
CHAPTER 6
Number Bases

We usually record numbers using the decimal system of notation. For
instance 1432, which we call one thousand four hundred and thirty two,
stands for the more awkward expression

1*103 + 4*102 + 3*10 + 2

We can rewrite this in an even more awkward way:

1*103 + 4*102 + 3*101 + 2*100

since 101 = 10, and 100 = 1. In other words, the number 1432 is
interpreted as a sum of multiples of powers of 10. The integers 1, 4, 3, and
2 are called the digits of the number with 1 being the thousands digit, 4 the
hundreds digit, 3 the tens digit and 2 the units digit. Technically we refer to
this representation of the number as its decimal representation and say that
the number is expressed to the base of 10. The word decimal comes from
the Latin decem, ten.

The decimal system has a base of 10. But bases other than 10 can be
used. Using different bases to interpret numbers is both interesting and
useful. For example, numbers represented in base 2 have proved to be
extremely important in computers and computer related activities.

Any integer greater than 1 can be used as a base, and any number can
be expressed in any base. Furthermore, it is easy for your computer to
convert a number expressed in one base into another base.

Let N stand for any positive integer, and let B be an integer greater
than 1. To express the number N to the base B we need to write N in the
following way:

N = Xm*Bm + Xm-1*Bm-1 + . . . + X1*B + X0

where each of the numbers X0, X1 . . . Xm are integers between 0 and B-1.
(See what happens if you substitute 10 for B.) The digits X0, X1, etc., are
called the coefficients of the number N to base B.

Small values of B, the base, give long representations of the numbers.
But they have the advantage of requiring fewer choices for the

79

coefficients. The extreme case occurs when B = 2. The resulting system is
called the binary number system (from the Latin, binarius, two). When a
number is written in the binary system only the integers 0 and 1 can appear
as coefficients. For example

86 = 64 + 16 + 4 + 2
= 1*26 + 0*25 + 1*24 + 0*23 + 1*22 + 1*2 + 0

Thus the number 86 expressed in binary form is 1010110. Binary numbers
are used by computers because they are represented as strings of zeros and
ones. The reason is that 0 and 1 can be easily expressed in a computer by a
switch being either off or on.

For bases larger than 10 we need some extra symbols. The obvious
symbols to use are the letters of the alphabet A, B, C, etc. A common base
that is used is 16. A number expressed in the base 16 is called
hexadecimal. The advantage of this base is that it requires few coefficients
to express a number and yet hexadecimal numbers are easily converted to
binary numbers.

To convert a number from base 10 to base B is quite straightforward.
Suppose we want to convert the number N from base 10 to base B. First
subtract all multiples of B from N.

M = INT(N/B) : R = N - B * M

alternatively

M = N DIV B : R = N MOD B

Record the remainder and call it R0. Now repeat the process with M by
setting N = M. Call the new remainder R1. Continue in this way until the
value of M reaches 0. Suppose that RS is the last remainder we find, then
the original number N to base B is

RS . . . R2R1R0

Let's go through a specific example. Suppose we want to convert the
number 29 to base 3. The calculation proceeds as follows.

Step 1.
N = 29
M = INT(29/3)

= 9
R0 = 29 - 3*9

= 2

Essential Maths on the BBC and Electron Computers

80

Step 2.
N = M

= 9
M = INT(9/3)

= 3
R1 = 9 - 3*3

= 0
Step 3.

N = M
= 3

M = INT(3/3)
= 1

R2 = 3 - 3*1
= 0

Step 4.
N = M

= 1
M = INT(1/3)

= 0
R3 = 1 - 3*0

= 1

The process stops after four steps when M reaches 0. The value of 29 to
base 3 is 1002.

The next program converts integers from one base to another base. For
example you could convert numbers in base 10 to base 16. For bases
greater than 10 the letters A, B, C, etc., are used to represent the numbers
10, 11, 12, etc.

Listing 6.1
LIST
 10 REM Base converter

 20 MODE 1:COLOUR 3:PRINT ' TAB(13);"B

ase converter"':@%=10

 30 PRINT "This program converts integ

ers fom one base to another.":COLOUR 1

 40 REPEAT

 50 INPUT '"Enter base to convert fro

m: ";A

 60 IF A<11 THEN AA=47+A ELSE AA=54+A

 70 IF A<2 OR A>35 OR A<>INT(A) THEN

COLOUR 3:PRINT '"Silly - try again.":COL

81

Chapter 6 - Number Bases

OUR 1

 80 UNTIL A>1 AND A<36 AND A=INT(A)

 90 REM Next part checks that N$ is in

 the correct form

 100 REPEAT

 110 TEST=-1

 120 INPUT '"Number to be converted: "

;N$

 130 IF N$="" THEN COLOUR 3:PRINT '"No

t a number - try again please.":COLOUR 1

:TEST=0

 140 IF TEST THEN PROCTest

 150 UNTIL TEST

 160 REM Store N$ in array A(I)

 170 DIM A(L)

 180 FOR I=1 TO L

 190 N=ASC(MID$(N$,I,1))

 200 IF N<58 THEN A(I)=N-48

 210 IF N>64 THEN A(I)=N-55

 220 NEXT

 230 REM Convert number from base A to

 base 10

 240 N=VAL(N$)

 250 IF A<>10 THEN N=0:FOR I=1 TO L:N=A

(I)+N*A:NEXT

 260 PRINT '"Decimal form of number: ";

:COLOUR 2:PRINT ;N:COLOUR 1

 270 REPEAT

 280 INPUT '"Enter base to convert to:

 ";B

 290 IF B<2 OR B>35 OR INT(B)<>B THEN

COLOUR 3:PRINT '"Silly - try again.":COL

OUR 1

 300 UNTIL B>1 AND B<36 AND INT(B)=B

 310 REM Convert N to base B

 320 N$=""

 330 REPEAT

 340 M=INT(N/B):R=N-B*M:N=M

Essential Maths on the BBC and Electron Computers

82

 350 IF R<10 THEN N$=CHR$(48+R)+N$

 360 IF R>9 THEN N$=CHR$(55+R)+N$

 370 UNTIL N=0

 380 PRINT '"Number to base ";B;" is ";

 390 IF LEN(N$)>40-POS THEN PRINT '

 400 COLOUR 2:PRINT ;N$

 410 COLOUR 3:PRINT CHR$(7) '' TAB(10);

"Another go? Y or N ";

 420 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 430 IF G$="Y" THEN RUN

 440 CLS:PRINT '"Bye for now.":END

 450 DEF PROCTest

 460 L=LEN(N$)

 470 FOR I=1 TO L

 480 N=ASC(MID$(N$,I,1))

 490 IF N<48 OR (N>57 AND N<65) OR N>A

A THEN COLOUR 3:PRINT '"Not a positive i

nteger!":COLOUR 1:TEST=0:I=L

 500 NEXT

 510 ENDPROC

RUN

 Base converter

This program converts integers fom one b

ase to another.

Enter base to convert from: ?2

Number to be converted: ?111115

Decimal form of number: 15

Enter base to convert to: ?16

Number to base 16 is F

83

Chapter 6 - Number Bases

 Another go? Y or N

Acorn numbers
A number between 0 and 255 can be represented as a binary number using
at most 8 coefficients. For example

255 = 1*27 + 1*26 + 1*25 + 1*24 + 1*23 + 1*22 + 1*2 + 1
128 = 1*27 + 0*26 + 0*25 + 0*24 + 0*23 + 0*22 + 0*2 + 0

On a computer these coefficients, or eight bits, are called a byte. The BBC
and Electron micros store integers using four bytes, which we'll refer to as
0-byte, 1-byte, 2-byte and 3-byte. The 3-byte represents multiples of
256*256*256, the 2-byte represents multiples of 256*256, the 1-byte
represents multiples of 256 and the 0-byte represents the remainder. For
example the number 999 would be stored with 1-byte equal to 3 and 0-byte
equal to 231, since 999 = 3*256 + 231. Storing numbers using bytes is the
same as storing numbers to the base of 256.

You can see how your computer stores the four bytes of an integer by
PEEKing. (To PEEK at a memory location X, simply type PRINT ? X.)
Remember that integer variables are specified by the per cent (%) sign
after a variable name. Type the following, pressing return at the end of
each line:

NEW : CLEAR
CK% = 999

Now PEEK at memory locations LOMEM + 5 to LOMEM + 8, and the
four bytes used to store the integer CK% will be revealed. (Note: Do not
replace CK% by any of the 26 integer variables A% to Z%, the resident
integer variables, because they are stored elsewhere.) The next program
performs all of the necessary PEEKs automatically.

Listing 6.2
LIST

 10 REM Byte dislayer

 20 MODE 1:COLOUR 3:PRINT ' TAB(13);"B

yte displayer"':@%=10

 30 PRINT "This program displays how y

our micro stores integers using 4 byt

es."':COLOUR 1

Essential Maths on the BBC and Electron Computers

84

 40 CLEAR:I%=LOMEM + 5:CK%=0

 50 PRINT '"Enter the integer you want

 displayed."':COLOUR 2

 60 INPUT '"Integer: ";CK%

 70 PRINT:COLOUR 1

 80 FOR K%=I% TO I%+3:PRINT K%-I%; " B

yte: ";? K%:NEXT

 90 COLOUR 3:PRINT CHR$(7) '' TAB(10);

"Another go? Y or N ";

 100 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 110 IF G$="Y" THEN RUN

 120 CLS:PRINT '"Bye for now.":END

RUN 1

 Byte displayer

This program displays how your micro

stores integers using 4 bytes.

Enter the integer you want displayed.

Integer: ?129

 0 Byte: 129

 1 Byte: 0

 2 Byte: 0

 3 Byte: 0

 Another go? Y or N

RUN 2

 Byte displayer

This program displays how your micro

85

Chapter 6 - Number Bases

stores integers using 4 bytes.

Enter the integer you want displayed.

Integer: ?257

 0 Byte: 1

 1 Byte: 1

 2 Byte: 0

 3 Byte: 0

 Another go? Y or N

The largest integer that the BBC and Electron can store is 2147483647
which equals 127*256*256*256 + 255*256*256 + 255*256 + 255.
Numbers with 3-byte equal to 128 or larger are negative numbers. Indeed
negative numbers are stored by first looking at the ABSolute value of the
number, calculating the 0, 1, 2 and 3-bytes, and then subtracting the values
of the 0, 1 and 2-bytes from 256 and the value of the 3-byte from 255.
Thus -1 would have the 0, 1, 2 and 3-bytes all equal to 255. As another
example, -2147483647 has the 0-byte equal to 1, the 1-byte equal to 0, the
2-byte equal to 0 and the 3-byte equal to 128.

The following two program lines show you how to calculate a number
from the four bytes. Let B0, B1, B2 and B3 be the four bytes.

NUMBER = B3*256*256*256 + B2*256*256 + B1*256 + B0
IF B3 >= 128 THEN NUMBER =
-((255 - B3)*256*256*256 + (256-B2)*256*256 + (256-B1)*256
+ (256-B0))

Try POKEing numbers in locations LOMEM + 5 to LOMEM + 8, then get
your computer to PRINT CK% and compare the answers. (To POKE the
number Y into memory location X simply type ? X = Y.) The next program
performs these operations for you.

Listing 6.3
LIST
 10 REM Byte POKE

Essential Maths on the BBC and Electron Computers

86

 20 MODE 1:COLOUR 3:PRINT ' TAB(15);"B

yte POKE"':@%=10

 30 PRINT "This program allows you to

POKE some numbers into a location use

d to store an integer."'

 40 PRINT "The resulting integer is th

en displayed directly and by calculating

."

 50 CLEAR:I%=LOMEM + 5:CK%=0:X%=0:Y%=1

 60 PRINT '"Enter the 4 bytes of the i

nteger."':COLOUR 2

 70 FOR J%=0 TO 3

 80 K%=I%+J%:IF J%>0 THEN Y%=Y%*256

 90 REPEAT

 100 PRINT ' J%;:INPUT " Byte: ";N%

 110 IF N%<0 OR N%>255 THEN COLOUR 1:

PRINT '"Between 0 and 255 please!":COLOU

R 2

 120 UNTIL N%>=0 AND N%<256

 130 ? K% = N%

 140 IF J%<3 OR (J%=3 AND N%<128) THEN

 X%=X%+N%*Y% ELSE X%=X%-256-255*256-255*

256*256-(255-N%)*Y%

 150 NEXT

 160 PRINT:COLOUR 1

 170 PRINT '" Number stored: ";CK%

 180 PRINT '"Number calculated: ";X%

 190 COLOUR 3:PRINT CHR$(7) '' TAB(10);

"Another go? Y or N ";

 200 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 210 IF G$="Y" THEN RUN

 220 CLS:PRINT '"Bye for now.":END

RUN

 Byte POKE

87

Chapter 6 - Number Bases

This program allows you to POKE some

numbers into a location used to store

an integer.

The resulting integer is then displayed

directly and by calculating.

Enter the 4 bytes of the integer.

 0 Byte: ?1

 1 Byte: ?1

 2 Byte: ?0

 3 Byte: ?0

 Number stored: 257

Number calculated: 257

 Another go? Y or N

Small numbers
The program in the section before the previous one works on positive
whole numbers. Any number, integral or non-integral, has a representation
in any base. For example the decimal number 0.25 expressed in binary
takes the form 0.01, while the decimal number 0.125 is 0.001 in binary. To
see the first let's see what we mean by the decimal number 0.25. This
number represents two-tenths and five-hundredths, that is

0.25 = 2/10 + 5/100
= 2*10-1 + 5*10-2

To express it to the base B means writing it in the form

Y1*B-1 + Y2*B-2 + . . .

where as usual B-1 = 1/B, B-2 = 1/B2, etc.
The decimal numbers 0.25 and 0.125 may be written in the following

Essential Maths on the BBC and Electron Computers

88

way:

0.25 = 1/4
= 0*2-1 + 1*2-2

0.125 = 1/8
= 0*2-1 + 0*2-2 + 1*2-3

which explains the binary form of these numbers.
As another example, look at the number 0.6 expressed in terms of

(negative) powers of 2.

0.6 = 1*2-1 + 0*2-2 + 0*2-3 + 1*2-4

+ 1*2-5 + 0*2-6 + 0*2-7 + 1*2-8

+ 1*2-9 + 0*2-10 + 0*2-11 + 1*2-12

+ 1*2-13 + 0*2-14 + 0*2-15 + 1*2-16

+ . . .

In fact we need an infinite number of terms to express 0.6 accurately in
binary form. This takes the form

0.10011001100110011001100110011001 . . .
Your computer only stores 32 of these digits starting with the first non-
zero one: in addition it rounds up if the thirty-third significant digit is non-
zero. Thus your computer stores 0.6 as

0. 10011001100110011001100110011010
in binary form.

The next program displays the binary form, as stored by your
computer, of a decimal number between 0 and 1.

Listing 6.4
LIST
 10 REM Decimal to binary

 20 MODE 1:COLOUR 3:PRINT ' TAB(11);"D

ecimal to binary"':@%=10

 30 PRINT "This program prints the bin

ary form of anumber between 0 and 1."':C

OLOUR 2

 40 REPEAT

 50 INPUT '"Enter number: ";N

 60 IF N<=0 OR N>=1THEN COLOUR 1:PRIN

T '"Between 0 and 1 please!":COLOUR 2

 70 UNTIL N>0 AND N<1

 80 N$="0."

89

Chapter 6 - Number Bases

 90 FOR I=1 TO 32

 100 N=N*2:N$=N$+STR$(INT(N)):N=N-INT(

N)

 110 NEXT

 120 PRINT:COLOUR 1

 130 PRINT '"The binary form of your nu

mber is:"'

 140 PRINT N$

 150 COLOUR 3:PRINT CHR$(7) '' TAB(10);

"Another go? Y or N ";

 160 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 170 IF G$="Y" THEN RUN

 180 CLS:PRINT '"Bye for now.":END

RUN

 Decimal to binary

This program prints the binary form of a

number between 0 and 1.

Enter number: ?0.6

The binary form of your number is:

0.10011001100110011001100110011010

 Another go? Y or N

Floating points
Integers in the BBC and Electron micros are stored using 4 bytes. But
numbers are stored using 5 bytes, even if the number itself is an integer.
Unless you declare your number to be an integer by using the per cent sign
it will be stored as a real number using 5 bytes. A number can be expressed
in binary form in the following way:

1.X1X2X3 . . . Xm * 2N

where X1, X2 . . . Xm are either 0 or 1, and N is an integer (positive,

Essential Maths on the BBC and Electron Computers

90

negative or zero). The integer N is called the binary exponent of the
number, the other part is called the binary mantissa. For instance decimal
10 is binary 1010 which may be rewritten as

1.01 * 23

so that 10 has binary exponent 3 and binary mantissa 1.01. As another
example look at decimal 0.375 which is binary 0.011 and so may be
written as

1.1 * 2-2

and so decimal 0.375 has binary exponent -2 and binary mantissa 1.1.
We have said that your computer uses 5 bytes to store its numbers.

The first byte is the binary exponent plus 129. The remaining four bytes
give the binary mantissa and the sign of the number. Since the first term in
the binary mantissa is always 1 we do not need to store it - we simply store
all the digits to the right of the decimal place in the binary mantissa. The
first bit of byte 2 stores the sign of the number, the remaining 31 bits in the
last four bytes store the binary mantissa (ignoring the leading 1).

For example, decimal 10 would be stored as follows: The first byte is
129 plus the binary exponent 3, which totals 132. The first bit of the
second byte would be 0 since the number is positive. The remaining 31
bits would be

0100000000000000000000000000000
since the binary mantissa of 10 is 1.01 and we ignore the leading 1. Thus
the 32 bits for the last four bytes would be

00100000000000000000000000000000
which, when broken into four groups of 8, give

00100000 00000000 00000000 00000000
which in turn are 32, 0, 0, 0. Thus the 5 bytes used to store the decimal 10
would be 132, 32, 0, 0, 0.

We can reverse the process and find the number that the computer is
holding 5 bytes. Suppose that a number N is stored with the five bytes P,
Q, R, S, T. The following program lines calculate N from P, Q, R, S and T.

X = 1 : IF Q >= 128 THEN Q = Q - 128 : X = -1
N = X*2P-129*(1 + Q*2-7 + R*2-15 + S*2-23 + T*2-31)

To see your computer in action use the next program.

Listing 6.5
LIST
 10 REM Byte displayer for numbers

 20 MODE 1:COLOUR 3:PRINT ' TAB(13);"B

yte displayer"':@%=10

 30 PRINT "This program displays how y

our micro stores numbers using 5 byte

s."':COLOUR 1

91

Chapter 6 - Number Bases

 40 CLEAR:I%=LOMEM + 4:CK=0

 50 PRINT '"Enter the number (or expre

ssion) you want displayed."':COLOUR 2

 60 INPUT '"Number: ";N$

 70 CK=EVAL(N$)

 80 COLOUR 1:PRINT '"The number: ";CK

 90 PRINT '"Byte form:"

 100 FOR K%=I% TO I%+4:PRINT K%-I%; " B

yte :";? K%:NEXT

 110 COLOUR 3:PRINT CHR$(7) ''" A

nother go? Y or N ";

 120 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 130 IF G$="Y" THEN RUN

 140 CLS:PRINT '"Bye for now.":END

RUN
 Byte displayer

This program displays how your micro

stores numbers using 5 bytes.

Enter the number (or expression) you

want displayed.

Number: ?1 + 2^-24

The number: 1.00000006

Byte form:

 0 Byte :129

 1 Byte :0

 2 Byte :0

 3 Byte :0

 4 Byte :128

 Another go? Y or N

Essential Maths on the BBC and Electron Computers

92

