Assembler Format Bytes Cycles
Implied CLV 1 2

CMP Compare memory and accumulator CMP
A-M N Z C I D V
 % % % ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate CMP # Oper 2 2
Zero Page CMP Oper 2 4
Zero Page,X CMP Oper,X 2 4
Absolute CMP Oper 3 4
Absolute,X CMP Oper,X 3 4*
Absolute,Y CMP Oper,Y 3 4*
(Indirect,X) CMP (Oper,X) 2 6
(Indirect),Y CMP (Oper),Y 2 5*
* Add 1 if page boundary crossed.

CPX Compare memory and index register X CPX
X-M N Z C I D V
 % % % ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate CPX # Oper 2 2
Zero Page CPX Oper 2 3
Absolute CPX Oper 3 4

CPY Compare memory and index register CPY
 N Z C I D V
 % % % ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate CPY # Oper 2 2
Zero Page CPY Oper 2 3
Absolute CPY Oper 3 4

DEC Decrement memory by one DEC
M=M-1 N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Zero Page DEC Oper 2 5
Zero Page,X DEC Oper,X 2 6
Absolute DEC Oper 3 6
Absolute,X DEC Oper,X 3 7

183

DEX Decrement index register X by one DEX
X=X-1 N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied BRK 1 2

DEY Decrement index register Y by one DEY
Y=Y-1 N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied DEY 1 2

EOR Exclusive-OR memory with accumulator EOR
A=A:M N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate EOR # Oper 2 2
Zero Page EOR Oper 2 3
Zero Page,X EOR Oper,X 2 4
Absolute EOR Oper 3 4
Absolute,X EOR Oper,X 3 4*
Absolute,Y EOR Oper,Y 3 4*
(Indirect,X) EOR (Oper,X) 2 6
(Indirect),Y EOR (Oper),Y 2 5*
* Add 1 if page boundary crossed.

INC Increment memory by one INC
M=M+1 N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Zero Page INC Oper 2 5
Zero Page,X INC Oper,X 2 6
Absolute INC Oper 3 6
Absolute,X INC Oper,X 3 7

184

INX Increment index register X by one INX
X=X+1 N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied INX 1 2

INY Increment index register Y by one INY
Y=Y+1 N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied INY 1 2

JMP Jump to new location JMP
PCL=(PC+1) N C Z I D V
PCH=(PC+2) ˜ ˜ ˜ ˜ ˜ ˜

Addressing Assembler Format Bytes Cycles
Absolute JMP Oper 3 3
Indirect JMP (Oper) 3 5

JSR Jump to subroutine saving return address JSR
PC+2 !, PCL=(PC+1) N Z C I D V
PCH=(PC+2) ˜ ˜ ˜ ˜ ˜ ˜

Addressing Assembler Format Bytes Cycles
Absolute JSR Oper 3 6

LDA Load accumulator with memory LDA
A=M N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate LDA # Oper 2 2
Zero Page LDA Oper 2 3
Zero Page,X LDA Oper,X 2 4
Absolute LDA Oper 3 4
Absolute,X LDA Oper,X 3 4*
Absolute,Y LDA Oper,Y 3 4*
(Indirect,X) LDA (Oper,X) 2 6
(Indirect),Y LDA (Oper),Y 2 5*
* Add 1 if page boundary crossed.

185

LDX Load index register X with memory LDX
X=M N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate LDX # Oper 2 2
Zero Page LDX Oper 2 3
Zero Page,Y LDX Oper,Y 2 4
Absolute LDX Oper 3 4
Absolute,Y LDX Oper,Y 3 4*
* Add 1 if page boundary crossed.

LDY Load index register Y with memory LDY
X=M N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate LDY # Oper 2 2
Zero Page LDY Oper 2 3
Zero Page,X LDY Oper,X 2 4
Absolute LDY Oper 3 4
Absolute,X LDY Oper,X 3 4*
* Add 1 if page boundary crossed.

LSR Logical shift right one bit LSR
 ----------------- --- N Z C I D V
0 -> |7|6|5|4|3|2|1|0| -> |C| % % % ˜ ˜ ˜
 ----------------- ---

Addressing Assembler Format Bytes Cycles
Accumulator LSR A 1 2
Zero Page LSR Oper 2 5
Zero Page,X LSR Oper,X 2 6
Absolute LSR Oper 3 6
Absolute,X LSR Oper,X 3 7

NOP No operation NOP
 N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied NOP 1 2

186

ORA OR memory with accumulator ORA
A=A|M N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate ORA # Oper 2 2
Zero Page ORA Oper 2 3
Zero Page,X ORA Oper,X 2 4
Absolute ORA Oper 3 4
Absolute,X ORA Oper,X 3 4*
Absolute,Y ORA Oper,Y 3 4*
(Indirect,X) ORA (Oper,X) 2 6
(Indirect),Y ORA (Oper),Y 2 5*
* Add 1 if page boundary crossed.

PHA Push accumulator on stack PHA
A ! N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied PHA 1 3

PHP Push processor status on stack PHP
P ! N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied PHP 1 3

PLA Pull accumulator from stack PLA
A ˆ N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied PLA 1 4

PLP Pull processor status from stack PLP
A ˆ N Z C I D V
 from stack
Addressing Assembler Format Bytes Cycles
Implied PLP 1 4

187

ROL Rotate left one bit ROL
 ----------------- --- N Z C I D V
- |7|6|5|4|3|2|1|0| <- |C| <- % % % ˜ ˜ ˜
| ----------------- --- |
------------>----------------

Addressing Assembler Format Bytes Cycles
Accumulator ROL A 1 2
Zero Page ROL Oper 2 5
Zero Page,X ROL Oper,X 2 6
Absolute ROL Oper 3 6
Absolute,X ROL Oper,X 3 7

ROR Rotate right one bit ROR
 --- ----------------- N Z C I D V
-> |C| -> |7|6|5|4|3|2|1|0| - % % % ˜ ˜ ˜
| --- ----------------- |
------------<----------------

Addressing Assembler Format Bytes Cycles
Accumulator ROR A 1 2
Zero Page ROR Oper 2 5
Zero Page,X ROR Oper,X 2 6
Absolute ROR Oper 3 6
Absolute,X ROR Oper,X 3 7

RTI Return from interrupt RTI
Pˆ PCˆ N Z C I D V
 from stack
Addressing Assembler Format Bytes Cycles
Implied RTI 1 6

RTS Return from subroutine RTS
PCˆ N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied RTS 1 6

188

SBC Subtract memory from accumulator with carry SBC
A,C=A-M-(1-C) N Z C I D V
 % % % ˜ ˜ %
Addressing Assembler Format Bytes Cycles
Immediate SBC # Oper 2 2
Zero Page SBC Oper 2 3
Zero Page,X SBC Oper,X 2 4
Absolute SBC Oper 3 4
Absolute,X SBC Oper,X 3 4*
Absolute,Y SBC Oper,Y 3 4*
(Indirect,X) SBC (Oper,X) 2 6
(Indirect),Y SBC (Oper),Y 2 5*
* Add 1 if page boundary crossed.

SEC Set carry flag SEC
C=1 N Z C I D V
 ˜ ˜ 1 ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied SEC 1 2

SED Set decimal mode SED
D=1 N Z C I D V
 ˜ ˜ ˜ ˜ 1 ˜
Addressing Assembler Format Bytes Cycles
Implied SEI 1 2

STA Store accumulator in memory SBC
M=A N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Immediate STA # Oper 2 3
Zero Page STA Oper 2 4
Zero Page,X STA Oper,X 3 4
Absolute STA Oper 3 5
Absolute,X STA Oper,X 3 4
Absolute,Y STA Oper,Y 3 4
(Indirect,X) STA (Oper,X) 2 6
(Indirect),Y STA (Oper),Y 2 6
* Add 1 if page boundary crossed.

189

STX Store index register X in memory STX
M=X N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Zero Page STX Oper 2 3
Zero Page,Y STX Oper,Y 2 4
Absolute STX Oper 3 4

STY Store index register Y in memory STY
M=Y N Z C I D V
 ˜ ˜ ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Zero Page STX Oper 2 3
Zero Page,X STX Oper,X 2 4
Absolute STX Oper 3 4

TAX Transfer accumulator to index register X TAX
X=A N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied TAX 1 2

TAY Transfer accumulator to index register Y TAY
Y=A N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied TAY 1 2

TSX Transfer accumulator to index register X TSX
X=S N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied TSX 1 2

190

TXA Transfer index register X to accumulator TXA
A=X N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied TXA 1 2

TXS Transfer index register X to stack pointer TAX
S=X N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied TXS 1 2

TXA Transfer index register X to accumulator TXA
X=A N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied TXS 1 2

TYA Transfer accumulator to index register Y TYA
A=Y N Z C I D V
 % % ˜ ˜ ˜ ˜
Addressing Assembler Format Bytes Cycles
Implied TYA 1 2

191

The Acorn Guide to the Electron
Neil and Pat Cryer

The Acorn Electron (described in Which Micro? as 'a winner')
is probably, for the price, the most advanced personal
computer on the market. This guide, published with the full
cooperation of the manufactuers, describes and explains
everything a non-technical owner needs to know in order to
get the most from this versatile and amazing new machine.
The Electron is designed to be fun, useful and, above all, the
best introduction to the new Age of Computers. It has been
developed by the people responsible for the BBC Micro --
the machine that is part of the syllabus of over 80 per cent of
our schools. Both computers understand the same language
and both have been designed to grow with your
understanding of their capability and you needs.
You may be thinking of buying this book because you have
just bought the new Acorn Eletron or maybe you have bought
the new Acorn Electron or maybe you have bought the
machine as a present for a friend or relative. Whichever is the
case, The Acorn Guide to the Electron is the indispensable
companion to your machine.

192

