
10

105

LARGE ASSEMBLER
PROGRAMS

When writing substantial assembler programs it soon
becomes evident that even 32K of memory is
insufficient to hold both the assembler source text and
the object code produced. This difficulty is
heightened still further if the graphics modes are
used. The problem can be overcome by breaking the
source text into smaller modules or files and this
chapter looks at how to set these up and how to use
them.

10.1 Source files and the master compiler' program
A source module is a program which acts like a
subroutine but has assembly code inside it. The
master 'compiler' program reads in each source text
module and assembles it. This program is shown
below. (Note that anything enclosed within < >
(angled brackets) is not to be typed in, but is to be
replaced with the value for your application.)

 0 REM Compile program
 10 origin = <start of area for machine-code>
 20 file$ = "ABC"
 30 PROCrun("I",<page for source files>)
 40 PROCrun("M",<page for macro file> (optional))

 50 FOR pass = 0 TO 2 STEP 2
 60 P% = origin
 70 FOR files = 1 TO LENfile$
 80 PROCrun(MID$(file$,files,1),<page for
 source files>)
 90 NEXT files
100 NEXT pass
110 PRINT '"Object code from &'';˜or igin ''to &;˜P%
120 END
130
140 DEFPROC run (name$,start)
150 PRINT name$;
160 OSCLI "LOAD SOURCE"+name$+" "+STR$˜start
170 PAGE = start
180 GOSUB 0
190 ENDPROC

106

The files are assumed to be called SOURCEA,
SOURCEB, ... i.e. the word 'SOURCE' followed by a
single letter. The string 'file$' holds the letters which
identify them and hence in this example it contains
'ABC'. Since single letters are used, the length of
'file$' gives the number of source programs. Note that
in this example 'I' and 'M' should not be used for
naming source files since they have their own special
uses.

The program starts by reading in and assembling
SOURCEI which is the initialisation file to be
described later in this chapter. Then the macro file (if
one exists) will be treated similarly; again this will be
explained later. The main loop takes each of the
source files in turn, loads it into the area you have
defined as reserved for the source files, and then
assembles it. For the first source file the object code
starts at the value of the variable 'origin', and P% is
used by the assembler as a pointer to the next free
byte. Hence this allows subsequent source files to be
assembled so that their code follows on directly after
that produced by the previous one.

A typical source file would be of the following
format:

 0 REM SOURCEX
 10

LARGE ASSEMBLER PROGRAMS

 20[OPT pass

 30
 . (Assembler text)
 .
 .
 .
900
910] : RETURN

A typical memory map might look like this:

Note that if you are using a 6502 second processor
then the screen mode selected will not make any
difference.

This method has been designed for use with disc
based systems, but can also be used on cassettes if the
tape is rewound between the two passes. To remind
you of this you should place a 'Rewind Tape'
message, together with a 'dummy=GET' statement (to
wait for a key to be pressed as an indication that the
tape is in the correct position), between the two NEXT
statements.

107

LARGE ASSEMBLER PROGRAMS

Start of BASIC

Screen - Smallest MODE possible
(MODE 7)

Variables shared by all source
files

COMPILE program

Macro source file

Source files

Object Code

origin

10.2 Saving source files
One routine which is useful when using discs and the
above method is a PROCsave routine;

108

LARGE ASSEMBLER PROGRAMS

 DEF PROCsave OSCLI("SAVE <filename>+ STR$˜PAGE +
" "+STR$˜TOP)
 ENDPROC

Note: this routine will not work on BASIC I. See
chapter 9 (BASIC 1, BASIC II and Electron BASIC) for
a description of OSCLI and the equivalent BASIC I
routine.

The routine should be inserted at the ends of all
the source files, and called whenever you wish to
save the source file that is in memory at the time.

Thus to SAVE the program all that is needed is to
type 'PROCsave'. The reason this is so useful is that
when editing large numbers of source files which all
look alike, it is very easy to overwrite an existing file
by typing the wrong name.

An alternative to this, which works on all versions
of BASIC, is to type, in immediate mode, 'SAVE
$(PAGE+6)'. This looks at the first line of the program
to find the filename. So, each program should start
with

 0 REM <filename>
100 <program>
200

Default soft keys
Another useful idea is to employ the machine's soft
keys. This is best done by having a default soft keys
program, which can be loaded at the beginning of the
session.

 10 REM Default Soft Keys
 20
 30 *KEY 0 |LLIST|N|M
 40 *KEY 1 RUN |M
 50 *KEY 2 LOAD"SOURCE
 60 *KEY 3 CALLenter||M
 70 *KEY 5 PPOCsave|M
 80 *KEY 6 PROCfind("

 90 *KEY 7 MODE7|MPAGE=&6000|ML0AD
 "COMPILE"|M
100 *KEY 9 |L*CAT|M

Note that line 80 has a reference to PROCfind. This
procedure is to be used from immediate mode to find
all occurrences of strings in the current source
module. (PROCfind is defined in section 12.6.) This
procedure should be at the end of every source file.

10.3 Macro source files
If source files are to be used then calling macros can
be a problem. To understand why, some knowledge
of how BASIC works is required. When BASIC first
comes across a reference to a function or procedure its
search for the function or procedure definition starts
from PAGE. Once it has found the definition it stores
the address of the start of the function or procedure in
memory, so that the next time it finds a reference to
that particular function or procedure it doesn't have
to waste time searching through the whole program
again.

In the simplest case, when just one source file
references a given macro, the macro can be added to
the end of that source file, and the file treated
normally. Consider, however, what would happen if
two source files both had a reference to a macro called
'FNfred', and this macro was put at the end of each of
them. Since they would almost certainly be different
sizes the definition of 'FNfred' would, in each case,
start at different addresses. Moreover, when the first
source file was assembled the address of the macro in
this file would be stored for use by all later references
to the macro. Thus, when the second source file tried
to use the macro, no searching through would occur.
Instead the assembler would jump straight to the
address which was stored by the first file and be
unlikely to find 'DEFFNfred' starting there.

To avoid this problem a macro file is set up
containing all the macros referenced in any of the
assembler source files. This is present in the memory
all the time, though in a different area of memory to
the other files. Each of the macros must be called
before the source files are assembled, however, so that
the addresses where their definitions may be found

109

LARGE ASSEMBLER PROGRAMS

are available to the compiler. Otherwise the first time
that the compiler comes across a reference to a macro,
e.g. FNfred, it will start searching for 'DEFFNfred',
starting at PAGE, look through to the end of the
source file, not find the definition, conclude that the
macro doesn't exist and report 'No such FN/PROC'.
So, set PAGE to the bottom of the macro file and call
each macro once.

Thus a typical macro source file looks like this:

110

LARGE ASSEMBLER PROGRAMS

 0 REM Macro file
 10
 20 pass = -1 : REM Dummy compilation
 30 A% = Fnmacro1(0,0) + FNmacro2(0,0,0,0)..
 40 RETURN
 50
 60 DEF FNmacro(temp, no)
 70 IF pass <0 THEN = TRUE
 80[OPT pass
 90 ...

Line 20 sets 'pass' to a value that the assembler
will not use, so that the first time the macro is
referenced it will not generate any code. Note that
every macro in the file must have a test to see if it is
being referenced for the first time (as at line 70).

Since the macro file needs to be resident in
memory during the compilation a space will have to
be assigned for it. This is usually between the top of
the normal source files and the bottom of the
COMPILE program.

10.4 Initialisation file
The initial file mentioned in COMPILE (line 30) is the
file that sets up all variables to be used in the later
source files. This is normally in the form:

 0 REM SOURCEI
 10
 20 REM variables
 30
--
This is where all the variables that will be accessed
by all the source files are defined. Note that all the

variables are defined to be resident in memory one
after the other. Thus to move the block of variables
around in memory, all you have to do is to simply
change the value of 'P%' in line 40.

 40 P% = <start of memory to put variables>
 50[OPT2 \ Report any errors, but don't list
 60.<first variable> EQUB 0 \ Reserves one byte
 70.<second variable> EQUW 0 \ Reserves two bytes
 80.<third variable> EQUS STRING$(20,CHR$(0))
 90 etc.
 .
200]

This section sets up any constants that may be used in
the program. The use of constants in any program is
very important as is explained in chapter 12 (Program
structure).

210
220 REM Constants
230
240 limit = 45
250 numberofshapes = 12
260 oswrch = &FFEE
270 etc.
 .
 .

This section reserves memory for the data tables.
--

300
310 REM Main Memory Allocations
320
330 P%=<start of memory allocated for tables>
340[OPT2
350.jim
360 OPT FNspace(80)
370.fred
380 OPT FNspace(300) See section 12.5
390.lenqth for 'FNspace'

111

LARGE ASSEMBLER PROGRAMS

400 OPT FNspace(1OO)
410 etc
 .
 .

This section fills the data tables.

600
610 REM fill data tables
620
630 FOR offset = 0 TO numberofshapes
640 READ offset?length, offset?width, offset?type
650 NEXT offset
660
670 DATA 20,12,3 ,36,24,1 ,etc.
680 etc
 .
 .
999 RETURN

112

LARGE ASSEMBLER PROGRAMS

