
CHAPTER 9
Primes

A prime number is an integer (grater than 1) that is not divisible by any
positive integer other than 1 and itself (of course, by divisibility we mean
exact divisibility). The numbers 2, 3, 5, 7 and 11 are prime, but 4, 6, 8, 9
and 10 are not. Non-prime numbers are called composite.

There is no general formula for prime numbers, but Euclid showed (in
about 300 B.C.) that there are infinitely many primes. We also know that
primes occur les frequently among large numbers.

The testing of primes is of considerable interest. Attention has arisen
recently because of cryptography.

A simple and straightforward method of determining if a number N is
prime is called the Sieve of Erastosthenes. (Erastisthenes of Cyrene was a
Greek mathematician, 276-196 B.C., who also calculated the
circumference of the Earth.) The idea is to write down all the integers from
1 to N. Then leave 2 and strike out all even numbers after 2. The next
number after 2 which has not been struck out is prime. This is 3. Now
strike out every third number after 3. The next number left after 3 is 5
which must be prime. Now strike out every fifth number after 5. This
process is continued. What remains are the primes between 1 and N.

The table below shows the results of a sieve on the numbers up to 100.
The multiples of 2 are crossed out by /, the multiples of 3 by -, 5 by / and 7
by |.

The following program uses the Sieve of Erastosthenes to produce a list of
prime numbers less than some given number N. This number is INPUT at
the start.

111

11
21
31
41
51
61
71
81
91

 2
12
22
32
42
52
62
72
82
92

 3
13
23
33
43
53
63
73
83
93

 4
14
24
34
44
54
64
74
84
94

 5
15
25
35
45
55
65
75
85
95

 6
16
26
36
46
56
66
76
86
96

 7
17
27
37
47
57
67
77
87
97

 8
18
28
38
48
58
68
78
88
98

 9
19
29
39
49
59
69
79
89
99

10
20
30
40
50
60
70
80
90
100

Listing 9.1
LIST
 10 REM Sieve of Erastosthenes

 20 MODE 6:PRINT ' TAB(9);"Sieve of Er

astosthenes"':@%=10

 30 PRINT "This program will calculate

 the prime numbers up to some given nu

mber."'

 40 REPEAT

 50 INPUT '"Up to what number: ";N

 60 IF N<4 OR INT(N)<>N OR N>5000 THE

N PRINT '"Be reasonable!"

 70 UNTIL N>3 AND INT(N)=N AND N<5001

 80 DIM A%(N):CLS:PRINT '"Primes from

2 to ";N

 90 FOR I=2 TO N

 100 IF A%(I)=0 THEN PROCPrime

 110 NEXT

 120 PRINT CHR$(7) ''' TAB(10);"Another

 go? Y or N ";

 130 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 140 IF G$="Y" THEN RUN

 150 CLS:PRINT '"Bye for now.":END

 160 DEF PROCPrime

 170 IF 39-POS<LEN(STR$(I)) THEN PRINT

 180 PRINT ;I;" ";

 190 FOR J=I TO N STEP I:A%(J)=I:NEXT

 200 ENDPROC

RUN

 Sieve of Erastosthenes

This program will calculate the prime

numbers up to some given number.

Essential Maths on the BBC and Electron Computers

112

Up to what number: ?100

Primes from 2 to 100

2 3 5 7 11 13 17 19 23 29 31 37 41 43

47 53 59 61 67 71 73 79 83 89 97

 Another go? Y or N

Note that for large numbers the program starts off slowly; but soon starts
printing primes very fast. Printing the primes between 2 and 5000 takes
about 43 seconds on the BBC micro and about 59 seconds on the Electron.

The Sieve of Erastosthenes is comceptually easy. It is useful if you
want a list of prime numbers. But it is not a very practical method of
testing whether a number is prime.

A simple way to check if a number N is prime is to check whether it is
divisible by the numbers smaller than N, step by step. The following
illustrates this method. A clock is included to indicate how long it takes to
test the number for primality.

Listing 9.2
LIST
 10 REM Primes Version 1

 20 MODE 1:COLOUR 3:PRINT '" Ineffic

ient Prime tester Version 1"':@%=10:COLO

UR 1

 30 REPEAT

 40 INPUT '"Number to be tested: ";N%

 50 IF N%<4 THEN COLOUR 3:PRINT '"Be

reasonable!":COLOUR 1

 60 UNTIL N%>3

 70 COLOUR 3:PRINT '"The number being

tested is ";N%

 80 TIME=0:A$="":X%=N%-1

 90 FOR I%=2 TO X%

113

Chapter 9 - Primes

 100 IF N% MOD I% = 0 THEN A$="not ":I

%=X%

 110 NEXT

 120 COLOUR 2:PRINT '"The number is ";A

$;"prime."

 130 PRINT '"Time taken to test number

 ";INT(TIME/100+0.5);" seconds."

 140 COLOUR 3:PRINT CHR$(7) '' TAB(10);

"Another go? Y or N ";

 150 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 160 IF G$="Y" THEN RUN

 170 CLS:PRINT '"Bye for now.":END

RUN

 Inefficient Prime tester Version 1

Number to be tested: ?9001

The number being tested is 9001

The number is prime.

Time taken to test number 20 seconds.

 Another go? Y or N

The program works but it really is inefficient and slow. For instance to test
the primality of 9001 takes 20 seconds on the BBC micro and about 56
seconds on the Electron. To test the primality of a larger number such as
90001 takes about 205 seconds on the BBC and about 590 on the Electron.
A little thought will produce enormous benefits.

For a start we needn't bother using all the numbers between 2 and N.
We need only use the numbers between 2 and INT(SQR(N)). Because if M
is an integer which divides N and is greater than INT(SQR(N)) then N/M

Essential Maths on the BBC and Electron Computers

114

is an integer that divides N and is smaller than INT(SQR(N)). This simple
addition is included in version two below.

Listing 9.3
LIST
 10 REM Primes Version 2

 20 MODE 1:COLOUR 3:PRINT '" Ineffic

ient Prime tester Version 2"':@%=10:COLO

UR 1

 30 REPEAT

 40 INPUT '"Number to be tested: ";N%

 50 IF N%<4 THEN COLOUR 3:PRINT '"Be

reasonable!":COLOUR 1

 60 UNTIL N%>3

 70 COLOUR 3:PRINT '"The number being

tested is ";N%

 80 TIME=0:A$="":X%=SQR(N%)

 90 FOR I%=2 TO X%

 100 IF N% MOD I% = 0 THEN A$="not ":I

%=X%

 110 NEXT

 120 COLOUR 2:PRINT '"The number is ";A

$;"prime."

 130 PRINT '"Time taken to test number

 ";INT(TIME/100+0.5);" seconds."

 140 COLOUR 3:PRINT CHR$(7) '' TAB(10);

"Another go? Y or N ";

 150 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 160 IF G$="Y" THEN RUN

 170 CLS:PRINT '"Bye for now.":END

115

Chapter 9 - Primes

RUN

 Inefficient Prime tester Version 2

Number to be tested: ?90001

The number being tested is 90001

The number is prime.

Time taken to test number 1 seconds.

 Another go? Y or N

 Inefficient Prime tester Version 2

Number to be tested: ?9001

The number being tested is 9001

The number is prime.

Time taken to test number 0 seconds.

 Another go? Y or N

This version works considerably faster. Testing the number 9001 now
takes just over 1 second. A larger number, such as 987654323 takes about
87 seconds on the BBC and about 252 seconds on the Electron. Don't
attempt to test such a large number with version 1 - unless you enjoy
looking mindlessly at your television screen.

Remark. The addition incorporated in Prime Version 2 could also be

Essential Maths on the BBC and Electron Computers

116

incorporated in the program Erastosthenes to produce Erastosthenes 2. The
result would improve the speed.

We can further improve the program Primes Version 2 by taking a tip
from the Sieve of Erastosthenes. We can miss out all even numbers bigger
than 2 and miss out every third number after 3. These suggestions have
been added to the third version of the program.

Listing 9.4
LIST
 10 REM Primes Version 3

 20 MODE 1:COLOUR 3:PRINT ' TAB(9);"Pr

ime tester Version 3"':@%=10:COLOUR 1

 30 REPEAT

 40 INPUT '"Number to be tested: ";N%

 50 IF N%<8 THEN COLOUR 3:PRINT '"Be

reasonable!":COLOUR 1

 60 UNTIL N%>7

 70 COLOUR 3:PRINT '"The number being

tested is ";N%

 80 TIME=0:A$="":X%=SQR(N%)

 90 IF N% MOD 2 = 0 OR N% MOD 3 = 0 TH

EN A$="not " ELSE PROCOther

 100 COLOUR 2:PRINT '"The number is ";A

$;"prime."

 110 PRINT '"Time taken to test number

";INT(TIME/100+0.5);" seconds."

 120 COLOUR 3:PRINT CHR$(7) '' TAB(10);

"Another go? Y or N ";

 130 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 140 IF G$="Y" THEN RUN

 150 CLS:PRINT '"Bye for now.":END

 160 DEF PROCOther

 170 FOR I%=5 TO X% STEP 6

 180 IF N% MOD I% = 0 THEN A$="not ":I%

=X%

117

Chapter 9 - Primes

 190 IF N% MOD (I%+2) = 0 THEN A$="not

":I%=X%

 200 NEXT

 210 ENDPROC

RUN

 Prime tester Version 3

Number to be tested: ?90001

The number being tested is 90001

The number is prime.

Time taken to test number 0 seconds.

 Another go? Y or N

This speeds up the program a little. Testing the prime 987654323 now
takes about 30 seconds on the BBC and about 86 seconds on the Electron.
The largest integer that your computer can store is 2147483647, is it a
prime number?

A composite number may be written as a product of prime numbers.
For instance

6 = 3 * 2
24 = 3 * 2 * 2 * 2
81018001 = 9001 * 9001

and so on. The various primes that occur are called factors of the number.
By adding a few extra lines to version 3 we can have all the factors of a
number displayed.

The next program prints out the factors of a number.

Essential Maths on the BBC and Electron Computers

118

Listing 9.5
LIST
 10 REM Prime factors

 20 MODE 1:COLOUR 3:PRINT ' TAB(13);"P

rime factors"':@%=10:COLOUR 1

 30 REPEAT

 40 INPUT '"Number to be tested: ";N%

 50 IF N%<8 THEN COLOUR 3:PRINT '"Be

reasonable!":COLOUR 1

 60 UNTIL N%>7

 70 COLOUR 3:PRINT '"The factors of ";

N%;" are:"':COLOUR 2

 80 TIME=0:A$="":X%=SQR(N%):S%=X%+1

 90 IF N% MOD 2 = 0 THEN PROCFactor(2)

 100 IF N% MOD 3 = 0 THEN PROCFactor(3)

 110 FOR I%=5 TO X% STEP 6

 120 IF N% MOD I% = 0 THEN PROCFactor(

I%)

 130 IF N% MOD (I%+2) = 0 THEN PROCFac

tor(I%+2)

 140 IF I%>S% THEN I%=X%

 150 NEXT

 160 IF 39-POS<LEN(STR$(N%)) THEN PRINT

 170 IF N%>1 THEN PRINT ;N%

 180 COLOUR 1:PRINT ''"Time to find fac

tors: ";INT(TIME/100+0.5);" seconds."

 190 COLOUR 3:PRINT CHR$(7) '' TAB(10);

"Another go? Y or N ";

 200 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 210 IF G$="Y" THEN RUN

 220 CLS:PRINT '"Bye for now.":END

 230 DEF PROCFactor(J%)

 240 REPEAT

 250 IF 39-POS<LEN(STR$(J%)) THEN PRIN

T

 260 PRINT ;J%;" ";:N%=N% DIV J%

 270 UNTIL N% MOD J% > 0

119

Chapter 9 - Primes

 280 S%=SQR(N%)+1

 290 ENDPROC

RUN

 Prime factors

Number to be tested: ?162036002

The factors of 162036002 are:

2 9001 9001

Time to find factors: 9 seconds.

 Another go? Y or N

 Prime factors

Number to be tested: ?1022048

The factors of 2048 are:

2 2 2 2 2 2 2 2 2 2 2

Time to find factors: 0 seconds.

 Another go? Y or N

Essential Maths on the BBC and Electron Computers

120

Large primes
Finding large prime numbers is a pastime for some. The largest known
primes are usually Mersenne primes. Numbers of the form

2P - 1

are called Mersenne numbers because of the French monk, Father Marin
Mersennes, who made some suggestions concerning the primality of such
numbers.

Many early writers believed that the Mersenne numbers are prime if
the exponent M is prime. For the first few cases this is indeed true.

22 - 1 = 3
23 - 1 = 7
25 - 1 = 31
27 - 1 = 127

But for P = 11 the number is not prime.

211 - 1 = 2047 = 23 * 89

For at least the last 100 years the world's largest known prime has always
been a Mersenne prime (except for a short period in 1951). Prior to
January 1983, the largest known prime was

244497 - 1

a Mersenne prime discovered by David Slowinski in April 1979. This was
the 27th Mersenne prime known. In about 1983 Slowinski found the much
larger prime

286243 - 1

which is a Mersenne prime containing 25962 decimal digits. (It would fill
several pages of this book to write out the number completely.) The
computer that Slowinski used was a Cray-1. This is an amazingly fast
machine, even so it took 1 hour 36 minutes and 22 seconds of computer
time to perform the test.

An arbitrary number of the size 2286243 - 1 would be impossible to test
for primality using any of the programs in the previous section. But there
are special techniques for Mersenne numbers. These were developed
during the last 100 years. To test a number of the form N = 2P - 1 for
primality one defines a sequence as follows:

121

Chapter 9 - Primes

U1 = 4
U2 = (U1*U1 - 2) MOD N

• •
• •
• •

Up-1 = (Up-2*Up-2 - 2) MOD N

Then N is prime if and only if UP-1 = 0. This means that in order to test for
N being prime we need to perform approximately P simple calculations.
Performing 86243 operations would be quite simple for your computer if
the numbers involved were small. But here one is dealing with numbers
that have 86243 binary digits and your computer stores 32 binary digits.
There are methods available to get around this problem but we won't go
into the details here. See the next chapter.

Probabilistic primality testing
Given unlimited time we could test for the primality of an integer by trial
division. But time is limited, even for a computer.

In the last few years a new test has been devised which is based on an
old theorem of Pierre Fermat who lived during the 17th century. Fermat
showed that if P is a prime number and B is some other number between 1
and P - 1 then the number 8P-1 - 1 is divisible by P. For instance, let P = 11
and B = 2 then 211-1 - 1 is 1023 which is indeed divisible by 11.

Although Fermat proved his theorem for all values of B, the Chinese
mathematician Pomerance (5th Century B.C.) knew the theorem in the
case B = 2. In addition he believed, incorrectly, that the converse is true. In
other words he believed that if 2P-1 - 1 is divisible by P then P is a prime
number. However the number 341 divides 2340 - 1 and 341 is not prime.
We call such a number a pseudoprime to the base 2. In general a
composite number P that divides BP-1 - 1 is called a pseudoprime to the
base B. Most numbers that appear to be pseudoprimes are in fact genuine
primes. And this is what the test is based on.

Listing 9.6
LIST
 10 REM Probabilisic primality test

 20 MODE 1:COLOUR 3:PRINT ' TAB(6);"Pr

obabilistic primality test"':@%=10:COLOU

R 1

 30 REPEAT

 40 INPUT '"Number to be tested: ";N%

Essential Maths on the BBC and Electron Computers

122

 50 IF N%<8 THEN COLOUR 3:PRINT '"Be

reasonable!":COLOUR 1

 60 UNTIL N%>7

 70 REPEAT

 80 REM Factorise N%-1 = (2^T%)*X%

 90 T%=0:X%=N%-1

 100 REPEAT

 110 IF X% MOD 2 = 0 THEN T%=T%+1:X%=

X% DIV 2

 120 UNTIL X% MOD 2 = 1

 130 REM Select a base B

 140 I=RND(-TIME):B%=RND(N%-3) + 1

 150 COLOUR 1:PRINT '"Test using base

";B%:COLOUR 2

 160 REM Raise B% to power X%

 170 P%=1

 180 REPEAT

 190 IF X% MOD 2 = 1 THEN P%=P%*B%:P%

=P% MOD N%

 200 B%=B%*B%:B%=B% MOD N%:X%=X% DIV

2

 210 UNTIL X%=0

 220 REM Check B%^X%

 230 REPEAT

 240 TEST=-1

 250 IF P%=1 OR P%=N%-1 THEN TEST=0

 260 IF TEST AND T%<2 THEN PRINT '"Nu

mber is NOT prime.":TEST=1:G$="N"

 270 IF TEST THEN P%=P%*P%:P%=P% MOD

N%:T%=T%-1

 280 UNTIL NOT TEST

 290 IF TEST=0 PRINT '"Number is PROBA

BLY prime."''"Do you want to test the nu

mber again with another base? Y or N"

'

 300 IF TEST=0:REPEAT:G$=GET$:UNTIL G$

="Y" OR G$="N"

 310 UNTIL G$="N"

123

Chapter 9 - Primes

 320 COLOUR 3:PRINT CHR$(7) '' TAB(10);

"Another go? Y or N ";

 330 REPEAT:G$=GET$:UNTIL G$="Y" OR G$=

"N"

 340 IF G$="Y" THEN RUN

 350 CLS:PRINT '"Bye for now.":END

RUN

 Probabilistic primality test

Number to be tested: ?341

Test using base 29

Number is PROBABLY prime.

Do you want to test the number again

with another base? Y or N

Test using base 31

Number is NOT prime.

 Another go? Y or N

Try numbers such as 341 and 561, neither of which is prime. If you find
that they are a pseudoprime to some base then try another base.

Essential Maths on the BBC and Electron Computers

124

