
Neil Cryer, Pat Cryer and Andrew Cryer

Publis
hed

 in

as
so

cia
tio

n w
ith

Graphics on the

BBC
Microcomputer

Other books published by Prentice-Hal International

BASIC PROGRAMMING ON THE BBC MICROCOMPUTER,

Neil Cryer and Pat Cryer

THE BBC MICROCOMPUTER FOR BEGINNERS,

Seamus Dunn and Valwrie Morgan

100 PROGRAMS FOR THE BBC MICROCOMPUTER,

John Gordon

THE BBC MICROCOMPUTER DISK COMPANION,

Tony Latham

Graphics on the
BBC

Microcomputer
Neil Cryer

Chelsea College, University of London

Pat Cryer
Educational Consultant and Honoary
Research Fellow, University of Surrey

and Andrew Cryer

Prentice/Hall International

ENGLEWOOD CLIFFS, NEW JERSEY LONDON NEW DEHLI RIO DE JANEIRO
SINGAPORE SYDNEY TOKYO TORONTO WELLINGTON

British Library Cataloguing in Publication Data

Cryer, Neil
Graphics on the BBC micro.
1. Computer graphics 2. BBC Microcomputer
I. Title II. Cryer, Pat
III. Cryer, Andrew
001.64'63 T385
ISBN 0-13-363283-0

Library of Congress Cataloging in Publicaton Data

Cryer, Neil
Graphics on the BBC micro.
Includes index.
1. Computer graphics. 2. BBC Microcomputer - Programming

I. Cryer, Pat. II. Cryer Andrew. III. Title: Graphics on the BBC micro.
T385.C78 1983 001.64'43 83-13770
ISBN 0-13-363283-0 (pbk.)
ISBN 0-13-363242-3 (cassette)

© 1983 by Neil Cryer, Pat Cryer and Andrew Cryer

All right reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior
permission of the authors.

ISBN 0-13-363283-0

PRENTICE-HALL INTERNATIONAL INC., London
PRENTICE-HALL OF AUSTRALIA PTY., LTD., Sydney
PRENTICE-HALL CANADA, INC., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE., LTD., Singapore
PRENTICE-HALL INC., Englewood Cliffs, New Jersey
PRENTICE-HALL DO BRASIL LTDA., Rio de Janeiro
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Printed in the United Kingdom
10 9 8 7 6 5 4 3 2 1

DIGITALLY REMASTERED ON RISC OS COMPUTERS, DECEMBER 2011.

Contents
Preface xi

0 INTRODUCTION 1
0.0 About this book 1
0.1 The two models of the BBC Microcomputer 3
0.2 Loading, saving and joining programs 4
0.3 Activities 6
0.4 Discussion of activities 7

1 FUNDAMENTALS OF GRAPHICS 8
1.0 Introduction 8
1.1 Display modes of Model B BBC Microcomputer 9
1.2 Graphics on a Model A BBC Microcomputer 11
1.3 Getting into a mode 11
1.4 Addressing pixels 11
1.5 Activities 15
1.6 Drawing lines 19
1.7 Activities 23
1.8 Drawing simple curves 24
1.9 Activities 24
1.10 Discussion of activities 24

2 COLOURING DISPLAYS 25
2.0 Introduction 25
2.1 Available colours 26
2.2 Setting foreground and background colour for text 27
2.3 Activities 27
2.4 Setting foreground and background colours for graphics 28
2.5 Activities 29

3 DRAWING SIMPLE SHAPES 30
3.0 Introduction 30
3.1 Codes for the PLOT statement 32
3.2 Activities 33
3.3 Using the PLOT statement 35
3.4 Activities 38
3.5 Discussion of activities 39

4 PROGRAMMING YOUR OWN 42

CHARACTERS
4.0 Introduction 42
4.1 Designing a programmable character 44
4.2 Converting the design to code 45
4.3 Activities 47
4.4 Printing programmable characters 47
4.5 Activities 49
4.6 Composite figures 51
4.7 Activities 54
4.8 Multicoloured characters and figures 55
4.9 Activities 56
4.10 Discussion of activities 58

5 ANIMATING DISPLAYS 60
5.0 Introduction 60
5.1 The redefinable and absolute colour numbers: a

summary
61

5.2 Redefining colours 62
5.3 Activities 62
5.4 Animation 63
5.5 Activities 64
5.6 Overlapping images 65
5.7 Logical operations 68
5.8 Activities 70
5.9 Discussion of activities 72

6 DRAWING THREE DIMENSIONAL RIPPLE
SURFACES

 73

6.0 Introduction 73
6.1 Choosing a function and scaling it 74
6.2 Activities 75
6.3 Drawing the surface 76
6.4 Hidden lines 78
6.5 Activities 80
6.6 Discussion of activities 81

7 ADDING PERSPECTIVE 82
7.0 Introduction 83
7.1 Drawing the object 83
7.2 Giving the object perspective 84
7.3 Rotating the object 84
7.4 The complete program 85
7.5 Activities 90
7.5 Two techniques for hidden line removal 90
7.7 Activities 95

8 EXTENDING BBC BASIC FOR GRAPHICS 98
8.0 Introduction 98
8.1 Our procedures 99
8.2 Procedures for enlarged, rotated writing 100

8.3 Using the procedures for large, rotated writing 101
8.4 Activities 103
8.5 Feeding data into programs 104
8.6 Storing data: arrays 105
8.7 The core procedures 106
8.8 Activities 108
8.9 Discussion of activities 109

9 DRAWING GRAPHS 111
9.0 Introduction 111
9.1 Data calculated by the program 112
9.2 Removal of the cursor from the final display 113
9.3 Activities 113
9.4 Data read from DATA statements 113
9.5 Titles and other labels 115
9.6 Activities 117
9.7 Data taken from the INPUT statement 118
9.8 Forcing the inclusion of the origin 119
9.9 Activities 120

10 GETTING THE BEST STRAIGHT LINE 123
10.0 Introduction 123
10.1 The equation of a straight line 124
10.2 The correlation coefficient 124
10.3 Using PROCbstln 125
10.4 Activities 125
10.5 Setting the accuracy of the equation and the

correlation coefficient
127

10.6 Activities 129
11 DISPLAYING SHAPES OF FUNCTIONS 131

11.0 Introduction 131
11.1 Selecting a function for display 134
11.2 Using the function-drawing program 134
11.3 The operation of the program 135
11.4 Activities 139
11.5 Displaying two functions together 139
11.6 Activities 141
11.7 Discussion of activities 142

12 DRAWING HISTOGRAMS 143
12.0 Introduction 143
12.1 Drawing a simple histogram 144
12.2 Activities 144
12.3 Labelling the bars 146
12.4 Activities 148
12.5 Drawing solid-looking histograms 148
12.6 Activities 149
12.7 Drawing two histograms together 150
12.8 Activities 152

13 DRAWING PIE CHARTS 154
13.0 Introduction 154
13.1 Drawing a pie chart 156
13.2 Activities 158
13.3 Storing a pie chart 158
13.4 Activities 160

14 DISPLAYING STATISTICS 161
14.0 Introduction 161
14.1 Some statistical terms 162
14.2 The statistics program 152
14.3 Activities 163
14.4 Superimposing alternative distributions 164

15 USING TELETEXT GRAPHICS 167
15.0 Introduction 167
15.1 Writing in colour 168
15.2 Colouring the background of a single line of text 169
15.3 Flashing text 169
15.4 Making double height characters 170
15.5 Activities 170
15.5 Block graphics 171
15.7 Getting continuity when changing colour 172
15.8 Composite figures 173
15.9 Activities 177
15.10 Using the procedures with Teletext 178
15.11 Error messages with Teletext graphics programming 180
15.12 Activities 182
15.13 Discussion of activities 183

APPENDIX 1 LISTINGS FOR THE
PROCEDURES

186

Introduction 186
The listings 188
Adaptations of the listings for Teletext

APPENDIX 2 HOW THE PROCEDURES WORK 200

APPENDIX 3 THE ASCII CODES 224

INDEX 225

Preface

This is our second book on programming for the BBC
Microcomputer and we see it as a natural extension of the first
BASIC Programming on the BBC Microcomputer. That first book
was published in the Spring of 1982 and gave a comprehensive
introduction to BASIC. In this present book, we show how to
capitalise on the superb colour and graphics features, which
have made the BBC Microcomputer so widely acclaimed!

We genuinely believe that the BBC Microcomputer has
something very special and important to offer to everyone! We
wrote it so that it could be used at any of three levels, for the
hobbyist and the professional alike.

At the simplest level, you may just want to scan through to
see what can be achieved with colour graphics on the BBC
Microcomputer. When you spot an illustration of a screen display
that appeals to you, you merely type in the listing, run it and sit
back to enjoy the display!

At the next level you may want to produce pictures, shapes,
graphs, histograms, pie charts, etc. to display your own data. We
have arranged for you to achieve very professional-looking
results quite easily. You merely find a screen display that looks
suitable and use its listing. Sometimes you can feed in your own
data directly, but where you have to edit the listing, we explain
how to do it.

The third level is for those who want to learn how to program
graphics on the BBC Microcomputer. if you already have some
idea of BASIC programming, you will find that the book takes you
gently through the various graphics statements, showing when
and how to use them,

With this book, it really is possible to achieve professional-
looking and dramatic displays of your own design, quickly and
easily. This is largely because we have provided routines which
you can call on to take care of the rather mundane and irksome
parts of programming graphics, such as set ting up and scaling
the displays. We explain how to use these routines and we list
them fully in an appendix. Another appendix explains how they
work and the techniques on which they rely.

These routines are atso available, with the other programs in
the book, for purchase on cassette tape. Not only does this free
you from having to type them into the computer; it also means no

typing errors. So it is a major advantage.
With this book, we welcome Andrew Cryer to the family

team. His contribution to programming has been invaluable and
we have appreciated his support and constructive criticism on
other aspects of the writing.

We would like to thank those people whose names do not
appear on the front cover but who contributed significantly to the
production of this book. In particular Tony Brain of Chelsea
College and Roger Wilson of Acorn Computers Ltd both made
exceptionally valuable comments on early drafts of the
manuscript. Our editor, Giles Wright of Prentice Hall International
has been a constant source of support, encouragement and
efficiency throughout the entire writing process. We are also
grateful to Wendy Cryer for her drawings of the 'professor'. The
self-study aspects of the, book have benefited much from the
association of one of us (Pat Cryer) with the education branch of
a multi-national computing concern and with the Institute of
Educational Development at the University of Surrey.

Neil Cryer Pat Cryer

Andrew Cryer

London
September 1983

Graphics on the
BBC

Microcomputer

0 Introduction
0.0 About this book
0.1 The two models of the BBC Microcomputer
0.2 Loading, saving and joining programs
0.3 Activities
0.4 Discussion of activities

0.0 About this book

This book enters the fascinating area of computer graphics! It is
written with special reference to the BBC Microcomputer and it
teaches how to use the BBC Microcomputer to produce such
displays as pictures, shapes, graphs, histograms, pie charts, etc.
Yet the book is much more than a teaching book. We have
written it assuming that you may want to use it for any of the
following three reasons, and we have made provision for all
three,

i. You may want to see what the BBC Microcomputer can do in
the way of colour graphics, and not want to develop a graphics
display for any specific purpose. If so, since the displays are

1

opposite or next to the programs which produce them, you can
simply choose the display you like, type in the program and run it
to get an identical display.

ii. You may be looking for a graphics display to help you with a
particular job or problem. If so, you simply flip through the book
to find the display which most nearly suits your purposes. Then
you read our hints and advice on how to modify it.

iii. You may want to make your own graphics programs. With this
in mind, we describe and explain the necessary BBC BASIC
instructions and show how to use them. We also provide various
routines to save you time when you program sophisticated
graphics displays, and we show you how to use them.

In iii, we mentioned routines to save you time when you
program graphics displays. Let us explain. Whenever you
program graphics, you will find that you keep needing routines to
do certain jobs, like scaling data so that the display fits the
screen, or like drawing and graduating axes of a graph. We do
not just teach you how to program these for yourself. We actually
supply them as procedures for you! They are listed in Appendix I
for you to type in and save, although you can also buy them
ready-recorded on cassette tape. You merely call on the
procedure which you happen to want for a particular job, without
having to program it yourself. You do not even have to
understand how it works - although we do explain in Appendix 2.
So, in effect, these routines extend BBC BASIC! They
enormously simplify your graphics programming, so that you can
immediately get on with the exciting tasks of producing your own
unique displays.

You will get the most out of this book if you have a BBC
Microcomputer and a colour television or monitor. This is for two
reasons. Firstly, the BBC Microcomputer is particularly renowned
for its colour graphics facilities, and this book exploits them to the
full. Secondly, the book presents the material in such a way that
you will learn by doing, as well as by reading. We assume that
you are sitting at or near the computer as you read, and will want
to break every few minutes to try some of the activities which we
suggest.

We also assume that you are already familiar with the
essentials of programming in BBC BASIC. If you are not, you
should first work through our previous book BASIC Programming
on the BBC Microcomputer, which is also published by Prentice
Hall.

2

In this book, our way of working is to give you some
information, and then to follow it with an Activities section, in
which we ask you to do something for yourself to consolidate.
Consequently you learn by doing. We now continue this chapter
with a few short sections to illustrate this way of working. First we
give information. We tell you about the BBC Microcomputer, as a
computer for programming graphics and then we, explain how to
save, load and join programs. We think it is important for you to
become proficient at this quite early on. Although we do not
specifically ask you to do it until some way into the book, we are
quite sure that you will want to save, load and join the routines
that you develop yourself as you go through the book.
Afterwards we give a short section of Activities where you might
like to do something yourself.

0.1 The two models of the BBC Microcomputer

The BBC Microcomputer is available in two models, Model A and
Model B. The memory of the Model B is greater than that of
Model A (32K of RAM compared with l6K). You can upgrade a
Model A by adding more memory. This makes it equivalent to a
Model B for all programming purposes.

The greater memory of the Model B gives the advantages of
a larger number of display modes, a greater choice of colour and
more detail (resolution] on the screen. Also, as graphics
programs tend to be rather long, especially when they call on a
number of our graphics procedures, a Model A may run out of
memory. A further advantage of Model B is concerned with
saving and retrieving programs. Both models allow you to save
and retrieve using cassette tape and an ordinary tape recorder,
but Model B allows you to add a disk system. The disk drives are
not cheap but they give speed and reliability.

We have not lost sight of the fact that you may be using a
Model A for your graphics programming. Although you will not
have as many facilities as Model B owners, you do,
nevertheless, have sufficient to make it worthwhile to program
graphics. In particular we provide some very useful routines
which allow most of the graphics to operate in the Teletext mode,
mode 7. This offers the full range of colours and requires only 1K
of memory! With a Model B and with long programs which
require a large amount of memory for data storage, you will also
find these routines valuable. In Appendix 2 we explain how to
estimate whether or not a program will fit into the memory of your

3

model of computer, depending on which of our procedures it
calls.

0.2 Loading, saving and joining programs

In this section, we explain how to save, toad and join programs.
As we mentioned earlier, we expect that you wilt want to become
proficient at this in order to save, load and join routines that you
develop yourself as a result of working through this book.

There is another reason why you will want to save, load and
join programs. As we also mentioned, a feature of this book is
that we provide various routines to do those jobs which you are
likely to keep needing for programming graphics. After the first
few chapters, we repeatedly refer to these routines throughout
the text and we supply them as procedures, listed in Appendix I.
To use them, you will either have to buy the cassette on which
they are ready-recorded, or you will have to type them into your
computer and save them, ready to join them to your existing
program.

We have adopted the approach of saving all of our routines
in what is called the *EXEC format, and we advise you to do the
same. Using this format, the routines can be retrieved from tape
or disk, just as if you had typed them in from the keyboard. Since
the lines of our routines have numbers over 9000, they will not
overwrite your existing program. They simply join onto whatever
program is already in memory. This is in contrast to loading
using the LOAD command, which irretrievably removes all trace
of any previous program.

To save any program on tape in the *EXEC format, first type
the following where NAME may be up to ten characters long:

*SPOOL "NAME"

Enter this by pressing RETURN.
The computer responds with the following message:

RECORD then RETURN

So set the tape recorder to record and then press the RETURN
key. The prompt and flashing cursor appear.

Next enter:

LIST

This causes the program listing to appear on the screen. It also
4

sends the listing to a buffer inside the computer, ready for
recording onto the tape.

When the listing is complete, enter:

*SPOOL

This completes the saving process and sends any remaining
program from the buffer to the tape recorder.

To load anything which has been saved in the *EXEC format,
rewind the tape, and then simply type the following and set the
tape recorder to play:

*EXEC "NAME"

Once you have pressed RETURN, you will see the lines of the
program appearing very rapidly on the screen, just as if a
phantom typist were typing them. Any program already in the
computer is unaffected, as long as it does not have the same line
numbers. Then the incoming lines would overwrite the existing
ones, just as if you were typing them in yourself.

If you have a disk system, you will clearly want to transfer the
programs to disk - but you will have to be more careful in
choosing names because a name can only be up to seven
characters long. The cassette tape available with this book can
be read into a BBC Microcomputer with the disk operating
system, by first switching to the tape file system by issuing the
command:

*TAPE

Programs and procedures, etc. can then be loaded as already
described. Once the program lines are in the computer, the
following command switches back to the disk file system, ready
for saving:

*DISK

For complete programs, it is more usual to save and reload using
the following commands, respectively:

SAVE "NAME"
and

LOAD "NAME"

5

Using LOAD and SAVE is much faster than using *EXEC and *
SPOOL.

0.3 Activities

These activities illustrate the saving and joining of programs
using *SPOOL and *EXEC.

i. Start by entering the following two lines of program so that you
have something to save:

10 PROCtrial
20 END

ii. Now save these lines under the name MAIN-PROG using the *
SPOOL command, as described in the previous section.

iii. Enter NEW. This is to remove these lines from memory and
so convince you, when you see them again, that you have really
retrieved them from tape.

iv. Now, using the *SPOOL command, save the following lines
under the name TRIAL. They define the procedure PROCtrial
which was called in line l0 of the MAIN-PROG:

100 DEF PROCtrial
110 PRINT "This is proc trial"
120 ENDPROC

v. You should now have two blocks of data saved: under the
names MAIN-PROG and TRIAL. Enter NEW to clear the existing
lines of procedure and then retrieve MAIN-PROG using the *
EXEC command. You will have to wind the tape back to the start
and set the tape recorder to play. You will now see the lines of
the first program rapidly typed up on the screen preceded by the
message:

>>LIST

Syntax error

and followed by the message:

>> *SPOOL

Syntax error
>

We discuss these error messages in Section 0.4.
6

vi. List the program lines recovered so far. This should confirm
that only the first set of lines, up to line 20 have reappeared. Try
entering RUN. Does this produce the following error message?

No such FN/PROC at line 10

vii. Now similarly retrieve "TRIAL" using the *EXEC commend.
Do the set of tines which define the procedure appear?

viii. Enter LIST tm confirm that the two sets of lines have been
joined to give a complete program. Does the program run now?

0.4 Discussion of activities

Activity 0.3v: You may ignore the Syntax error messages. They
always arise at the start and end of loading of a program using *
SPOOL, and arise because the > sign which precedes the *
SPOOL is a mechanism by which the system is prevented from
responding to recorded commands.

7

1 Fundamentals of
graphics

1.0 Introduction
1.1 The display modes of a Model B BBC
Microcomputer
1,2 Graphics on a Model A BBC Microcomputer
1.3 Getting into a mode
1.4 Addressing pixels
1.5 Activities
1.6 Drawing lines
1.7 Activities
1.8 Drawing simple curves
1.9 Activities
1.10 Discussion of activities

1.0 Introduction

This chapter is about plotting points and drawing lines and
curves. It teaches you how to use the graphics instructions which
are available within BBC BASIC, and we have called it
'fundamentals of graphics'. This is to distinguish it from the more

8

sophisticated graphics of later chapters, which rely, not only on
the instructions available within BBC BASIC, but also on
procedures which we provide for you.

1.1 The display modes of a Model B BBC Microcomputer

The BBC Microcomputer allows you to make up a display using
the following:

- Teletext characters which you will have seen on
television's Ceefax and Oracle;
- alpha numeric characters, i.e. letters and numbers of the
sort used in ordinary text; and
- points or spots, making up lines and areas.

Model B of the BBC Microcomputer offers eight display modes,
allowing a choice of character size and spot size. These modes
are numbered from 0 to 7.

Mode 7 is the mode in which the computer first turns on. it
can display both text characters and graphics in eight colours. 40
characters can be fitted on a line with 25 lines per screen. The
mode is sometimes called the Teletext mode as it allows the
colours and symbols of television's Teletext. Teletext colours and
graphics have to be turned on and off in a completely different
way from that for all the other seven modes. Mode 7 requires 1K
of memory, which is far less than for any other mode, and this
offers advantages that make it worthwhile to program Teletext
graphics. Nevertheless mode 7 is not really a true graphics mode
- and we consider it separately later (see Chapter 15). Modes 3
and 6 are not graphics modes either because they allow only text
characters.

We shall be concentrating on the other five modes, the
'graphics modes', namely modes 0,1,2,4 and 5. Briefly their
characteristics are as follows:

Mode 0 allows the display of 640 by 256 graphics spots in two
colours. In addition any text comes out with 80 characters to a
fine with 32 lines on the screen. Mode 0 requires 2DK of
memory, which is the maximum for any display.

Mode 1 allows the display of 320 by 256 graphics spots each of
which may be in any of four colours. Text comes out with 40
characters to the line with 32 lines on the screen. Mode I
requires 20K of memory.

9

Mode 2 allows the display of 160 by 256 graphics spots each of
which may be in any of the 8 available colours, which may be
steady or flashing. Text comes out with 20 characters to the line
with 32 lines on the screen. Mode 2 requires 20K of memory.

Mode 4 allows the display of 320 by 256 graphics spots, each in
one of two colours. Text comes out with 40 characters to the line
with 32 lines on the screen. Mode 4 requires l0K of memory.

Mode 5 allows the display of 160 by 256 graphics spots each of
which may be in any of four colours. Text comes out with 20
characters to the line with 32 lines on the screen. Mode 5
requires l0K of memory.

In those modes which allow a greater number of spots, the
spots are accordingly smaller. This means that these graphics
displays can show more detail, which is described by saying that
there is a greater 'resolution'.

Table 1.1 gives a summary of the facilities in the various
modes.

mode 7 6 5 4 3 2 1 0

characters
per line

40 40 20 40 80 20 40 80

lines per
screen

25 25 32 32 25 32 32 32

spots
horizontally

- - 160 320 - 160 320 640

spots
vertically

- - 256 256 - 256 256 256

memory
required

1 8 10 10 16 20 20 20

colours
available

Teletext
features

2 4 2 2 8+8 4 2

Table 1.1 Features available in various modes

10

1.2 Graphics on a Model A BBC Microcomputer

Model A of the BBC Microcomputer is limited in the amount of
memory available and so you will need to add to it if you want
sophisticated graphics. This is particularly so because, if memory
is being used for the display, it is not available for program
storage. So there may be times when there is a clash between
the memory requirements of a long program and a complex
graphics display. For this reason many people add extra chips to
make the Model A equivalent to the Model B in terms of memory.
The Model A Microcomputer can only produce displays in modes
4, 5, 6 and 7. This means that the graphics is limited to four
colours with 160 by 256 spots or two colours with 320 by 256
spots.

Many of the programs in this book will run on the Model A, but a
few are too long to fit into the limited memory and have to be run
on either an expanded Model A or the full Model B. These are
equivalent, as far as length of program is concerned.

1.3 Getting into a mode

When you turn on the BBC Microcomputer, you are in mode 7.
You can select another mode, say mode 4, by entering one of
the following. Either is acceptable because although BBC BASIC
does not require a space in front of a number, it normally allows
one to make the reading easier.

MODE 4
or MODE4

This statement causes the screen to clear, and anything that you
now write is in the new mode.

1.4 Addressing pixels

In the graphics modes (0, 1, 2, 4 and 5) you may draw pictures,
shapes and graphs by fighting up small rectangular spots on the
screen. Each spot is very small and is called a 'pixel'. Figures
1.1a,b,c show the prompt and the letter A in modes 0, I and 2, as
made up from pixels. The size and shape of a pixel varies
according to the graphics mode. The smallest is in made 0.

11

Figure 1a. The prompt and the letter A in mode 0, as made
up from pixels.

Figure 1b. The prompt and the letter A in mode 1, as made
up from pixels.

Figure 1.1c. The prompt and the letter A in mode 2, as
made up from pixels.

BBC BASIC allows for a maximum of 1280 pixels horizontally
and 1024 vertically. Unfortunately, with present models of the
BBC Microcomputer, the display gives a maximum of only half
this number in the horizontal direction and a quarter this number
vertically. BBC BASIC allows for the difference between the
theoretically possible high resolution display and that which is
actually available by an automatic scaling. Irrespective of mode,
you always have to address the screen as if it had the theoretical
resolution, i.e. as if it had 1280 pixels in the horizontal direction
and 1024 vertically. These theoretical pixels are called
'addressable points'.

The position of an addressable point has to be specified by
how far across from the left it is - which is called its 'X co-
ordinate' - and how far up it is - which is called its 'Y co-ordinate'.
Thus the co-ordinate of a position at the bottom left-hand comer
of the screen is 0,0. This is illustrated in Figure 1,2 which shows
the co-ordinates of various points on the screen. F or example,
the co-ordinates of a point half way across the bottom of the
screen are 640,0 and the co-ordinates of the centre of the screen
are 640,512.

12

0,1024 1279,1024

0,0 1279,0

640,512

640,300

640,0

Figure 1.2. The co-ordinates of various points on the
screen.

Figure 1.3a shows the pixels in the prompt and the letter A in
mode 0. There are several addressable points per pixel. Figure
1.3b shows an enlargement of the four pixels in the lower left-
hand corner of Figure L3a with the addressable points in the first
pixel marked off and labelled, To simplify things, BBC BASIC
requires that, to address a pixel, you merely have to address one
of the addressable points within it. Any one will do, It is rather as
if you were writing to a firm which had taken over and spread into
a number of neighbouring premises. It would not matter which
one you addressed, as the firm would be reached via any one of
them. To carry the analogy further, it would be pointless to go to
more than one. It is equally pointless to address more than one
addressable point within a pixel, One is enough and any one will
do. We shall illustrate by looking at each mode separately.

13

Figure 1.3a. The pixels within the image of >A in mode 0.

0.3

0.2

0.1

0.0

1.3

1.2

1.1

1.0

Figure 1.3b. An enlargement of the six pixels in the lower
left-hand corner of Figure 1.3a. Addressable points in the

first pixel are marked off and labelled.

14

In mode 0 there are 640 by 256 pixels. As there are always
1280 by 1024 addressable points, a pixel consists of an area two
addressable points wide and four addressable points high. As
you see in Figure l.3b, the first pixel at the extreme left-hand
corner of the screen contains the following addressable points:

0,3 1,3
0,2 1,2
0,1 1,1
0,0 1,0

You can of course address the whole pixel via any one of these
points. In any mode the pixel corresponds to the smallest point of
light on the screen.

In modes 1 and 4 there are 320 by 256 pixels, each
consisting of sixteen addressable points, four horizontally and
four vertically. In modes 2 and 5 there are 160 by 256 pixels,
each consisting of thirty-two addressable points, eight
horizontally and four vertically.

1.5 Activites

i. Enter the program given in Listing 1.1 (You will find it over the
page, with the corresponding screen displays: Screen Display
1.1a, 1.1b and 1.1c.) This program writes 1234 on the bottom
left-hand corner of the screen and then enlarges this by sixteen
times. The size of the original characters and of the enlargement
depends on the display mode chosen. It does not matter if you
do not understand ail the lines in the procedure definition of the
program, because we merely want to demonstrate the different
sizes of the pixels in various modes.

ii. Run the program several times and, each time, when the
program asks you to choose a mode, choose a different one
from the graphics modes 0, 1, 2, 4 or 5, (You can see which
ones we chose in order to get our displays, because we show
the dialogues between a user and the computer, and we
underline the data that the user feeds in.) Can you see why the
same program gives different sizes of enlarged characters in
modes 0, I and 5 even though the screen is addressed identically
in each? We discuss the reason in Section 1.10 at the end of the
chapter.

15

Screen Display 1.1a

16

Screen Display 1.1b

17

Screen Display 1.1c

18

 Listing 1.1

 10 MODE4

 20 PRINT ' ' ' ' "This program illustrates how the

 size"

 30 PRINT ' ' "of characters depends on mode."

 40 PRINT ' ' "When you are asked for a mode, please"

 50 REPEAT

 60 INPUT ' ' "enter 0, 1, 2, 4 or 5." ' ' ' "Which

 mode",mode

 70 UNTIL (mode>=0 AND mode<6) AND mode<>3

 80 MODE mode

 90 PRINT TAB(0,5);"Mode: ";mode

 100 PRINT TAB(0,31);"1234";

 110 FOR X=0 TO 63

 120 FOR Y=0 TO 31

 130 IF POINT(X,Y)<>0 THEN PROCpixel(X,Y)

 140 NEXT Y

 150 NEXT X

 160 END

 170 :
 180 DEF PROCpixel(X,Y)

 190 Mag=20

 200 XCOR=X*Mag

 210 YCOR=Y*Mag

 220 MOVE XCOR-Mag/2,YCOR-Mag/2

 230 MOVE XCOR+Mag/2,YCOR-Mag/2

 240 PLOT 85,XCOR-Mag/2,YCOR+Mag/2

 250 PLOT 85,XCOR+Mag/2,YCOR+Mag/2

 260 ENDPROC

1.6 Drawing lines

The MOVE and DRAW statements are elementary statements
for computer graphics. DRAW draws a straight line from the last
point addressed on the screen to a point whose co-ordinates
have to be supplied with the statement. Thus a program line
such as the following draws a straight line to the centre of the
screen, point 640,512, from wherever the last graphics statement
finished off:

19

Screen Display 1.2

120 DRAW 640,512

MOVE is a statement which sets the starting position for a
DRAW and other graphics statements. By itself, it produces no
visible effect on the screen. By way of example, the following is a
simple program in graphics mode 4 to draw a line between the
point 10,0 and the point 640,1024 which is half way across the
top of the screen.

10 MODE 4
20 MOVE 10,0
30 DRAW 640,1024
40 END

Line 20 produces no visible action but specifies the starting point
for the DRAW in line 30.

20

 Listing 1.2

 10 MODE 4

 20 REM A pictu
re-drawing prog

ram.

 30 REM The pic
ture is made ma

inly

 40 REM from re
ctangular block

s. The

 50 REM data is
 in the form of

 the

 60 REM x,y co-
ordinates of th

e lower

 70 REM left-ha
nd side, width,

 height.

 80 REPEAT

 90 READ X,Y,W,
H

100 PROCbox(X,Y
,W,H)

110 UNTIL X=-1

120
130 REM Now the

 other lines

140 MOVE 100,75
0 :DRAW 200,850

150 DRAW 800,85
0 :DRAW 900,750

160 DRAW 100,75
0

170 MOVE 350,90
0 :DRAW 200,102

4

180 MOVE 450,30
0 :DRAW 600,0

190 MOVE 550,30
0 :DRAW 900,0

200 END

210
220 DEF PROCbox

(X,Y,W,H)

230 MOVE X,Y :D
RAW X+W,Y :DRAW

 X+W,Y+H

240 DRAW X,Y+H
:DRAW X,Y

250 ENDPROC

260
270 DATA 300,85

0,100,50 :REM c
himney

280 DATA 150,30
0,700,450 :REM

house

290 REM Now win
dows and door

300 DATA 250,35
0,150,150,600,3

50,150,150

310 DATA 250,60
0,150,100,600,6

00,150,100

320 DATA 450,30
0,100,200

330 DATA -1,-1,
-1,-1

The following is an additional program line which draws a
second line from where the previous line stopped at the top of
the screen, down to the bottom right-hand corner 1280,0:

35 DRAW 1280,0

21

Screen Display 1.3

Consequently, the following program would draw a rectangle,
the four lines containing the DRAW statements produce the four
sides:

10 MODE 4
20 MOVE 50,50
30 DRAW 1000,50
40 DRAW 1000,1000
50 DRAW 50,1000
60 DRAW 50,50
70 END

We will now show you a general purpose program to draw any
shape that can be made from a series of rectangles. In this
program we have a need to draw many rectangles and so it is
convenient to enclose a set of lines, similar to the above, in a
procedure. Then each rectangle is drawn by a call to this
procedure, as for example in the following program line, where X
and Y are the co-ordinates of the bottom left-hand corner and W
and H are respectively the width and height of the box:

22

 Listing 1.3

10 MODE4

20 MOVE 0,512

30 FOR X=0 TO 1
280 STEP 4

40 DRAW X,512*(
1+SIN(X/40))

50 NEXT X

60 END

30 PROCbox(X,Y ,W,H)

The procedure to draw the box is defined by the following lines:

220 DEF PROCbox(X, Y,W,H)
230 MOVE X, Y :DRAW X+W,Y :DRAW X+W,Y+H
240 DRAW X,Y+H :DRAW X,Y
250 ENDPROC

In our program the values of X, Y, W and H are stored in DA T A
statements for each of the rectangles which make up the major
part of the display.

Such a program can be written to draw a variety of shapes.
Ours draws a house, which is shown in Screen Display 1.2. A
few extra DRA W statements have been included to draw in the
few sect ions of the house, such as the roof, which are not
rectangular. The complete program is given in Listing 1.2.

1.7 Activities

i. Run the picture-drawing program of Listing 1.2.

ii. Construct your own set of data for drawing same other shape,
and run the program to test it.

23

1.8 Drawing simple curves

You can use the MOVE and DRAW statements to draw simple
curves, We illustrate this with a program to draw a wave. For
obtaining alternating values, we rely on the mathematical
function SIN(X). As X increases in magnitude, the function gives
values which alternate between -1 and +1. To get a screen
display following the same shape, we make the position across
the screen correspond to X and the height Up the screen
correspond to 1+SIN(X). Multiplying by 512 makes sure that the
values representing co-ordinates up the screen run from 0 to
1024 instead of from 0 to +2. Dividing X by 40 reduces the
number of oscillations to make the display fit better onto the
screen. 512 *(I +5IN(X/ 40)) gives values varying from 0 to 1024,
suitable for addressing the height of the screen in screen co-
ordinates. The complete program for drawing the wave is in
Listing 1.3, opposite the corresponding screen display, Screen
Display 1.3.

1.9 Activites

i. Run the curve-drawing program of Listing 1.3.

ii. Can you work out what would happen if you had left out the
MOVE statement in line 20? Try it to see.

iii. Try the effect of adding STEP 4 to line 30. We comment in
Section 1.10.

iv. Try to adapt the program to draw some other curve.

1.10 Discussion of activities

Activity 1.5: The characters are printed in different sizes in
modes 0, I and 5, because the pixels are of different sizes in
these modes (see Figure 1.1 a,b,c).

Activity 1.9 iii: With drawing curves, there is always a
compromise between speed and smoothness. The STEP 4
speeds up the display, but the appearance is coarser.

24

2 Colouring displays
2.0 Introduction
2.1 Available colours
2.2 Setting foreground and background colour
for text
2.3 Activities
2.4 Setting foreground and background colours
for graphics
2.5 Activities

2.0 Introduction

Colour livens up any graphics display! It makes the display more
attractive and it adds meaning by making features stand out. The
BBC Microcomputer is particularly renowned for its colour
graphics, and this chapter shows how to make full use of them.
You will of course find it best to have a colour television or
{monitor, but even with a black and white one, displays should
be Improved by being in various shades of grey, rather than just
black and white.

25

2.1 Available colours

The BBC Microcomputer is often said to offer a maximum of
sixteen colours. This is not strictly true, Actually only eight
colours are 'available, but they can be either flashing or non-
flashing - which gives sixteen options. Table 2.1 lists what we
call their 'absolute colour numbers'. We describe these numbers
as absolute because they cannot be changed. They are always
the same irrespective of the mode. This is in contrast to the
colour numbers which appear in the various statements that set
colour, where you can set the colour given by a particular
number, Although it may seem confusing to have two sets of
colour numbers, redefining colours does allow some very
attractive and sophisticated graphics programming, which we
discuss in Chapter 5.

0 = black 8 = flashing black/white
1 = red 9 = flashing red/cyan
2 = green 10 = flashing green/magenta
3 = yellow 11 = flashing yellow/blue
4 = blue 12 = flashing blue/yellow
5 = magenta 13 = flashing magenta/green
6 = cyan 14 = flashing cyan/red
7 = white 15 = flashing white/black

Table 2.1 The absolute colour numbers

In this chapter we deal with default colour numbers, i.e. with
colour numbers as they are if you take no steps to redefine them.
The default colour associated with any colour number depends
on the mode - which is of course not true of an absolute colour,
For example, in modes 0 and 4, which are the so-called two
colour modes, the default colour numbers represent the to
following colours:

colour 0 = black
colour 1 = white

Whereas in modes 1 and 5 the default colour numbers represent
the following colours:

colour 0 = black
colour 1 = red
colour 2 = yellow

26

colour 3 = white

The full range of sixteen colours is available only in mode 2,
where the colour numbers are initially set equal to the absolute
colour number.

2.2 Setting foreground and background colour for text

When setting the colour of graphics displays, BBC BASIC
requires you to distinguish between foreground and background
colours. There can be only one background colour, but there can
be as many foreground colours as you wish to program -
provided of course that you are in a mode which allows that
many colours. The statement for setting text colour is COLOUR,
followed by the colour number,

For the foreground the colour is merely as given above, for
the particular mode. For the background, however, the colour
number is obtained by adding 128 to the normal colour numbers.
By way of illustration, the following three lines of program set 5
as the graphics mode, yellow as the foreground colour and red
as the background colour of any text to follow:

10 MODE 5
20 COLOUR 2 :REM foreground = yellow
30 COLOUR 129 :REM background = red
40 CLS

Line 10 sets the mode and, in so doing, clears the screen to
black and resets all the colours to their default values. Lines 20
and 30 set up new values for the foreground and background
colours but only for any future writing to the screen. In line 40 the
statement CLS - meaning 'clear screen' - clears the screen to the
background colour of red.

2.3 Activities

Enter each of the following commands in the direct mode and
note the colours that you get on the screen, particularly the
foreground colour (the colour of the writing) and the background
colour.

MODE 5
COLOUR 1
COLOUR 2

27

COLOUR 3
COLOUR 129
COLOUR 130
COLOUR 0
COLOUR 131

Have the table of colours for mode 5 alongside you and make
sure that you can explain the colours of each of the lines of
writing, both foreground and background. Do you see that the
colour numbers affect only the writing which follows? They leave
previous writing unaltered.

2.4 Setting foreground and background colours for graphics

The GCOL statement sets the colour for graphics - or, to be
more precise, one form of the GCOL statement sets the colour
for graphics. This form is GCOL 0,C and we will not mention the
other forms yet. The GCOL 0,C form is the graphics equivalent
of the COLOUR statement, in that it controls both the foreground
and background colours and affects the colour of the graphics
operations that follow its execution. C is the colour number - but
you should bear in mind that the GCOL statement, like the other
statements for colour, takes the redefinable colour, not the
absolute colour.

Provided C has a value between 0 and 15 (depending on mode),
it sets foreground i.e. the colour of what you draw on the screen.

To set the background colour, obtain a value for C by adding 128
to the number of the colour that you want. Again, the range of
values available depends on the mode. Next use GCOL 0,C.
Then, when you clear the screen using the statement CLG,
which stands for 'Clear Graphics', the background colour
changes accordingly. For example, setting the screen to red for
either of the four-colour modes would require the following lines:

10 MODE 5
20 GCOL 0,129 :REM (128+1)
30 CLG

28

You could now set a yellow foreground by a line such as:

40 GCOL 0,2

2.5 Activities

i. See the effects of setting the foreground and background
colours for graphics by entering the following in direct mode:

MODE 5
GCOL 0,129
CLG
GCOL 0,2
DRA W 500,500
GCOL 0,0
DRAW 1280,500
GCOL 0,3
DRAW 500,1000

With a black and white television, you may need to adjust the
contrast to distinguish the various shades of grey which
correspond to the colours.

29

3 Drawing simple shapes
3.0 Introduction
3.1 Codes for the PLOT statement
3.2 Activities
3.3 Using the PLOT statement
3.4 Activities
3.5 Discussion of activities

3.0 Introduction

The BBC Microcomputer provides a wide variety of plotting
facilities. It can plot points, draw lines, and fill in areas - all in
colour. With such a wide variety, it is not possible to have
individually named statements. Instead a single statement,
controlled by a series of codes, provides for all of them. It is the
PLOT statement. In this chapter, we explain the various ways in
which you can use the PLOT statement.

30

0 move relative* to last point

1 draw line relative* in current graphics foreground
colour

2 draw line relative* in the logical inverse colour

3 draw line relative* in current graphics background
colour

4 move to absolute position

5 draw line absolute in current graphics foreground
colour

6 draw line absolute in logical inverse colour

7 draw line absolute in current graphics background
colour

+16 same effects as each of the above except that it
plots a dotted line

+64 same effects as each of the above except that only
a single point is plotted

+72 draw a horizontal line in both directions from the
current point

+80 same effects as each of the above except that it
refers to filling in a triangular area between the
specified point and the last two points used in
plotting actions

+88 draw a horizontal line to the right of the current,
reaching to the right-hand edge of the screen or to
an area of background colour **

* Plotting relative means that the computer considers the origin
to be the previous point which it remembers. The true screen
origin is still at (0,0).

** Only available on operating systems 1.0 onwards.

Table 3.1 Codes for N in the PLOT statement

31

3.1 Codes for the PLOT statement

The PLOT statement is very important in graphics. It has the
following form, where N can have a wide range of values
depending on the type of plot which is required; and X and Y
refer to the co-ordinate to which you want to PLOT:

PLOT N,X,Y

For example the following version of the PLOT statement is
equivalent to the DRAW statement:

PLOT 5,X,Y

Table 3.1 shows a simplified set of codes for N in the PLOT
statement, together with the feature that it produces. To use
Table 3.1, you must first decide what effects you want. You wit\
probably want several simultaneously. You qet them by adding
up the codes for each one. For example, to draw a dotted line,
select code 5 for a line and code l6 for a dotted effect. Since the
total is 21, the code for a dotted line is 21.

Some of the more commonly used codes are as shown in
table 3.2. Most programs use m only a small seletion of these
codes, such as 69 for plotting a point, 5 for drawing a line or 85
for filling a triangular area.

code effect

4 equivalent of MOVE
5 equivalent of DRAW

21 draw dotted
69 plot a point
71 remove a point
85 fill a triangle
77 *'fill' a fine

*For 1.0 operating systems onwards

Table 3.2 Most commonly used codes for N in the PLOT
statement

The last code (77) which applies only to models with the 1.0 or
later operating systems, is said to 'fill' a line. This means that it
draws a line in the current foreground colour, extending
horizontally left and right until it reaches either the edge of the

32

screen or a non-background colour. It is particularly suitable for
filling in the colour of some irregularly shaped area. Nevertheless
it is not a complete fill routine, as it only fills up irregularities on
the left or right. It does not extend up and down. In the next
activities there is an example of the 77 fill form of the PLOT
statement.

You will find a program much easier to read if, at the
beginning of the program, you define some aptly named
variables such as:

dot = 69
or line = 5
or triangle = 85

Then the PLOT statements further on in the program are much
more readily recognizable because they appear as:

PLOT dot,X,Y
or PLOT 1ine,X,Y
or PLOT triangle,X,Y etc,

3.2 Activities

i. If you have a 1.0 or above operating system, you can get the
feel of the fill form of the PLOT statement by running the
following program, It uses the RND function in line 60 to mark at
a random edge which is the left-hand edge of the block to be
filled. PLOT77 is called by line 110 inside a FOR ... NEXT loop.
(You can find out which version of the operating system you
have by entering *FX0 which causes the number of your
operating system to appear on the screen.)

 10 MODE 5 :GCOL 0,129 :GCOL 0,2
 20 CLG
 30 REM Draw a random left-hand edge
 40 MOVE 500,100
 50 FOR Y=l00 TO 1000 STEP 20
 60 DRAW 200+RND(600),Y
 70 NEXT Y
 80 MOVE 800,100
 90 REM Now for the fill routine
100 FOR Y=100 TO 1000 STEP 4
110 PLOT77,900,Y
120 NEXT Y

33

ii. Speed is an advantage when programming graphics. You can
measure the speed of execution of a program by means of the
BBC Microcomputer's TIME facility. Investigate the time of
execution of the above program by running it with the following
additional two lines:

 5 TIME = 0
130 PRINT TIME

We discuss this further in Section 3.5.

iii. One way of speeding up BASIC is to use integer variables in
place of ordinary variables, For example, the above program can
be speeded up by putting the integer variable Y% in place of Y.
Use the editing facilities to change all occurrences of Y to Y%
and re-run the program.

iv, We now show the use of an area-fill routine. The following
program draws a series of circles and then fills in the area
around them. The filling routine is written in BASIC but uses
integer variables wherever possible to gain speed. In lines 290
and 310 there are references to GOTO, a statement which we
have tried to avoid. Unfortunately the standard way round this,
which is to use REPEAT ... UNTIL loops, is not possible because
the recursive nature of the routine causes too many such loops.
Enter the program and run it. You may like to record both the
circle-drawing and the fill routines for your own use elsewhere.

 10 M0DE4
 20 VDUl9,0,4;0;
 30 VDUl9,l,3;0;
 40 PROCcircle(640,5l2,500)
 50 PROCcirc1e(400,700,100)
 60 PROCcircle(900,700,100)
 70 PROCcircle(640,400,200)
 B0 PROCfil1(500,l00)
 90 END
100 :
110 DEF PROCcircle(x,y,r)
120 st=2*PI/l00
130 S=SIN(st):C=C0S(st)
140 xp=r :yp=0
150 MOVE x+r,y

34

160 FOR L%=l TO 200
170 xr=xp*C-yp*S
180 yp=xp*S+yp*C:xp=xr
190 DRAWx+xp,y+yp
200 NEXT L%
210 ENDPROC
220 :
230 DEF PROCfill(B%,C%)
240 LOCAL A%,X%,Y%,F%,O%
250 F%=&FFFF :A%=l3:X%=&B0: Y%=0:0%=&FFF1
260 PROCF:ENDPROC
270 DEF PROCIF:PLOT &4D,B%,C%:CALLLO%:
 LOCAL U%,V%:U%=!X%ANDF%
280 B%=U%:C%=C%+4:V%=X%!4 ANDF%
290 PLOT &5C,B%,C%:CALL O%:B%=X%!4+4ANDF%:
 IF V%>=B% THEN PROCF:GOTO290
300 B%=U96:C%=C%-8
310 PLDT&5C,B%,C%:CALL O%:B%=X%!4+4ANDF%:
 IF V%>=B% THEN PRDCF:GOT0310
320 C%=C%+4:B%=V%:ENDPROC

3.3 Using the PLOT statement

As an example of the various applications of PLOT statements,
you may like to examine the development of a program to draw a
picture of a sailing boat. The display is very simply produced and
is shown in Screen Display 3.1. The actual screen version looks
much more interesting because it is in colour,

We assume that the boat is to be drawn anywhere on the screen
using a procedure called PROCboat, which we define in terms of
other procedures, as follows:

 60 DEFPROCboat(X,Y,s)
 70 GCOL0,l:PR0Csails(X,Y)
 80 GCOL0,2:PRDCmast(X,Y)
 90 GCOL0,3:PR0Cbase(X,Y)
100 ENDPROC

35

Screen Display 3.1

The numbers in the GCOL statements set the foreground colour
to be red for the sails, green for the mast and yellow for the
base.

We shall develop the procedure PROCsails first as it is the
simplest. The sails are to be triangular in shape and so rely on
PLOT triangle,X,Y. The same reference point X, Y wilt be chosen
when calling each of the procedures, the size of the boat will be
controlled by s. This means that we have to decide on the height
of the sails above the reference point in terms of s. We call this
'sh' for sail height. The first sail is now drawn by two references
to MOVE "and one to PLOT triangle,X,Y. The references to
MOVE are necessary as the graphics routine remembers the last
two plotted points and draws the triangle between these and the
current point. The PROCsails procedure becomes:

36

 Listing 3.1

 10 MODE2:GCOL

0,132 :CLG :REM

 For Model A
 use mode 5

 20 triangle=85

 25 PROCboat(35
0,150,8)

 30 PROCboat(70
0,700,4)

 35 PROCboat(95
0,400,6)

 40 END

 50 :
 60 DEFPROCboat

(x,y,s)

 70 GCOL0,1:PRO
Csails(x,y)

 80 GCOL0,2:PRO
Cmast(x,y)

 90 GCOL0,3:PRO
Cbase(x,y)

100 ENDPROC

110 :
120 DEFPROCsail

s(x,y)

130 sb=10*s:fr=
30*s:ba=40*s:sh

=50*s

140 MOVE x+fr,y
+sb

150 MOVE x-ba,y
+sb

160 PLOT triang
le,x,y+sh

170 ENDPROC

180 :
190 DEFPROCmast

(x,y)

200 mw=s:mh=50*
s

210 MOVE x-mw,y
:MOVE x+mw,y

220 PLOT triang
le,x-mw,y+mh

230 PLOT triang
le,x+mw,y+mh

240 ENDPROC

250 :
260 DEFPROCbase

(x,y)

270 depth=7*s:f
r=30*s:ba=40*s:

lf=25*s

280 MOVE x+fr,y

290 MOVE x-ba,y

300 PLOT triang
le,x+lf,y-depth

310 PLOT triang
le,x-ba,y-depth

320 ENDPROC

37

120 DEFPROCsails(x,y)
130 sb=l0*s:fr=30*s:ba=40*s:sh=50*s
140 MOVE x+fr,y+sb
150 MOVE xb-a,y+ab
160 PLOT triangle,x,y+sh
170 ENDPROC

In PROCsails the two sails are drawn as a single triangle,
because the overlapping mast will separate them into two.
PRQCmast draws the mast as a narrow rectangular column by
two calls to PLOTtriangle, as shown in lines 220 and 230. The
width and height of the mast is set by 'mw' and 'mh' respectively
in the following lines:

190 DEFPROCmast(x,y)
200 mw=s:mh=50*s
210 MOVE x-mw,y:MOVE x+mw,y
220 PLOT triangle,x-mw,y+mh
230 PLOT triangle,x+mw,y+mh
240 ENDPROC

The procedure for the base of the boat is given below and uses
ideas similar to those for drawing triangular areas. The thickness
of the base is set by the variable 'depth' and 'fr' and 'ba' are the
distances to the front and the back. To give the angled prow, 'If'
is the distance to the lowest part of the boat at the front.

260 DEFPROCbase(x,y)
270 depth=7*s:fr=30*s:ba=40*s:lf=25*s
280 MOVE x+fr,y
290 MOVE x-ba,y
300 PLOT triangie,x+lf,y-depth
310 PLOT triangle,x-ba,y-depth
320 ENDPROC

The complete program is given in Listing 3.1. It has three calls to
PROCboat and accordingly causes three boats to be displayed.

3.4 Activities

i. Enter the program in Listing 3.1 and run it.

ii. Try modifying lines 25, 30 and 35 as shown below, order to
produce simple animation for one of the boats.

38

25 FOR X=0 TO 600 STEP 4
30 PROCboat(X,512,4)
35 NEXT X

iii. Although the display illustrates nice animation for the front of
the boat, a coloured smear is left behind it. See if you can find a
way of removing it by developing a procedure called
PROCrubout. We suggest a possibility in Section 3.5,

iv. Try writing a program to make the boat of Screen Display 3.1
move slowly across a green sea with its surface rippled like a
sine wave. Can you program this? We give a possible program
in Section 3.5.

3.5 Discussion of activities

Activity 3.2 ii: Inside the BBC Microcomputer is an accurate
clock. It increments the variable TIME continuously once the
computer has been turned on. However, the value held in TIME
can be reset by a program at any stage. The value of TIME is
measured in hundredths of a second (centiseconds) from the
start Of the program where TIME is set to zero.

Activity 3.4 iii: The following is one possibility for PROCrubout:

340 DEF PROCrubout(x,y)
350 MOVE x-mw,y :DRAW x-mw,y+mh
360 DRA W x-ba,y+sb
370 DRA W x-ba,y-depth
380 ENDPROC

Its call would have to be preceded by a GCOL 0,4 statement, as
follows, to set the colour to blue for redrawing the sky:

32 GCOL 0,4:PROCrubout(X,5l2)

Activity 3.4 iv: Below is one possible program to give a display Df
the boat sailing across a green sea, its surface rippled like a sine
wave, against a blue sky.

39

10 MODE5:GCOL 0,l23:CLG
20 triangie=85
22 PROCsea
25 FOR X=-l20 TO 1500 STEP 8
30 PROCboat(X,5l2,4)
32 GCOL0,4:PROCrubout(X,512)
35 NEXT X
40 END
50 :
60 DEFPROCboat(x,y,s)
70 GCOL0,l:PROCsails(x,y)
80 GCOL0,2:PROCmast(x,y)
90 GCOL0,3:PROCbase(x,y)
100 ENDPROC
110 :
120 DEFPROCsai[s(x,y)
130 sb=l0*s:fr=30*s:ba=40*s:sh=50*s
140 MOVE x+fr,y+sb
150 MOVE x-ba,y+sb
160 PLOT triangle,x,y+sh
170 ENDPROC
180 :
190 DEFPROCmast(x,y)
200 mw=s:mh=50*s
210 MOVE x-mw,y:MDVE x+mw,y
220 PLOT triangle,x-mw,y+mh
230 PLOT triangle,x+mw,y+mh
240 ENDPROC
250 :
260 DEFPR0Cbase(x,y)
270 depth=7*s:fr=30*s:ba=40*s:lf=25*s
280 MOVE x+fr,y
290 MOVE x-ba,y
300 PLOT triangle,x+1f,y-depth
310 PLOT triang1e,x-ba,y-depth
320 ENDPROC
330 :
340 DEF PROCrubout(x,y)
350 MOVE x-mw,y:DRAW x-mw,y+mh
360 DRAW x-ba,y+sb
370 DRAW x-bapy-depth
380 ENDPROC
390 :

40

400 DEF PROCsea
410 GCOL0,2
420 FOR X=0 TO 1280 STEP 8
430 MOVE X,0 :DRAW X,450+50*SIN(X/40)
440 NEXT X
450 ENDPROC

41

4 Programming your own
characters

4.0 Introduction
4.1 Designing a programmable character
4.2 Converting the design to code
4.3 Activities
4.4 Printing programmable characters
4.5 Activities
4.6 Composite figures
4.7 Activities
4.8 Multicoloured characters and figures
4.9 Activities
4.10 Discussion of activities

4.0 Introduction

In the normal way, the BBC Microcomputer can only print those
characters whose shapes are stored in memory. These are the
set of numbers 0-9, the set of lower case letters a-z, the set of
upper case letters A-Z, and a few others such as punctuation

42

marks. The BBC Microcomputer does not provide characters for
shapes, such as hearts, pin-men and space invaders, but it does
allow you to program your own. Such characters are available in
all display modes other than mode 7 and are called
programmable characters. Furthermore by joining up
programmable characters, you can produce larger, composite
figures. Consequently you can design figures to the shape and
size of your choosing! This is an exciting and powerful facility,
which you will probably want to use a lot for graphics
programming. Its application is timited only by your imagination.
This chapter describes how to do it,

Figure 4.1a. The character M in mode 4, showing the
matrix unto which it fits.

Figure 4.1b. The character g in mode 4, showing the
matrix into which it fits.

43

14.1 Designing a programmable character

Every character has to be made from spots (pixels) arranged
within a matrix of eight rows and eight columns. Figures 4.la and
b show these pixels in highly magnified pictures of the characters
M and g, as they appear in mode 4. You will see that they do not
extend through the full height and width of the matrix. There are
two reasons for this. Firstly there has to be at least one column
spare to prevent characters touching when several are written
together; and secondly, some lower case characters, like g and
y, need tails. These are called 'descenders' and they alone can
occupy the bottom row.

When you come to design a programmable character, you
should bear in mind that it has to fit within the eight by eight
matrix. You may wish to use all the matrix. Then your
programmed character will be very slightly bigger than a
keyboard character.

Figure 4.2a. The first stage in designing a programmed
character: designing the character.

Figure 4.2b. The second stage in designing a programmed
character: drawing an eight by eight matrix.

44

Figure 4.2c. The third stage in designing a programmed
character: integrating the character in the matrix.

However, it will not look significantly bigger on the screen. So
any fine detail will be too small to show - and it is worth
remembering this! (We show you how to make a larger, more
complex figure in Section 4.6).

The first step in designing a programmable character is to
decide on its shape. We can illustrate the process with a simple
tick, as shown in Figure 4.2 a, The next step is to draw out a grid
of rectangles with eight rows and eight columns, as shown in
Figure 4.25. The final step is to draw the shape - in this case, the
tick - onto the grid as a set of blobs, as shown in Figure 4.2c. At
this stage the smooth lines of the original figure have to be
translated into the step-like edges of the pixels. This is a matter
of trial, error and compromise.

4.2 Converting the design to code

In order to feed the character into the computer, you have to
reduce its shape to numbers. One method involves translating
the blobs of each row of the figure into the l's and 0% of a binary
number, taking a background blob as 0 and a foreground blob as
I - and in the next paragraph we describe the process. However,
if you find it tedious, you may prefer to skip to the paragraph
after, because it describes a 'formula' by which you can much
more simply achieve the same result. Alternatively, in Activities
4.3, we supply a program which does the whole thing for you.

The computer stores each line of a character as an eight bit
binary number (a total of eight 0's and Fs). The binary number

45

representing the top row of the tick is 00000001, which is I in
numbers to the base ten. A single I in the second position gives
the binary number 00000010, which is 2 in base ten numbers. If
both squares are occupied, the binary representation is
00000011, which is 3 i.e. the sum of the previous two.

 1

 3 = 2 + 1

 6 = 4 + 2

140 = 128 + 8 + 4

216 = 128 + 64 + 16 + 8

112 = 64 + 32 + 16

 32

 8

1

3

6

146

216

112

 32

0

Figure 4.2d Turning the programmed character into codes.

Now for the 'formula'. You can take each column of the
matrix as having a value: I for the right-most column, 2 for the
next column, 4 for the next, 8 for the next, etc. These values are
shown along the top of the matrix in Figure 4.2 d. To reduce the
character to code, ail you have to do is to add up the values for
each row of the figure for the positions which should be lit up. By
way of example, the numbers on the right of Figure 4.2d show
these sums for each row of the tick. These are the codes which
have to be fed into the computer.

All that remains is to instruct the computer to accept the
codes to represent a character. This is the function of the VDU23
statement. It instructs the computer to accept the coded numbers
into its memory as the newly designed character. You use the
statement in the following way, where 'row1' represents the code
for row 1, etc., and 'character' is the ASCII code for the

VDU 23,character,row1,row2,row3,row4,row5,row6,
row7,row8

Thus to reprogram ASCII character 224 as the tick would require
the following statement, where the string of eight numbers after �.
the VDU 23,224 represents the numbers for the rows as shown
in Figure 4.2d:

46

VDU 23,224,1,3,6,140,216,112,32,0

A word about the ASCII codes: in normal operation ASCII
codes 0 - 31 inclusive are reserved for controlling the video displ
ay. Therefore you cannot normally use any of these for
programming characters. ASCII codes 32 - 127 are for the
normal keyboard display; so you would not normally want to
redefine them. Appendix 3 gives the ASCII codes. ASCII codes
224 - 255 inclusive are the most suitable for reprogramming.

You can normally only use a block of 32 at any one time.
These blocks are: codes 32 - 63, 64 - 95, 96 - 127, 128 - 159,
160 - 191 and 192 - 223. With the exception of the keyboard
characters, one block duplicates any other. For example, if you
print CHR$(224), you get the same character as if you had
printed CHR$(128), CHR$(l60) and CHR$(l92).

4.3 Activities

Listing 4.1 gives a program which allows you to design and edit
your own programmable character. You merely have to use the
cursor-control keys to move the cursor to that part of the grid that
you want to fill, and then press I. You can edit the character by
pressing 0 to change your mind. Screen Display 4.1 shows a
stage during the editing of a character.

4.4 Printing programmable characters

Programmable characters can only be printed on the screen in
modes 0 to 6. Mode 7 has its own character set which cannot be
altered.

You will be familiar with the simplest way of printing a
character. Taking the character M as an example, this is:

PRINT "M"

An alternative way is to use the statement CHR$, together with
the ASCII code for that character. Again taking M as an example,
this would be as follows:

PRINT CHR$(77)

The shape for each character you redefine is stored in the
computer's memory until the computer is either switched off, or

47

the character is defined as something else. The definition of
each of the standard characters is stored in ROM, but any
characters that you reprogram must be stored in the volatile
memory that holds BASIC programs. By special instructions the
computer can be forced to hold a reprogrammed version of most
of its characters, but this takes up even more memory space and
we will not go into it here.

0

8

4

254

4

8

0

0

Figure 4.3a. A programmed figure with its VDU definition.

VDU 23,224,16,56,124,254,124,56,16,0

16

56

124

254

124

56

16

0

Figure 4.3b. A programmed figure with its VDU definition.

48

56

56

16

214

254

214

16

0

VDU 23,224,56,56,16,214,254,214,16,0

Figure 4.3c. A programmed figure with its VDU definition.

16

56

124

124

254

146

16

0

VDU 23,224,16,56,124,124,254,146,16,0

Figure 4.3d A programmed figure with its VDU definition.

4.5 Activities

i. We suggest that you now try making some programmed
characters. You can do it in any mode except mode 7. As it takes
some time to think out characters and redefine them, we help by
supplying a small library of shapes for you. These are shown in
Figure 4.3a,b,c,d,e,f,g, together with the corresponding VDU
definitions. Our library uses the same character code, 224, such
as:

49

0

12

14

248

120

72

72

0

VDU 23,224,0,12,14,248,120,72,72,0

Figure 4.3e. A programmed figure with its VDU definition.

68

238

254

154

56

16

0

0

VDU 23,224,68,238,254,124,56,16,0,0

Figure 4.3f. A programmed figure with its VDU definition.

for each character, but you should use a variety unless you are
prepared for one character to overwrite another. Any number
between 224 and 255 is suitable.

Use the VDU 23 statement to define a character code as
each of the characters in our library. Then print it using a
statement

PRINT CHR$(224)

ii. You may like to try programming some characters of your own.
Figure 4.3g. A programmed figure with its VDU definition.

50

VDU 23,224,1,3,6,140,216,112,32,0

1

3

6

140

216

112

32

0

4.6 Composite figures

Frequently the size of a single character is just too small to give
a realistic image on the screen. Then you need to make a larger
figure, consisting of a number of programmed characters
together. This section introduces a routine to print such
composite figures.

Each character making up the composite figures has to be
programmed as described above. These characters can then be
printed together on any one line by including them in the same
PRINT statement, separated by semicolons. Thus, printing the
three characters 224, 225 and 226 side by side would require the

PRINT CHR$(224);CHR$(22 5);CHR$(226)

This can be written more compactly using the VDU statement:

VDU 224,225,226

This can be written even more compactly by making the
characters 224, 225, 226 into a string, as follows:

composite$ = CHR$(224)+CHR$(225)+CHR$(226)

You can now produce the composite figure with:

PRINT composite$

To write one set of characters directly under another set requires
51

use of the cursor control codes. The ASCII codes for moving the
cursor are shown in Table 4.1:

ASCII code result

08 move backwards one space
09 move forward one space
10 move down one line
11 move up one line

Table 4.1 Cursor control codes

VDU 23,224,15,16,32,64,94,162,156,129
VDU 23,225,240,8,4,2,122,69,57,129
VDU 23,226,129,129,131,88,79,36,16,15
VDU 23,227,129,129,193,26,242,228,8,240

15

16

32

64

94

152

156

129

240

8

4

2

122

69

57

129

129

129

131

88

79

36

16

15

129

129

193

26

242

228

8

240

Figure 4.4a. A composite figure with its VDU definitions.

52

0

0

0

12

31

31

17

63

63

127

37

42

21

15

0

0

0

0

0

0

248

0

0

248

252

254

164

84

168

240

0

0

VDU 23,224,0,0,0,12,31,31,17,61

VDU 23,225,0,0,0,0,248,0,0,248

VDU 23,226,63,127,37,42,21,15,0,0

VDU 23,227,252,254,164,84,168,240,0,0

Figure 4.4b. A composite figure with its VDU definitions,

A second row of three characters could be printed directly
underneath, if the cursor is first moved down one line followed by
three spaces to the left. This can be achieved with the code l0
(for cursor down one line) followed by three lots of the code 8
(for cursor to move backwards one space, three times). Once
again you can combine all these characters, together with the
control codes, into a single string, as follows:

composite$ = CHR5$(224)+CHR5$(225)+CHR5$(226)+
CHRS$(10)+CHR5$(8)+CHRS$(8)+
CHRS$(8)+CHRS$(227)+CHR5$(228)+
CHRS$(229)

53

4.7 Activities

i. You may like to try programming some composite figures of
your own. However, because it takes some time to think them
out and program them, we have helped by supplying a small
library for you to use. These are shown in Figure 4.4a, b and c,
together with the corresponding VDU definitions and the
procedures for the drawing.

 10 REM The professor
 20 VDU23,224,0,0,1,1,2,1,2,6
 30 VDU23,225,66,129,0,152,185,203,87,163
 40 VDU23,226,0,0,128,128,128,128,128,0
 50 VDU23,227,2,3,7,15,5,1,3,6
 60 VDU23,228,131,6,68,154,225,136,32,0
 70 VDU23,229,0,0,0,0,0,0,128,0
 80 VDU23,230,14,12,16,0,32,0,64,64
 90 VDU23,231,0,0,0,4,0,2,1,6
100 VDU23,232,64,32,16,8,4,132,8,16
110 VDU23,233,128,128,128,128,128,128,128,128
120 VDU23,234,8,24,14,19,18,12,0,0
130 VDU23,235,32,64,128,32,32,16,8,48
140 VDU23,236,128,123,4,10,17,32,64,128
150 VDU23,237,0,251,1,1,0,128,64,96
160 VDU23,238,192,0,0,0,128,64,32,16
170 VDU23,239,57,78,79,63,31,15,7,3
180 VDU23,240,0,1,2,132,200,240,240,224
190 VDU23,241,144,8,4,3,3,4,12,15
200 VDU23,242,24,60,254,254,252,248,240,224
210
220 MODE 5
230 COLOUR 129:COLOUR 2
240 CLS
250 PRINTTAB(17,12):PROCPROF
260 PRINTTAB(0,31);:END
270 DEF PROCPROF
280 VDU 32,224,225,226
290 VDU 10,08,08,08,227,228,229
300 VDU 10,08,08,08,230,231,232
310 VDU 10,08,08,08,233,234,235
320 VDU 10,08,08,08,236,237,238
330 VDU 10,08,08,08,08,239,240,241,242
340 ENDPROC

54

Figure 4,4c. A composite figure with its VDU definitions
and a program for drawing it.

ii. Although the result may seem a little jerky, try moving these
composites around the screen using the TAB statement to locate
them. We give a possible program in Section 4.10.

4.8 Multicoloured characters and figures

You can make your programmable characters and figures
multicoloured. The technique relies on VDU5. Although the main
function of VDU5 is to allow the character to be printed at the
graphics cursor, it also has the subtle effect of only writing
foreground. This means that several characters can be printed at
the same place without each destroying the other. VDU5 is
turned off by VDU4 which returns writing to the text cursor

Suppose you want a character to be red, green and blue.
You merely define three separate characters: the first
representing the red, the second the green and the third the
blue. Then you write the first with the foreground set to red; the
second with the foreground set to green and the third with the
foreground set to blue.

For example, you can get a two-coloured T with the following
lines of program:

10 M0DE5
20 VDU3
30 VDU23,224,2 55,255,0,0,0,0,0,0
40 VDU23,225,0,0,24,2 4,24,24,24,24
50 GCOL 0,1 :MOVE 500,500
60 PRINT CHR$(224)
70 GCOL 0,2 :MOVE 500,500
80 PRINT CHR$(225)
90 VDU4
100 END

55

Screen Display 4,1 (If your computer has a 0.1 operating
system, the cursor keys cannot be used as instructed in
the Screen Display. Use the following alternative keys: H
to move left; J to move right; Q to move down; and A to

move up.)

4.9 Activities

i Use the technique described in the previous section to make
some of your own multicoloured characters and composite
figures.

ii. What is the maximum number of colours that can theoretically
fit into only one character? (See Section 4.10.)

56

 Listing 4.1

 10 MODE 4 :VDU

19,0,4;0; :VDU1
9,1,3;0;

 20 REM Clear c
haracter matrix

 30 DIM CHAR(8,
8)

 40 PRINT ' "
 PROGRAM TO D

EFINE A CHARACT
ER"

 50 PRINT ' "Us
e the cursor-co

ntrol keys to p
osition"

 60 PRINT"the c
ursor. Then pre

ss 1 if you wan
t to"

 70 PRINT"fill
the square. Pre

ss 0 to change
back."

 80 BASEX=340 :
YBASE=790 :S=72

 90 N=0 :X=0 :Y
=0 :tr=85 :D=8

100 PROCDISPLAY

110 *FX4,2

120 *KEY12 H

130 *KEY13 J

140 *KEY14 Q

150 *KEY15 A

160 REPEAT

170 REPEAT

180 K=ASC(I
NKEY$(5))-73 :I

F K=-74 THEN PR
OCdisplay

190 IF K=-2
4 OR K=-25 THEN

 CHAR(X,Y)=K+25
 :K=0

200 UNTIL (
ABS(K)=1 OR ABS

(K)=8 OR K=0) A
ND N+K>=0

 AND N+K
<64

210 N=N+K

220 PROCset
char

230 PROCdis
play

240 UNTIL 1
=2

250 :
260 DEF PROCset

char

270 X=N MOD 8 :
Y=N DIV 8

280 CHAR(8,Y)=0

290 FOR I=0 TO
7

300 IF CHAR(I
,Y)=1 THEN CHAR

(8,Y)=CHAR(8,Y)
+2^(7-I)

310 NEXT I

320 PRINT TAB(0
,26);"Character

 definition ="
' ' "VDU

 23,224";

330 FORI=0 TO 7
 :PRINT ",";CHA

R(8,I); :NEXT

340 VDU23,224

350 FOR J=0 T
O 7 :PRINT CHR$

(CHAR(8,J)); :N
EXT J

 :PRINT"
 "

360 ENDPROC

 P.T.O.

57

 Listing 4.1
 continued

370 :

380 DEF PROCdis
play

390 PRINT TAB(0
,30);"Appearanc

e of character
= ";

 CHR$(224)

400 IF CHAR(X,Y
)=1 THEN PROCNG

T :PROCONE ELSE

 PROCONE :PR
OCNGT

410 ENDPROC

420 END
430 :

440 DEF PROCDIS
PLAY

450 FOR N=63 TO
 0 STEP -1

460 X=N MOD 8
 :Y=N DIV 8

470 IF CHAR(X
,Y)=1 THEN PROC

ONE ELSE PROCON
E

 :PROCNGT

480 NEXT N

490 ENDPROC

500 :
510 DEF PROCONE

520 GCOL0,131

530 VDU24,BASEX
+X*S;YBASE-S-Y*

S;BASEX+S+X*S;Y
BASE-Y*S;

540 CLG

550 ENDPROC

560 :
570 DEF PROCNGT

580 GCOL0,128

590 VDU24,BASEX
+D+X*S;YBASE+D-

S-Y*S;BASEX-D+S
+X*S;

 YBASE-D-Y*S
;

600 CLG
610 ENDPROC

4.10 Discussion of activities

Activities 4.7ii:

 10 MODE 5
 20 VDU23,224,0,0,0,12,31,31,17,63
 30 VDU23,225,0,0,0,0,248,0,0,248
 40 VDU23,226,63,127,37,42,21,15,0,0

58

 50 VDU23,227,252,254,164,84,168,240,0,0
 60 tank$=CHR$(32)+CHR$(224)+CHR$(225)+CHR$(10)+
 CHR$(8)+CHR$(8)+CHR$(8)+CHR$(32)+CHR$(226)+
 CHR$(227)
 70 FOR X=0 TO 19
 80 PRINT TAB(X,20)tank$
 90 T=TIME:REPEAT UNTIL TIME=T+50
100 NEXT X
110 END

The ASCII code 32 in line 60 prints a space. This is necessary to
rub out the back of the tank.

Activities 4.9ii: The number depends on the mode. For example,
in a four-colour mode you can have three foreground colours. So
you can have three colours in any one character.

59

5 Animating displays
5.0 Introduction
5.1 The redefinable and absolute colour
numbers: a summary
5.2 Redefining the redefinable colour numbers
5.3 Activities
5.4 Animation
5.5 Activities
5.6 Overlapping images
5.7 Logicai operations
5.8 Activities
5.9 Discussion of activities

5.0 introduction

You can animate a graphics display, by making a series of
pictures appear and disappear in quick succession. The
effectiveness depends on how quickly you can make each
picture change. The quickest way is to redefine the colours, so
that whole areas of one colour turn into other colours virtually
instantaneously. This chapter describes how to redefine colours
and how to use the technique to produce animation.

60

0 = black 8 = flashing black/white
1 = red 9 = flashing red/cyan
2 = green 10 = flashing green/magenta
3 = yellow 11 = flashing yellow/blue
4 = blue 12 = flashing blue/yellow
5 = magenta 13 = flashing magenta/green
6 = cyan 14 = flashing cyan/red
7 = white 15 = flashing white/black

Table 5.1 The colours of the absolute colour numbers

5.1 The redefinable and absolute colour numbers: a
summary

You have already used the COLOUR statement to specify the
foreground and background colours for text and the GCO!
statement for graphics. You will recall that each requires a colour
number which we called a redefinable colour number (see
Section 2.1). We shall now summarise the essential differences
between redefinable colour numbers and absolute colour
numbers.

An absolute colour number is the number of the colour which
is tm be reproduced on the screen. It is like a name, by which
any colour can be unambiguously referred and it can never be
changed, irrespective of the screen mode in operation. Table 5.1
lists the absolute colour numbers.

A redefinable colour number is the colour number which
appears in the COLOUR and GCOL statements. Its effect
depends on the screen mode in operation at the time and on
whether or not it has been redefined. When a redefinable colour
has not been redefined, the following operate by default:

For modes 0 and 4:

redefinable colour 0 = absolute colour 0 (black)
redefinable colour 1 = absolute colour 7 (white)

For modes 1 and 5:

redefinable colour 0 = absolute colour 0 (black)
redefinable colour 1 = absolute colour 1 (red)
redefinable colour 2 = absolute colour 3 (yellow)
redefinable colour 3 = absolute colour 7 (white)

For mode 2 the redefinable colour number has a default value

61

equal to the absolute colour number given in Table 5.1.

5.2 Redefining colours

The command to change the definition of a colour number is
VDUl9. its form is as follows, where the semicolons control how
BASIC interprets numbers and should not be confused with
cormas:

VDU19,redefinable colour,solute colour;0;

For example, the following would redefine the redefinable colour
number 0 to be the absolute colour number 4, to give blue:

VDU19,0,4;0;

As soon as you enter this line, every point on the screen which
was originally written in the redefinable colour 0 becomes blue.
As 0 corresponds to the background which, by default is black
for all modes, this provides a blue background for all writing on
the screen.

The writing on the screen in a four-colour mode can be made
yellow by the following:

VDU19,3,3;0;

The redefinable colour numbers are automatically reset to the
default when the mode is changed, or by the statement VDU 20,
or by control/T.

5.3 Activities

For a quick and easy way to see the effects of redefining colour
numbers, define the first red user-definable key to set the re
definable colour 0 to 7; define the second user-definable key to
set the redefinable colour 1 to 0; and set the third user-definable
key to reset the redefinable colours i.e. 0 (background) to 0
(black) and I (foreground) to 7 (white). To do this, you need the
following lines, entered in direct mode:

62

*KEY0 VDU19,0,7;0;|M
*KEY1 VDU19,l,0;0;|M
*KEY2 VDU20|M

Also change the mode to mode 4 by entering MODE4 This
resets the redefinable colours and switches to a two-colour mode
with redefinable colour 0=black and 1=white.

i. Now enter any message on the screen, just to get some writing
there. (Ignore the error message.) Is the writing in its normal
form of white writing on a black background?

ii. Next press the user-definable key f0. As the key redefines the
redefinable colour 0 to be white, does the screen turn uniformly
white?

iii. Next press the user-definable key f1. As the key redefines the
redefinable colour 1 as black, does it cause the writing on the
screen to reappear, this time as black writing on a white
background?

iv. Finally press the user-definable key £2. Does it bring the
system back to normal?

v. What would have happened if you had done this activity in a
four colour mode? We discuss this in Section 5.9.

5.4 Animation

To produce an animated picture requires you to display, in rapid
succession, independent and slightly different views, each
showing a progression from the previous one. When they are
presented quickly, one after the other, the result can give the
illusion of movement. Although it is impossible, with present
technology, for home computers to produce the equivalent of a
cinema film, attractive results can be obtained. The computer
has to work out a number of images and store them in memory.
Then it has to arrange to switch from one to another in rapid
succession to give the impression of movement. The process of
redefining colours enables this succession to be sufficiently
rapid, and we describe it here.

It is best to start by defining all the redefinable colours on the

63

screen to be background, and so by default black. Then you
draw a suitable number of successive images, by drawing each
in a separate colour number. The number of redefinable colour
numbers, and therefore the number of images, depends on the
display mode, i.e. 0 to 3 for modes 1 and 5, 0 to 15 for mode 2,
Each image can now be viewed, if you define its particular
redefinable colour number as white, keeping ail others black.
Then you can switch between one view and another by selecting
which redefinable colour to define as white while keeping all
others as black.

Essentially each available redefinable colour number can be
used to draw a different frame of the final animated picture. To
hide any one frame, its redefinable colour is defined as the
background colour. Thus one colour number (usually 0) has to
be reserved for the background colour and is therefore
unavailable for drawing a frame. So, in a four colour mode, it is
possible to draw three individual frames, each of which can be
turned on or off. In the eight + eight colour mode, it is possible to
draw fifteen independent frames. Clearly this produces the best
animation, but you need a Model B.

This type of animation cannot be done in the two-colou
graphics modes, 0 and 4. With only two colours, either nothing or
all parts of the picture are visible.

5.5 Activities

i. To see the effects of animation by colour redefinition, enter
Listing 5.1, which produces an animated picture of a tap dripping
into a tray which slowly fills up. Screen Display 5.1 cannot do
justice to the animation on the actual screen, which shows the
drips fall ing from the tap. Each *FXl9 in lines 240 - 260 of the
listing force the program to wait until the start of the next display
frame on the television. We use it here as a method of producing
a time delay and for getting better animation. This program only
works on a Model B.

ii. Try to adapt the program by speeding up the drips or by
altering the rate at which the tray fills up.

64

5.6 Overlapping images

For the animation which we have just described, each image
must be separate from the others. If any parts of the images
overlap then the one which is placed on the screen last
overwrites the previous one. If this is unacceptable, there is an
alternative way of treating the image which allow as much
overlap as necessary. This method allows only two separate
images in mode I and 5 and four separate images in mode 2. We
now describe it.

Within the computer ail numbers are expressed by electrical
signals which are either on or off, and the redefinable colour
numbers are also expressed this way. For ease of expression,
computer experts speak of signals as being either I or 0 to
represent the on and off states. You can therefore specify any
number in terms of the l's and 0's that specify the signals inside
the computer. We shall describe the process, as it works within
mode 2. Consequently sixteen different colour numbers can be
used. The computer specifies a colour number between 0 and 15
in terms of 1's and 0's, according to Table 5.2.

colour number binary number
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Table 5.2 Equivalent binary numbers and colour numbers

You will find that the following are the most important
equivalents:

65

Screen Display 5.1

Normal colour 1 is equivalent to computer version 0001
Normal colour 2 is equivalent to computer version 0010
Normal colour 4 is equivalent to computer version 0100
Normal colour 8 is equivalent to computer version 1000

You will notice that each of these numbers uses a single 1
representing a single 'on' signal. Inside the computer there are
four wires representing the colour in which you are drawing the
picture. Also in the screen memory there are four separate cells
in the screen memory chips which hold these four digits; they are
either on or off. Each is independent of the others, which is
important to remember when representing images. (Note that 1=
0001 is independent of 2=0010 but that 3=0011, being a
combination of I and 2, is dependent on both.) For overlapping
pictures and for other pictorial effects, each of the four possible
views of the picture need to be drawn, each in one of the four
possible independent electrical positions, i.e. 0001, 0010, 0100
or 1000.

66

 Listing 5.1

 10 MODE2
 20 VDU19,8,2;0;
 30 FOR D=1 TO 5
 40 REM Draw drop
 50 GCOL0,D
 60 VDU19,D,0;0;
 70 VDU29,704;680-D*100;

 80 MOVE -30,0
 90 MOVE 0,50

100 PLOT 85,30,0
110 FOR A=0 TO 1.2 STEP.2

120 MOVE 0,0
130 PLOT 85,COS(A*PI)*30,

 -SIN(A*PI)*40
140 NEXT A
150 NEXT D
160 GCOL0,7
170 PROCtap(660,568,30)

180 PROCbeaker
190 F=80
200 REPEAT
210 REM Animate
220 FOR C=1 TO 5
230 VDU19,C,2;0;

240 *FX19
250 *FX19
260 *FX19
270 VDU19,C,0;0;
280 NEXT C
290 F=F+4
300 GCOL0,8
310 MOVE 168,F
320 DRAW 992,F
330 UNTIL F=400
340 :
350 END
360 :

 Listing 5.1 continued

370 DEF PROCtap(X,Y,S)

380 REM Move origin to X,Y

390 VDU29,X;Y;
400 MOVE S*18,S*3
410 MOVE S*18,S*6
420 PLOT 85,S*3,S*3
430 PLOT 85,S*3,S*6

440 PLOT 85,S*1.5,S*5
450 PLOT 85,S*3,0
460 PLOT 85,0,S*3
470 PLOT 85,0,0
480 MOVE S*6,S*2
490 MOVE S*11,S*2
500 PLOT 85,S*6,S*10

510 PLOT 85,S*11,S*10

520 PLOT 85,S*8.5,S*16
530 :
540 MOVE S*3,S*12
550 MOVE S*14,S*12
560 PLOT 85,S*3,S*14
570 PLOT 85,S*14,S*14

580 VDU29,0;0;
590 ENDPROC
600 :
610 DEFPROCbeaker
620 MOVE 160,400
630 MOVE 148,420
640 PLOT 85,160,80
650 PLOT 85,148,60

660 PLOT 85,1000,80
670 PLOT 85,1020,60

680 PLOT 85,1000,400
690 PLOT 85,1020,420

700 ENDPROC
710 PLOT 85,1020,420

720 ENDPROC

67

Provided you draw the pictures in such a way that you do not
rub out anything already on the screen, an overlap between a
picture drawn in redefinabie colour I (0001) with one drawn in
redefinabie colour 4 (0100), produces, at that position on the
screen, the electrical code 0101 which is clearly a combination of
the previous two.

You could have colour number 1 (0001) for an image of a
man and 4 (0100)for the image of a tree. If you define 1 (0001)
as red, then anywhere on the screen where you put the: man,
using the previous graphics techniques, the image will appear
red. If, however, you can arrange that where the tree (0100) and
the man (0001) overlap on the screen, the duality of the situation
is recorded as tree (0100) + man (0001) — (0101), then you
have the foil owing possibilities: If this combined effect (0101) is
defined as having the same colour as the tree (0100), then the
man is not seen, be. he appears to have gone behind the tee If
the combined effect (0101) is defined as having the same colour
as the man (0001) then this part of the tree will not be seen, i.e.
he appears to have gone in front of the tree!

These manipulations require some knowledge of the
exclusive OR binary logic for combining numbers. We introduce
it in the next section.

5.7 Logical operations

The logical operations are methods of performing what must
appear at first sight to be nothing but rather strange arithmetic. Y
rat this type of arithmetic is crucial for computers. As we
mentioned, ail numbers inside the computer are dealt with as
binary numbers and ail binary numbers are a series of l's and 0's
Essentially the binary operations are a way of combining the 1's
and 0's of binary arithmetic. The operation which is required for
animation uses the operator called 'the exclusive OR' which is
written as XOR. The binary %OR operator combines l's and 0%
in the following way:

0 XOR 0 = 0
1 X0R 0 = 1
0 XOR 1 = 1
1 XOR 1 = 0

68

To illustrate the operation, consider two binary numbers, each
represented by a combination of four l's or 0's, such as the 0100
and 0001 of the previous section. To combine these two
numbers using the logical XOR operator requires that one
number be written above the other like this:

0100
0001

You now operate the logical XOR between the 1's and 0's in
each column to give the result 0101. Thus, if you draw one
picture on the screen using colour number 4 (0100) and then
manage to draw another on the screen using colour 1 (0001) -
this time making sure that the second picture does not overwrite
the previous but is combined with it using the logical XOR
function - then at every point on the screen where you have an
overlap between 4 (0100) and 1 (0001) you get the number
(0101) which is 5. You now have areas from the first picture
which are in colour number 4 (0100), areas from the second
picture in colour number I (0001) and areas where the two
overlap, which are in colour number 5 (0101). You now only
need to define colour number 5 to be the same as 4 or I and one
image appears to be hidden by the other, where they overlap.
The information that the two images do overlap is not lost,
however, as the situation does have the different colour number
5 (0101) on the screen.

To remove one of the images from a particular area of the
screen as would be required if a man was to be shown walking
across the screen merely requires that his image be written to
the same spot, a second time still using the logical XOR function.

This happens as 1 XOR 1 = 0. This means that 0101 XOR
0001 = 0100 which, in terms of the image, means that:

'overlapping image' XOR 'one of images' = 'other image'
0101 XOR 0001 = 0100

GCOL 3,C is a statement which sets up the BBC Microcomputer
to do the XOR operation. Once this statement has been
executed, all future graphics displays will be of colours such that
they are the XOR between the colour number that you are
plotting and that already on the screen.

69

Screen Display 5.2

5.8 Activities

Screen Display 5.2 shows a tank and a pyramid. As it uses the
complete range of colour numbers, it will only work on a Model
B. Enter the program of Listing 5.2. Do you see the tank move
behind the pyramid? Change the program and re-run it to show
the tank moving in front of the pyramid.

70

 Listing 5.2

 10 VDU23,255,
0,0,0,12,31,31,

17,63

 20 VDU23,254,
0,0,0,0,248,0,0

,248

 30 VDU23,253,
63,127,37,42,21

,15,0,0

 40 VDU23,252,
252,254,164,84,

168,240,0,0

 50 tank$=CHR$(
255)+CHR$(254)+

CHR$(10)+CHR$(8
)+CHR$(8)

 +CHR$(253)+
CHR$(252)

 60 :
 70 MODE2 :VDU1

9,0,4;0; :REM A
 blue sky

 80 :
 90 REM Now som

e green ground

100 GCOL0,2:MOV
E 0,0:MOVE 1280

,0

110 PLOT85,0,51
2:PLOT85,1280,5

12

120 :
130 REM a cyan

pyramid

140 GCOL0,1 :VD
U19,1,6;0;

150 MOVE 200,36
0:MOVE 600,360:

PLOT85,400,660

160 :
170 REM A yello

w pyramid

180 GCOL0,4 :VD
U19,4,3;0;

190 MOVE 400,20
0 :MOVE 1000,20

0 :PLOT85,700,7
00

200 :
210 REM Now red

efine tank colo
ur combinations

220 VDU19,10,0;
0; :REM tank +

ground = black

230 VDU19,9,0;0
; :REM tank +

pyramid= black

240 VDU19,12,3;
0; :REM tank +

pyramid= pyrami
d colour

250 :
260 REM Move ta

nk

270 VDU5 :GCOL
3,8

280 *FX19

290 REPEAT

300 FOR I=1 TO
280 STEP 2

310 MOVE I*4,40
0 :PRINT tank$

320 FOR T=1 TO
100 :NEXT

330 MOVE I*4,40
0 :PRINT tank$

340 NEXT I

350 UNTIL 1=2

71

5.9 Discussion of activities

Activity 5.3 v: If you had done the activity in a four colour mode,
you could have redefined any of the four redefinable colour
numbers 0, 1, 2 and 3 to be any of the absolute colours. This
redefinition of redefinable colour numbers could have included
redefining all of the colour numbers to represent black. Then the
screen would become black whatever was drawn on it.
Alternatively ail of the redefinable colour numbers could have
been defined as black, with the exception of one which could
have been defined as white. Then only those parts of the picture
which were drawn in the last redefinable colour would have been
visible.

72

6 Drawing three dimensional
ripple surfaces

6.0 Introduction
6.1 Choosing a function and scaling it
6.2 Activities
6.3 Drawing the surface
6.4 Hidden lines
6.5 Activities
6.6 Discussion of activities

6.0 Introduction

You have probably admired the three dimensional pictures that
computers can draw. This chapter is about those beautifully
symmetrical and shaded pictures of ripple surfaces, and it shows
you how easy it is to design and draw them yourself.

73

Screen Display 6.1

6.1 Choosing a function and scaling it

A three dimensional ripple surface can be built up from any
suitable function. Any one will do as long as it can be written in
terms recognisable to BASIC. So, to draw one for yourself, you
must first choose a function. We explain the process using a
function which, incidentally, derives from optics, where it
represents the amplitude of light penetrating through a pin hole
onto a screen behind:

SIN(R)/R

You can get an idea of the general shape of this function by
plotting it in a suitable graphics mode, in two dimensions as a
simple graph. This particular function has a maximum value of 1
where R=0 and a minimum value of about -0.2 so you have to
scale up the values worked out for SIN(R)/R before you can plot
with a suitable size to fill the screen. If you scale the whole
function up, by multiplying by 800, it will fit on the screen nicely.
Listing 6.1 gives a program to display the two dimensional shape
of this function. Screen Display 6.1 is the result.

74

 Listing 6.1

10 REM Display
of SIN(X)/X

20 MODE4

25 VDU19,0,4;0;
19,1,3;0;

30 point=69

40 VDU29,640;20
0; :REM Set ori

gin

50 FOR X=-640.1
 TO 640 STEP 2

60 PLOTpoint,X,
800*32*SIN(X/32

)/X

70 NEXT X

80 END

As you see, the program uses the point-plotting version of the
PLOT statement. Line 40 uses the following special version of
the VDU statement, which allows the origin for any future
graphics to be altered to X,Y:

VDU29,X;Y;

In the program this sets the origin for graphics to the point
640,200. This is because the function is symmetrical about X=0;
so we felt the program would be clearer if the values of X ran
from -640 to +640. The scaling takes place in line 60. The 800
enlarges the plot to fill most of the screen and the X/32 controls
the number of bumps on the curve. Such scaling is usually best
done by starting with an intelligent guess, displaying the resulting
plot and then adjusting the scaling.

6.2 Activities

This activity helps you to appreciate the importance of scaling on
the appearance of a display.

i. Enter the program of Listing 6.1 and run it.

75

Screen Display 6.2

ii. Try altering the overall size of the display scaling factor 800 in
line 60.

iii. Try altering the number of 'bumps' in the display by varying
the scaling factor 32 in line 60.

iv. In line 50 the value of X is purposely set to start at -640.1
rather than at -640 exactly. Investigate why, by altering to -640.

v. Try adding STEP 4 to line 50 in order to speed things up.

6.3 Drawing the surface

We now show how to use SIN(R)/R to produce the symmetrical
three dimensional ripple surface of Screen Dispiay 6.2. The
height of any point on the surface is dictated by the value of the
function at that point. There is a central, main 'bump' just as
there is for the two dimensional view of Screen Display 6.1.

76

Indeed this two dimensional view is a section through the three
dimensional one.

 Listing 6.2

 10 REM A progr
am to illustrat

e plotting a 3D
 ripple surface

 20 MODE0:VDU19
,0,4;0; :REM Mo

de 4 for Model
A

 30 REM Or MODE
 0 with line 11

0 STEP 4 and 12
0 STEP 16

 40 REM Set up
scale of pictur

e

 50 XM=640.1
:REM Size acros

s the screen

 60 ZM=800
:REM Apparent d

epth of view

 70 YM=700
:REM Height of

'bump' on scree
n

 80 tilt=20
:REM Angle of v

iew

 90 ST=SIN(RAD(
tilt)) :CT=COS(

RAD(tilt))

100 VDU 29,640;
300;

110 FOR X=-XM T
O 0 STEP 4

120 FOR Y=-ZM
 TO ZM STEP 16

130 screenY
=Y*ST+CT*YM*FNs

in(X,Y)

140 IF Y=-Z
M THEN minY=scr

eenY :maxY=scre
enY :REM

 For hid
den lines

150 IF scre
enY>maxY THEN m

axY=screenY :PR
OCplot

160 IF scre
enY<minY THEN m

inY=screenY :PR
OCplot

170 NEXT Y

180 NEXT X

190 VDU5:MOVE0,
1050:END

200 :

210 DEF PROCplo
t

220 PLOT69,X,sc
reenY :PLOT69,-

X,screenY

230 ENDPROC

240 :
250 DEFFNsin(X,

Y)

260 KR=.02*SQR(
X*X+Y*Y)

270 =SIN(KR)/KR

As you can see from Listing 6.2, the origin for all the plotting is
set centrally on the screen using the VDU29,640;300; statement
on line 100. The scale for the surface is set up in lines 50 to 70 in
terms of XM, the breadth, ZM the apparent distance front to back
and YM which scales the diagram in the up/down direction,
affecting the apparent height of the 'bumps'.

77

Screen Display 6.3

The value of the function SIN(KR)/KR is calculated in the
function definition in lines 250 to 270. If you have your own
function, you could substitute a different definition. Other
functions would be equally suitable, provided that they are
calculatable in terms of X and Y, although only certain types give
an attractive appearance. By way of illustration, Screen Displays
6.3 and 6.4 rely on different functions. Listings 6.3 and 6.4 give
the programs that produce them.

The appearance of three dimensional displays is very much
improved if a line or curve is not drawn where it seems to be
behind something else. In Listing 6.2, this is achieved in lines
140 to 160. However, as the process is so important in all areas
of graphics, we explain in general terms in the next section.

6.4 Hidden lines

Displays of three dimensional objects invariably have some lines,
which, if the surface were solid, would be hidden from sight.
Where a program does not remove these lines, the whole
impression of solidarity is spoilt. Where the lines are removed,

78

they are referred to as 'hidden lines'.

 Listing 6.3

 10 REM A progr
am to illustrat

e plotting a 3D
 ripple surface

 20 MODE0:VDU19
,0,4;0; :REM Mo

de 4 for Model
A

 30 REM Or MODE
 0 with line 11

0 STEP 4 and 12
0 STEP 16

 40 REM Set up
scale of pictur

e

 50 XM=640.1
:REM Size acros

s the screen

 60 ZM=800
:REM Apparent d

epth of view

 70 YM=700
:REM Height of

'bump' on scree
n

 80 tilt=20
:REM Angle of v

iew

 90 ST=SIN(RAD(
tilt)) :CT=COS(

RAD(tilt))

100 VDU 29,640;
300;

110 FOR X=-XM T
O 0 STEP 4

120 FOR Y=-ZM
 TO ZM STEP 16

130 screenY
=Y*ST+CT*YM*FNs

in(X,Y)

140 IF Y=-Z
M THEN minY=scr

eenY :maxY=scre
enY :REM

 For hid
den lines

150 IF scre
enY>maxY THEN m

axY=screenY :PR
OCplot

160 IF scre
enY<minY THEN m

inY=screenY :PR
OCplot

170 NEXT Y

180 NEXT X

190 VDU5:MOVE0,
1050:END

200 :
210 DEF PROCplo

t

220 PLOT69,X,sc
reenY :PLOT69,-

X,screenY

230 ENDPROC

240 :

250 DEFFNsin(X,
Y)

260 KR=.02*SQR(
X*X+Y*Y)

270 =SIN(KR)^2/
KR

To remove these lines, the program draws the surface, point
by point, moving from the nearest part, which must be in view, to
the furthest part, which may well be hidden by something drawn
earlier. While each point of the surface is being drawn, the
program keeps a note of the heights up and down the screen
reached so far. If the program then finds a point which lies
between these two values, it must be further away, and therefore
hidden from view. So it is not plotted.

79

Screen Display 6.4

In Listing 6.2, the hidden line removal occurs in lines 140 to
160. Line 140 sets the starting value for the maximum and
minimum height on the screen. In Lines 150 and 160 the current
value is tested, to see if it lies within the range of the current
maximum and minimum. If it does, the point is not plotted. If it
does not, the current maximum or minimum is updated and the
point is plotted.

6.5 Activities

i. Try running the three dimensional surface program using the
functions which we supply.

ii. Ripple surface programs run rather slowly. How could you
make the program of, for example, Listing 6.2 run more quickly?
Would there be any disadvantages'? (See Section 6.6.)

iii. Try producing ripple surfaces with your own functions.

80

 Listing 6.4

 10 REM A progr
am to illustrat

e plotting a 3D
 ripple surface

 20 MODE0:VDU19
,0,4;0; :REM Mo

de 4 for Model
A

 30 REM Or MODE
 0 with line 11

0 STEP 4 and 12
0 STEP 16

 40 REM Set up
scale of pictur

e

 50 XM=640.1
:REM Size acros

s the screen

 60 ZM=800
:REM Apparent d

epth of view

 70 YM=700
:REM Height of

'bump' on scree
n

 80 tilt=20
:REM Angle of v

iew

 90 ST=SIN(RAD(
tilt)) :CT=COS(

RAD(tilt))

100 VDU 29,640;
300;

110 FOR X=-XM T
O 0 STEP 4

120 FOR Y=-ZM
 TO ZM STEP 16

130 screenY
=Y*ST+CT*YM*FNs

in(X,Y)

140 IF Y=-Z
M THEN minY=scr

eenY :maxY=scre
enY :REM

 For hid
den lines

150 IF scre
enY>maxY THEN m

axY=screenY :PR
OCplot

160 IF scre
enY<minY THEN m

inY=screenY :PR
OCplot

170 NEXT Y

180 NEXT X

190 VDU5:MOVE0,
1050:END

200 :
210 DEF PROCplo

t

220 PLOT69,X,sc
reenY :PLOT69,-

X,screenY

230 ENDPROC

240 :
250 DEFFNsin(X,

Y)

260 KR=.02*SQR(
X*X+Y*Y)

270 =0.2*SIN(X/
40)*SIN(Y/80)

6.6 Discussion of activities

Activity 6.5ii: You can make the program run more quickly by
changing the step sizes in line 110 and line 120. You might try,
for example, 12 and 80 respectively. The resulting display is less
attractive because it is less dense.

81

7 Adding perspective
7.0 Introduction
7.1 Drawing the object
7.2 Giving the object perspective
7.3 Rotating the object
7.4 The complete program
7.5 Activities

82

7.6 Two techniques for hidden line removal
7.7 Activities

7.0 Introduction

You can use the graphics facilities of the BBC Microcomputer to
rotate and to add perspective to objects drawn to appear in three
dimensions. Screen Displays 7.1a,b,c are examples. This
chapter provides and develops a suitable program (see Listing
7.1) and it explains how each part of the program works, so that
you can modify it to your own requirements. In particular, the
program has to take care of drawing the object, giving it
perspective and rotating it. We discuss these in the next three
sections.

7.1 Drawing the object

In Section 1.6, we explained one way of drawing pictures on the
screen. PROCbox, for drawing rectangles, utilised co-ordinates
in two-dimensions, X and Y. For the purpose of adding
perspective and rotating, however, you have to work with an
additional Z co-ordinate to specify how far any point is away from
the screen. Only when the computer has this information can it
estimate the foreshortening that perspective and rotation would
produce. So, when you design your object, you have to specify
three co-ordinates for the principal points. These are X, Y and Z
co-ordinates. The orientations are such that the x axis is positive
towards the right, the y axis is positive in the upwards direction
and the z axis is positive in the direction coming out from the
screen or page. Clockwise rotations are positive, looking towards
the origin from a positive position along an axis. By way of
illustration, Screen Displays 7.1a,b,c respectively show the same
cube rotated 25 degrees about the y axis; 25 degrees about both
the x and y axes; and 25 degrees about ail three axes.

It is best to have the origin of co-ordinates at the centre of
the screen (at addressable points 640,512) and to have the
centre of the object at the origin. This is the case for the cube of
Screen Displays 7.1a,b,c.

You specify the co-ordinates in any convenient units and
supply a conversion factor to turn them into screen co-ordinates.

Once you have specified these, the next step is to specify
which of the points have to be joined up and which not. In the
program of Listing 7.1, we do this with two codes: 5 for a
PLOT5,X,Y to draw to join the points and 4 to move between the

83

two points without joining them. We use the codes after the co-
ordinates of each point, 'm DA T A statements (see lines 310 to
330). They eventually arrive as M in the PLOT statement in line
280.

7.2 Giving the object perspective

Parallel lines seem to get closer together as they get further
away from the eye. This is an example of perspective, and this is
the effect that our program has to achieve. It is actually very
simple. The perspective scaling depends on the distance of the
point from the observer, and must be such that the size of parts
of the object appear smaller if they are farther away from the
observer. Any part of the object sufficiently far away should tend
to a zero size. If the screen co-ordinates X and Y represent
projections of the image's X and Y co-ordinates, then the
perspective must only depend on the Z co-ordinate. The
perspective scaling can be produced by multiplying each X and
Y co-ordinate by the following, where Z is the Z co-ordinate of
the point and P is a length which determines the amount of
perspective in the image:

P/(P-Z)

P represents the distance of the viewer's eye from the origin,
i.e, from the centre of the object. It is measured in the same units
as those for the size of the object. Good perspective seems to be
obtained by viewing the object at a distance of about 3 times its
height. This gives a perspective corresponding to viewing a book
at arm's length. In Listing 7 .I the height of the cube is 2. Since
we want it viewed at distance of 3 times this value, P becomes 6
(see line 140).

7.3 Rotating the object

When an object is rotated, the amount of foreshortening
changes. In principle it is not very difficult to work this out in
terms of the sine or cosine of the angle through which the object
is rotated. However, for objects in three dimensions, the
mathematics becomes very complex indeed. The best way of
approaching it is via matrix algebra. We have worked out three
suitable expressions for you to use: one each for lengths

84

originally lying in the x, y and z directions. We express our
results in terms of variables rather than sines and cosines. This
is because it would be too time consuming for the program to
keep having to evaluate the same trigonometric ratios. So the
program evaluates them once only and then calls on them, as
they keep being needed. These variables as are as follows:

SX = sine of angle of rotation around x axis
CX = cosine of angle of rotation around x axis
SY = sine of angle of rotation around y axis
CY = cosine of angle of rotation around y axis
SZ = sine of angle of rotation around z axis
CZ = cosine of angle of rotation around z axis

Our expressions for the screen co-ordinates for any point in the
image are given in terms of these variables in lines 250, 260 and
2 70, which also includes the perspective factor. If you are
familiar with matrix algebra, you should have no difficulty in
deriving these expressions for yourself. If not, you will probably
be prepared to accept them as we give them.

7.4 The complete program

The program starts by asking for the angles of rotation around
the three axes. The next line then calculates all the sines and
cosines that are required. This takes a relatively long time and so
is done only once in the program. Once the mode is set in line l0,
the graphics origin is fixed at the centre of the screen by the
VDU29 statement in line 120. For simplicity the corners of the
cube are taken to lie I unit along each axis, and the data for their
co-ordinates are stored in the OAT A statements at the end. As
this means that the co-ordinates are too small for plotting directly
on the screen, line 180 scales them up, according to the scaling
factor K.

For programming convenience each point is plotted using a
procedure called in line 190, together with the current co-
ordinates and M. The procedure which does the rotation and
perspective scaling is in lines 230 to 280. Line 250 calculates the
Z co-ordinate first. This is then used in the next two lines to
calculate the two-dimensional picture co-ordinates. The first part
of the calculation of the screen co-ordinates involves the
perspective scaling factor referred to in Section 7.2.

85

Screen Display 7.1a

86

Screen Display 7.1b

87

Screen Display 7.1c

88

 Listing 7.1

 10 MODE4:VDU19
,0,4;0;19,1,3;0

;

 20 PRINT ' "Th
is program disp

lays a cube whi
ch you"

 30 PRINT ' "ca
n view at any a

ngle of rotatio
n of"

 40 PRINT ' "yo
ur choice."

 50 PRINT ' ' "
When you are re

ady, enter the
amount of"

 60 PRINT ' "ro
tation required

 around the X,
Y and Z"

 70 PRINT ' "ax
es. Enter each

in turn (in deg
rees)"

 80 PRINT ' "se
parated by a co

mma. Then press
 RETURN."

 90 INPUT ' AX,
AY,AZ

100 SX=SIN(RAD(
AX)):CX=COS(RAD

(AX)):SY=SIN(RA
D(AY))

110 CY=COS(RAD(
AY)):SZ=SIN(RAD

(AZ)):CZ=COS(RA
D(AZ))

120 VDU29,640;5
12;

130 CLG

140 P=6 :K=300
:P=P*K

150 READ N

160 REPEAT

170 READ X,Y,
Z,M

180 X=X*K :Y=
Y*K :Z=Z*K

190 PROCplot(
X,Y,Z,M)

200 N=N-1 :UNTI
L N=1

210 END

220
230 DEF PROCplo

t(X,Y,Z,M)

240 REM X and Y
 are the co-ord

inates M is the
 PLOT

 number

250 ZT=X*SY-Y*S
X*CY+Z*CX*CY

260 XT=P/(P-ZT)
*(X*CY*CZ+Y*(SX

*SY*CZ+CX*SZ)+Z
*

 (SX*SY-CX*S
Y*CZ))

270 YT=P/(P-ZT)
*(-X*CY*SZ+Y*(C

X*CZ-SX*SY*SZ)+
Z*

 (SX*CZ+CX*S
Y*SZ))

280 PLOTM,XT,YT
 :ENDPROC

290
300 REM The Car

tesian co-ordin
ates for the po

ints

 shown in sc
reen display 7.

1

310 DATA 17,1,1
,1,4, -1,1,1,5,

 -1,-1,1,5, 1,
-1,1,5,

 1,1,1,5

320 DATA 1,1,-1
,5, -1,1,-1,5,

-1,-1,-1,5, 1,-
1,-1,5,

 1,1,-1,5

330 DATA -1,1,1
,4, -1,1,-1,5,

-1,-1,1,4, -1,-
1,-1,5,

 1,-1,1,4,
1,-1,-1,5

89

7.5 Activities

i. Enter and run the program in Listing 7.1. Try rotating around
the x axis by small angles, say between 1 and 20 degrees.

ii. Repeat for rotations around the y and the z axes.

iii. Now enter the following three lines and run the program:

85 AY=25 :AZ=25
90 FOR AX=1 TO 30 STEP 4
95 RESTORE
205 NEXT AX

Does the cube rotate?

7.6 Two techniques for hidden line removal

In Section 6.4, we touched on hidden line removal. We now
illustrate two methods for it - but they have to be rather simplistic
because the whole subject is so complex.

Screen Displays 7.2a,b,c illustrate the simplest of the two. It
shows a house and garden - and we only draw the parts of the
house that can be seen from the front! In other words, we only
give the co-ordinates for two sides of the complete figure! The
perspective view is still perfectly acceptable, provided the house
is not rotated too far around any of the axes. Even though the
acceptability breaks down with larger angles, the technique is
still valuable, because it gives a picture which is more pleasing
and less obstructed than a wire-frame one showing all the details
at the back.

You may like to experiment with another way of achieving
hidden line removal (see Screen Display 7.3 and Listing 7.3). For
this, you make each face of the figure a solid block of colour. The
figure is then drawn starting with the areas furthest from the
viewing point and working to the nearest areas. Then if any of
the nearer areas, which are drawn later, cover up those aireadiy
drawn, hidden line removal is automatically achieved. The
technique requires rewriting the data into blocks, each
representing an area. The program then needs to search through
these areas and make sure that it draws them in the order of
their distance from the viewing point. Our program makes no
attempt at such a search but merely draws the faces of the cube
in a fixed order. This means that if the cube is rotated too far the
illusion is spoilt.

90

Screen Display 7.2a

91

Screen Display 7.2b

92

Screen Display 7.2c

93

 Listing 7.2

 10 MODE4:VDU19
,0,4;0;19,1,3;0

;

 20 PRINT ' "Th
is program demo

nstrates a simp
le"

 30 PRINT ' "me
thod of hidden

line removal, w
hich"

 40 PRINT ' "on
ly works for a

small range of"

 50 PRINT ' "or
ientations."

 60 PRINT ' ' "
When you are re

ady, type the a
mount of"

 70 PRINT ' "ro
tation required

 around the X,
Y and Z"

 80 PRINT ' "ax
es. Type each i

n turn (in degr
ees)"

 90 PRINT ' "se
parated by a co

mma. Then press
 RETURN."

100 INPUT ' "Ro
tation Angles",

AX,AY,AZ

110 SX=SIN(RAD(
AX)):CX=COS(RAD

(AX)):SY=SIN(RA
D(AY))

120 CY=COS(RAD(
AY)):SZ=SIN(RAD

(AZ)):CZ=COS(RA
D(AZ))

130 VDU29,400;5
00;

140 CLS

150 K=6 :P=500

160 RESTORE

170 READ N

180 FOR I=1 TO
N

190 READ X,Y,
Z,M

200 PROCplot(
X,Y,Z,M)

210 NEXT I

220 END

230
240 DEF PROCplo

t(X,Y,Z,M)

250 REM X and Y
 are the co-ord

inates M is the
 PLOT

 number

260 ZT=X*SY-Y*S
X*CY+Z*CX*CY

270 XT=P/(P-ZT)
*(X*CY*CZ+Y*(SX

*SY*CZ+CX*SZ)+Z
*

 (SX*SY-CX*S
Y*CZ))

280 YT=P/(P-ZT)
*(-X*CY*SZ+Y*(C

X*CZ-SX*SY*SZ)+
Z*

 (SX*CZ+CX*S
Y*SZ))

290 PLOTM,K*XT,
K*YT :ENDPROC

300
310 DATA 46

320 DATA -50,-4
0,0,4, 50,-40,0

,5, 50,40,0,5,
-50,40,0,

 5, -50,-40,
0,5

330 DATA -5,-40
,0,4, -5,-5,0,5

, 5,-5,0,5, 5,-
40,0,5

340 DATA -38,-3
0,0,4, -18,-30,

0,5, -18,-5,0,5
, -38,-5,

 0,5, -38,-3
0,0,5

350 DATA 17,-30
,0,4, 37,-30,0,

5, 37,-5,0,5, 1
7,-5,0,5,

 17,-30,0,5

94

 Listing 7.2
 continued

360 DATA -38,10
,0,4, -18,10,0,

5, -18,30,0,5,
-38,30,0,

 5, -38,10,0
,5

370 DATA 17,10,
0,4, 37,10,0,5,

 37,30,0,5, 17,
30,0,5,

 17,10,0,5

380 DATA -5,10,
0,4, 5,10,0,5,

5,30,0,5, -5,30
,0,5,

 -5,10,0,5

390 DATA 50,-40
,0,4, 50,-40,-6

0,5, 50,40,-60,
5,

 50,55,-30,5
, 50,40,0,5

400 DATA 50,-40
,-60,4, 50,-40,

-200,5, 50,-25,
-200,5,

 50,-25,-60,
5

410 DATA 50,55,
-30,4, -50,55,-

30,5, -50,40,0,
5

7.7 Activities

i. Enter the house and garden program of Listing 7.2 and
experiment with the rotations to examine the limitations of such a
partial model.

ii. Run the program of Listing 7.2. How do you feel about the way
it removes hidden lines?

iii Run the program of Listing 7.3. How do you feel about the way
it removes hidden lines?

95

Screen Display 7.3

96

 Listing 7.3

 10 MODE4:VDU19
,0,4;0;19,1,3;0

;

 20 PRINT ' "Th
is program disp

lays a cube whi
ch you"

 30 PRINT ' "ca
n view at any a

ngle of rotatio
n of"

 40 PRINT ' "yo
ur choice."

 50 PRINT ' ' "
When you are re

ady, enter the
amount of"

 60 PRINT ' "ro
tation required

 around the X,
Y and Z"

 70 PRINT ' "ax
es. Enter each

in turn (in deg
rees)"

 80 PRINT ' "se
parated by a co

mma. Then press
 RETURN."

 90 INPUT ' AX,
AY,AZ

100 MODE2 :REM
Mode 5 for a Mo

del A

110 SX=SIN(RAD(
AX)):CX=COS(RAD

(AX)):SY=SIN(RA
D(AY)):

 CY=COS(RAD(
AY)):SZ=SIN(RAD

(AZ)):CZ=COS(RA
D(AZ))

120 VDU29,640;5
12;

130 P=6 :K=300
:P=P*K

140 READ N

150 REPEAT

160 READ X,Y,
Z,M,C

170 GCOL0,C

180 X=X*K:Y=Y
*K:Z=Z*K

190 PROCplot(
X,Y,Z,M)

200 N=N-1 :UNTI
L N=1

210 END

220
230 DEF PROCplo

t(X,Y,Z,M)

240 REM X and Y
 are the co-ord

inates M is the

 PLOT number

250 ZT=X*SY-Y*S
X*CY+Z*CX*CY

260 XT=P/(P-ZT)
*(X*CY*CZ+Y*(SX

*SY*CZ+CX*SZ)+Z
*

 (SX*SY-CX*S
Y*CZ))

270 YT=P/(P-ZT)
*(-X*CY*SZ+Y*(C

X*CZ-SX*SY*SZ)+
Z*

 (SX*CZ+CX*S
Y*SZ))

280 PLOTM,XT,YT
 :ENDPROC

290
300 REM e.g. Th

e Cartesian coo
rdinates for po

ints

 shown in fi
g 7-3

310 DATA19

320 DATA 1,1,-1
,4,1, -1,1,-1,4

,1, 1,-1,-1,85,
1,

 -1,-1,-1,85
,1

330 DATA 1,-1,1
,4,2, 1,-1,-1,4

,2, -1,-1,1,85,
2,

 -1,-1,-1,85
,2

340 DATA -1,1,1
,85,3, -1,1,-1,

85,3

350 DATA 1,1,1,
85,4, 1,1,-1,85

,4

360 DATA 1,-1,1
,85,5, 1,-1,-1,

85,5

370 DATA 1,1,1,
4,6, -1,1,1,4,6

,

 1,-1,1,85,6
, -1,-1,1,85,6

97

8 Extending BBC BASIC for
graphics

8.0 Introduction
8.1 Our procedures
8.2 Procedures for enlarged, rotated writing
8.3 Using the procedures for large, rotated
writing
8.4 Activities
8.5 Feeding data into programs
8.6 Storing data: arrays
8.7 The core procedures
8.8 Activities
8.9 Discussion of activities

8.0 Introduction

We have now explained enough about the graphics facilities of

98

the BBC Microcomputer for you to be able to program your own
very elegant graphics displays. Nevertheless, if you were to try
using these graphics facilities seriously, you would still find
yourself putting in a great deal of time and effort. So we have
done something which we regard as a special feature of this
book - something which simplifies the programming for you and
removes all the drudgery. In consequence, you become free to
concentrate on designing the display that you want, with little
thought to the programming. We hope and believe that you will
produce better displays as a result.

The special feature is that we provide routines which perform
all the essential, mundane parts of graphics for you. All you have
to do is to type them in from Appendix I and save them ready to
include them in programs as you require them. Or, if you prefer,
you can buy them ready-recorded on a cassette. Because of
how they are recorded, there is no problem with transferring
them to disk. There are two advantages to buying them ready-
recorded. Firstly, it saves you the effort of typing; and secondly
you will not have the frustration of searching out the typing errors
that you, like everyone else, will inevitably make.

In effect, our routines provide a sophisticated extension of
BBC BASIC. Firstly, like BBC BASIC, they are instantly available
- you merely call on them as procedures. Secondly, just as you
do not need to know how the computer achieves such things as
printing and listing from the PRINT and LIST instructions of BBC
BASIC, neither do you need to know how our routines work
although we do explain in Appendix 2, in case you are
interested. The essential thing is that you should know how to
use the procedures.

This chapter is concerned with introducing you to the
procedures. We tell you what they can do, and illustrate with
some of the simpler ones. You will see that you need very little
programming expertise to use them.

The displays in all the following chapters rely heavily on our
procedures. In order to use most of them, you will have to be
able to feed data into a program and store it as arrays. We also
discuss this later in the chapter.

8.1 Our procedures

We provide our routines as procedures which we believe that
you will need to call over and over again in graphics
programming. A complete list is in Appendix 1, and Appendix 2

99

explains how each one works.
We shall be saying more about these procedures as we

come to them in the rest of the book. In the next section we
illustrate the use of three of them.

8.2 Procedures for enlarged, rotated writing

Any graphics display is livened up with enlarged writing, set at an
angle or going round a circle. Using our procedures, you can
produce it for yourself, either character by character or as a
complete message. It can be in a straight line or round the arc of
a circle. You do not have to understand details of the
programming. You merely have to call on one of three
procedures: PROCmessage, PROCchr and PROCcurve,

These procedures are expressed in terms of:

S$ which is the string holding whatever is
to be printed.

X,Y which are the normal screen co-
ordinates. They are in the range 0 -
1279 for X and 1023 for Y.

SC which is a scaling factor for whatever is
to be printed. You select its magnitude
through trial and error.

AN SA and FA which are angles in radians.
Zero is straight up, and anti-clockwise is
the positive direction.

R which is the radius of a circle in screen
units around which text is printed.

The procedures have to be used in a graphics mode. This is
what they do:

PROCchr(X,Y,S$,AN,SC) prints the single character held in
5$ with the lower left-hand corner of the character at the position

PROCmessage(X,Y,S$,AN,5C) prints the message held in
S$, starting at the position X, Y.

PROCcurve(X,Y,R,5A,F A,S$,SC) prints the message held in
5$, round the arc of a circle of radius R, starting at the position X,

100

Y.

8.3 Using the procedures for large, rotated writing

Once you have the appropriate procedures in memory, you can
either call on them within a program or using the direct mode.

PROCmessage(600,0,"Straight up",0,10)

Figure 8.1. The result of a call to PROCmessage.

For example, Figure 8.1 shows the result of a call to
PROCmessage in the following program:

10 MODE 4
20 PROCmessage(640,0,"Straight up",0,l0)
30 END

Line l0 gives the co-ordinate for the start of the message as the
bottom of the screen (640,0). The angle is zero for straight up
and the magnification is 10.

Figure 8.2, a message for all Australians, shows the result of
the following call to PROCmessage in the direct mode:

PROCmessage(1200,540,"Wrong way up pommy",PI/2,8)

This message starts at the position 1200,540; the angle is
exactly half of PI to give a quarter of a turn to the left, making the
message upside-down. The scaling factor is 8.

101

PROCmessage(1200,540,"Wrong way up pommy",PI/2,8)

Figure 8.2. The result of a call to PROCmessage.

PROCmessage(600,950,"Down",PI,30)

Figure 8.3. The result of a call to PROCmessage.

A message printed straight down the screen requires AN to
be PI, as shown in Figure 8.3. It is produced by the following

PROCmessage(640,1023,"down",PI,30)

A message printed across the screen diagonally from top left to
bottom right is shown in Figure 8.4 and is produced by the
following, where the co-ordinates of the top left-hand side of the
'd' are 60,920, the angle of the writing is just over PI for just over
a half turn anticlockwise and SC is 20:

PROCmessage(60,920,"diagonal",PI*1.3,20)

102

PROCmessage(60,920,"diagonal",PI*l.3,20)

Figure 8.4. The result of a call to PROCmessage.

Screen Display 8.1 is a display along two curves, one bowing
downwards from the top two corners and the other coming up
from the bottom two corners. It shows the title of this book and
our names, and is produced by the program of Listing 8.1.

8.4 Activities

Put the procedures PROCmessage, PROCchr and PROCcurve
into memory. Either you can type them in from the listings in
Appendix 1 and save them on cassette tape using the *EXEC
format as described in Section 0.2, or you can use the ready-
recorded cassette, which is available for purchase. We shall
refer to the composite listing of these three procedures as TEXT.

i. Now use our procedures, as explained in the previous section,
to write your name across the corners of the screen. You will
need to experiment to get the writing in the right place and of a
suitable size.

ii. Write a program to write out your name continuously along a
sine wave. We give one possibility in Section 8.9.

103

Screen Display 8.1

8.5 Feeding data into programs

Our other procedures, which form the backbone of the rest of the
book, help to display information in various ways, for example as
graphs, pie charts and histograms. This information has to be
already available within the program for the procedure to use
and you have to be able to put it in.

There are several ways of feeding data into programs, and
we illustrate most of them in the rest of the book. At this stage,
however, it is worth saying a few words about two: DATA
statements and INPUT statements.

The INPUT statement allows you or any other user of the
program to feed in data, while the program is running, in
response to requests appearing on the screen. This dialogue
between the user and the computer has the advantage of being
user-friendly. So we shall use INPUT statements quite
frequently.

104

When we demonstrate the programs relying on our
procedures, we shall show the resulting dialogue as part of the
screen display, and we shall underline everything that the user
puts in, so as to distinguish it from the printout produced by the
program.

DATA statements are better for feeding in data when you
want to store the resulting display. You can feed in the data, look
at the display and then experiment with the data to improve the
display by editing the DA T A statements. The editing facilities of
the BBC Microcomputer are excellent for this purpose.

 Listing 8.1

 10 MODE4

 20 XB=100:YB=1
80:AN=PI/8

 30 SC=8

 40 M$=" GRAPHI
CS on the BEEB"

 50 PROCcurve(6
40,0,900,PI*.25

,-PI*.251,M$,SC
)

 60 PROCmessage
(578,512,"by",P

I*1.5,8)

 70 M$=" Andrew
, Neil & Pat"

 80 PROCcurve(6
40,1024,900,PI*

.75,PI*1.25,M$,
-SC)

 90 :
100 END

8.6 Storing data: arrays

Normally, all the data which our procedures require have to be
taken from arrays - and your program must set them up. Since
the procedures are concerned with graphical data, which
normally consists of two co-ordinates, two arrays are generally
required: arrays XO and YO. They can store any number of
items. X(0) holds the number of the co-ordinates, ie the number
of values stored in either XO or YO. Suppose, for the sake of
illustration, that there are to be 20 co-ordinates. Then the
following is a suitable program line to define the arrays:

10 DIM X(20), Y(20)

You can store data in the arrays by any of the following
statements:

105

50 X(I)=5 :Y(I)=4.8
or

50 X(I)=n :Y(I)=m
or

50 READ X(I),Y(I)
or

50 INPUT #A,X(I),Y(i)
or

50 INPUT "next values ",X(I), Y(I) etc.

The variable I could be replaced by a number, although a
variable is more likely in such a situation.

When all of the values have been stored in the arrays and
before any of the procedures are called, you must place the
number of stored data pairs into X(0) by a line such as:

160 X(0)=I
or

160 X(0)=18 etc.

The following is a rather facile example of a minimum set of
lines that would be required before any of our procedures are
called:

10 DIM X(2),Y(2)
20 MODE 4
30 X(l)=1:Y(1)=1
40 X(2)=3:Y(2)=5
50 X(0)=2

Line 10 dimensions the array to set enough storage space aside
for the number of values your program requires. As none of the
procedures set the graphics mode, you must do this yourself in
the program, and this is the purpose of line 20. Such a line is
essential before any plotting. Otherwise the program remains in
mode 7 and no graphics appears on the screen! Lines 30 and 40
merely place some co-ordinates into the arrays, while line 50
records the number of values stored in the array.

8.7 The core procedures

Although we have quite a sizeable collection of procedures, a
few form the backbone of the graphics in the rest of the book.
We refer to them as the core procedures. They are:

106

- PR0Cscale
- PROCaxes
- PR0Cgraduate
- PROCnumber
- PROCpoint
- PROCgraph
- PROCnamex
- PROCinamey
- PROCbstln

This is what these procedures do:
PROCscale scales your graphics for you, ensuring that the

data that you supply always fits nicely onto the screen. This frees
you from having to consider screen co-ordinates and
addressable points, etc.

PROCaxes draws a pair of axes i.e. an x axis and a y axis.
The axes do not necessarily cross at the origin, because
PROCscale examines the range of the values supplied to it and
accordingly sets where the axes should cross in order to make
the best display. (Incidentally an axis always starts from zero if
the smallest inputted co-ordinate is less than 1/3 of the largest
although we show later how this can be altered.)

PROCgraduate marks off the axes into appropriate intervals:
never less that three or more than 30 graduations along each
axis. To make it easier to read values from the graphs, every fifth
graduation is larger than the rest.

PROCnumber prints a number against the first and last scale
division for each axis to indicate the scale.

PROCpoint marks a single + at the point specified when the
procedure is called.

PROCgraph combines the above procedures, i.e. it causes a
pair of suitably scaled, graduated and numbered axes to be pio t
ted.

PROCnamex names the x axis by printing whatever wording
you want along the x axis.

PROCnamey names the y axis by printing whatever wording
you want along the y axis. You call PROCnamex and
PROCnamey with lines like the following, which must include the
words that you want printed:

100 PROCnamex("the x axis")
110 PROCnamey("the y axis")

PROCbstln draws the best straight line through a set of
points whose co-ordinates you supply.

107

We advise you make sure, now, that these core procedures
are available for you to use. You can either type them into the
computer from Appendix I and save them, or you can buy the
ready-recorded tape. We shall refer to the composite listing of
these procedures as COMP (to stand for composite). If you have
a Model A and get a 'Bad MODE' error message, it means that
you do not have enough memory space for a!! our procedures.
Nevertheless a Model A does not stop you from getting
meaningful displays! You can normally still get them, as long as
you do not mind missing out on such things as numbering,
graduating and labelling the axes. You merely have to delete the
lines of the less-important procedures (PROCnumber,
PROCgraduate, PROCnamex and PROCnamey) and ail
references to them. You should also delete PROCbstln and all
but the most essential lines in your program.

The following activities give an introduction to what the core
procedures can do - although we elaborate and extend in the
rest of the book.

8.8 Activities

If you have not already done so, record at least PROCaxes,
PROCgraduate, PROCnumber and PROCpoint using the *EXEC
format as described in Section 0.2. We shall refer to this as
COME' to stand for 'composite'. (If you have a Model A, there is
only memory space for PROCscale and PROCaxis.)

i. Enter the following short program to call on PROCscale. Add
all the procedures using the command *EXEC "COMP" and run
the program, thereby activating the other graphics procedures:

10 MODE 4
20 DIM X(2),Y(2)
30 X(l)=l :Y(l)=l
40 X(2)=3 :Y(2)=3
50 X(0)=2
60 PROCscale
70 END

ii. We shall shortly be asking you to call on some of our
procedures in the direct mode. In order to keep this apart from
the resulting display, first enter the following, where VDU 28
defines a window in which text is confined:

108

CLS:VDU 28,10,2,30,0

Now enter the following in direct mode, so that you can see its
effect:

PROCaxes

iii. Repeat with each of the following procedures in turn.

PROCgraduate
PROCnumber
PROCpoint(2,2)
PROCpoint(3,3)

Do you see that each axis has a scale running from 1 to 3, with
larger divisions for 1, 1.5, 2, 2.5 and 3? This makes it easier to
read values from the graph.

iv. Repeat with the following:

PRCpoint(-1)

Why does this seem to have no effect? We discuss this in
Section 8.9.

v. Now change line 30 in the above program to:

30 X(1)=.9:Y(1)=.9

Run the program again, followed by the direct mode procedure
calls. Note the new scales for the axes, which both now run from
zero.

8.9 Discussion of activities

Activity 8.4 ii: Our program for writing your name continuously
along a sine wave is given below:

 10 MODE4
 20 INPUT"Enter your name",A$
 30 CLS
 40 A$=A$+" "

109

 50 P=0
 60 FOR A=0 TO ?*PI STEP PI/l0
 70 P=P+1:IF P>LEN(A$) THEN P=1
 80 PROCchr(A*200,5l2+400*SIN(A),MID$(A$,P,1)
 ,0,10)
 90 NEXT A
100 END

Activity 8.8 iv: PROCpoint(-1,-1) gives a point off the graph
because the point is outside the range given in the call to
PROCscale.

110

9 Drawing graphs
9.0 Introduction
9.1 Data calculated by the program
9.2 Removal of the cursor from the final display
9.3 Activities
9.4 Data read from DATA statements
9.5 Titles and other labels
9.6 Activities
9.7 Data taken from the INPUT statement
9.8 Forcing the inclusion of the origin
9.9 Activities

9.0 Introduction

It is always useful to be able to display information graphically.
Graphs are more visually attractive than print. They get
information across more quickly and easily, and they make it
much easier to see trends. This chapter shows how to draw
graphs to display your own information. It relies on the
procedures which we have developed and which we assume that
you have now recorded: either by typing them in from Appendix

111

1 or as the ready-recorded tape. These procedures free you from
having to worry about programming such things as a suitable
range for the graph; scaling it to fit onto the screen; and drawing,
marking and labelling the axes. Your only concern will be to
program some lines to act as a 'driver' for our procedures and we
now go on to explain how to do this.

We shall illustrate three ways of feeding in data: getting the
computer to calculate the data from a formula, plus some starting
conditions; providing the data, as co-ordinates for each of the
points to be plotted; and from data entered at the time the
program is run.

9.1 Data calculated by the program

In this section we illustrate drawing a graph which gets the
computer to calculate the data from a formula and some starting
conditions. Our example is a graph to show the mortgage still
owing on a house as a function of year (see Screen Display 9.1).
The program is given in Listing 9.1. Apart from the lines which
define the procedure PROCgraph, and line I 70 which we explain
in the next section, the program is probably self-explanatory.
Line 10 sets the foreground and background colours. Then the
program is concerned with calculating values to fill two arrays
which hold the co-ordinates of the points to be plotted on the
graph. We decided, quite arbitrarily, to have 20 points on the
graph. So we dimensioned the arrays X() and YO to 20 in line 50
and we set the limit of the REPEAT...UNTIL loop to 'year' > 19 in
line 110. Lines 80 to 100 perform a calculation of the mortgage
still owing, assuming a starting capital of 10000 with an annual
interest rate of 15.5%. Once the program has written the values
of the co-ordinates of the points to be plotted into the arrays XO
and YO, and once X(0) has been given the number of the points,
line 140 calls PROCgraph. This itself calls on other procedures.
It consequently takes care of scaling the display to fit the screen,
drawing, graduating and numbering the axes and plotting the
points.

We hope and expect that, armed with this example, you will
be able to draw graphs to display data of your own. When you
come to do so, it may be worth bearing the following points in
mind. Firstly there are other ways of filling the arrays XO and
YO, and some may be more suitable than others for your
purpose. Secondly PRDCgraph has to be called by a line such
as:

112

100 PROCgraph

It expects to find arrays XO and YO which must have previously
been dimensioned with a line such as:

10 DIM X(20), Y(20)

where:

20 is the number of points to be plotted,
X(0) = number of points
X(1), X(2), etc are the x co-ordinates of points to be plotted
Y(1), Y(2), etc are the corresponding y co-ordinates.

9.2 Removal of the cursor from the final display

Since the existence of the cursor tends to spoil any graphical
display, the program of Listing 9.1 removes it to outside the
screen area once the graph is complete. It uses a VDU
statement to define that text should be written at the graphics
cursor. Then the graphics, and therefore the cursor, are moved
off the screen. Both operations are performed by the single line
170:

170 VDU5 :MOVE 0,1050 :END

9.3 Activities

i. Run the program of Listing 9.1. Does it behave as you expect?

ii. Now modify the program of Listing 9.1. Try changing such
things as the numbers of points, the rate of interest, the number
of years for repayment or the original mortgage.

iii. There are many examples of graphs for which data can be
calculated by the program. We hope that you will be able to use
our approach to produce a graph that is particularly useful for
you In some way.

9.4 Data read from DATA statements

In this section we show how to draw a graph for which you

113

supply the co-ordinates of the points directly, in DA T A
statements. Our example is a graph to show the variation of the
air temperature (in degrees Centigrade) according to time of day
(in hours) on 6th August 1982 (see Screen Display 9.2). The
program is given in Listing 9.2.

Screen Display 9.1

The program works in the following way. The data is stored
as a list of pairs of corresponding temperatures and times in the
DA TA statements. The number of pairs of points is the first item
of data. In line 30, the first item is read in. Then the X() and YO
arrays are dimensioned and the rest of the points read in. A
single call to PROCgraph in line 110 takes care of things like
scaling. In essence this procedure expects the x and y values for
all the points to be available for it in the arrays XO and YO. The
number of points to be plotted must be held in X(0). The program
draws the axes, graduates the axes and prints up the numerical
value corresponding to the ends of the axes. It plots the points
with an appropriate scaling factor. This means that virtually
whatever the range of the values supplied as the co-ordinates for
the points, they are suitably scaled for display. The colours for
the foreground and background are set in line 10.

114

 Listing 9.1

 10 MODE4:VDU19
,1,3;0;19,0,4;0

;

 20 mortgage=10
000

 30 interestrat
e=13.5

 40 monthpaymen
ts=120

 50 DIM X(20),Y
(20) :REM X()=

year count, Y()
=mortgage

 60 year=0

 70 REPEAT

 80 mortgage=
mortgage+intere

strate*mortgage
/100-12*

 monthpaym
ents

 90 year=year
+1

100 X(year)=y
ear :Y(year)=mo

rtgage

110 UNTIL year>
19 OR mortgage<

0

120
130 X(0)=year

140 PROCgraph

150 PROCnamex("
year")

160 PROCnamey("
mortgage owing"

)

170 VDU5 :MOVE
0,1050 :END

You can easily modify this program to display your own data.
You keep most of the program as it is and only have to modify
lines 130 and 140 which label the axes, and the data in the
DATA statements. It is best to put the DATA statements at the
end of the program. This has the advantage that you can enter
the data, then check and alter as necessary using the BBC
Microcomputer's excellent editing facilities. For example, we give
l6 as the number of pairs of points in the first item of data in line I
70, but you can of course choose to have a different number of
pairs of points.

9.5 Titles and other labels

You probably noticed that the title of the graph of Screen Display
9.2 is written with the line:

120 PRINT TAB(8,2);"AIR TEMPERATURE ON 6th
AUGUST"

115

Screen display 9.2 (first part)

This method of writing relies on the use of the TAB function in a
PRINT statement. The first value in the T AB function provides
the character position along the line at which printing should
start, the first character position being zero. The second gives
the line number, counting the first line at the top of the screen as
zero.

This method of writing can also be useful for labelling the
axes. You may like to experiment with it, as an alternative to
PROCnamex and PROCnamey. It always writes horizontally,
whereas PROCnamex and PROCnamey write along the axes.

You can also label graphs using PROCchr or
PROCmessage, as explained in Chapter 8. The large writing is
particularly suitable for titles.

116

Screen Display 9.2 (second part)

9.6 Activities

i. Run the program of Listing 9.2. Does it behave as you expect?

ii. Try using the TAB function method, instead of PROCnamex
and PROCnamey, to label the axes. Which method of naming
axes do you prefer? While experimenting with naming the axes,
you may like to try upper case letters and then lower case letters.
Graphics artists often feel passionately about which looks better
in which situation. Do you feel as strongly?

iii. Try using PROCchr or PROCmessage to give the display a
titie.

iv. Try altering the data in the DATA statements to modify
thedisplay.

117

 Listing 9.2

 10 MODE 4 :VDU
19,1,3;0;19,0,4

;0;

 20 DIM X(20),Y
(20)

 30 READ end

 40 X(0)=end

 50 N=0

 60 REPEAT

 70 N=N+1 :RE
AD X(N),Y(N)

 80 UNTIL N=end

 90
100 CLG

110 PROCgraph

120 PRINT TAB(8
,2);"AIR TEMPER

ATURE ON 6th AU
GUST"

130 PROCnamey("
air temperature

")

140 PROCnamex("
time of day")

150 VDU5 :MOVE0
,1100 :END

160
170 DATA 16,0,0

,24,0,5,14,7,13
.5,8,16,8.25,19

.5,9,21,

 11,24,13.75
,25.6

180 DATA 15.25,
26,16.75,24,17.

25,21.5,18,20,1
9,19.5,

 20,19.2,23,
18.5

9.7 Data taken from the INPUT statement

Our next example is a graph showing how some 'doom statistic'
such as 'population' or 'energy consumption' is increasing with
time, and the data is fed in using INPUT statements. This
produces the rather friendly-looking dialogue between the
computer and the user, and it is shown at the beginning of
Screen Display 9.3a. The rest of the screen display shows what
happens when a user feeds in the data which is underlined. This
underlining distinguishes what the user types in from what is
produced by the program of Listing 9.3a.

The program is essentially very simple. It starts in line l0 by
setting the foreground and background colours. Then in line 90,
it asks the user how many points are to be displayed. When this
is known, the arrays are dimensioned and the co-ordinates of the
points requested by line 120. PROCgraph is then called in line
180 to draw the graph.

118

Screen Display 9.3a (first part)

9.8 Forcing the inclusion of the origin

Screen Displays 9.3a and 9.3b both show graphs of how some
'doom statistic' such as 'population' or 'energy consumption' is
increasing with time. They both display the same data, but
Screen Display 9.3b does not include the origin of the y axis,
whereas Screen Display 9.3a does. The impacts of the two
displays are quite different. Screen Display 9.3a does indeed
seem to support the fact that doom is imminent, whereas Screen
Display 9.3b suggests that the 'doom statistic' is changing very
little.

119

Screen Display 9.3a (second part)

So for some purposes it is can be very important that one or both
axes start from zero, whereas for other purposes, it can be just
as important that they do not.

The simplest way to force the inclusion of the origin is to put
in one extra point which is the origin itself. This was done for
Screen Display 9.3b, as you can see from the initial dialogue,
where the co-ordinates of point 1, input as 1974,0, are
underlined.

120

Screen Display 9.3b

Activities

i. Modify the program of Listing 9.2 to include the origin on the
graph of the variation of temperature with time of day.

ii, It is very simple indeed to modify Listing 9.3 to make it suitable
for displaying something other than a 'doom statistic'. Modify
lines 190 and 200 so that the labelling of the axes is appropriate
for displaying other data of your choice.

121

 Listing 9.3

 10 MODE4:VDU19
,1,3;0;19,0,4;0

;

 20 PRINT ' "Th
is program will

 display the po
ints"

 30 PRINT ' "wh
ich you provide

 as co-ordinate
s, a"

 40 PRINT ' "po
int at a time.

When you are as
ked for"

 50 PRINT ' "th
e co-ordinates

of each point,
please"

 60 PRINT ' "ty
pe the X co-ord

inate first, th
en a"

 70 PRINT ' "co
mma, then the Y

 co-ordinate. T
hen"

 80 PRINT ' "pr
ess RETURN."

 90 INPUT ' ' '
 "How many poin

ts do you want
",N

100 DIM X(N),Y(
N)

110 FOR I=1 TO
N

120 PRINT ' "
Co-ordinates of

 point ";I;

130 INPUT X(I
),Y(I)

140 NEXT I

150 X(0)=N

160 CLG

170
180 PROCgraph

190 PROCnamex("
label for x axi

s") :REM Or alt
ernative

 label

200 PROCnamey("
label for y axi

s") :REM Or alt
ernative

 label

210 VDU5 :MOVE
0,1200 :END

122

10 Getting the best straight
line

10.0 Introduction
10.1 The equation of a straight line
10.2 The correlation coefficient
10,3 Using PROCbstln
10.4 Activities
10.3 Setting the accuracy of the equation and the
correlation coefficient
10.6 Activities

10.0 Introduction

It is often useful to plot points in such a way that they lie on a
straight line. There are several reasons for this. For example,
any predictions from a straight line: the line can be extended (or
extrapolated) beyond the range of the measurements, and in-

123

between values can be inserted (or interpolated).
When the points that you want to plot lie very close to a

straight line, it is not difficult to draw the line. The problem comes
when the points are scattered widely to either side of the line.
Then it is difficult to decide on the most appropriate orientation of
the line. In this chapter we help by providing a procedure
PROCbstln and showing how to use it.

As the next sections explain, PROCbstln does not only draw
the best straight line through a set of points. It also prints up
other relevant information.

10.1 The equation of a straight line

In practice PRDCbstln does more than merely drawing the best
straight line through any set of points which you provide. It also
prints up the equation of that line. This is always in the following
form, where m is the slope of the graph and c is the Intercept on
the Y axis:

Y = mX + c

The slope is positive if the line slopes from bottom left to top right
and negative if the line slopes from top left to bottom right. The
intercept on the Y axis is positive if the line cuts the Y axis above
the X axis and negative if the line cuts the Y axis below the X
axis.

10.2 The correlation coefficient

PROCbstln does not only print up the equation of the best
straight line. It also indicates how well the points fit a straight
line. It expresses this as the 'correlation coefficient'. The
magnitude of a correlation coefficient can be between 0 and I,
he. I if the fit is perfect and is 0 if the fit is non-existent. The sign
of a correlation coefficient indicates which way the line slopes.
Bottom left to top right is positive and top left to bottom right is
negative.

124

10.3 Using PROCbstln

In order to use PR0Cbstln, all you have to do is to develop some
'driver' lines and feed in your data. We shall illustrate with some
data about how the total fuel consumption of a car varies with
total mileage. From the point of view of the owner of the car, this
is the sort of relationship that is worth plotting, because it should
be more or less a straight line: the greater the mileage, the
correspondingly greater the fuel consumed. Any variation from a
straight line suggests that the car is not working as efficiently as
it might; and the magnitude of the slope gives the average fuel
consumption in miles per litre.

Screen Display 10.1 shows a graph of the mileometer
reading for a car against the number of litres of petrol put into it.
Listing 10.1 gives the program. You see that the data is fed in
and stored as data statements. Ours was originally taken from a
log book: The mileometer reading was recorded each time the
car was filled with petrol, as was the amount of petrol left in the
tank at the time of filling.

The program of Listing 10.1 is probably self-explanatory. it
sets the foreground and background colours for the display and it
uses PROCgraph, PROCnamex and PROCnamey, as explained
in Chapter 8. It expects the first item in the data to be the number
of sets of entries to follow. The arrays X(n) and Y(n) are then
dimensioned. Each set of data in the data list corresponds to the
figures collected each time the car is filled with petrol i.e. the
mileometer reading, the petrol put in and an estimate of how
much petrol was still in the tank at the time. As the petrol placed
in the tank at any one filling is for miles still to be travelled, while
the mileometer reading is for miles already travelled, the data for
the arrays X(n) and Y(n) have to be read out of step, as you can
see in line 50. Line 60 then sums the total petrol put in the tank,
while line 70 compensates for any petrol still left in the tank.
Errors in these measurements do not accumulate and, if
necessary, the estimate for the fuel left in the tank when filling up
can be kept at zero. This would give more scatter to the points
on the graph, but the overall slope should give the same fuel
consumption.

10.4 Activities

i. Run the program of Listing 10.1 and see if it behaves as you
expect.

125

Screen Display 10.1

ii. If you run a car, try recording your mileage each time you fill
up for petrol. Guess the petrol left in the tank at the time and
record the petrol put in. You will now be able to keep an accurate
track of how your car is performing. In recording this program,
you automatically store your previous petrol consumption figures
with it. So next time you fill up with petrol, you merely have to
load in your existing program and add to the data. Any changes
should be immediately obvious from the display.

iii. Modify the data for Listing 10.1 by neglecting the estimated
petrol remaining in the tank, i.e. setting it to zero fw all the data.
How does this affect the equation of the straight line and the
correlation coefficient?

126

 Listing 10.
1

 10 READ N

 20 DIM X(N+1),
Y(N)

 30 X(0)=N :X(1
)=0

 40 FOR I=1 TO
N

 50 READ Y(I)
,X(I+1),S

 60 X(I+1)=X(
I+1)+X(I)

 70 IF I>1 TH
EN X(I)=X(I)-S

 80 NEXT I

 90 MODE4:VDU19
,1,3;0;19,0,4;0

;

100 PROCgraph

110 PROCbstln

120 PROCnamex("
PETROL IN LITRE

S")

130 PROCnamey("
MILEOMETER READ

ING")

140 VDU5:MOVE0,
1050:END

150
160 DATA 9 ,841

40,30,0 ,84260,
20,10

 ,84442,25,
0 ,84612,30,0

170 DATA 84733,
20,13 ,84881,30

,3

 ,85060,30,
0 ,85231,30,3

180 DATA 85400,
30,2

10.5 Setting the accuracy of the equation and the correlation
coefficient

When PROCbst1n evaluates the equation of the best straight
line and the correlation coefficient, it prints them out, corrected to
two decimal places. We chose this accuracy quite arbitrarily to
prevent the equation looking too clumsy, but we have made
provision for you to alter it if you want. PROCbstln includes the
following statement at line 10870:

@%=&20204

It sets the number of decimal places to 2, but you can vary this
up to an accuracy of 9 significant figures, The number of decimal
places - currently 2 - is given by the third digit after the
ampersand &. If you increase this, you will accordingly have to
alter the space within which the number is printed. This space at
present set to 4 - is given by the last digit.

127

Screen display 10.2 (first part)

128

Screen Display 10.2 (second part)

10.6 Activities

Screen Display 10.2 shows the dialogue and screen display
produced by running the program of Listing 10.2. The data that
we, as users of the program have fed in, is underlined to
distinguish it from that part of the dialogue which comes from the
computer. This program is similar to that of Listing 10.1, except
that it allows data to be entered at the time the program is run.
Enter this program and run it. Then try going into PROCbst1n to
vary the accuracy with which the equation and correlation
coefficient are printed out.

129

 Listing 10.
2

 10 MODE4:VDU19
,1,3;0;19,0,4;0

;

 20 PRINT ' "Th
is program will

 draw the best"

 30 PRINT ' "st
raight line thr

ough a number o
f"

 40 PRINT ' "po
ints which you

provide as"

 50 PRINT ' "co
-ordinates. Whe

n you are asked
 for"

 60 PRINT ' "th
e co-ordinates

of each point,
please"

 70 PRINT ' "ty
pe the X co-ord

inate first, th
en a"

 80 PRINT ' "co
mma, then the Y

 co-ordinate. T
hen"

 90 PRINT ' "pr
ess RETURN."

100 INPUT ' ' '
 "How many poin

ts do you want
",N

110 DIM X(N),Y(
N)

120 FOR I=1 TO
N

130 PRINT ' "
Co-ordinates of

 point ";I;

140 INPUT X(I
),Y(I)

150 NEXT I

160 X(0)=N

170
180 CLG

190 PROCgraph

200 PROCbstln

210 VDU5 :MOVE
0,1100 :END

130

11 Displaying shapes of
functions

11.0 Introduction
11.1 Selecting a function for display
11.2 Using the function-drawing program
11.3 The operation of the program
11.4 Activities
11.5 Displaying two functions together
11.6 Activities
11.7 Discussion of activities

11.0 Introduction

In this chapter we provide and explain programs by which you
can display the shapes of functions. There are many situations
where it is useful to able to do this, perhaps to get some idea
whether a function doubles back on itself, or whether it reaches a
maximum or a minimum - and if so, where. In fact, a standard

131

method for solving simultaneous equations relies on the
technique of displaying the shapes of the functions concerned
and identifying where they coincide.

Screen Display 11.1

132

 Listing 11.
1

 10 MODE4 :VDU
19,0,4;0;19,1,3

;0;

 20 PRINT ' ' '
 ' '

 30 PRINT "This
 program will d

raw the shape"

 40 PRINT "prod
uced by any fun

ction, provided
"

 50 PRINT "it i
s expressed in

BASIC." '

 60 PRINT "Plea
se enter the fu

nction when you
"

 70 PRINT "see
the prompt Y="

 80 PRINT ' ' "
Press the space

 bar when you a
re"

 90 PRINT "read
y to begin." '

'

100 IF GET<>32
THEN 100

110 INPUT "Y="A
$

120 INPUT ' "Wh
at is the small

est value of X
",SX$

130 SX=EVAL(SX$
)

140 INPUT ' "Wh
at is the large

st value of X "
,LX$

150 LX=EVAL(LX$
)

160 INPUT ' "Ho
w many steps ",

step%

170 PRINT

180 VDU3

190
200 DIM X(step%

),Y(step%)

210
220 REM Work ou

t largest and s
mallest Y

230 X=SX:Y(1)=E
VAL(A$):Y(2)=Y(

1)

240 FOR X=SX TO
 LX STEP (LX-SX

)/step%

250 £Y=EVAL(A
$)

260 IFY(2)<£Y
 THEN Y(2)=£Y

270 IFY(1)>£Y
 THEN Y(1)=£Y

280 NEXTX

290 X(0)=2 :X(1
)=SX :X(2)=LX

300
310 CLG

320 PROCscale

330 PROCaxes

340 PROCgraduat
e

350 PROCnumber

360 PRINT TAB(1
0,1);"Y=";A$

370
380 REM Now dis

play graph

390 X=X(1):MOVE
 FN£CVX(X),FN£C

VY(EVAL(A$))

400 FOR X=X(1)
TO X(2) STEP (X

(2)-X(1))/step%

410 DRAW FN£C
VX(X),FN£CVY(EV

AL(A$))

420 NEXTX

430
440 VDU5 :MOVE

0,1100 :END

133

Even if you do not want to use our programs for any specific
purpose, you will find it fun just to experiment and see the
shapes that various functions produce. In doing so, you will also
be gaining some worthwhile mathematical insights.

11.1 Selecting a function for display

Our programs are suitable for displaying functions with two
variables. We arbitrarily call these X and Y, although they could
of course be called anything else. Such functions produce a
display in two dimensions. Our programs are not suitable for
displaying functions with more than two variables, because these
would need at least three dimensions.

In order to use our programs to display functions, you have
to feed in the function in the following form, where the dots
represent an expression which the computer can evaluate:

Y =

The Y must be alone on the left-hand side. This means that
expressions such as the following need some prior manipulation
before they are suitable:

2Y + sin X = 3
Y sin X = 5
6 cos X + Y sin X + tan X = 0

The expression for X can be as complex as you like, provided it
is written in terms that the computer can recognise and use, The
following are suitable examples:

Y =SIN(X/9)/SQR(X)
Y =SQR(X^2+45*X)
Y=EXP(-X/98.2)*SIN(X/41)

11.2 Using the function-drawing program

Before we discuss the program which draws the functions, you
may like to see what it can do. We shall take the following
function as an example, which - incidentally - is for damped
oscillatory motion:

Y =EXP(-X/98.2)* SIN(X/41)

134

Screen Display 11.1 shows the requests that the program makes
to the user: about the function required; about the smallest value
a f X and the largest value of X; and about the number of steps.
(Our example data is underlined to distinguish it from the part of
the dialogue which is due to the computer rather than to the
user.) Screen Display 11.1 also shows the resulting display for
the data which we provide. You could of course input other data
and get a very different display.

11.3 The operation of the program

Listing 11.1 gives the program responsible for Screen Display
11.1. As you are probably coming to expect, it relies on
PROCscale, PROCgraduate and PROCnumber. We do not use
PROCgraph on this occasion because PROCgraph plots each
point as a small + whereas we want a continuous curve. We use
the DRAW statement of BBC BASIC. However, by calling upon
PROCscale, we still take advantage of the automatic scaling
which so simplifies the programming. To convert from the X and
Y co-ordinates supplied by the program to the numbers required
when addressing the screen, we have included two functions
within PROCscale: FN£CVX and FN£CVY. At any place where
your program wishes to write to the screen, the scaling is done
automatically if, in place of X and Y, you use FN£CVX(X) and
FN£CVY(Y). Therefore line 390 draws the continuous curve by
repeated references to:

DRAW FN£CVX(X),FN£CVY(EVAL(A$))

The program starts with some PRINT statements about what it
can do, Once the function is entered, it is evaluated in response
to the statement EV AL in line 210, 230, 370 and 390. In case
this statement is unfamiliar to you, we now discuss it briefly.
Essentially the program requests the user to type in a valid
BASIC expression in a line such as:

110 INPUT"Y="A$

Suppose the user types in, say, 2*X+5 as response. The INPUT
statement then gives A$ this value. Suppose also that the next
line of the program uses A$ in an expression involving EVAL in
the following form:

135

Screen Display 11.2a (first part)

120 Y=EVAL(A$)

The result is identical to what would have happened if fines 110
and 120' had been replaced by:

110 Y=2*X+5

The use of EVAL, however, allows a different expression to be
entered every time the program is run. If you enter a function that
is impossible to evaluate, for example, one involving the square
root of a negative number, you will get an error message.

136

Screen Display 11.2a (second part)

The program next asks for the range of values of X for which to
display the equation. It then evaluates the smallest and largest
values of X and Y in the display, by working through all the
possible points that it will later plot. An error message can be
produced at this stage. It might be because the equation
produces too large a value for display or because of a division by
zero. It is impossible to check for these in advance.

The program may take some time to run, as it works out the
co-ordinates for each point twice: once to find the smallest and
largest and secondly to plot the points with an appropriate
scaling. Consequently the program may pause during execution.
The delay depends on the complexity of the calculation and the
number of points required. This number can be as small as 20
for a near straight line relationship, but should be more like 100
for a more complex curve.

137

 Listing 11.
2

 10 MODE4:VDU19
,0,4;0;19,1,3;0

;

 20 PRINT ' ' '
 ' '

 30 PRINT "This
 program will s

imultaneously"

 40 PRINT "disp
lay the shapes

produced by two
"

 50 PRINT "func
tions, provided

 that they are"

 60 PRINT "both
 expressed in B

ASIC." '

 70 PRINT "Plea
se enter each f

unction as you"

 80 PRINT "are
requested." '

 90 PRINT ' ' "
Press the space

 bar when you a
re"

100 PRINT "read
y to begin." '

'

110 IF GET<>32
THEN 110

120 PRINT "Now
enter the first

 function:" '

130 INPUT "Y="A
$

140 PRINT ' ' "
Now enter the s

econd function:
" '

150 INPUT "Y="B
$

160 INPUT ' "Wh
at is the small

est value of X
",SX$

170 SX=EVAL(SX$
)

180 INPUT ' "Wh
at is the large

st value of X "
,LX$

190 LX=EVAL(LX$
)

200 INPUT ' "Ho
w many steps",s

tep :step=(LX-S
X)/step

210
220 DIM X((LX-S

X)/step),Y((LX-
SX)/step)

230
240 REM Work ou

t largest and s
mallest Y

250 X=SX:Y(1)=E
VAL(A$):Y(2)=Y(

1)

260 FOR X=SX TO
 LX STEP step

270 £Y=EVAL(A
$) :£Z=EVAL(B$)

280 IFY(2)<£Y
 THEN Y(2)=£Y

290 IFY(2)<£Z
 THEN Y(2)=£Z

300 IFY(1)>£Y
 THEN Y(1)=£Y

310 IFY(1)>£Z
 THEN Y(1)=£Z

320 NEXTX

330 X(0)=2 :X(1
)=SX :X(2)=LX

340
350 MODE4:VDU19

,0,4;0;19,1,3;0
;

360 PROCscale

370 PROCaxes

380 PROCgraduat
e

390 PROCnumber

400 PRINT TAB(1
0,1);"Y=";A$

410 PRINT TAB(6
,2);"and Y=";B$

 P.T.O

138

 Listing 11
.2 continued

420 REM Now dis
play graph

430 X=X(1):MOVE
 FN£CVX(X),FN£C

VY(EVAL(A$))

440 FOR X=X(1)
TO X(2) STEP st

ep

450 DRAW FN£C
VX(X),FN£CVY(EV

AL(A$))

460 NEXTX

470
480 REM Now dis

play second gra
ph

490 X=X(1):MOVE
 FN£CVX(X),FN£C

VY(EVAL(B$))

500 FOR X=X(1)
TO X(2) STEP st

ep

510 DRAW FN£C
VX(X),FN£CVY(EV

AL(B$))

520 NEXTX

530
540 VDU5:MOVE0,

1050:END

11.4 Activities

i. Run the program of Listing 11.1 with various functions of your
own choosing.

ii. Experiment to see the effect of varying the smallest and
largest values of X and the number of steps.

iii. Purposely choose an expression which will result in a division
by zero to see the error message produced.

11.5 Displaying two functions together

It is often interesting to display two functions together. For
example, you can see where they coincide and hence solve
them as simultaneous equations. For viewing two functions on
the screen simultaneously, the automatic scaling has to take into
account the smallest and largest values of both functions over
the range of plotting. This means that you may have to put in
some thought when entering the functions. Otherwise the
automatic scaling may make one negligibly small compared with
the other, as it has to ensure that the composite fills the screen.

139

Screen Display 11.2 (first part)

In order to display two functions, the program of Listing 11.1 is
extended and is given as Listing 11.2. Screen Display ll.2a
shows the result for plotting the following two functions: and

Y=EXP(X/40)*COS(X/2)

and

Y=2+C0S(X/2)

You can more precisely identify the point where the two graphs
intersect by reducing the range of value is of X for the screen
display. We illustrate with Screen Display ll.2b. The functions are
the same, but, as you will see from the dialogue between the
program and the person running it, the plot is over a smaller
range of values for X.

140

11.6 Activities

i. Use the method of plotting two functions together to solve the
following simultaneous equations.

Y = SIN(X)
Y = TAN(X)

Do you get an error message? If so, why might this be? (See
Section 1.7.)

ii. Experiment with the range of X values and see how precisely
you can get the solution.

iii. Choose some more pairs of functions and solve them as
simultaneous equations.

141

11.7 Discussion of activities

Activity 11.6 i: You might get an error message because TAN(X)
goes to infinity if the range of values is not wisely chosen.

142

12 Drawing histograms
12.0 Introduction
12.1 Drawing a simple histogram
12.2 Activities
12.3 Labelling the bars
12.4 Activities
12,5 Drawing solid-looking histograms
12.6 Activities
12.7 Drawing two histograms together
12.8 Activities

12.0 introduction

Histograms provide a simple and dramatic way of displaying the
relative frequencies with which events or items occur. In this
chapter we show how to draw various types of histograms to
display data. The programs rely on one of two procedures:
PROChisto and PROC3Dhisto, which are two more of the
procedures which we provides for you. PROChisto which draws
up bars with suitable height and spacing for the data you supply
and PROC3Dhisto which does the same, except that the bars

143

are drawn with a mock perspective to give a three dimensional
'tower' effect. You must use the procedures with PROCscale so
that your display automatically fits nicely onto the screen, and
you can also optionally call on PRDCnamex, PROCnamey,
PR0Cgraduate and PROC1abei. Like all our other procedures,
PROChisto and PROC3Dhisto are listed in Appendix I and are
also available, ready-recorded, on cassette tape.

12.1 Drawing a simple histogram

A histogram shows the relative frequencies with which various
events or items occur. Examples could be the numbers of cars,
lorries, bicycles and pedestrians passing a road junction
between certain hours; or the number of calories in different
types of food. As an illustration, Screen Display 12.1 shows such
a histogram for the cost of a holiday in an English resort,
according to times of year. The histogram makes it is obvious at
a glance that summer is the most expensive time, and that winter
is the cheapest.

Listing 12.1 gives the program which produces Screen
Display 12.1. It breaks naturally into three parts, namely: the
input section to tell the computer how many bars are to be drawn
and the frequencies that they are to represent; the scaling and
axes-drawing section; and the histogram-drawing section, which
uses the data and appropriate scaling to produce the display.
The data could have been inputted in several ways. We chose to
use the INPUT statement because it is a convenient and quick
way of getting data into the program and allows a rapid
presentation of any data in histogram form. (For displays which
are to be recorded for later display, DAT A statements are
preferable, as illustrated in our later examples.) The sections
which call on PROCscale, draw the axes and draw the histogram
are self-evident, because they rely on the procedures which we
provide.

12.2 Activities

iRun the program of Listing 12.1 and input some data of your
choice.

144

Screen Display 12.1 (first part)

145

Screen Display 12.1 (second part)

12.3 Labelling the bars

It is possible to label the bars of a histogram, but it is rather time-
consuming because it involves a certain amount of trial, error
and experiment. You will almost certainly only want to bother for
a permanent display, in which case you will want to put in the
data using DATA statements. Listing 12.2 and Screen Display
12.2 illustrate such a histogram. Several options are available for
labelling the bars. For example, you can use the TAB function,
as explained in Section 9.5; or you can issue the command
VDU5 which makes all the printing which follows at a position
dictated by the current graphics cursor. To print starting at the
centre of the screen use:

VDU 5
MOVE 640,512
PRINT "message"

In Listing 12.2 we use the VDU5 statement as it is perhaps the
simplest for you to modify for your own purpose.

146

 10 MODE1 :VDU19,0,4;0;19,3,3;0;

 20 PRINT ' "This program will draw a histogram"

 30 PRINT ' "from data which you supply. When"

 40 PRINT ' "requested, please enter how many bars"

 50 PRINT ' "you require and the frequency or"

 60 PRINT ' "quantity that each bar should represent."

 70 PRINT ' ' "Press the space bar when you are"

 80 PRINT ' "ready to begin."

 90 G=GET :IF G<>32 THEN 90

100 INPUT ' ' "How many bars do you require",B

110 DIM X(B+1),Y(B+1)

120
130 FOR I%=1 TO B

140 PRINT ' "What frequency for bar ";I%;" ";

150 INPUT Y(I%) :X(I%)=I%

160 NEXT I%

170
180 X(0)=B+1:Y(B+1)=0 :`IN=1

190
200 CLG

210 VDU19,0,4;0; :REM change colours for bars

220 VDU19,2,1;0;

230 VDU19,3,7;0;

240 VDU19,1,2;0;

250
260 PROCscale

270 PROChisto

280 GCOL0,3

290 PROCaxes

300 PROCgraduate

310 PROCnumber

320 PROCnamex("categories")

330 PROCnamey("frequency")

340
350 VDU5:MOVE2000,2000:END

147

Screen Display 12.2

12.4 Activities

Run Listing12.2 with some items of your own and experiment to
get the best positioning for the labels of the categories.

12.5 Drawing solid-looking histograms

Histograms can look particularly impressive if the bars are
separated and appear to have depth. Such a histogram is
demonstrated in Screen Display 12.3 which shows the numbers
of students passing a certain exam during the years from 1970 to
1983. The dip around 1976 represents a fall in popularity of the
subject. Listing 12.3 gives the program for the Screen Display.

148

 Listing 12.2

 10 DATA 4

 20 DATA 2,3,4,1

 30 RESTORE :READ B

 40 DIM X(B+1),Y(B+1)

 50
 60 X(0)=B+1:Y(B+1)=0 :`IN=1

 70 MODE 1

 80
 90 FOR I=1 TO X(0)-1

100 READ Y(I) :X(I)=I*`IN

110 NEXT I

120
130
140 VDU19,0,4;0; :REM change

 colours for bars

150 VDU19,2,1;0;

160 VDU19,3,7;0;

170 VDU19,1,2;0;

180
190 PROCscale

200 PROChisto

210 GCOL0,3

220 PROCaxes

230 PROCgraduate

240 PROCnumber

250 PROCnamex("items")

260 PROCnamey("frequency")

270 VDU5:MOVE160,200:PRINT"item 1

 item 2 item 3 item 4"

280
290 VDU5:MOVE2000,2000:END

12.6 Activities

i. Run the program of Listing 12.3, using your own data.

149

Screen Display 12.3

12.7 Drawing two histograms together

You can display the histograms for two sets of data together, so
making it easier to compare and contrast them. The technique
lends itself particularly to the separate-column, solid-looking type
of display, of the previous section. Screen Display 12.4 illustrates
the effect. The front bars show the frequency with which various
heights occurred amongst female students and the back bars
show the corresponding frequencies for the male students. The
contrast is obvious at a glance and easily compensates for the
greater difficulty in reading the heights from the scales.

The program, which is given in Listing 12.4, requires only
slight modification from that of Listing 12.3. It uses a
FOR...NEXT loop between lines 110 and 250. The origin of the
graphics co-ordinates is reset between the two loops, using a
VDU2 9,X;Y; command in line 160. This forces the origin for the
rest of the graphics to be displaced to the point X,Y, so placing
one set of bars slightly above and to the right of the other. This
makes the second set of bars appear behind the first. As the
second set of bars are drawn after and in front of the first, they

150

hide the parts of the first which should be out of sight.

 Listing 12.
3

 10 DATA 14

 20 DATA 170,16
5,160,158,130,1

05,98

 30 DATA 97,102
,105,110,115,10

8,117

 40 RESTORE :RE
AD B

 50 DIM X(B+1),
Y(B+1)

 60
 70 X(0)=B+1:Y(

B+1)=0 :`IN=1

 80 MODE 1

 90
100 FOR I=1 TO

X(0)-1

110 READ Y(I)
 :X(I)=I*`IN

120 NEXT I

130
140
150 VDU19,0,4;0

; :REM change c
olours

 for bars

160 VDU19,2,1;0
;

170 VDU19,3,7;0
;

180 VDU19,1,2;0
;

190
200 PROCscale

210 PROC3Dhisto
(1)

220 GCOL0,3

230 PROCaxes

240 PROCgraduat
e

250 PROCnumber

260 PROCnamex("
year from 1970"

)

270 PROCnamey("
number")

280
290 VDU5:MOVE20

00,2000:END

151

Screen Display 12.4

12.8 Activities

i. Run the program of Listing 12.4 with your own data.

ii. Try altering the VDU29;X;Y; statement to shift the
displacement of one set of bars behind the other.

152

 Listing 12.
4

 10 DATA 14

 20 DATA 1,1,2,
3,4,7,8,10,9,7,

6,3,2,1

 30 DATA 1,3,5,
8,9,9,8,6,2,2,1

,1,0,0

 40 RESTORE :RE
AD B

 50 DIM X(B+1),
Y(B+1)

 60
 70 X(0)=B+1:Y(

B+1)=0 :`IN=2

 80 X(B+1)=134

 90 MODE 1

100
110 FOR G=1 TO

0 STEP -1

120 FOR I=1 T
O X(0)-1

130 READ Y(
I) :X(I)=I*`IN+

134

140 NEXT I

150

160 VDU 29,G*
64;G*32;

170

180 VDU19,0,4
;0; :REM change

 colours

 for bars

190 VDU19,2,1
;0;

200 VDU19,3,7
;0;

210 VDU19,1,2
;0;

220

230 IF G=1 TH
EN PROCscale

240 PROC3Dhis
to(2-G)

250 NEXT G

260 GCOL0,3

270 PROCaxes

280 PROCgraduat
e

290 PROCnumber

300 PROCnamey("
frequency")

310 PROCnamex("
height (cm)")

320
330 VDU5:MOVE20

00,2000:END

153

13 Drawing pie charts
13.0 Introduction
13.1 Drawing a pie chart
13.2 Activities
13.3 Storing a pie chart
13.4 Activities

13.0 Introduction

A pie chart is a display which shows the relative amounts of
things which make up a whole. The whole is represented by a
complete circle, and each of the other quantities is represented
by a segment of the circle. With a pie chart, it is easy to see
proportions at a glance - something which is not so easy from a
table of numbers.

154

This program will draw a pie chart

from data which you supply. When

requested, please enter the radius of

the pie chart, the co-ordinates of the

centre of the pie chart (as X,Y), the

number of segments, the value that each

segment is to represent and how each is

is to be labelled.

Radius of pie chart ?300

Centre of pie chart X,Y ?700,512

Number of segments ?6

Size of segement 1 ?399

Label for segment 1?Model B

Size of segment 2 ?105

Label for segment 2?Disk interface

Size of segment 3 ?295

Label for segment 3?Disk drives

Size of segment 4 ?280

Label for segment 4?Monitor

Size of segment 5 ?350

Label for segment 5?Printer

Size of segment 6 ?71

Label for segment 6?Misc

Screen Display 13.1 (first part)

155

Screen Display 13.1 (second part)

This chapter shows how to draw pie charts. The programs
rely on PROCpie which is one of the procedures which we
provide. It draws a pie chart from data which you supply and of a
size and positioning which you dictate. Like our other procedures
PROCpie is given in Appendix I and is also available ready-
recorded on cassette tape.

13.1 Drawing a pie chart

Screen Display 13.1 shows a pie chart for how a person might
chose to divide up £1500 when buying a computer system. As a
list, the figures are:

Model B BBC Computer £399
Disk interface £105
Disk drives £295
Colour monitor £280
Printer £350
Miscellaneous £71

TOTAL £1500

156

 Listing 13.
1

 10 MODE7

 20 PRINT ' "Th
is program will

 draw a pie cha
rt"

 30 PRINT ' "fr
om data which y

ou supply. When
"

 40 PRINT ' "re
quested, please

 enter the radi
us of"

 50 PRINT ' "th
e pie chart, th

e co-ordinates
of the"

 60 PRINT ' "ce
ntre of the pie

 chart (as X,Y)
, the"

 70 PRINT ' "nu
mber of segment

s, the value th
at each"

 80 PRINT ' "se
gment is to rep

resent and how
each is"

 90 PRINT ' "is
 to be labelled

."

100 INPUT ' ' "
Radius of pie c

hart ",RA

110 INPUT ' "Ce
ntre of pie cha

rt X,Y ",XP,YP

120 INPUT ' "Nu
mber of segment

s ",£NS

130 DIM £S(£NS)
,£N$(£NS)

140 £TO=0

150 FOR I=1 TO
£NS

160 PRINT ' "
Size of segment

 ";I;" ";

170 INPUT £S(
I)

180 £TO=£TO+£
S(I)

190 PRINT ' "
Label for segme

nt ";I;

200 INPUT £N$
(I)

210 NEXT I

220 MODE 1 :VDU
19,0,4;0; :REM

MODE 5 for Mode
l A

230 PROCpie(RA,
XP,YP,£TO)

240 PROClabel(R
A,XP,YP,£TO)

250 VDU5 :MOVE
2000,2000 :END

Compared with this list, you will probably agree that the division
of resources is more obvious at a glance from Screen Display
13.1.

Listing 13.1 gives the program for producing Screen Display
13.1. Lines 100 and 110 ask the user for the radius and centre of
the required pie chart. This data is fed in via INPUT statements
which provide for a dialogue between the computer and a user.
(Our data is underlined to distinguish it from the computer's part
of the dialogue. You could of course input yours instead of ours.)
When you come to do so, we suggest that you identify the centre
of the pie chart with addressable points around 600, 500, and
that you choose a radius of something less than 400. All of these
measurements are in screen co-ordinates, as measured in
addressable points (see Section 1,4), The rest of the program
relies on PROCpie which takes care of drawing the display.

157

Screen Display 13,2

13.2 Activities

i. Run the program of Listing 13.1 using your own data. ii. Draw
several pie charts, each one at a different position on the screen
and with a different radius.

iii. Can you accommodate a long sector name by specifying a
new centre to move the pie chart sideways?

13.3 Storing a pie chart

When the data is fed in as INPUT statements, the resulting pie
chart cannot easily be stored. You may therefore prefer to use
DATA statements instead. Not only do they allow for easy
storage, they are also easy to edit. Furthermore this means of
programming makes it easier for you to add your own extras to
the display. You could, for example, put in a title.

158

 Listing 13.
2

 10 DATA 350,56
0,512

 20 DATA 4

 30 DATA 131,"E
ngland"

 40 DATA 21,"Wa
les"

 50 DATA 79,"Sc
otland"

 60 DATA 14,"N.
Ireland"

 80 READ RA

 90 READ XP,YP

100 READ £NS

110 DIM £S(£NS)
,£N$(£NS)

120 £TO=0

130 FOR I=1 TO
£NS

140 READ £S(I
)

150 £TO=£TO+£
S(I)

160 READ £N$(
I)

170 NEXT I

180 MODE 1 :VDU
19,0,4;0; :REM

 MODE 5 for
Model A

190 PROCpie(RA,
XP,YP,£TO)

200 VDU5 :MOVE
2000,2000 :END

Screen Display 15.2 shows the relative areas of parts of the
United Kingdom using the following data:

England 131000 square kilometres
Wales 21000 square kilometres
Scotland 79000 square kilometres
N.Ireland 14000 square kilometres

The data is stored in DATA statements and the complete
program is given in Listing 13.2. This program works in the same
way as that for Listing 13.1, apart from how the data is fed in.
With this sort of program, you can load it, and keep editing and
experimenting until you are completely satisfied with the display.

159

13.4 Activities

i. Run the program of Listing 13,2 using some data of your own.
ii. Experiment with the positioning and labelling until you are
satisfied with the result.

160

14 Displaying statistics
14.0 Introduction
14.1 Some statistical terms
14.2 The statistics program
14.3 Activities

14.0 Introduction

Statistics is the mathematical treatment of sets of data. In this
chapter we deal with the simple statistics of a set of
measurements which might be expected to be randomly
distributed around a steady or mean value. The measurements
could be the weights or heights of a group of people; or the exam
marks of a class.

The program in this chapter displays such sets of data. It
also calculates and displays the mean of the measurements,
their standard deviation and the standard error on the mean.
Then it superimposes the shape of a normal (or Gaussian)
distribution with the same standard error, so that you can decide
whether your data follows the standard distribution closely
enough for your purpose.

161

14.1 Some statistical terms

Our statistics program calculates and prints the mean of a set of
measurements, their standard deviation and the standard error
on the mean. The meanings of these terms are as follows:

The mean of a set of measurements is given by the

following formula where means 'sum of':

x n
Σ

x n
Σ= x

The standard deviation a- is given by the following formula:

σ = Σ
n – 1
(–)xx 2

The standard error on the mean is given by:

σ =
nx

σ

The normal or Gaussian distribution has the following formula:

(–)xx 2

σ
y =

(2π)
1 exp

–
2σ 2

It can be recognised by its characteristic bell-shaped curve which
is symmetrical about the mean.

14.2 The statistics program

The statistics program is given in Listing 14.1. Screen Display
14.1 is typical of what it can do. The measurements are for the
percentage alcohol in home made wines. They were collected
over a number of years from members of an evening class on
wine making, and total 56 measurements. All the members were
making the same wine to the same recipe, so variations could be
expected to be randomly distributed about a mean or a fixed
value.

As Screen Display 14.1 shows, the distribution does not
follow the normal (or Gaussian) distribution because it is not bell-
shaped and symmetrical about the mean. Possibly some of the
wines did not ferment to completion whereas the majority did.
The majority should therefore be close to the maximum possible
value while the others tail down to zero. The mean of the

162

measurements, the standard deviation and the standard error on
the mean are all printed on the screen.

The listing is a little longer than those that you will have
come to expect. This is because the lines which work out the
mean, the standard deviation and the standard error on the
mean are in the program, rather than in a separate procedure.

The program stores the information in the form of OAT A
statements. This is important, for in such a program these may
be very many items. These must be in a form which can easily
be checked and edited. For Screen Display 14.1, there are 56
items in the DATA statements, and such a large number is
bound to need careful checking for accurate transcription.

The program lines between 110 and 160 calculate the sum
of the data in preparation for lines 210 to 260 which calculate the
mean and the standard deviation and line 690 which calculates
the standard error on the mean from the formulae given in
Section 14.1. Line 290 then dimensions the X and Y arrays while
310 calls on PROCscale. When doing so, it uses just two points
corresponding to the maximum and minimum data items. This
sets up the scaling and allows lines 320 and 330 to arrange that
the bars of the histogram fit in neatly with the graduations along
the axes. These lines arrange that there will be at least 5 bars
and not more than 15. If you do not like these limits, you can
alter them accordingly.

Lines 350 to 380 assign the X co-ordinates for the histogram
bars. With the number of bars set up and the co-ordinates of the
bars calculated, the next task is to find the frequencies with
which the data items fit the bar categories. This is what lines 410
to 460 do.

One further call to PROCsca1e at line 500 allows the scaling
to be set up in the Y direction, that in the X direction remaining
unchanged. A call to PROChisto draws up the bars and
PROCaxes, PROCgraduate and PROCnumber put in the axes
and scales.

Finally the normal distribution is drawn using the XOR
method of plotting, set up by GCOL3,1 in line 560. Lines 580 to
600 then calculate 100 points along the normal distribution
function and plot them using the DRAW statement.

14.3 Activities

i. Run the program of Listing 14.1 using your own data.

163

ii. Save the program, retrieve it and edit it in some way.

Screen Display 14.1

14.4 Superimposing alternative distributions

You may like to compare your distribution with some distribution
other than the normal, Gaussian distribution - perhaps with the
Poisson distribution or the Binomial distribution. You can easily
do so by modifying lines 570 and 590 of Listing 14.1 which
calculate and display the shape of the normal, Gaussian
distribution with the same standard error. The formula for the
Gaussian distribution is given in Section 14.1. In BASIC the right-
hand side becomes:

K*EXP(-(X-MEN)*(X-MEN)/(2*SI*SI)/SI

This is used in lines 570 and 590, and you can easily replace it
with an expression for another distribution.

164

 Listing 14.
1

 10 REM Read in
 data

 20 DATA 56

 30 DATA 12,12.
2,11,11.3,13,11

.2,9.8,8.3,11.6
,12.3,8.2

 40 DATA 11.3,1
1.7,10.5,10.3,1

1.8,9.8,12,11.1
,10.1,12

 50 DATA 8.5,8.
9,9.3,9.9,11,9.

2,10.5,11.3,9.8
,10.8,11

 60 DATA 11.9,7
.8,12.5,10.5,10

.3,9.4,11.6,11.
3,11.2,12.1

 70 DATA 8.9,9.
5,10.2,10.6,10.

9,9.0,11.5,11.6
,11.9

 80 DATA 7,7,9.
5,10.5,11.9

 90 READ NUM

100 READ SM :LA
R=SM :tot=SM

110 FOR I=2 TO
NUM

120 READ V

130 IF V<SM T
HEN SM=V

140 IF V>LAR
THEN LAR=V

150 tot=tot+V

160 NEXT I

170
180 REM Calcula

te the MEan and
 SIgma

190
200 RESTORE 30

210 MEN=tot/NUM
 :SI=0

220 FOR I=1 TO
NUM

230 READ V

240 SI=SI+(V-
MEN)^2

250 NEXT I

260 SI=SQR(SI/(
NUM-1))

270
280 REM scaling

 for x range

290 DIM X(17),Y
(17)

300 X(0)=2 :X(1
)=SM :X(2)=LAR

:Y(1)=SM :Y(2)=
LAR

310 PROCscale

320 D=£LH-£LL :
IF D<5 THEN D=D

*2

330 IF D>15 THE
N D=INT(D/2)

340
350 FOR I=1 TO

D

360 X(I)=£SX+
(£LX-£SX)*I/D

370 Y(I)=0

380 NEXT I

390

P.T.O.

165

 Listing 14.
1 continued

400 MAXY=0 :RES
TORE 30

410 FOR I=1 TO
NUM

420 READ V

430 X=(V-£SX)
*D/(£LX-£SX)+1

440 Y(X)=Y(X)
+1

450 IF Y(X)>M
AXY THEN MAXY=Y

(X)

460 NEXT I

470
480 X(0)=D+1 :X

(D+1)=£SX

490 REM rescale
 for y

500 PROCscale

510
520 MODE4:VDU19

,0,4;0;19,1,3;0
;

530 X(0)=D+1

540 £IN=(£LX-£S
X)/D

550 PROChisto

560 GCOL3,1

570 MOVE FN£CVX
(£SX),FN£CVY(7*

EXP(-(£SX-MEN)*

 (£SX-MEN)/(
2*SI*SI))/SI)

580 FOR X=£SX T
O £LX STEP (£LX

-£SX)/100

590 DRAW FN£C
VX(X),FN£CVY(1.

4*MAXY*EXP(-(X-
MEN)*

 (X-MEN)/(
2*SI*SI))/SI)

600 NEXT X

610 GCOL0,3

620 PROCaxes

630 PROCgraduat
e

640 PROCnumber

650 PROCnamex("
percentage alco

hol")

660 PROCnamey("
frequency")

670 @%=&20204 :
PRINT TAB(5,0);

"mean = ";MEN

680 PRINT TAB(5
,1);"standard d

eviation = ";SI

690 PRINT TAB(5
,2);"standard e

rror = ";SI/SQR
(NUM)

700
710 VDU5:MOVE20

00,2000:END

720 END

166

15 Using Teletext graphics
15.0 Introduction
15.1 Writing in colour
15.2 Colouring the background of a single line of
text
15.3 Flashing text
15.4 Making double height characters
15.5 Activities
15.6 Block graphics
15.7 Getting continuity when changing colour
15.8 Composite figures
15.9 Activities
15.10 Using the procedures with Teletext
15.11 Error messages with Teletext graphics
programming
15.12 Activities
15.13 Discussion of activities

15.0 Introduction

Normally in mode 7, the mode in which the computer first turns
on, you can only display black and white text. This chapter

167

explains how to get the full range of eight ordinary colours and
eight flashing colours for text and graphics using Teletext
facilities. These facilities are only available in mode 7 and are as
used by television's Ceefax and Oracle. The method by which
the colours are written to the screen is completely different from
the other modes, and the amount of memory taken up by the
screen display is only 1K. This contrasts with the l0K taken up by
modes 4 or 5 and means that more memory is available for
sophisticated programs - which is especially important with a
Model A BBC Microcomputer.

The appearance of Teletext graphics is somewhat coarser
than in Activity l5.9i: The new line appears as block graphics
because, at its beginning, there is a code for block graphics.
Although this is invisible, it is also copied.t it for dramatic effects,
especially as the full range of colours is available,

Teletext facilities have to be turned on a line at a time. As
this makes text as well as graphics programming very different
from that in other modes, we shall deal with both in this chapter.

15.1 Writing in colour

Mode 7 provides a Teletext screen display of 25 lines with 40
characters to a line. To get colour on any one line, you need to
print a character, called a control character, on that line. Each
control character occupies one character position on the line but
appears blank, ie as the screen's background colour. All the text
to the right of the control character is affected by the control
character; all the text to the left of the control character is not.
The control character affects only the one line on which it is
placed.

A control character can be inserted into a line using the
PRINT statement. Table 15.1 gives the possible colour control
codes for text. For example, suppose you want a display on the
screen consisting of the single line:

White Green Blue

Suppose that you also want each word to be in the same colour
as its name. The following program achieves this using the
appropriate cotour control codes from Table 13.1:

168

10 MODE 7
20 PRINT "White";CHR$(l30); "Green";CHR$(l32);"Blue"
30 END

The colour code for white, ie 135, is the default control code. So
you do not have to give a control code before "White" in the
above line 20.

129 red text
130 green text
131 yellow text
132 blue text
133 magenta text
134 cyan text
135 white text

Table 15.1 Colour control codes for Teletext text

15.2 Colouring the background of a single line of text

You can set the background colour for each individual line of
text. The instruction is the same as for text, except that you need
two control characters, the first to control the colour and the
second to specify that it is for the background. The following
control characters change the colour of the background.

156 changes the background to black
157 changes the background colour to that for the
preceding colour control code

For example, the following instruction sets a green background:

PRINT CHR$(130);CHR$(l57)

15.3 Flashing text

You can get a very dramatic effect by making some of your text
characters flash. You need the control code 136 which causes
everything following it to flash between the foreground and
background colours. You can turn off the flashing with code 137.
For example, when the following line is executed, the word
'Flashing' flashes between red and black, while the word 'Steady'
is printed in red and does not flash:

169

100 PRINT CHR$(l36);CHR$(l2 9);"Flashing"; CHR$(137);
"Steady "

15.4 Making double height characters

You can also get dramatic effects by doubling the height of
Teletext text. This feature is achieved using two screen lines for
every line of text: one for the top half of the text and the other for
the bottom half. The doubling is turned on by code 141 and off
by code 140. For example the following two lines of program
print the message Double Height in characters twice the height
of normal characters.

100 PRINT CHR$(141);"Double Height"
110 PRINT CHR$(141);"Double Height"

The following two lines of program produce the message Double
Height in large letters next to the message Normal Height in
normal sized letters:

100 PRINT CHR$(l4l);"Double Height";CHR$(l40); "Normal
Height"
110 PRINT CHR$(l4l);"Double Height"

15.5 Activities

i. Enter the following and observe what happens:

10 MODE7
20 PRINTT AB(0,4);CHR$l3l;CHR$l4l;5TRING$(5,"
Hello")
30 F0RI=0TO33
40 PRINTTAB(I,5);CHR$l3l;CHR$l4l;"Hello"
50 FORTT=11TO400:NEXTT
60 NEXTI

ii. Can you explain why the double height HELLO only appears
correctly on the screen some of the time? (See Section l5.13.)

170

145 red graphics
146 green graphics
147 yellow graphics
148 blue graphics
149 magenta graphics
150 cyan graphics
151 white graphics

Table 15.2 Colour control codes for Teletext graphics

15.6 Block graphics

You can get block graphics in a similar way to getting coloured
text. You need the codes given in Table 15.2. The blocks of
graphics all occupy one of the areas on the screen originally
reserved for a letter, but any line starting with a code between
145 and 151 will no longer display lower case letters. In their
place graphics characters appear. Although these codes cause
lower case (small) letters, numbers and punctuation marks to
appear as block graphics characters, upper case (capital) letters
are unaffected. For example, in the first of the following two
program lines, the code 131 causes yellow numbers to be
printed. In the second line of program, the code 147 causes the
printing to come out as yellow block graphics.

100 PRINT CHR$(131);"1234567890"
110 PRINT CHR$(147);"1234567B90"

Each graphics character is made up of small blobs, vertically
and 2 horizontally. Thus a wide variety of block graphics
characters are available, depending on which of the blobs are lit
up. Table 15.3 gives the different types of block graphics which
are available and their corresponding codes.

While using block graphics, you can get an attractive effect
with control code 154, in conjunction with CHR$(l47). This
causes each block of graphics to be reduced in size, for example
making a continuous line appear as a series of disconnected
dots. Code 153 turns off the effect, This is particularly suitable for
displaying curves and lines, as they appear less clumsy and of
better resolution with the smaller sized blocks.

Double height block graphics can be obtained in the same
way as with text, using the code 141.

171

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Table 15.3 Teletext block graphics

15.7 Getting continuity when changing colour

If, on one line, while printing a series of the same characters you
change the colour, or height or some other characteristic, you
normally get a space where the control character goes. This can
spoil a graphics display. The problem may be solved by placing

172

control code 158 to the left of the characters. Spaces for control
codes will now be occupied with the previous character. This
technique allows continuous graphics displays, even where the
colours change. Code 159 turns the effect off. For example, the
following line causes a display of three red blocks, followed
directly by 1 green block. No blank spaces can be seen, even
though there is a change of colour caused by the code 146.

100 PRINT CHR$(145);CHR$(255);CHR$(l58);
CHR$(146);CHR$(255)

This is in contrast with the effect produced by the following lines
which display a single red block followed by a space, where code
146 is stored, followed by a green block:

110 PRINT CHR$(145);CHR$(255);CHR$(146);
CHR$(255)

Lines 100 and 110 may be put together to show both continuous
and normal graphics on consecutive lines.

15.8 Composite figures

There are no user-definable characters in the Teletext mode.
These are confined to the other graphics modes. However you
can build up very satisfactory shapes by combining the block
graphics shown in Table 15.4. You can place several characters
together on a line merely by printing them together. For example,
the following line of program produces the printout shown in
Figure 15.1:

50 PRINT CHR$(l49);"xyz"

You can make a composite figure on more than one line using
the principles described for composite characters in other
modes. These are in Section 4.6. Table 4.1 gives the appropriate
codes. For your convenience, it is duplicated here as Table 15.4,

Figure 15.1. The result of PRINT CHR$(149)"xyz".

173

Screen Display 15.1

ASCII code result
08 move backwards one space
09 move forward one space
10 move down one line
11 move up one line

Table 15.4 Cursor control codes

When writing a number of control codes, it is normally easier to
use the VDU method whereby any VDU may be followed by as
many codes as required. These codes may include character
codes. For normal letters and numbers, the codes are the ASCII
codes (see Appendix 3).

174

 Listing 15.1

 10 MODE7

 20 PROCclg(4,3
)

 30 mortgage=10
000

 40 interestrat
e=13.5

 50 monthpaymen
ts=120

 60 DIM X(20),Y
(20) :REM X()=

year count,

 Y()=mortgag
e

 70 year=0

 80 REPEAT

 90 mortgage=mo
rtgage+interest

rate*mortgage/

 100-12*mont
hpayments

100 year=year+1

110 X(year)=yea
r :Y(year)=mort

gage

120 UNTIL year>
19 OR mortgage<

0

130
140 X(0)=year

150 PROCgraph

160 PROCnamex("
year")

170 PROCnamey("
mortgage owing"

)

180 REPEAT UNTI
L 1=2

Figure 15.2 illustrates the sort of composite figure that can
be constructed using Teletext graphics.

Figure 15.2. A composite figure consisting of Teletext
block graphics.

175

This program will display the points

you provide as co-ordinates, a

pair at a time. When you are asked for

the co-ordinates of each point, please

type the X co-ordinate first, then a

comma, then the Y co-ordinate. Then

press RETURN.

How many points do you want ?10

Co-ordinates of point 1 ?1974,100

Co-ordinates of point 2 ?1975,100

Co-ordinates of point 3 ?1976,101

Co-ordinates of point 4 ?1977,101

Co-ordinates of point 5 ?1978,102

Co-ordinates of point 6 ?1979,102

Co-ordinates of point 7 ?1980,103

Co-ordinates of point 8 ?1981,103

Co-ordinates of point 9 ?1982,106

Co-ordinates of point 10 ?1983,110

Screen Display 15.2 (first part)

176

Screen Display 15.2 (second part)

15.9 Activities

i. Enter the following line:

PRINT CHR$(l49);"xyz"

Do block graphics appear on the screen, with the cursor on the
next line? Use the cursor control keys in conjunction with the
copy key to make a copy of the line of the block graphics. What
do they copy as? Can you see why? We discuss this in Section
15.13.

ii. Use the Teletext graphics shown in Table 15.3 to make a
composite figure of more than one line. Print your character on
the screen and then try to move it continuously from one side of
the screen to the other, as if animated. You will have to remove
the old character as well as write up the new one. A space
character (ASCII code 32) should help.

177

 Listing 15.
2

 10 MODE7

 30 PROCclg(4,3
)

 40 READ end

 50 DIM X(end),
Y(end)

 60 X(0)=end

 70 N=0
 80 REPEAT

 90 N=N+1 :RE
AD X(N),Y(N)

100 UNTIL N=end

110
120 PROCgraph

130 PROCnamey("
air temperature

")

140 PROCnamex("
time of day")

150 REPEAT UNTI
L 1=2

160
170 DATA 16,0,0

,24,0,5,14,7,13
.5,8,16,

 8.25,19.5,9
,21,11,24,13.75

,25.6

180 DATA 15.25,
26,16.75,24,17.

25,21.5,

 18,20,19,19
.5,20,19.2,23,1

8.5

15.10 Using the procedures with Teletext

As Teletext facilities offer the full range of colours, and the
memory taken up by the screen is only 1K, you will probably
want to program various displays in mode 7. With this in mind,
we have adapted our procedures for use with Teletext.

The procedures for drawing histograms, pie charts and large,
rotated writing proved unsatisfactory in Teletext. Apart from
these, ail our procedures are available for use with Teletext.
Since normal graphics instructions are not available in mode 7,
we have also provided several additional procedures:

178

Screen Display 15.3a

PROCclg(B,C) clears the screen and sets the foreground
and background colours for graphics. B is the colour number for
the background and C is the colour number for the foreground. B
must be in the range 0 to 7 and C must be in the range I to 7
(see Chapter 2). PROCclg(B,C) must be called before calling
any of our other graphics procedures.

PROCdraw(X1,Y1,X2,Y2) draws a line from the point
(X1,Y1) to the point (X2,Y2). The range of the co-ordinates is
immaterial provided it is within that declared when PROCscale is
called. PROCplot(X,Y) plots a single point at the position X,Y.
For our own use, we saved all the Teletext procedures as a
composite which we called TCOMP.

179

Screen Display 15.3b

Screen Displays 15.1, 15.2, 15.3, 15.4 and 15.5 show the
types of display that you can produce with our Teletext
procedures. All are Teletext equivalents of Screen Displays that
were given earlier, namely Screen Displays 9.1, 9.2, 9.3, 10.1
and 11.1. By comparing them, you can get a good idea of the
advantages and disadvantages of programming graphics in
mode 7. You will notice that the coarseness of Teletext graphics
makes it impossible to graduate the axes entirely uniformly.

15.11 Error messages with Teletext graphics programming

When you come to program in Teletext, having used PR0Cc[g,
your programs become impossible to read because they appear
largely in Teletext block graphics, rather than in ordinary
characters. Although this looks rather strange, it does not affect
how the programs run. The problem is that any error messages
become unreadable too! When you think you have an error
message, start by entering the following to clear the screen:

MODE7

180

 Listing 15.
3

 10 MODE7

 20 PRINT ' "Th
is program will

 display the po
ints"

 30 PRINT ' "yo
u provide as co

-ordinates, a"

 40 PRINT ' "pa
ir at a time. W

hen you are ask
ed for"

 50 PRINT ' "th
e co-ordinates

of each point,
please"

 60 PRINT ' "ty
pe the X co-ord

inate first, th
en a"

 70 PRINT ' "co
mma, then the Y

 co-ordinate. T
hen"

 80 PRINT ' "pr
ess RETURN."

 90 INPUT ' ' '
 "How many poin

ts do you want
",N

100 DIM X(N),Y(
N)

110 FOR I=1 TO
N

120 PRINT ' "Co
-ordinates of p

oint ";I;

130 INPUT X(I),
Y(I)

140 NEXT I

150 X(0)=N

160 PROCclg(4,3
)

170
180 PROCgraph

190 PROCnamey("
doom statistic"

)

200 PROCnamex("
year")

220 REPEAT UNTI
L 1=2

Next, enter the following to give the error message in readable
characters:

REPORT

Finally, enter the following to get the number of the line
responsible for the error:

PRINT ERL

181

Screen Display 15.4

15.12 Activities

i. Experiment with those of our procedures which apply only to
Teletext. Do they behave as you expect?

ii. From the earlier chapters, choose one or more of the Screen
Displays which rely on the procedures which we provide. Adapt
the programs to make them work in Teletext. Do you think that
the displays are an improvement?

iii. As Teletext displays can produce more colourful and dramatic
displays than those in other modes, you may like to adapt a
favourite display of your own for Teletext. Is it an improvement?

182

 10 READ N

 20 DIM X(N+1),
Y(N)

 30 X(0)=N :X(1
)=0

 40 FOR I=1 TO
N

 50 READ Y(I),X
(I+1),S

 60 X(I+1)=X(I+
1)+X(I)

 70 IF I>1 THEN
 X(I)=X(I)-S

 80 NEXT I

 90 MODE7

100 PROCclg(4,3
)

110 PROCgraph

120 PROCbstln

130 PROCnamex("
PETROL IN LITRE

S")

140 PROCnamey("
MILEOMETER READ

ING")

150 REPEAT UNTI
L 1=2

160
170 DATA 9 ,841

40,30,0 ,84260,
20,10 ,

 84442,25,0
,84612,30,0

180 DATA 84733,
20,13 ,84881,30

,3 ,

 85060,30,0
,85231,30,3

190 DATA 85400,
30,2

15.13 Discussion of activities

Activity 15.5 ii: The two halves of the message are entirely
separate. The top half is printed at a fixed position, whereas the
lower half moves continuously across the screen.

Activity 15.9i: The new line appears as block graphics beacuse,
at its beginning, there is a code for block graphics. Although this
is invisible, it is also copied.

183

This program will draw the shape
produced by any function, provided
it is expressed in BASIC.

Please enter the function when you

Press the space bar when you are
ready to begin.

Y=EXP(-X/100)*SIN(X/4)

see the prompt Y=

Enter your equation

What is the smallest value of X ?0

What is the largest value of X ?0

How many steps?50

184

 Listing 15.
5

 10 MODE7 :VDU
19,0,4;0;19,1,3

;0;

 20 PRINT ' ' '
 ' '

 30 PRINT "This
 program will d

raw the shape"

 40 PRINT "prod
uced by any fun

ction, provided
"

 50 PRINT "it i
s expressed in

BASIC." '

 60 PRINT "Plea
se enter the fu

nction when you
"

 70 PRINT "see
the prompt Y="

 80 PRINT ' ' "
Press the space

 bar when you a
re"

 90 PRINT "read
y to begin." '

'

100 REPEAT UNTI
L GET=32

110 INPUT"Ent
er your equatio

n" ' "Y="A$

120 INPUT ' "
What is the sma

llest value of
X ",SX

130 INPUT ' "
What is the lar

gest value of X
 ",LX

140 INPUT ' "
How many steps"

,step%

150
160 DIM X(ste

p%),Y(step%)

170
180 REM Work

out largest and
 smallest Y

190 X=SX:Y(1)
=EVAL(A$):Y(2)=

Y(1)

200 FOR X=SX
TO LX STEP (LX-

SX)/step%

210 £Y=EVAL
(A$)

220 IFY(2)<
£Y THEN Y(2)=£Y

230 IFY(1)>
£Y THEN Y(1)=£Y

240 NEXTX

250 X(0)=2 :X
(1)=SX :X(2)=LX

260
270 MODE7:PRO

Cclg(4,3)

280 PROCscale

290 PROCaxes

300 PROCgradu
ate

310 PROCnumbe
r

320 PRINT TAB
(5,1);CHR$(130)

;"Y=";A$

330
340 REM Now d

isplay graph

350 X=X(1):LX
=FN£CVX(X):LY=F

N£CVY(EVAL(A$))

360 FOR X=X(1
) TO X(2) STEP

(X(2)-X(1))/ste
p%

370 PROCdra
w(LX,LY,FN£CVX(

X),FN£CVY(EVAL(
A$)))

380 LX=FN£C
VX(X):LY=FN£CVY

(EVAL(A$))

390 NEXTX

400
410 REPEAT UN

TIL 1=2

185

Appendix 1
Listings for the procedures

Introduction
The listings
Adaptations of the listings for Teletext

Introduction

This Appendix gives listings of all the procedures. In order to use
them, you can either type them in from these listings and store
them, or you can buy them ready-recorded on a cassette. If you
decide on the former course of action, we recommend that you
enter and save each procedure only as you need it. Typing can
be quite an arduous job and mistakes are especially likely if too
much is taken on at once

We recommend that you store and use a procedure by first
entering it into your computer and then saving it, using the *
SPOOL format described in Section 0.2. You need not put in the
space after the tine number, because the computer will insert it
for you, following the LISTO 7 command.

If you have sufficient free memory, it is probably simplest to
collect all the procedures which you are likely to use together
and to record them as single blocks. For example, for our use,
we recorded the procedures in blocks as follows:

TEXT = PROCchr + PROCmessage + PROCcurve

COMP = PROCgraph + PROCscaIe + PRDCaxes +
PROCgraduate + PROCnumber + PROCpoint +
PROCbstln + PROCnamey + PRDCnamex

186

HISTO = PROChisto + PROC3Dhisto

PIE = PR0Cpie

TCOMP = PROCgraph + PROCsca1e + PROCaxes +
PROCgraduate + PRDCnumber + PROCpoint +
PROCbstln + PROCnamey + PROCnamex +
PROCclg + PROCp1ot + PROCdraw

This way, when you come to produce a particular type of display,
you will know that what you want is available. It is because we
expect you to record the procedures together that we have used
a different range of line numbers for each one, Then no
procedure will normally overwrite another. The exception is for
the Teletext procedures. Since you cannot work with Teletext
and non-Teletext at the same time, we have purposely arranged
for the line numbers of the Teletext procedures to coincide with
some of the line numbers of the other procedures. Nevertheless
it is probably a good idea to enter NEW before loading the
Teletext procedures, if you have just used the non-Teletext ones.

The total memory space of a Model A and a Model B
computer in each of the graphics modes is as shown in Table
A1.1.

mode Model A Model B
7 11776 25342
5 2560 16126
4 2560 16126
2 - 5886
1 - 5886
0 - 5886

Table A1.1

We give the length of each procedure with its listing, so that you
can estimate the space that a program will require. The estimate
cannot be exact, because it does not only depend on the bytes
required for the program and the procedures. It also depends on
the bytes required for the numeric variables, the string variables
and the arrays.

187

The listings

PROCchr requires approximately 452 bytes of memory. Its listing
is as follows:

9000 DEF PROCchr(X,Y,S$,AN,SC)
9010 LOCAL CO1,CO2,SI1,SI2,LX,LY,RX,RY,XX,YY
9020 CO1=COS(AN):SI1=-SIN(AN)
9030 CO2=COS(PI/2-AN):SI2=SIN(AN+PI/2)
9040 £F=£F+1:IF £F=1 THEN DIM M 8 ELSE £F=2
9050 A%=10:X%=M MOD256:Y%=M DIV256:?M=ASC(S$):CALL(&FFF1)
9060 FOR XX=0TO7 :FOR YY=0TO7
9070 IF ?(M+8-YY) AND 2^(7-XX) THEN PROCpixel
9080 NEXT YY,XX
9090 ENDPROC
9100 DEF PROCpixel
9110 LX=XX-.5:RX=XX+.5:LY=YY-.5:RY=YY+.5
9120 MOVE X+SC*(LX*CO1+LY*SI1),Y+SC*(LY*SI2+LX*CO2)
9130 MOVE X+SC*(RX*CO1+LY*SI1),Y+SC*(LY*SI2+RX*CO2)
9140 PLOT 85,X+SC*(LX*CO1+RY*SI1),Y+SC*(RY*SI2+LX*CO2)
9150 PLOT 85,X+SC*(RX*CO1+RY*SI1),Y+SC*(RY*SI2+RX*CO2)
9160 ENDPROC

PROCmessage requires approximately 171 bytes of memory. Its
listing is as follows:

9180 DEFPROCmessage(X,Y,S$,AN,SC)
9190 LOCAL I,XP,YP
9200 AN=AN+PI/2
9210 FOR I=1 TO LEN(S$)
9220 XP=SC*(COS(AN)*8*(I-1))
9230 YP=SC*(SIN(AN)*8*(I-1))
9240 PROCchr(X+XP,Y+YP,MID$(S$,I,1),AN,SC)
9250 NEXT I
9260ENDPROC

PROCcurve requires approximately 238 bytes of memory. Its
listing is as follows:

9280 DEFPROCcurve(X,Y,R,SA,FA,S$,SC)
9290 LOCAL I,XP,YP
9300 SA=SA+PI/2:FA=FA+PI/2
9310 FOR I=1 TO LEN(S$)
9320 XP=X+R*COS(SA-(SA-FA)*(I-1)/(LEN(S$)+1))
9330 YP=Y+R*SIN(SA-(SA-FA)*(I-1)/(LEN(S$)+1))

188

9340 PROCchr(XP,YP,MID$(S$,I,1),SA-(SA-FA)*(I-1)/
 (LEN(S$)+1)-PI/2,SC)
9350 NEXT I
9360 ENDPROC

PROCgraph requires approximately 132 bytes of memory. Its
listing is as follows:

10000 DEF PROCgraph
10010 PROCscale
10020 PROCaxes
10030 PROCgraduate
10040 PROCnumber
10050 FOR £J=1 TO X(0)
10060 DTA=8 :PROCpoint(X(£J),Y(£J))
10070 NEXT £J
10080 ENDPROC

PROCscale requires approximately 943 bytes of memory. Its
listing is as follows:

10100 DEF PROCscale
10110 £SX=X(1) :£LX=£SX :£SY=Y(1) :£LY=£SY
10120 FOR £I=1 TO X(0)
10130 IF£SX>X(£I)THEN£SX=X(£I)
10140 IF£LX<X(£I)THEN£LX=X(£I)
10150 IF£SY>Y(£I)THEN£SY=Y(£I)
10160 IF£LY<Y(£I)THEN£LY=Y(£I)
10170 NEXT
10180 PROCscale2(£SY,£LY) :£SY=£S :£LY=£L
 :£STY=£ST :£CBY%=£CBN%
10190 PROCscale2(£SX,£LX) :£SX=£S :£LX=£L
 :£STX=£ST :£CBX%=£CBN%
10200 £X=1000/(£LX-£SX):£Y=800/(£LY-£SY)
10210 £CONVX=150-£SX*£X :£CONVY=100-£SY*£Y
10220 ENDPROC
10230 :
10240 DEF FN£CVX(G) =£X*G+£CONVX
10250 DEF FN£CVY(G) =£Y*G+£CONVY
10260 :
10270 DEF PROCscale2(L,H) :@%=&0101090A
10280 IF L>0 AND L<H/3 THEN L=0 ELSE IF H<0 AND
 H>L/3 THEN H=0
10290 £LL=VAL(LEFT$(STR$(L),INSTR(STR$(L),"E")-1))

189

10300 £LH=VAL(LEFT$(STR$(H),INSTR(STR$(H),"E")-1))
10310 £PL=VAL(MID$(STR$(L),INSTR(STR$(L),"E")+1))
10320 £LH=£LH*10^(VAL(MID$(STR$(H),INSTR(STR$(H),"E")+
 1))-£PL)
10330 £D=£LH-£LL
10340 IF £D<=3THENREPEAT£D=£D*10 :£PL=£PL-1 :£LL=£LL*10
 :£LH=£LH*10 :UNTIL £D>3
10350 IF £D>30THENREPEAT£D=£D/10 :£PL=£PL+1 :£LL=£LL/10
 :£LH=£LH/10 :UNTIL £D<30
10360 £LL=INT(£LL+.1) :£LH=INT(£LH+.5)
10370 @%=&10 :£CBN%=SGN(£LL)*(VAL(RIGHT$(STR$(£LL),1))+.1)
10380 £S=VAL(STR$(£LL)+"E"+STR$(£PL))
10390 £L=VAL(STR$(£LH)+"E"+STR$(£PL)) :£ST=ABS(£L-£S)/
 (£LH-£LL)
10400 ENDPROC

PROCaxes requires approximately 223 bytes of memory. Its
listing is as follows:

10420 DEF PROCaxes
10430 £X0=0 :£Y0=0
10440 IF £SX>0 THEN £X0=£SX ELSE IF £LX<0 THEN £X0=£LX
10450 IF £SY>0 THEN £Y0=£SY ELSE IF £LY<0 THEN £Y0=£LY
10460 MOVE FN£CVX(£SX),FN£CVY(£Y0) :DRAW FN£CVX(£LX),
 FN£CVY(£Y0)
10470 MOVE FN£CVX(£X0),FN£CVY(£SY) :DRAW FN£CVX(£X0),
 FN£CVY(£LY)
10480 ENDPROC

PROCgraduate requires approximately 228 bytes of memory. Its
listing is as follows:

10500 DEF PROCgraduate
10510 FOR x=£SX TO £LX+.1*£STX STEP £STX
10520 IF £CBX%MOD5=0 THEN DTA=16 ELSE DTA=8
10530 £CBX%=£CBX%+1 :PROCpoint(x,£Y0) :NEXT x
10540 FOR y=£SY TO £LY+.1*£STY STEP £STY
10550 IF £CBY%MOD5=0 THEN DTA=16 ELSE DTA=8
10560 £CBY%=£CBY%+1 :PROCpoint(£X0,y) :NEXT y
10570 ENDPROC

190

PROCnumber requires approximately 225 bytes of memory. Its
listing is as follows:

10590 DEF PROCnumber :VDU5
10600 MOVE FN£CVX(£LX)-4*LEN(STR$(£LX)),FN£CVY(£Y0)-20
 :PRINT;£LX
10610 MOVEFN£CVX(£X0)-150,FN£CVY(£LY)+28:PRINT;£LY
10620 IF £LX>0AND£SX<0AND£LY>0AND£SY<0THEN ENDPROC
10630 MOVE FN£CVX(£SX),FN£CVY(£Y0)-20:PRINT;£SX
10640 MOVEFN£CVX(£X0)-150,FN£CVY(£SY)+30:PRINT;£SY:VDU4
10650 ENDPROC

PROCpoint requires approximately 127 bytes of memory. Its
listing is as follows:

10670 DEF PROCpoint(A,B)
10680 MOVEFN£CVX(A)-DTA,FN£CVY(B):DRAWFN£CVX(A)+DTA,
 FN£CVY(B)
10690MOVEFN£CVX(A),FN£CVY(B)-DTA :DRAWFN£CVX(A),FN£CVY(B)
 +DTA
10700 ENDPROC

PROCbstln requires approximately 733 bytes of memory. Its
listing is as follows:

10720 DEF PROCbstln
10730 LOCAL C,M,I,XX,YY,MEANX,MEANY,sumX,sumY,sumXY,sumYY,
 sumXX,MINX,MAXX
10740 XX=0 :YY=0:
10750 FOR I=1 TO X(0) :sumX=sumX+X(I) :sumY=sumY+Y(I)
 :NEXT I
10760 MEANX=sumX/X(0) :MEANY=sumY/X(0)
10770 MINX=X(1):MAXX=MINX:sumXX=0:sumYY=0:sumXY=0:XX=0:YY=0
10780 FOR I=1 TO X(0)
10790 sumXX=sumXX+X(I)*X(I) :sumYY=sumYY+Y(I)*Y(I)
10800 sumXY=sumXY+X(I)*Y(I)
10810 XX=XX+(X(I)-MEANX)^2 :YY=YY+(Y(I)-MEANY)^2 :XY=XY+
 (X(I)-MEANX)*(Y(I)-MEANY)
10820 IF MINX>X(I) THEN MINX=X(I)
10830 IF MAXX<X(I) THEN MAXX=X(I)
10840 NEXT I
10850 M=(X(0)*sumXY-sumX*sumY)/(X(0)*sumXX-sumX*sumX)
10860 C=(sumY*sumXX-sumX*sumXY)/(X(0)*sumXX-sumX*sumX)
10870 @%=&20204 :VDU4

191

10880 PRINT TAB(10,0);"Y=";M;"*X+";C;TAB(10,1);"Cor.
 coef. = ";XY/SQR(XX*YY)
10890 MOVE FN£CVX(£SX),FN£CVY(M*£SX+C) :DRAW FN£CVX(£LX),
 FN£CVY(M*£LX+C)
10900 @%=&10 :ENDPROC

PROCnamey requires approximately 124 bytes of memory. Its
listing is as follows:

10920 DEF PROCnamey(£Vname$):VDU5
10930 FOR £A=1 TO LEN(£Vname$)
10940 MOVE FN£CVX(£X0)-60,FN£CVY(£LY)-£A*32-32:
 PRINTMID$(£Vname$,£A,1)
10950 NEXT £A:VDU4
10960 ENDPROC

PROCnamex requires approximately 93 bytes of memory. Its
listing is as follows:

10980 DEF PROCnamex(£Hname$)
10990 MOVE FN£CVX(£LX)-32*LEN(£Hname$)-64,FN£CVY(£Y0)-52
 :VDU5:PRINT£Hname$:VDU4
11000 ENDPROC

PROChisto requires approximately 285 bytes of memory. Its
listing is as follows:

12000 DEF PROChisto
12010 £C=1
12020 FOR £A=1 TO X(0)-1
12030 GCOL0,£C :£C=£C+1 :IF £C>2 THEN £C=1
12040 £XL=FN£CVX(X(£A)-£IN) :£XR=FN£CVX(X(£A))
12050 £YH=FN£CVY(Y(£A))
12060 £YB=FN£CVY(0)
12070 MOVE £XL,£YB :MOVE £XL,£YH
12080 PLOT 85,£XR,£YB :PLOT 85,£XR,£YH
12090 GCOL 0,3
12100 MOVE £XL,£YB :DRAW £XR,£YB
12110 DRAW £XR,£YH :DRAW £XL,£YH :DRAW £XL,£YB
12120 NEXT £A
12130 ENDPROC

192

PROC3Dhisto requires approximately bytes of memory. Its
listing is as follows:

12150 DEF PROC3Dhisto(C)
12160 FOR £A=1 TO X(0)-1
12170 £XL=FN£CVX(X(£A)-£IN) :£XR=FN£CVX(X(£A))
12180 £YB=FN£CVY(0) :£YH=FN£CVY(Y(£A))
12190 GCOL 0,C
12200 MOVE £XL,£YB :MOVE £XL,£YH
12210 PLOT 85,£XR,£YB :PLOT 85,£XR,£YH
12220 GCOL 0,3-C
12230 PLOT 85,£XR+64,£YB+32
12240 PLOT 85,£XR+64,£YH+32
12250 MOVE £XR,£YH
12260 PLOT 85,£XL+64,£YH+32
12270 PLOT 85,£XL,£YH
12280 GCOL 0,3
12290 MOVE £XL,£YH:DRAW £XL+64,£YH+32
12300 DRAW £XR+64,£YH+32
12310 DRAW £XR,£YH:DRAW £XL,£YH
12320 DRAW £XL,£YB:DRAW £XR,£YB
12330 DRAW £XR,£YH:DRAW £XR+64,£YH+32
12340 DRAW £XR+64,£YB+32:DRAW£XR,£YB
12350 NEXT £A
12360 ENDPROC

PROCpie requires approximately 590 bytes of memory. Its listing
is as follows:

13000 DEF PROCpie(R%,X%,Y%,T)
13010 LOCAL L%,S,W
13020 W=0:S=0:C%=0
13030 FOR L%=1 TO £NS
13040 W=W+£S(L%)
13050 C%=C%+1:IFC%>2THENC%=1
13060 IFL%=£NS THENC%=3
13070 PROCsector(C%,S/T,W/T,R%,X%,Y%)
13080 S=W
13090 NEXTL%
13100 PROClabel(R%,X%,Y%,T)
13110 ENDPROC
13120 :
13130 DEF PROCsector(C%,S,F,R%,X%,Y%)

193

13140 LOCAL L
13150 GCOL0,C%
13160 MOVE COS(2*PI*S)*R%+X%,SIN(2*PI*S)*R%+Y%
13170 FOR L= 2*PI*S TO 2*PI*F STEP 0.1
13180 MOVE X%,Y%
13190 PLOT 85,COS(L)*R%+X%,SIN(L)*R%+Y%
13200 NEXTL
13210 PLOT85,COS(2*PI*F)*R%+X%,SIN(2*PI*F)*R%+Y%
13220 ENDPROC
13230 :
13240 DEF PROClabel(R%,X%,Y%,T)
13250 VDU5:B=0:R%=R%+64
13260 FOR A=1 TO £NS
13270 OX=0:H=(B+£S(A)/2)*2*PI/T
13280 IFH<PI*1.5 ANDH>PI*.5 THENOX=-(LEN(£N$(A))*32)
13290 MOVE COS(H)*R%+X%+OX,SIN(H)*R%+Y%
13300 PRINT£N$(A)
13310 B=B+£S(A)
13320 NEXTA
13330 VDU4
13340 ENDPROC

Adaptations of the listings for Teletext

PROCgraph requires approximately 132 bytes of memory. Its
listing is as follows:

10000 DEF PROCgraph
10010 PROCscale
10020 PROCaxes
10030 PROCgraduate
10040 PROCnumber
10050 FOR £J=1 TO X(0)
10060 PROCplot(FN£CVX(X(£J)),FN£CVY(Y(£J)))
10070 NEXT £J
10080 ENDPROC

194

PROCscale requires approximately 967 bytes of memory. Its
listing is as follows:

10100 DEF PROCscale
10110 £SX=X(1) :£LX=£SX :£SY=Y(1) :£LY=£SY
10120 FOR £I=1 TO X(0)
10130 IF£SX>X(£I)THEN£SX=X(£I)
10140 IF£LX<X(£I)THEN£LX=X(£I)
10150 IF£SY>Y(£I)THEN£SY=Y(£I)
10160 IF£LY<Y(£I)THEN£LY=Y(£I)
10170 NEXT
10180 PROCscale2(£SX,£LX) :£SX=£S :£LX=£L :£STX=£ST
 :£CBX%=£CBN%
10190 PROCscale2(£SY,£LY) :£SY=£S :£LY=£L :£STY=£ST
 :£CBY%=£CBN%
10200 £X=1000/(£LX-£SX):£Y=800/(£LY-£SY)
10210 £CONVX=150-£SX*£X :£CONVY=100-£SY*£Y
10220 ENDPROC
10230 :
10240 DEF FN£CVX(G) =INT((£X*G+£CONVX)*74/1280)
10250 DEF FN£CVY(G) =INT((£Y*G+£CONVY)*75/1024)
10260 :
10270 DEF PROCscale2(L,H) :@%=&0101090A
10280 IF L>0 AND L<H/3 THEN L=0 ELSE IF H<0 AND H>L/3
 THEN H=0
10290 £LL=VAL(LEFT$(STR$(L),INSTR(STR$(L),"E")-1))
10300 £LH=VAL(LEFT$(STR$(H),INSTR(STR$(H),"E")-1))
10310 £PL=VAL(MID$(STR$(L),INSTR(STR$(L),"E")+1))
10320 £LH=£LH*10^(VAL(MID$(STR$(H),INSTR(STR$(H),"E")+
 1))-£PL)
10330 £D=£LH-£LL
10340 IF £D<=3THENREPEAT£D=£D*10 :£PL=£PL-1 :£LL=£LL*10
 :£LH=£LH*10 :UNTIL£D>3
10350 IF £D>30THENREPEAT£D=£D/10 :£PL=£PL+1 :£LL=£LL/10
 :£LH=£LH/10 :UNTIL£D<30
10360 £LL=INT(£LL+.1) :£LH=INT(£LH+.5)
10370 @%=&10 :£CBN%=SGN(£LL)*(VAL(RIGHT$(STR$(£LL),1))+.1)
10380 £S=VAL(STR$(£LL)+"E"+STR$(£PL))
10390 £L=VAL(STR$(£LH)+"E"+STR$(£PL)) :£ST=ABS(£L-£S)/
 (£LH-£LL)
10400 ENDPROC

195

PROCaxes requires approximately bytes of memory. Its listing is
as follows:

10420 DEF PROCaxes
10430 £X0=0 :£Y0=0
10440 IF £SX>0 THEN £X0=£SX ELSE IF £LX<0 THEN £X0=£LX
10450 IF £SY>0 THEN £Y0=£SY ELSE IF £LY<0 THEN £Y0=£LY
10460 PROCdraw(FN£CVX(£SX),FN£CVY(£Y0),FN£CVX(£LX),FN£CVY(£Y0))
10470 PROCdraw(FN£CVX(£X0),FN£CVY(£SY),FN£CVX(£X0),FN£CVY(£LY))
10480 ENDPROC

PROCgraduate requires approximately 227 bytes of memory. Its
listing is as follows:

10500 DEF PROCgraduate
10510 FOR x=£SX TO £LX+.1*£STX STEP £STX
10520 IF £CBX%MOD5=0 THEN DTA=2 ELSE DTA=1
10530 £CBX%=£CBX%+1 :PROCpoint(x,£Y0) :NEXT x
10540 FOR y=£SY TO £LY+.1*£STY STEP £STY
10550 IF £CBY%MOD5=0 THEN DTA=2 ELSE DTA=1
10560 £CBY%=£CBY%+1 :PROCpoint(£X0,y) :NEXT y
10570 ENDPROC

PROCnumber requires approximately 292 bytes of memory. Its
listing is as follows:

10590 DEF PROCnumber
10600 PROCplot(FN£CVX(£LX)-LEN(STR$(£LX)),FN£CVY(£Y0)-3)
 :PRINTCHR$127;CHR$134;£LX;CHR$147;
10610 PROCplot(FN£CVX(£X0)-7,FN£CVY(£LY)+4):
 PRINTCHR$127;CHR$134;£LY;CHR$147;
10620 IF £LX>0AND£SX<0AND£LY>0AND£SY<0 THEN ENDPROC
10630 PROCplot(FN£CVX(£SX)-7,FN£CVY(£Y0)-3):
 PRINTCHR$127;CHR$134;£SX;CHR$147;
10640 PROCplot(FN£CVX(£X0)-7,FN£CVY(£SY)):
 PRINTCHR$127;CHR$134;£SY;CHR$147;
10650 ENDPROC

PROCpoint requires approximately 135 bytes of memory. Its
listing is as follows:

196

10670 DEF PROCpoint(A,B)
10680 PROCdraw(FN£CVX(A)-DTA,FN£CVY(B),FN£CVX(A)+DTA,
 FN£CVY(B))
10690 PROCdraw(FN£CVX(A),FN£CVY(B)-DTA,FN£CVX(A),
 FN£CVY(B)+DTA)
10700 ENDPROC

PROCbestln requires approximately 384 bytes of memory. Its
listing is as follows:

10720 DEF PROCbstln
10730 LOCAL C,M,I,XX,YY,MEANX,MEANY,sumX,sumY,sumXY,
 sumYY,sumXX,MINX,MAXX
10740 XX=0 :YY=0
10750 FOR I=1 TO X(0)
10760 XX=XX+X(I) : YY=YY+Y(I)
10770 NEXT I
10780 MEANX=XX/X(0) :MEANY=YY/X(0)
10790 MINX=X(1):MAXX=MINX:sumX=0:sumY=0:sumXX=0
 :sumYY=0:sumXY=0:XX=0:YY=0
10800 FOR I=1 TO X(0)
10810 sumX=sumX+X(I) :sumXX=sumXX+X(I)*X(I)
10820 sumY=sumY+Y(I) :sumYY=sumYY+Y(I)*Y(I)
10830 sumXY=sumXY+X(I)*Y(I)
10840 XX=XX+(X(I)-MEANX)^2 :YY=YY+(Y(I)-MEANY)^2
 :XY=XY+(X(I)-MEANX)*(Y(I)-MEANY)
10850 IF MINX>X(I) THEN MINX=X(I)
10860 IF MAXX<X(I) THEN MAXX=X(I)
10870 NEXT I
10880 M=(X(0)*sumXY-sumX*sumY)/(X(0)*sumXX-sumX*sumX)
10890 C=(sumY*sumXX-sumX*sumXY)/(X(0)*sumXX-sumX*sumX)
10900 @%=&20204
10910 PRINT TAB(9,0);CHR$135;"Y=";M;"*X+";C;CHR$147;TAB(
 9,1);CHR$135;"Cor. coef. = ";XY/SQR(XX*YY);CHR$147
10920 PROCdraw(FN£CVX(£SX),FN£CVY(M*£SX+C),FN£CVX(£LX),
 FN£CVY(M*£LX+C))
10930 @%=10:ENDPROC

PROCnamey requires approximately 135 bytes of memory. Its
listing is as follows:

197

10950 DEF PROCnamey(£Vname$)
10960 FOR £A=1 TO LEN(£Vname$)
10970 PROCplot(FN£CVX(£X0)-8,FN£CVY(£LY)-£A*3+3):PRINT
 CHR$127;CHR$135;MID$(£Vname$,£A,1);CHR$147;
10980 NEXT £A
10990 ENDPROC

PROCnamex requires approximately 104 bytes of memory. Its
listing is as follows:

11010 DEF PROCnamex(£Hname$)
11020 PROCplot(FN£CVX(£LX)-2*LEN(£Hname$)-3,
 FN£CVY(£Y0)-6):VDU127,135:PRINT£Hname$;CHR$147;
11030 ENDPROC

PROCclg requires approximately 227 bytes of memory. Its listing
is as follows:

11050 DEFPROCclg(C,G)
11060 VDU 28,0,24,39,0,23,0,10,32;0;0;0;
11070 LOCAL CH,GH,Y
11080 CH=128+C : CLS
11090 IF C<1 OR C>7 THEN CH=132
11100 GH=144+G
11110 IF G<1 OR G>7 THEN GH=156
11120 FOR Y=0 TO 24
11130 PRINT TAB(0,Y);
11140 VDU CH,157,GH
11150 NEXT Y
11160 VDU 28,3,24,39,0
11170 PRINT TAB(0,0);
11180 ENDPROC

PROCplot requires approximately 212 bytes of memory. Its
listing is as follows:

11200 DEFPROCplot(X,Y)
198

11210 IF X>73 OR X<0 THEN ENDPROC
11220 IF Y>74 OR Y<0 THEN ENDPROC
11230 LOCAL A%,C%
11240 PRINT TAB(X DIV 2,24-Y DIV 3);
11250 C%=(X AND1)+(Y MOD3)*2
11260 C%=VAL(MID$("166404080102",C%*2+1,2))
11270 A%=135
11280 VDU (USR &FFF4 AND &FF00) DIV 256 OR C% OR 128
11290 ENDPROC

PROCdraw requires approximately 189 bytes of memory. Its
listing is as follows:

11310 DEFPROCdraw(X1,Y1,X2,Y2)
11320 PROCplot(X1,Y1) :PROCplot(X2,Y2)
11330 LOCAL X,Y,L,A
11340 X=(X2-X1) :Y=(Y2-Y1)
11350 L=SQR((X1-X2)^2+(Y1-Y2)^2)
11360 FOR A=1 TO L
11370 IF L<>0 THEN PROCplot(X1+A*X/L ,Y1+A*Y/L)
11380 NEXT A
11390 ENDPROC

199

Appendix 2
How the procedures work

This appendix explains how each of the procedures works. For
simplicity, a horizontal and a vertical axis is referred to as an x
and a y axis, respectively; and co-ordinates are referred to as x
and y co-ordinates.

THE PROCEDURE PROCscale

PROCscale scales any display so that it squarely fills the screen,
irrespective of the magnitude and range of the data. This frees
you from having to consider such things as screen co-ordinates
and addressable points, etc.

PROCscale requires X(0) to hold the number of points to be
plotted, and the arrays XO and YO to hold the x and y co-
ordinates for these points. There must be a minimum of two X
values in X(l) and X(2) and two Y values in Y(l) and Y(2). Neither
set of co-ordinates can cover a zero range. For example,
although you could plot a graph consisting of a single vertical or
horizontal line, the axes must cover a finite range.

PROCscale examines the numbers in the arrays and then
sets up the scaling for the other procedures to follow. It must
therefore be called before any of the following are called:

PROCaxes PRDCgraduate PROCnumber
PROCpoint PROCgraph PROCnamex

200

PROCnamey PR0Cbstsl PROChist
PROC3Dhisto

PR0Cscale gives values to the following variables:

i. £SX is set to the smallest x value, rounded to the nearest left-
most graduation on any axes.
ii. £LX is set to the largest x value, rounded to the nearest right-
most graduation on any axes.
iii. £SY, £LV set the y values in the same way as the x. values.
iv. £D sets the number of divisions along the x axis.
v. £ST is set, in the user's own co-ordinates, to the increment
corresponding to one scale division along the x axis.

The operation of PROCscale: smallest and largest values

The first set of lines in PROCscale merely find the smallest and
largest values available in the XO and YO arrays. Line 10100
defines the procedure name. Line 10110 sets the initial values
for the smallest and largest X and Y values, and line 10120 sets
up a FOR ,., NEXT loop. When these lines have been executed,
the smallest and largest x values are held in £5*4 and £LX, and
the smallest and largest y values are held in £5V and £LV.
These lines are reproduced below so that you can easily refer to
them.

10100 DEF PROCscale
10110 £SX=X(1) :£LX=£SX :£SY=Y(1) :£LY=£SY
10120 FOR £I=1 TO X(0)
10130 IF£SX>X(£I)THEN£SX=X(£I)
10140 IF£LX<X(£I)THEN£LX=X(£I)
10150 IF£SY>Y(£I)THEN£SY=Y(£I)
10160 IF£LY<Y(£I)THEN£LY=Y(£I)
10170 NEXT

The operation of PROCscale: co-ordinates for the ends of
the axes,

The smallest and largest values, as determined by the lines
10120 to 10170, will not normally be ideal values for the ends of
the axes, For example, if the smallest and largest value for one
axis are 0.1 and 9.3 respectively, then the axis would clearly be

201

best running from 0 to l0. PROCscale contains a sub-procedure,
PROCsca1e2 (discussed later), which makes this sort of
decision. Lines 10180 and 10190 call on it, to set the ideal end
points for the axes, first for the y axis and then for the x. They
work by assigning new values for £SX, £SY etc.

10180 PROCscale2(£SY,£LY) :£SY=£S :£LY=£L
 :£STY=£ST :£CBY%=£CBN%
10190 PROCscale2(£SX,£LX) :£SX=£S :£LX=£L
 :£STX=£ST :£CBX%=£CBN%

The sub-procedure also calculates the step size £ST and a
quantity £CBN% which is used to locate every fifth scale division.
This division is marked larger than the others by PROCgraduate,
to make it easier to read from the axes.

The operation of PROCscale: conversion to screen co-
ordinates

The final task of PROCscale is to work out some of the constants
which will be required in order to calculate the screen co-
ordinates from co-ordinates which are supplied by the user. For
these calculations we set the screen area for graphics to a
rectangle with 150,100 as the lower left-hand co-ordinate. This
area extends 1000 screen co-ordinates horizontally and 800
vertically. These numbers appear in lines 10200 and 10210
which are reproduced below for easy reference. Altering these
numbers, alters the area of the screen used for the graphics.

Line 10200 calculates the important scale factors £X and £Y.
These are the factors by which the x and y values supplied by
the user must be multiplied, so as to bring them into the range of
the screen co-ordinates.

Line 10210 adds an offset to prevent the graphics extending
down to the bottom left-hand corner of the screen.

10200 £X=1000/(£LX-£SX):£Y=800/(£LY-£SY)
10210 £CONVX=150-£SX*£X :£CONVY=100-£SY*£Y
10220 ENDPROC

The operation of PROCscale: the convert functions

The procedure sets up two important functions FN£CVX and
FN£CVY which convert from the x and y values supplied by the
user to those required by the computer's plotting routines. Lines

202

10240 and 10250 below define these functions, using the scale
factors and offset set up by lines 10200 and 10210.

10240 DEF FN£CVX(G) =£X*G+£CONVX
10250 DEF FN£CVY(G) =£Y*G+£CONVY

The operation of PROCscale: PROCscale2

PROCscale2 is a part of PRDCscale. For convenience of
programming, it was written as a separate procedure, but there
would be no sense in calling it from within a program.

The following few sections explain how PRDCscale2 works.

The operation of PROCsca1e2: number formats

PROCsca1e2 relies on the BBC Microcomputer's ability to
dictate the format of numbers. The format specification is made
initially in line 10278 using @%=&0l0l090A. This dicatates not
only the printed format of numbers but, more importantly for our
purpose, the format of any number converted to a string using
the STR$ function. Line 10290 is an example.

10270 DEF PROCscale2(L,H) :@%=&0101090A

The operation of PROCsca1e2: the choice of origin

It is invariably preferable for a display to include the origin,
provided that the graph is not consequently cramped up on one
side. The first decision which PROCscale2 makes is in line
10280 and concerns whether the origin should be included in the
display. For a graph which shows only positive numbers, our
condition is simply (and arbitrarily) that if the smallest number is
less than 1/3 of the largest, then the origin should be included.
Line 10280 expresses this condition. Without it, there would be
no criterion for the inclusion of the origin.

10280 IF L>0 AND L<H/3 THEN L=0 ELSE IF H<0 AND
 H>L/3 THEN H=0

203

The operation of PROCscaIe2: the number of graduations

Lines 10290, 10300, 10310 and 10320 take the smallest and
largest numbers supplied to the procedure and convert them to a
decimal fraction and an exponent. The decimal fraction is held in
£LL and £LH white the exponent is held in £PL.

10290 £LL=VAL(LEFT$(STR$(L),INSTR(STR$(L),"E")-1))
10300 £LH=VAL(LEFT$(STR$(H),INSTR(STR$(H),"E")-1))
10310 £PL=VAL(MID$(STR$(L),INSTR(STR$(L),"E")+1))
10320 £LH=£LH*10^(VAL(MID$(STR$(H),INSTR(STR$(H),"E")+
 1))-£PL)

It might be best to illustrate what is happening so far with an
example. Suppose that the x axis is being considered and that
the user's program has supplied the smallest and largest
numbers as 0.01 and 0.0145. Lines 10290 to 10320 will convert
these values to 1.0 E-2 and 1.45 E-2. The 1.0 and 1.45 will be
held in the variables £LL and £LH respectively with -2 held in
£PL.

The next few lines now make the decision as to how many
divisions should be along the axis. The variable £D holds the
number of divisions which are initially set to the difference
between £LH and £LL.

10330 £D=£LH-£LL

Then the two lines 10340 and 10350 multiply up or divide down
this difference until it is in the range 4 to 30 inclusive. When
multiplying or dividing by ten, these lines also alter the exponent
held in £PL to keep track of the magnitude of the number.

10340 IF £D<=3THENREPEAT£D=£D*10 :£PL=£PL-1 :£LL=£LL*10
 :£LH=£LH*10 :UNTIL £D>3
10350 IF £D>30THENREPEAT£D=£D/10 :£PL=£PL+1 :£LL=£LL/10
 :£LH=£LH/10 :UNTIL £D<30

Before these lines are executed, the £D in our example would
have an initial value of 0.45. The condition in line 10340 would
result in the value of £D being multiplied by ten and the other
values being accordingly adjusted to give £LL=l0, £LH=l4.5 and
£D=4.5.

The operation of PROCscale2: values for the ends of the
axes

The next line sets the values of £LL and £LH to integer values
rounding £LL down and £LH up. This is necessary in order for
the scale along the axes to start and finish at sensible numbers.

204

10360 £LL=INT(£LL+.1) :£LH=INT(£LH+.5)

For our example numbers, this would set £LL to 10 and £LH to
15 for an eventual range along the axes from 0.01 to 0.015. This
nicely encompasses the original range of numbers from 0.01 to
0.0145.

The operation of PROCscale2: the guide to every fifth
graduation

The next line picks off the [east significant digit of £LL and stores
it in £CBN%, as a guide to the graduation procedure when to
draw larger graduations every fifth position. With our example
figures, this sets £CBN% equal to 0. It also resets the format for
presenting numbers.

10370 @%=&10 :£CBN%=SGN(£LL)*(VAL(RIGHT$(STR$(£LL),1))+.1)

The operation of PROCscale2: the smallest and largest
values

The last two lines of this procedure then place the smallest and
largest numbers represented by the recommended scale in £5
and £L.

10380 £S=VAL(STR$(£LL)+"E"+STR$(£PL))
10390 £L=VAL(STR$(£LH)+"E"+STR$(£PL)) :£ST=ABS(£L-£S)/
 (£LH-£LL)
10400 ENDPROC

THE PROCEDURE PROCaxes

PROCaxes draws a pair of axes i.e. an x axis and a y axis.

The operation of PROCaxes: the origin

Axes do not necessarily cross at the origin. Lines 10440 and
10450 examine the range of the values along the axes and
accordingly set where the axes should cross in order to make the
best display.

Line 10460 draws the x axis and line 10470 draws the Y
axis.

205

10420 DEF PROCaxes
10430 £X0=0 :£Y0=0
10440 IF £SX>0 THEN £X0=£SX ELSE IF £LX<0 THEN £X0=£LX
10450 IF £SY>0 THEN £Y0=£SY ELSE IF £LY<0 THEN £Y0=£LY
10460 MOVE FN£CVX(£SX),FN£CVY(£Y0) :DRAW FN£CVX(£LX),
 FN£CVY(£Y0)
10470 MOVE FN£CVX(£X0),FN£CVY(£SY) :DRAW FN£CVX(£X0),
 FN£CVY(£LY)
10480 ENDPROC

THE PROCEDURE PROCgraduate

PROCgraduate marks off the axes into appropriate intervals:
never less than four or more than 30 graduations along each
azis.

The operation of PROCgraduate: the graduations

To make it easier to read values from the graphs, every fifth
graduation is made larger than the rest. PROCgraduate is in two
parts, one for the x axis and one for the y. A FOR...NEXT loop
steps along each axis from the smallest value to the largest with
a step size £STX fixed by PROCsca1e. In lines 10510 and
10540 the end of the FOR...NEXT loop is set slightly larger than
might seem necessary. Without this, there would be some
occasions when one less graduation than expected would be
drawn. As PRDCpoint actually draws a small + sign, it is equally
suitable for plotting points and for marking both axes, So the call
to PRDCpoint in lines 10530 and 10560 actually draws the
graduations.

The operation of PROCgraduate: every fifth graduation

The length of the bars of the + sign is controlled by the constant
DTA. Examination of £CBX% or £CBY% in lines 10520 and

206

10550 makes the bars extra large when every fifth division is
reached.

10500 DEF PROCgraduate
10510 FOR x=£SX TO £LX+.1*£STX STEP £STX
10520 IF £CBX%MOD5=0 THEN DTA=16 ELSE DTA=8
10530 £CBX%=£CBX%+1 :PROCpoint(x,£Y0) :NEXT x
10540 FOR y=£SY TO £LY+.1*£STY STEP £STY
10550 IF £CBY%MOD5=0 THEN DTA=16 ELSE DTA=8
10560 £CBY%=£CBY%+1 :PROCpoint(£X0,y) :NEXT y
10570 ENDPROC

THE PROCEDURE PROCmmber

PROCnumber prints a number against the first and last scale
division of each axis to indicate the scale.

The operation of PROCnumber: the location of the numbers

The numbers are located using the VDU5 statement to print at
the graphics cursor. The MOVE statement in line 10600 moves
the graphics cursor to a position sufficiently short of the end of
the x axis to allow for the length of the string which is to be
inserted. The co-ordinate conversion function is used in the
MOVE statements to convert from the range of co-ordinates
supplied by the user to the screen co-ordinates.

The operation of PROCnumber: numbering the origin

The condition in line 10620 checks to see if the graph includes
both +ve and -ve values along both axes. If so, it only prints the
numbers at the positive ends of the x and y axes.

10590 DEF PROCnumber :VDU5
10600 MOVE FN£CVX(£LX)-4*LEN(STR$(£LX)),FN£CVY(£Y0)-20
 :PRINT;£LX
10610 MOVEFN£CVX(£X0)-150,FN£CVY(£LY)+28:PRINT;£LY
10620 IF £LX>0AND£SX<0AND£LY>0AND£SY<0THEN ENDPROC
10630 MOVE FN£CVX(£SX),FN£CVY(£Y0)-20:PRINT;£SX
10640 MOVEFN£CVX(£X0)-150,FN£CVY(£SY)+30:PRINT;£SY:VDU4
10650 ENDPROC

207

THE PROCEDURE PROCpoint

PROCpoint marks a single + at the point specified when the
procedure is called.

The operation of PROCpoint: the length of the bars

The length of the bars of the + sign is set by the value held in
DTA. For most purposes a value of 8 for DTA is suitable. As this
routine is used by PROCgraduate, the size of the + is controlled
from outside the procedure.

10670 DEF PROCpoint(A,B)
10680 MOVEFN£CVX(A)-DTA,FN£CVY(B):DRAWFN£CVX(A)+DTA,
 FN£CVY(B)
10690 MOVEFN£CVX(A),FN£CVY(B)-DTA :DRAWFN£CVX(A),FN£CVY(B)
 +DTA
10700 ENDPROC

THE PROCEDURE PROCgraph

PROCgraph displays a graph consisting of points and it draws
axes, graduations and labels for the axes.

PROCgraph requires an array XO and YO. X(0) must contain
the number of values available within the arrays. X(l), X(2), ,,.
must contain the x co-ordinates and Y(1), Y(2), ... must contain
the y co-ordinates,

The operation of PROCgraph

PRDCgraph is almost entirely made up from calls to other
procedures PROCscaie, PROCaxes, PROCgraduate,
PROClabel and PROCpoint. The only other type of program
lines which it includes define a FOR...NEXT loop to call
PROCpoint for each of the points of the graph stored in X() and
Y().

10000 DEF PROCgraph
10010 PROCscale
10020 PROCaxes
10030 PROCgraduate

208

10040 PROCnumber
10050 FOR £J=1 TO X(0)
10060 DTA=8 :PROCpoint(X(£J),Y(£J))
10070 NEXT £J
10080 ENDPROC

THE PROCEDURE PROCbstln

PROCbstln calculates the straight line which will best represent
the points whose co-ordinates are held in the XO and YO arrays.

The operation of PROCbstln

It is rather meaningless to explain the operation of PROCbst1n
without also explaining the mathematics behind it - which is
beyond the scope of this book. Suffice it to say that lines 10750
and 10760 calculate the mean of the x and y co-ordinates. The
sums of the squares of the x and y co-ordinates and their
product is then calculated by lines 10770 to 10840. The
coefficients M and C are then calculated in line 10850 and 10860
for the equation: Y =MX+C

Line 10880 prints up the equation while line 10890 draws the
best straight line.

10720 DEF PROCbstln
10730 LOCAL C,M,I,XX,YY,MEANX,MEANY,sumX,sumY,sumXY,sumYY,
 sumXX,MINX,MAXX
10740 XX=0 :YY=0:
10750 FOR I=1 TO X(0) :sumX=sumX+X(I) :sumY=sumY+Y(I)
 :NEXT I
10760 MEANX=sumX/X(0) :MEANY=sumY/X(0)
10770 MINX=X(1):MAXX=MINX:sumXX=0:sumYY=0:sumXY=0:XX=0:YY=0
10780 FOR I=1 TO X(0)
10790 sumXX=sumXX+X(I)*X(I) :sumYY=sumYY+Y(I)*Y(I)
10800 sumXY=sumXY+X(I)*Y(I)
10810 XX=XX+(X(I)-MEANX)^2 :YY=YY+(Y(I)-MEANY)^2 :XY=XY+
 (X(I)-MEANX)*(Y(I)-MEANY)
10820 IF MINX>X(I) THEN MINX=X(I)
10830 IF MAXX<X(I) THEN MAXX=X(I)
10840 NEXT I
10850 M=(X(0)*sumXY-sumX*sumY)/(X(0)*sumXX-sumX*sumX)
10860 C=(sumY*sumXX-sumX*sumXY)/(X(0)*sumXX-sumX*sumX)

209

10870 @%=&20204 :VDU4
10880 PRINT TAB(10,0);"Y=";M;"*X+";C;TAB(10,1);"Cor.
 coef. = ";XY/SQR(XX*YY)
10890 MOVE FN£CVX(£SX),FN£CVY(M*£SX+C) :DRAW FN£CVX(£LX),
 FN£CVY(M*£LX+C)
10900 @%=&10 :ENDPROC

THE PROCEDURE PROCnamex

PROCnamex names the x axis by printing the required wording
along it.

The operation of PROCnamex: positioning the name

The wording is positioned as far to the right as possible using the
length of the string as a guide as to where to start printing. The
procedure uses VDU5 for printing at the graphics cursor to
position each character.

10980 DEF PROCnamex(£Hname$)
10990 MOVE FN£CVX(£LX)-32*LEN(£Hname$)-64,FN£CVY(£Y0)-52
 :VDU5:PRINT£Hname$:VDU4
11000 ENDPROC

THE PROCEDURE PROCnamey

PROCnamey names the y axis by printing the required wording
along it.

The operation of PROCnamey: positioning the name

The procedure does not check whether the name is short
enough to fit in the available space and so there may be some
odd effects if the name is too long. The procedure uses VDU5 for
printing at the graphics cursor to position each character. Hence
there is a FOR---NEXT loop set up in line 10930, which steps

210

from 1 to the length of the string. Line 10940 picks off the letters
of the name, one by one.

10920 DEF PROCnamey(£Vname$):VDU5
10930 FOR £A=1 TO LEN(£Vname$)
10940 MOVE FN£CVX(£X0)-60,FN£CVY(£LY)-£A*32-32:
 PRINTMID$(£Vname$,£A,1)
10950 NEXT £A:VDU4
10960 ENDPROC

THE PROCEDURE PROCchr

PROCchr draws a single character at the point specified. It is
called by a line such as:

100 PROCchr(X,Y,S$,AN,SC)

where:

X,Y are the co-ordinates of the bottom left-hand corner of the
final character when viewed the normal way up.
S$ is the character to be drawn.
SC is how many times larger than normal the character is to be
drawn.
AN is the angle at which the character is to be written. 0
corresponds to writing across the screen, while a positive angle
measured in radians corresponds to the character being rotated
around anticlockwise.

The first numbers representing the x and y co-ordinates must
be in screen co-ordinates. If PROCscale has already been
called, you can use x in your own co-ordinates, provided you
replace x by FN£CVX(x), and similarly for y.

The operation of PROCchr: copying the pixels

The enlarged writing clearly shows the pixels from which the
normal character set is made up. This is because the writing is
produced by copying the normal character set, together with
scaling and rotation as required.

The definitions for all the printable characters are stored in
memory as eight numbers per character. These numbers hold
the character definitions in precisely the same form as for the

211

programmable characters (see Chapter 4). The call to &FFF1 in
line 9050 instructs the operating system to write a copy of the
character definition into memory at position M. M is the address
of 8 bytes of memory, reserved at the end of the program by line
9040. The FOR ... NEXT loops between lines 9040 and 9080
examine the character definition and write an enlarged pixel
wherever it should be lit.

9000 DEF PROCchr(X,Y,S$,AN,SC)
9010 LOCAL CO1,CO2,SI1,SI2,LX,LY,RX,RY,XX,YY
9020 CO1=COS(AN):SI1=-SIN(AN)
9030 CO2=COS(PI/2-AN):SI2=SIN(AN+PI/2)
9040 £F=£F+1:IF £F=1 THEN DIM M 8 ELSE £F=2
9050 A%=10:X%=M MOD256:Y%=M DIV256:?M=ASC(S$):CALL(&FFF1)
9060 FOR XX=0TO7 :FOR YY=0TO7
9070 IF ?(M+8-YY) AND 2^(7-XX) THEN PROCpixel
9080 NEXT YY,XX
9090 ENDPROC
9100 DEF PROCpixel
9110 LX=XX-.5:RX=XX+.5:LY=YY-.5:RY=YY+.5
9120 MOVE X+SC*(LX*CO1+LY*SI1),Y+SC*(LY*SI2+LX*CO2)
9130 MOVE X+SC*(RX*CO1+LY*SI1),Y+SC*(LY*SI2+RX*CO2)
9140 PLOT 85,X+SC*(LX*CO1+RY*SI1),Y+SC*(RY*SI2+LX*CO2)
9150 PLOT 85,X+SC*(RX*CO1+RY*SI1),Y+SC*(RY*SI2+RX*CO2)
9160 ENDPROC

THE PROCEDURE PROCmessage

PROCmessage writes a message on the screen.
It is called by a line such as:

PROCmessage(X, Y ,S$, AN, SC)

X, Y are the co-ordinates of the bottom left-hand corner of the
first character when viewed the normal way up.
S$ is the message to be drawn.
AN is the angle at which the message is to be written, It is
slightly unusual in that 0 corresponds to writing straight up the
screen, while a positive angle measured in radians corresponds
to the message being rotated around anticlockwise.
SC is how many times larger than normal the character is to be
drawn.

212

The operation of PROCmessage: printing the characters

Lines 9220 and 9230 calculate the position at which the
character is to be drawn. A call to PROCchr in line 9240 then
displays the next character.

9180 DEFPROCmessage(X,Y,S$,AN,SC)
9190 LOCAL I,XP,YP
9200 AN=AN+PI/2
9210 FOR I=1 TO LEN(S$)
9220 XP=SC*(COS(AN)*8*(I-1))
9230 YP=SC*(SIN(AN)*8*(I-1))
9240 PROCchr(X+XP,Y+YP,MID$(S$,I,1),AN,SC)
9250 NEXT I
9260ENDPROC

THE PROCEDURE PROCcurve

PROCcurve prints a message on the screen round the arc of a
circle.

It is called by a line such as:

PR0Ccurve(X,Y,R,SA,FA,S$,SC)

where:

X, Y are the co-ordinates of the bottom left-hand corner of the
final character when viewed normal way up.
R is the radius of the circle round which the writing is to appear.
SA is the angle round the circle at which writing is to begin. This
is slightly unusual in that 0 corresponds to a position straight
above the centre of the circle, while a positive angle measured in
radians corresponds to the starting position rotating around
anticlockwise.
FA is the angle round the circle at which writing is to finish.
S$ is the message to be drawn.
SC is how many times larger than normal the character is to be
drawn.

213

The operation of PROCcurve

Lines 9320 and 9330 calculate the position for the next character
to be drawn, while a call to PROCchr in line 9340 draws it on the
screen.

9280 DEFPROCcurve(X,Y,R,SA,FA,S$,SC)
9290 LOCAL I,XP,YP
9300 SA=SA+PI/2:FA=FA+PI/2
9310 FOR I=1 TO LEN(S$)
9320 XP=X+R*COS(SA-(SA-FA)*(I-1)/(LEN(S$)+1))
9330 YP=Y+R*SIN(SA-(SA-FA)*(I-1)/(LEN(S$)+1))
9340 PROCchr(XP,YP,MID$(S$,I,1),SA-(SA-FA)*(I-1)/
 (LEN(S$)+1)-PI/2,SC)
9350 NEXT I
9360 ENDPROC

THE PROCEDURE PROChisto

PROChisto draws bars of a histogram of height equal to the
values held in the YO array when converted to screen co-
ordinates. So PROCscale has to be called before PR0Chisto.

The operation of PROChisto: the bar position

The values held in the X() array are taken as the co-ordinates of
the right-hand side of the bars. The width of the bars is made
equal to the step size along the x axis which is held in the
variable £ST, after PROCsca[e has been called. Thus the x co-
ordinates to the left and right of the bars and the y co-ordinate of
the top and bottom of the bars are worked out in lines 12040 to
12060. Then lines 12100 and 12110 draw up the bars. The
colour for each bar is alternately I and 2 as set by fine 12030.

12000 DEF PROChisto
12010 £C=1
12020 FOR £A=1 TO X(0)-1
12030 GCOL0,£C :£C=£C+1 :IF £C>2 THEN £C=1
12040 £XL=FN£CVX(X(£A)-£IN) :£XR=FN£CVX(X(£A))
12050 £YH=FN£CVY(Y(£A))
12060 £YB=FN£CVY(0)
12070 MOVE £XL,£YB :MOVE £XL,£YH

214

12080 PLOT 85,£XR,£YB :PLOT 85,£XR,£YH
12090 GCOL 0,3
12100 MOVE £XL,£YB :DRAW £XR,£YB
12110 DRAW £XR,£YH :DRAW £XL,£YH :DRAW £XL,£YB
12120 NEXT £A
12130 ENDPROC

THE PROCEDURE PROC3Dhisto

PROC3Dhisto draws up solid-looking bars for a histogram. This
is particularly useful when two histograms need to be
superimposed, one in front of the other.

The operation of PROC3Dhisto

The principle is very similar to that for PROChisto in the use of
the XQ array to hold the right hand co-ordinate of the bars and
the YO array to hold the bar heights. The front of the bar is
plotted by lines 12200 and 12210, as two triangles to give a solid
block of colour; the side is produced by lines 12230 and 12240;
and the top is filled in by lines 12260 and 12270. The set of DRA
W statements in lines 12290 to 12340 then mark out the edges
of the blocks to make the picture more distinct.

12150 DEF PROC3Dhisto(C)
12160 FOR £A=1 TO X(0)-1
12170 £XL=FN£CVX(X(£A)-£IN) :£XR=FN£CVX(X(£A))
12180 £YB=FN£CVY(0) :£YH=FN£CVY(Y(£A))
12190 GCOL 0,C
12200 MOVE £XL,£YB :MOVE £XL,£YH
12210 PLOT 85,£XR,£YB :PLOT 85,£XR,£YH
12220 GCOL 0,3-C
12230 PLOT 85,£XR+64,£YB+32
12240 PLOT 85,£XR+64,£YH+32
12250 MOVE £XR,£YH
12260 PLOT 85,£XL+64,£YH+32
12270 PLOT 85,£XL,£YH
12280 GCOL 0,3
12290 MOVE £XL,£YH:DRAW £XL+64,£YH+32
12300 DRAW £XR+64,£YH+32

215

12310 DRAW £XR,£YH:DRAW £XL,£YH
12320 DRAW £XL,£YB:DRAW £XR,£YB
12330 DRAW £XR,£YH:DRAW £XR+64,£YH+32
12340 DRAW £XR+64,£YB+32:DRAW£XR,£YB
12350 NEXT £A
12360 ENDPROC

THE PROCEDURE PROCpie

PROCpie draws up a pie chart from data stored in the arrays
£SO and £N$(). PROCpie is quite different from the rest and so
we chose different array names to help emphasize this point.

The operation of PROCpie

The relative size of each sector of the pie-chart is held in £SO
while the total sum of these relative sizes is held in T. The first
part of the procedure steps through all the sectors (the
FOR..•NEXT loop between lines 13030 and 13090). It calls on
the sub-procedure PR0Csector (see later) to draw each sector
while supplying this sub-procedure with the starting and ending
fraction of the whole that the sector should occupy,

Only three colours are used for the pie chart, two being used
for alternate sectors with the last sector always being in the third
colour. This ensures that even for an even number of sectors, no
two sectors have the same colour (see lines 13050 and 13060.)

13000 DEF PROCpie(R%,X%,Y%,T)
13010 LOCAL L%,S,W
13020 W=0:S=0:C%=0
13030 FOR L%=1 TO £NS
13040 W=W+£S(L%)
13050 C%=C%+1:IFC%>2THENC%=1
13060 IFL%=£NS THENC%=3
13070 PROCsector(C%,S/T,W/T,R%,X%,Y%)
13080 S=W
13090 NEXTL%
13100 PROClabel(R%,X%,Y%,T)
13110 ENDPROC

216

The PROCEDURE PROCsector

PROCsector is a subsidiary part of PROCpie and draws an
individual sector.

The operation at PROCsector

PROCsector sets the colour for the sector in line 13150. Then it
does an initial MOVE to the outside radius at the start of the
sector. Line 13160 calculates this initial position by adding the
projection of the radius in first the x and then the y direction to
the co-ordinates for the centre. This first MOVE, followed by a
second one to the centre of the pie chart in line 13180, is
necessary as extensive use is made of the triangular form of the
PLOT statement. This occurs in line 13190 which is now within a
FOR...NEXT loop which moves the x and y co-ordinates of the
PLOT85 statement in line 13190 round the circumference of the
pie chart. This results in many calls to the triangular fill form of
the PLOT statement and causes the sector to be filled in the
chosen colour.

13130 DEF PROCsector(C%,S,F,R%,X%,Y%)
13140 LOCAL L
13150 GCOL0,C%
13160 MOVE COS(2*PI*S)*R%+X%,SIN(2*PI*S)*R%+Y%
13170 FOR L= 2*PI*S TO 2*PI*F STEP 0.1
13180 MOVE X%,Y%
13190 PLOT 85,COS(L)*R%+X%,SIN(L)*R%+Y%
13200 NEXTL
13210 PLOT85,COS(2*PI*F)*R%+X%,SIN(2*PI*F)*R%+Y%
13220 ENDPROC

THE PROCEDURE PROClabel

PROClabel is solely for labelling pie-charts. It is for this reason
217

that we have chosen it to use the same variation of arrays £S()
and £N$() as for PROCpie.

The operation of PROClabel

PROClabel positions each label to start or end at a position just
outside the pie chart and off the centre of the particular sector
referred to. This means that the main calculation, which occurs in
line 13290, has to calculate the projection of a length slightly
longer than the radius of the pie-chart. It then adds this to the co-
ordinates of the centre of the pie-chart to find the position for the
label. The radial position chosen for the label corresponds to the
centre of that particular sector, as determined in line 13270. Here
B represents the fraction of the pie-chart occupied by previous
sectors, and is updated in line 13310 after each label has been
printed.

Since each label is printed by a normal PRINT statement, it
is necessary to make sure that for labels on the left of the pie-
chart that the printing starts at a position displaced to the left
according to the length of the label. This offset leftwards is
calculated in line 13280.

13240 DEF PROClabel(R%,X%,Y%,T)
13250 VDU5:B=0:R%=R%+64
13260 FOR A=1 TO £NS
13270 OX=0:H=(B+£S(A)/2)*2*PI/T
13280 IFH<PI*1.5 ANDH>PI*.5 THENOX=-(LEN(£N$(A))*32)
13290 MOVE COS(H)*R%+X%+OX,SIN(H)*R%+Y%
13300 PRINT£N$(A)
13310 B=B+£S(A)
13320 NEXTA
13330 VDU4
13340 ENDPROC

THE TELETEXT PROCEDURE PROCplot

Teletext graphics is so much more crude than the other graphics
modes that we decided to plot individual points on the screen as
single dots rather than as the + signs used in the ordinary
graphics procedures. This point plotting is achieved by a
PROCplot which is unique to Teletext. It is in place of
PROCpoint for the normal graphics modes. There is still the
equivalent of PROCpoint for drawing a small + sign as this was

218

required when graduating the axes (see later). If you should wish
to plot a graph with a + sign to represent each point then use
PROCpoint in line 10060.

11200 DEFPROCplot(X,Y)
11210 IF X>73 OR X<0 THEN ENDPROC
11220 IF Y>74 OR Y<0 THEN ENDPROC
11230 LOCAL A%,C%
11240 PRINT TAB(X DIV 2,24-Y DIV 3);
11250 C%=(X AND1)+(Y MOD3)*2
11260 C%=VAL(MID$("166404080102",C%*2+1,2))
11270 A%=135
11280 VDU (USR &FFF4 AND &FF00) DIV 256 OR C% OR 128
11290 ENDPROC

THE TELETEXT PROCEDURE PROCdraw

This procedure is unique to Teletext, and is required to do the
equivalent of the MOVE and DRAW statements of ordinary
graphics. It relies on Pythagoras's theorem to work a way
between the two points whose co-ordinates are given in the
procedure call.

11310 DEFPROCdraw(X1,Y1,X2,Y2)
11320 PROCplot(X1,Y1) :PROCplot(X2,Y2)
11330 LOCAL X,Y,L,A
11340 X=(X2-X1) :Y=(Y2-Y1)
11350 L=SQR((X1-X2)^2+(Y1-Y2)^2)
11360 FOR A=1 TO L
11370 IF L<>0 THEN PROCplot(X1+A*X/L,Y1+A*Y/L)
11380 NEXT A
11390 ENDPROC

THE TELETEXT PROCEDURE PROCclg

This procedure is unique to Teletext. Block graphics may only be
displayed after certain control codes to the left of any line. This
procedure writes these control codes all the way down the left-
hand side of screen.

11050 DEFPROCclg(C,G)
11060 VDU 28,0,24,39,0,23,0,10,32;0;0;0;
11070 LOCAL CH,GH,Y
11080 CH=128+C : CLS

219

11090 IF C<1 OR C>7 THEN CH=132
11100 GH=144+G
11110 IF G<1 OR G>7 THEN GH=156
11120 FOR Y=0 TO 24
11130 PRINT TAB(0,Y);
11140 VDU CH,157,GH
11150 NEXT Y
11160 VDU 28,3,24,39,0
11170 PRINT TAB(0,0);
11180 ENDPROC

THE TELETEXT PROCEDURE PROCscale

The Teletext version of PROCscale is very similar to the ordinary
version. The differences are in lines 10240 and 10250 which
define the conversion function from numbers supplied by the
user's program to screen co-ordinates.

THE TELETEXT PROCEDURE PROCgraph

The Teletext version of this procedure is identical to the ordinary
version, except that a call to PROCplot in line 1060 replaces the
call to PROCpoint.

10000 DEF PROCgraph
10010 PROCscale
10020 PROCaxes
10030 PROCgraduate
10040 PROCnumber
10050 FOR £J=1 TO X(0)
10060 PROCplot(FN£CVX(X(£J)),FN£CVY(Y(£J)))
10070 NEXT £J
10080 ENDPROC

THE TELETEXT PROCEDURE PROCaxes

The Teletext version of PRDCaxes is different from the ordinary
version because it involves writing on the screen. In place of the
MOVE and DRAW statements of the normal graphics
procedures, it calls upon a specially written PROCdraw

220

procedure in lines 10460 and 10470.

10420 DEF PROCaxes
10430 £X0=0 :£Y0=0
10440 IF £SX>0 THEN £X0=£SX ELSE IF £LX<0 THEN £X0=£LX
10450 IF £SY>0 THEN £Y0=£SY ELSE IF £LY<0 THEN £Y0=£LY
10460 PROCdraw(FN£CVX(£SX),FN£CVY(£Y0),FN£CVX(£LX),FN£CVY(£Y0))
10470 PROCdraw(FN£CVX(£X0),FN£CVY(£SY),FN£CVX(£X0),FN£CVY(£LY))
10480 ENDPROC

THE TELETEXT PROCEDURE PROCgraduate

The Teletext version of PROCgraduate is identical to the
ordinary version. The PROCpoint which it calls upon in line
10530 and 10560 must, however, be the special Teletext one.

10500 DEF PROCgraduate
 ...
 ...
10560 £CBY%=£CBY%+1 :PROCpoint(£X0,y) :NEXT y

THE TELETEXT PROCEDURE PROCnumber

Since PROCnumber writes on the Teletext screen, it is
completely different from the ordinary version. The Teletext
screen is set up with the assumption that the whole screen will
contain only graphics. To write text at a particular position,
PROCplot (in line 10600 and elsewhere) positions where to
write. This procedure also writes a single graphics dot on the
screen which is erased by printing code 127 to delete the last
character written. Code 134, in Teletext, switches on cyan
coloured writing. Next comes whatever number is required for
the axes, followed by code 147 to turn the graphics back on.

Each code to turn from graphics to normal writing or from
normal writing to graphics occupies one character position on the
screen. As a result it is impossible to write long numbers against
the y axis without sometimes overwriting part of the axis itself.

This is yet another manifestation of the insuperable problems
of the poor resolution which is available with Teletext.

221

10590 DEF PROCnumber
10600 PROCplot(FN£CVX(£LX)-LEN(STR$(£LX)),FN£CVY(£Y0)-3)
 :PRINTCHR$127;CHR$134;£LX;CHR$147;
10610 PROCplot(FN£CVX(£X0)-7,FN£CVY(£LY)+4):
 PRINTCHR$127;CHR$134;£LY;CHR$147;
10620 IF £LX>0AND£SX<0AND£LY>0AND£SY<0 THEN ENDPROC
10630 PROCplot(FN£CVX(£SX)-7,FN£CVY(£Y0)-3):
 PRINTCHR$127;CHR$134;£SX;CHR$147;
10640 PROCplot(FN£CVX(£X0)-7,FN£CVY(£SY)):
 PRINTCHR$127;CHR$134;£SY;CHR$147;
10650 ENDPROC

THE TELETEXT PROCEDURE PROCpoint

The Teletext version of PROCpoint is different from the ordinary
Version. It makes considerable use of the Teletext procedure
PROCdraw (see later), referred to in lines 10680 and 10690,
which draws a line between two points.

11310 DEFPROCdraw(X1,Y1,X2,Y2)
11320 PROCplot(X1,Y1) :PROCplot(X2,Y2)
11330 LOCAL X,Y,L,A
11340 X=(X2-X1) :Y=(Y2-Y1)
11350 L=SQR((X1-X2)^2+(Y1-Y2)^2)
11360 FOR A=1 TO L
11370 IF L<>0 THEN PROCplot(X1+A*X/L,Y1+A*Y/L)
11380 NEXT A
11390 ENDPROC

THE TELETEXT PROCEDURE PROCbstln

The Teletext version of PROCbstln is identical to the ordinary
version except for the line 10910 which prints on the screen and
line 10920 which calls on PROCdraw to draw the best straight
line.

10910 PRINT TAB(9,0);CHR$135;"Y=";M;"*X+";C;CHR$147;TAB(
 9,1);CHR$135;"Cor. coef. = ";XY/SQR(XX*YY);CHR$147
10920 PROCdraw(FN£CVX(£SX),FN£CVY(M*£SX+C),FN£CVX(£LX),
 FN£CVY(M*£LX+C))

222

THE TELETEXT PROCEDURE PROCnamey

The Teletext version of PROCnamey is different from the
ordinary version. It writes the name of the y axis one character at
a time in a vertical column. PR0Cplot positions the writing. This
also writes a single graphics point, which is rubbed out by
printing character code 127, followed by code 135 , for white
writing, followed in turn by the single letter required. The
graphics is then turned back again for the rest of the line with
code 147 for yellow graphics.

10950 DEF PROCnamey(£Vname$)
10960 FOR £A=1 TO LEN(£Vname$)
10970 PROCplot(FN£CVX(£X0)-8,FN£CVY(£LY)-£A*3+3):PRINT
 CHR$127;CHR$135;MID$(£Vname$,£A,1);CHR$147;
10980 NEXT £A
10990 ENDPROC

THE TELETEXT PROCEDURE PROCnamex

The Teletext version of PROCnamex is different from the
ordinary version. It is also simpler in that the whole name is
written on one line. This means that the process can be achieved
in the one line 11210 by first calling on PROCplot to get the
position to start printing. The graphics spot so produced is then
rubbed out using code 127, followed by code 135 for white
writing. The name is then merely printed next using a PRINT
statement. This is followed by code 147 to turn yellow graphics
back on again. The position at which to begin the writing is
calculated by subtracting the length of the string to be written
from the co-ordinates of the end of the axis. Before doing this
subtraction in line 11020, the length of the string is scaled to
allow for the two graphics spots which occur in the length
occupied by one letter.

11010 DEF PROCnamex(£Hname$)
11020 PROCplot(FN£CVX(£LX)-2*LEN(£Hname$)-3,
 FN£CVY(£Y0)-6):VDU127,135:PRINT£Hname$;CHR$147;
11030 ENDPROC

223

A
p

p
en

d
ix 3 T

h
e A

S
C

II co
d

es
Units

0 1 2 3 4 5 6 7 8 9

0 SOH STX ETX EOT ENQ ACK BEL BS HT

10 LF VT FF CR SO SI DLE DC1 DC2 DC3

20 DC4 NAK SYN ETB CAN EM SUB ESC F5 GS

T 30 RS US SP ! '' # $ % & '

40 () * + , - . / 0 1

e 50 2 3 4 5 6 7 8 9 : ;

60 < = > ? @ A B C D E

n 70 F G H I J K L M N O

80 P Q R S T U V W X Y

s 90 Z [,] ,_ a b c

100 d e f g h i j k l m

110 n a p q r s t u v w

120 x y z { | } ~

Decimal Values of ASCII Characters

224

Index
absolute colour numbers 26,61,65
addressable points 11-15
addressing pixels 11-15
animation 39,60-72
areas,

coloured 30-33
filling 33
arrays 105-106

ASCII code 46-47 ,224
axes,

drawing 106-108,190,196,205-
206,221

graduating 106-108,190-
191,196,206-207,221

naming 106-108,115-
116,192,198,210,223

numbering 106-
108,191,196,207,221-222

scaling 106-108,189,196,200-
205,220

background colour,
graphics 28,31-33
text 27,169

BBC Microcomputer, two models 3,9-ll
binary number 45-46,65,68-69
binomial distribution 164
block graphics 171-1 72

cassette 4-7
characters per line l0
characters, programmable 42-59

coding 45-47
designing 44-45
multicoloured 55
printing 47-49

CHR$ 47,169
CLG 28
clock 34,39
codes,

cursor control 52
PLOT 31-33
ASCII 46-47 ,224
programmable characters 45-47
Teletext 169-171

COLOUR 27 ,61
colour, 9-10,25-29

areas 30-33
background 27,28,31-33,169
codes for Teletext 168-169,l71
filling 33
flashing 26,169
foreground 27 ,28,31-33
logical inverse 31
text 27,168

colour number,
absolute 26,61,65
default 26,65
redefinable 26,28,61-62

COMP 108,186
composite figures 51-59,1 73-175
correlation coefficient 124,127
cursor control codes 52
cursor removal 113
curves 24,131-142

DATA 104-105,113-115,117
data,

inputting 104-105,112-115,117
storing 105-106

default colour number 26,65
DIM 105-106
*DISK 5
dots 31,32
double height characters I 70

225

DRAW 19-23,32
drawing,

axes 106-108,190,196,205-206,221
best straight line 106-108,123-

130,190,196,209-210,222
composite figures 51-59
curves 24,131-142
functions 131-142
graphs 106-108,111-

122,189,196,208,220
histograms 143-153
fines 19-23, 31-33,124,127
perspective 82-97
pie charts 154-160
points 31-33,106-108,191,197,207-

208,220
programmable characters 42-59
rotating objects 84-85
shapes 30-41
three dimensional surfaces 73-81

drawing in
background colour 28,31-33
foreground colour 28,31-33
logical inverse colour 31

ERL 181
EVAL 135-136
*EXEC 5,6

figures, composite 51-59,173-175
fi1ling,

areas 30-33
to a line 31

flashing colours 26
flashing text 26,169
foreground colour 27 ,2B
functions 131-142
*FX0 33
*FXl9 64

Gaussian distribution 161,162
GCOL 28,61
graphics ,

background colour 28,31-33
block 171-172
control codes for Teletext 171

graphics,
foreground colour 28,31-33
graphs 111-122

hidden line removal 78-79,90
HISTO 187,192-193
histograms 143-153

solid-looking 148-152

images, overlapping 65-68
INPUT 104,118
inputting data 104-105,112-115,118

joining programs 4-7

keys, user-definable 62-63

labels 115-116,146
lines 19-23

best straight 106-108,123-130
equation of 124,127
removal 78-79,90

lines per screen 9-10
LISTO7 186
loading programs 4-7
logical operations 68-69

mean 161
memory 9-11,186
model A 3,11,187
model B 3,9,187
MODE 11
modes, 9-19

characters per line 9-10
colours 9-10,26
lines per screen 9-10
memory 9-10
pixel size 11-19
spots horizontally 9-10
spots vertically 9-10
Teletext (mode 7) 9-10,167-185

MOVE 19-23,32
multicoloured characters 55

normal distribution 161,162
number,

absolute colour 26,61,65
redefinable colour 26,28,61-62
binary 45-46,65,68-69

operating system 31,32,33
origin 119-120
overlapping images 65-68

perspective 82-97
PIE 187
pie charts 154-160
pixels 11-19
PLOT 30-33,35-38

codes 31-33
points,

addressable 11-15
drawing 31-33,106-108,191,

226

197,207 -208,222
removal 32

procedures,
composite 103,108,178-180,186-

187
core 106-108
graphics 2,99-100, 186-223
PROCaxes 106-108,186,187,190,19

6,205-206,221
PROCbstln 106-108,124,125,

186,187,191,197,209-2 10,222
PROCchr 100,103,186,188,211-212
PROCclg 179,187,198-199,219-220
PROCcurve 100,103,186,188-189,

213-214
PROCdraw 179,187 ,199,219
PROCgraduate 106-

108,186,187,190-191,1 96,206-
207,221

PROCgraph 106-108,186,187,
189,194,208,220

PROChisto 187 ,192-193,214-215
PROC3Dhisto 143,187 ,193, 215-

216
PROCmessage 100,101-

103,186,188,2 12-2 13
PR0Cnamex 106-108,186,187,192,

198,210,223
PROCnamey 106-

108,186,187,192,198,210-
2111,223

PROCnumber 106-
108,186,187,191,196,207,221-
222

PR0Cpie 156,187,193,216-218
PROCplot 179,187,199,218-219
PROCpoint 106-

108,186,187,191,197,207-
208,222

PROCscale 106-
108,186,187,189,195,200-
205,220

Teletext 178-180,194-199, 219-221
programmable characters 42-59

coding 45-47
designing 44-45
multicoloured 55
printing 47-49

redefinable colour 26,28,61-62
REPORT 180
ripple surfaces 73-81
rotation 84-85
saving programs 4-7
scaling 74-75,85,106-108,189,196,200-

205,220
shapes 30-41
simultaneous equations 141
speeding up graphics 24,34,39,81
*SPOOL 4-7
spots horizontally 9-10
spots vertically 9-10
standard deviation 161,162
standard error on the mean 161,162
STEP 24,76,81
statistics 161-166

TAB 55,115
*TAPE 5
TCOMP 179,187
Teletext 9-10,167-185

procedures 178-180,194-199,219-
223

TEXT 103,186
text,

background colour of 27,169
colour control for Teletext 168-169
double height 170
enlarged 100
flashing 169
foreground colour of 27
labels 115-116,146
rotated 100

three dimensional effects 73-81,82-
95,143,148

TIME 34,39
titles 115-116,
triangular fill 31-33

user-definable keys 62-63

VDU4 55
VDU5 55
VDU19 62
VDU20 62
VDU23 46,50,52
VDU29 75,85

writing,
background colour of 27,169
colour control codes for
Teletext 168-169
double height 170
enlarged 100
flashing 169
foreground colour of 27
rotated 100

XOR 68-69

227

The Authors

Neil Cryer obtained his PhD in
physics at the University of Exeter in
1981, and is now a lecturer at
Chelsea College, University of
London where he teaches physics
and microprocessor applications. He
is a joint founder of the West London
Personal Computer Club and a
committee member of the
Association of London Computer
Clubs. He is a regular contributor of
articles and reviews in computing
magazines.

Pat Cryer obtained her BSc in
physics and mathematics at the
University of Exeter and her PhD in
educational studies at the University
of Surrey. She is active in the
education and training of adults in
aspects of teaching and learning. ln
this connection she has been a
visiting lecturer at the University of
Malaya and at Makerere University,
Uganda and she is an honorary
research fellow in the Institute of
Educational Development at the
University of Surrey. Her specialism
is education and training through
printed materials. She has
undertaken various consuitancies on
training materials, including one to a
major international computing
company, and she acts as co-
ordinator and editor for the Society
for Research into Higher Education
working group to produce materials
to support the training of university
lecturers.

Andrew Cryer has had articles
published in Acorn User. He is
currently in the sixth form at
Burlington Danes School,
Hammersmith, studying computing,
physics and mathematics.

228

