
UTILITIES

91

SOUND WIZARD
by Alan Webster

With 'Sound Wizard' you can produce a variety of
sound effects by combining any one of the 8 preset
sound envelopes with your own choice of sound
parameters. This allows you to produce off-the-shelf
sound effects, and takes the work out of designing
envelopes for your programs.

When you run the program you will be required to
enter 4 parameters:

Sound channel (0 or 1)

Envelope number (1-8)

Pitch (0-255)

Duration (0-255)

The sound will then be heard, and the sound
parameters displayed. You may now enter a new set
of parameters, or if you press ESCAPE the computer
will tell you at which program line the appropriate
envelope is to be found (so that you may transcribe it
into another program).

92

If you wish to add envelopes (or change them),
you are advised not to renumber them as it can lead
to confusion.

It should be noted that you can have only one
Envelope defined at any time so the Envelopes have
to be redefined when required, hence the use of
PROCENV(E) where E is the Envelope number.

Given below are some examples to try:

Sound Envelope Pitch Duration
1 1 200 40
1 2 200 50
1 3 4 100
0 3 5 40
1 4 50 100
1 5 200 150
1 6 0 10
1 7 20 100
0 8 6 20

 10 REM Sound Wizard
 20 REM by A.Webster
 30 REM BEEBUG
 40 REM VERSION P 1.0
 50 :
 60 ON ERROR GOTO 450
 70 E=0
 80 MODE 6
 90 PRINTTAB(13,0)"SOUND WIZARD"
 100 PRINTTAB(12)"by Alan Webster"
 110 PRINT'TAB(9)"8 ENVELOPES DEFINED"
 120 PRINTTAB(0,5);" Channel Envelope Pitch Du
ration"
 130 INPUTTAB(1,7),C:INPUTTAB(10,7),E
 140 INPUTTAB(20,7),P:INPUTTAB(27,7),D
 150 PROCENV(E)
 160 SOUND C,1,P,D
 170 PRINTTAB(0,16);"SOUND ";C;",";E;",";P;",";D;
SPC(100);
 180 PRINTTAB(0,7);SPC(40);TAB(0,15);"ENVELOPE ";
E;SPC(5);:VDU30

93

 190 GOTO 90
 200 DEFPROCENV(X)
 210 ON X GOTO 230,250,270,290,310,330,350,370
 220 GOTO 380
 230 ENVELOPE 1,1,-15,-15,-15,230,230,230,126,0,0
,-126,126,126
 240 ENDPROC
 250 ENVELOPE 1,1,4,2,-2,5,5,5,126,0,0,-126,126,1
26
 260 ENDPROC
 270 ENVELOPE1,1,6,0,-6,200,100,200,126,0,0,-126,
126,126
 280 ENDPROC
 290 ENVELOPE 1,1,-50,-50,-50,20,-20,20,126,0,0,-
126,126,126
 300 ENDPROC
 310 ENVELOPE 1,1,-100,100,-100,100,-100,100,126,
0,0,-126,126,126
 320 ENDPROC
 330 ENVELOPE 1,1,10,10,10,230,230,230,126,0,0,-1
26,126,126
 340 ENDPROC
 350 ENVELOPE 1,3,0,1,0,0,255,0,126,0,0,-126,126,
126
 360 ENDPROC
 370 ENVELOPE 1,3,0,1,0,0,255,0,126,0,0,-126,126,
126
 380 ENDPROC
 390 :
 400 REM Add Extra Envelopes Here.
 410 REM
 420 REM
 430 REM
 440 :
 450 ON ERROR OFF
 460 IF ERR<>17 REPORT:PRINT " at line ";ERL:END
 470 IF E=0 PRINT''':END
 480 PRINTTAB(0,20);"LIST line ";(20*E)+210
 490 END

94

RESCUING A BAD PROGRAM
by C. Opie

One of the most dreaded error messages that your
Electron will produce is 'Bad Program'. Once that
has been displayed you will find that you can no
longer access your current Basic program. Now we
come to your rescue with a program that will restore
your program to health with almost magical effi-
ciency. It can also be used to recover programs that
refuse to load correctly from cassette.

The error message 'Bad Program' is produced by
Basic when it detects that the program in memory
has been corrupted, or has been loaded incorrectly.
Once the message has been issued, the user cannot
directly modify his program in any way. LIST does
not work and typing new lines has no effect. This can
be disastrous if a small programming error results in
a correupted program for which you have no backup
copy on tape. The 'Rescue' program presented here
will search through a 'Bad Program' for the cor-
rupted parts, and fix these in such a way that the
program can once again be listed and edited. This
may not restore the original program completely but
it does allow you to gain access to the program so
that damaged lines can be deleted or replacd.

95

Using 'Rescue' to recover bad programs
First type it in, and save it on cassette. (SAVE
"RESCUE"). It is reasonably short but must be typed
in very accurately.

When you get a 'Bad Program' message type the
following:

MODE 6 <return>
PAGE=TOP+&100 <return>
CHAIN "RESCUE" <return>

Changing the value of PAGE ensures that the
'Rescue' program occupies a separate area of
memory to the corrupt program. The 'Rescue' pro-
gram will then attempt to patch up the program
currently resident in memory. When it finishes, you
should be able to list and edit your repaired program
as normal.

On recovering a corrupt program, save it on tape
with SAVE"name". This will safeguard it against any
further corruption. Having saved the program, list it
out and examine the lines of code. Some lines may
contain rubbish, whilst others may have disappeared
completely, depending on how serious the corrup-
tion was. You may now re-type or replace lines as
needed.

Something to look out for are '#' characters appear-
ing in the program after initial recovery. The rescue
operation replaces any control characters in the
program with the hash character (#).

Recovering cassette programs
Sometimes you will find it impossible to load cor-
rectly. Then you will be plagued with a variety of
error messages often followed by the words 'Rewind
Tape'. Trying to reload, will sometimes work but not
always. This is how the 'Rescue' program can, once
again, avert potential disaster.

Before attempting to re-load the offending pro-
gram from cassette, type the following line into your
Electron:

*OPT2,0 <return>

96

Now proceed to load the problem cassette as before.
This time, although error messages may still appear,
the program will continue to be loaded into the
computer, including any corrupted sections. Once
the corrupt program is in memory, follow the steps
already described to restore as much of your pro-
gram as possible. You should also, at this stage,
restore cassette loading to its normal state by typing:

*OPT <return>

Of course, this process will generally work only
with your own programs, as you will need to know
how to make corrections yourself, once 'Rescue' has
done its job. It will not generally help with programs
that you have bought or obtained elsewhere,
especially if the 'Bad Program' message arises as a
result of copy protection put on the software by the
manufacturer.

Some final hints
'Rescue' is an extremely effective utility, but it is still
better to avoid losing your program in the first place.
One way to reduce the chances of loss is to save your
programs frequently onto cassette during develop-
ment. Saving two copies will also help to avoid
loading problems later. Moving back to a previous
version is usually much easier than recovering a
damaged program and should be quicker overall.

Explaining PAGE
Part of your computer's memory is reserved for its
own use. The point where your own programs tarts
is always stored for reference in a special variable
called PAGE. On the Electron, this is normally set to
&E00 (3584 in decimal), when you first switch the
computer on. To check, type PRINT PAGE <return>.
PAGE can be set to other values for special purposes,
usually so that a program can be located in a differ-
ent part of memory. It is possible, in this way, to have
more than one program in memory at the same time.
This happens when the 'Rescue' program and your
program are in memory together.

 10 REM Rescue
 20 REM by Colin Opie
 30 REM BEEBUG
 40 REM VERSION P 1.0

97

 50 :
 60 ON ERROR GOTO 320
 70 PROCinit
 80 REPEAT
 90 PROCrecover
 100 UNTIL finished
 110 PAGE=P%
 120 END
 130 :
 140 DEF PROCrecover
 150 ?line=&0D: lenpos=line+3: count=1
 160 IF ?line=&0D AND line?1=&FF THEN finished=TRU
E:ENDPROC
 170 PRINT (line?1)*256+(line?2);
 180 REPEAT
 190 IF line?count<>&0D THEN count=count+1
 200 IF line?count<>&0D AND line?count<32 AND coun
t>4 THEN line?count=35
 210 IF count>250 THEN line?(count+1)=&0D
 220 UNTIL line?count=&0D
 230 PRINT ~line
 240 line=line+count: ?lenpos=count
 250 ENDPROC
 260 :
 270 DEF PROCinit
 280 P%=&E00
 290 line=P%: line?1=0: finished=FALSE
 300 ENDPROC
 310 :
 320 ON ERROR OFF
 330 MODE 6:IF ERR=17 END
 340 REPORT:PRINT" at line ";ERL
 350 END

98

BAD PROGRAM LISTER
by E.Hanson

This program will list any Basic program (or any text
file) stored in the computer, in a format similar to
that produced by the LIST command. Its particular
value is in listing programs which the command,
LIST, will not control; i.e. programs whih have
become 'damaged' in the computer. In this respect it
forms a useful adjunct to the program 'Rescue'. In
fact, 'Lister' will even list the remains of a program
that has been partly overwritten when another
shorter program has been loaded on top of it.

'Lister' works by looking at the Basic tokens as
they are stored in memory, and converting them
back to their original keyword format. The program
is quite small, just under two blocks in length, as it
uses the look-up table in the Basic ROM at &8071 to
make the conversions.

LISTER will not convert the line numbers follow-
ing a GOTO, as these are stored in code within the
computer to save space. Note that for the sake of
speed (and the irregularity of the way the tokens are
set up in memory), the word "AND" is printed as
"ND".

99

Using 'Lister'
Type in the program and save a copy before use, as
you would any Basic program.

Asuming that you want to use 'Lister' to list a
program already in the computer, you will need to
change PAGE before you load in 'Lister'. This avoids
overwriting the program already resident. Proceed
as follows:

MODE6 <return>
PAGE=TOP+&100 <return>
CHAIN"LISTER" <return>

'Lister' will then run and print 'Start Address?' .
This will normally be &e00, but you can type in any
address that you want. The listing will then start and
will print in 1k blocks. After each block it will beep,
and wait for you to press any key. It will then print
the current address in hex followed by the next 1k of
program, and so on until you stop the program by
pressing ESCAPE.

 10 REM Bad Program Lister
 20 REM by Elizabeth Hanson
 30 REM BEEBUG
 40 REM VERSION P 1.0
 50 :
 60 MODE6
 70 INPUT'"Start Address",A$
 80 @%=1:J%=255:A%=EVAL(A$)
 90 REPEAT:PRINT''" ";~A%
 100 FORI%=0TOJ%:X%=A%?I%
 110 IFX%=&0D PRINT'A%?(I%+1)*256+A%?(I%+2);" ";:I
%=I%+3:GOTO140
 120 IFX%>&7F ANDX%<&FF PROCL:GOTO140
 130 IFX%>31PRINTCHR$(X%);ELSEPRINT~X%;
 140 NEXT
 150 A%=A%+J%+1:VDU7:B$=GET$:UNTILFALSE
 160 END
 170 :
 180 DEFPROCL:K%=-1:T%=&8071
 190 REPEAT:K%=K%+1:Y%=T%?K%:UNTILY%=X%ORK%>&300:L
%=K%

100

 200 REPEAT:K%=K%-1:Z%=T%?K%:UNTILZ%>&7F ORK%<0
 210 IFT%?(K%+2)<40K%=K%+3ELSEK%=K%+2
 220 REPEAT:PRINTCHR$(T%?K%);:K%=K%+1:UNTILK%>=L%:
ENDPROC

DOUBLE HEIGHT
by B. Grand

Enlarge your text displays with this useful utility
that will really make your programs stand out.

Large size text on the screen can add impact to
your programs, but with the Electron there is no
simple facility for generating double height charac-
ters. To overcome this we present a procedure which
allows double height printing in any mode. This is
extremely useful for making more prominent dis-
plays, required, for example, in education and in
games. The procedure, called PROCdouble, is
defined in lines 10000 to 10130 and is very easy to
use. Simply add it to the end of your program, and it
can then be called as a normal procedure. For

101

example

PROCdouble("FORTY-TWO",5,10)

will display "FORTY-TWO" in double height charac-
ters, and in a position on the screen, 10 characters
down from the top and 5 characters in form the
lefthand side. The string can be string variable,
andthe co-ordinates can also be variables.

We have put the procedure PROCdouble following
a short program in lines 10 to 150 to show you how
to use it. This program calls the procedure three
times in order to display three lines of double-height
text on the screen. Each time that you press the space
bar the program re-runs in a different mode.

If you want to use this proceudre in one of your
own programs, you are recommended to consult the
Electron User Guide, pages 200 and 201, which tell
you how merge Basic programs together.

 10 REM Double Height Text
 20 REM by B.Grand
 30 REM BEEBUG
 40 REM VERSION P 1.0
 50 :
 60 FOR mode=0 TO 6
 70 MODE mode
 80 FOR A=2 TO 17 STEP 5
 90 PROCdouble("ELECTRON",2,A)
 100 PROCdouble("Mode",2,A+2)
 110 PROCdouble(STR$(mode),8,A+2)
 120 NEXT
 130 WAIT=GET
 140 NEXT
 150 END
 160 :
10000 DEF PROCdouble(A$,K,L)
10010 REM Version E 1.0
10020 LOCAL N
10030 A%=&A:X%=0:Y%=&A
10040 D=&A00
10050 FORN=1 TO LEN(A$)

102

10060 B$=MID$(A$,N,1)
10070 ?D=ASC(B$)
10080 CALL (&FFF1)
10090 VDU23,240,D?1,D?1,D?2,D?2,D?3,D?3,D?4,D?4
10100 VDU23,241,D?5,D?5,D?6,D?6,D?7,D?7,D?8,D?8
10110 PRINT TAB(K+N,L);CHR$(240);TAB(K+N,L+1);CHR$
(241)
10120 NEXT N
10130 ENDPROC
>

3-D LETTERING
by G. Weston

This short program produces a 3-D effect on lettering
used for headings, and considerably improves the
look of the title page of programs in which it is
incorporated. In this particular version the text is
printed in white with a black shadow against a blue
background.

To use the program for your own purposes,

103

you really only need the procedure PROCDOUBLE.
This is defined in lines 1000 onwards. To call the
procedure you need one or more lines of the kind
appearing on lines 70 to 100. In each case three
parameters follow the procedure call. The first, in
quotation marks, is the text to be printed. The second
two parameters give the x and y co-ordinates of the
printing position on the screen. A little experiment is
needed here - but remember that 0,0 is the bottom
left hand corner, and 1279,1023 is the top right hand
corner of the screen.

The technique used in this program is to print
the text in white, and then to overprint it in black 8
positions down to the left (hence line 1070). Over-
printing might be expected partially to erase the
original text, but this is avoided by using the GCOL
statement in line 1030 to perform so-called 'OR'
plotting. See the User Guide p.153 for further details.

 10 REM 3-D Lettering
 20 REM by G.Weston
 30 REM BEEBUG
 40 REM VERSION P 1.0
 50 :
 60 MODE 5
 70 PROCDOUBLE("BEEBUG",450,800)
 80 PROCDOUBLE("for the",400,600)
 90 PROCDOUBLE("Acorn",450,400)
 100 PROCDOUBLE("Electron",360,200)
 110 END
 120 :
 1000 DEFPROCDOUBLE(A$,X,Y)
 1010 VDU5
 1020 VDU19,0,4,0,0,0:VDU19,1,0,0,0,0
 1030 GCOL1,3
 1040 MOVE X,Y
 1050 PRINT A$
 1060 GCOL 1,1
 1070 MOVE X-8,Y-8
 1080 PRINT A$
 1090 ENDPROC

104

105

Fig 1

106

INTERESTED IN THE LATEST COMPUTER BOOKS AND
SOFTWARE?

Penguin have many exciting future projects to share with
you. There will be books on new models and machines,
specific handbooks on graphics, sound and other functions,
plus a terrific range of Penguin Software covering
everything from arcade games to dieting!

We will keep you regularly in touch with the latest news.
Just send your name, address and any special interest to:

Penguin Books Dept. CMD
536 Kings Road
London SW10 0UH

Getting the Most from Your . . .

This exciting new series provides comprehensive and
carefully designed introductions to a whole range of
machines. The books are compiled by professional writers
and jouranlists and, through the use of diagrams, colour
photographs, programs, entertaining examples and
informative appendices, they take you, in a clear and
painless way, from the elemtns of computing through to
mastery of the machine.

If you want to understand what your particular computer
is really capable of doing, then this new series has the right
book for you.

Already published
Dragon 32
Sinclair Spectrum
Vic-20

Forthcoming
ZX 81
Commodore 64
BBC 'B'
Acorn Electron

The Acorn Guide to the Electron
Neil and Pat Cryer

The Acorn Electron (described in Which Micro? as 'a
winner') is probably, for the price, the most advanced
personal computer on the market. This guide, published
with the full cooperation of the manufactuers, describes
and explains everything a non-technical owner needs to
know in order to get the most from this versatile and
amazing new machine.

The Electron is designed to be fun, useful and, above all, the
best introduction to the new Age of Computers. It has
been developed by the people responsible for the BBC
Micro -- the machine that is part of the syllabus of over 80
per cent of our schools. Both computers understand the
same language and both have been designed to grow with
your understanding of their capability and you needs.

You may be thinking of buying this book because you have
just bought the new Acorn Eletron or maybe you have
bought the new Acorn Electron or maybe you have bought
the machine as a present for a friend or relative.
Whichever is the case, The Acorn Guide to the Electron is
the indispensable companion to your machine.

