
The Electron
Gamesmaster

Other Granada books for Electron users

The Electron Programmer
S. M. Gee and Mike James
0 246 12340 0

21 Games for the Electron
Mike James, S. M. Gee and K. Ewbank
0 246 12344 3

Electron Machine Code for Beginners
Ian Sinclair
0 246 12152 1

Take Off With the Electron and BBC Micro
Audrey Bishop and Owen Bishop
0 246 12356 7

40 Educational Games for the Electron
Vince Apps
0 246 12404 0

Practical Programs for the Electron
Owen Bishop and Audrey Bishop
0 246 12362 1

Advanced Programming for the Electron
Mike James and S. M. Gee
0 246 12402 4

Adventure Games for the Electron
A. J. Bradbury
0 246 12417 2

Electron Graphics and Sound
Steve Money
0 246 1241 I 3

The Electron
Gamesmaster

Kay Ewbank, Mike James and
S. M. Gee

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
Distributed in the United States of America
by Sheridan House. Inc

Copyright © Kay Ewbank, Mike James and S. M. Gee 1984

British library Cataloguing in Publication Data

Ewbank, K.
The Electron gamesmaster.
1. Computer games 2. Electron Microcomputer
–Programming
I. Title II. James, Mike III. Gee, S. M.
794.8'028'5404 GV1469.2

ISBN 0–246–12514–4

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted. in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Contents

Preface ix

1 The Sorcerer’s Apprentice 1

 How to write programs 2

 The need for method 4

 Stepwise refinement and procedures 4

 Structure and style 6

 Games techniques 8

2 Ant Hill 9

 The game design 9

 The technique of animation 12

 The main program 14

 PROCinitialise and PROCtitle 15

 PROCdraw_scene 18

 PROCone_move – the heart of the game 20

 PROCend_game 24

 Making the game better 27

 Making the Electron go faster 29

 Suggestions for further work 32

 The final – version a complete listing 32

3 Leap Frog 40

 The game design 40

 Bouncing and falling 41

 The main program 43

 PROCinit and PROCtitle 44

 PROCprint_flies 45

 PROCtilstartup 45

 PROCmove_ss and PROCmove_f 49

 PROCseesaw, PROChit_fly and PROCmiss 50

 PROCend_game 52

 Evaluation and improvements 52

 The final version a complete listing 55

4 Frogling 60

 Scrolling animation 60

 The game design 61

 The use of text windows 61

 Main program and PROCtitle 63

 PROCinit 65

 PROCscroll and associated procedures 67

 PROCmove_f and PROCover 70

 PROCdeath and PROCend_game 71

 Evaluation and improvements 72

 The final – version a complete listing 78

5 Snake 78

 Snake animation 78

 The directional snake – the queue 80

 The game design 83

 The main program 84

 PROCinitialise 84

 The title frame 87

 PROCdraw_scene, PROCdraw_snake and 87
PROCdraw_food 81

 PROCone_move and its associated procedures 91

 PROChit and its associated procedures 93

 PROCCend_game 95

 Conclusion – playing the game 96

 The final version – a complete listing 97

6 Tadpole 103

 The game design 103

 Setting the scene 104

 Making an escape 106

 Catching frogs 108

 Adding assembler 109

 An assembly language version of PROCmove_f 110

 The final program a complete listing

 Running the program 126

 Conclusion 128

7 Snakes and Ladders 129

 The game design 129

 Main program 131

 PROCinit, PROCtitle and PROCcolour 132

 Printing the board PROCp_sandl and its associated
procedures 134

 PROCstart 139

 Moving men – PROCthrow and its associated
procedures 134

 PROCendgame 145

 Evaluation 145

 The complete listing 145

 Action Snakes and Ladders 152

8 Becoming a Master Programmer 155

 Games and problem solving 156

 Adding the finishing touches 157

 The range of games 159

 Using the Electron 161

 The way ahead 161

Index 163

Preface

Mastering programming, like any other skill, takes practice. But it isn’t
just a case of working at set exercises – at some point you have to start
From scratch and implement your own ideas. Many beginners see this
as a daunting prospect and would find it much easier if they could get
somebody to help by teaching them their craft. This book is intended to
provide the same sort of help that an experienced programmer would be
able to offer to a relative beginner. It takes you through the stages of
program design and implementation pointing out problems and pitfalls,
and offering tips and solutions.

The programs developed in the book are all animated graphics
games. Some of them at least are familiar classic arcade games. You
may have thought that programming such games was beyond your
reach but with the help of this book you will soon be writing games
even of this level of sophistication and complexity.

The programs are constructed as a series of modules and we suggest
you type them in a module at a time, as they are presented. Not only
does this lessen the chore of typing in long programs, it also gives you
more chance to understand the program in fine detail. Once you’ve
typed in the games we hope that you will enjoy playing them, be
confident to tinker with them to modify and improve on them, and be
encouraged to write complete programs of your own.

Our thanks are due to Richard Miles and Prue Harrison of Granada,
without whose help this book would not have been possible.

Kay Ewbank, Mike James and S. M. Gee

Chapter One
The Sorcerer�s
Apprentice

This book is rather different from any you may have read about
computer programming in the past. It is not just a collection of games
that are great fun to play, nor is it another ‘learn to program’ book.
What the Electron Gamesmaster does is to bring together the
enjoyment of creating and playing a game with the opportunity to gain
that valuable type of knowledge that only comes from practical
experience. Today, more people know a programming language than
ever before – but knowing a language is only the start of the task of
learning how to use it

Many people find that after they have learned BASIC they still have
trouble in writing programs that do very much. The types of difficulty
that are encountered range from not being able to make a start on the
program, through not being able to solve problems that crop up during
the program development, to not being able to produce a finished,
usable program. In other words, the snags may arise at the start, in the
middle or at the end of program development or, of course, in any
combination of the three! The point is that, at least at first, it takes a
great deal of energy to write a large program. Small programs may be
written, tested and discarded in an evening but large programs can take
months to complete. The difficulties that arise in working with a large
number of lines of BASIC over a long period of time really are new
and quite different from anything ‘introductions to BASIC’ tell you
about. When it comes to tackling real problems with BASIC it is not
enough In know, for example, what the IF statement does; it is essential
to know how to use it in combination with the rest of BASIC to
produce a solution in the form of a program that not only works but is a
pleasure to use.

The Electron Gamesmaster aims to deal with the problems of writing
large programs by explaining how a number of large games programs
were written. The reason for the emphasis on games is simply that their
appeal is (almost) universal and they contain most of the problems

encountered in other application areas. Where else would you need to
combine graphics techniques, sound effects, complicated arithmetic
expressions, random numbers, and even Boolean logic, in a single
program? A second reason is that games are fun, and owning and using
a home computer should be fun! If you want simply to use the book as
a collection of games then there is nothing stopping you just turn to the
complete listings given at the end of each chapter and type them in but
you should find that your enjoyment of the game is greater if you
follow the discussion in the chapter and type in the program in smaller
chunks.

How to write programs

There is no denying the fact that the best way to learn to write
substantial programs is to work with an experienced programmer. In
this sense programming is no different from any other craft – you need
to serve an apprenticeship before graduating to become a master of the
craft. The trouble is that just at the moment, master programmers are in
short supply! If you can find someone to help, then by all means take
the opportunity to learn at first hand this is always the best way. But
whether or not you find such help, The Electron Gamesmaster will be
of value to you in improving your programming.

Each chapter starts off with a description of the game that the
program is going to implement, pointing out some of the potential
difficulties and suggesting methods that are likely to be useful. After
reading this introduction you should have the same information that an
experienced programmer would have before starting to solve the
unexpected problems that crop up during the program development.

Following this introduction the program is presented section by
section. Each section of program performs a single action within the
program and this is explained in the accompanying text. We suggest
that you type in the program as each section is presented. Not only is
this a less taxing way of typing in the entire program but it also
provides the opportunity to look closely at each section.

Towards the end of each chapter you will find a discussion of what
has been achieved in the first version of the program and how it might
be improved. Then, if necessary to make the game enjoyable to play,
modifications are given and the final version of the program is listed.
The complete listing of the program should be used to check that you
have typed everything, including the modifications, correctly. While on
the subject of accuracy, it is worth saying that all the programs in this
book have been printed from working versions without an intervening

2 The Electron Gamesmaster

(and error-prone) stage of typesetting – that is, they are all presented in
the form of of printer listings.

The explanations of how the programs work and why things were
done in a particular way should help you to understand the process of
writing large programs, but for reasons of length it is not possible to
show all the stages that the programs went through during
development. However, the programs as listed have not been ‘polished’
by, for example, renumbering. So, while they reflect the sort of finished
product that would be acceptable for use, they still preserve the
evidence of programming problems! There is a tendency with
published programs either to polish them to the point where they
become clinically clean and betray no trace of the difficulties that the
programmmer had, or simply to leave them as complex tangles that
might be usable but are impossible to understand or modify. The
programs in The Electron Gamesmaster haven’t been polished at all, so
you can see where lines were inserted into the program at a later stage
by the odd line numbering. For example, if you find a line number
sequence 10,20,25,30,40... then it is a good bet that the programmer
had to go back and insert line 25 to take account of something
unexpected. On the other hand, all the programs have been written
using a programming method that tends to produce programs that are
easy to understand.

As you type in and read about each section of the program you
should not be afraid to try to test your understanding by running the
partially complete program. Of course, unless you add temporary lines
of your own you will get error messages from the partial program.
However, in most cases you will see something of interest that you
should be able to explain in terms of what you already know about the
program and this should increase your confidence and make you think a
little harder about the program. The Electron Gamesmaster is a
practical book, so you should feel free to modify and experiment with
the programs both as you go along and once they are complete. Of
course even the term ‘complete’ is relative – it is an old programming
saying that no program is ever finished, it just reaches a point where it
becomes usable! To encourage you to modify and add to the programs,
suggestions concerning likely improvements and even new versions of
the game are given at the end of most chapters.

Although this is a practical book, even the most practical subjects
need some theory and so the last part of this chapter describes some of
the ideas that lie behind programming. These ideas are dealt with at
greater length in Advanced Programming for the Electron by Mike
James and S. M. (Granada, 1984) and so if you feel they are familiar

3The Sorcerer�s Apprentice

then you might like to skip to the start of the next chapter – but a
refresher is always useful! On the other hand, if you find that the ideas
presented are new to you or you would like to know more about them,
then you will find that book is a useful companion to this one.

The need for method

As already mentioned, there is a real difference between writing small
and large programs. A small program can be written in one go and most
of it can be ‘held’ in the head of the programmer. However, a large
program takes too long to write at one go and has so many lines of
BASIC that the programmer who can remember it all is the rare
exception. It is possible to write large programs in the same way that
small programs are written, but this is very hard work and is one of the
reasons why many programmers give up lengthy projects and produce
very few finished programs. Even if the necessary amount of time and
effort is spent on writing a large program the hard way, the finished
product is usually such a mess that any modifications to improve it or
in an attempt to fix bugs are often impossibly difficult.

This situation is a great pity because it represents many hours of
unnecessarily wasted programming effort. The truth is that if you use a
programmming rnethod to organise your effort then writing a large
program is no more difficult than writing a short program. Often the
suggestion of using a programming method strikes fear into the hearts
of freedom-loving programmers. The desire to be unrestricted in the
way you write a program is especially understandable if you program
for fun. After all, what is the point of turning a hobby into a regimented
and routine activity that looks like work? The answer is that a
programming method is not a recipe for regimentation, it is simply the
art of programming!

Stepwise refinement and procedures

Stepwise refinement is not only a programming method, it is a general
strategy for solving problems of all kinds and so it is well worth
knowing about. Put simply, stepwise refinement is based on the old
idea of divide and conquer. A large program can best be tackled by
dividing it into a collection of smaller programs. The smaller programs
can then be divided still further and so on until the result is something

4 The Electron Gamesmaster

small enough to be treated in one go. Described like this, stepwise
refinement seems obvious but there is still the problem of how to go
about dividing the large program. This is something that is
demonstrated by each of the games programs in the rest of this book!

However it is possible in say a little more than this about the theory
of stepwise refinement. Suppose you want to write a program that plays
chess. The biggest problem that most programmers would have is
actually making a start. If you think about it for a moment you should
be able to see that any program that plays chess first has to draw the
board and initialise everything and then offer the human player a move,
then make a move and so on until checkmate. Or, in BASIC:

10 PROCdraw_board
20 REPEAT
30 PROChuman_move
40 PROCmachine_move
50 UNTIL checkmate
60 END

This is in fact the first stage on the road to a full chess playing program.
In other words it is the first stage in refinement of the program. The
next stage consists of writing the procedures used in the above section
of program (usually called the main program). Each of the procedures
should be written by dividing them down into a fist of even smaller
procedure calls and so on until the program is written. Notice that when
using stepwise refinement it is always easy to make a start on a
program by writing down calls to procedures that are not yet written. It
also puts off solving any difficult problems until they really have to be
solved. For example, in the chess program there is no need to solve the
problem of how the machine should move until quite a late stage in the
refinement of the program.

Another advantage of using procedures as part of stepwise
refinemnent is that the resulting program is very easy to understand and
very easy to change. For example, anyone looking at the main program
given above for playing chess would soon see that the human player
always moved first. This could easily be changed around by swapping
lines 30 and 40. Imagine how hard this simple change would be if the
parts of the program that made the moves were not separated from the
rest of the program in the form of procedures.

There are so many advantages to using stepwise refinement and
procedures that it is impossible to list them all. Many of the advantages
will become apparent from the examples in the following chapters but

5The Sorcerer�s Apprentice

if you would like to know more about programming methods then see
Advanced Programming for the Electron.

Structure and style

Stepwise refinement is a method that helps with the writing of a
program by breaking it down into a number of procedure calls.
However, there comes a point in the refinement when procedure has to
do something other than call other procedures. Stepwise refinement
gives no guide as to how BASIC should be used to achieve any
particular result. The programming method that does have something to
say about such things is called structured programming. Structured
programming is essentially a technique for writing clear programs by
avoiding tying the flow of control into knots. For example, using the
GOTO statement it is possible to jump to any part of the program but if
you use the GOTO freely then you will discover that your programs are
impossible to understand and debug. It is very difficult of follow what
is going on in a program that jumps all over the place and if you cannot
follow the order in which statements are carried out then there is plenty
of room for bugs to move in. Structured programming makes sure that
the flow of control is always easy to follow by only allowing the
programmer to use a small number of ways of changing it. The most
usual selection of ways of changing the flow of control are the IF
statement, the FOR loop and the REPEAT loop, and it is possible to
write any program using just these three. In other words it is never
necessary to use the GOTO statement within a program and this has
resulted in structured programming being incorrectly referred to as ‘the
art of not using the GOTO’. In practice the GOTO is best regarded as
dangerous but not prohibited. As long as a section of program is clear,
in terms of which statements are executed when, then everything is fine
and sometimes the best way to ensure program clarity is to use the
GOTO statement.

Another element of program clarity is the use of variable and
procedure names that mean something. For example, if a procedure
prints the board that a game is played on then it should be called
something like PROCprint_board rather than PROCxy4. If you can
think up appropriate names for variables and procedures then you
should find that your programs are easier to understand and are almost
self documenting that is, you can do without REM statements. In
practice it is usually very difficult to invent the necessary number of
names and keep them short, though there is nothing worse than having

6 The Electron Gamesmaster

7

to type out an excessively long name over and over again in a program!
Naming variables and procedures is something that you are either good
or (like most programmers) bad at, but it is definitely worth the effort.

All this talk of program clarity and style may be worrying if you
have always been taught that the nmst important aspect of
programming was efficiency – that is, maximising speed and
minimising memory usage. It is indeed the case that in any practical
program, efficiency is important and occasionally style has to take
second place. For example, it is often necessary to use integer variables
even though this makes the program look very messy, with percentage
signs following following every variable. However, if you produce a
fast program, with plenty of memory left over for additions and
modifications, and yet which no-one can understand (including yourself
after a short period of time), then the additions and modifications will
never be made and any bugs are likely to remain. The emphasis should
always be on a clear program; anything that has to be done to increase
speed or reduce memory usage should be done as modifications to a
well written program.

The most obvious way of increasing the efficiency of any program is
to use assembler. The Electron is particularly well suited to the mixing
of BASIC and and assembler and where necessary in the following
chapters this is what is done to improve the efficiency of the games. It
is important to realise that the same considerations of programming
style apply to assembler as to BASIC. For example, you can use both
stepwise refinement and structured programming in assembler in the
same way that you would in BASIC. Assembly language is best added
to a program by re-writing an existing BASIC procedure in assembler.
In other words, first get the program working using nothing but BASIC
then identify which procedures within the program are making it slow
or take too much space and then re-write these in assembler. If you
write procedures in assembler by converting them from BASIC then at
least you know that your overall algorithm is correct (it just runs a little
slow) and any problems with the assembly language version must be
due to an incorrect translation which is much easier to deal with. The
rule is that assembly language should only be used where it is
absolutely necessary and using it to develop new algorithms is wasteful
of programming effort in the extreme. However, the best way to explain
these ideas is through the examples that are part of the programs in the
following chapters.

The Sorcerer�s Apprentice

Games techniques

Finally, before getting started on the first program in this book, it is
worth giving an overview of what each of the games is about and what
techniques they illustrate. The game in Chapter Two, Ant Hill, is a
simple example of one-dimensional animation and serves to introduce
sprites and the animation loop. It is also our first example of using
assembly language within a BASIC program. Chapter Three, which
presents a game called Leap Frog, moves on to full two-dimensional
animation and discusses controlling an object bouncing around the
screen, allowing for the effect of gravity. Chapter Four uses an entirely
different type of animation, scrolling animation, to produce Frogling, a
version of the well known Frogger arcade game. Chapters Five and Six
are about one of the most interesting large objects that can easily be
animated the snake. Chapter Five develops the basic Snake game, deals
with the problems of animating a snake efficiently and introduces the
idea of a queue. Chapter Six extends the game to include a number of
additional sprites and the result is known as Tadpole. To make things
work fast enough Chapter Six introduces an extensive assembly
language subroutine that effectively replaces one of the BASIC
procedures within the game. Chapter Seven takes up a traditional game,
Snakes and Ladders, and implements an up-to-date computer version of
it. The main technique explained as part of Snakes and Ladders is the
way that a sprite can be animated against a complicated background
without destroying the background each time it moves.
 Each of the games introduces something new in terms of animation
techniques and in the use of your computer and the final chapter draws
these together with comments on designing and implementing games in
general and on using the Electron in particular. By the time you reach it
you should have learned a great deal about both subjects and had plenty
of fun along the way.

8 The Electron Gamesmaster

Chapter Two
Ant Hill

Ant Hill is a simple but effective program that involves the animation
of a number of objects. The basic idea of the game is to guide a man
through tunnels that belong to an ant colony with the aim of reaching
and destroying the nest of eggs located at the deepest point. The
difficulty of this task is increased by having to work within a time limit
and by having to avoid soldier ants positioned at each level of the
tunnels. Thee major problem in implementing a game of this sort lies in
animating a number of objects, the man and all the soldier ants, at the
same time. As well as dealing with this particular problem this chapter
also develops some of the standard methods that will be used without
further comment in subsequent chapters.

The game design

Before starting to write any program it is a good idea to try to specify,
in as much detail as possible, what it should do. Games programs are
slightly different from other applications in that it is usually not
possible to give an accurate outline of the final game before at least part
of it is implemented. The reason for this is that it is very difficult to
predict how elements of a game will work without trying them out.
Even after writing a large number of games programs it is still difficult
to predict the overall effect of combining different elements from
existing games to produce a new one. However, it is still worth working
out what you expect a game to do before you start writing any of it, for
the simple reason that it gives you time to get any major changes out of
your system!

The design of Ant Hill (and many other dynamic games) falls
nuturally into three parts:

1. the background graphics

2. the moving characters and the rules of movement
3. the consequences of winning and losing

The background of Ant Hill consists of a number of horizontal tunnels
connected by vertical shafts (see Fig. 2.1). The reason for using a
mixture of one and two shafts to connect the tunnels is that it promises
to give the game more variety of strategy. When only one shaft

Fig. 2.1.

connects two levels then there is only one route available and playing
the game becomes a matter of timing, but when there are two shafts the
player has the opportunity of choosing which one to go down. The
general layout of the background suggests that at least three colours are
going to be needed one for the tunnels, probably black, one for the
earth, probably red and one for the sky above, almost certainly blue.
This suggests that either a four- or a sixteen-colour mode needs to be
used. A choice of the sixteen-colour mode would, however, restrict us
to a horizontal resolution of only 20 printing columns and, as Ant Hill
is a game that depends on a great deal of horizontal movement, the
four-colour mode seems a better choice.

10 The Electron Gamesmaster

The man shape is easily impelemented as a single user-defined
graphics character (see Fig. 2.2). Using a single character means that
the tunnels and the shafts that connect them only now have to be one

Fig. 2.2. Graphics character for man

character wide. However, the ant shapes are much more difficult to
implement in a single eight by eight dot character because they are
fairly long and thin. The solution is to use two user-defined graphics
characters (see Fig. 2.3). The fact that the ants only move horizontally
along the tunnels, and never up or down the shafts, means that even
though they are composed of two characters the tunnels and shafts still
only need to be one character wide.

Fig. 2.3. Graphics characters for ants

The rules of movement for the ants are easy to define. Each level
will have one ant confined to that level able to :move along the tunnel.
If an ant happens to arrive the current of the man character then the
game is over and the man can be taken back to the nest to be eaten! At

11Ant Hill

this stage it is difficult to say exactly how the ants should move to
produce a good game but it seems reasonable to start off with the
assumption that they should move randomly along the tunnel and
occasionally change their direction, also at random. This choice of
‘random ants’ should provide a sufficient level of difficulty for the
player as long as the time limit to complete the course is short enough.

The rules of movement for the man are a little more complicated.
Like the ants he should be allowed to move along the tunnels but he is
also allowed to move down the shafts. The game would probably be too
easy if he was also allowed to move back up the shafts so the player’s
control over the main is limited to the left and right arrow keys for
horizontal motion and the down arrow key for vertical motion down a
shaft. If the down arrow key is pressed when the man is over a shaft
then he should ‘jump’ down it to the next level. When the man is not
positioned over a shaft the down arrow keys should have no effect.
Apart from details such as making sure that neither the ants nor the man
can move off the edge of the screen, this completes the description of
how they should move.

There are three possible ways in which the game could end:

1. the man reaches the nest
2. an ant captures the man
3. the time limit is exceeded and the eggs hatch

Although there is no doubt that a successful game has to be exciting
whilst in progress, there is also a lot of scope for constructing
interesting endgames. For example, in this case, when the man reaches
the nest he could be rewarded by a fanfare, when an ant captures a man
it could drag him down to the nest and when the time limit is reached
this could be signalled by an ant population explosion!

After the game specification it is almost time to start writing the
program, but first it is worth going over some of the ideas and
difficulties of computer animation.

The technique of animation

The computer animation of small shapes is simplicity itself. To make
anything appear to move, all you have to do is repeatedly to print it at
one location, then erase it (usually by printing a biank) and then reprint
it at its new location. If you can repeat the ‘print-erase-print’ cycle
sufficiently fast you can create the illustion of fairly smooth motion. In

12 The Electron Gamesmaster

practice there are two factors that control how smooth computer-
generated motion will appear. The first is the time lapse between
erasing and reprinting the shape. This we will call ‘t1’ and it should
always be as short as possible because it is the length of time that the
shape is not visible on the screen. If t1 is too long then the object will
appear to ’twinkle’ and even ‘flash’. The second factor is the time lapse
between each printing of the shape. This we will call ‘t2’ and it can be
as long as you like because it controls the speed at which the object
appears to move. In most cases we want the object to move quickly and
so t2 needs to be short, but this isn’t always so. The way that the
different time tntervals affect the animation can be seen in Fig. 2.4.

print erase print erase

t1

t2

t1 should always be as small as possible
t2 controls the speed of movement

Fig. 2.4. Animation timing.

There is another factor that controls the speed at which something
moves that has so far been ignored. It has been assumed that each time
the object moves on the screen it moves by the smallest possible
amount that is, one character location. Moving the object by one
character location each time does have the advantage that the motion
appears as smooth as possible and that the object is actually printed at
each position that it appears to pass through. On the other hand there is
one big advantage to moving the object by more than one character
location at a time – speed! It is often possible to make an object appear
to be moving quite fast using nothing but BASIC by making it move
more than one character location at a time. In Ant Hill both methods of
animation will be used: the man will only move one character location
at a time but the ants will sometimes move greater distances in one go.

The ’print-erase-print’ cycle is the foundation of animated graphics
but this still leaves the problem of how to keep track of a number of
moving objects within a program. Each object on the screen is
associated with five quantities and hence five variables: the character
that defines its shape, its current position in terms of both its x and its y
screen co-ordinates, and the amounts that its x and its y co-ordinates

13Ant Hill

should change each time through the animaation loop. These last two
quantities can be thought of as velocities because they govern how far
the object will move each time through the animation loop. For
example, an object‹s shape might be defined by a character stored in
C$, its position in X and Y and its velocity in VX and VY. Its animation
loop would be:

PRINT TAB(X,Y);" ";:REM erase object
X=X+VX:Y=Y+VY :REM update co-ordinates
PRINT TAB(X,Y);C$; :REM reprint object

In practice animation loops are generally a little more complicated
because the object’s velocity is usually changed as a consequence of
where it is on the screen. For example, an animation of a bouncing ball
would invoke changing the velocity whenever the ball bounced against
the screen boundary.

That is all there is to the theory of simple animation. An object that
is animated in the way described is usually referred to as a sprite. The
Ant Hill program uses a total of six sprites, five ants and one man, and
is a good demonstration of the fact that in computing theory is often no
more than a guideline!

The main program

The main program of all dynamic games looks pretty much the same.
There is usually some initialisation followed by the animation loop and
then routines that deal with the end of the game. Ant Hill is no
exception.

 10 REM ANT HILL
 20 MODE 1
 30 PROCinitialise
 40 PROCtitle
 50 PROCdraw_scene
 60 REPEAT
 70 PROCone_move
 80 UNTIL TIME_UP OR HIT OR HOME
 90 PROCend_game
 100 CLS
 110 END

Lines 20 to 50 are procedure calls that are concerned with getting the
game set up. Lines 60 to 80 form the animation loop and lines 90 to 110
deal with the end of the game. PROCinitialise is intended to do such
things as set up graphics characters, logical to physical colour

14 The Electron Gamesmaster

assignments and generally initialise any variables that need initialising!
PROCtitle simply prints a title fram and sets the difficultv level of the
game. PROCdraw_scene is intended to draw the system of tunnels and
shafts ready for the game to sart. You could say that the heart of the
program is PROCone_move which is responsible for making one move
of both the man and the ants. PROCone_move is repeatedly called until
one of the three variables TIME_UP, HIT or HOME become equal to
TRUE. These three variables are used to indicate the three possible
reasons for the game coming to an end and they are set by tests within
PROC_move. Notice that any numeric variables can be used to store
either of the two ’truth values’, TRUE or FALSE, and so can be used
by procedures to ’pass back’ the result of a test. All that now remains is
to write each of the procedures used by the main program!

PROCinitialise and PROCtitle

The first two procedures, PROCinitialise and PROCtitle, were not
difficult to write. PROCinitialise was, however, one of the few
procedures in the program that was changed during development by
having lines added to it. The reason for this was that it was not at all
clear what variables would have to be initialised until other procedures
had been written. Rather than present the first version of
PROCinitialise and then introduce all the changes as the other
procedures are explained, it is less confusing simply to give the final
form of the procedure.

 1000 DEF PROCinitialise
 1010 VDU 23,224,&00,&0E,&0F,&3F,&1F,&33,&44,&84
 1020 VDU 23,225,&03,&14,&D8,&FC,&A8,&C0,&40,&10
 1030 VDU 23,226,&00,&70,&F8,&FC,&F8,&CC,&22,&21
 1040 VDU 23,227,&C0,&28,&1B,&3F,&19,&03,&04,&08
 1050 VDU 23,228,&18,&18,&7E,&18,&3C,&66,&C3,&C3
 1060 VDU 23,229,&01,&01,&03,&03,&07,&07,&0F,&0F
 1070 VDU 23,230,&1F,&1F,&3F,&3F,&7F,&7F,&FF,&FF
 1080 VDU 23,231,&80,&80,&C0,&C0,&E0,&E0,&F0,&F0
 1090 VDU 23,232,&F8,&F8,&FC,&FC,&FE,&FE,&FF,&FF
 1100 VDU 19,0,0,0,0,0:REM 0=BLACK
 1110 VDU 19,1,4,0,0,0:REM 1=BLUE
 1120 VDU 19,2,3,0,0,0:REM 2=YELLOW
 1130 VDU 19,3,1,0,0,0:REM 3=RED
 1140 XM%=RND(20)+10
 1150 YM%=6
 1160 DIM A%(4,3),A$(4)
 1170 FOR I=0 TO 4
 1180 A%(I,1)=RND(30)+5

15Ant Hill

 1190 A%(I,2)=I*4+10
 1200 A%(I,3)=1
 1210 A$(I)=CHR$(224)+CHR$(225)
 1220 NEXT I
 1230 HIT=FALSE
 1240 HOME=FALSE
 1250 TIME_UP=FALSE
 1260 ENDPROC

The first part of PROCinitialise creates the necessary user-defined
characters. Lines 1010 and 1020 define the two characters that go
together to form an ant shape facing right and lines 1030 and 1040 do
the same thing for an ant shape facing left. That is, following
PROCinitialise,

PRINT TAB(X,Y);CHR$(22l);CHR$(225);

will print an ant facing right at X,Y and

PRINT TAB(X,Y);CHR$(227);CHR$(226);

will print an ant facing left at X, Y. The need to use two different ant
shapes hasn’t been mentioned until now but the fact that the ants move
left and right makes it absolutely essential. If only one ant shape was
used for both directions there would be times when the ants appeared to
walk backwards! You might think that keeping track of which pair of
ant characters have to be used for any particular ant would be difficult,
but in fact it is fairly easy, as will become apparent when we consider
PROCmove_ant.

Line 1050 defines the man character as CHR$(228) and lines 1060
to 1090 define four characters that fit together to make up a pyramid
shape that represents the nest. That is:

PRINT TAB(X,Y-1);CHR$(229);CHR$(231);
PRINT TAB(X,Y);CHR$(238);CHR$(232);

will print the four characters that make up the nest with its bottom left
hand corner at X, Y.

Lines 1100 to 1130 determine which physical colour each logical
colour code will produce. It is always a good idea to try to define all of
the logical colours available in a given mode at the same point in a
program and to add REM statements to indicate the colour assignment.
This makes it much easier to change the colour selection at a later date
if required.

The rest of PROCinitialise is concerned with creating and initialising

16 The Electron Gamesmaster

variables used later in the program. Lines 1140 and 1150 set the man’s
initial position in XM% and YM%. His initial vertical position is
always fixed at 6 so that he starts the game above ground, but his
horizontal position is random. Lines 1160 to 1220 initialise the current
positions of the five soldier ants, their direction of travel and shapes
(i.e. left- or right-facing). The array A%(4,3) is used to hold most of the
information about each ant. A%(1,1) gives the x-co-ordinate of ant 1,
A%(1,2) gives the associated y co-ordinate and A%(1,3) gives the ant’s
direction of travel. If A%(I,3) is 1 then ant I is moving to the right and
if it is −1 then it is moving to the left. Finally, the correct pair of
characters that form the ant‹s shape are stored in A$(I). Thus to print
and I (remember I is in the range 0 to 4) use

PRINT TAB(A%(I,1),A%(I,2));A$(I);

Line 1180 initialises each ant’s horizontal position randomly in the
range 6 to 36. Line 1190 initialises each ant’s vertical position so that
there is one ant per tunnel. That is, ant 0 is printed on line 10, ant 1 on
line 14 and ant 2 on line 18 and so on. All the initial ant directions are
set to I, making all the ants move to the fight (line 1200) and so line
1210 stores a right-facing ant shape in A$(I) to all right-moving ants.
The final part of PROCinitialise sets the variables that are used to
indicate the end of the game to FALSE (lines 1230 to 1250).

PROCtitle is simplicity itself! Indeed, writing this procedure simply
involves finding a reasonable form of words to explain the game to a
new player.

 8000 DEF PROCtitle
 8010 CLS:COLOUR 128+0:COLOUR 2
 8020 PRINT TAB(12,3);"A N T H I L L"
 8030 PRINT STRING$(20,A$(1))
 8040 PRINT TAB(5,10);"In this game you have a
 fixed"
 8050 PRINT "amount of time to destroy the ants
 nest"
 8060 PRINT "before the eggs hatch!"
 8070 PRINT
 8080 PRINT "Use the arrow keys to move but"
 8090 PRINT "BEWARE: the soldier ants guarding
 the"
 8095 PRINT "tunnels will capture you and take
 you"
 8096 PRINT "to the nest to feed the young!"
 8100 PRINT
 8110 PRINT "Good luck"
 8300 PRINT TAB(5,25);"Which difficulty level -"
 8305 PRINT

17Ant Hill

 8310 PRINT "1. Expert, 2. Medium or 3. Novice";
 8320 INPUT DF
 8330 IF DF<1 OR DF>3 THEN GOTO 8300
 8340 MAX=(20+DF*10)*100
 8350 VDU 23,1,0;0;0;0;
 8360 ENDPROC

The only points of note in this procedure are the use of the STRING$
function to print a line of ants as an underlining for the title (line 8030),
and the VDU 23 command in line 8350 which turns the text cursor off
for the duration of the game. Lines 8300 to 8320 ask the user to specify
the difficulty level of the game. Line 8330 checks to make sure that DF
is in the correct range and line 8340 sets MAX to the amount of time
that the user is allowed at the given difficulty level.

PROCdraw_scene

PROCdraw_scene is the first procedure that actually does very much in
the way of graphics. Its job is to draw the system of tunnels and shafts
ready for the game to commence. As it will only be used once during
the game it is really ‘speed critical’ and our main concern while writing
it should be to produce a clear procedure that is easy to modify.

 2000 DEF PROCdraw_scene
 2010 COLOUR 128+3
 2020 CLS
 2030 COLOUR 128+0
 2040 FOR X=0TO 39
 2050 PRINT TAB(X,10);" ";
 2060 PRINT TAB(X,14);" ";
 2070 PRINT TAB(X,18);" ";
 2080 PRINT TAB(X,22);" ";
 2090 PRINT TAB(X,26);" ";
 2100 NEXT X
 2120 COLOUR 128+1
 2130 FOR X=0 TO 39
 2140 FOR Y=0 TO 6
 2150 PRINT TAB(X,Y);" ";
 2160 NEXT Y
 2170 NEXT X
 2175 COLOUR 128+0
 2180 PROCshafts(2,7,9)
 2190 PROCshafts(1,11,13)
 2200 PROCshafts(2,15,17)
 2220 PROCshafts(1,19,21)
 2230 PROCshafts(2,23,25)

18 The Electron Gamesmaster

 2240 COLOUR 3:COLOUR 128+1
 2250 PRINT TAB(XM%,YM%);CHR$(228);
 2260 COLOUR 2:COLOUR 128+0
 2270 PRINT TAB(1,25);CHR$(229);CHR$(231);
 2280 PRINT TAB(1,26);CHR$(230);CHR$(232);
 2290 COLOUR 2
 2300 FOR I=0 TO 4
 2310 PRINT TAB(A%(I,1),A%(I,2));A$(I);
 2320 NEXT I
 2330 TIME=0
 2340 ENDPROC

Line 2010 clears the screen to logical colour 3 which is currently set to
red Although the COLOUR instruction in line 2010 could be written as

COLOUR 131

the fact that it sets the background colour to 3 is more obvious if it is
written as

COLOUR 128+3

Lines 2030 to 2100 print the horizontal tunnels in black by first setting
the background colour to black (line 2030) and then printing five
horizontal lines of spaces. This creates five black bands through the red
background. Next, lines 2120 to 2170 print a block of blue spaces to
represent the sky. Alter this all that remains is to print the vertical shafts
that connect the tunnelsa This is a problem that is best solved by calling
another procedure – PROCshafts(NO,Y1,Y2) which will draw NO
shafts vertically, each one starting at Y1 and ending at Y2. So, for
example, PROCshafts(2,7,9) draws two shafts between the tunnels at
Y=6 and Y=10. Lines 2180 to 2230 use the yet-to-be-written
PROCshafts to connect the tunnels.

Lines 2240 and 2250 print the man figure at XM%,YM% using red
foreground and blue background. At this stage of the game the man is
above ground and hence needs to be printed with a blue background but
later he will be in shafts and tunnels and the background colour will
then need to be black. Lines 2260 to 2280 print the nest at the far left
hand end of the bottom tunnel. Finally, lines 2290 to 2320 print the ants
and line 2330 zeroes the TIME ready for the game to start.

The only procedure used by PROCdraw_scene is PROCshafts
(NO,Y1,Y2) and this has to be completed before moving on to the
other procedures:

19Ant Hill

 9000 DEF PROCshafts(NO,Y1,Y2)
 9010 X1=RND(10)+4:X2=RND(10)+25
 9020 FOR Y=Y1 TO Y2
 9030 IF NO=1 THEN PRINT TAB((X1+X2)/2,Y);" ";
 9040 IF NO=2 THEN PRINT TAB(X1,Y);" ";
 TAB(X2,Y);" ";
 9050 NEXT Y
 9060 ENDPROC

Line 9010 fixes the positions of two shafts at X1 and X2 at random.
The random numbers are generated in such a way that the shaft
specified by X1 is to the left of the screen and the shaft specified by X2
is to the right of the screen. If two shafts are required then they are both
printed by line 9040 within the FOR loop (lines 9020 to 9050). If only
one shaft is required then it is printed at the average of Xl and X2,
which is a random position tending roughly towards the middle of the
screen (line 9030).

PROCone_move � the heart of the game

The most important procedure in the entire game is PROCone_move.
As it is going to be called so many times it is important for it and any
procedures that it calls to work as quickly as possible. This said. it is
still worth trying to keep things clear and simple and to this end the
best way to write PROCone_move is as a series of calls to other
procedures:

 4000 DEF PROCone_move
 4010 PROCmove_man
 4020 PROCmove_ant
 4030 PROCtime
 4040 ENDPROC

The job of PROCmove_man is to allow the player the opportunity of
moving the man and to check for the possibility that the move has
resulted in the man reaching the nest. Similarly, PROCmove_ant is
concerned with moving the ants and checking to see if the man has
been captured. PROCtime prints the time since the start of the game
and checks to see if the allotted time is up.

Clearly, the way that PROCone_move has been written puts off all
the difficult decisions until the other procedures are written but this
strategy is intentional. Programming problems should always be solved
in small steps. PROCmove_man is the next procedure to be written:

20 The Electron Gamesmaster

 5000 DEF PROCmove_man
 5010 IF YM%>9 THEN COLOUR 128+0 ELSE
 COLOUR 128+1
 5020 COLOUR 3
 5030 PRINT TAB(XM%,YM%);" ";
 5040 IF INKEY(-26) AND XM%>0 THEN XM%=XM%-1
 5050 IF INKEY(-122) AND XM%<39 THEN XM%=XM%+1
 5060 IF INKEY(-42) AND FNC(XM%,YM%+1)=0 THEN
 PROCdown_shaft
 5070 PRINT TAB(XM%,YM%);CHR$(228);
 5080 IF XM%=3 AND YM%=26 THEN HOME=TRUE
 5090 ENDPROC

Line 5010 checks to see what the vertical positionofthe man is. Ifhe is
still above ground the background colour is set to blue and if he is
below ground the background colour is set to black. Line 3030 blanks
out the man at his current position XM%,YM%.

Lines 5040 to 5060 then check each of the three possible arrow keys
in turn. Using INKEY with negative parameter values is the quickest
way of finding out if a key is pressed or not and avoids any problems
that may arise because of the keyboard buffer storing old key-presses.
Line 5040 checks for the left arrow key, line 5050 checks for the right
arrow key and line 5060 checks for the down arrow key. The only other
point worth mentioning is that in lines 5040 and 5050 also make sure
that the attempted move would not take the man off the edge of the
screen. Line 5060 calls PROCdown_shaft to make the man jump down
a shaft only if the down arrow key is pressed and the character location
below the man’s current position is black. The function FNC is used to
discover the colour of the character location just below the man. In fact
FNC works by returning the colour of a point somewhere near the
middle of a character location:

 9100 DEF FNC(X%,Y%)
 9110 X%=3+32*X%
 9120 Y%=1020-32*Y%
 9130 =POINT(X%,Y%)

Lines 9110 convert the character co-ordinates given X%,Y% to the co-
ordinates of a point roughly in the middle of the character location on
the high resolution screen. Then line 9130 uses the POINT function to
return its logical colour. PROCmove_man finishes by reprinting the
man character at the new position given by XM%,YM% (line 5070)
and then checks to see if the nest has been reached (line 5080).

The only procedure left to tackle for PROCmove_man to work is
PROCdown_shaft:

21Ant Hill

 5500 DEF PROCdown_shaft
 5505 COLOUR 128+0
 5510 FOR I=1 TO 4
 5520 YM%=YM%+1
 5530 PRINT TAB(XM%,YM%);CHR$(226);
 5540 SOUND 1,-15,148-I%*4,2
 5550 IF ADVAL(-6)<>15 THEN GOTO 5550
 5560 PRINT TAB(XM%,YM%);" ";
 5570 NEXT I
 5580 ENDPROC

This starts by setting the background colour to black (line 5505)
because a shaft is always black! Then lines 5510 to 5570 move the man
down the shaft one character location at a time. Each move is
accompanied by a sound produced by line 5540. Line 5550 uses
ADVAL(6) to wait for the end of the note by testing for the sound
queue to be empty (i.e. to have 15 free places).

PROCmove_ant tackles the first real problem that has to be solved.
The trouble is that there are one man and five ants. If PROCmove_ant
were to move all five ants each time it was called then the man figure
would be very sluggish to respond to keypresses from the user. The
reason for this is the time it takes to move five ants! The obvious
solution is to move only one ant, selected at random, for each possible
move of the man. This is exactly what PROCmove_ant does:

 3000 DEF PROCmove_ant
 3005 COLOUR 128+0:COLOUR 2
 3010 Q%=RND(5)-1
 3020 PRINT TAB(A%(Q%,1),A%(Q%,2));SPC(2);
 3030 IF RND(1)<.01 THEN PROCreverse(Q%)
 3040 A%(Q%,1)=A%(Q%,1)+A%(Q%,3)*RND(3)
 3050 IF A%(Q%,1)<3 THEN A%(Q%,1)=3:
 PROCreverse(Q%)
 3060 IF A%(Q%,1)>36 THEN A%(Q%,1)=36:
 PROCreverse(Q%)
 3070 PRINT TAB(A%(Q%,1),A%(Q%,2));A$(Q%);
 3080 HIT=FNgot_man(Q%)
 3090 ENDPROC

Line 3010 sets Q%, randomly to a number between 0 and 4 to
determine which ant will be moved. Then line 3020 erases the ant from
its current position. Line 3030 calls PROCreverse at random to reverse
the direction of ant Q%. RND(1) will be smaller than .01 on average
once in 100 calls to PROCmove_ant. Line 3040 increases or decreases
the ant’s x co-ordinate depending on the value stores in A%(Q%,3). If
A%(Q%,3) is +1 then RND(3) is added to the x co-ordinate, thus
moving the ant to the right; if A%(Q%,3) is −1 then RND(3) is

22 The Electron Gamesmaster

subtracted from the x co-ordinate, thus moving the ant to the left. The
amount that the ant moves is given by the value of RND(3). This means
that the ant can move by 1, 2 or 3 character locations at a time.
Although in general moving by anything than one character location at
a time is a potential source of trouble, this is really the only way in
which the impression that the ants move quickly can be achieved. After
updating the ant’s x co-ordinate it is checked by lines 1050 and 3060 to
see if the ant is about to go off either edge of the screen. If so,
PROCreverse(Q%) is called to change the ant’s direction. Finally line
3070 reprints the ant at its new position and line 3080 used
FNgot_man(Q%) to check whether the ant just moved has captured the
man not.

PROCreverse(Q%) is the only procedure used by PROCmove_ant.
All it has to do is change the direction of motion of the ant and the pair
of graphics characters.

 3500 DEF PROCreverse(Q%)
 3510 IF A$(Q%)=CHR$(224)+CHR$(225) THEN
 A$(Q%)=CHR$(227)+CHR$(226) ELSE
 A$(Q%)=CHR$(224)+CHR$(225)
 3520 A%(Q%,3)=-A%(Q%,3)
 3530 ENDPROC

The function FNgot_man is also easy to write:

 9200 DEF FNgot_man(Q%)
 9210 IF A%(Q%,2)<>YM% THEN =FALSE
 9220 IF A%(Q%,1)<>XM% AND A%(Q%,1)+1<>XM%
 THEN =FALSE
 9230 =TRUE

The only remaining procedure used by PROCone_move is
PROCtime:

 4500 DEF PROCtime
 4510 PRINT TAB(2,31);TIME/100;
 4520 IF TIME>MAX THEN TIME_UP=TRUE
 4530 ENDPROC

Line 4510 prints the current time and line 4520 tests to see if the
allotted time is up and the game is at an end.

Now that PROCone_move and all the procedures and functions that
it uses have been defined, the game can be tried out apart from the
endgame routines. In this part of the program, integer variables have
been used to give the maximum speed of execution. However, even
with this care the Electron still only runs the program at a barely
acceptable speed.

23Ant Hill

PROCend_game

The choice of how to finish a game is often something that is limited by
the amount of time already spent on getting the main parts of the game
working. There are three possible conclusions to Ant Hill, and
PROCend_game has to identify each and call appropriate procedures:

 6000 DEF PROCend_game
 6010 IF HIT THEN PROCcapture:GOTO 6100
 6020 IF TIME_UP THEN PROChatch:GOTO 6100
 6030 IF HOME THEN PROCdestroy_nest
 6100 VDU 23,1,1;0;0;0;
 6110 PRINT TAB(2,29);"Another game ";:INPUT A$
 6120 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 6100
 6130 IF LEFT$(A$,1)="Y" THEN RUN
 6140 ENDPROC

PROCcapture is called if an ant has reached the same screen location as
the man. PROChatch is called if the garneends due to the time limit
being reached and PROCdestroy_nest is called if the man reaches the
nest within the time limit. Following a call to one of these procedures
line 6100 restores the text cursor and lines 6110 to 6130 ask the player
if he wants another game.

Of the three procedures called by PROCend game, PROCcapture is
seemingly the most complicated and so a description of this is left until
last. PROChatch simply prints ants at random positions tending toward
the centre of the screen, accompanied by clicking noises:

 6500 DEF PROChatch
 6510 PRINT TAB(2,30);"THE ANTS ARE HATCHING "
 6520 FOR I=1 TO RND(20)+20
 6530 X=RND(25)+5:Y=RND(10)+10
 6540 PRINT TAB(X,Y);A$(RND(5)-1);
 6550 SOUND 0,-15,RND(4)+3,RND(2)
 6560 NEXT I
 6570 ENDPROC

PROCdestroy_nest rewards the player with a simple fanfare:

 6800 DEF PROCdestroy_nest
 6810 PRINT TAB(2,30);"YOU DID IT!"
 6820 DATA 72,.5,80,.5,88,.5,96,.5,100,1,100,1
 6840 ENDPROC
 6890 DATA 999,999
 6900 READ P,D

24 The Electron Gamesmaster

 6910 IF P=999 THEN GOTO 6940
 6920 SOUND 1,-15,P,D*10
 6925 SOUHD 1,0,0,1
 6930 GOTO 6900
 6940 ENDPROC

The notes of the fanfare are specified by the values in the DATA
statements (lines 6830 and 6890). Each note corresponds to a pair of
values, the first giving the pitch and the second the duration. A pitch of
999 is used to mark the end of the sequence of notes and this is detected
by line 6910

The idea implemented by PROCcapture is that the ant that captures
the man should ‘drag’ him to the nearest shaft and drop him down to be
collected by the ant at the next level. This is repeated until the ant at the
lowest level drags him to the nest, when the game is finally over. This
sounds like quite a cmnplicated sequence of events but in practice it is
not so difficult.

 6200 DEF PROCcapture
 6210 PRINT TAB(2,30);"You are captured!"
 6215 IF Q%=4 THEN GOTO 6280
 6216 REPEAT
 6220 PROCgoto_man(Q%)
 6225 PROCfind_shafts(A%(Q%,2))
 6230 IF ABS(X2%-A%(Q%,1))<ABS(X1%-A%(Q%,1))
 AND X2%<>0 THEN PROCdrag(X2%) ELSE
 PROCdrag(X1%)
 6235 PRINT TAB(A%(Q%,1)+2,A%(Q%,2));SPC(1);
 6236 SOUND 0,-15,6,3
 6240 PROCdown_shaft
 6245 PRINT TAB(XM%,YM%);CHR$(228);
 6250 Q%=Q%+1
 6260 UNTIL Q%=4
 6270 PROCgoto_man(Q%)
 6280 PROCdrag(5)
 6290 ENDPROC

PROCgoto_man(Q%) moves ant Q% to the current position of the man.
Once the ant has reached the man, line 6225 calls PROCfind_shafts to
locate the position of the shafts. If there is only one shaft then its
position is returned in X1% and X2% is set to zero. If there are two
shafts connecting a tunnel to the one below their positions are returned
in X1% and X2%. Once the shafts have been located line 6230 tests to
discover which is closer to the current position of the ant that has the
man. Then PROCdrag is called to move the ant plus the man to the

25Ant Hill

closest shaft. Finally PROCdown_shaft is called to drop the man down
the shaft. The whole sequence is repeated until the man reaches the
bottom level when ant 4 drags the man to the next (line 6280). Quite
simple, really!

Of course the simplicity of PROCcapture is due to its use of a
number of new procedures. PROCgoto_man merely has to move the
ant from its current position to XM%. However, before this move
begins the ant has to be pointing in the correct direction.

 5900 DEF PROCgoto_man(Q%)
 5910 IF A%(Q%,1)+1=XM% THEN ENDPROC
 5920 IF SGN(XM%-A%(Q%,1)-1)<>A%(Q%,3) THEN
 PROCreverse(Q%)
 5930 REPEAT
 5940 PRINT TAB(A%(Q%,1),A%(Q%,2));SPC(2);
 5950 A%(Q%,1)=A%(Q%,1)+A%(Q%,3)
 5960 PRINT TAB(A%(Q%,1),A%(Q%,2));A$(Q%);
 5965 PROCdelay
 5970 UNTIL A%(Q%,1)+1=XM%
 5980 ENDPROC

Line 3920 checks to see if the ant is already facing toward the man; if
not, PROCreverse is called. After this the REPEAT loop (lines 5930 to
5970) moves the ant one location at a time until it is in contact with the
man. PROCfind_shafts works by examining the row of character
locations just below the ant’s tunnel and storing the co-ordinates of any
that are black in Xl% and X2%.

 5600 DEF PROCfind_shafts(Y%)
 5610 X%=0
 5620 REPEAT
 5630 C=FNC(X%,Y%+1)
 5640 X1%=X%
 5650 X%=X%+1
 5660 UNTIL X%>39 OR C=0
 5670 X2%=0
 5680 REPEAT
 5690 C=FNC(X%,Y%+1)
 5700 IF C=0 THEN X2%=X%
 5710 X%=X%+1
 5720 UNTIL X%>39 OR C=0
 5730 ENDPROC

The first REPEAT loop (lines 5620 to 5660) searches for the first shaft
and the second REPEAT loop (lines 5680 to 5720) searches for the
second shaft. If there is no second shaft then the second loop finishes
when the edge of the screen is reached and returns with X2% set to

26 The Electron Gamesmaster

zero.
The third new procedure used by PROCcapture is PROCdrag which

is very similar to PROCgoto_man.

 5800 DEF PROCdrag(X%)
 5805 IF A%(Q%,1)+2=X% THEN XM%=X%:ENDPROC
 5810 IF SGN(X%-A%(Q%,1)-2)<>A%(Q%,3) THEN
 PROCreverse(Q%)
 5820 REPEAT
 5830 PRINT TAB(A%(Q%,1),A%(Q%,2));SPC(3);
 5840 A%(Q%,1)=A%(Q%,1)+A%(Q%,3)
 5850 PRINT TAB(A%(Q%,1),A%(Q%,2));A$(Q%);
 CHR$(228);
 5855 PROCdelay
 5860 UNTIL A%(Q%,1)+2=X%
 5870 XM%=X%
 5880 ENDPROC

The only real difference between PROCdrag and PROCgoto_man is
that PROCdrag moves the ant and the man to the nearest shaft whereas
goto-man moves only the ant to the position of the man. To allow the
player enough time to see what is happening PROCgoto_man and
PROCdrag both use PROCdelay to slow things down a little.

 9300 DEF PROCdelay
 9310 LOCAL T
 9320 FOR T=0 TO 100
 9330 NEXT T
 9340 ENDPROC

Making the game better

After playing a few games of Ant Hill it quickly becomes obvious that
it it is very easy to win! A game that is too easy is no game at all and at
this point many programmers might be tempted to give Ant Hill up as a
failure. In fact the first version of most games fails to perform as well
as expected for one reason or another, and the next step in developing
any game is to work out what is wrong and put it right.
 The first impulse is to try to make the game more difficult by
decreasing the time allowed. If you try this you will find that
progressively decreasing the time allowed has very little effect until
you suddenly reach the point where the game is almost impossible. [he
trouble is that the game can always be completed in roughly the same
amount of time. If you make the time limit greater than this then the

27Ant Hill

game is easy. If you make the time limit smaller then the game is
impossible! To make Ant Hill more interesting to play, we must first
find out why it is that a game can be completed in a fixed amount of
time.

The most obvious reason is that initially all the ants are moving to
the right and as long as the man makes a dash for the left hand tunnels
he can get to the next before any of the ants have had much time to turn
around! The solution to this is to set the ants moving in random
directions at the start of the game. Given that we already have
PROCreverse, this is most easily achieved by adding the following line:

1215 IF RND(1)>0.5 THEN PROCreverse(I)

After this change the game is more difficult and hence more interesting
but it is still possible for the man figure to move through any of the ants
without being captured and this means that he doesn’t really have to
worry about exactly where the ants are in the tunnels. The reason for
the man being able to move through an ant is that the only time that a
capture is tested for is when an ant moves, and for any given ant this
only happens, on average, once every five moves of the man. The
solution to this is to add a line to check for the man moving onto a
position that is already occupied by an ant. This can be done by adding

5965 IF FNC(XM%,YM%)<>0 THEN HIT=TRUE

to PROCmove_man. This simply tests to make sure that the location
that the man is about to move to is black. Once this change is made,
another annoying feature becomes apparent. Because an ant can move
by up to three character locations at a time, it is possible for an ant to
‘jump’ over the man. To make this impossible the ants would have to be
restricted to a maximum move of two character locations at a time. This
can be implemented most simply by changing line 3040 in
PROCmove_ant to:

3040 A%(Q%,1)=A%(Q%,1)+A%(Q%,3)*2

This makes all the ants move by a constant two character locations each
time. After making this change the ants still seem to move fast enough
and with enough variability to look interesting.

At this point most of the obvious changes have been made and the
game is certainly more difficult and more interesting but it still lacks
the degree of challenge that a good game should offer. After playing a

28 The Electron Gamesmaster

number of games it seems that the reason for this is that for much of
time the ants are too far away from the shafts to pose any threat to the
man. The best games occur when the ants are, by chance, all gathered
towards the middle of the screen. This suggests both that the ants’ range
should be reduced and that the pairs of shafts should be brought closer
together. To do this lines 3050 and 3060 in PROCmove_ant have to be
changed to:

 3050 IF A%(Q%,1)<10 THEN A%(Q%,1)=10:
 PROCreverse(Q%)
 3060 IF A%(Q%,1)>28 THEN A%(Q%,1)=28:
 PROCreverse(Q%)

and line 9010 in PROCshafts changed to:

 9010 X1=RND(5)+10:X2=RND(5)+25

With all of these changes Ant Hill is a game that combines speed
with strategy and is good fun to play.

Making the Electron go faster!

Even though Ant Hill is now fun to play it still has one annoying
feature. The Electron cannot quite manage to run the program fast
enough to make the keypresses that control the man appear to work
instantaneously. In fact the keyboard control is sluggish. The solution to
this problem is to identify what is taking the most time and convert it
from BASIC to assembler.

As a general rule assembler is best avoided and certainly best
avoided if the program is at all complicated: complicated things are
best done in BASIC! Examining the procedures in PROCone_move
suggests that either PROCmove_ant or PROCmove_man should be
rewritten in assembler. However, PROCmove_ant is very complicated
and so PROCmove_man is the obvious candidate.

On close examination PROCmove_man contains some parts that are
complicated and not speed-critical. For example, there is little point in
converting PROCdown_shaft to assembler as it needs to run a little
slowly! After a little thought, it is clear that the best compromise is to
write an assembly language subroutine that replaces the blanking out
(line 5030), the testing of the keyboard for the right and left arrow keys
and the updating of XM% (lines 3040 and 5050) and the reprinting of

29Ant Hill

the man character (line 5070). The rest of the action of PROCmove-
man, that is, the setting of the colours (lines 5010 and 5020), the testing
for the down arrow key and calling PROCdown_shaft (line 5060) and
the testing to see if the man has reached the nest (line 5080), are all best
implemented in BASIC.

The most obvious place to insert the necessary assembly language
and the BASIC to assemble it is at the end of PROCinitialise:

 1260 DIM CODE% 500
 1270 FOR PASS=0 TO 2 STEP 2
 1280 P%=CODE%
 1285 OSWRCH%=&FFEE
 1286 OSBYTE%=&FFF4
 1290 [OPT PASS

 1320 .MMAN% LDA #31 \TAB(XM%,YM%)
 1330 JSR OSWRCH%
 1340 LDA &70
 1350 JSR OSWRCH%
 1360 LDA &71
 1370 JSR OSWRCH%

 1380 LDA #ASC(" ") \PRINT " ";
 1390 JSR OSWRCH%

 1400 LDA &70
 1410 CMP #0 \IF XM%=0 THEN GOTO NOLEFT%
 1420 BEQ NOLEFT%

 1430 LDA #129 \INKEY(-26)
 1440 LDY #&FF
 1450 LDX #&E6
 1460 JSR OSBYTE%

 1470 CPY #0 \IF INKEY(-26)=0 THEN
 GOTO NOLEFT%

 1480 BEQ NOLEFT%

 1490 DEC &70 \XM%=XM%-1

 1500 .NOLEFT% LDA &70 \IF XM%=39 THEN
 GOTO NORIGHT%

 1510 CMP #39
 1520 BEQ NORIGHT%

 1530 LDA #129 \INKEY(-122)
 1540 LDY #&FF
 1550 LDX #&86
 1560 JSR OSBYTE%

30 The Electron Gamesmaster

 1570 CPY #0 \IF INKEY(-122)=0 THEN
 GOTO NORIGHT%

 1580 BEQ NORIGHT%

 1590 INC &70 \XM%=XM%+1

 1600 .NORIGHT% LDA #31 \TAB(XM%,YM%)
 1610 JSR OSWRCH%
 1620 LDA &70
 1630 JSR OSWRCH%
 1640 LDA &71
 1650 JSR OSWRCH%

 1660 LDA #228 \PRINT CHR$(228);
 1670 JSR OSWRCH%

 1680 RTS \Return to BASIC
 1690]
 1700 NEXT PASS
 1800 ENDPROC

If you know assembler you should be able to follow this subroutine
from the comments written alongside each group of instructions. The
comments indicate what the instructions do in terms of their equivalent
BASIC commands. The only other information that is important is that
the subroutine expects the value of XM% to be stored in memory
location &70 and YM% in &71. On return from the subroutine the new
value of XM% is stored in &70. (The area &70 to &8F is reserved for
use by machine code programs.)

The modifications needed to PROCmove_man are fairly extensive
and it is easier to give a listing of the whole procedure rather than just
the changes:

 5000 DEF PROCmove_man
 5010 IF YM%>9 THEN COLOUR 128+0 ELSE
 COLOUR 128+1
 5020 COLOUR 3
 5030 ?&70=XM%:?&71=YM%
 5040 CALL MMAN%
 5045 XM%=?&70
 5060 IF INKEY(-42) AND FNC(XM%,YM%+1)=0 THEN
 PROCdown_shaft
 5065 IF FNC(XM%,YM%)<>0 THEN HIT=TRUE
 5080 IF XM%=3 AND YM%=26 THEN HOME=TRUE
 5090 ENDPROC

31Ant Hill

Line 5030 stores XM% in &70 and YM% in &71 ready for the machine
code routine to do its work. Line 5040 calls the routine and line 5045
retrieves the updated value of XM% from &70. Because the machine
code routine now prints the man before line 5060 checks for the down
arrow key being pressed, it is necessary to add a line to
PROCdown_shaft to blank the man again before his descent down the
shaft. That is, add

 5504 PRINT TAB(XM%,YM%);" ";

to PROCdown_shaft
After this change to machine code the speed of the program is

noticeably faster and the response time of the keyboard is good. A
further speed improvement could be achieved by coding part of
PROCmove_ant in assembler but this seems unnecessary. At this point
Ant Hill is a very pleasing game!

Suggestions for further work

The main part of the Ant Hill program is fairly complete and most of
the scope for further work centres on the endgame routines.
PROCdestroy nest and PROChatch are both weak when compared to
the fascinating performance that the ants go through when
PROCcapture is called. The game itself might be improved by making
the ants a little more ‘intelligent’ by making them detect and move
towards the man when he descends to their level!

The final version � a complete listing

The following listing includes all of the modifications introduced in the
text, including the assembly language subroutine. Because of memoy
limitations this version will not work with a Electron using disks. If you
are using a disk system change to tape by typing *TAPE followed by
PAGE=&E00.

 10 REM ANT HILL
 20 MODE 1
 30 PROCinitialise
 40 PROCtitle

32 The Electron Gamesmaster

 50 PROCdraw_scene
 60 REPEAT
 70 PROCone_move
 80 UNTIL TIME_UP OR HIT OR HOME
 90 PROCend_game
 100 CLS
 110 END

 1000 DEF PROCinitialise
 1010 VDU 23,224,&00,&0E,&0F,&3F,&1F,&33,&44,&84
 1020 VDU 23,225,&03,&14,&D8,&FC,&A8,&C0,&40,&10
 1030 VDU 23,226,&00,&70,&F8,&FC,&F8,&CC,&22,&21
 1040 VDU 23,227,&C0,&28,&1B,&3F,&19,&03,&04,&08
 1050 VDU 23,228,&18,&18,&7E,&18,&3C,&66,&C3,&C3
 1060 VDU 23,229,&01,&01,&03,&03,&07,&07,&0F,&0F
 1070 VDU 23,230,&1F,&1F,&3F,&3F,&7F,&7F,&FF,&FF
 1080 VDU 23,231,&80,&80,&C0,&C0,&E0,&E0,&F0,&F0
 1090 VDU 23,232,&F8,&F8,&FC,&FC,&FE,&FE,&FF,&FF
 1100 VDU 19,0,0,0,0,0:REM 0=BLACK
 1110 VDU 19,1,4,0,0,0:REM 1=BLUE
 1120 VDU 19,2,3,0,0,0:REM 2=YELLOW
 1130 VDU 19,3,1,0,0,0:REM 3=RED
 1140 XM%=RND(20)+10
 1150 YM%=6
 1160 DIM A%(4,3),A$(4)
 1170 FOR I=0 TO 4
 1180 A%(I,1)=RND(30)+5
 1190 A%(I,2)=I*4+10
 1200 A%(I,3)=1
 1210 A$(I)=CHR$(224)+CHR$(225)
 1215 IF RND(1)>0.5 THEN PROCreverse(I)
 1220 NEXT I
 1230 HIT=FALSE
 1240 HOME=FALSE
 1250 TIME_UP=FALSE
 1260 DIM CODE% 500
 1270 FOR PASS=0 TO 2 STEP 2
 1280 P%=CODE%
 1285 OSWRCH%=&FFEE
 1286 OSBYTE%=&FFF4
 1290 [OPT PASS
 1320 .MMAN% LDA #31
 1330 JSR OSWRCH%
 1340 LDA &70
 1350 JSR OSWRCH%
 1360 LDA &71
 1370 JSR OSWRCH%
 1380 LDA #ASC(" ")
 1390 JSR OSWRCH%

33Ant Hill

 1400 LDA &70
 1410 CMP #0
 1420 BEQ NOLEFT%
 1430 LDA #129
 1440 LDY #&FF
 1450 LDX #&E6
 1460 JSR OSBYTE%
 1470 CPY #0
 1480 BEQ NOLEFT%
 1490 DEC &70
 1500 .NOLEFT% LDA &70
 1510 CMP #39
 1520 BEQ NORIGHT%
 1530 LDA #129 \INKEY(-122)
 1540 LDY #&FF
 1550 LDX #&86
 1560 JSR OSBYTE%
 1570 CPY #0
 1580 BEQ NORIGHT%
 1590 INC &70
 1600 .NORIGHT% LDA #31
 1610 JSR OSWRCH%
 1620 LDA &70
 1630 JSR OSWRCH%
 1640 LDA &71
 1650 JSR OSWRCH%
 1660 LDA #228
 1670 JSR OSWRCH%
 1680 RTS
 1690]
 1700 NEXT PASS
 1800 ENDPROC

 2000 DEF PROCdraw_scene
 2010 COLOUR 128+3
 2020 CLS
 2030 COLOUR 128+0
 2040 FOR X=0TO 39
 2050 PRINT TAB(X,10);" ";
 2060 PRINT TAB(X,14);" ";
 2070 PRINT TAB(X,18);" ";
 2080 PRINT TAB(X,22);" ";
 2090 PRINT TAB(X,26);" ";
 2100 NEXT X
 2120 COLOUR 128+1
 2130 FOR X=0 TO 39
 2140 FOR Y=0 TO 6
 2150 PRINT TAB(X,Y);" ";
 2160 NEXT Y
 2170 NEXT X
 2175 COLOUR 128+0

34 The Electron Gamesmaster

 2180 PROCshafts(2,7,9)
 2190 PROCshafts(1,11,13)
 2200 PROCshafts(2,15,17)
 2220 PROCshafts(1,19,21)
 2230 PROCshafts(2,23,25)
 2240 COLOUR 3:COLOUR 128+1
 2250 PRINT TAB(XM%,YM%);CHR$(228);
 2260 COLOUR 2:COLOUR 128+0
 2270 PRINT TAB(1,25);CHR$(229);CHR$(231);
 2280 PRINT TAB(1,26);CHR$(230);CHR$(232);
 2290 COLOUR 2
 2300 FOR I=0 TO 4
 2310 PRINT TAB(A%(I,1),A%(I,2));A$(I);
 2320 NEXT I
 2330 TIME=0
 2340 ENDPROC

 3000 DEF PROCmove_ant
 3005 COLOUR 128+0:COLOUR 2
 3010 Q%=RND(5)-1
 3020 PRINT TAB(A%(Q%,1),A%(Q%,2));SPC(2);
 3030 IF RND(1)<.01 THEN PROCreverse(Q%)
 3040 A%(Q%,1)=A%(Q%,1)+A%(Q%,3)*2
 3050 IF A%(Q%,1)<10 THEN A%(Q%,1)=10:
 PROCreverse(Q%)
 3060 IF A%(Q%,1)>28 THEN A%(Q%,1)=28:
 PROCreverse(Q%)
 3070 PRINT TAB(A%(Q%,1),A%(Q%,2));A$(Q%);
 3080 HIT=FNgot_man(Q%)
 3090 ENDPROC

 3500 DEF PROCreverse(Q%)
 3510 IF A$(Q%)=CHR$(224)+CHR$(225) THEN
 A$(Q%)=CHR$(227)+CHR$(226)
 ELSE A$(Q%)=CHR$(224)+CHR$(225)
 3520 A%(Q%,3)=-A%(Q%,3)
 3530 ENDPROC

 4000 DEF PROCone_move
 4010 PROCmove_man
 4020 PROCmove_ant
 4030 PROCtime
 4040 ENDPROC

 4500 DEF PROCtime
 4510 PRINT TAB(2,31);TIME/100;
 4520 IF TIME>MAX THEN TIME_UP=TRUE
 4530 ENDPROC

35Ant Hill

 5000 DEF PROCmove_man
 5010 IF YM%>9 THEN COLOUR 128+0 ELSE
 COLOUR 128+1
 5020 COLOUR 3
 5030 ?&70=XM%:?&71=YM%
 5040 CALL MMAN%
 5045 XM%=?&70
 5060 IF INKEY(-42) AND FNC(XM%,YM%+1)=0 THEN
 PROCdown_shaft
 5065 IF FNC(XM%,YM%)<>0 THEN HIT=TRUE
 5080 IF XM%=3 AND YM%=26 THEN HOME=TRUE
 5090 ENDPROC

 5500 DEF PROCdown_shaft
 5504 PRINT TAB(XM%,YM%);" ";
 5505 COLOUR 128+0
 5510 FOR I=1 TO 4
 5520 YM%=YM%+1
 5530 PRINT TAB(XM%,YM%);CHR$(226);
 5540 SOUND 1,-15,148-I%*4,2
 5550 IF ADVAL(-6)<>15 THEN GOTO 5550
 5560 PRINT TAB(XM%,YM%);" ";
 5570 NEXT I
 5580 ENDPROC

 5600 DEF PROCfind_shafts(Y%)
 5610 X%=0
 5620 REPEAT
 5630 C=FNC(X%,Y%+1)
 5640 X1%=X%
 5650 X%=X%+1
 5660 UNTIL X%>39 OR C=0
 5670 X2%=0
 5680 REPEAT
 5690 C=FNC(X%,Y%+1)
 5700 IF C=0 THEN X2%=X%
 5710 X%=X%+1
 5720 UNTIL X%>39 OR C=0
 5730 ENDPROC

 5800 DEF PROCdrag(X%)
 5805 IF A%(Q%,1)+2=X% THEN XM%=X%:ENDPROC
 5810 IF SGN(X%-A%(Q%,1)-2)<>A%(Q%,3) THEN
 PROCreverse(Q%)
 5820 REPEAT
 5830 PRINT TAB(A%(Q%,1),A%(Q%,2));SPC(3);
 5840 A%(Q%,1)=A%(Q%,1)+A%(Q%,3)
 5850 PRINT TAB(A%(Q%,1),A%(Q%,2));A$(Q%);
 CHR$(228);
 5855 PROCdelay

36 The Electron Gamesmaster

 5860 UNTIL A%(Q%,1)+2=X%
 5870 XM%=X%
 5880 ENDPROC

 5900 DEF PROCgoto_man(Q%)
 5910 IF A%(Q%,1)+1=XM% THEN ENDPROC
 5920 IF SGN(XM%-A%(Q%,1)-1)<>A%(Q%,3) THEN
 PROCreverse(Q%)
 5930 REPEAT
 5940 PRINT TAB(A%(Q%,1),A%(Q%,2));SPC(2);
 5950 A%(Q%,1)=A%(Q%,1)+A%(Q%,3)
 5960 PRINT TAB(A%(Q%,1),A%(Q%,2));A$(Q%);
 5965 PROCdelay
 5970 UNTIL A%(Q%,1)+1=XM%
 5980 ENDPROC

 6000 DEF PROCend_game
 6010 IF HIT THEN PROCcapture:GOTO 6100
 6020 IF TIME_UP THEN PROChatch:GOTO 6100
 6030 IF HOME THEN PROCdestroy_nest
 6100 VDU 23,1,1;0;0;0;
 6110 PRINT TAB(2,29);"Another game ";:INPUT A$
 6120 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 6100
 6130 IF LEFT$(A$,1)="Y" THEN RUN
 6140 ENDPROC

 6200 DEF PROCcapture
 6210 PRINT TAB(2,30);"You are captured!"
 6215 IF Q%=4 THEN GOTO 6280
 6216 REPEAT
 6220 PROCgoto_man(Q%)
 6225 PROCfind_shafts(A%(Q%,2))
 6230 IF ABS(X2%-A%(Q%,1))<ABS(X1%-A%(Q%,1))
 AND X2%<>0 THEN PROCdrag(X2%) ELSE
 PROCdrag(X1%)
 6235 PRINT TAB(A%(Q%,1)+2,A%(Q%,2));SPC(1);
 6236 SOUND 0,-15,6,3
 6240 PROCdown_shaft
 6245 PRINT TAB(XM%,YM%);CHR$(228);
 6250 Q%=Q%+1
 6260 UNTIL Q%=4
 6270 PROCgoto_man(Q%)
 6280 PROCdrag(5)
 6290 ENDPROC

 6500 DEF PROChatch
 6510 PRINT TAB(2,30);"THE ANTS ARE HATCHING "
 6520 FOR I=1 TO RND(20)+20
 6530 X=RND(25)+5:Y=RND(10)+10

37Ant Hill

 6540 PRINT TAB(X,Y);A$(RND(5)-1);
 6550 SOUND 0,-15,RND(4)+3,RND(2)
 6560 NEXT I
 6570 ENDPROC

 6800 DEF PROCdestroy_nest
 6810 PRINT TAB(2,30);"YOU DID IT!"
 6820 DATA 72,.5,80,.5,88,.5,96,.5,100,1,100,1
 6840 ENDPROC
 6890 DATA 999,999
 6900 READ P,D
 6910 IF P=999 THEN GOTO 6940
 6920 SOUND 1,-15,P,D*10
 6925 SOUHD 1,0,0,1
 6930 GOTO 6900
 6940 ENDPROC

 8000 DEF PROCtitle
 8010 CLS:COLOUR 128+0:COLOUR 2
 8020 PRINT TAB(12,3);"A N T H I L L"
 8030 PRINT STRING$(20,A$(1))
 8040 PRINT TAB(5,10);"In this game you have a
 fixed"
 8050 PRINT "amount of time to destroy the ants
 nest"
 8060 PRINT "before the eggs hatch!"
 8070 PRINT
 8080 PRINT "Use the arrow keys to move but"
 8090 PRINT "BEWARE: the soldier ants guarding
 the"
 8095 PRINT "tunnels will capture you and take
 you"
 8096 PRINT "to the nest to feed the young!"
 8100 PRINT
 8110 PRINT "Good luck"
 8300 PRINT TAB(5,25);"Which difficulty level -"
 8305 PRINT
 8310 PRINT "1. Expert, 2. Medium or 3. Novice";
 8320 INPUT DF
 8330 IF DF<1 OR DF>3 THEN GOTO 8300
 8340 MAX=(20+DF*10)*100
 8350 VDU 23,1,0;0;0;0;
 8360 ENDPROC

 9000 DEF PROCshafts(NO,Y1,Y2)
 9010 X1=RND(10)+4:X2=RND(10)+25
 9020 FOR Y=Y1 TO Y2
 9030 IF NO=1 THEN PRINT TAB((X1+X2)/2,Y);" ";
 9040 IF NO=2 THEN PRINT TAB(X1,Y);" ";

38 The Electron Gamesmaster

 TAB(X2,Y);" ";
 9050 NEXT Y
 9060 ENDPROC

 9100 DEF FNC(X%,Y%)
 9110 X%=3+32*X%
 9120 Y%=1020-32*Y%
 9130 =POINT(X%,Y%)

 9200 DEF FNgot_man(Q%)
 9210 IF A%(Q%,2)<>YM% THEN =FALSE
 9220 IF A%(Q%,1)<>XM% AND A%(Q%,1)+1<>XM%
 THEN =FALSE
 9230 =TRUE

 9300 DEF PROCdelay
 9310 LOCAL T
 9320 FOR T=0 TO 100
 9330 NEXT T
 9340 ENDPROC

39Ant Hill

Chapter Three
Leap Frog

Leap Frog is a game that involves full two-dimensional animation. That
is, one of the objects in the game, the frog, moves both horizontally and
vertically at the same time. (This should be compared to Ant Hill in the
last chapter where the objects only moved either horizontally or
vertically.) In addition, a number of other interesting animation
techniques are used to create a fascinating display using surprisingly
few BASIC statements. The game itself is both fun to watch and play
and provides a host of possibilities for variations.

The game design

Leap Frog uses many of the elements to be found in one of the first
computer games, variously called ‘Break Out’, ‘Little Brick Out’,
‘Knock ’Em Down’ and many more names. These games are played by
bouncing a ball around the screen by means of a bat with the objective
of erasing as many of the coloured blocks printed in a band at the top of
the screen as possible. In the simplest versions of the game the skill is
simply in moving the bat to intercept the ball and so keep it bouncing.
In the more sophisticated versions the player can direct the ball by
hitting it with different parts of the bat.

In Leap Frog the coloured blocks or bricks are replaced by rows of
insect shapes and the ball is replaced by a jumping frog. Obviously it
would be cruel to use a simple bat to keep the frog moving and so a
seesaw is used instead. A second frog sits on the seesaw and when the
first frog lands, this second frog is catapulted into the air and the first
frog sits on the seesaw, awaiting its turn.

Another difference between the traditional game of Breakout and
Leap Frog is to be found in the path that the frog takes as it flies
through the air. In Breakout the ball moves in straight lines, bouncing
its way around the screen, but in Leap Frog the frog moves as if it were
being pulled back to the ground by gum fly. Each time the frog lands on
the seesaw the frog is catapulted into the air bounces a little higher, so

to reach the back row of insects it is necessary to keep the frogs
bouncing. This is all there is to the basic Leap Frog game but before
going on to implement it in BASIC it is worth looking at the principles
of making a sprite bounce around the screen and move under simulated
gravity. Figure 3.1 gives an impression of the screen display when the
program runs.

Fig. 3.1.

Bouncing and falling

The idea of animating an object by repeatedly updating its co-ordinates
by adding quantities that correspond to horizontal and vertical
velocities has already been described in Chapter Two. That is, the basic
animation cycle is:

PRINT TAB(X,Y);" ";:REM erase object
X=X+VX:Y=Y+VY :REM update co-ordinates

41Leap Frog

PRINT TAB(X,Y);C$; :REM reprint object

where X and Y hold the object’s position and VX and VY hold the
object’s horizontal and vertical velocities. Using this scheme the object
will appear to move across the screen following the same line of
motion until it disappears off the screw. This sort of motion is not really
very useful in a game and it is not long before the need to bounce an
object arises. In principle bouncing an object off a vertical or horizontal
boundary is easy. If a sprite moving with velocity VX,VY strikes a
horizontal boundary then its velocity changes to VX,VY. That is, a
bounce off a horizontal boundary reverses the vertical velocity.
Similarly, a bounce off a vertical boundary reverses the horizontal
velocity. As an example of this principle try the following program:

10 MODE 1
20 VX=1:VY=1
30 X=RND(38):Y=RND(29)
40 PRINT TAB(X,Y);" ";
50 X=X+VX:Y=Y+VY
60 IF X<1 OR X>38 THEN VX=-VX
70 IF Y<1 OR Y>29 THEN VY=-VY
80 PRINT TAB(X,Y);"A":
90 GOTO 40

Line 60 detects collisions with the vertical edges of the screen and
reverses the horizontal velocity. Line 70 detects collisions with the
horizontal edges of the screen and reverses the vertical velocity. The
overall result is a letter ‘A’ that bounces around the screen! What is
surprising is that this sort of animation takes so few lines of BASIC.

Nearly all other types of complicated sprite motion can be produced
by changing the horizontal and vertical velocities each time through the
animation loop. For example, to make a sprite move across the screen
as if it were under the influence of gravity all we have to do is change
the vertical velocity by a fixed amount each time through the loop. This
mimics what happens when, for example, a real ball is thrown in the
air. The ball starts out with a certain vertical velocity that is constantly
reduced by gravity until it reaches zero and then changes direction, so
bringing the ball back to earth faster and faster. Notice that gravity
doesn’t affect the ball’s horizontal velocity at all. The only factors that
change the ball’s horizontal velocity are air resistance or wind and in
most cases these can be ignored. The following program makes a sprite
move like a thrown ball:

10 MODE 1
20 X=0:Y=31

42 The Electron Gamesmaster

30 VX=.1:VY=-.1
40 A=.0005
50 PRINT TAB(X,Y);" ";
60 X=X+VX:Y=Y+VY
70 VY=VY+A
80 PRINT TAB(X,Y);"A":
90 GOTO 50

Line 60 performs the usual co-ordinate update but in this program line
70 also updates the vertical velocity by adding a constant to it. The
result is a letter ‘A’ that follows a parabolic path and then goes off the
bottom of the screen. The size of the constant used in line 40 controls
the force of ‘gravity’ that the letter A responds to. Increasing it will
bring the A back down more quickly. Notice that to allow for the effect
of gravity it is necessary to use co-ordinates that are not integers and
this can cause complications.

The main program

After this discussion of the theoretical issues involved it is time to
return to the details of the Leap Frog program. Once again, mode 1
seems to be the best choice, for the colour and resolution it offers. The
elements of the game are straightforward. The player is given ten frogs
with which to attempt to eat all the insects printed at the top of the
screen. Each new frog starts off by jumping of a platform and the user
has to position the seesaw to catapult the second frog into the air. Once
started in this way the main animation loop continues until the user
‘misses’ a frog with the seesaw. A new frog then appears and the game
continues. There are two ways in which the game can end, either by the
player managing to eat all the insects or by using up all ten frogs. The
main program is:

 10 REM Leap Frog
 20 MODE 1
 30 PROCinit
 40 PROCtitle
 50 PROCprint_flies
 60 PROCstartup
 80 REPEAT
 90 PROCmove_ss
 100 PROCmove_f
 110 UNTIL GAME_END
 120 PROCend_game
 130 IF AGAIN THEN RUN

43Leap Frog

 140 END

PROCinit sets up the user-defined characters, logical and physical
colour assigments and other constants used later in the program.
PROCtitle prints a screen of instructions and asks the user to choose a
difficulty level. PROCprint flies prints five rows of insects at the top of
the screen ready for the game to commence. PROCstartup makes a frog
jump off the platform while the player attempts to position the seesaw
underneath it. The main animation loop is formed by lines 80 to 110,
PROCmove_ss allows the player to move the seesaw using the left and
right arrow keys and PROCmove_f moves the frog, taking account of
gravity and any bouncing that is necessary. Finally, PROCend_game
sums up the player’s performance and asks if another game is required.

PROCinit and PROCtitle

The middle section of PROCinit looks a little complicated but in fact
the procedure is not at ail difficult to understand:

 1000 DEF PROCinit
 1010 VDU 23,224,&03,&07,&0E,&1C,&38,&70,&E0,&C0
 1020 VDU 23,225,&C0,&E0,&70,&38,&1C,&0E,&07,&03
 1030 VDU 23,226,&18,&18,&3C,&3C,&7E,&7E,&FF,&FF
 1040 VDU 23,227,&24,&18,&FF,&FF,&7E,&3C,&66,&42
 1050 VDU 23,228,&82,&54,&38,&BA,&FE,&82,&44,&82
 1060 VDU 19,0,5,0,0,0,0:REM 0=MAGENTA
 1070 VDU 19,1,5,0,0,0,0:REM 1=YELLOW
 1080 VDU 19,2,1,0,0,0,0:REM 2=RED
 1090 VDU 19,3,0,0,0,0,0:REM 3=BLACK
 1100 L$=" "+CHR$(224)+" "+CHR$(10)+
 STRING$(5,CHR$(8))
 1110 L$=L$+" "+CHR$(224)+" "+CHR$(10)+
 STRING$(6,CHR$(8))
 1120 L$=L$+" "+CHR$(224)+CHR$(226)+" "
 1130 R$=" "+CHR$(225)+" "+CHR$(10)+
 STRING$(5,CHR$(8))
 1140 R$=R$+" "+CHR$(225)+CHR$(10)+
 STRING$(3,CHR$(8))
 1150 R$=R$+" "+CHR$(226)+CHR$(225)+" "
 1160 L$=CHR$(17)+CHR$(2)+R$
 1170 R$=CHR$(17)+CHR$(2)+R$
 1200 M%=1
 1210 S$=L$
 1220 X%=23
 1260 FROG=1
 1270 GAME_END=FALSE
 1280 SC=0

44 The Electron Gamesmaster

 1290 ENDPROC

Lines 1010 to 1050 define the five shapes used by Leap Frog, which
are illustrated in Fig. 3.2. CHR$(224) and CHR$(226) to go together to
form the left seesaw and CHR$(225) and CHR$(226) go together to
form the right seesaw. CHR$(227) is the insect shape and CHR$8(229)
is the frog shape.

(a)

Fig. 3.2. Graphics characters for (a) insect and frog. (b) Right Seesaw

45Leap Frog

Fig. 3.2. (cont.). Graphics characters for (c) Left Seesaw

Lines 1060 to 1090 set up the physical to logical colour assignment.
Magenta is used for the background, yellow for the insects, red for the
seesaw and black for the frogs.

Lines 1100 to 1170 define two arrays, L$ and R$, which contain a
sequence of characters that print the left and right seesaws respectively.
The technique used here is worth studying because it is a simple
solution to many graphics problems that involve printing a number of
characters to form a larger shape. If you examine line 1100 you will se�
that it defines the top line of the left seesaw shown in Fig. 3.2. The
spaces are included so that the seesaw is ‘self-blanking’ as it moves
from side to side. The CHR$(10) is a control code that moves the
cursor down one line and STRING$(5,CHR$(8)) appends 5 cursor left
control codes to the string. If you think about it you should be able to
see that this sequence of control codes results in the cursor being
positioned one line down and below the first character (a blank) printed
from the string. Line 1110 stores the characters that make up the next
row of the seesaw character in L$, along with the necessary control
codes to move the cursor down to the next line and under the first
character printed. Finally, line 1120 stores the last line of the seesaw in
L$. In the same way the characters and cursor control codes that form

46 The Electron Gamesmaster

the right seesaw are stored in R$ by lines 1130 to 1150.
To complete our explanation of the use of VDU control codes, lines

1160 and 1170 store a pair of codes that automatically set the
foreground colour to red. CHR$(17) has the same effect as a COLOUR
statement and the code which follows it is taken by the VDU driver to
be a colour code. Thus CHR$(l7)+CHR$(2) has the same effect as
COLOUR 2. Embedding control codes in a string of printable
characters is a a very powerful graphics technique and should always
be kept in mind when writing programs.

Lines 1300 to 1280 define the initial values of a number of variables
used in the rest of the program. M% is used as an indicator of which
seesaw, left or right, is currently in use. If M%, is 1 then the left seesaw
is is on the screen and if M% is 0 the right seesaw is on the screen. S$
is the string that hold the characters that produce the current seesaw
shape. That is, PRINT TAB(X,Y);S$; prints the current seesaw shape
with its top left hand corner at X,Y. X% gives the horizontal position of
the seesaw and it is set to 23 by line 1220 to give the initial position of
the seesaw when the game starts. GAME_END is used to signal the end
of the game and SC is used to hold the current score.

PROCtitle simply prints some instructions and asks for the difficulty
level in D to be input:

 6000 DEF PROCtitle
 6010 COLOUR 128+0
 6020 CLS
 6030 COLOUR 3
 6040 PRINT TAB(10,5);"L E A P F R O G"
 6050 PRINT TAB(0,10);
 6060 PRINT " In this game you must eat the
 flies ";CHR$(227)
 6065 PRINT
 6070 PRINT " by jumping your two frogs ";
 CHR$(228);" off the"
 6075 PRINT
 6080 PRINT " seesaw using the left and right
 arrow"
 6085 PRINT
 6090 PRINT " keys - you have ten frogs to
 clear"
 6095 PRINT
 6100 PRINT " the screen"
 6110 PRINT TAB(5,25);"Difficulty level "
 6120 PRINT TAB(8);"1 (difficult) to 10
 (easy)";
 6125 INPUT D
 6130 IF D<1 OR D>10 THEN GOTO 6020
 6140 ENDPROC

47Leap Frog

PROCprint_flies

PROCprint_flies is a simple procedure that prints five rows of insects:

 2000 DEF PROCprint_flies
 2010 COLOUR 128+0:COLOUR 1
 2020 CLS
 2030 C%=0
 2040 FOR V=2 TO 10 STEP 2
 2050 C%=NOT C%
 2060 FOR U=2 TO 36 STEP 2
 2070 PRINT TAB(U-C%,V);CHR$(227);
 2080 NEXT U
 2090 NEXT V
 2100 ENDPROC

An interesting technique is the use of C% in line 2070 to determine the
spacing of alternate rows. To understand how this works all you need to
know is that if C% is 0 then NOT C% is −1.

PROCstartup

After PROCprint_flies, PROCstartup prints a frog on a ledge at the
right hand side of the screen and steadily moves it to the edge. When
the frog reaches the edge it jumps downward. If the seesaw is under the
falling frog then the game continues; if not, then PROCstartup is called
again from within the animation loop.

 5000 DEF PROCstartup
 5010 PROCmove_ss
 5015 VDU 23,1,0;0;0;0;
 5020 COLOUR 128+3
 5030 PRINT TAB(35,15)STRING$(5," ");
 5040 FOR F=39 TO 34 STEP -.15
 5050 PRINT TAB(F,14);CHR$(228);" ";
 5060 PROCmove_ss
 5070 NEXT F
 5080 FOR G=14 TO 20 STEP .5
 5090 PRINT TAB(34,G-1);" ";
 5100 PRINT TAB(34,G);CHR$(228)
 5110 PROCmove_ss
 5120 NEXT G
 5130 F=34
 5140 G=20
 5150 A=.4+RND(0)/10

48 The Electron Gamesmaster

 5160 B=-(.1+RND(0)/2.5)
 5165 P=0.008
 5170 PRINT TAB(2,30);"FROG ";FROG;" SCORE=";SC
 5180 A=A+A/D
 5190 B=B+B/D
 5200 P=P+P/D
 5210 PROCseesaw
 5220 ENDPROC

Line 5010 calls PROCmove_ss which in this case simply serves to
draw the seesaw at its initial position. Then line 5030 draws a short
black line at the right hand side of the screen to act as the ledge for the
frog to jump off. The first FOR loop, lines 5040 to 3070, moves the
frog along the ledge. Each time through the loop, PROCmove_ss is
called, line 5060, to allow the player an opportunity to move the
seesaw. The second FOR loop, lines 5080 to 5120, moves the frog
vertically downward. Finally, lines 5130 to 5200 initialise variables
used by the the rest of the program. F and G are used to record the
current position of the frog. That is, the frog at TAB(F,G). The variables
A and B are the vertical and horizontal velocity of the frog. Both are set
to random values – lines 5150 and 5160 respectively. Line 5165 sets P,
the ‘gravity constant’ to 0.008. Lines 5180 to 5200 adjust the velocities
and gravity constant to take account of the difficulty level chosen by
the player. Essentially, making D larger increases the horizontal and
vertical velocity and so makes the frog move faster. Finally,
PROCstartup calls PROCseesaw to test if the falling frog has landed on
the seesaw or not.

PROCmove_ss and PROCmove_f

PROCmove_ss allows the player to move the seesaw using the arrow
keys. It is surprisingly simple, mainly because of the use of strings
containing control codes to print the seesaw (see PROCinit for more
details).

 3000 DEF PROCmove_ss
 3010 IF INKEY(-26) AND X%>0 THEN X%=X%-1
 3020 IF INKEY(-122) AND X%<35 THEN X%=X%+1
 3030 PRINT TAB(X%,20);S$;
 3040 IF M%=0 THEN K%=X%+3:F$=CHR$(228)+" "
 ELSE K%=X%:F$=" "+CHR$(228)
 3050 COLOUR 3

49Leap Frog

 3060 PRINT TAB(K%,21);F$;
 3070 ENDPROC

Lines 3010 and 3020 test for the right and lelt arrow keys and update
the horizontal position of the seesaw (stored in X%,). Line 3030 prints
the seesaw at its new position. Notice that there is no need explicitly to
blank out the old seesaw because of the blanks included at each end of
the seesaw. Lines 3040 to 3060 print the second frog on the low side of
the seesaw ready to be catapulted into the air. Line 3040 sets the
horizontal position of this frog, taking into account which version (right
or left) of the seesaw is being used. Notice that there is no need to set
the foreground colour before printing the seesaw because the necessary
control codes for a red foreground are included in the string. However,
the foreground colour for the frog has to be set using COLOUR (line
3050).

PROCmove_f is fairly straightforward and follows the theory for
bouncing and falling objects at the beginning of this chapter.

 4000 DEF PROCmove_f
 4010 PRINT TAB(F,G);" ";
 4020 F=F+B:G=G+A:A=A+P
 4030 IF F>38 OR F<2 THEN B=-B
 4040 IF G<2 THEN G=2:A=-A
 4050 IF G<11 THEN PROChit_fly
 4060 PRINT TAB(F,G);CHR$(228);
 4070 IF G>20 THEN PROCseesaw
 4080 ENDPROC

Line 4010 blanks out the frog at the old position. Line 4020 performs
the position and velocity update. (As you will recall, the frog’s
horizontal position is stored in F, its horizontal velocity in B, its vertical
position in G, its vertical velocity in A and the gravity constant is stored
in P.) Line 4040 deals with bounces off the top edge of the screen. Line
4050 checks to see if the frog is high enough up the screen to have hit a
fly. Line 4070 checks to see if the frog is low enough on the screen to
have landed on the seesaw and calls PROCseesaw if this is so. The
reprinting of the frog is taken care of by line 4060 and line 4070 checks
to see if the frog is low enough down the screen to have landed on the
seesaw. If so, PROCseesaw is called.

PROCseesaw, PROChit_fly and PROCmiss

PROCseesaw tests to see if the frog has landed on the seesaw or not:

50 The Electron Gamesmaster

 4500 DEF PROCseesaw
 4510 D%=F-X%-M%
 4520 IF D%<1 OR D%>2 THEN PROCmiss:ENDPROC
 4530 IF M%=1 THEN S$=R$:M%=0 ELSE S$=L$:M%=1
 4540 A=-A
 4550 G=20:F=K%+1
 4560 SOUND 1,-15,200,1
 4570 ENDPROC

As the horizontal position of the frog is in F and the horizontal position
of the top left hand corner of the seesaw is in X% the difference
between the two can be used to discover if the frog has landed on the
seesaw or not. The only problem is that the side of the seesaw that the
frog has to land on depends on whether it is a left hand or right hand
seesaw. If the seesaw is a left hand one then the difference has to be 2
or 3 for a correct landing. If the seesaw is a right hand one then the
difference has to be 1 or 2 for a correct landing. By subtracting the
variable M%, which is 1 for a left hand seesaw and 0 otherwise, this
difference can be made to be only either 1 or 2 for a correct landing.
This ‘corrected’ difference is calculated by line 4510 and the test for a
for a correct landing is carried out by line 4520 which calls PROCmiss
if the frog has not landed on the seesaw. If the frog has landed
successfully on the seesaw line 4530 changes the left seesaw into the
right seesaw and vice versa. Line 4540 reverses the frog’s vertical
velocity, effectively bouncing it off the seesaw. Line 4550 updates the
frog’s co-ordinates to the position of the frog on the other end of the
seesaw.

If the frog fails to land on the seesaw PROCmiss is called to bring a
new frog into play unless, of course, all ten frogs have already been
used.

 8000 DEF PROCmiss
 8005 PRINT TAB(F,G);" ";
 8010 FROG=FROG+1
 8020 IF FROG>10 THEN GAME_END=TRUE:ENDPROC
 8025 SOUND 1,-15,50,5
 8030 IF M%=0 THEN M%=1:S$=L$
 8040 PROCstartup
 8050 ENDPROC

If ten frogs have been used line 8020 sets GAME_END to TRUE and
thus brings the game to an end. Otherwise the seesaw is set to a left
hand version if necessary by line 8030 and then line 8040 calls
PROCstartup to continue the game with a new frog.

PROChit_fly simply uses the FNC function (described in Chapter
Two when it was used in the Ant Hill program) to test the colour of a

51Leap Frog

point at the centre of the character loaction that the frog is about to
move onto. If it is yellow then the frog has hit a fly.

 7000 DEF PROChit_fly
 7010 IF FNC(F,G)<>1 THEN ENDPROC
 7020 SOUND 1,-15,100,1
 7030 SC=SC+1
 7040 PRINT TAB(2,30);"FROG ";FROG;" SCORE=";SC
 7050 IF SC=76 THEN GAME_END=TRUE
 7060 ENDPROC

If the frog has hit a fly then all that happens is that the score is update
(line 7030) and checked to see if all the flies have been eaten (line
7050) The function FNC is defined at the very end of the program:

 9500 DEF FNC(X%,Y%)
 9510 X%=16+32*X%
 9520 Y%=1011-32*Y%
 9530 =POINT(X%,Y%)

PROCend_game

PROCend_game simply prints a number of messages depending on the
final score and then asks if another game is required.

 9000 DEF PROCend_game
 9005 CLS
 9010 COLOUR 3
 9020 PRINT TAB(1,10);
 9030 IF SC<10 THEN PRINT "A mere tadpole could
 do better":GOTO 9400
 9040 IF SC<20 THEN PRINT "Were your frogs
 three-legged?":GOTO 9400
 9050 IF SC<40 THEN PRINT "Not bad for a
 shortsighted toad":GOTO 9400
 9060 IF SC<50 THEN PRINT "Pretty good
 considering....":GOTO 9400
 9070 IF SC<60 THEN PRINT "A great fly eating
 operation"
 9080 PRINT "Try entering the frog olympics"
 9400 PRINT TAB(5,15);"You scored ";SC
 9410 PRINT TAB(10,18);
 9420 INPUT "Another game (Y/N)",A$
 9430 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 9400
 9440 IF LEFT$(A$,1)="Y" THEN AGAIN=TRUE ELSE
 AGAIN=FALSE
 9450 ENDPROC

52 The Electron Gamesmaster

Evaluation and improvements

The most obvious problem with Leap Frog is that it runs much to
slowly! Changing some of the procedures in the animation loop to
assembler looks as though it might be the best cure but there are a
number of difficulties with this scheme. As the anitmation of the frog
involves real variables, PROCmove_f is not at all easy to change to
assembler – real arithmetic is something that is usually left to BASIC.
Even if PROCmove_f were converted to assembler the chances are that
the speed increase would not be very great. PROCmove_ss is a very
different matter as the seesaw’s co-ordinates are integers and as a result
it can be converted into assembler very easily. However if you do write
an assembly language subroutine to replace PROCmove_ss, you will
discover that the speed increase is still not sufficient to make the game
playable! The trouble is that in mode 1 it takes far too many memory
accesses to store a single character on the screen. In other words, Leap
Frog is trying to write too many characters to a mode 1 screen for the
animation loop to run fast enough to be acceptable. The only real
solution is to abandon the four-colour mode 1 and use the two-colour
mode 4 instead, This is not a difficult change to make to the program.
Simply change lines 20, 1070, 1080, and 5020 to read:

20 MODE 4

1070 VDU 19,1,0,0,0,0:REM 1=BLACK
1080 COLOUR 128+0:COLOUR 1

and

5020 COLOUR 128+1

It is also necessary to add line 5035:

5035 COLOUR 128+0

and to delete lines 1090, 1160, 1170, 2010, 3050, 6010, 6030 and 9010.
(If you are in any doubt about these changes then look at the final
listing at at the end of this chapter which includes all of them.)

Following this change Leap Frog certainly runs fast enough at its
most difficult to keep a player busy and slow enough at its easiest for a
beginner to learn the game.

After these modifications the game is fun to play, although there is

53Leap Frog

clearly plenty of room for improvements by way of sound effects and
extra animation, and now the main problem with the game is that it
only exercises one sort of skill and this can become boring. It is
difficult to position the seesaw under the falling frog and this provides
the games’s initial interest. However, after you have learned how to
control seesaw there is very little that you can do to increase the
number of insects that you manage to eat other than by keeping the frog
bouncing for as long as possible. In some ways the present version of
the game wastes the use of a seesaw to catapult the frog into the air
because it treats it like a simple bat. However, it is not difficult to
change this.

If you think about it for a moment the frog that is catapulted off the
seesaw should fly into the air in a direction that depends on which
version of the seesaw, left or right, does the catapulting. At the moment
the frog leaves the seesaw with the same horizontal velocity as the fro
that lands on it. This means that if a frog moving to the left of the scree
lands on the seesaw the frog that leaves it continues to move to the left.
However it is not difficult to see that a frog that is catapulted off a left
hand seesaw should move to the right and one that is catapulted off
right hand seesaw should move to the left, no mater which way the
incoming frog is moving. It is quite easy to make this change to the
game by adding the following line to PROCseesaw:

4525 IF M%=l THEN B=ABS(B) ELSE B=-ABS(B)

This certainly alters the way that the frog bounces off the seesaw so
that it makes the game more interesting but there is still no increase in
the skill necessary to play the game. To increase the skill the obvious
thing to do is to give the player control over which seesaw is in use. By
choosing the seesaw that the frog will land on the player can to a
certain extent direct the frog to where there are most insects left. The
following additions allow the player to change the seesaw by pressing
the arrow key:

 3025 IF INKEY(-58) THEN PROCflip

 4600 DEF PROCflip
 4610 IF M%=1 THEN S$=R$:M%=0 ELSE S$=L$:M%=1
 4620 TIME=0
 4630 REPEAT
 4640 UNTIL TIME>10
 4650 ENDPROC

The time delay in PROCflip (lines 4620 to 4640) is necessary to allow

54 The Electron Gamesmaster

the up arrow key to change the seesaw at a reasonable rate so that the
player can stop pressing the key when the correct seesaw is on the
screen.

With this modification the game is altogether different and the play
is not only involved in the fairly simple task of moving the seesaw to
the correct place but in selecting which seesaw should be used for the
frog to eat the flies. There are many more possibilities for using the
seesaw to control the way that the frog moves, for example the height
of bounce could be made to depend on exactly where on the seesaw the
frog landed, the horizontal velocity could also depend on how the
seesaw was moving just before landing, the frog could lose velocity
each time it eats a fly ... but the choice and implementation of these
modifications are left to your imagination.

The final version � a complete listing

 10 REM Leap Frog
 20 MODE 4
 30 PROCinit
 40 PROCtitle
 50 PROCprint_flies
 60 PROCstartup
 80 REPEAT
 90 PROCmove_ss
 100 PROCmove_f
 110 UNTIL GAME_END
 120 PROCend_game
 130 IF AGAIN THEN RUN
 140 END

 1000 DEF PROCinit
 1010 VDU 23,224,&03,&07,&0E,&1C,&38,&70,&E0,&C0
 1020 VDU 23,225,&C0,&E0,&70,&38,&1C,&0E,&07,&03
 1030 VDU 23,226,&18,&18,&3C,&3C,&7E,&7E,&FF,&FF
 1040 VDU 23,227,&24,&18,&FF,&FF,&7E,&3C,&66,&42
 1050 VDU 23,228,&82,&54,&38,&BA,&FE,&82,&44,&82
 1060 VDU 19,0,5,0,0,0,0:REM 0=MAGENTA
 1070 VDU 19,1,0,0,0,0,0:REM 1=BLACK
 1080 COLOUR 128+0:COLOUR 1
 1100 L$=" "+CHR$(224)+" "+CHR$(10)+
 STRING$(5,CHR$(8))
 1110 L$=L$+" "+CHR$(224)+" "+CHR$(10)+
 STRING$(6,CHR$(8))
 1120 L$=L$+" "+CHR$(224)+CHR$(226)+" "
 1130 R$=" "+CHR$(225)+" "+CHR$(10)+
 STRING$(5,CHR$(8))

55Leap Frog

 1140 R$=R$+" "+CHR$(225)+CHR$(10)+
 STRING$(3,CHR$(8))

 1150 R$=R$+" "+CHR$(226)+CHR$(225)+" "
 1200 M%=1
 1210 S$=L$
 1220 X%=23
 1260 FROG=1
 1270 GAME_END=FALSE
 1280 SC=0
 1290 ENDPROC

 2000 DEF PROCprint_flies
 2020 CLS
 2030 C%=0
 2040 FOR V=2 TO 10 STEP 2
 2050 C%=NOT C%
 2060 FOR U=2 TO 36 STEP 2
 2070 PRINT TAB(U-C%,V);CHR$(227);
 2080 NEXT U
 2090 NEXT V
 2100 ENDPROC

 3000 DEF PROCmove_ss
 3010 IF INKEY(-26) AND X%>0 THEN X%=X%-1
 3020 IF INKEY(-122) AND X%<35 THEN X%=X%+1
 3025 IF INKEY(-58) THEN PROCflip
 3030 PRINT TAB(X%,20);S$;
 3040 IF M%=0 THEN K%=X%+3:F$=CHR$(228)+" "
 ELSE K%=X%:F$=" "
 +CHR$(228)
 3060 PRINT TAB(K%,21);F$;
 3070 ENDPROC

 4000 DEF PROCmove_f
 4010 PRINT TAB(F,G);" ";
 4020 F=F+B:G=G+A:A=A+P
 4030 IF F>38 OR F<2 THEN B=-B
 4040 IF G<2 THEN G=2:A=-A
 4050 IF G<11 THEN PROChit_fly
 4060 PRINT TAB(F,G);CHR$(228);
 4070 IF G>20 THEN PROCseesaw
 4080 ENDPROC

 4500 DEF PROCseesaw
 4510 D%=F-X%-M%
 4520 IF D%<1 OR D%>2 THEN PROCmiss:ENDPROC
 4525 IF M%=1 THEN B=ABS(B) ELSE B=-ABS(B)

56 The Electron Gamesmaster

 4530 IF M%=1 THEN S$=R$:M%=0 ELSE S$=L$:M%=1
 4540 A=-A
 4550 G=20:F=K%+1
 4560 SOUND 1,-15,200,1
 4570 ENDPROC

 4600 DEF PROCflip
 4610 IF M%=1 THEN S$=R$:M%=0 ELSE S$=L$:M%=1
 4620 TIME=0
 4630 REPEAT
 4640 UNTIL TIME>10
 4650 ENDPROC

 5000 DEF PROCstartup
 5010 PROCmove_ss
 5015 VDU 23,1,0;0;0;0;
 5020 COLOUR 128+1
 5030 PRINT TAB(35,15)STRING$(5," ");
 5035 COLOUR 128+0
 5040 FOR F=39 TO 34 STEP -.15
 5050 PRINT TAB(F,14);CHR$(228);" ";
 5060 PROCmove_ss
 5070 NEXT F
 5080 FOR G=14 TO 20 STEP .5
 5090 PRINT TAB(34,G-1);" ";
 5100 PRINT TAB(34,G);CHR$(228)
 5110 PROCmove_ss
 5120 NEXT G
 5130 F=34
 5140 G=20
 5150 A=.4+RND(0)/10
 5160 B=-(.1+RND(0)/2.5)
 5165 P=0.008
 5170 PRINT TAB(2,30);"FROG ";FROG;" SCORE=";SC
 5180 A=A+A/D
 5190 B=B+B/D
 5200 P=P+P/D
 5210 PROCseesaw
 5220 ENDPROC

 6000 DEF PROCtitle
 6020 CLS
 6040 PRINT TAB(10,5);"L E A P F R O G"

57Leap Frog

 6050 PRINT TAB(0,10);
 6060 PRINT " In this game you must eat the
 flies ";CHR$(227)
 6065 PRINT
 6070 PRINT " by jumping your two frogs ";
 CHR$(228);" off the"
 6075 PRINT
 6080 PRINT " seesaw using the left and right
 arrow"
 6085 PRINT
 6090 PRINT " keys - you have ten frogs to clear"
 6095 PRINT
 6100 PRINT " the screen"
 6110 PRINT TAB(5,25);"Difficulty level "
 6120 PRINT TAB(8);"1 (difficult) to 10 (easy)";
 6125 INPUT D
 6130 IF D<1 OR D>10 THEN GOTO 6020
 6140 ENDPROC

 7000 DEF PROChit_fly
 7010 IF FNC(F,G)<>1 THEN ENDPROC
 7020 SOUND 1,-15,100,1
 7030 SC=SC+1
 7040 PRINT TAB(2,30);"FROG ";FROG;" SCORE=";SC
 7050 IF SC=76 THEN GAME_END=TRUE
 7060 ENDPROC

 8000 DEF PROCmiss
 8005 PRINT TAB(F,G);" ";
 8010 FROG=FROG+1
 8020 IF FROG>10 THEN GAME_END=TRUE:ENDPROC
 8025 SOUND 1,-15,50,5
 8030 IF M%=0 THEN M%=1:S$=L$
 8040 PROCstartup
 8050 ENDPROC

 9000 DEF PROCend_game
 9005 CLS
 9020 PRINT TAB(1,10);
 9030 IF SC<10 THEN PRINT "A mere tadpole could
 do better":GOTO 9400
 9040 IF SC<20 THEN PRINT "Were your frogs
 three-legged?":GOTO 9400

58 The Electron Gamesmaster

 9050 IF SC<40 THEN PRINT "Not bad for a
 shortsighted toad":GOTO 9400
 9060 IF SC<50 THEN PRINT "Pretty good
 considering....":GOTO 9400
 9070 IF SC<60 THEN PRINT "A great fly eating
 operation"
 9080 PRINT "Try entering the frog olympics"
 9400 PRINT TAB(5,15);"You scored ";SC
 9410 PRINT TAB(10,18);
 9420 INPUT "Another game (Y/N)",A$
 9430 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 9400
 9440 IF LEFT$(A$,1)="Y" THEN AGAIN=TRUE ELSE
 AGAIN=FALSE
 9450 ENDPROC

 9500 DEF FNC(X%,Y%)
 9510 X%=16+32*X%
 9520 Y%=1011-32*Y%
 9530 =POINT(X%,Y%)

59Leap Frog

Chapter Four
Frogling

A frog plays a central role in this as well as in last chapter’s game
Frogling is a version of the classic arcade game of Frogger. The object
of the game is to get a frog safely across a busy road, dodging
oncoming traffic, and then across a fast flowing river, by jumping on
floating logs The implementation of this game in BASIC provides an
opportunity to explain and experiment with a type of animation that
relies on scrolling.

Scrolling animation

Scrolling has now become a familiar part of text display on almost
every computer. We are all used to the idea that when a text screen is
full a subsequent PRINT statement will cause the whole screen to
moved up by one line, thus losing the top line and freeing the bottom
line. What is not so familiar is that scrolling can be useful as a method
of animation. The problems associated with trying to print a large
number of characters fast enough to make animation possible have
already been encountered in the first two games in this book. With
these problems in mind you should be able to see that a screen scroll is
way of moving a large number of characters in a very short time an
with very little programming effort. For example, try:

10 MODE 5
20 PRINT TAB(8,31);
40 PRINT TAB(RND(38);"*";
50 GOTO 20

This program prints asterisks at random positions at the bottom of the
screen and animates them vertically up the screen using scrolls. As the
program demonstrates it is possible to animate a large number of
objects using scrolling animation. In fact, the problem in scrolling
animation is keeping keeping things still! This can be done by printing

objects at the end of one scroll erasing them before the next.
Scrolling animation is a possible candidate whenever a game

consists of a large number of objects moving at the same speed and in
the same direction with perhaps one or two objects having a different
pattern of motion. In the case of Frogling, the traffic on the road and the
logs floating in the river constitute the large number of moving objects
and the frog hopping hopping its way between the traffic and across the
river is the single object that moves differently from the rest.

The game design

The idea of using scrolling animation to implement a version of
Frogger implies that the traffic and the logs have to move up the screen
and the frog horizontally across the screen. To make the game
reasonably interesting to play there have to be at least two lanes of
traffic and two columns of floating logs. Starting from the far left hand
side of the screen, the player has to make the frog jump between the
traffic and onto a safe strip between the road and the river. The river has
to be crossed by jumping onto logs. Notice that while the frog is on the
road it is stationary, apart from jumping under the control of the player,
but while it is on a log it is swept up the river with the log. The frog has
to reach the other bank before the log that it is sitting on sweeps it off
the top of the screen. To increase the pressure on the player to move the
frog there is also a time limit imposed. ALso, while the player can
move the frog up and down the screen and to the right across the road
and river, it cannot be moved to the left to retreat to safety once the frog
starts moving forward it must continue! The layout of the game can be
seen in Fig. 4.1.

The use of text windows

The only trouble with using scrolling to animate the traffic and the logs
in frogling is that this method causes them all to move at the same rate
and at the same time. This ‘all together’ movement makes the game
rather too easy and boring to play. The problem of crossing the road,
for example, comes down to waiting for a suitable gap to appear in the
two lines of traffic and then hopping across as quickly as possible.
Crossing the river is even easier. All you have to do is to wait for two
logs to appear next to each other and then jump on the first log an then

61Frogling

immediately onto the second log.

Fig. 4.1.

If the lines of traffic and logs all move at different rates then the
game becomes much more interesting. For example, suppose the
second lane of traffic moves twice as fast as the first. In this case any
gaps in the lanes of traffic are not fixed in relation to one another – the
gaps in the second lane continually overtake the gaps in the first lane
and this makes the decision about when to make the frog jump much
more difficult. The same is true if the first set of logs moves at twice
the rate the second set. The frog can jump onto a log only to find that
the second log that he was about to jump on has been left behind!

It is obvious that for a good game of Frogling we have to find some
way of making the two lanes of traffic and the two lines of logs move at
different rates. This sound like a difficult problem but in fact it is very
easy using the Electron’s text window facility. Using VDU 28 it is
possible to restrict the area of the screen that is used for text output –

62 The Electron Gamesmaster

i.e. to create a text window. From our point of view the most important
feature of a text window is that it behaves exactly like the whole screen
including the way that it scrolls when you print on its bottom line. The
idea is to use a one character wide by 32 hues deep text window for
each lane of traffic and each set of logs and scroll them independently.
For example, try running

10 MODE 5
20 VDU 28,4,31,4,0
30 END

and then list the program. Yon will find that after this program all the
output is confined to a single column on the screen. When you have
seen this program demonstrate a single column text window it is not
difficult to imagine how it could be used to animate the traffic and frogs
in Frogling.

Main program and PROCtitle

In this game the main program is a little different from the ones
previously presented and contains some statements that are not simply
procedure calls!

 10 REM Frogling
 20 MODE 5
 25 PROCtitle
 30 FOR FROG=1 TO 3
 40 PROCinit
 50 COLOUR 128
 60 PRINT TAB(16,2);"FROG";TAB(18,3);FROG
 70 TIME=0
 80 REPEAT
 90 PROCscroll
 100 PROCmove_f
 110 COLOUR 128
 120 IF TIME-500>0 THEN PRINT TAB(16,5);"TIME";
 TAB(17,6);TIME DIV 100-5
 130 UNTIL TIME-500>MAX OR GAME_END
 140 PROCdeath
 150 NEXT FROG
 160 PROCend_game
 170 IF AGAIN THEN RUN

63Frogling

 180 END

Mode 5 (20 columns by 32 lines in four colours) is selected by line 20
Frogling certainly needs four colours but 20 columns is more than
enough for two lanes of traffic and two sets of logs. PROCtitle simply
prints the directions tor the game. The rest of the nmin program is in thr
form of two nested loops. Lines 30 to 150 form a FOR loop that repeats
the game three times with three different frogs. The inner loop, lines 80
to 130 is the animation loop. PROCinit, called at line 40, does the usual
job of initialising everything that needs to be initialised. Lines 50 and
60 print the number of the current frog before the game proper begins,
The animation loop calls PROCscroll to animate the road and the river
and then calls PROCmove_f to allow the player to move the frog,
Finally, line 120 prints the current time and line 130 checks for the end
of the game. PROCdeath either signals the end of another frog or a
success in getting to the other side. The whole game is brought to an
end by PROCend_game which also asks if another game is desired. The
only other point worth mentioning is the use of TIME-500 in the IF
statement at line 120 and the UNTIL statement at line 130. This is
because for the first five seconds that the animation loop is running the
frog cannot move. This five second start-up is necessary to allow the
cars and logs to scroll up the screen and make the game a challenge to
play. So the starting sequence is that the road and river are drawn, the
traffic and logs are animated up the screen for five seconds and then the
frog appears and the timer starts.

PROCtitle is so simple that it is listed below without comment!

 7000 DEF PROCtitle
 7010 COLOUR 2
 7020 COLOUR 128
 7030 CLS
 7040 PRINT TAB(2,2);"F R O G L I N G"
 7050 PRINT TAB(1,5);"In this game you"'
 7060 PRINT TAB(3);"have to guide"'
 7070 PRINT TAB(1);"three frogs across"'
 7080 PRINT TAB(2);"a busy road and a "'
 7090 PRINT TAB(1);"fast flowing river."'
 7100 PRINT TAB(1);"Use the up, down"'
 7110 PRINT TAB(3);"and the right"'
 7120 PRINT TAB(4);"arrow keys"'
 7125 PRINT TAB(1);"Don't go under a"'
 7130 PRINT TAB(2);"car and don't"
 7140 PRINT TAB(1);"fall in the river."'

64 The Electron Gamesmaster

 7150 PRINT TAB(3);"Press any key"
 7155 PRINT TAB(4);" to start"
 7160 IF INKEY$(0)="" THEN GOTO 7160
 7170 ENDPROC

PROCinit

PROCinit starts off in the usual way by defining the graphics characters
and colours used but in this case it is also responsible for printing the
coloured strips that represent the road and the river.

 1000 DEF PROCinit
 1010 VDU 23,224,&3C,&7E,&7E,&7E,&7E,&FF,&FF,&FF
 1020 VDU 23,225,&7E,&7E,&7E,&7E,&7E,&7E,&7E,&7E
 1030 VDU 23,226,&7E,&7E,&FF,&FF,&FF,&7E,&7E,&7E
 1040 VDU 23,227,&B9,&52,&1C,&1E,&1C,&52,&B9,&00
 1050 VDU 23,228,&FF,&FF,&FF,&FF,&FF,&FF,&FF,&FF
 1060 VDU 19,0,0,0,0,0,0:REM 0=BLACK
 1070 VDU 19,1,1,0,0,0,0:REM 1=RED
 1080 VDU 19,2,6,0,0,0,0:REM 2=CYAN
 1090 VDU 19,3,2,0,0,0,0:REM 3=GREEN
 1100 A%=32
 1110 B%=32
 1120 C%=32
 1130 D%=32
 1140 VDU 23,1,0;0;0;0;
 1160 X%=2
 1170 Y%=15
 1175 VDU 26:CLS
 1180 FOR I=0 TO 31
 1190 COLOUR 128+1
 1200 PRINT TAB(3,I);SPC(5);
 1210 COLOUR 128+2
 1220 PRINT TAB(11,I);SPC(5);
 1230 NEXT I
 1240 GAME_END=FALSE
 1250 MAX=1000
 1260 ENDPROC

Lines 1010 to 1050 define the cars, logs and frog. CHR$(224) is a car
or lorry front, CHR$(225) is a lorry middle section and CHR$(226) is a
car or lorry end. You can see the way that these three characters go
together in Fig. 4.2. CHR$(227) is the frog and CHR$(228) is simply a
solid block used to make up logs (see Fig. 4.2). The colours selected by
lines 1060 to 1090 are black for the background, red for the road and

65Frogling

Fig. 4.2. Graphics characters for lorry, frog and log

for the logs, blue for the river and the traffic and green for the frog. You
may be surprised at the choice of bue cars on a red road and red logs on
a blue river but this does simplify the game quite a lot. When the frog is
crossing the road it must avoid blue cars and when it is crossing the
river it must avoid blue water and so all through the game the colour
blue indicates an area where the frog shouldn’t go.

Lines 1100 to 1130 initialise the variables A% D%, to 32, the ASCII
code for space. These variables are used by PROCscroll and are best
described in that section. X% and Y%, are the current co-ordinates of
the frog and are initialised by lines 1160 and 1170.

The VDU 26:CLS command in line 1175 removes any text windows
already defined and clears the screen. Lines 1180 to 1230 print two
bands of colour down the screen. The red band at the left hand side of

66 The Electron Gamesmaster

the screen represents the road and the blue band to the right represents
the river. Finally, line 1240 sets the ‘game end’ flag to false and line
1250 sets the time limit for the game to ten seconds.

PROCscroIl and associated procedures

The implementation of the program falls neatly into two areas the
generation and scrolling of the road and river, and the movement of the
frog. The problems of animating the frog are dealt with later. The
animation of the road and river is dealt with by PROCscroll and the
procedures that it calls and this is the subject of this section.

 3000 DEF PROCscroll
 3010 A%=FNgen_car(.4,.5,A%)
 3020 PROCp_wind(1,A%)
 3030 B%=FNgen_car(.16,.5,B%)
 3040 PROCp_wind(2,B%)
 3045 B%=FNgen_car(.2,.5,B%)
 3046 PROCp_wind(5,B%)
 3050 C%=FNgen_log(.16,.2,C%)
 3060 PROCp_wind(3,C%)
 3070 C%=FNgen_log(.1,.2,C%)
 3080 PROCp_wind(5,C%)
 3090 D%=FNgen_log(.1,.2,D%)
 3100 PROCp_wind(4,D%)
 3110 PROCp_wind(6,0)
 3120 ENDPROC

At first sight PROCscroll looks complicated but this is only because the
purpose of the functions FNgen_car and FNgen_log and the procedure
PROCp_wind is not immediately obvious. To understand what is going
on you have to think about what is required at each step of the
animation. Consider, for example, the first lane of the road. At each
animation step we have to decide whether to print a blank, the start of a
car or lorry, a middle section of a lorry, or the end of a car or lorry. This
is what FNgen_car(PSTART,PEND,OB%) does each time it is called.

PSTART is the probability that a car or lorry will be generated – that
is, it controls the number of cars and lorries on the road. PEND is the
probability that a car or lorry will come to and end that is, it controls
the number of cars as opposed to lorries and the average length of the
lorries. (A car is simply a car front followed by a car end and a lorry is
a car front followed by a number of lorry middle characters and then a

67Frogling

car end – see Fig. 4.2.) OB% is simply the ASCII code of the last
character that was printed in the lane. For example, if the last character
was a space (ASCII code 32) then the next character to be printed can
either be another space or a car front (it clearly cannot be a lorry middle
section or a car end). Whether the next character is a space or a car
front is decided at random with a probability determined by PSTART.

In PROCscroll A% is used to hold the character printed in traffic
lane one and line 3010 calls FNgen_car to update it. FNgen_car returns
the character code of the character to be printed next. In the same way
B% is used to hold the character printed in traffic lane two, and C% and
D% hold the character codes to be printed in the first and second
column of logs respectively. FNgen_log performs the same action as
FNgen_car but for the river that is, it returns the code of the next
character to be printed, given the code of the last character that was
printed. The action of FNgen_car and FNgen_log will become clearer
after they have been described in more detail later.

PROCp_wind(N%,C%) is the procedure that actually does the
printing and scrolling. N% controls which of the four text windows the
character will be printed in and C% is the ASCII code of the character
to be printed.

You should now be able to understand the structure of PROCscroli.
Line 3010 calls FNgen_car to generate the character to be printed in the
first lane of traffic. Then line 3020 calls PROCp_wind to print it in
window one. In the same way lines 3030 to 3046 generate and print
two car characters for window two. As window two is scrolled twice
each time window one is scrolled once it appears to move twice as fast.
Lines 3050 to 3070 generate and print two log characters in text
window three and lines 3090 and 3100 generate and print one log
character in text window four. As text window three is scrolled twice
each time text window four is scrolled, the first set of logs moves twice
as fast as the second set. Finally, line 3110 calls PROCp_wind to set the
text window to the whole of the screen.

As already mentioned, to understand fully how PROCscroll works
you have to understand the functions and procedures that it calls. The
first of these is FNgen_car:

 2000 DEF FNgen_car(PSTART,PEND,OB%)
 2010 LOCAL T%
 2015 T%=OB%
 2020 IF OB%=32 AND RND(1)<PSTART THEN T%=224
 2030 IF OB%=224 THEN T%=225
 2040 IF OB%=226 THEN T%=32

68 The Electron Gamesmaster

 2050 IF T%=225 AND RND(1)<PEND THEN T%=226
 2060 =T%

Line 2020 tests to see if the last character printed was a blank. If it was,
then the next character to be printed will either be another blank or the
front of a car. If the last character was the front of a car then line 2030
makes the next character the middle section of a lorry. Line 2040
checks to see if the last character was a car end and if it was, the next
character will be a blank. Finally, line 2050 changes lorry middle
sections to car ends at random.
 FNgen_log is simpler than FNgen_car:

 5000 DEF FNgen_log(PSTART,PEND,OB%)
 5020 IF OB%=32 AND RND(1)<PSTART THEN =228
 5030 IF OB%=228 AND RND(1)<PEND THEN =32
 5040 =OB%

If the last character was a space then line 5020 will make the next
character a log with probability PST ART. Line 5030 does the reverse
and a log character into a space with probability PEND. You should be
able to see that PST ART is the probability of starting a log and PEND
is the probability of finishing a log.

PROCp_wind sets up text windows and prints the next character:

 4000 DEF PROCp_wind(N%,C%)
 4010 IF N%=1 THEN VDU 28,4,31,4,0:
 VDU 17,2,17,129
 4020 IF N%=2 THEN VDU 28,6,31,6,0
 4030 IF N%=3 THEN VDU 28,12,31,12,0:
 VDU 17,1,17,130
 4040 IF N%=4 THEN VDU 28,14,31,14,0:VDU 17,1
 4050 IF N%=6 THEN VDU 28,0,31,19,0:ENDPROC
 4100 PRINT TAB(0,31);CHR$(C%);
 4130 ENDPROC

If N% is 1, line 4010 sets up text window one and also sets the
foreground colour to blue and the background colour to red (text
window one is part of the road). In the same way lines 4020. 4030 and
4040 sets up text windows two, three and four respectively. When N%
is 5 a new text window is not set up and as a result the text window set
up by the last call remains in use. When N% is 6 line 4050 restores the
text window to the entire screen and then returns to the calling

69Frogling

procedure. Line 4100 prints the character whose code is in C% at the
bottom of the current text window and so causes it to scroll.

PROCmove_f and PROCover

On the face of it PROCmove_f has a very simple job to do and
should be very familiar to all other procedures that move objects
around the screen. However PROCmove_f has a number of difficulties
to overcome. In particular, the background colour used to blank and
print the frog has to be changed according to whether the frog is on the
road, on a log or on neither. In addition, the way that the frog moves
depends on whether it is within one of the scrolling text windows or
not. For example, if it is within the first text window (i.e. the first lane
of the road) it will be scrolled up along with the rest of the traffic. To
keep it in the same place it is necessary to blank out the frog at its old
position and reprint it. But if the frog is within the third or forth text
windows then, as long as it is sitting on a log, it should be scrolled
upward along with the rest of the logs.

 6000 DEF PROCmove_f
 6005 IF TIME<500 THEN ENDPROC
 6010 COLOUR 3
 6016 IF X%=4 OR X%=6 THEN K%=X% DIV 2-1
 ELSE K%=0
 6018 COLOUR 128+FNC(X%,Y%-K%)
 6019 PRINT TAB(X%,Y%-K%);" ";
 6020 IF INKEY(-58) AND Y%>0 THEN Y%=Y%-1
 6030 IF INKEY(-42) AND Y%<31 THEN Y%=Y%+1
 6040 IF INKEY(-122) AND X%<16 THEN
 SOUND 1,1,30,2:SOUND 1,1,40,2:X%=X%+2
 6045 IF X%=8 OR X%=16 THEN X%=X%+2
 6046 Z%=FNC(X%,Y%)
 6047 IF Z%=2 THEN GAME_END=TRUE
 6049 COLOUR 128+Z%
 6050 PRINT TAB(X%,Y%);CHR$(227);
 6055 IF X%=12 OR X%=14 THEN PROCover
 6056 IF X%=12 THEN PROCover
 6060 IF X%>14 THEN GAME_END=TRUE
 6070 ENDPROC

Line 6005 stops the frog from moving until five seconds have elapsed
since the start of the game. Line 6016 works out where a space should

70 The Electron Gamesmaster

be printed to blank out the frog at its old position. If the frog is within
either text window one (X=4) or text window two (X%=6) then it will
have been scrolled up by either two lines or one line respectively.

Before the frog is blanked out line 6018 sets the background colour
to be the same as the colour already displayed at the location. This is
achieved simply by use of FNC(X%,Y%) which was first introduced in
Ant Hill and returns the colour of the pixel at X%,Y%. Line 6019
finally prints the blanking space at the correct position and in the
correct colour. Lines 6020 to 6040 alter the frog’s co-ordinates
depending on which arrow key is pressed. Line 6045 automatically
makes the frog perform a double jump to take it to the left hand bank of
the river or away from the right hand bank. After this line the new
position of the frog is in X%,Y%.

Line 6046 finds the colour of the character location that the frog is
about to jump on and stores it in Z%. If the colour is blue, i.e. colour
code 2, then line 6047 sets GAME_END to TRUE. Otherwise line
6049 sets the background colour to the same colour that is already
present in X%,Y% and the line 6050 prints the frog.

Line 6055 tests to see if the frog is in either of text windows three
and four and if this is the case PROCover is called both to update the
frog’s y co-ordinate as a result of it being scrolled up and to test if the
frog has reached the top of the screen. Line 6056 calls PROCover a
second time if the frog is in text window three to allow for the fact that
text window three is scrolled twice. Finally line 6060 tests to see if the
frog has safely reached the far side of the river.

It only remains to give the listings of PROCover and FNC:

 6500 DEF PROCover
 6510 IF Y%=0 THEN GAME_END=TRUE:ENDPROC
 6520 Y%=Y%-1
 6540 ENDPROC

 9000 DEF FNC(X%,Y%)
 9010 X%=16+32*X%
 9020 Y%=1011-32*Y%
 9030 =POINT(X%,Y%)

PROCdeath and PROCend_game

The final procedures in the game, PROCdeath and PROCend_game,
are very simple. PROCdeath tests to find out whether the frog made its
journey successfully and if not, how it met its end, and sounds a note

71Frogling

accordingly. PROCend_game asks the player if another game is
required.

 6600 DEF PROCdeath
 6610 IF X%>15 THEN SOUND 1,-15,100,20 ELSE
 SOUND 1,-15,50,10
 6620 TIME=0
 6630 REPEAT
 6640 UNTIL TIME>100
 6650 ENDPROC

 8000 DEF PROCend_game
 8010 CLS
 8020 PRINT TAB(1,10);"Another game";
 8030 INPUT A$
 8040 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 8010
 8050 IF LEFT$(A$,1="Y" THEN AGAIN=TRUE ELSE
 AGAIN=FALSE
 8060 ENDPROC

Evaluation and improvements

Frogling certainly runs fast enough to be interesting and the scrolling
animation used in combination with text windows produces an
interesting display at the cost of very little programming. Perhaps the
most disappointing aspect of the game, however, is its dull sound
effects. This is soon put to rights with the addition of an ENVELOPE
statement to PROCinit:

1260 ENVELOPE 1,1,1,-2,1,2,2,2,
 126,0,0,-126,126,1
1270 ENDPROC

This produces a sound with a rapidly rising and falling pitch but there is
still plenty of scope to alter and adjust the sound using the SOUND
command. Using this envelope PROCdeath becomes:

 6600 DEF PROCdeath
 6610 IF X%=12 OR X%=14 THEN SOUND 0,-15,4,5
 6615 IF X%=4 OR X%=6 THEN SOUND 1,1,10,20
 6616 IF X%<15 THEN GOTO 6620
 6617 FOR I=50 TO 100 STEP 8
 6618 SOUND 1,1,I,4
 6619 NEXT I
 6620 TIME=0

72 The Electron Gamesmaster

 6630 REPEAT
 6640 UNTIL TIME>100
 6650 ENDPROC

The same envelope can also be used to make a more appropriate sound
when the frog jumps. Change line 6040 to

 6040 IF INKEY(-122) AND X%<16 THEN
 SOUND 1,1,30,2:SOUND 1,1,40,2:X%=X%+2

The addition of these simple sound effects certainly increases both
the tension and the enjoyment of the game and you should try playing
the game both with and without them. Even though this is the point at
which we left Frogling, this doesn’t mean that there isn’t still more
scope for extending the game. In particular you could add a scoring
system based on the number of frogs guided safely to the other side and
the time taken and then alter PROCend_game to print appropriate
comments along the lines of those found in Leap Frog

The final version � a complete listing

 10 REM Frogling
 20 MODE 5
 25 PROCtitle
 30 FOR FROG=1 TO 3
 40 PROCinit
 50 COLOUR 128
 60 PRINT TAB(16,2);"FROG";TAB(18,3);FROG
 70 TIME=0
 80 REPEAT
 90 PROCscroll
 100 PROCmove_f
 110 COLOUR 128
 120 IF TIME-500>0 THEN PRINT TAB(16,5);"TIME";
 TAB(17,6);TIME DIV 100-5
 130 UNTIL TIME-500>MAX OR GAME_END
 140 PROCdeath
 150 NEXT FROG
 160 PROCend_game
 170 IF AGAIN THEN RUN
 180 END

73Frogling

 1000 DEF PROCinit
 1010 VDU 23,224,&3C,&7E,&7E,&7E,&7E,&FF,&FF,&FF
 1020 VDU 23,225,&7E,&7E,&7E,&7E,&7E,&7E,&7E,&7E
 1030 VDU 23,226,&7E,&7E,&FF,&FF,&FF,&7E,&7E,&7E
 1040 VDU 23,227,&B9,&52,&1C,&1E,&1C,&52,&B9,&00
 1050 VDU 23,228,&FF,&FF,&FF,&FF,&FF,&FF,&FF,&FF
 1060 VDU 19,0,0,0,0,0,0:REM 0=BLACK
 1070 VDU 19,1,1,0,0,0,0:REM 1=RED
 1080 VDU 19,2,6,0,0,0,0:REM 2=CYAN
 1090 VDU 19,3,2,0,0,0,0:REM 3=GREEN
 1100 A%=32
 1110 B%=32
 1120 C%=32
 1130 D%=32
 1140 VDU 23,1,0;0;0;0;
 1160 X%=2
 1170 Y%=15
 1175 VDU 26:CLS
 1180 FOR I=0 TO 31
 1190 COLOUR 128+1
 1200 PRINT TAB(3,I);SPC(5);
 1210 COLOUR 128+2
 1220 PRINT TAB(11,I);SPC(5);
 1230 NEXT I
 1240 GAME_END=FALSE
 1250 MAX=1000
 1260 ENVELOPE 1,1,1,-2,1,2,2,2,
 126,0,0,-126,126,1
 1270 ENDPROC

 2000 DEF FNgen_car(PSTART,PEND,OB%)
 2010 LOCAL T%
 2015 T%=OB%
 2020 IF OB%=32 AND RND(1)<PSTART THEN T%=224
 2030 IF OB%=224 THEN T%=225
 2040 IF OB%=226 THEN T%=32
 2050 IF T%=225 AND RND(1)<PEND THEN T%=226
 2060 =T%

 3000 DEF PROCscroll
 3010 A%=FNgen_car(.4,.5,A%)
 3020 PROCp_wind(1,A%)
 3030 B%=FNgen_car(.16,.5,B%)
 3040 PROCp_wind(2,B%)
 3045 B%=FNgen_car(.2,.5,B%)
 3046 PROCp_wind(5,B%)

74 The Electron Gamesmaster

 3050 C%=FNgen_log(.16,.2,C%)
 3060 PROCp_wind(3,C%)
 3070 C%=FNgen_log(.1,.2,C%)
 3080 PROCp_wind(5,C%)
 3090 D%=FNgen_log(.1,.2,D%)
 3100 PROCp_wind(4,D%)
 3110 PROCp_wind(6,0)
 3120 ENDPROC

 4000 DEF PROCp_wind(N%,C%)
 4010 IF N%=1 THEN VDU 28,4,31,4,0:
 VDU 17,2,17,129
 4020 IF N%=2 THEN VDU 28,6,31,6,0
 4030 IF N%=3 THEN VDU 28,12,31,12,0:
 VDU 17,1,17,130
 4040 IF N%=4 THEN VDU 28,14,31,14,0:VDU 17,1
 4050 IF N%=6 THEN VDU 28,0,31,19,0:ENDPROC
 4100 PRINT TAB(0,31);CHR$(C%);
 4130 ENDPROC

 5000 DEF FNgen_log(PSTART,PEND,OB%)
 5020 IF OB%=32 AND RND(1)<PSTART THEN =228
 5030 IF OB%=228 AND RND(1)<PEND THEN =32
 5040 =OB%

 6000 DEF PROCmove_f
 6005 IF TIME<500 THEN ENDPROC
 6010 COLOUR 3
 6016 IF X%=4 OR X%=6 THEN K%=X% DIV 2-1
 ELSE K%=0
 6018 COLOUR 128+FNC(X%,Y%-K%)
 6019 PRINT TAB(X%,Y%-K%);" ";
 6020 IF INKEY(-58) AND Y%>0 THEN Y%=Y%-1
 6030 IF INKEY(-42) AND Y%<31 THEN Y%=Y%+1
 6040 IF INKEY(-122) AND X%<16 THEN
 SOUND 1,1,30,2:SOUND 1,1,40,2:X%=X%+2
 6045 IF X%=8 OR X%=16 THEN X%=X%+2
 6046 Z%=FNC(X%,Y%)
 6047 IF Z%=2 THEN GAME_END=TRUE
 6049 COLOUR 128+Z%
 6050 PRINT TAB(X%,Y%);CHR$(227);
 6055 IF X%=12 OR X%=14 THEN PROCover
 6056 IF X%=12 THEN PROCover
 6060 IF X%>14 THEN GAME_END=TRUE
 6070 ENDPROC

 6500 DEF PROCover
 6510 IF Y%=0 THEN GAME_END=TRUE:ENDPROC

75Frogling

 6520 Y%=Y%-1
 6540 ENDPROC

 6600 DEF PROCdeath
 6610 IF X%=12 OR X%=14 THEN SOUND 0,-15,4,5
 6615 IF X%=4 OR X%=6 THEN SOUND 1,1,10,20
 6616 IF X%<15 THEN GOTO 6620
 6617 FOR I=50 TO 100 STEP 8
 6618 SOUND 1,1,I,4
 6619 NEXT I
 6620 TIME=0
 6630 REPEAT
 6640 UNTIL TIME>100
 6650 ENDPROC

 7000 DEF PROCtitle
 7010 COLOUR 2
 7020 COLOUR 128
 7030 CLS
 7040 PRINT TAB(2,2);"F R O G L I N G"
 7050 PRINT TAB(1,5);"In this game you"'
 7060 PRINT TAB(3);"have to guide"'
 7070 PRINT TAB(1);"three frogs across"'
 7080 PRINT TAB(2);"a busy road and a "'
 7090 PRINT TAB(1);"fast flowing river."'
 7100 PRINT TAB(1);"Use the up, down"'
 7110 PRINT TAB(3);"and the right"'
 7120 PRINT TAB(4);"arrow keys"'
 7125 PRINT TAB(1);"Don't go under a"'
 7130 PRINT TAB(2);"car and don't"
 7140 PRINT TAB(1);"fall in the river."'
 7150 PRINT TAB(3);"Press any key"
 7155 PRINT TAB(4);" to start"
 7160 IF INKEY$(0)="" THEN GOTO 7160
 7170 ENDPROC

 8000 DEF PROCend_game
 8010 CLS
 8020 PRINT TAB(1,10);"Another game";
 8030 INPUT A$
 8040 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 8010
 8050 IF LEFT$(Aame (Y/N)",A$
 9430 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 9400
 9440 IF LEFT$(A$,1)="Y" THEN AGAIN=TRUE ELSE
 AGAIN=FALSE
 9450 ENDPROC

76 The Electron Gamesmaster

 9000 DEF FNC(X%,Y%)
 9010 X%=16+32*X%
 9020 Y%=1011-32*Y%
 9030 =POINT(X%,Y%)

77Frogling

Chapter Five
Snake

Animating a large object is normally a very difficult problem no matter
what language you use. If you try to use BASIC then the problem lies
in trying to alter a large number of pixels fast enough to give the
impression of smooth motion. On the other hand if you use assembler
then the main problem lies in implementing the complicated
calculations that keep track of where everything is. Put simply, the
trouble with trying to make a large object move is that it usually
Involves printing, blanking and then reprinting too many characters
each time through the animation loop.

There is one large object, however, that can easily be animated at
speed and also has a complicated and fascinating way of moving – a
snake. A snake can be made to wiggle its way around the screen in such
a way that its speed doesn’t depend on its length. If the direction of
.movement of the snake is controlled by the four arrow keys then there
is something compulsive about ‘driving’ it around the screen and, with
the addition of a few simple rules such as not being allowed to cross its
own tail, the task immediately becomes a challenge of skill. In this
chapter the fundamental method of snake animation is described and
perhaps the most addictive game in this book is developed.

Snake animation

A snake is made up of a number of graphics characters printed in a line,
One end of the line is referred to as the head and the other the tail. The
direction in which a snake moves is essentially governed by the
direction in which the head moves. Every other character that makes up
the snake will eventually follow the movement of the head. For
example, the second character in the snake follows the head one move
behind. In other words, when the head moves to a new position the
second character moves into the head’s old position. In the same way

the third characters move into the second’s old position and so on all
the way down the snake to the tail.

This description of how a snake moves is accurate but it makes it
sound as if all the characters in the snake actually move each time the
head does. If this were the case, animating a snake of any size would
very quickly become a problem for assembly language. However, if all
the characters that make up the snake are the same, only two characters
– the head and the tail – actually need to move to give the impression
that the whole snake is moving. The reason for this is not difficult to
see. The head has to move because it is moving into a character
location that was previously blank (or more generally, just not part of
the snake). On the other hand the second character is moving into the
character location that the head occupied and as they are the same
character there is no visible change produced by the move. Obviously if
we arrange not to blank the head’s old position when it moves to its
new position there is no need to reprint the second character at its new
position! The argument can be applied to each character further down
the snake until we reach the tail. In this case the argument about not
having to move the tail into the position occupied by the last but one
character holds but the old position of the tail does have to be blanked
out because there is no snake character to move into its old position.

To summarise, if a snake is composed of identical characters it can
be made to move by simply printing the head in its new position and
blanking out the old position of the tail.

To see a simple demonstration of this method try the following
program which animates a short snake composed of the letter ‘S’ across
the screen in a fixed direction.

 10 MODE 6
 20 XH=10:YH=15
 30 XT=0:YT=15
 40 PRINT TAB(XH,YH);"S";
 50 PRINT TAB(XT,YT);" ";
 60 XH=XH+1
 70 XT=XT+1
 80 IF XH>39 THEN XH=1
 90 IF XT>39 THEN YT=1
100 TIME=0:REPEAT UNTIL TIME>5
110 GOTO 80

Line 20 defines the position of the head at XH, YH and line 30 sets the
old position of the tail to be XT, YT. Line 40 prints the head at its new

79Snake

position and line 50 blanks nut the old position of the tail. Lines 60 to
90 update the head and tail positions and then, after a short delay (line
100), the whole loop is repeated. Notice that what makes this example
simple is that there is an easy way of updating the head and tail
positions because the snake is moving horizontally.
 In practice it is usual for the characters that form the head and tail
of a snake to be different from the rest of the body but even this
amendment causes very little in the way of extra work. If the head is
different from the rest of the body then its old position has to in:
changed to a character that forms the main body of the snake. If the tail
is different then, as well as blanking out its old position, we also have
to print the tail character at its new position. So even a ‘good looking’
snake with a clear head and tail only needs four characters printing to
make it move, no matter how long it is.

The directional snake � the queue

Although the animation of a snake only requires the printing of a small
number of characters each time through the animation loop, there is
still a problem in keeping track of the positions of all the characters in
the snake. As moving the snake only involves the head and the tail you
might be puzzled as to why you need to keep track of the positions of
all of the characters in the snake. The reason for this is the need to
know where the tail will be printed at each move. When the snake is
moving in a straight line, as in the example at the end of the last
section, it is easy to know where the tail should move to. However,
when the direction in which the head moves changes, it is altogether
different. Each time the snake moves, the tail moves to the position that
was occupied by tl� last but one character and so it is clearly necessary
always to know the position of the last but one character. But this
argument can be repeated because each time the snake moves, the last
but two characters becomes the last but one character in the snake. In
other words, if all the co-ordinates of the Ith character in the snake are
stored in X(I) and Y(I) then at each move, the co-ordinates are updated
as follows:

XT=X(1)
YT=Y(1)

FOR I=N TO 2 STEP -1
X(I-1)=X(I)
Y(I-1)=Y(I)
NEXT I

80 The Electron Gamesmaster

and

X(N)=XH
Y(N)=YH

where the snake is N characters long, the co-ordinates of the head are
stored in X(N) and Y(N), XT and YT are the co-ordinates of the old
position of the tail and XH and YH are the new co-ordinates of the
head. If you examine this FOR loop you should be able to see that it
moves all the co-ordinates down the array by one place, the co-
ordinates of the first character in the snake becoming the co-ordinates a
the second character and so on. Following this shifting, the animation
of the snake is achieved by simply printing the head at its new position:

PRINT TAB(X(N),Y(N));H$;

then changing the character at the head’s old position to a snake ‘body’
character:

PRINT TAB(X(N-l),Y(N-l));S$;

and finally the tail is blanked out and then printed at its new position:

PRINT TAB(XT,YT);" ";
PRINT TAB(X(1),Y(l));T$;

where H$, S$ and T$ are strings containing the character used for the
head, the body and the tail of the snake respectively.

The only trouble with the above method is that each time the snake
moves, the contents of the pair of arrays X(l) and Y(1) have to be
shifted down. This is quite a lot of work for a BASIC program to do
each time through the animation loop and, what is worse, the amount of
work increases with the length of the snake. Using this method in
BASIC a a snake would move slowly and would grind (or slither?) to a
virtual standstill as it grew in length. The solution to this difficulty is to
be found in the use of an advanced data structure known as a queue. (If
you would like to know more about the theory that lies behind data
structures in general and the queue in particular then see Advanced
Programming for the Electron, by Mike James (Granada, 1984) and
also his The Complete Programmer (Granada, l983).) The basic idea is
to avoid moving the data in the X and Y arrays by using a pair of
pointers, one to the co-ordinates of the head and one to the co-ordinates
of the tail. For example, if the co-ordinates of each character are once
again stored in the arrays X and Y, with Q being the index of the array
elements that hold the co-ordinates of the head and Z being the index of

81Snake

the array elements that hold the co-ordinates of the tail, then the
updating procedure becomes

Q=Q+1
X(Q) XH
Y(Q)=YH

Z=Z+1

In other words, the new position of the head of the snake is stored one
element further up the array than its old position. in this way, each time
the head moves it leaves behind it a trail of the co-ordinates of its old
positions. So, for example, if the head is currently at X(Q), Y(Q) then
its previous position was X(Q−1),Y(Q−1), and before that it was at
X(Q−2), Y(Q−2) and so on. This trail of co-ordinates can be used to
make the tail follow the head around the screen simply by mzving it
from X(Z), Y(Z) to X(Z+1), Y(Z+1) each time through the animation
loop. Technically the trail of co-ordinates and the variables Q and Z arc
referred to as a queue. The term queue seems appropriate if you think
of the co-ordinates of the head as joining the end of a queue of
coordinates and the co-ordinates of the new position of the tail forming
the front of the queue. As the snake moves forward co-ordinates move
down the queue to eventually become the current position of the tail
(see Fig. 5.1).

.
old tail unused
positions array elements

current current
tail head
position position
X(Z),Y(Z) X(Q),Y(Q)

Fig. 5.1.

This method of storing the co-ordinates of the head has one big
problem – as the snake moves around the screen, more and more array
space is used up. However at any one time only the elements between
X(Z), Y(Z) and X(Q), Y(Q) are needed. The rest of the arrays either are
unused or hold now unwanted old tail positions. The solution is simply
to make the array big enough to hold all of the co-ordinates of the
longest snake that you are going to animate and if either of the pointers
Z or Q reaches the limit of the arrays then reset them to I. The best way
to imagine the way that this works is to think of the arrays as being
circular, with their last element next to their first. In this sense the head

82 The Electron Gamesmaster

and tail pointers Q and Z move round in a circle with all the co-
ordinates of interest stored between them. With this small addition we
have all the ideas necessary to implement a range of games based on
animated snakes.

The game design

There are many different possibilities for using animated snakes as part
of a game but for the game featured in this chapter simplicity is the
main objective. The basic idea is that the player has to guide a
continuously moving snake around the screen with the aim of eating as
many frogs as possible. As each frog is eaten the snake grows one
characters longer and so a little more difficult and exciting to control
the difficulty of the game further, the snake must not only avoid
running into itself but must also avoid eating poisonous toads that hide
among the frogs. Figure 5.2 shows a typical screen layout during the
game. Other details of the game will be introduced as the program is
described.

Fig. 5.2.

83Snake

The main program

Once again the best choice of graphics is the four colour Mode 1. This
gives just enough colours for a yellow background, black and yellow
snake, green frogs and white poisonous toads. The 40 by 32 line screen
also provides sufficient space for a fairly large snake to manoeuvre.
The main program for this game follows the usual form:

 10 REM SNAKE
 20 MODE 1
 30 AGAIN=FALSE
 40 PROCinitialise
 50 PROCtitle
 60 PROCdraw_scene
 70 REPEAT
 80 PROCone_move
 90 UNTIL NO_FOOD OR NO_LIVES
 100 PROCend_game
 110 IF AGAIN THEN GOTO 40
 120 END

Line 30 sets AGAIN to FALSE. This variable is used to indicate
whether the program is being run for the first time or if a subsequent
game is being played. Line 110 tests AGAIN and loops back if another
game has been requested. Line 40 calls PROCinitialise to set up user
defined characters, etc. Line 50 calls PROCtitle to display the title
frame and then line 60 calls PROCdraw_scene to draw the frogs and
toads and the snake in its starting position. Lines 70,80 and 90 form the
animation loop. PROC one_move is responsible for moving the snake
and checking to see if it has hit anything. Line 90 tests for the end of
the game. The variable NO_FOOD) is true if the snake has managed to
eat all of the frogs without using up its five fives and NO_L1VES is
true if the snake has either run into itself or into a poisonous toad five
times and hence used up its lives. Finally PROCend_game finishes the
game with a suitable message and, if appropriate, allows the player to
enter his or her name in a ‘best score’ table.

PROCinitialise

The user-defined characters that are used to make up the snake are a
little more complicated than you might expect. As well as four different
heads, CHR$(224), CHR$(227). CHR$(230) and CHR$(232), one for

84 The Electron Gamesmaster

each direction of travel, there are also four different snake body
characters, CHR$(225), CHR$(228), CHR$(231) and CHR$(233) (see
Fig. 5.3). By selecting a body character that points in the same direction

Fig. 5.3. Graphics characters for snake�s head, snake�s body, snake�s tall
and frog.

as the head of the snake to overrprint the head at each move, the snake
can be made to look even more impressive and full of movement. There
is only one character used for the tail, CHRS(226), because the
diamond shape looks the same in every direction of travel. The frog
character is defined as CHR$(229) and this serves for both frog and
poisonous toad. Frogs are CHR$(229) printed in green and toads are
CHRS(229) printed in white.

85Snake

 1000 DEF PROCinitialise
 1010 VDU 23,224,&38,&7C,&FA,&FF,&FF,&FA,&7C,&38
 1020 VDU 23,225,&7E,&EF,&F7,&FB,&FB,&F7,&EF,&7E
 1030 VDU 23,226,&18,&3C,&7E,&FF,&FF,&7E,&3C,&18
 1040 VDU 23,227,&1C,&3E,&5F,&FF,&FF,&5F,&3F,&1C
 1050 VDU 23,228,&7E,&F7,&EF,&DF,&DF,&EF,&F7,&7E
 1060 VDU 23,229,&82,&54,&38,&DA,&FE,&82,&44,&82
 1070 VDU 23,230,&18,&3C,&5A,&FF,&FF,&FF,&7E,&7E
 1080 VDU 23,231,&7E,&FF,&E7,&D8,&BD,&FF,&FF,&7E
 1090 VDU 23,232,&3C,&7E,&FF,&FF,&FF,&5A,&3C,&18
 1100 VDU 23,233,&7E,&FF,&FF,&BD,&DB,&E7,&FF,&7E
 1110 VDU 19,0,3,0,0,0:REM 0=YELLOW
 1120 VDU 19,1,0,0,0,0:REM 1=BLACK
 1130 VDU 19,2,2,0,0,0:REM 2=GREEN
 1140 VDU 19,3,7,0,0,0:REM 3=WHITE
 1150 IF AGAIN THEN GOTO 1260
 1200 DIM X%(50),Y%(50)
 1205 MAX%=50
 1210 DIM T$(5)
 1220 DIM T(5)
 1230 FOR I=1 TO 5
 1240 T(I)=0
 1250 NEXT I
 1260 NO_FOOD=FALSE
 1270 NO_LIVES=FALSE
 1280 HIT=FALSE
 1290 C%=0:STOTAL%=0
 1300 SC=0:SN=0:FOOD=0
 1310 ENDPROC

The first part of PROCinitialise sets up the user-defined character (lines
1010 to 1100) and then defines the logical to physical colour
assignment (lines 1110 to 1140). Line 1150 skips the section of the
procedure that defines arrays etc. if this isn’t the first time thatt
procedure has been called. This is necessary because in Acorn BASIC
defining the same arrays twice in one run causes an error. In fact the
character definitions and the logical to physical colour assignment
could also be skipped after the first time the procedure is used, but the
time lost through not doing so is minimal.
 Line 1200 sets up the two arrays X% and Y% that will be used
later in he program to store the snake’s co-ordinates. MAX% (line
1205) is used to let the rest of the program know that the arrays are 50
elements long, hence limiting the maximum length of a snake. T$ and
T, defined in lines 1210 and 1220, are used later in the program to hold

86 The Electron Gamesmaster

a league table of highest scores. Finallv, the last part of the procedure
initialioses some general variables used later in the program. Lines
1260 and 1270 set the game indicators to FALSE. The variable HIT is
TRUE if the snake has hit anything and FALSE otherwise. The
variables C% and STOTAL% are used to keep the score as the game
progresses. Each player is given five screens of frogs to eat and five
lives to do it with! The variable C% records the number of frogs eaten
from the current screenful and STOTAL% records the number of frogs
eaten from previous screens. The variable SC is the number of the
current screenful of frogs and SN is the number of the current life. The
variable FOOD is used to keep track of the number of frogs left to eat.

The title frame

The procedure PROCtitle is fairly simple apart from its use of the snake
characters to write the word SNAKE in large letters across the screen.

 8000 DEF PROCtitle
 8005 COLOUR 128+1:COLOUR 0
 8006 CLS
 8007 VDU 23,1,0;0;0;0;
 8010 PROCsnake(5)
 8020 PRINT TAB(2,10);
 8030 PRINT "You must guide your snake using
 the"
 8040 PRINT "four arrow keys and eat all the
 green"
 8050 PRINT "frogs ";
 8060 COLOUR 2:PRINT CHR$(229)
 8070 COLOUR 0
 8080 PRINT
 8090 PRINT " If you try to eat a toad ";
 8100 COLOUR 3:PRINT CHR$(229);
 8110 COLOUR 0
 8120 PRINT " or yourself"
 8130 PRINT "then you will lose one of your
 five"
 8140 PRINT "lives"
 8145 PRINT
 8150 PRINT "You get five screens of frogs to
 eat"
 8160 PRINT "before you become a SUPER SNAKE!!"
 8170 A$=INKEY$(2000)
 8200 ENDPROC

87Snake

Line 8060 and 8100 print examples of a frog and a toad for the player
to see. The actual work of printing the word SNAKE is done by
PROCsnake:

 8500 DEF PROCsnake(X)
 8510 DATA 2,2,2,1,0,2,2,2,2,0,2,2,2,2
 8520 DATA 0,7,0,7,0,2,2,2,1
 8530 DATA 8,0,0,0,0,8,0,0,10,0,8,0,0,10
 8540 DATA 0,8,0,8,0,8,0,0,0
 8550 DATA 5,5,5,5,0,8,0,0,10,0,8,3,1,10
 8560 DATA 0,8,8,0,0,8,3,2,1
 8570 DATA 0,0,0,8,0,8,0,0,10,0,8,0,0,10
 8580 DATA 0,8,0,8,0,8,0,0,0
 8590 DATA 3,2,2,2,0,3,0,0,9,0,3,0,0,9
 8595 DATA 0,3,0,3,0,5,5,5,3
 8600 RESTORE
 8605 PRINT TAB(X,2)
 8610 FOR I=1 TO 5
 8620 PRINT TAB(X);
 8630 FOR J=1 TO 23
 8640 READ S
 8650 IF S=0 THEN PRINT " "; ELSE
 PRINT CHR$(223+S);
 8660 NEXT J
 8670 PRINT
 8680 NEXT I
 8690 ENDPROC

The DATA statements in lines 8510 to 8595 are simply lists indicating
characters to be printed. To reduce the number of digits that have to be
typed in each DATA statement, 223 has to be added to each number to
give the character code. For example, a 1 in the DATA statement will
cause CHR$(224) to be printed. The exception to this rule is the use 0
to stand for blank. The DATA statements are organised in pairs and
each pair defines a single row of 23 characters. Five rows of these
standard size characters are used to build up the five-letter word
SNAKE in large letters. There are other ways of creating large letters
automatically but this is really the only convenient way of creating
large letters using a range of different standard size characters.

PROCdraw_scene, PROCdraw_snake and PROCdraw_food

Although it isn’t obvious at this stage in the program design,

88 The Electron Gamesmaster

PROCdraw_scene is in fact used by other procedures within the
program to re-draw the scene when the snake has run into a poisonous
toad or into itself. In this sense It Is not only part of the initialisation
phase of the program, it is also part of the animation loop. The only
modification that is necessary so that it can be used for both purposes is
that it should print a number of frogs given by the value stored in
FOOD, but if FOOD is zero it should first set it to a random value,
thereby generating a new screenful of frogs.

 2000 DEF PROCdraw_scene
 2010 COLOUR 128+0
 2020 CLS
 2030 PROCdraw_snake
 2050 COLOUR 3:PROCdraw_food(4*SC)
 2060 IF FOOD=0 THEN FOOD=RND(10)+15
 2070 COLOUR 2:PROCdraw_food(FOOD)
 2080 COLOUR 1
 2090 PRINT TAB(2,30);"Score=";STOTAL%+C%
 2100 TIME=0
 2110 REPEAT UNTIL TIME>=RND(100)+100
 2120 ENDPROC

The call to PROCdraw_snake produces a fixed length snake at the
samee starting position each time. PROCdraw_snake is also responsible
for initialising the co-ordinate arrays X% and Y%, and the pointers
Q%,md and Z%. The procedure PROCdraw_food will produce both
frogs and toads depending on the setting of the foreground colour
before it is called. Line 2050 uses it to print toads and line 2070 uses it
to print frogs. The number of toads increases as each screenful of frogs
is eaten, thus making the game progressively more difficult. The
number of frogs is given by FOOD, which decreases from its initial
value as frogs are eaten. If FOOD reaches zero line 2060 generates a
random number of frogs to fill yet another screen. The final part of the
procedure prints the total score and then waits for a random period of
time before allowing the game to restart.

PROCdraw_snake looks a little complicated because, as mentioned
above, it not only draws the snake, it also initialises the co-ordinate
arrays X% and Y%.

 2600 DEF PROCdraw_snake
 2610 COLOUR 128+0:COLOUR 1
 2620 X%=2:Y%=10
 2625 XH%=X%:YH%=Y%
 2630 H%=224

89Snake

 2640 S%=225
 2650 T$=CHR$(226)
 2660 PRINT TAB(X%,Y%);T$;
 2670 X%(1)=X%:Y%(1)=Y%
 2680 FOR Q%=2 TO 10
 2690 X%=X%+1
 2700 PRINT TAB(X%,Y%);CHR$(S%);
 2710 X%(Q%)=X%:Y%(Q%)=Y%
 2720 NEXT Q%
 2730 X%=X%+1
 2740 PRINT TAB(X%,Y%);CHR$(H%);
 2750 X%(11)=X%:Y%(11)=Y%
 2760 Z%=1:Q%=11
 2770 XV%=1:YV%=0
 2780 ENDPROC

The variables X%, Y% and XH%, YH% are used to record the current
position of the snake’s head. The reason for the use of two pairs of
variables only becomes apparent when you look at PROCupdate, given
later. H% and S% are used to hold the character codes of the current
snake head and snake body characters and T$ holds the tail character.
Line 2660 prints the tail character at 2,10 and then line 2670 stores its
co-ordinates in X%(1) and Y%(1). The FOR loop, lines 2680 2720,
prints the characters that make up the body of the snake and stores their
co-ordinates in X%, and Y%. Finally, lines 2730 to 2750 print the head
and then lines 2760 to 2770 initialise the variables that control the
snake’s length and initial direction of motion. The variable Z% points
to the current tail co-ordinates in X% and Y%. and Q% points to the
current head co-ordinates. The variables VX% and VY% control the
direction of movement and are explained in more detail part of
PROCget_direction and PROCupdate.

PROCdraw_food is very simple:

 2500 DEF PROCdraw_food(AMOUNT)
 2505 IF AMOUNT=0 THEN ENDPROC
 2510 FOR K=1 TO AMOUNT
 2520 U%=RND(40)-1
 2530 V%=RND(26)
 2540 IF FNC(U%,V%)<>0 THEN GOTO 2520
 2550 PRINT TAB(U%,V%);CHR$(229);
 2560 NEXT K
 2570 ENDPROC

90 The Electron Gamesmaster

The FOR loop, lines 2510 to 2560, will print AMOUNT frogs or toads
at random locations. Whether the procedure produces frogs or toads
depends on what the foreground colour was set to before the procedure
was called. Lines 2520 and 2530 generate random numbers to be used
as the potential co-ordinates of a frog or toad. If there is already a
character at U,V then line 2540 transfers control back so that another
two random numbers are generated. The test for an existing character is
perfomed by way of the function FNC which returns the colour of a
pixel near the middle of the character location at U,V. (FNC was
described in Chapter Two with reference to Ant Hill.)

 9000 DEF FNC(X%,Y%)
 9010 X%=16+32*X%
 9020 Y%=1011-32*Y%
 9030 =POINT(X%,Y%)

PROCone_move and its associated procedures

PROCone_move and simply calls two other procedures to do all of the
necessary to move the snake:

 3000 DEF PROCone_move
 3010 PROCget_direction
 3020 PROCupdate
 3030 ENDPROC

PROCget_direction examines the keyboard to see which arrow key is
pressed. If an arrow key is pressed then it updates the variables that
indicate the direction of movement of the snake. The actual movement
of the snake is produced by PROCupdate. This procedure not only
updates the co-ordinate arrays and prints the necessary characters. it
also checks to see if the snake has hit anything.

PROCget_direction is very similar to the other keyboard routines
used in earlier programs:

 4000 DEF PROCget_direction
 4010 IF INKEY(-58) THEN XV%=0:YV%=-1:S%=231:
 H%=230
 4020 IF INKEY(-42) THEN XV%=0:YV%=1:S%=233:
 H%=232
 4030 IF INKEY(-26) THEN XV%=-1:YV%=0:S%=228:
 H%=227
 4040 IF INKEY(-122) THEN XV%=1:YV%=0:S%=225:
 H%=224

91Snake

 4045 IF ADVAL(-5)<>15 THEN GOTO 4045
 4046 SOUND 0,-15,6,1
 4047 SOUND 0,0,6,1
 4050 ENDPROC

The INKEY function is used to check each arrow key in turn (lines
4010 to 4040). If a particular arrow key is pressed then XV% and YV%
are set to values that correspond to a velocity in that direction. For
example, if the right arrow key is pressed XV is set to 1 and YV% is set
to 0 and when VX% and VY% are added to X% and Y% (the current
position of the head) they do indeed produce a movement to the right.
As well as setting the velocity in response to the pressing of an arrow
key, it is also necessary to select the appropriate character to be used for
the snake’s head and the snake’s body. For example, if the right arrow
key is pressed, line 4040 sets S% to a right pointing body character and
H% to a right facing snake’s head. The last part of the procedure makes
a sort of hissing noise using channel 0 (lines 4045 to 4047).

PROCupdate is probably the most complicated procedure in the
entire program:

 4500 DEF PROCupdate
 4510 XH%=X%:YH%=Y%
 4520 X%=X%+XV%:Y%=Y%+YV%
 4530 IF X%>39 THEN X%=0
 4540 IF X%<0 THEN X%=39
 4550 IF Y%>26 THEN Y%=0
 4560 IF Y%<0 THEN Y%=26
 4570 IF FNC(X%,Y%)<>0 THEN PROChit
 4580 PRINT TAB(XH%,YH%);CHR$(S%);
 4590 PRINT TAB(X%,Y%);CHR$(H%);
 4600 Q%=Q%+1
 4610 IF Q%>MAX% THEN Q%=1
 4620 X%(Q%)=X%:Y%(Q%)=Y%
 4630 PRINT TAB(X%(Z%),Y%(Z%));" ";
 4640 Z%=Z%+1 4650 IF Z%>MAX% THEN Z%=1
 4660 PRINT TAB(X%(Z%),Y%(Z%));T$;
 4670 ENDPROC

Line 4510 saves the current position of the head, given by XY%,Y% in
XH%,YH%. Then line 4520 updates the position of the head by add the
velocities XV% and YV%. Following this, lines 4530 to 4560 sure that
the new position Is still on the screen. Here are two ways of dealing
with the situation where the snake is taken off the edge of the screen.

92 The Electron Gamesmaster

We could treat it as a mistake and make the snake lose a life or we
could treat the screen as if its edges were joined together. That is. going
off the top of the screen would make the snake reappear at the bottom
edge. This is often known as a ‘spherical universe’ type of playing area
and it is the strategy used in this game.

Line 4570 uses FNC to check if the snake has hit anything. If it has,
then PROChit is called to deal with the situation. Otherwise line 4590
prints the head at its new position and line 4580 prints a body character
at the head’s old position so as to blank it out. Notice that PROCupdate
doesn’t have to worry about which of the many head or body characters
to use because the correct ones have been selected by
PROCCget_direction. Following this the new position of the head is
stored in the co-ordinate arrays X% and Y%, (line 4620) after the head
pointer Q%, has been updated (lines 4600 and 4610).

The final task of PROCupdate is to move the snake’s tail. Line 4630
blanks out the tail at its old position. Lines 4640 and 4650 then update
the tail pointer, Z%, and line 4660 prints the tail character at its new
position

PROChit and its associated procedures

PROChit is responsible for producing the actions that are required
wherever the snake runs into anything.

 5000 DEF PROChit
 5010 COL%=FNC(X%,Y%)
 5020 IF COL%=3 OR COL%=1 THEN PROCtoad_self
 5030 IF COL%=2 THEN PROCfrog
 5040 ENDPROC

When PROChit is called all that is known is that the snake has run into
something and the first thing that PROChit has to do is discover what!
Line 5010 uses FNC to discover the colour of a pixel near the middle of
the character location that the snake is about to move onto. If it is white
or black then the snake has hit a toad or itself respectively and
PROCtoad_self is called (line 3020) to take away one of the snake’s
lives. However, if the colour turns out to be green then PROCfrog is
called to add one to the snake’s score and make it one character longer
(line 5030).

PROCtoad_self is quite a short procedure but the way that it works
and interacts with the rest of the program is quite complicated.

93Snake

 5500 DEF PROCtoad_self
 5505 SOUND 1,-15,10,20:SOUND 1,0,0,10
 5506 IF ADVAL(-6)<>15 THEN GOTO 5506
 5510 SOUND 1,-15,10,20:SOUND 1,0,0,10
 5520 SN=SN+1
 5530 IF SN>4 THEN STOTAL%=STOTAL%+C%:
 NO_LIVES=TRUE:ENDPROC
 5540 PROCdraw_scene
 5550 ENDPROC

Lines 5505 and 5506 make a noise to let the player know that a life Inn
been lost. Then line 3520 adds one to the snake counter, SN. If SN h
greater than 4 then all the lives have been used up and the game is over,
Line 3530 tests for this and sets NO_LIVES to TRUE to inform the
main program that this is the case. Otherwise PROCdraw_scene is
called to re-draw the snake and the remaining frogs and toads ready lot
the game to continue.

PROCfrog has two tasks to perform – looking after the score and
making the snake one character longer.

 5600 DEF PROCfrog
 5610 SOUND 1,-15,250,1
 5620 C%=C%+1:FOOD=FOOD-1
 5630 PRINT TAB(2,30);"Score=";STOTAL%+C%
 5640 Z%=Z%-1
 5650 IF Z%<1 THEN Z%=MAX%
 5660 IF FOOD<>0 THEN ENDPROC
 5670 STOTAL%=STOTAL%+C%
 5680 C%=0
 5690 IF SC=4 THEN NO_FOOD=TRUE:ENDPROC
 5700 SC=SC+1
 5710 PROCdraw_scene
 5720 ENDPROC

Line 5610 makes a noise to indicate to the player that a frog has just
been eaten. Then line 5620 adds one to the current score and subtract
one from FOOD. The reason that FOOD has to be reduced by one that
it is used to test Whether all the frogs have been eaten and as a
indicator of how many frogs should be redrawn if the snake loses a life
ad the game is restarted. Line 5630 prints the total score. Increasing the
length of the snake by one character is simplicity itself. Lines 5640 and
5650 adjust the tail pointer Z%, moving the current location oft tail
back by one position. When PROCfrog ends, control is returned to
PROCupdate which is in the process of moving the snake forward.
Because of this the effect of adjusting Z% is to leave the tail in its

94 The Electron Gamesmaster

current location for one move even though the head moves on. In this
way the length of the snake is increased automatically as it moves
along.

The final part of PROCfrog is concerned with detecting whether all
the frogs have been eaten. If this is the case, line 5670 adds C% to the
total. Line 5690 then tests to see if all five screenfuls of frogs have been
eaten and sets NO_FOOD to TRUE if this is the case. If there are more
screenfuls of frogs still to be eaten then the scene number SC is
incremented and PROCdraw screen is called to draw a new screenful of
frogs. Notice that PROCdraw_scene will detect the fact that FOOD is
zero and so generate a new random number of frogs.

PROCend_game

The end of the snake game is fairly unspectacular in that it simply
prints an appropriate message telling you how well you have done,
based on the number of screenfuls of frogs you have eaten before
losing all five lives.

 7000 DEF PROCend_game
 7010 CLS
 7020 COLOUR 1
 7030 IF SC=0 THEN PRINT TAB(3,10);"Demoted to
 slowworm"
 7040 IF SC=1 THEN PRINT TAB(3,10);"The frogs
 don't have to worry"
 7050 IF SC=2 THEN PRINT TAB(3,10);"Not bad for
 a grass snake"
 7060 IF SC=3 THEN PRINT TAB(3,10);"Well
 slithered"
 7070 IF SC=4 THEN PRINT TAB(3,10);"A venomous
 performance"
 7074 IF SC=4 AND NO_FOOD THEN PRINT TAB(5);
 "you're a SUPER SNAKE"
 7075 *FX 15,0
 7080 FOR I=5 TO 1 STEP -1
 7090 IF STOTAL%>=T(I) THEN N=1
 7100 NEXT I
 7105 PRINT
 7110 IF N=0 THEN PRINT TAB(10);"You scored ";
 STOTAL%:GOTO 7500
 7120 PRINT TAB(10);"You are now ranked ";N
 7130 PRINT TAB(10);"in the snake league"
 7140 IF N=5 THEN GOTO 7200
 7150 FOR I=5 TO N+1 STEP -1

95Snake

 7160 T(I)=T(I-1)
 7170 T$(I)=T$(I-1)
 7180 NEXT I
 7200 T(N)=STOTAL%
 7205 PRINT TAB(10);
 7210 INPUT "What is your name",T$(N)
 7220 CLS
 7230 FOR I=1 TO 5
 7240 PRINT TAB(5,I*2+5);T$(I);TAB(20);T(I)
 7250 NEXT I
 7500 PRINT
 7510 INPUT "Another slither Y/N",A$
 7520 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 7510
 7530 IF LEFT$(A$,1)="N" THEN AGAIN=FALSE ELSE
 AGAIN=TRUE
 7540 ENDPROC

Lines 7030 to 7074 print the congratulatory messages. An additional
feature of the end of the snake game is that it maintains a league table
of scores. If you are in the top five scores then it asks for your name
and inserts it into the table at the correct position. Lines 7080 to 7100
find out where the score fits in the current league table. This works by
finding the first score that your score is greater than or equal to in the
league table. If you deserve to be placed in the league table all the
scores lower than or equal to yours are moved down one place (lines
7150 to 7180) and your score and name are inserted (lines 7200 to
7210). Then the league table is printed (lines 7220 to 7250) and the
player is asked if another game is requested (lines 7500 to 7530).
Notice that if another game is required it isn’t good enough to simply
use RUN to restart it as this would erase the contents of the arrays that
hold the league table! Instead, the variable AGAIN is used to indicate
to the rest of the program that it is being re-run.

Conclusion - playing the game

Even this simple game involving a snake is quite addictive! This is not
to say that there’s no scope both for improvement and innovation, but
overall the game is a great success and has a speed and interest
normally only found in assembly language games. In the next chapter
the potential using the snake in another game will be explored.

96 The Electron Gamesmaster

The final version - a complete listing

 10 REM SNAKE
 20 MODE 1
 30 AGAIN=FALSE
 40 PROCinitialise
 50 PROCtitle
 60 PROCdraw_scene
 70 REPEAT
 80 PROCone_move
 90 UNTIL NO_FOOD OR NO_LIVES
 100 PROCend_game
 110 IF AGAIN THEN GOTO 40
 120 END

 1000 DEF PROCinitialise
 1010 VDU 23,224,&38,&7C,&FA,&FF,&FF,&FA,&7C,&38
 1020 VDU 23,225,&7E,&EF,&F7,&FB,&FB,&F7,&EF,&7E
 1030 VDU 23,226,&18,&3C,&7E,&FF,&FF,&7E,&3C,&18
 1040 VDU 23,227,&1C,&3E,&5F,&FF,&FF,&5F,&3F,&1C
 1050 VDU 23,228,&7E,&F7,&EF,&DF,&DF,&EF,&F7,&7E
 1060 VDU 23,229,&82,&54,&38,&DA,&FE,&82,&44,&82
 1070 VDU 23,230,&18,&3C,&5A,&FF,&FF,&FF,&7E,&7E
 1080 VDU 23,231,&7E,&FF,&E7,&D8,&BD,&FF,&FF,&7E
 1090 VDU 23,232,&3C,&7E,&FF,&FF,&FF,&5A,&3C,&18
 1100 VDU 23,233,&7E,&FF,&FF,&BD,&DB,&E7,&FF,&7E
 1110 VDU 19,0,3,0,0,0:REM 0=YELLOW
 1120 VDU 19,1,0,0,0,0:REM 1=BLACK
 1130 VDU 19,2,2,0,0,0:REM 2=GREEN
 1140 VDU 19,3,7,0,0,0:REM 3=WHITE
 1150 IF AGAIN THEN GOTO 1260
 1200 DIM X%(50),Y%(50)
 1205 MAX%=50
 1210 DIM T$(5)
 1220 DIM T(5)
 1230 FOR I=1 TO 5
 1240 T(I)=0
 1250 NEXT I
 1260 NO_FOOD=FALSE
 1270 NO_LIVES=FALSE
 1280 HIT=FALSE
 1290 C%=0:STOTAL%=0
 1300 SC=0:SN=0:FOOD=0
 1310 ENDPROC

97Snake

 2000 DEF PROCdraw_scene
 2010 COLOUR 128+0
 2020 CLS
 2030 PROCdraw_snake
 2050 COLOUR 3:PROCdraw_food(4*SC)
 2060 IF FOOD=0 THEN FOOD=RND(10)+15
 2070 COLOUR 2:PROCdraw_food(FOOD)
 2080 COLOUR 1
 2090 PRINT TAB(2,30);"Score=";STOTAL%+C%
 2100 TIME=0
 2110 REPEAT UNTIL TIME>=RND(100)+100
 2120 ENDPROC

 2500 DEF PROCdraw_food(AMOUNT)
 2505 IF AMOUNT=0 THEN ENDPROC
 2510 FOR K=1 TO AMOUNT
 2520 U%=RND(40)-1
 2530 V%=RND(26)
 2540 IF FNC(U%,V%)<>0 THEN GOTO 2520
 2550 PRINT TAB(U%,V%);CHR$(229);
 2560 NEXT K
 2570 ENDPROC

 2600 DEF PROCdraw_snake
 2610 COLOUR 128+0:COLOUR 1
 2620 X%=2:Y%=10
 2625 XH%=X%:YH%=Y%
 2630 H%=224
 2640 S%=225
 2650 T$=CHR$(226)
 2660 PRINT TAB(X%,Y%);T$;
 2670 X%(1)=X%:Y%(1)=Y%
 2680 FOR Q%=2 TO 10
 2690 X%=X%+1
 2700 PRINT TAB(X%,Y%);CHR$(S%);
 2710 X%(Q%)=X%:Y%(Q%)=Y%
 2720 NEXT Q%
 2730 X%=X%+1

98 The Electron Gamesmaster

 2740 PRINT TAB(X%,Y%);CHR$(H%);
 2750 X%(11)=X%:Y%(11)=Y%
 2760 Z%=1:Q%=11
 2770 XV%=1:YV%=0
 2780 ENDPROC

 3000 DEF PROCone_move
 3010 PROCget_direction
 3020 PROCupdate
 3030 ENDPROC

 4000 DEF PROCget_direction
 4010 IF INKEY(-58) THEN XV%=0:YV%=-1:S%=231:
 H%=230
 4020 IF INKEY(-42) THEN XV%=0:YV%=1:S%=233:
 H%=232
 4030 IF INKEY(-26) THEN XV%=-1:YV%=0:S%=228:
 H%=227
 4040 IF INKEY(-122) THEN XV%=1:YV%=0:S%=225:
 H%=224
 4045 IF ADVAL(-5)<>15 THEN GOTO 4045
 4046 SOUND 0,-15,6,1
 4047 SOUND 0,0,6,1
 4050 ENDPROC

 4500 DEF PROCupdate
 4510 XH%=X%:YH%=Y%
 4520 X%=X%+XV%:Y%=Y%+YV%
 4530 IF X%>39 THEN X%=0
 4540 IF X%<0 THEN X%=39
 4550 IF Y%>26 THEN Y%=0
 4560 IF Y%<0 THEN Y%=26
 4570 IF FNC(X%,Y%)<>0 THEN PROChit
 4580 PRINT TAB(XH%,YH%);CHR$(S%);
 4590 PRINT TAB(X%,Y%);CHR$(H%);
 4600 Q%=Q%+1
 4610 IF Q%>MAX% THEN Q%=1
 4620 X%(Q%)=X%:Y%(Q%)=Y%
 4630 PRINT TAB(X%(Z%),Y%(Z%));" ";
 4640 Z%=Z%+1
 4650 IF Z%>MAX% THEN Z%=1
 4660 PRINT TAB(X%(Z%),Y%(Z%));T$;
 4670 ENDPROC

99Snake

 5000 DEF PROChit
 5010 COL%=FNC(X%,Y%)
 5020 IF COL%=3 OR COL%=1 THEN PROCtoad_self
 5030 IF COL%=2 THEN PROCfrog
 5040 ENDPROC

 5500 DEF PROCtoad_self
 5505 SOUND 1,-15,10,20:SOUND 1,0,0,10
 5506 IF ADVAL(-6)<>15 THEN GOTO 5506
 5510 SOUND 1,-15,10,20:SOUND 1,0,0,10
 5520 SN=SN+1
 5530 IF SN>4 THEN STOTAL%=STOTAL%+C%:
 NO_LIVES=TRUE:ENDPROC
 5540 PROCdraw_scene
 5550 ENDPROC

 5600 DEF PROCfrog
 5610 SOUND 1,-15,250,1
 5620 C%=C%+1:FOOD=FOOD-1
 5630 PRINT TAB(2,30);"Score=";STOTAL%+C%
 5640 Z%=Z%-1
 5650 IF Z%<1 THEN Z%=MAX%
 5660 IF FOOD<>0 THEN ENDPROC
 5670 STOTAL%=STOTAL%+C%
 5680 C%=0
 5690 IF SC=4 THEN NO_FOOD=TRUE:ENDPROC
 5700 SC=SC+1
 5710 PROCdraw_scene
 5720 ENDPROC

 7000 DEF PROCend_game
 7010 CLS
 7020 COLOUR 1
 7030 IF SC=0 THEN PRINT TAB(3,10);"Demoted to
 slowworm"
 7040 IF SC=1 THEN PRINT TAB(3,10);"The frogs
 don't have to worry"
 7050 IF SC=2 THEN PRINT TAB(3,10);"Not bad for
 a grass snake"
 7060 IF SC=3 THEN PRINT TAB(3,10);"Well
slithered"
 7070 IF SC=4 THEN PRINT TAB(3,10);"A venomous
 performance"
 7074 IF SC=4 AND NO_FOOD THEN PRINT
TAB(5);"you're a SUPER SNAKE"
 7075 *FX 15,0

100 The Electron Gamesmaster

7080 FOR I=5 TO 1 STEP -1
7090 IF STOTAL%>=T(I) THEN N=1
7100 NEXT I
7105 PRINT
7110 IF N=0 THEN PRINT TAB(10);"You scored ";
 STOTAL%:GOTO 7500
7120 PRINT TAB(10);"You are now ranked ";N
7130 PRINT TAB(10);"in the snake league"
7140 IF N=5 THEN GOTO 7200
7150 FOR I=5 TO N+1 STEP -1
7160 T(I)=T(I-1)
7170 T$(I)=T$(I-1)
7180 NEXT I
7200 T(N)=STOTAL%
7205 PRINT TAB(10);
7210 INPUT "What is your name",T$(N)
7220 CLS
7230 FOR I=1 TO 5
7240 PRINT TAB(5,I*2+5);T$(I);TAB(20);T(I)
7250 NEXT I
7500 PRINT
7510 INPUT "Another slither Y/N",A$
7520 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 7510
7530 IF LEFT$(A$,1)="N" THEN AGAIN=FALSE ELSE
 AGAIN=TRUE
7540 ENDPROC

8000 DEF PROCtitle
8005 COLOUR 128+1:COLOUR 0
8006 CLS
8007 VDU 23,1,0;0;0;0;
8010 PROCsnake(5)
8020 PRINT TAB(2,10);
8030 PRINT "You must guide your snake using the"
8040 PRINT "four arrow keys and eat all the
 green"
8050 PRINT "frogs ";
8060 COLOUR 2:PRINT CHR$(229)
8070 COLOUR 0
8080 PRINT
8090 PRINT " If you try to eat a toad ";
8100 COLOUR 3:PRINT CHR$(229);
8110 COLOUR 0
8120 PRINT " or yourself"

101Snake

8130 PRINT "then you will lose one of your five"
8140 PRINT "lives"
8145 PRINT
8150 PRINT "You get five screens of frogs to
eat"
8160 PRINT "before you become a SUPER SNAKE!!"
8170 A$=INKEY$(2000)
8200 ENDPROC

8500 DEF PROCsnake(X)
8510 DATA 2,2,2,1,0,2,2,2,2,0,2,2,2,2
8520 DATA 0,7,0,7,0,2,2,2,1
8530 DATA 8,0,0,0,0,8,0,0,10,0,8,0,0,10
8540 DATA 0,8,0,8,0,8,0,0,0
8550 DATA 5,5,5,5,0,8,0,0,10,0,8,3,1,10
8560 DATA 0,8,8,0,0,8,3,2,1
8570 DATA 0,0,0,8,0,8,0,0,10,0,8,0,0,10
8580 DATA 0,8,0,8,0,8,0,0,0
8590 DATA 3,2,2,2,0,3,0,0,9,0,3,0,0,9
8595 DATA 0,3,0,3,0,5,5,5,3
8600 RESTORE
8605 PRINT TAB(X,2)
8610 FOR I=1 TO 5
8620 PRINT TAB(X);
8630 FOR J=1 TO 23
8640 READ S
8650 IF S=0 THEN PRINT " "; ELSE
 PRINT CHR$(223+S);
8660 NEXT J
8670 PRINT
8680 NEXT I
8690 ENDPROC

9000 DEF FNC(X%,Y%)
9010 X%=16+32*X%
9020 Y%=1011-32*Y%
9030 =POINT(X%,Y%)

102 The Electron Gamesmaster

Chapter Six
Tadpole

The animated snake developed in the last chapter can be used to create
a wide variety of exciting games. Tadpole is just such a game and this
chapter shows how the Snake program can be modified to produce a
new game. In the second half of the chapter we take the opportunity to
change one of the complicated procedures within the animation loop
machine code. This results in a much faster and more exciting game
and serves to illustrate the way that BASIC and machine code should
be used together.

The game design

The basic idea behind Tadpole is similar to that developed in Snake in
that an animated snake has to eat frogs to score points. The difference is
that in Tadpole the frogs move! At the start of the game the frogs are all
still tadpoles swimming in a pond in the middle of the screen. One by
we they turn into frogs and make a rush for the edge of the screen. The
snake cannot eat the tadpoles until they have become frogs, and indeed
it loses a life if it falls into the pond. The object of the game is simply
to eat as many frogs as possible before they make their escape off the
edge of the screen.

Apart from the addition of the pond and the moving frogs the rest of
the elements of tadpole remain unchanged from the basic Snake game.
In particular, the snake has five fives and five screenfuls of frogs to eat
up, If the snake loses a life then the remaining frogs miraculously turn
back into tadpoles and the snake has another opportunity to lie in wait
for. them. All the graphics characters used in Tadpole have already been
introduced as part of the Snake program and, apart from the pond, the
screen layout (Fig. 6. I) is very similar to that produced by Snake but it
should be recalled that in Snake the frogs are static, whereas in Tadpole
they move.

Fig. 6.1.

Setting the scene

The modifications to Snake fall into two parts, firstly the changes and
additions necessary to set up the game and secondly the changes and
additions necessary to animate the frogs. This section deals with the
setting up of the game.

Most of the modifications necessary to set up the game are made to
one procedure PROCdraw_scene. Now, instead of printing frogs and
toads, it has to print a pond containing tadpoles in the middle of the
screen. The pond is best produced by way of a new procedure,
PROCdraw_pool, and the tadpoles by a modification to
PROCdraw_food. The new version of PROCdraw_scene is:

 2000 DEF PROCdraw_scene
 2010 COLOUR 128+0
 2020 CLS
 2030 PROCdraw_snake
 2040 PROCdraw_pool(18,10)
 2045 COLOUR 128+3

104 The Electron Gamesmaster

 2060 IF FOOD=0 THEN FOOD=NUM%
 2070 COLOUR 1:PROCdraw_food(FOOD)
 2080 COLOUR 128+0
 2090 PRINT TAB(2,30);"Snake=";SN+1;" Screen=";
 SC+1;" Score=";STOTAL%+C%
 2095 GCOL 0,1
 2096 MOVE 0,156
 2097 DRAW 1280,156
 2100 TIME=0
 2110 REPEAT UNTIL TIME>=RND(100)+100
 2120 ENDPROC

The new procedure to draw the pond is called at line 2040.
PROCCdraw_food is now only called once (line 2070) to print a fixed
number of tadpoles in the pond. The only other changes are the addition
of line 2090 to print the snake and screen number and the inclusion of
high resolution graphics commands, lines 2095 to 2097, to draw a
horizontal line to show the limit of the playing area.

PROCdraw_pool is nothing more than a list of PRINT statements
that print spaces using a blue background colour:

 2200 DEF PROCdraw_pool(X,Y)
 2210 COLOUR 128+3
 2220 PRINT TAB(X,Y);SPC(3);
 2230 PRINT TAB(X-1,Y+1);SPC(5);
 2240 PRINT TAB(X-2,Y+2);SPC(7);
 2250 PRINT TAB(X-2,Y+3);SPC(7);
 2260 PRINT TAB(X-2,Y+4);SPC(7);
 2270 PRINT TAB(X-1,Y+5);SPC(5);
 2280 PRINT TAB(X,Y+6);SPC(3);
 2290 ENDPROC

The need to use a blue background colour implies that one of the
logical to physical colour assignments in PROCinitiaiise has to be
changed. As there are no white toads in Tadpole the logical colour
selected to be changed is 3:

1140 VDU 19,3,6,0,0,0:REM 3=CYAN

Cyan is used rather than blue because it produces a better contrast with
the other colours on a black and white set.

PROCdraw_food now has to place tadpoles in the pond rather than
frogs anywhere on the screen. This is easily catered for by restricting
the range of the random numbers generated by lines 2520 and 2530.
Later in the program the tadpoles and the frogs that they give rise have

105Tadpole

to be animated and this implies that their positions should be known. To
keep track of where all the tadpoles and frogs are it is necessary to use
a pair of arrays to hold the x and y co-ordinates of each tadpole/frog.

 2500 DEF PROCdraw_food(AMOUNT)
 2505 IF AMOUNT=0 THEN ENDPROC
 2510 FOR K=1 TO AMOUNT
 2520 U%=RND(7)+15
 2530 V%=RND(7)+9
 2540 IF FNC(U%,V%)<>3 THEN GOTO 2520
 2550 PRINT TAB(U%,V%);",";
 2555 FX%(K)=U%:FY%(K)=V%
 2560 NEXT K
 2570 IF AMOUNT=NUM% THEN ENDPROC
 2580 FOR K=AMOUNT+1 TO NUM%
 2585 NEXT K
 2590 ENDPROC

Line 2555 saves the co-ordinates in FX% and FY% for later use. The
maximum number of tadpoles/frogs is eight but at later stages of the
game there may be fewer due to frogs escaping or being eaten. To
indicate that a tadpole? frog is not being used in the game its x
coordinate is set to −1. The FOR loop, lines 2580 to 2586, sets the
unused entries of the array FX% to −1. Of course, the new pair of
arrays has to be dimensioned and so lines 1206 and 1207 have to be
added to PROCinit:

 1206 NUM%=8

 1207 DIM FX%(NUM%),FY%(NUM%)

Making an escape

Once the initial display has been set up along with the co-ordinates of
all the tadpoles in the pair of arrays FX% and FY%, the animation of
the snake and the frogs can begin. The only change to the animation
loop is the addition of a call to PROCmove_f which moves a single
frog at random. That is, PROCone_move becomes

 3000 DEF PROCone_move
 3005 PROCmove_f

106 The Electron Gamesmaster

 3010 PROCget_direction
 3020 PROCupdate
 3030 ENDPROC

PROCmove_f is a little more complicated than you might expect. The
main problems lie in making sure that the frog doesn’t land on the
snake, using the correct background colour to print and blank the frog
and detecting when a frog has completed its escape. In fact, most of the
solutions to these problems have been introduced in earlier chapters.

 3500 DEF PROCmove_f
 3510 K%=RND(NUM%)
 3520 IF FX%(K%)=-1 THEN ENDPROC
 3530 N%=FNC(FX%(K%),FY%(K%))
 3535 IF N%=3 THEN COLOUR 128+3
 3536 IF N%<>1 THEN PRINT
 TAB(FX%(K%),FY%(K%));" ";
 3540 FX%(K%)=FX%(K%)-SGN(19.5-FX%(K%))
 3550 FY%(K%)=FY%(K%)-SGN(13.5-FY%(K%))
 3560 IF FX%(K%)<0 OR FX%(K%)>39 THEN
 PROCfrog_gone:ENDPROC
 3570 IF FY%(K%)<0 OR FY%(K%)>26 THEN
 PROCfrog_gone:ENDPROC
 3574 COLOUR 128
 3575 N%=FNC(FX%(K%),FY%(K%))
 3576 IF N%<>0 THEN GOTO 3540
 3580 COLOUR 2
 3590 PRINT TAB(FX%(K%),FY%(K%));CHR$(229);
 3595 COLOUR 1
 3600 ENDPROC

Line 3510 selects a tadpole/frog to move at random. If the x co-ordinate
of this tadpole/frog is −1 then it has either been eaten or it has already
escaped and so fine 3520 returns control to PROCone_move. Line 3530
finds the colour of the background of the frog’s old position and stores
it in N%. As long as this colour isn’t black then line 3536 blanks out the
old position. Lines 3540 and 3550 update the frog’s co-ordinates in
such a way that the frog moves toward the edge of the screen. The way
that this works is easy to understand once you know that SGN(19.5−
FX%(K%)) is +1 if the frog is to the left of the centre of the pond and −
1 if it is to the right of the centre of the pond. Thus subtracting
SGN(19.5−FX%(K%))) from the current x co-ordinate of the frog
always results in it moving away from the centre of the pond. A similar
argument shows that subtracting SGN(13.5−FY%(K%)) from the
current y co-ordinate of the frog also results in it moving away from the

107Tadpole

centre of the pond. Following tins lines 3560 and 3570 test for the frog
going off the screen and call PROCfrog gone if it has. The final part of
the procedure, lines 3574 to 3595, prints the frog at its new position
using the correct background colour. Once again the background colour
is determined by a call to FNC (line 3575).

The PROCmove_f calls PROCfrog_gone to make the fact that a frog
has escaped:

 3900 DEF PROCfrog_gone
 3910 FX%(K%)=-1
 3920 FOOD=FOOD-1
 3930 IF FOOD<>0 THEN ENDPROC
 3935 STOTAL%=STOTAL%+C%
 3936 C%=0
 3940 IF SC=4 THEN NO_FOOD=TRUE:ENDPROC
 3950 SC=SC+1
 3960 PROCdraw_scene
 3970 ENDPROC

Line 3910 sets the frog’s horizontal co-ordinate to −1 to indicate to the
rest of the program that it has escaped. The rest of the procedure
subtracts one from FOOD and restarts the game with a new screenful of
tadpoles/frogs unless of course five screenfuls have already escaped or
been eaten.

Catching frogs

The remaining changes to the program are mainly to PROCfrog,
PROCfrog is called whenever the snake runs into a green object, i.e. a
frog! In the original version of Snake, all PROCfrog had to do was add
one to the score and check for the possibility that all the frogs had been
eaten. Now it also has to remove the frog from the list of co-ordinates
in FX%$ and FY9b. This is done by adding a call to a new procedure,
PROCrem_f:

5655 PROCrem_f

In addition, the opportunity is taken to alter line 5630 to print the snake
and screen numbers:

5630 PRINT TAB(2,30);"Snake=";SN+1;" Screen=";
 SC+1;" Score=";STOTAL%+C%

108 The Electron Gamesmaster

The position of the frog the the snake has just run into is stored in
X% and Y%. PROCrem_f removes it from the list of frogs by searching
FX% and FY% for a frog with the same co-ordinates and setting its x
co-ordinate to −1

 5800 DEF PROCrem_f
 5810 K%=0
 5820 REPEAT
 5830 K%=K%+1
 5840 UNTIL X%=FX%(K%) AND Y%=FY%(K%)
 5850 FX%(K%)=-1 5860 ENDPROC

The finishing touches to Tadpole involve altering the messages issued
by PROCend_game:

 7030 IF STOTAL%<10 THEN PRINT TAB(3,10);
 "Demoted to slowworm":GOTO 7075
 7040 IF STOTAL%<20 THEN PRINT TAB(3,10);
 "The frogs don't have to worry":GOTO 7075
 7050 IF STOTAL%<30 THEN PRINT TAB(3,10);
 "Not bad for a grass snake":GOTO 7075
 7060 IF STOTAL%<35 THEN PRINT TAB(3,10);
 "Well slithered":GOTO 7075
 7070 PRINT TAB(3,10);"A venomous performance"
 7074 PRINT TAB(5);"you're a SUPER SNAKE"

and the instructions in PROCtitle:

 8080 PRINT
 8090 PRINT " Don't fall in the water or try to"
 8120 PRINT "eat yourself or you will lose
 one of"
 8130 PRINT "your five lives"
 8140 PRINT
 8145 PRINT

Adding assembler

If you make all the modifications listed above to the Snake program
given in the last chapter then you will indeed have a new game –
Tadpole. However, rather than leave the program at this stage of
development PROCmove_f will he changed into a machine code

109Tadpole

routine, partly to increase the speed of the program but also to show the
general principles involved in adding assembly language to an existing
program.

The actual translation of PROCmove_f to assembler is not as
difficult as you would expect; the real difficulty stems from the extreme
shortage of memory. In fact memory is so short that the final version of
the program has to be loaded into memory in two stages the BASIC
part of the program and the machine code part of the program.
However, trying to develop a program of this size in two pieces is very
difficult and during the development of the machine code routine the
need to run the program as a single unit was so great that extra fr,�
memory was acquired by the simple expedient of deleting every section
of the program that wasn’t absolutely essential. In other words,
PROCtitle and PROCend_game were both dispensed with temporarily.
Once the machine code was fully debugged the program was put back
together again to produce a master copy from which the machine code
section and the BASIC section can be produced. It is this master copy
that is listed at the end of this chapter and it is important to realise that
this program is much too large to fit into the memory remaining after
Mode 1 has taken its 20K. How to convert into two modules that fit
into the remaining space is described in this chapte’s final section.

An assembly language version of PROCmove_f

To convert PROCmove_f to machine code it is necessary to add a
whole new procedure that uses the 6502 assembler to produce machine
code from assembly language. This new procedure is only called oats at
the start of the program and from then on the machine code that [I
produces is available for use. Normally machine code would be stored
in a byte array but in this case memory is in such short supply that it
will be stored in the area normally reserved for use as serial data
buffers, that is, &900 to &AFF. The call to PROCasmb is added to
PROCinitialise at line 1208:

1208 PROCasmb

As well as this change it is also necessary to reduce the dimension oft
arrays X% and Y% to free some additional memory and delete the lines
that define the arrays FX% and FY% as these will be set up within the

110 The Electron Gamesmaster

machine code. To achieve this. change lines 1200 and 1205

1200 DIM X%(15),Y%(15)
1205 MAX%=15

and delete line 1206.
The best way to deal with the changes to PROCmove_f itself is to

delete the existing version and type in:

 3500 DEF PROCmove_f
 3510 A%=RND(NUM%)
 3520 B%=USR(move_f%)
 3530 IF ?FLAG%<>0 AND FX%?A%<>&FF THEN
 PROCfrog_gone
 3540 ENDPROC

Now the procedure uses the machine code routine move_f to do most
of the work. The number of the frog to be moved is passed to move_f in
the resident integer variable A%. On return from move_f the memory
location FLAG% is 0 if a frog was moved and equal to &FF otherwise.
This is used by line 3530 to test for frogs that have escaped. Notice that
now the arrays FX% and FY% have been replaced by byte arrays
(defined within the machine code). The x co-ordinate of the frog whose
number is in A% is given by FX%?A% and similarly its y co-ordinate
is in FY%?A%. Other sections of the program that used the arrays
FX% and FY% also have to be changed. PROCfrog_gone becomes:

 3900 DEF PROCfrog_gone
 3910 FX%?A%=&FF
 3920 FOOD=FOOD-1
 3930 IF FOOD<>0 THEN ENDPROC
 3935 STOTAL%=STOTAL%+C%
 3936 C%=0
 3940 IF SC=4 THEN NO_FOOD=TRUE:ENDPROC
 3950 SC=SC+1
 3960 PROCdraw_scene
 3970 ENDPROC

and PROCrem_f becomes:

 5800 DEF PROCrem_f
 5810 K%=0
 5820 REPEAT
 5830 K%=K%+1
 5840 UNTIL X%=FX%?K% AND Y%=FY%?K%
 5850 FX%?K%=&FF

111Tadpole

 5860 ENDPROC

Notice that &FF is now used to mark the fact that a frog is not in use
rather than −1.
 These are all the changes that are necessary to the program apart
from the addition of PROCasmb. To explain the exact workings of the
assembly language would take far too long, so instead we have adopted
the alternative strategy of presenting a heavily commented listing. As
the assembly language does exactly the same job as the original BASIC
version of PROCmove_f it should be easy to understand. However to
make sure that you do not run out of memory do not type in the
assembly language comments and do not insert any unnecessary
spaces.

 6000 DEF PROCasmb
 6004 CODE%=&900
 6005 OSWORD%=&FFF1
 6010 OSWRCH%=&FFEE
 6016 ATEMP%=&70
 6017 FLAG%=&71
 6018 PARM%=&72:COL%=PARM%+4
 6019 FX%=&77:FY%=&80
 6020 FOR PASS=0 TO 3 STEP 3
 6030 P%=CODE%
 6040 [OPT PASS
 6050 .move_f% STA ATEMP% \A contains the

 'frog number'
 6060 JSR get_cords% \get frog's position

 in X and Y
 6070 CPX #&FF \is the frog in use
 6080 BNE skip1%
 6090 STX FLAG% \if not in use set

 flag to &FF
 6100 RTS \and return
 6110 .skip1% JSR f_col% \find the colour

 at X,Y
 6120 CMP #3 \is it 3?
 6130 BNE skip2%

112 The Electron Gamesmaster

 6140 LDA #128+3 \if it is then set
 background

 6150 JSR s_col% \colour to 3
 6160 .skip2% LDA COL% \get the colour

 again
 6170 CMP #1 \is it 1?
 6180 BEQ skip3%
 6190 JSR tab% \if it isn't then

TAB(X,Y)
 6200 LDA #32 \and print a blank
 6210 JSR OSWRCH%
 6220 .skip3% JSR update% \update X and Y
 6230 JSR gone% \has the frog

 escaped?
 6240 BCC skip4% \carry set if it has
 6250 STA FLAG% \set FLAG to &FF
 6260 RTS \and return
 6270 .skip4% LDA #128 \set background

 to colour
 6280 JSR s_col% \zero
 6290 JSR f_col% \find colour at X,Y
 6300 BNE skip3% \if it is not zero

 then update again
 6310 LDA #2 \set foreground

 colour to 2
 6320 JSR s_col%
 6330 JSR tab% \TAB(X,Y)
 6340 LDA #229 \print a frog
 6350 JSR OSWRCH%
 6360 LDA #1 \set foreground
 6370 JSR s_col% \colour to 1
 6380 JSR s_cords% \store X and Y in

 FX%?A% and FY%?A%
 6390 LDA #0
 6400 STA FLAG% \set FLAG to zero
 6410 RTS \and return
 6420 \

 6430 .get_cords% LDX ATEMP% \gets co-ordinates
 6440 LDY FY%,X \from FY%?A% into Y
 6450 LDA FX%,X \and FX%?A% into X
 6460 TAX
 6470 RTS
 6480 \

 6490 .f_col% STX PARM% \equivalent to FNC
 6500 LDA #0

113Tadpole

 6510 STA PARM%+1 \X*32
 6520 ASL PARM%:ROL PARM%+1
 6521 ASL PARM%:ROL PARM%+1
 6522 ASL PARM%:ROL PARM%+1
 6523 ASL PARM%:ROL PARM%+1
 6524 ASL PARM%:ROL PARM%+1
 6530 LDA #16 \+16
 6540 CLC
 6550 ADC PARM%
 6560 STA PARM%
 6565 LDA #0
 6566 ADC PARM%+1
 6567 STA PARM%+1
 6570 STY PARM%+2
 6590 LDA #0
 6600 STA PARM%+3
 6610 ASL PARM%+2:ROL PARM%+3 \Y*32
 6611 ASL PARM%+2:ROL PARM%+3
 6612 ASL PARM%+2:ROL PARM%+3
 6613 ASL PARM%+2:ROL PARM%+3
 6614 ASL PARM%+2:ROL PARM%+3
 6620 LDA #&F3 \1011-
 6624 SEC
 6625 SBC PARM%+2
 6630 STA PARM%+2
 6631 LDA #&3
 6632 SBC PARM%+3
 6633 STA PARM%+3
 6650 TXA \save X
 6660 PHA
 6670 TYA \and Y
 6680 PHA
 6690 LDX #(PARM% MOD 256)
 6700 LDY #(PARM% DIV 256)
 6710 LDA #9
 6720 JSR OSWORD%
 6730 PLA \restore X
 6740 TAY
 6750 PLA \and Y
 6760 TAX
 6770 LDA PARM%+4 \get result in A
 6780 RTS
 6790 \
 6800 .s_col% PHA \sets colour to A
 6801 LDA #17

114 The Electron Gamesmaster

 6802 JSR OSWRCH%
 6803 PLA
 6804 JSR OSWRCH%
 6805 RTS
 6806 \
 6807 .tab% LDA #31 \equivalent to

 TAB(X,Y)
 6808 JSR OSWRCH%
 6809 TXA
 6810 JSR OSWRCH%
 6811 TYA
 6812 JSR OSWRCH%
 6813 RTS
 6814 \

 6820 .update% CPX #19 \equivalent to
 6825 BPL u1% \X=X-SGN(19-X)
 6830 DEX
 6835 DEX
 6840 .u1% INX
 6845 CPY #13 \Y=Y-SGN(13-Y)
 6850 BPL u2%
 6855 DEY
 6860 DEY
 6865 .u2% INY
 6870 RTS
 6875 \

 6880 .gone% CPX #0 \tests to see if
 6882 BMI g1% \frog has escaped
 6884 CPX #39 \carry flag clear if
 6886 BPL g1% \frog still on screen
 6888 CPY #0
 6890 BMI g1%
 6892 CPY #26
 6893 BPL g1%
 6894 CLC
 6895 RTS
 6896 .g1% LDA #&FF
 6897 SEC
 6898 RTS
 6899 \

 6900 .s_cords% TXA \store X and Y in
 6901 LDX ATEMP% \FX%?A% and FY%?A%
 6902 STA FX%,X
 6903 TYA
 6904 STA FY%,X
 6905 RTS
 6910]
 6920 NEXT PASS
 6930 ENDPROC

115Tadpole

The X and Y referred to in the above comments are of course the X and
Y registers which are used throughout the language routine to hold the
x and y co-ordinates of the frog. Notice the way that subroutines are
used to build up the program. In this respect assembly language is the
same as BASIC – a modular approach always makes programming
easier.

The most complicated subroutine is f_col%, (lines 6490 to 6780).
This performs the same job as the BASIC function FNC and returns the
colour code of a pixel near the middle of the character location at X,Y.
Most of the difficulty in writing this subroutine is due to the need to
convert the text co-ordinates in X and Y to high resolution graphics co-
ordinates. Notice how many instructions are needed to work out
l6+32*X and 1011−32*Y as compared to BASIC!

The final program � a complete listing

Don't worry if you haven’t understood all the details of the assembly
language program; it always takes a good deal more time to follow
assembler than it does BASIC. If you have typed in ail the.
modifications to the original Snake program you should have the
following program – which will not run in the amount of memory
available to it! How to make it work in so little memory is the subject
of the final section of this chapter but now is the time to check that you
have entered everything correctly:

 10 REM tadpole
 20 MODE 129
 30 AGAIN=FALSE
 40 PROCinitialise
 50 PROCtitle
 60 PROCdraw_scene
 70 REPEAT
 80 PROCone_move
 90 UNTIL NO_FOOD OR NO_LIVES
 100 PROCend_game
 110 IF AGAIN THEN GOTO 40
 120 END

 1000 DEF PROCinitialise
 1010 VDU 23,224,&38,&7C,&FA,&FF,&FF,&FA,&7C,&38
 1020 VDU 23,225,&7E,&EF,&F7,&FB,&FB,&F7,&EF,&7E
 1030 VDU 23,226,&18,&3C,&7E,&FF,&FF,&7E,&3C,&18

116 The Electron Gamesmaster

 1040 VDU 23,227,&1C,&3E,&5F,&FF,&FF,&5F,&3F,&1C
 1050 VDU 23,228,&7E,&F7,&EF,&DF,&DF,&EF,&F7,&7E
 1060 VDU 23,229,&82,&54,&38,&DA,&FE,&82,&44,&82
 1070 VDU 23,230,&18,&3C,&5A,&FF,&FF,&FF,&7E,&7E
 1080 VDU 23,231,&7E,&FF,&E7,&D8,&BD,&FF,&FF,&7E
 1090 VDU 23,232,&3C,&7E,&FF,&FF,&FF,&5A,&3C,&18
 1100 VDU 23,233,&7E,&FF,&FF,&BD,&DB,&E7,&FF,&7E
 1110 VDU 19,0,3,0,0,0:REM 0=YELLOW
 1120 VDU 19,1,0,0,0,0:REM 1=BLACK
 1130 VDU 19,2,2,0,0,0:REM 2=GREEN
 1140 VDU 19,3,6,0,0,0:REM 3=CYAN
 1150 IF AGAIN THEN GOTO 1260
 1200 DIM X%(15),Y%(15)
 1205 MAX%=15
 1206 NUM%=8
 1208 PROCasmb
 1210 DIM T$(5)
 1220 DIM T(5)
 1230 FOR I=1 TO 5
 1240 T(I)=0
 1250 NEXT I
 1260 NO_FOOD=FALSE
 1270 NO_LIVES=FALSE
 1280 HIT=FALSE
 1290 C%=0:STOTAL%=0
 1300 SC=0:SN=0:FOOD=0
 1310 ENDPROC

 2000 DEF PROCdraw_scene
 2010 COLOUR 128+0
 2020 CLS
 2030 PROCdraw_snake
 2040 PROCdraw_pool(18,10)
 2045 COLOUR 128+3
 2060 IF FOOD=0 THEN FOOD=NUM%
 2070 COLOUR 1:PROCdraw_food(FOOD)
 2080 COLOUR 128+0
 2090 PRINT TAB(2,30);"Snake=";SN+1;" Screen=";
 SC+1;" Score=";STOTAL%+C%
 2095 GCOL 0,1
 2096 MOVE 0,156

117Tadpole

 2097 DRAW 1280,156
 2100 TIME=0
 2110 REPEAT UNTIL TIME>=RND(100)+100
 2120 ENDPROC

 2200 DEF PROCdraw_pool(X,Y)
 2210 COLOUR 128+3
 2220 PRINT TAB(X,Y);SPC(3);
 2230 PRINT TAB(X-1,Y+1);SPC(5);
 2240 PRINT TAB(X-2,Y+2);SPC(7);
 2250 PRINT TAB(X-2,Y+3);SPC(7);
 2260 PRINT TAB(X-2,Y+4);SPC(7);
 2270 PRINT TAB(X-1,Y+5);SPC(5);
 2280 PRINT TAB(X,Y+6);SPC(3);
 2290 ENDPROC

 2500 DEF PROCdraw_food(AMOUNT)
 2505 IF AMOUNT=0 THEN ENDPROC
 2510 FOR K=1 TO AMOUNT
 2520 U%=RND(7)+15
 2530 V%=RND(7)+9
 2540 IF FNC(U%,V%)<>3 THEN GOTO 2520
 2550 PRINT TAB(U%,V%);",";
 2555 FX%?K=U%:FY%?K=V%
 2560 NEXT K
 2570 IF AMOUNT=NUM% THEN ENDPROC
 2580 FOR K=AMOUNT+1 TO NUM%
 2585 NEXT K
 2590 ENDPROC

 2600 DEF PROCdraw_snake
 2610 COLOUR 128+0:COLOUR 1
 2620 X%=2:Y%=10
 2625 XH%=X%:YH%=Y%
 2630 H%=224
 2640 S%=225
 2650 T$=CHR$(226)
 2660 PRINT TAB(X%,Y%);T$;
 2670 X%(1)=X%:Y%(1)=Y%
 2680 FOR Q%=2 TO 10
 2690 X%=X%+1
 2700 PRINT TAB(X%,Y%);CHR$(S%);
 2710 X%(Q%)=X%:Y%(Q%)=Y%
 2720 NEXT Q%

118 The Electron Gamesmaster

 2730 X%=X%+1
 2740 PRINT TAB(X%,Y%);CHR$(H%);
 2750 X%(11)=X%:Y%(11)=Y%
 2760 Z%=1:Q%=11
 2770 XV%=1:YV%=0
 2780 ENDPROC

 3000 DEF PROCone_move
 3005 PROCmove_f
 3010 PROCget_direction
 3020 PROCupdate
 3030 ENDPROC

 3500 DEF PROCmove_f
 3510 A%=RND(NUM%)
 3520 B%=USR(move_f%)
 3530 IF ?FLAG%<>0 AND FX%?A%<>&FF THEN
 PROCfrog_gone
 3540 ENDPROC

 3900 DEF PROCfrog_gone
 3910 FX%?A%=&FF
 3920 FOOD=FOOD-1
 3930 IF FOOD<>0 THEN ENDPROC
 3935 STOTAL%=STOTAL%+C%
 3936 C%=0
 3940 IF SC=4 THEN NO_FOOD=TRUE:ENDPROC
 3950 SC=SC+1
 3960 PROCdraw_scene
 3970 ENDPROC

 4000 DEF PROCget_direction
 4010 IF INKEY(-58) THEN XV%=0:YV%=-1:S%=231:
 H%=230
 4020 IF INKEY(-42) THEN XV%=0:YV%=1:S%=233:
 H%=232
 4030 IF INKEY(-26) THEN XV%=-1:YV%=0:S%=228:
 H%=227
 4040 IF INKEY(-122) THEN XV%=1:YV%=0:S%=225:
 H%=224
 4045 IF ADVAL(-5)<>15 THEN GOTO 4045
 4046 SOUND 0,-15,6,1
 4047 SOUND 0,0,6,1
 4050 ENDPROC

119Tadpole

 4500 DEF PROCupdate
 4510 XH%=X%:YH%=Y%
 4520 X%=X%+XV%:Y%=Y%+YV%
 4530 IF X%>39 THEN X%=0
 4540 IF X%<0 THEN X%=39
 4550 IF Y%>26 THEN Y%=0
 4560 IF Y%<0 THEN Y%=26
 4570 IF FNC(X%,Y%)<>0 THEN PROChit
 4580 PRINT TAB(XH%,YH%);CHR$(S%);
 4590 PRINT TAB(X%,Y%);CHR$(H%);
 4600 Q%=Q%+1
 4610 IF Q%>MAX% THEN Q%=1
 4620 X%(Q%)=X%:Y%(Q%)=Y%
 4630 PRINT TAB(X%(Z%),Y%(Z%));" ";
 4640 Z%=Z%+1
 4650 IF Z%>MAX% THEN Z%=1
 4660 PRINT TAB(X%(Z%),Y%(Z%));T$;
 4670 ENDPROC

 5000 DEF PROChit
 5010 COL%=FNC(X%,Y%)
 5020 IF COL%=3 OR COL%=1 THEN PROCtoad_self
 5030 IF COL%=2 THEN PROCfrog
 5040 ENDPROC

 5500 DEF PROCtoad_self
 5505 SOUND 1,-15,10,20:SOUND 1,0,0,10
 5506 IF ADVAL(-6)<>15 THEN GOTO 5506
 5510 SOUND 1,-15,10,20:SOUND 1,0,0,10
 5520 SN=SN+1
 5530 IF SN>4 THEN STOTAL%=STOTAL%+C%:
 NO_LIVES=TRUE:ENDPROC
 5540 PROCdraw_scene
 5550 ENDPROC

 5600 DEF PROCfrog
 5610 SOUND 1,-15,250,1
 5620 C%=C%+1:FOOD=FOOD-1
 5630 PRINT TAB(2,30);"Snake=";SN+1;" Screen=";
 SC+1;" Score=";STOTAL%+C%
 5640 Z%=Z%-1
 5650 IF Z%<1 THEN Z%=MAX%
 5655 PROCrem_f
 5660 IF FOOD<>0 THEN ENDPROC
 5670 STOTAL%=STOTAL%+C%
 5680 C%=0

120 The Electron Gamesmaster

 5690 IF SC=4 THEN NO_FOOD=TRUE:ENDPROC
 5700 SC=SC+1
 5710 PROCdraw_scene
 5720 ENDPROC

 5800 DEF PROCrem_f
 5810 K%=0
 5820 REPEAT
 5830 K%=K%+1
 5840 UNTIL X%=FX%?K% AND Y%=FY%?K%
 5850 FX%?K%=&FF
 5860 ENDPROC

 6000 DEF PROCasmb
 6004 CODE%=&900
 6005 OSWORD%=&FFF1
 6010 OSWRCH%=&FFEE
 6016 ATEMP%=&70
 6017 FLAG%=&71
 6018 PARM%=&72:COL%=PARM%+4
 6019 FX%=&77:FY%=&80
 6020 FOR PASS=0 TO 3 STEP 3
 6030 P%=CODE%
 6040 [OPT PASS
 6050 .move_f% STA ATEMP%
 6060 JSR get_cords%
 6070 CPX #&FF
 6080 BNE skip1%
 6090 STX FLAG%
 6100 RTS
 6110 .skip1% JSR f_col%
 6120 CMP #3
 6130 BNE skip2%
 6140 LDA #128+3
 6150 JSR s_col%
 6160 .skip2% LDA COL%
 6170 CMP #1
 6180 BEQ skip3%
 6190 JSR tab%
 6200 LDA #32
 6210 JSR OSWRCH%
 6220 .skip3% JSR update%
 6230 JSR gone%
 6240 BCC skip4%
 6250 STA FLAG%

121Tadpole

 6260 RTS
 6270 .skip4% LDA #128
 6280 JSR s_col%
 6290 JSR f_col%
 6300 BNE skip3%
 6310 LDA #2
 6320 JSR s_col%
 6330 JSR tab%
 6340 LDA #229
 6350 JSR OSWRCH%
 6360 LDA #1
 6370 JSR s_col%
 6380 JSR s_cords%
 6390 LDA #0
 6400 STA FLAG%
 6410 RTS
 6420 \
 6440 LDY FY%,X
 6450 LDA FX%,X
 6460 TAX
 6470 RTS
 6480 \
 6500 LDA #0
 6510 STA PARM%+1
 6520 ASL PARM%:ROL PARM%+1
 6521 ASL PARM%:ROL PARM%+1
 6522 ASL PARM%:ROL PARM%+1
 6523 ASL PARM%:ROL PARM%+1
 6524 ASL PARM%:ROL PARM%+1
 6530 LDA #16
 6540 CLC
 6550 ADC PARM%
 6560 STA PARM%
 6565 LDA #0
 6566 ADC PARM%+1
 6567 STA PARM%+1
 6570 STY PARM%+2
 6590 LDA #0
 6600 STA PARM%+3
 6610 ASL PARM%+2:ROL PARM%+3
 6611 ASL PARM%+2:ROL PARM%+3
 6612 ASL PARM%+2:ROL PARM%+3
 6613 ASL PARM%+2:ROL PARM%+3

122 The Electron Gamesmaster

 6614 ASL PARM%+2:ROL PARM%+3
 6620 LDA #&F3
 6624 SEC
 6625 SBC PARM%+2
 6630 STA PARM%+2
 6631 LDA #&3
 6632 SBC PARM%+3
 6633 STA PARM%+3
 6650 TXA
 6660 PHA
 6670 TYA
 6680 PHA
 6690 LDX #(PARM% MOD 256)
 6700 LDY #(PARM% DIV 256)
 6710 LDA #9
 6720 JSR OSWORD%
 6730 PLA
 6740 TAY
 6750 PLA
 6760 TAX
 6770 LDA PARM%+4
 6780 RTS
 6790 \
 6801 LDA #17
 6802 JSR OSWRCH%
 6803 PLA
 6804 JSR OSWRCH%
 6805 RTS
 6806 \
 6808 JSR OSWRCH%
 6809 TXA
 6810 JSR OSWRCH%
 6811 TYA
 6812 JSR OSWRCH%
 6813 RTS
 6814 \
 6825 BPL u1%
 6830 DEX
 6835 DEX
 6840 .u1% INX
 6845 CPY #13
 6850 BPL u2%

123Tadpole

 6855 DEY
 6860 DEY
 6865 .u2% INY
 6870 RTS
 6875
 6882 BMI g1%
 6884 CPX #39
 6886 BPL g1%
 6888 CPY #0
 6890 BMI g1%
 6892 CPY #26
 6893 BPL g1%
 6894 CLC
 6895 RTS
 6896 .g1% LDA #&FF
 6897 SEC
 6898 RTS
 6899
 6901 LDX ATEMP%
 6902 STA FX%,X
 6903 TYA
 6904 STA FY%,X
 6905 RTS
 6910]
 6920 NEXT PASS
 6930 ENDPROC
 7000 DEF PROCend_game
 7010 CLS
 7020 COLOUR 1
 7030 IF STOTAL%<10 THEN PRINT TAB(3,10);
 "Demoted to slowworm":GOTO 7075
 7040 IF STOTAL%<20 THEN PRINT TAB(3,10);
 "The frogs don't have to worry":GOTO 7075
 7050 IF STOTAL%<30 THEN PRINT TAB(3,10);
 "Not bad for a grass snake":GOTO 7075
 7060 IF STOTAL%<35 THEN PRINT TAB(3,10);
 "Well slithered":GOTO 7075
 7070 PRINT TAB(3,10);"A venomous performance"
 7074 PRINT TAB(5);"you're a SUPER SNAKE"
 7075 *FX 15,0
 7080 FOR I=5 TO 1 STEP -1
 7090 IF STOTAL%>=T(I) THEN N=1
 7100 NEXT I
 7105 PRINT
 7110 IF N=0 THEN PRINT TAB(10);"You scored ";
 STOTAL%:GOTO 7500

124 The Electron Gamesmaster

 7120 PRINT TAB(10);"You are now ranked ";N
 7130 PRINT TAB(10);"in the snake league"
 7140 IF N=5 THEN GOTO 7200
 7150 FOR I=5 TO N+1 STEP -1
 7160 T(I)=T(I-1)
 7170 T$(I)=T$(I-1)
 7180 NEXT I
 7200 T(N)=STOTAL%
 7205 PRINT TAB(10);
 7210 INPUT "What is your name",T$(N)
 7220 CLS
 7230 FOR I=1 TO 5
 7240 PRINT TAB(5,I*2+5);T$(I);TAB(20);T(I)
 7250 NEXT I
 7500 PRINT
 7510 INPUT "Another slither Y/N",A$
 7520 IF LEFT$(A$,1)<>"Y" AND LEFT$(A$,1)<>"N"
 THEN GOTO 7510
 7530 IF LEFT$(A$,1)="N" THEN AGAIN=FALSE ELSE
 AGAIN=TRUE
 7540 ENDPROC

 8000 DEF PROCtitle
 8005 COLOUR 128+1:COLOUR 0
 8006 CLS
 8007 VDU 23,1,0;0;0;0;
 8010 PROCsnake(5)
 8020 PRINT TAB(2,10);
 8030 PRINT "You must guide your snake using
 the"
 8040 PRINT "four arrow keys and eat all the
 green"
 8050 PRINT "frogs ";
 8060 COLOUR 2:PRINT CHR$(229)
 8070 COLOUR 0
 8080 PRINT
 8090 PRINT " Don't fall in the water or try to"
 8120 PRINT "eat yourself or you will lose one
 of"
 8130 PRINT "your five lives"
 8140 PRINT
 8145 PRINT
 8150 PRINT "You get five screens of frogs to
 eat"
 8160 PRINT "before you become a SUPER SNAKE!!"
 8170 A$=INKEY$(2000)
 8200 ENDPROC

125Tadpole

 8500 DEF PROCsnake(X)
 8510 DATA 2,2,2,1,0,2,2,2,2,0,2,2,2,2
 8520 DATA 0,7,0,7,0,2,2,2,1
 8530 DATA 8,0,0,0,0,8,0,0,10,0,8,0,0,10
 8540 DATA 0,8,0,8,0,8,0,0,0
 8550 DATA 5,5,5,5,0,8,0,0,10,0,8,3,1,10
 8560 DATA 0,8,8,0,0,8,3,2,1
 8570 DATA 0,0,0,8,0,8,0,0,10,0,8,0,0,10
 8580 DATA 0,8,0,8,0,8,0,0,0
 8590 DATA 3,2,2,2,0,3,0,0,9,0,3,0,0,9
 8595 DATA 0,3,0,3,0,5,5,5,3
 8600 RESTORE
 8605 PRINT TAB(X,2)
 8610 FOR I=1 TO 5
 8620 PRINT TAB(X);
 8630 FOR J=1 TO 23
 8640 READ S
 8650 IF S=0 THEN PRINT " "; ELSE
 PRINT CHR$(223+S);
 8660 NEXT J
 8670 PRINT
 8680 NEXT I
 8690 ENDPROC

 9000 DEF FNC(X%,Y%)
 9010 X%=16+32*X%
 9020 Y%=1011-32*Y%
 9030 =POINT(X%,Y%)

Running the program

The program listed above is just too big to fit into the memory
available. The principle behind making it fit into a smaller amount of
space is simply to remove all the unnecessary assembly language in
PROCasmb. The assembly language contained in lines 6040 to 6910 is
only needed right at the start of the program when it is translated to
machine code and stored in memory starting at &900. After this
translation it is taking up precious memory that could otherwise be used
for BASIC instructions that still have a job to do. Taking this argument
one stage further it is not difficult to see that if the machine code could
be loaded into memory directly, then the assembly language that
produced it wouldn‹t be needed at the start of the program. This is
exactly how the program is made to fit into the available memory. First,
a version of the program is SAVEd which, instead of running the
assembler to create the machine code, loads it into memory using

126 The Electron Gamesmaster

*LOAD. Following this, a version of the program is produced that only
calls PROCasmb and then *SAVEs the resulting machine code ready
for the first program to *LOAD.

This is a complicated procedure and so it is worth giving step-by-
step instructions:

1. Save a version of the program as given in the complete listing
above – this is your master copy, so keep it safe.

2. Delete lines 6020 to 6920 in PROCasmb and add the following
lines:

6020 *LOAD MTAD
6030 move_f%=&900
6040 ENDPROC

SAVE this version under the name "TADPOLE" at the start of a
tape.

3. LOAD the master copy created in step 1 and make the following
changes to the main program:

20 MODE 6
45 STOP

Run the program and when it stops, type PRINT ~P%+1 and write
down the result. Then type

*SAVE MTAD 900 x
where x is the number that you wrote down. For later ease of use it
is better to save the machine code version MTAD on the same tape
that you used in step 2, following TADPOLE as closely as
possible.

4. Now you are ready to run the final version of Tadpole. Rewind the
tape generated in step 3; it should have both TADPOLE and
MTAD on it. Then type CHAIN "TADPOLE" and the BASIC part
of the program will load and begin running. As one of its first tasks
this will load the machine code in MTAD and this is the reason
that it is convenient to have the file MTAD following TADPOLE.

This procedure may sound a little complicated but once the tape has
been made up. the program can be loaded and run as easily as any
mber. The finishing touch would be to suppress the tape loading
message (by using OPT) so the user didn’t even know that the second
file was being loaded!

127Tadpole

Conclusion

This chapter has illustrated some of the problems inherent in trying to
produce large programs that use assembler when memory is limited. If
you feel like trying to extend the program any further then your biggest
headache will most certainly be how to fit any more into the space left
over. Perhaps at this stage you might consider converting the entire
program into assembler. If you prefer a little less work, an alternative
solution is to abandon Mode 1 for the two-colour Mode 4; not such a
pretty display but a much easier program.

128 The Electron Gamesmaster

Chapter Seven
Snakes and Ladders

In this chapter a traditional and well known game, Snakes and Ladders,
is given new life in a computer implementation. Traditional games are
an obvious source for anyone looking for new ideas for computer
games. Not only can they be implemented according to their original
rules, they often provide the starting point for games that could only be
played with the aid of a computer. As an example of this idea, at the
end of this chapter Snakes and Ladders is modified into a fast action
computer game that could never have been played using a board and
dice!

Snakes and Ladders is different from all the other games in this book
in that it apparently doesn’t involve animation. It is true that the main
difficulty in implementing Snakes and Ladders lies in the construction
of the graphics and the board, however many of the techniques of
animation introduced in earlier chapters prove useful.

The game design

The form and rules of Snakes and Ladders are known to nearly
everyone and the only real issues of game design concern how it should
be transferred to computer. The traditional version of the game consists
of a board divided into squares with snakes and ladders connecting
squares in different rows. The game is usually played by more than one
person at a time and the object is to be first to move a counter from the
first square at the bottom left of the board to the final square at the top
left. The players move alternately and the number of squares moved is
governed by the fall of a dice – if a move lands a player on a snake’s
head then the player moves backwards to the position occupied by the
snake’s tail. Similarly if a move ends at the foot of a ladder then the
player moves forward to the square containing the top of the ladder. In
other words, if you land on the head of a snake you slide down it but if
you land at the foot of a ladder you climb up it.

In the computer version of the game it would add to the interest to
have the board created anew with a random layout of snakes and
ladders each time the game is played. Also, the current position of each
player could be marked using a man-shaped graphics character and this
suggests various possibilities for animating the character sliding down
snakes and climbing up ladders! Other obvious tasks for the program
are keeping track of whose turn it is and even generating random
numbers to eliminate the need for a dice!

As already mentioned, the main challenge in implementing Snakes
and Ladders is in designing and handling the graphics that make up the
individual snakes and ladders. An example of a Snakes and Ladders
board generated by the program can be seen in Fig. 7.1. The snakes and
the ladders are produced using a number of different graphics
characters printed in combination. Not only are the starting positions of
the Snakes and Ladders random but so are their lengths.

Fig. 7.1.

The only real problem in constructing the board is making sure that
snakes and ladders do not ‘clash’ that is, cross over each other. There
are two main ways of achieving this separation. Firstly, the position of
the start and end of every snake and every ladder could be recorded in
an array and every time something was about to be added to the board
the array could be examined to see if it overlapped with anything
already on the board. The second method is simply to examine every

130 The Electron Gamesmaster

chacter position on the screen where a new object is going to be printed
to make sure that they are all blanks. In practice, unless speed is of
extreme importance it is always simpler to examine what is already on
screen. However, although this method is simple in theory there are a
number of practical difficulties to be overcome and these are described
in later sections. The same method of examining which character is
already printed on the screen can be used to discover if a player has
landed on snake’s head of the foot of a ladder. In fact you could say that
the whole basis of the Snakes and Ladders program is finding out what
character is already printed on the screen!

The main program

Although Snakes and Ladders isn’t a dynamic graphics game its main
program still has the (by now) familiar form:

 10 REM Snakes and Ladders
 20 MODE 4
 30 PROCinit
 40 PROCtitle
 50 MODE 5:PROCcolour
 60 PROCp_sandl
 70 PROCstart
 80 REPEAT
 90 I%=0:PROCthrow(I%)
 100 IF NOT HOME THEN I%=1:PROCthrow(I%)
 110 UNTIL HOME
 120 PROCendgame
 130 IF AGAIN=TRUE THEN RUN
 140 END

Mode 5 is used (line 50) for Snakes and Ladders because it certainly
needs four colours and the board can be made to fit into the 20 by 32
screen. Indeed in this case the large size of the characters in mode 5 is a
positive advantage in producing a bold Snakes and Ladders board.
However, mode 4 (line 20) is used to print the title frame because it is
difficult to produce good looking text using only 20 columns. The use
of two different modes in the program means that it is necessary to set
the logical to physical colour in a procedure that is separate from
PROCinit. After mode 5 is selected line 60 calls PROCp_sandl which
prints the Snakes and Ladders board on the screen. Following this,

131Snakes and Ladders

PROCstart is called to initialise some of the variables for running the
game. Each time through the loop both players make one move. Line
90 calls PROCthrow to allow player zero a chance to move and line
100 calls PROCthrow to allow player one a chance to move. The
variable HOME is used to indicate that one of the players has reached
the top left hand corner of the board. Finally, when the game is over
line 120 calls PROCendgame and line 130 either restarts the entire
game or brings it to an end depending on the state of AGAIN.

PROCinit, PROCtitle and PROCcolour

PROCinit simply sets up the graphics characters and arrays used in
Snakes and Ladders:

 1000 DEF PROCinit
 1010 VDU 23,224,&00,&02,&7F,&6C,&74,&7C,&FC,&C0
 1020 VDU 23,225,&03,&03,&03,&03,&03,&07,&FE,&FC
 1030 VDU 23,226,&00,&00,&00,&00,&00,&00,&01,&03
 1040 VDU 23,227,&03,&03,&1F,&3E,&20,&00,&00,&00
 1050 VDU 23,228,&00,&00,&06,&03,&01,&23,&36,&1C
 1060 VDU 23,229,&98,&3C,&66,&CF,&D9,&73,&36,&1C
 1070 VDU 23,230,&00,&00,&00,&00,&80,&C0,&60,&F0
 1080 VDU 23,231,&0D,&07,&03,&01,&00,&00,&00,&00
 1090 VDU 23,232,&98,&3C,&66,&C0,&C0,&60,&00,&00
 1100 VDU 23,233,&18,&18,&7E,&18,&3C,&24,&24,&66
 1150 DIM VX%(1),N$(1)
 1160 DIM X%(1),Y%(1),Q%(1)
 1170 ENDPROC

The way the graphics characters go together to make a snake or a
ladder is quite complicated and can be best understood from Fig. 7.2.
The arrays X% and Y% are used to hold the co-ordinate of the man
shape CHR$(233) for each player. What the arrays VX% and Q% are
used for is easier to describe later on along with the method of making
each move. The string array N$ is used to hold the names of each of the
players: N$(0) holds the name of player zero and N$(1) holds the name
of player one.

PROCtitle prints instructions about how to play the game and also
asks the players for their names and whether they want to use a real
dice or not.

132 The Electron Gamesmaster

Fig. 7.2. Graphics characters for (a) snake and (b) ladder

 8000 DEF PROCtitle
 8010 COLOUR 128+0
 8020 COLOUR 1
 8025 CLS
 8030 PRINT TAB(3,3)"S N A K E S A N D
 L A D D E R S"
 8040 PRINT TAB(0,10);
 8050 PRINT TAB(3);"This is a game for two
 players"
 8060 PRINT TAB(2);"The first player to reach
 the top"
 8070 PRINT TAB(2);"left of the board wins!!"
 8080 PRINT TAB(0,20);

133Snakes and Ladders

 8090 INPUT "Do you want to use a real dice",A$
 8100 A$=LEFT$(A$,1)
 8110 IF A$<>"Y" AND A$<>"N" THEN GOTO 8010
 8120 IF A$="Y" THEN DICE=TRUE ELSE DICE=FALSE
 8140 PRINT TAB(0,25);
 8150 INPUT "What is the first players
 name",N$(0)

 8155 PRINT TAB(0,27)
 8160 INPUT "What is the second players
 name",N$(1)
 8170 ENDPROC

Lines 8080 to 8120 set the variable DICE according to whether the
players want to use a real dice (DICE=TRUE) or have the computer
generate random numbers (DICE=FALSE). Lines 8150 to 8160 get the
players’ names and store them into N$(0) and N$(1).

In the earlier games, PROCcolour has been part of PROCinit
because there was no reason to set the logical to physical colours apart
from at the very start of the game.

 1500 DEF PROCcolour
 1510 VDU 19,0,0,0,0,0:REM 0=BLACK
 1520 VDU 19,1,1,0,0,0:REM 1=RED
 1530 VDU 19,2,2,0,0,0:REM 2=GREEN
 1540 VDU 19,3,7,0,0,0:REM 3=WHITE
 1550 ENDPROC

Black and red are used for the board, green is used for the snakes and
one of the men, and white is used for the ladders and the other man.

Printing the board � PROCp_sandl and its associated
procedures

The purpose of PROCp_sandl is to print the board complete with
snakes and ladders. It does this mainly by calls to other procedures:

 2500 DEF PROCp_sandl
 2510 PROCp_squares
 2520 FOR S%=1 TO 3+RND(2)
 2530 COLOUR 2:PROCmake_snake
 2540 COLOUR 3:PROCmake_ladder
 2545 NEXT S%
 2550 ENDPROC

134 The Electron Gamesmaster

PROCp_squares prints the pattern of black and red squares that makes
up the board. PROCmake_snake and PROCmake_ladder each print a
single snake and a single ladder respectively. The FOR loop, lines 2520
to 2545, calls PROCmake_snake and PROCmake_ladder a random
number of times between 3 and 5.

PROCp_squares is fairly straightforward:

 2000 DEF PROCp_squares
 2010 COLOUR 128
 2020 CLS
 2024 VDU 23,1,0;0;0;0;
 2025 C%=0
 2030 FOR Y%=1 TO 23 STEP 2
 2040 FOR X%=1 TO 18 STEP 2
 2045 COLOUR 129+C%
 2046 C%=NOT C%
 2050 PRINT TAB(X%,Y%);SPC(2);
 2051 PRINT TAB(X%,Y%+1);SPC(2);
 2060 NEXT X%
 2070 NEXT Y%
 2080 ENDPROC

Each of the squares that make up the board is composed of four blanks.
These are alternately printed in black and red by using the variable C%
to set the colour (in line 2045).

PROCmake_snake looks a little complicated but this is only because
of the large number of PRINT statements necessary to print a snake:

 3000 DEF PROCmake_snake
 3005 TRY=0
 3010 X%=RND(6)+2:Y%=RND(9)
 3015 IF X%-1<(10-Y%) THEN L%=RND(X%-2)+1
 ELSE L%=RND(9-Y%)+1
 3016 IF TRY>20 THEN ENDPROC ELSE TRY=TRY+1
 3020 IF FNclash(X%,Y%,L%,-1) THEN GOTO 3010
 3040 PROCprint(X%*2,Y%*2,224)
 3045 PROCprint(X%*2-1,Y%*2,226)
 3050 FOR Z%=X%-1 TO X%-L%+2 STEP -1
 3055 Y%=Y%+1
 3060 PROCprint(Z%*2+1,Y%*2-1,225)
 3065 PROCprint(Z%*2,Y%*2-1,226)
 3070 PROCprint(Z%*2,Y%*2,225)
 3075 PROCprint(Z%*2-1,Y%*2,226)

135Snakes and Ladders

 3080 NEXT Z%
 3085 Y%=Y%+1
 3086 PROCprint(Z%*2+1,Y%*2-1,227)
 3090 ENDPROC

Line 3010 generates two random numbers that specify the starting
position of a snake. Line 30 15 then generates another random number
in L% that determines the length of the snake. The IF statement makes
sure that L% is not so large that the snake goes off the edge of the
board. Line 3020 uses the function FN clash to check whether or not
the snake specified by X%, Y% and L% crosses any other snake or a
ladder. If it does, then control is passed back to line 3010 and another
set of random values of X%, Y% and L% are tried. In this way various
starting positions and lengths of snake are tried until one is found that
fits. that is, one that can be printed without overlaying any snakes or
ladders that are already on the board. As there is no guarantee that a
snake that fits will be found in a reasonable amount of time, the
variable TRY is used to count the number of attempts. Line 3016 makes
PROCmake_snake give up after 20 tries. Once a snake that fits has
been found, lines 3040 to 3086 print the combination of characters to
make it appear on the board. PROCprint is used rather than a simple
print statement because of the need to select the correct background
colour to match the colour already present in the character location.
That is, where the snake is positioned in a red square, PROCprint will
use a red background and where it is positioned in a black square
PROCprint will use a black background.

PROCmake ladder works in roughly the same way as PROC
make_snake:

 3500 DEF PROCmake_ladder
 3505 TRY=0
 3510 X%=RND(7):Y%=RND(9)
 3515 IF TRY>20 THEN ENDPROC ELSE TRY=TRY+1
 3520 IF 9-X%<11-Y% THEN L%=(9-X%) ELSE
 L%=(11-Y%)
 3530 IF FNclash(X%,Y%,L%,1) THEN GOTO 3510
 3540 PROCprint(X%*2,Y%*2,228)
 3541 PROCprint(X%*2+1,Y%*2,230)
 3542 PROCprint(X%*2,Y%*2+1,231)
 3546 Y%=Y%+1
 3550 FOR Z%=X%+1 TO X%+L%-2
 3555 PROCprint(Z%*2-1,Y%*2-1,229)
 3560 PROCprint(Z%*2,Y%*2,229)

136 The Electron Gamesmaster

 3565 PROCprint(Z%*2+1,Y%*2,230)
 3566 PROCprint(Z%*2,Y%*2+1,231)
 3567 PROCprint(Z%*2,Y%*2-1,230)
 3568 PROCprint(Z%*2-1,Y%*2,231)
 3580 Y%=Y%+1
 3590 NEXT Z%
 3610 PROCprint(Z%*2-1,Y%*2-1,232)
 3630 ENDPROC

Lines 3505 to 3530 find values of X%, Y%, and L% that produce a
ladder that doesn’t interfere with any ladders or snakes already printed
on the screen. Lines 3540 to 3610 print the combination of characters
that produces a ladder.

FNclash works by examining what is already printed on the screen in
every character location that would be affected by printing a ladder or a
snake.

 9000 DEF FNclash(X%,Y%,L%,D%)
 9005 LOCAL T%
 9006 T%=FALSE
 9007 E%=2*(X%+D%*L%)+D%:X%=X%*2-D%:Y%=Y%*2-1
 9010 REPEAT
 9020 IF FNchar(X%,Y%)<>32 THEN T%=TRUE
 9025 IF FNchar(X%+1,Y%)<>32 THEN T%=TRUE
 9026 IF FNchar(X%-1,Y%)<>32 THEN T%=TRUE
 9030 X%=X%+D%:Y%=Y%+1
 9040 UNTIL X%=E% OR T%=TRUE
 9050 =T%

Line 9007 works out which character locations have to be examined.
Lines 9010 to 9040 then proceed to examine each location in turn until
either the last location has been examined or until a non-blank character
is found. Lines 9020 to 9026 do the actual examination of what is
already printed at each character location using another function,
FNchar. FNchar(X%,Y%) returns the ASCII code of the character
printed at X%, Y%. However, for the user-defined graphics characters
corresponding to ASCII codes 224 to 233 you will discover that FNchar
returns codes in the range 128 to 137. The reason for this is that, unless
memory is set aside for more than the standard set of user defined
characters. ASCII codes 128, 160. 192 and 224 all produce the same
character. Similarly. ASCII codes 129, 161, 193 and 225 all produce the
same character and so on. The function FNchar simply returns the
lowest ASCII value that will produce the churacter on the screen at

137Snakes and Ladders

X%,Y% and this has to be allowed for when testing for the presence of
user defined characters (see later).

FNchar is based on the function given in the User Guide in
connection with OSBYTE 135.

 9700 DEF FNchar(X%,Y%)
 9710 LOCAL A%
 9715 COLOUR 128+FNC(X%,Y%)
 9720 VDU 31,X%,Y%
 9730 A%=135
 9740 =(USR(&FFF4) AND &FF00) DIV &100

Line 9720 moves the text cursor to X%, Y% and then lines 9730 and
9740 simply make a call to OSBYTE with A set to 135. OSBYTE 135
will return the ASCII code of the character printed at X%,Y%, or 0 if
the character is not recognisable. Line 9715 uses the, by now, familiar
function FNC to set the background colour to whatever colour is
already on the screen at X%,Y%

The reason why the background colour has to be set in this way is u
consequence of the way OSBYTE 135 works. OSBYTE 135 reads the
colours of each of the pixels in the eight-by-eight character location at
X%,Y% and classifies them into foreground and background pixels, All
the pixels on the screen that are the same colour as the background
colour, as set by the last COLOUR statement, are classified as
background points and the rest are classified as foreground points. This
means that if the background colour has changed since the character
was printed, OSBYTE 135 may not be able to recognise it. For
example, if a space character, ASCII code 32, is printed using
background colour 129 and OSBYTE 135 is immediately called to
identify it, then all of the pixels in the eight-by-eight character location
will be classified as background pixels and OSBYTE 135 will match it
with the space character in other words it will return 32. However, if
the background colour is changed to 130 after the space is printed and
then OSBYTE 135 is called, all of the pixels will be classified as
foreground pixels and, unless there is a ‘solid block’ character defined,
OSBYTE 135 will fail to recognise it and return 0 as the result. FNchar
avoids this problem by always setting the background colour to the
colour of one of the pixels within the character location. This trick only
works if the pixel examined is always a background pixel and this is
where FNC comes in:

 9500 DEF FNC(X%,Y%)
 9510 X%=8+64*X%

138 The Electron Gamesmaster

 9520 Y%=1023-32*Y%
 9530 =POINT(X%,Y%)

This version of FNC the pixel that is examined is the second pixel in
the top row of the character location at X%,Y% and if you examine all
the user-defined character definitions you will find that this pixel is a
background pixel in all of them!

PROCprint also uses FNC to set the background colour to the colour
that is already on the screen:

 9600 DEF PROCprint(X%,Y%,C%)
 9610 COLOUR 128+FNC(X%,Y%)
 9620 PRINT TAB(X%,Y%);CHR$(C%);
 9630 ENDPROC

This procedure will print CHR$(C%) at character location X%,Y%
using the background colour that is already present.

There is another and simpler way of achieving the same result, by
using VDU 5. This VDU code causes the text screen and the high
resolution graphics to behave in the same way. For example, following
VDU 5 the position at which text appears on the screen is controlled by
the graphics cursor rather than the text cursor. A side effect of VDU 5 is
that text can be printed in such a way that it ‘overlays’ rather than
replaces what is already on the screen. In other words, you can
automatically preserve the background colour following VDU 5.
However, the difficulties involved in working with high resolution
graphics co-ordinates when printing text characters is something worth
avoiding if at all possible! There is also the disadvantage that printing
takes longer after a VDU 5 code. All in all, PROCprint seems like a
good way of preserving the background colour without too much
difficulty.

PROCstart

PROCstart initialises the arrays used later in the program and prints the
two man shapes at their starting positions:

 3700 DEF PROCstart
 3710 FOR I%=0 TO 1
 3720 X%(I%)=1:Y%(I%)=12
 3730 Q%(I%)=32:VX%(I%)=+1

139Snakes and Ladders

 3735 COLOUR 2+I%
 3736 PROCprint(X%(I%)*2-I%,Y%(I%)*2,233)
 3740 NEXT I%
 3750 HOME=FALSE
 3770 ENDPROC

As already mentioned, X% and Y% are used to hold the positions of the
two players’ man characters. Although each square of the board is
composed of four character locations the positions are recorded so that
X%(I%)*2,Y%(I%)*2 is the bottom right hand character of the square
in the X%(I%)th column and Y%(I%)th row of the board. The array
VX% is used to store the direction of motion of each man character. At
each update the position of the I% player’s man is changed to:

X%(I%)=X%(I%)+VX%(I%)
Y%(I%)=Y%(I%)-1

The array Q% is used to store the ASCII code of the blanking character
to be used at the next move of the I%th man character. In all the earlier
games, characters that moved did so against a clear background and so
each time through the animation loop it could be blanked out using n
space character of the appropriate colour. However, the man characters
in Snakes and Ladders move on a background that consist of a wide
range of different characters. In this case it is necessary to save the
character that is present in the character location before one of the man
characters is printed, and restore it when the man character moves to
another location. In other words, the character used to blank a man
character at its old position depends on what was present at the location
before the man was printed. As the initial position of the man characters
is a blank square, Q%(I%) is initialised to 32, the ASCII code for a
space, by line 3730.

Moving men � PROCthrow and its associated procedures

Once the board is printed and the man characters set up at their starting
positions, PROCthrow is called repeatedly to move them around the
board:

 5000 DEF PROCthrow(I%)
 5010 IF DICE THEN PROCdice1 ELSE PROCdice2
 5020 REPEAT
 5030 PROCone_move(I%)

140 The Electron Gamesmaster

 5035 SOUND 1,-15,80+I%*8,2
 5040 M%=M%-1
 5050 HOME%=(X%(I%)=1 AND Y%(I%)=1)
 5060 UNTIL M%=0 OR HOME
 5065 IF SNAKE AND LADDER THEN PROCchoose
 5070 IF SNAKE THEN PROCupdown(I%,+1,131)
 5080 IF LADDER THEN PROCupdown(I%,-1,132)
 5090 HOME=(X%(I%)=1 AND Y%(I%)=1)
 5100 ENDPROC

Depending on the value of DICE, line 3010 calls one of the two dice
procedures either to ask player 195 the result of throwing a real dice
PROCdice1) or to generate a random number to simulate the throw of a
dice (PROCdice2). No matter which dice procedure is called, the result
is returned in M% and lines 5030 to 5060 then move man 195 by M%
squares. A move of a single square is produced by calling
PROCone_move (line 3030) and line 5050 checks to see if the move
has resulted in the man reaching the top right hand square. After each
call ROCone_move sets SNAKE to TRUE if the man has landed on a
snake’s head and LADDER to TRUE if the man has landed at the foot
of a ladder. Lines 5065 to 5080 check for the man landing on a snake or
a ladder as a result of the last move. Line 5065 resolves the problem
caused by landing on a square that contains both a snake’s head and the
foot of a ladder by calling PROCchoose, which chooses either the
ladder or the snake at random. PROCupdown deals with making the
man either slide down a snake or climb up a ladder (lines 5070 and
5080).

PROCone move has three different tasks to carry out. It has to look
after the blanking of the man character at its old position, update the
co-ordinates taking account of what happens when the man reaches the
edge of the board and test for the presence of a snake’s head of the start
of a ladder within the new square.

 4000 DEF PROCone_move(I%)
 4010 PROCblank(I%,X%(I%)*2-I%,Y%(I%)*2)
 4020 X%(I%)=X%(I%)+VX%(I%)
 4030 IF X%(I%)>9 THEN X%(I%)=9:
 Y%(I%)=Y%(I%)-1:VX%(I%)=-VX%(I%)
 4040 IF X%(I%)<1 THEN X%(I%)=1:
 Y%(I%)=Y%(I%)-1:VX%(I%)=-VX%(I%)
 4050 Q%(I%)=FNchar(X%(I%)*2-I%,Y%(I%)*2)
 4055 IF FNchar(X%(I%)*2,Y%(I%)*2)=128 THEN
 SNAKE=TRUE ELSE SNAKE=FALSE
 4056 IF FNchar(X%(I%)*2-1,Y%(I%)*2-1)=136
 THEN LADDER=TRUE ELSE LADDER=FALSE
 4060 COLOUR 2+I%

141Snakes and Ladders

 4070 PROCprint(X%(I%)*2-I%,Y%(I%)*2,233)
 4080 ENDPROC

The blanking of the man character at its old position is taken care of by
line 4010 which calls PROCblank antd line 4050 which saves the
ASCII code of the character currently on the screen in Q%(I%) ready to
be used the next time PROCone_move is called. The update of the co-
ordinates of the man character is implemented by lines 4020 to 4040.
You should be able to recognise lines 4030 and 4040 as a sort of
‘bounce’ off the edge of the board. That is, on reaching the edge of the
board the man moves up by one row (i.e. Y%(I%)=Y%(I%)−1) and its
direction of motion is reversed (i.e. VX%(I%)=−VX%(I%)). Finally,
lines 4053 and 4056 check for a snake’s head and the foot of a ladder
respectively and then line 4070 prints the man at its new position.

This leaves a number of small procedures and one large procedure,
PROCupdown, to describe. Before moving on to PROCupdown it is
better to deal with the smaller procedures. PROCdice1 asks for the
result of throwing a real dice:

 5500 DEF PROCdice1
 5501 COLOUR 128:COLOUR 2+I%
 5505 PRINT TAB(0,27);SPC(60);
 5510 PRINT TAB(0,27);"It's your throw"
 5520 PRINT " -";N$(I%)
 5530 INPUT "What did you get ",M%
 5540 IF M%<1 OR M%>6 THEN GOTO 5510
 5550 ENDPROC

PROCdice2 uses the RND function to supply a random number instead
of throwing a real dice:

 5600 DEF PROCdice2
 5601 COLOUR 128:COLOUR 2+I%
 5610 PRINT TAB(0,28);SPC(60);
 5620 PRINT TAB(0,28);"It's your throw"
 5630 PRINT " -";N$(I%)
 5640 PRINT "PRESS ANY KEY"
 5645 *FX 15,0
 5650 REPEAT
 5660 M%=RND(6)
 5670 PRINT TAB(0,31);M%;
 5680 UNTIL INKEY(0)<>-1
 5690 ENDPROC

142 The Electron Gamesmaster

Lines 5650 to 5680 print random numbers in the range 1 to 6 until the
player presses a key.

PROCchoose sets one of SNAKE or LADDER to FALSE at random
so choosing one of the two possibilities:

 5200 DEF PROCchoose
 5210 IF RND(1)>.5 THEN LADDER=FALSE ELSE
 SNAKE=FALSE
 5220 ENDPROC

Finally PROCblank(I%,X%,Y%) will print the original character at
X%,Y% to blank out player I%’s man character:

 4500 DEF PROCblank(I%,X%,Y%)
 4510 IF Q%(I%)>127 AND Q%(I%)<132 THEN COLOUR 2
 4520 IF Q%(I%)>131 AND Q%(I%)<137 THEN COLOUR 3
 4525 IF Q%(I%)=137 THEN COLOUR 3-I%
 4530 PROCprint(X%,Y%,Q%(I%))
 4540 ENDPROC

Lines 4510 to 4525 select the correct foreground colour for the
character, green for part of a snake, white for part of a ladder and the
appropriate colour for either of the man characters. Then line 4530 uses
PROCprint to restore the character using the correct background colour.

The final procedure concerned with moving the man characters is
PROCupdown. This makes the man either slide down a snake or climb
up a ladder:

 6000 DEF PROCupdown(I%,D%,C%)
 6010 LOCAL X%,Y%
 6020 PROCblank(I%,X%(I%)*2-I%,Y%(I%)*2)
 6030 X%=X%(I%)*2:Y%=Y%(I%)*2
 6040 REPEAT
 6050 Q%(I%)=FNchar(X%,Y%)
 6055 COLOUR 2+I%
 6060 PROCprint(X%,Y%,233)
 6065 SOUND 1,-15,50-2*Y%,2
 6070 PROCblank(I%,X%,Y%)
 6080 X%=X%-1:Y%=Y%+D%
 6090 UNTIL Q%(I%)=C% OR FNon_man
 6095 X%=X%+1:Y%=Y%-D%
 6100 PROCblank(I%,X%,Y%)
 6110 X%(I%)=X% DIV 2
 6120 Y%(I%)=Y% DIV 2
 6125 IF D%=1 THEN Y%(I%)=Y%(I%)+1:
 X%(I%)=X%(I%)+1

143Snakes and Ladders

 6130 Q%(I%)=FNchar(X%(I%)*2-I%,Y%(I%)*2)
 6135 COLOUR 2+I%
 6140 PROCprint(X%(I%)*2-I%,Y%(I%)*2,233)
 6150 IF (Y%(I%) DIV 2)*2=Y%(I%) THEN
 VX%(I%)=1 ELSE VX%(I%)=-1
 6160 ENDPROC

The way PROCupdown works is simply by printing the man character
at each position on the snake or the ladder using PROCblank to blank
out the old version of the man (lines 6020, 6070 and 6100), making
appropriate sound effects on the way (line 6065), until the character
that marks the end of the snake or ladder is found (line 6090). The
value Of D9% controls whether the man is moved up a ladder (D%=1)
or down a snake (D%=−1) and C% is the ASCII code of the final
character of a ladder or of a snake. The only complication is that there
may not be a final character on the ladder that the man is climbing up.
The reason for this is that the other man character may be positioned
anywhere along the ladder just because the ladder happens to pass
through the square that the man occupies. To deal with this, FNon_man
is called to examine the character that originally occupied the location:

 6500 DEF FNon_man
 6510 LOCAL J%
 6515 IF Q%(I%)<>137 THEN =FALSE
 6520 IF I%=1 THEN J%=0 ELSE J%=1
 6530 IF Q%(J%)=132 THEN =TRUE ELSE=FALSE

This concludes the description of the move logic part of Snakes and
Ladders and it has to be admitted that much of it was developed as a
result of problems that arose during testing. For example, the situation
Where one man is climbing a ladder that the other man is already at the
top of was not foreseen in the early planning of the program and
FNon_man was added as an afterthought. This is in fact very much the
way that the development of a program in which many different things
can happen at random often proceeds. It is almost impossible to be
aware of every rare event that might happen before a program is written
but as long as you have used a modular structure then it should be easy
to add new procedures to cope with situations as they arise.

144 The Electron Gamesmaster

PROCendgame

PROCendgame simply congratulates the player who is first home and
asks if another game is required:

 8500 DEF PROCendgame
 8505 *FX 15,0
 8510 COLOUR 128:COLOUR 2+I%
 8520 PRINT TAB(0,27);SPC(99);
 8525 PRINT TAB(0,27);
 8530 PRINT "You win ";N$(I%)
 8535 PRINT TAB(0,28);
 8540 INPUT "Another game ",A$
 8550 A$=LEFT$(A$,1)
 8560 IF A$<>"Y" AND A$<>"N" THEN GOTO 8535
 8570 IF A$="Y" THEN AGAIN=TRUE ELSE AGAIN=FALSE
 8580 ENDPROC

Conclusion

The final program works very quickly and for a mode 5 program has
good and effective graphics. There is still plenty of scope for
improvement and plenty of memory left to do it in! For example, the
game seems to encourage more personal involvement when a real dice
is used in place of the random number generator. This suggests that the
addition of a simulated dice on the screen might improve the game. The
biggest problem with the game is that the outcome of the game is
entirely a matter of chance and while this is fun, and even interesting
for a while, it doesn’t really present any challenge or require any skill
to play. This problem can only be dealt with by changing the nature of
the game quite a lot. The final part of this chapter gives the
modifications necessary for one such new game. Meanwhile, however,
the computer version of the traditional Snakes and Ladders game is
ready to be played.

The complete listing

 10 REM Snakes and Ladders
 20 MODE 4
 30 PROCinit
 40 PROCtitle
 50 MODE 5:PROCcolour

145Snakes and Ladders

 60 PROCp_sandl
 70 PROCstart
 80 REPEAT
 90 I%=0:PROCthrow(I%)
 100 IF NOT HOME THEN I%=1:PROCthrow(I%)
 110 UNTIL HOME
 120 PROCendgame
 130 IF AGAIN=TRUE THEN RUN
 140 END

 1000 DEF PROCinit
 1010 VDU 23,224,&00,&02,&7F,&6C,&74,&7C,&FC,&C0
 1020 VDU 23,225,&03,&03,&03,&03,&03,&07,&FE,&FC
 1030 VDU 23,226,&00,&00,&00,&00,&00,&00,&01,&03
 1040 VDU 23,227,&03,&03,&1F,&3E,&20,&00,&00,&00
 1050 VDU 23,228,&00,&00,&06,&03,&01,&23,&36,&1C
 1060 VDU 23,229,&98,&3C,&66,&CF,&D9,&73,&36,&1C
 1070 VDU 23,230,&00,&00,&00,&00,&80,&C0,&60,&F0
 1080 VDU 23,231,&0D,&07,&03,&01,&00,&00,&00,&00
 1090 VDU 23,232,&98,&3C,&66,&C0,&C0,&60,&00,&00
 1100 VDU 23,233,&18,&18,&7E,&18,&3C,&24,&24,&66
 1150 DIM VX%(1),N$(1)
 1160 DIM X%(1),Y%(1),Q%(1)
 1170 ENDPROC

 1500 DEF PROCcolour
 1510 VDU 19,0,0,0,0,0:REM 0=BLACK
 1520 VDU 19,1,1,0,0,0:REM 1=RED
 1530 VDU 19,2,2,0,0,0:REM 2=GREEN
 1540 VDU 19,3,7,0,0,0:REM 3=WHITE
 1550 ENDPROC

 2000 DEF PROCp_squares
 2010 COLOUR 128
 2020 CLS
 2024 VDU 23,1,0;0;0;0;
 2025 C%=0
 2030 FOR Y%=1 TO 23 STEP 2
 2040 FOR X%=1 TO 18 STEP 2
 2045 COLOUR 129+C%
 2046 C%=NOT C%
 2050 PRINT TAB(X%,Y%);SPC(2);
 2051 PRINT TAB(X%,Y%+1);SPC(2);
 2060 NEXT X%

146 The Electron Gamesmaster

 2070 NEXT Y%
 2080 ENDPROC

 2500 DEF PROCp_sandl
 2510 PROCp_squares
 2520 FOR S%=1 TO 3+RND(2)
 2530 COLOUR 2:PROCmake_snake
 2540 COLOUR 3:PROCmake_ladder
 2545 NEXT S%
 2550 ENDPROC

 3000 DEF PROCmake_snake
 3005 TRY=0
 3010 X%=RND(6)+2:Y%=RND(9)
 3015 IF X%-1<(10-Y%) THEN L%=RND(X%-2)+1
 ELSE L%=RND(9-Y%)+1
 3016 IF TRY>20 THEN ENDPROC ELSE TRY=TRY+1
 3020 IF FNclash(X%,Y%,L%,-1) THEN GOTO 3010
 3040 PROCprint(X%*2,Y%*2,224)
 3045 PROCprint(X%*2-1,Y%*2,226)
 3050 FOR Z%=X%-1 TO X%-L%+2 STEP -1
 3055 Y%=Y%+1
 3060 PROCprint(Z%*2+1,Y%*2-1,225)
 3065 PROCprint(Z%*2,Y%*2-1,226)
 3070 PROCprint(Z%*2,Y%*2,225)
 3075 PROCprint(Z%*2-1,Y%*2,226)
 3080 NEXT Z%
 3085 Y%=Y%+1
 3086 PROCprint(Z%*2+1,Y%*2-1,227)
 3090 ENDPROC

 3500 DEF PROCmake_ladder
 3505 TRY=0
 3510 X%=RND(7):Y%=RND(9)
 3515 IF TRY>20 THEN ENDPROC ELSE TRY=TRY+1
 3520 IF 9-X%<11-Y% THEN L%=(9-X%) ELSE
 L%=(11-Y%)
 3530 IF FNclash(X%,Y%,L%,1) THEN GOTO 3510
 3540 PROCprint(X%*2,Y%*2,228)
 3541 PROCprint(X%*2+1,Y%*2,230)
 3542 PROCprint(X%*2,Y%*2+1,231)
 3546 Y%=Y%+1
 3550 FOR Z%=X%+1 TO X%+L%-2
 3555 PROCprint(Z%*2-1,Y%*2-1,229)

147Snakes and Ladders

 3560 PROCprint(Z%*2,Y%*2,229)
 3565 PROCprint(Z%*2+1,Y%*2,230)
 3566 PROCprint(Z%*2,Y%*2+1,231)
 3567 PROCprint(Z%*2,Y%*2-1,230)
 3568 PROCprint(Z%*2-1,Y%*2,231)
 3580 Y%=Y%+1
 3590 NEXT Z%
 3610 PROCprint(Z%*2-1,Y%*2-1,232)
 3630 ENDPROC

 3700 DEF PROCstart
 3710 FOR I%=0 TO 1
 3720 X%(I%)=1:Y%(I%)=12
 3730 Q%(I%)=32:VX%(I%)=+1
 3735 COLOUR 2+I%
 3736 PROCprint(X%(I%)*2-I%,Y%(I%)*2,233)
 3740 NEXT I%
 3750 HOME=FALSE
 3770 ENDPROC

 4000 DEF PROCone_move(I%)
 4010 PROCblank(I%,X%(I%)*2-I%,Y%(I%)*2)
 4020 X%(I%)=X%(I%)+VX%(I%)
 4030 IF X%(I%)>9 THEN X%(I%)=9:
 Y%(I%)=Y%(I%)-1:VX%(I%)=-VX%(I%)
 4040 IF X%(I%)<1 THEN X%(I%)=1:
 Y%(I%)=Y%(I%)-1:VX%(I%)=-VX%(I%)
 4050 Q%(I%)=FNchar(X%(I%)*2-I%,Y%(I%)*2)
 4055 IF FNchar(X%(I%)*2,Y%(I%)*2)=128 THEN
 SNAKE=TRUE ELSE SNAKE=FALSE
 4056 IF FNchar(X%(I%)*2-1,Y%(I%)*2-1)=136
 THEN LADDER=TRUE ELSE LADDER=FALSE
 4060 COLOUR 2+I%
 4070 PROCprint(X%(I%)*2-I%,Y%(I%)*2,233)
 4080 ENDPROC

 4500 DEF PROCblank(I%,X%,Y%)
 4510 IF Q%(I%)>127 AND Q%(I%)<132 THEN COLOUR 2
 4520 IF Q%(I%)>131 AND Q%(I%)<137 THEN COLOUR 3
 4525 IF Q%(I%)=137 THEN COLOUR 3-I%
 4530 PROCprint(X%,Y%,Q%(I%))
 4540 ENDPROC

 5000 DEF PROCthrow(I%)
 5010 IF DICE THEN PROCdice1 ELSE PROCdice2
 5020 REPEAT

148 The Electron Gamesmaster

 5030 PROCone_move(I%)
 5035 SOUND 1,-15,80+I%*8,2
 5040 M%=M%-1
 5050 HOME%=(X%(I%)=1 AND Y%(I%)=1)
 5060 UNTIL M%=0 OR HOME
 5065 IF SNAKE AND LADDER THEN PROCchoose
 5070 IF SNAKE THEN PROCupdown(I%,+1,131)
 5080 IF LADDER THEN PROCupdown(I%,-1,132)
 5090 HOME=(X%(I%)=1 AND Y%(I%)=1)
 5100 ENDPROC

 5200 DEF PROCchoose
 5210 IF RND(1)>.5 THEN LADDER=FALSE ELSE
SNAKE=FALSE
 5220 ENDPROC

 5500 DEF PROCdice1
 5501 COLOUR 128:COLOUR 2+I%
 5505 PRINT TAB(0,27);SPC(60);
 5510 PRINT TAB(0,27);"It's your throw"
 5520 PRINT " -";N$(I%)
 5530 INPUT "What did you get ",M%
 5540 IF M%<1 OR M%>6 THEN GOTO 5510
 5550 ENDPROC

 5600 DEF PROCdice2
 5601 COLOUR 128:COLOUR 2+I%
 5610 PRINT TAB(0,28);SPC(60);
 5620 PRINT TAB(0,28);"It's your throw"
 5630 PRINT " -";N$(I%)
 5640 PRINT "PRESS ANY KEY"
 5645 *FX 15,0
 5650 REPEAT
 5660 M%=RND(6)
 5670 PRINT TAB(0,31);M%;
 5680 UNTIL INKEY(0)<>-1
 5690 ENDPROC

 6000 DEF PROCupdown(I%,D%,C%)
 6010 LOCAL X%,Y%
 6020 PROCblank(I%,X%(I%)*2-I%,Y%(I%)*2)
 6030 X%=X%(I%)*2:Y%=Y%(I%)*2
 6040 REPEAT
 6050 Q%(I%)=FNchar(X%,Y%)
 6055 COLOUR 2+I%

149Snakes and Ladders

 6060 PROCprint(X%,Y%,233)
 6065 SOUND 1,-15,50-2*Y%,2
 6070 PROCblank(I%,X%,Y%)
 6080 X%=X%-1:Y%=Y%+D%
 6090 UNTIL Q%(I%)=C% OR FNon_man
 6095 X%=X%+1:Y%=Y%-D%
 6100 PROCblank(I%,X%,Y%)
 6110 X%(I%)=X% DIV 2
 6120 Y%(I%)=Y% DIV 2
 6125 IF D%=1 THEN Y%(I%)=Y%(I%)+1:
 X%(I%)=X%(I%)+1
 6130 Q%(I%)=FNchar(X%(I%)*2-I%,Y%(I%)*2)
 6135 COLOUR 2+I%
 6140 PROCprint(X%(I%)*2-I%,Y%(I%)*2,233)
 6150 IF (Y%(I%) DIV 2)*2=Y%(I%) THEN
 VX%(I%)=1 ELSE VX%(I%)=-1
 6160 ENDPROC

 6500 DEF FNon_man
 6510 LOCAL J%
 6515 IF Q%(I%)<>137 THEN =FALSE
 6520 IF I%=1 THEN J%=0 ELSE J%=1
 6530 IF Q%(J%)=132 THEN =TRUE ELSE=FALSE

 8000 DEF PROCtitle
 8010 COLOUR 128+0
 8020 COLOUR 1
 8025 CLS
 8030 PRINT TAB(3,3)"S N A K E S A N D
 L A D D E R S"
 8040 PRINT TAB(0,10);
 8050 PRINT TAB(3);"This is a game for two
 players"
 8060 PRINT TAB(2);"The first player to reach
 the top"
 8070 PRINT TAB(2);"left of the board wins!!"
 8080 PRINT TAB(0,20);
 8090 INPUT "Do you want to use a real dice",A$
 8100 A$=LEFT$(A$,1)
 8110 IF A$<>"Y" AND A$<>"N" THEN GOTO 8010
 8120 IF A$="Y" THEN DICE=TRUE ELSE DICE=FALSE
 8140 PRINT TAB(0,25);
 8150 INPUT "What is the first players
 name",N$(0)
 8155 PRINT TAB(0,27)

150 The Electron Gamesmaster

 8160 INPUT "What is the second players
 name",N$(1)
 8170 ENDPROC

 8500 DEF PROCendgame
 8505 *FX 15,0
 8510 COLOUR 128:COLOUR 2+I%
 8520 PRINT TAB(0,27);SPC(99);
 8525 PRINT TAB(0,27);
 8530 PRINT "You win ";N$(I%)
 8535 PRINT TAB(0,28);
 8540 INPUT "Another game ",A$
 8550 A$=LEFT$(A$,1)
 8560 IF A$<>"Y" AND A$<>"N" THEN GOTO 8535
 8570 IF A$="Y" THEN AGAIN=TRUE ELSE AGAIN=FALSE
 8580 ENDPROC

 9000 DEF FNclash(X%,Y%,L%,D%)
 9005 LOCAL T%
 9006 T%=FALSE
 9007 E%=2*(X%+D%*L%)+D%:X%=X%*2-D%:Y%=Y%*2-1
 9010 REPEAT
 9020 IF FNchar(X%,Y%)<>32 THEN T%=TRUE
 9025 IF FNchar(X%+1,Y%)<>32 THEN T%=TRUE
 9026 IF FNchar(X%-1,Y%)<>32 THEN T%=TRUE
 9030 X%=X%+D%:Y%=Y%+1
 9040 UNTIL X%=E% OR T%=TRUE
 9050 =T%

 9500 DEF FNC(X%,Y%)
 9510 X%=8+64*X%
 9520 Y%=1023-32*Y%
 9530 =POINT(X%,Y%)

 9600 DEF PROCprint(X%,Y%,C%)
 9610 COLOUR 128+FNC(X%,Y%)
 9620 PRINT TAB(X%,Y%);CHR$(C%);
 9630 ENDPROC

 9700 DEF FNchar(X%,Y%)
 9710 LOCAL A%
 9715 COLOUR 128+FNC(X%,Y%)
 9720 VDU 31,X%,Y%
 9730 A%=135
 9740 =(USR(&FFF4) AND &FF00) DIV &100

151Snakes and Ladders

Action Snakes and Ladders

The basic form of Snakes and Ladders lends itself to a conversion to a
dynamic graphics game. The idea is that instead of alternately moving
each man by a random amount, a single man is continuously animated,
moving one square each time through the animation loop. Of course, in
this scheme the man will automatically slide down every snake and
climb up every ladder along his path. The arrangement of ladders and
snakes is such that the man sometimes reaches the final position and
Sometimes is kept circling round, going up the same ladders and down
the same snakes. To turn this into a game of skill all that is necessary is
to add the extra condition that for the man to climb a ladder the player
has to press the ‘L’ key just when the man reaches its foot and to avoid
going down a snake the player has to press the ‘S’ key just as the man
reaches the snake’s head. Holding down either key at any other time
causes the man to stop moving and, as the object of the game is to get
the man to the top right hand corner as quickly as possible, this is not a
good way to play the game!

The modifications to the Snakes and Ladders program are fairly
simple. The main program becomes:

 10 REM Action Snakes and Ladders
 20 MODE 4
 30 PROCinit
 40 PROCtitle
 50 MODE 5:PROCcolour
 60 PROCp_sandl
 70 PROCstart
 80 REPEAT
 100 PROCthrow(1)
 110 UNTIL HOME
 120 PROCendgame
 130 IF AGAIN=TRUE THEN RUN
 140 END

PROCstart has to be modified to print only one man character and to
zero the time. This involves changing line 3710 and adding line 3755:

 3710 FOR I%=1 TO 1

 3755 TIME=0

The modifications and additions to PROCthrow are sufficient to make
it worth giving a complete listing of the new version of the procedure:

152 The Electron Gamesmaster

5000 DEF PROCthrow(I%)
5010 PROCp_time
5030 PROCone_move(I%)
5035 SOUND 1,-15,80+I%*8,2
5040 M%=M%-1
5050 HOME=(X%(I%)=1 AND Y%(I%)=1)
5065 IF SNAKE AND LADDER THEN PROCchoose
5066 IF NOT SNAKE AND NOT LADDER AND (INKEY(-82)
 OR INKEY(-87)) THEN PROCp_time:GOTO 5066
5070 IF SNAKE AND NOT(INKEY(-82)) THEN
 PROCupdown(I%,+1,131)
5080 IF LADDER AND INKEY(-87) THEN
 PROCupdown(I%,-1,132)
5090 HOME=(X%(I%)=1 AND Y%(I%)=1)
5100 ENDPROC

Now PROCthrow only calls PROCone_move once each time through
the animation loop and calls PROCp_time, a new but very short
procedure that prints the current time at the bottom of the screen.

 5300 DEF PROCp_time
 5310 PRINT TAB(2,28);"Time=";TIME/100
 5320 ENDPROC

The only other modifications are the addition of line 5066, which stops
the animation if either L or S is pressed and the man is not on the head
of a snake or at the foot of a ladder, and the changes to lines 5070 and
5080 which result in the man sliding down a snake if S is not pressed
and climbing a ladder only if L is pressed.

The changes to PROCtitle are simple but extensive and this makes it
worth listing the entire new version of the procedure. The same is true
of PROCendgame:

 8000 DEF PROCtitle
 8010 COLOUR 128+0
 8020 COLOUR 1
 8025 CLS
 8030 PRINT TAB(3,3)"S N A K E S A N D L A D D
E R S"
 8040 PRINT TAB(0,10);
 8050 PRINT TAB(2);"You must try to get your
 man to"
 8060 PRINT TAB(2);"the top lefthand corner of"
 8065 PRINT TAB(2);"the board as quickly as
 possible"
 8070 PRINT

153Snakes and Ladders

8090 PRINT TAB(2);"You must avoid snakes
 heads by"
8100 PRINT TAB(2);"pressing S and you can climb"
8110 PRINT TAB(2);"ladders by pressing L"
8155 PRINT TAB(0,27)
8160 PRINT
8165 PRINT TAB(6,20);"Press any key to start"
8166 IF INKEY(0)=-1 THEN GOTO 8166
8170 ENDPROC

8500 DEF PROCendgame
8505 *FX 15,0
8510 COLOUR 128:COLOUR 3
8520 PRINT TAB(0,27);SPC(99);
8525 PRINT TAB(0,27);
8530 PRINT "You took ";TIME/100
8535 PRINT TAB(0,28);
8540 INPUT "Another game ",A$
8550 A$=LEFT$(A$,1)
8560 IF A$<>"Y" AND A$<>"N" THEN GOTO 8535
8570 IF A$="Y" THEN AGAIN=TRUE ELSE AGAIN=FALSE
8580 ENDPROC

With these changes to the original program you will find that you
have a fast and very exciting game! The man moves around the board,
down the snakes and up the ladders in a fascinating way. There are
plenty of improvements that can be made to this fast Snakes and
Ladders game along the lines of the features included in earlier games.
For example, the end game routine could issue appropriate messages,
you could impose a time limit, produce a table of best times, improve
the sound effects . . . You could even introduce new elements to the
game such as ‘black hole’ squares that have to be jumped over, etc. The
lesson to be learned is that there is still a great deal that can be done
with traditional games to bring them up to date and sometimes the
results can be very impressive.

154 The Electron Gamesmaster

Chapter Eight
Becoming a Master
Programmer

Graduating from being a novice programmer to being a master of the
craft is a matter of developing the skills you have already acquired and
gaining confidence to apply them to more and more ambitious projects.
If you have typed in and used the programs in the earlier chapters then
you should be beginning to see some of the ways in which large
programs are written. However, to really get the most from what you
have learned it is essential that you gain practical experience, first by
modifying and extending the games given in this book and then by
implementing your own ideas. You cannot become a good programmer
without making the effort to write some programs and learn from your
own mistakes and successes.

In this final chapter we look at some of the methods and attitudes
that you should try to bring to bear on your work. Chapter One stressed
the need to use a programming method and all the programs in this
book have used a form of structured programming combined with
stepwise refinement (a method described at greater length in Advanced
Programming for the Electron (Mike James, Granada, 1984) but this is
just part of the story. You could say that structured programming and
stepwise refinement are the ‘scientific side’ ofthe craft of programming.
Without their application, programming is hard work. H owever, even
with the use of a programming method there is still a great deal of art
left in good programming and this can only be learned by practice.

This is not to say that good programming is ‘crafty’ programming in
the sense of relying on tricks and clever methods. A good program must
be as clear as possible and tricks and clever methods tend to increase
the confusion within a program and a confused program is a bug-prone
program. As already mentioned the only route to becoming a master
programmer is to learn from your own experiences of writing
programs, but to do this you have first to know what to value and you
have to finish the program that you start.

Games and problem solving

If you look back to earlier chapters you w ill find that most of the
programs started as a simple idea which, implemented in BASIC, did
not produce a very satisfactory game! The truth is that most ideas for
games prove to be disappointing when first implemented but this is not
a reason for abandoning the idea. The success of any computer game
depends on how well it is implemented and even great ideas which are
badly implemented will result in terrible games. For example, one of
the oldest and most addictive computer games is ‘Space Invaders’, but
it is possible to make even this game totally unplayable by not paying
attention to detail. If the game runs too slowly or if the response to
keypresses is sluggish then the game will be frustrating rather than
exciting.

If a game doesn’t live up to your expectations then do
notimmediately discard the idea and look for something new; ask
yourself the question what is wrong? Sometimes the answer will be
simple to discover and not difficult to correct. For example, if the game
runs too slowly then changing some of the routines into assembler
should do the trick. On the other hand the reason for a sluggish
keyboard response can often be difficult to track down. It may be due to
the time that the animation loop takes to execute but it may just as
easily be due to not Inspecting the keyboard for long enough each time
through the loop. For example, if the animation loop runs too fast then
the most obvious way to slow it down is to insert a delay loop. If the
time spent in the delay loop is a significant part of the time the
animation loop takes, then the keyboard will be examined for only a
short period each time through the animation loop. The solution to this
problem is not to speed up the animation loop but either to make use of
the Electron’s keyboard buffer (i.e. use lNKEY(0)) or to examine the
keyboard more than once each time through the loop.

Sometimes the reason why the first attempt at a game is not
successful doesn’t lie in the implementation. For example, in Chapter
Two the first version of Ant Hill was not as much fun to play as it
should have been because it was too easy. If a game is too easy then the
tendency is often to make it more difficult in the most obvious ways.
For example, you can make any game more difficult by setting a short
time limit but unless the time it takes to complete th game really does
depend on the skill of the player, setting a short time limit either has no
effect or makes the game impossible! What you have to do is examine
the game carefully and discover what it is that makes it easy or

156 The Electron Gamesmaster

difficult. In the case of Ant Hill the problem was tracked down to the
ants not posing enough of a problem to the man trying to get to the
nest. In that particular case the solution was to make the dispersion of
the ants at the start of the program more random and to confine them to
a smaller area. If after examining the game the reason for it being too
easy or too difficult turns out to be something that is virtually
impossible to correct, then you have no choice but to give up and try
something else but this is a very rare event.

The point is that very few games, or any other sort of program for
that matter, are so easy that the first version that you produce fulfills
your expectations and this is not a good reason to give up and start
something else. If you want to improve your programming then you
must make an effort to turn what you have in the way of a program into
what you want and this is a process of tracking down and solving each
of the small problems that keep your program from living up to its
specifications.

Adding the finishing touches

Once you have a game that is fun to play, the next step is to add the
procedures necessary to make it ‘playable’. In other words you have to
make a game fit to be used by other people and the only way you can
discover if you have been successful is to watch other people play it.
There is no point in claiming that players make your game crash
because they misunderstood it and so the fault is theirs; if they
misunderstood it, either you didn’t tell them enough about it or it is too
complicated and in any case a well-written game shouldn’t crash!

All of the games in this book have been ‘crash-proofed’ in the sense
that it should be impossible to input values or control the game in such
a way as to make it stop working and drop the player back to BASIC.
The main method of crash-proofing is based on the old and well known
computer idea of Garbage In Garbage Out (often shortened to GIGO).
If you can keep garbage from getting into your program you should be
reasonably sure that it will not crash. For example, if you ask the player
for a difficulty level then you should always check that it is in the
correct range before moving on to the rest of the program. However,
even if you check every input it is still possible for a program to crash
or misbehave because of a combination of values that you haven’t
allowed for. For example, in the early stages of testing Snakes and
Ladders a board was generated that included a square which contained
the head of a snake ant! the tom of a ladder. The result was that the

157Becoming a Master Programmer

man-shaped character both climbed the ladder and slid down the snake,
with obvious and disastrous consequences for the rest of the program!
A line had to be inserted using the procedure PROCchoose to make the
man character choose only one of the two options.

To make sure that your program will not crash because of
unexpected circumstances you must test it well. The theory of testing
and debugging a program is covered in detail in Advanced
Programmng for the Electron, but it is worth saying here that playing a
game for any length of time is not the same as testing it! If you play a
game as you are developing it then the chances are that by the time you
reach a nearly finished version you Will be quite good at it. This means
that you are testing the game at a particular level of skill and the
problems that cause a crash could lurk at a much lower level of skill.
For example, suppose you were testing an early version of Leap Frog
(Chapter Three) then you might play many successul games only to
discover that as soon as a beginner played the game it crashed because
the player failed to bounce any of the ten frogs and so scored zero.
When you test a game you must try out all the extreme possibilities.
high scores, low scores and play it in the ‘silliest’ fashion you can think
of in short, try to crash it. If you cannot make it crash when you are
trying your hardest then With luck any problems it contains should only
be small ones!

There is a particular problem with testing games programs that
doesn’t generally occur With other types of program and that’s
randomness. For example, the board printed as part of Snakes and
Ladders is generated at random and you could wait a long time before a
‘problem’ board (i.e. the one containing a snake’s head and the foot of a
ladder in the same square) is generated. There are two ways of dealing
with the problem of testing random sections of the program. First, you
can change any statements that contain RND functions within the
program to set the variables to fixed values that might cause problems.
The trouble with this method is that you have to think of the values that
are likely to cause trouble and in general, if you can do this, the
problem is so obvious that you don’t even need to run the program! For
example, if you spot the fact that values of the random numbers in the
procedures that print a snake and print a ladder in Snakes and Ladders
can result in a snake’s head and the foot of a ladder being printed in the
same square, then it is obvious that this is going to cause a problem.

The second method of testing the random component of a game is
simply to look at a great many examples. This is one of the methods
that was used to test Snakes and Ladders during its development. To
make it possible to see a great many examples in a reasonable amount

158 The Electron Gamesmaster

of time the main program was changed into a loop that just called the
procedures that printed the board over and over again. Once a problem
has been located in this way, it is important to make sure that it can he
made to happen ‘on request’ before trying to fix the bug. In the case of
Snakes and Ladders, once a board has been generated with a snake’s
head and the foot of a ladder in the same square, the RND functions
were replaced by constants that produced this set up. That is, the
program was modified so that every time it was run it produced a
problem board. This is the only way that the effectiveness of a bug fix
can be tested in a program that uses randomness. For example, imagine
that after a few hours of testing a problem crops up that crashes the
program; if the bug is fixed immediately you will then have to wait for
another few hours to tell if your fix works or not. On the other hand, if
you first find a way to modify the program so that the problem crops up
each time you run it, you can be sure that your bug fix works without
having to test it for hours!

Testing and debugging are certainly areas where a great deal of the
craft or programming is to be found. However, producing ‘user
friendly’ programs is just as important and just as skillful. In some
senses it is the most skillful part of programming because it is almost
impossible to say what makes a program user-friendly. The only way to
discover what is good in this respect is to watch the way users react to
your program. When you are designing your program you must try to
think of the way in which it will be used and so find the ‘natural’ order
for the program to work in. However, even if you produce a program
that you find easy to use, it has to be remembered that you are not a
typical user! Programmers tend to forget how difficult and confusing a
computer keyboard and display are to non-programmers and they
certainly know their own program better than anyone else. As a result
something that seems easy or obvious to you can seem awkward and
obscure to a non-programming user. Every programmer has had the
experience of watching someone else use their program in such a
clumsy way that it caused them to despair at the user’s stupidity! This is
of course the wrong attitude: users are always right and if they find
your program difficult to use then you must treat this as a problem with
your program, not with the user!

The range of games

If you are inspired to try your hand at inventing and writing your
own games programs then you might be interested in knowing
something about the types of games that are currently popular.

159Becoming a Master Programmer

Arcade or animation games form the largest and most popular group
of games. With the possible exception of Snakes and Ladders, all of the
games this book are based on animation. The main feature of all such
games is the way that the player has control of the motion of some
object on the screen. Although you can create new animation games by
thinking up fresh themes and objectives the only way in which the
games really differ is in the way that the player can control the moving
object. For example, you could make a new game out of Ant Hill by
changing all the ants to ghosts and the nest to a treasure chest but the
game would still play like Ant Hill. However, Snake in Chapter Five is
very different from Ant Hill in the skill that the player needs to control
the moving object. If you want to create a new animation game then
you need to think not only of the theme of the game but also of how the
player will control the moving object and what new element of skill is
needed.

The second most popular group of games are ‘adventure games’.
These sometimes contain simple animation games within them. but
only as part of the overall objective of the game. An adventure game
doesn’t rely on animation to test the player’s skill; instead it creates a
simulated world inhabited by a variety of creatures, some helpful, some
hostile. The world and its creatures are most often created using
descriptions and limited graphics and the player generally interacts with
the world by commands typed on the keyboard. Adventure games
generally present less of a programming problem than animation games
but they do need a great deal of imagination.

The third category of games, games of strategy, include computer
chess, noughts and crosses, draughts etc. Games of strategy can
sometimes involve complicated graphics (consider the problems of
printing a chess board complete with pieces, for example), but the main
programming challenge they present is in making the computer play a
convincing game. Working out how to program a computer to play a
game like chess will take you into the frontiers of computer science.

When you are working out new games there is always the element
of the surprise discovery. It is amazing how often implementing one
game immediately suggests another that uses the same elements in
different ways. This is yet another reason for always writing programs
using procedures. If a game has been written using procedures, they can
often be re-used in the construction of other games and in this sense the
more games you write, the easier it gets.

160 The Electron Gamesmaster

Using the Electron

The Electron is an amazing machine but it does have its limitations. In
fact it would be better to say that there are features of the machine that
make it easier to use in some ways rather than others. For example, if
you want to use a 40-column screen and four colours then you will
have to be careful about how you use memory (there is very little left
over after mode 1 takes its 20K!). What this means is that it is better to
try to implement games either using two colours and 40 columns or
four colours and 20 columns.

One of the biggest problems with using the Electron is that it is a
little on the slow side. This is due to the way the hardware works and
there is little that can be done about it. As a result it is better to avoid
the use of modes that involve a large number of memory accesses to
print a single character. Once again this implies that two colours and 40
columns or four colours and 20 columns are the easiest modes to use

You may be surprised that the excellent high resolution graphics
capabilities of the Electron weren’t used in any of the games in this
book. This is fairly typical in that the main use of high resolution
graphics in games is to create background. Most animation games are
much easier to implement using user-defined graphics and the PRINT
command.

The way ahead

If you have played with the games in this book in the sense of changing
and generally tinkering with them then the next thing to do is to write a
games program of your own. Y our aim should be to produce a program
that other people can use and enjoy rather than something half finished
that only you can play. If you do this then you will find that you benefit
twice from the program once from the fun in playing the game and
once from the satisfaction in having finished something that other
people can play.

161Becoming a Master Programmer

162

