INTERFACING
g s

BBEC

MICROCOMPUTER

Interfacing the BBC Microcomputer

General Editor: Tan Birnbaum (General Adviser (Microelectronics in Education)
Education Department, Humberside County Council)

Advanced Graphics with the Acorn Electron
Ian O. Angell and Brian J. Jones
Advanced Graphics with the BBC Model B Microcomputer
Ian O. Angell and Brian J. Jones
Interfacing the BBC Microcomputer
Brian Bannister and Michael Whitehead
Assembly Language Programming for the Acorn Electron
Ian Birnbaum
Assembly Language Programming for the BBC Microcomputer (second edition)
Ian Birnbaum
Using Your Home Computer (Practical Projects for the Micro Owner)
Garth W. P. Davies
Beginning BASIC with the ZX Spectrum
Judith Miller
Using Sound and Speech on the BBC Microcomputer
Martin Phillips

Other books of related interest

Advanced Graphics with the IBM Personal Computer
Ian O. Angell

Programming in Z80 Assembly Language
Roger Hutty

Interfacing the
BBC Microcomputer

Brian Bannister
Michael Whitehead

M

MACMILLAN

© Brian Bannister and Michael Whitehead 1985

All rights reserved. No reproduction, copy or transmission
of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied
or transmitted save with written permission or in accordance
with the provisions of the Copyright Act 1956 (as amended).

Any person who does any unauthorised act in relation to
this publication may be liable to criminal prosecution and
civil claims for damages.

First published 1985

Published by

Higher and Further Education Division
MACMILLAN PUBLISHERS LTD

Houndmills, Basingstoke, Hampshire RG21 2XS
and London

Companies and representatives

throughout the world

Printed in Great Britain by
Camelot Press Ltd,
Southampton

British Library Cataloguing in Publication Data
Bannister, B.R.
Interfacing the BBC Microcomputer.
(Macmillan microcomputer books)
1. Computer interfaces 2. BBC microcomputer
I. Title
001.64'04 TK7887.5

ISBN 0-333-37157-7

Contents

Preface

1 Input-Output Facilities
2 The User Port

3 Analogue Signal Handling
4 The 1 MHz Bus

5 Some Applications

Appendix A: Transistor-Transistor Logic
Appendix B: Machine Code Programming
Appendix C: Input-Output Memory Map
Appendix D: Data Sheets

Appendix E: Summary of Connections

Index

vii

19
43
57
76

102
107
111
112
148

151

Preface

The BBC microcomputer is a very versatile machine in its own right: it has
excellent facilities for problem solving, data handling, games, and graphics and
sound generation. With the addition of a printer and a disc (or cassette) unit,
and perhaps other standard peripheral devices, the computer forms the core of
a powerful system. However, an extremely flexible system can be created by
anyone who can make use of the wide-ranging input and output facilities pro-
vided by the manufacturer, to add their own circuits, or to interact with other
systems.

Initially, having acquired the computer, or at least the use of it, a user will be
concerned with driving the computer itself. However, having become conversant
with BASIC, and possibly machine code programming, the more imaginative
user will see many possible applications, most of which will require the addition
of external devices. In the widest sense, these applications involve the elements
of control: taking readings from some equipment, or sensing the settings of
switches or relays; controlling indicator lights or the position of a stepper motor;
and so on. By bringing the two operations of input and output together, we can
then automatically detect certain conditions and, perhaps, sound a warning, or
even adjust the input or output settings according to pre-determined rules.

This book explains how to set about building such systems. It explains the
interfacing features that are available on the BBC micro and how to make the
best use of them in a wide range of applications. Suitable devices are introduced
and techniques for using them are explained, with practical examples chosen
to illustrate the basic ideas. These can then be extended in many ways, limited
only by the reader’s imagination (and pocket!).

The book does not assume a high level of technical ability, although an under-
standing of transistor action is desirable. Certainly staff and students in schools
and colleges will find the book most useful, and it should present no difficulties
to the ‘advanced’ hobbyist.

Components used in the circuits described are all relatively cheap and are
available from recognised distributors such as Farnell Electronic Components
Ltd and RS Components Ltd. Program listings with comments are included
throughout, but the comments should be omitted when copying the programs
for use in the computer. The logic symbols used are ANSI Mil. Spec. symbols as
used by Acorn Computers Ltd.

vii

viii Preface

‘Acorn’ is a registered trademark of Acorn Computers Ltd. Throughout the
book, the interpretation of published material is the authors’ own and does not
imply any endorsement by Acorn Computers Ltd.

We gratefully acknowledge permission from NEC Electronics (UK) Ltd,
Synertek Inc. and Texas Instruments Ltd to publish the data sheets contained
in Appendix D. Finally we owe thanks to Don Whitehead for his helpful com-
ments, and to Debbie Eaton for typing the manuscript.

The University, Hull B. R. BANNISTER
1984 M. D. WHITEHEAD

1 Input-Output Facilities

The BBC microcomputer has many advanced features that are not normally
provided on computers of this size. Three general principles seem to have been
foremost in the drawing up of the design specification:

To make programming of the computer as easy and flexible as possible by
providing an enhanced BASIC and the ability to make use of multiple programs
and assembler language sections.

To include many of the features found only in rudimentary form on other micro-
computers, such as high-resolution colour graphics, complex sound generation,
programmable keys, and so on.

To provide extensive interfacing capability, allowing the computer to form part
of an extended system communicating with discs, printers, second processors,
Teletext and even other computers via Econet, and able to accept new devices
which may be produced as the technology develops.

It is the third area, of interfacing, with which we are concerned and we shall see
that there are many ways in which the user can add extra circuitry for specific
purposes, so taking full advantage of the flexibility that has been built in. This
first chapter summarises the input and output facilities provided on the BBC
model B microcomputer, but we first set the scene by considering some of the
fundamental ideas that are necessary to the understanding of the transfer
operations involved.

The average user scanning the circuit diagram of the microcomputer would see
a bewildering array of symbols and interconnecting lines. A more practised eye,
however, will recognise that there are distinct blocks of circuitry arranged to carry
out specific tasks. In each block, one or two specialised large-scale integrated
circuits are used, with additional logic gates providing what the designers call ‘glue
logic’ to hold the system together. Between the blocks run the interconnecting
wires arranged as two distinct buses, or highways, known as the data bus and the
address bus, and a third, less well-defined, control bus made up of the controlling
signals needed to ensure correct timing and the general smooth running of the system.

The heart of the computer is the microprocessor, which is where the program
instructions are actually carried out, and which controls, and responds to, the
other sections. The processor relies heavily on the memory sections which are of
two types. One bank of chips makes up the read/write memory, which is general-
purpose memory to hold user programs and data, and also to store the data needed

1

2 Interfacing the BBC Microcomputer

in continually refreshing the video display. Another bank of chips is the read only
memory, ROM, containing the system programs that must always be available
whenever the computer is switched on. The read/write memory is normally
referred to as random access memory, RAM, since any location can be addressed
and selected as readily as any other. But bear in mind that ROM is equally
randomly accessible, unlike cassette or disc memory where data is stored in a
serial form.

Any program, whether originally in machine code or in BASIC, or indeed in
any other language, is ultimately processed by the computer as a succession of
instructions which are executed consecutively. The processor runs a repetitive
cycle in which the next instruction is fetched from memory and decoded, and
then the indicated operation is carried out.

Each instruction must provide sufficient information for the processor to carry
out the operation satisfactorily. The first section, or field, of the instruction is one
byte long, and carries a code indicating the particular operation required. The list
of available operations is called the instruction set, or op-code set, and each
mnemonic of the assembler language corresponds to one of the op-codes. In some
cases the instruction is complete in the one byte, but most instructions require
additional information which normally gives the address of one of the operands
to be used. Where this is the case, the code of the first byte also indicates that the
fetch operation must be extended to retrieve the address field data, which can
require one or two more bytes.

In executing the instruction, the address code defining the memory location of
the operand to be used at a given time is generated by the processor and is
distributed on the 16-bit unidirectional address bus. The data involved is carried
on the 8-bit data bus, which has driver circuits that enable it to operate bi-
directionally, and the drivers must be switched to the appropriate direction by
the processor. Both the address bus and the data bus are extended to link all the
other blocks of the computer circuitry.

The majority of the time spent by the processor, as in any computer, is con-
cerned with transferring data from one location to another. Data bits are moved
around internally on the data bus, and each group of eight bits forms a byte
which, in many cases, represents one character. The bytes are transferred between
registers of various types, where a register can be thought of as a temporary store
for the data bits but having a different name and characteristics dependent on the
job that it is required to do. The first type, high-speed registers inside the pro-
cessor, are used as working registers in carrying out the operations specified by the
successive instructions of the program. The 6502 processor used in the BBC micro-
computer has one accumulator, A, and two index registers, X and Y, directly
available to the programmer, but also makes use of a 16-bit program counter, PC,
an 8-bit status register, a stack pointer, and some auxiliary registers.

The second type is the random access memory, which is an array of registers
designed to hold programs and data. Read only memory can also be considered
as an array of registers that have been modified to retain data in a permanent, or

Input-Output Facilities 3

semi-permanent, form, so that we can easily read from any desired location, but
can write in new data only with special equipment, if at all.

When we come to transferring data into or out of the computer we use a third
type of register known as an input port or output port, and many of the specialised
input-output (I/O) chips use other internal registers to provide appropriate control
over how the ports operate at any given time.

In all cases, however, an individual register is uniquely defined by its 16-bit
address which is generated by the processor and distributed on the address bus. In
fact, therefore, all transfers to and from input and output ports, and their
associated control registers, are treated as memory transfers, and the system is
said to use memory-mapped I/O. The User Guide provides a memory map that
shows the allocation of all 65 536 (64K) locations from &0000 to &FFFF (the
ampersand, &, is used to denote a hexadecimal number). The input-output area
of the map is from &FCO00 to &FEFF, and is considered as being made up of
three sections of 256 bytes each. These sections are known, in Acorn literature,
as FRED, from &FC00 to &FCFF, JIM, from &FDO00 to &FDFF, and SHEILA,
from &FEOO to &FEFF. SHEILA is the area devoted to internal input-output
devices and, within that area, individual controller chips used in the micro-
computer are selected by use of 74LS139 dual 2-line-to-4-line, and 74L.S138
3-line-to-8-line data selectors, figure 1.1. When a data selector chip is enabled
by the G input signals, one and only one of the outputs goes low.* The
7415138 data selector in figure 1.1, for example, is selected when input G1 is
high and G2A and G2B are low. G2B is taken low when the inputs to the
74LS30 NAND gate are all high, or 1, so the 74LS138 is selected when address
bit A8 is at O and bits A9 to A1S5 are at 1. This means that the data selector
reacts only to addresses that begin with &FE, since &FE is a shorthand way of
representing the binary value 11111110. The particular output of the selector
that goes low is then determined by the values on the remaining three inputs, A,
B and C, controlled by address bits AS, A6 and A7. This method of selection
allocates a block of addresses for each device, but they may not all be required.
The CRT controller chip, for example, has the eight locations &FE0Q0 to &FEQ7
allocated, but only the first two are used.

The JIM and FRED areas are used in conjunction with the 1 MHz bus and will
be dealt with when we come to consider the action of that bus.

The setting up of a port, and subsequent writing of data into or reading data
from the port, is carried out under program control. Although the computer
circuitry responds only to machine code, the program may be written in either
assembler language or BASIC, which is then translated to the form required by
the processor. In BASIC the statements are of the form

* Logic values are indicated by voltages, and are said to be ‘low’, or logic 0, when the voltage
is approximately zero, and ‘high’, or logic 1, when the voltage is something between about
3.5 and 5 volts. A small circle on the logic symbol indicates that output or input is active
when low.

4 Interfacing the BBC Microcomputer
r—Je 3p o
A15 A8 A 2p—— 741520
741L.S30
A i FCO0-FFFF 1P ROMs
A12 = FDOO-FDFF
A 7415139 FCO0-FCFF A
A10 FRED
GO P T e \
9 G1 6 FECO-FEDF ADC
28 SR—. 0.7 T AN
4 FEBO-FEQF ﬁc
FEBO-FETF B L SHEILA
3 FE40-FESF V_.IA._
. Y
AG B p FEOO-FE1F V_.,_ B
Ab A op CRTC/ACIA/
SERPROC
7415138
o &
R/W._‘ B 3 P FE20-FE2F
A4d— A 2 o ro— INTON (ECONET)
741532 1 :>--—-—FE20:FEZF ROMSEL
L—AqaG 0p——VID PROC
7415139
FE18-FE1F
A4 —B 3 o INTOFF/STATIO (ECONET)
A3—A 2 OB FEZOF SER PROC
L FEOO-FEO7 ACIA
—qG Qp——CRTC
7415139

Figure 1.1 Address decoding circuitry

10 ?&FE62 =255
meaning ‘set location &FE62

10 A =?&FE60

t0 255, or

meaning ‘set variable A to the value read from location &FE60Q’. The initial 10 is
the line number in both cases. In assembler form the corresponding instructions

would be

LDA #&FF
STA &FE62

for the first, and
LDA &FE60

for the second.

Input-Output Facilities 5

Assembly language is faster than BASIC and much more compact, so it is often
useful in dealing with data transfers through input-output ports which would
otherwise interfere with the smooth running of the main program. An under-
standing of assembly language (that is, machine code) programming is very
desirable, and sometimes allows access to features of the computer not other-
wise available. A brief introduction to machine code programming is given in
appendix B.

In all but very short sections of assembly language it is convenient to make use
of the standard routines that have been provided in the operating system programs,
using *FX and OSBYTE calls. This is also good programming practice because it
means that your programs are relocatable if and when you modify or extend your
system. Full details of these calls are given in section 42 of the User Guide, but the
method of operation is always the same.

The required routine is indicated by the number of the call, and a linking
routine is necessary to point the processor to its first instruction. All the routines,
including the linking routine, are held in ROM since they form part of the operat-
ing system. Being in ROM, however, means that we are unable to write the start
address directly into the link routine and we must achieve the transfer indirectly.
The linking routine is held in ROM, starting at &FFF4, and it makes use of a pair
of bytes in RAM, located at &020A and &020B, and given the label BYTEV,
which stands for Byte Vector. When an *FX or OSBYTE call is made, the num-
ber of the call is placed in the accumulator, A, and the value is used to determine
the start address of the routine. The start address is written into RAM as the Byte
Vector, BYTEV, and the linking routine now merely needs to be an indirect jump
to the routine using the vector provided. The actual sequence is

Location Hex code Mnemonic Meaning
&FFF4 6C
&FFF5 0A JMP I BYTEV Jump indirect to &020A/B
&FFF6 02

Thus, when the *FX or OSBYTE call finds the ‘Jump to subroutine at &FFF4’
instruction, it is told to do another jump to the start of the routine which begins
at the address it will find in locations &020A and &020B, and so arrives at the
correct starting point.

Any values needed by the call are first placed in the X and Y registers, and if
there are any values to be returned by the call they also use the X and Y registers.

In dealing with data transfers to and from input-output devices mapped onto
the memory area SHEILA, we could present our earlier examples in OSBYTE call
form as

LDA #&97 /Prepare OSBYTE call to write to SHEILA
LDX #&62 [with offset &62

LDY #&FF /and &FF as the value to be written.

JSR &FFF4 /Call OSBYTE.

6 Interfacing the BBC Microcomputer

LDA #&96 [Prepare OSBYTE call to read from SHEILA
LDX #&60 /with offset &60.
JSR &FFF4 /Call OSBYTE.

It is particularly easy with the BBC computer to insert assembler sections into
BASIC programs, since the assembler is included in the BASIC interpreter. The
DIM P% statement, for example, provides a simple way of reserving a block of
memory for assembler code as it becomes necessary. When the BASIC program
is run, the DIM statement is used to set aside a block of memory locations for the
machine code section of the program, which is listed later. As we have seen, the
microprocessor uses the program counter to indicate where its next instruction
starts, but, until the program is run, the actual program counter value, P%,
corresponding to the start of the section, is unknown. We therefore refer to it
as a variable, such as PROG, which we define at the start of the machine code
section. The length of the block of bytes reserved can be specified, and, where
the exact number of bytes required is not known, it is sensible to include some
value large enough to ensure some spare bytes. For example

10 DIM PROG 29

reserves thirty bytes of memory for a machine code section starting at location
PROG. The actual value of PROG is allocated by the interpreter when the pro-
gram is run, and may change if the program is changed. Subsequently we set the
program counter by means of a statement of the form

100 P% =PROG

P% can be set directly to an absolute value if required.
We follow with the assembler code, which must be in square brackets, thus:

10 DIM PROG 29 /Reserve 30 bytes at PROG
100 P% =PROG /Set PC to allocated start value

120 [/Start of machine code section
130 .LIGHTS /Reference label

140 LDA #151 /Program code

150 LDX #&60

160 LDY &70

170 JSR &FFF4

180 RTS /Return from subroutine

190] /End of machine code section
200 etc. /Continue with BASIC statements

280 CALL LIGHTS /Call machine code section LIGHTS

Line 130 contains the reference label acting as the name of the machine code
routine. It must be preceded by the full stop which causes the assembler to
allocate the program counter value as a variable. This can be used in BASIC
sections of the program as well as machine code sections. The routine is ter-

Input-Output Facilities 7

minated by the RTS, return from subroutine, instruction and the closing square
bracket.

As part of its duties, the assembler must allocate specific locations to the labels
defined by the program writer. The assembler scans the program twice: during the
first scan, listing all labels, and during the second, matching the labels to
the locations allocated. The labels are used when program jumps are called for,
and during the initial stages of the assembly process any jump forward in the
program will refer to a label that has not yet been defined in terms of a memory
location. The assembler includes error-checking routines which, among other
tasks, look for undefined labels, and, during the first pass, we must switch out the
checking routines, though at all other times, of course, we wish to have them
operating. This is normally achieved by use of the OPT directive to the assembler,
in conjunction with a FOR statement. For example, we would add extra lines to
our previous listing to give

10 DIM PROG 29

100 P% =PROG

110 FORI=0TO 2 STEP2 /Select OPT O during first

120 [OPTI /pass, and OPT 2 during second.
l
|

190 |

200 NEXT /Close FOR loop

210 etc.

280 CALL LIGHTS

We are now ready to look at the input-output facilities that are provided on the
computer, and to see how they can be used. If we go first to the back of the
computer, we see a range of connectors, as shown in figure 1.2. Many of these
give access to circuits that are designed for particular purposes, but others, such
as the analogue and RS423 ports, are more general purpose.

The three sockets at the left are all concerned with the connections of the
display unit so we shall look first at the video signals provided. These allow the
computer to display text or graphic information held in the video memory. Unlike
many other microcomputers, this one uses a bit-mapped display and, except in
mode 7, does not use a character generator ROM. This means that one bit of
memory is provided for every addressable spot, or pixel, on the screen, so that the
hardware can produce high-resolution displays with graphics and text intermixed.
It does, however, necessitate a large video RAM area: in fact it needs up to
20 kbytes of RAM in the highest resolution modes, to cater for 81 920 pixels,
giving 32 lines of 80 characters each on an eight by eight dot matrix (mode 1) or
fewer pixels with more colours (modes 2 and 3). In the Teletext mode, mode 7,

a maximum of only 1 kbyte of memory is required since standard character
codes are stored and the character writing information is then provided by the
SAAS5050 character generator.

8 Interfacing the BBC Microcomputer

m
UHF Video RGB RS423 Cassette Analoguein reset Econet

out out = g o B
()
@ 2 o °o° o o 00000000 \ o o
° .9 o o 0,0 0000000 y, °,9
L) hod -~

SKT 1 SKT2 SKT3 SKT4 SKT5 SKT 6 SKT 7

AN

Figure 1.2 Connectors viewed from rear of microcomputer

The video circuitry consists mainly of a Motorola MC6845 CRT controller,
CRTC, working in conjunction with a custom-designed video-processor chip which
produces the three video signals, red, green and blue (RGB) as correctly timed
sequences for a high-quality colour monitor set. The three colour signals, together
with a composite synchronising pulse signal, all at TTL levels (see appendix A),
are brought out to the six-way DIN connector, SK3, labelled RGB, figure 1.3. A
composite video signal for use with a PAL baseband monitor set is created from
R’, G' and B' by a simple summing amplifier (as shown on page 504 of the User
Manual). This is brought out to the BNC socket, SK2, labelled ‘video out’. Finally,
another version of the composite video signal is used to modulate a UHF signal
giving an output suitable for use with a conventional domestic PAL colour tele-
vision receiver, operating nominally on channel 36. The UHF signal is brought
out to the Belling-Lee coaxial socket, SK1, labelled ‘UHF out’.

The video circuitry must also deal with the refreshing of the memory. The
memory devices used are sixteen MB8118, 16K x 1 bit dynamic RAMs giving a
total memory of 32 kbytes. Dynamic RAM is used because it is very fast in
operation, but it must be refreshed regularly so as not to lose the data held in
it. This is done by the CRTC. As the CRTC and the 6502 processor cannot be
allowed to access the memory simultaneously, they must alternate, or interleave,
their demands. The 6502 processor is therefore clocked at 2 MHz (though we shall
see that it can be switched to run at 1 MHz when required) so that it requires access
to the memory every 500 nanoseconds. But the memory is fast enough to allow
two accesses in that time and each 500 nanosecond period gives one access for the
memory and one for the CRTC.

The next two sockets provide for serial data transfers either at standard RS423
levels or in a coded form suitable for use with a domestic cassette recorder. The
RS423 serial data communications standard is an updated version of the well-
known RS232-C or V24 standard which is used extensively by terminals and
modems. Inexpensive networking controllers, such as Clearway,* can also make
use of the RS423 connection.

Data transfers on this serial port need only two lines for the data: one for in-
coming data, Receive Data, and the other for outgoing data, Transmit Data. A
common return line is provided. In addition, two control lines are used: RTS
(Not ready to send) and CTS (Not clear to send). The control signals are specified

*Produced by Realtime Developments Ltd.

Input-Output Facilities

€S
101298UU02
NId 894
€

-
({1
w

S]pudis oapia ayj Jo uoyviouar) £°J 24ndl,]

Ndd
¢0S9

|0J3U0D |

Aluejod o AO

(¢ 3a0ow)
HOLVH3INIO
o 4310vyvHO K viva WvH
8 0S0SVYVS
B 9
= O
1| "L |
z8
g {1 vin mmwmm‘o<
89 004d
o =
5 z8 }l 03dIA
| - b
—Tg9
¢ 68
" z8
Iﬂmm A G+
—AG+ =
1 ONASD BOSTVL mpycy
0142
QQ SY890W
ONAS

K Sng v.ivd

10 Interfacing the BBC Microcomputer

in the negative sense because each normally sits at the higher voltage level and is
taken low when the transmitter is ready to send or the receiver is ready to receive
respectively. The receive and transmit directions are appropriate to the device only
at one end of the connection, of course, since data in the transmit direction, for
example, is received data to the device at the other end of the line. Care must
therefore be taken in connecting devices to the serial port, and often a fair
amount of trial and error is necessary before the connections are correct.

The conversion of an eight-bit data byte to serial form, and vice versa, is carried
out by a Motorola MC6850 Asynchronous Communications Interface Adaptor,
ACIA. This type of device is often referred to as a UART, standing for Universal
Asynchronous Receiver/Transmitter. The ACIA arranges that the transmitted data
is formatted correctly or framed, as in figure 1.4, with an initial START bit and a

]

IDLING START EIGHT DATA BITS STOP IDLING
CONDITION BIT BIT CONDITION

Figure 1.4 Framing of an eight-bit data byte

final STOP bit. Similarly with received data the ACIA checks for correct formatting
before extracting the required data bits. The negative-going edge of the START bit
indicates to the receiver that a character is on the line and, after confirming a
genuine start, the receiver clock is arranged to sample the data at about the middle
of the bit period as each bit arrives. The correct timing is ensured by the receive
and transmit clock signals which are generated by another special custom-designed
signal processor chip. This chip contains a control register which is selected by
address &FE10, and allows the clock rates to be adjusted to one of eight values
indicated in terms of the baud rate, figure 1.5. The baud rate can be considered as
the number of bits per second on the serial line, and ranges from 75 to a slightly
optimistic 19 200 bits per second. Transmit and receive can operate at different
rates if required.

Control Register 2 6 5 4 3 2 1 0

& FE10
; 8 — 8 3
Bits2, 1, 0 Baud
0 = Cassette port in use Bits 5, 4, 3 rate
1 = RS423 port in use [" 000 19.2 k
0 = Cassette motor off — 001 1.2k
1 = Cassette motor on Transmit 010 48k
rate 011 0.15k
100 96k
. 101 0.3k
gjze"’e 110 24k
111 0.075 k

Figure 1.5 Allocation of bits in the serial processor control register

Input-Output Facilities 7114

When the RS423 port is in use, the signals to and from the ACIA are passed
directly through the serial processor chip and its associated buffers, and connec-
tions are made at the five-pin DIN socket, SK4, marked RS423. The cassette port
can be brought into use by setting bit 6 of the register &FE10 to ‘1°. In this mode
the ACIA is still used to convert parallel data to serial, and vice versa, but the
serial processor chip now plays a much larger part.

The mode of operation of the ACIA is determined by values in two registers,
control and status, and two further registers carry the data in and out. Since a
control register, which accepts commands, needs only to be written to, and a
status register, which reports conditions, needs only to be read, the two registers
share a single address, &FEOQ8. Similarly the data registers share one address,
&FEQ9, and writing transfers data to the transmit register, whereas reading takes
data from the receive register. The detailed allocation of bits in the registers is
summarised in figure 1.6, but for most purposes these are set-up and interrogated
automatically by the operating routines provided in the microcomputer.

Register select

(address 0) R/W Selected register
0 0 CR Control regist
&FEO8 gister
0 1 SR Status register
&FE09 3 1 0 TDR Transmit data register
1 1 RDR Receive data register

Control register

CR 7 6 5 4 3 2 1 0

T =

Receive interrupt Counter ratio

0 = disable 00=+1
1 =enable 01=+16
Transmit control — 10=+64
A— 11 = Master reset
00 = RTS low: disable interrupt D S
01 = RTS low: enable interrupt —— Word Format: bgta bt.op Parity
10 = RTS high: disable interrupt its; (Dits
11 = RTS low: transmit BREAK 000 =7 2 Even
001 =7 2 Odd
010=7 1 Even
011=7 1 Odd
100 =8 2 -
101 =8 1 -
110=8 1 Even
111 =8 i Odd
Status register 7 6 5 4 3 2 1 0
SR

IRQ 1 = Interrupt RDRF 1 = Received data register full
PE 1 = Parity error TDRE 1 = Transmit data register empty
OVRN 1 = Receiver overrun DCD 0 = Data carrier detected
FE 1 = Framing error TT5 0 = Clear to send

Figure 1.6 The registers of the ACIA

12 Interfacing the BBC Microcomputer

Continuing along the connectors we come next to the analogue inputs socket
which is where we can, with suitable adjustments, connect any voltage that is not
already coded digitally.

The computer operates in a digital framework, and the voltages it handles can
exist only at certain levels which we designate ‘0’ and ‘1°, but we can cope with
other voltages by means of special converter circuits. We can generate such volt-
ages using a digital-to-analogue converter circuit, DAC, as we shall see later. The
DAC gives an output voltage that is proportional to the digital value provided to
it, and any change in the digital value causes a step in the resulting output voltage.
We can easily set the voltage to any of the 2" levels available from # bits in the
code: for example, eight bits would give us 256 possible levels, ten bits 1024 levels,
twelve bits 4096 levels, and so on. If we allocate more bits to the code represent-
ing the voltage there are more possible levels, and the step between adjacent levels
becomes smaller. If we could increase the number of bits in the code to an
infinitely large number, the step between levels would become infinitely small,
figure 1.7. We then arrive at an analogue representation of the voltage, since an

Volts Volts Volts
————————— 1 11 —_—————
| ~—= T10 i
. --—- 101
0 100
011
______ 01 =S (10
001
: 00 000 — -
Time Time
(a) (b) (c)

Figure 1.7 Step size decreases as number of bits in code increases

analogue voltage can take any value between the low and high limits. The voltages
coming from transducers that measure variables in the ‘real’ world are almost
invariably analogue in form. We therefore need a method of converting from the
analogue to the digital form, and this is done for us by the uPD7002 analogue-to-
digital converter, ADC, provided in the computer. The uPD7002 has four analogue
inputs and these are brought out to the 15-way D-type socket, SK6, which is
where the games paddles and light pen are normally connected, figure 1.8.

A games paddle is merely a variable resistor, or potentiometer, similar to those
used as volume controls on radio and television sets. Two of the three terminals,
A and B in figure 1.9a, are connected to the ends of the resistor, and the third is
connected to the wiper, W. As the knob is turned, the ratio of R1 to R2 is varied,
though (R1 + R2) remains constant as the total resistance between A and B. This
value should be relatively small compared with the input impedance of the con-
verter to which it is connected, typically greater than 10 M2, and yet not be so

Input-Output Facilities

+5V
4K7 4K7
PS5 | 1
© O
3> 101 (PB1)
14 WD
VIA bea 13
A 6 - 100 (PBO)
ce2l2 9
[22 LpsTs
+5V
Vv,
REF 3 VREF
uPD7002 1 uF 4
9 " INa148 2O ANALOGUE
GND _‘L- rY > O GROUND
10 = 4
CH3 |— —50 CHANNEL3
CH2 | 0 CHANNEL 2
CH1 == — 5O CHANNEL 1
CHO 205 CHANNEL 0
SK6

13

Figure 1.8 SK6 connections for the analogue-to-digital converter

(Vree) A

R2
R1

(V) W

(GND) B

(a) Voltage divider

action

5V
LPSTB
oV

101 (PB1)

oV
Vaer
CH3
CH2
GND
100 (PBO)
oV
Vaer
CH1
CHO
GND

O

12 4 {n e

P A -

T_o % JFire

1 N

15 70 cE]R X o
go) 0L G
SK6

(b) Connections for paddles and ‘fire’ buttons

R = 10k linear potentiometer
C = 150 nF decoupling capacitor

Figure 1.9 Potentiometer action and use in games paddles

r LEFT

L RIGHT

14 Interfacing the BBC Microcomputer

small that it draws too large a current from the voltage reference circuitry. A value
of about 10 K2 is normally appropriate.

When the voltage Vygy is applied across the resistor it acts as a voltage divider
to give a voltage at the wiper of V' = Vggp. R1/(R1 + R2) so that ¥ must always
lie between O volts and +Fggp. It is important that the maximum value of V is not
too great for the ADC chip to handle and, although the uPD7002 converter is
designed for a Vg of 2.5 volts, the computer designers have allowed a safety
margin by providing a reference voltage of 1.8 volts. This should always be used if
possible, as in figure 1.9b.

A joystick controller makes use of two variable resistors, so that, as the joystick
is moved, the motion is resolved into two components at right angles and the
resistors are adjusted accordingly. The four channels available on the uPD7002
means that it can handle up to two joysticks or four games paddles. The connec-
tor also carries the digital signals, which can be generated by the ‘fire” buttons
often provided on games paddles and joysticks. The ‘fire’ inputs are designated
100 and 101 and the signals are taken to bits 4 and 5 of VIA A which is the
Versatile Interface Adapter used internally for a variety of tasks such as control-
ling the keyboard, sound and speech generators and so on. The state of the ‘fire’
buttons, ‘0’ or ‘1°, is written into memory from the VIA and is read by means
of the X = ADVAL(0) command, to become the bottom two bits of the variable
X, 100 affecting bit 1 and 101 bit 0. A command of the form X = ADVAL(0)
AND 3 selects the bottom two bits to give X =0, 1, 2 or 3 dependent on whether
neither, left, right, or both buttons are pressed.

The final input, light pen strobe, LPSTB, is intended for use with a light pen
which generates a pulse whenever it detects the passing of the electron beam that
continually scans the display unit screen to refresh the information written there.
The light pen contains an optical sensor which is illuminated by the phosphor
glow as the beam of the cathode ray tube passes under the pen. The pulse it
generates when illuminated is routed to input CB2 of VIA A and causes the nor-
mal sequence of operations to be interrupted, so that an operating system routine
can be initiated to deal with it.

The operation of the uPD7002 converter is considered in more detail in chapter 3.

Early models of the computer included a RESET button next to the analogue
inputs socket but this is not now provided though the wiring for it is still present
on the board. A ‘hard’ reset is achieved on more recent models by pressing the
CTRL and BREAK keys simultaneously.

The final connector on the back of the computer is used in interfacing the
computer to the Econet. Econet is a local area network, LAN, developed by
Acorn to allow up to 255 microcomputers to communicate and so share certain
expensive facilities such as Winchester disc units, printers, and so on. The method
of operation is very similar to Ethernet® and uses a method known as carrier

* A good description of Ethernet and other networking methods is given by K. C. E. Gee in
Introduction to Local Area Computer Networks, Macmillan, 1983.

Input-Output Facilities 15

sensing multiple access with collision detection, CSMA-CD. All computers linked
to Econet have equal status and are independent except that a common timing
clock signal is taken from a designated one of the computers. A failure in one
computer will not affect the operation of the network and adding more com-
puters does not affect the inherent speed of data transfers. Inter-computer transfer
rates, however, are dependent on the distance between the computers; for short
distances, up to about a quarter of a mile, transfer rates up to 210 kbits per second
are possible, but at a mile the maximum rate is about 100 kbits per second. Inter-
connections are by 4-wire cable which gives a relatively low-cost network. The
interface makes use of a Motorola 6854 Advanced Data Link Control, ADLC,

chip with line driving and receiving circuits working in differential mode, through
socket SK7, to provide data and clock lines, figure 1.10a. Each computer linked

to the net is allocated a unique 8-bit station identity code which is set up on
jumpers, designated S11, inside the computer.

(a) (b)

Figure 1.10 (a) Econet connector. (b) Power extension socket

If we now look under the computer, by lifting up the front edge of the key-
board, we find many more connectors, figure 1.11. Apart from the power
extension socket on the far left, these all come directly from the front edge of
the main printed circuit board inside the computer and make use of insulation
displacement connectors, IDC, ranging in size from 20-way to 40-way.

Power Disc Printer User port 1 MHz bus Tube
Vo) L34
o 4 L N B 11 ————
L 33 0 [ER 30
PL8 PL9 PL10 PL11 PL12

Figure 1.11 Connectors viewed from front of computer

Let us again take each connector in turn, starting, as before, with the leftmost
one which, as we have noted, is the power extension socket. It is, in fact, a 6-way
connector carrying +5 volts, —5 volts, +12 volts and ground returns, figure 1.10b,
for use with a floppy disc unit when fitted. These supplies are not highly rated
and are not intended to power other peripheral units, which should have their own
supplies. However it is possible to draw a limited current at +5 volts for external
use if the disc unit is not fitted.

16 Interfacing the BBC Microcomputer

The first of the IDC connectors is a 34-way plug, PL8, for use in interfacing to
a disc unit operating to SA400 standard specification. The main bulk of the inter-
facing work is done by an Intel 8271 floppy disc controller, FDC, chip, which
handles both the data transfers and the control signals. It can support two devices,
referred to as 0 and 1, which can be either single-sided or double-sided and which
use 8-inch, 5% or the newer 3 or 3%-inch diameter discs. The data rate can be
switched between 125 and 250 kbits per second, as appropriate to the type of
drive in use, by means of jumpers on the board. The signals involved in the control
of a disc interface are complex and specialised, so it is not possible to make other
use of them and we need discuss them no further here. The remaining connectors,
however, provide interfaces which are more flexible to a greater or lesser extent.

The next two connectors can be taken together as they make use of a single
6522 Versatile Interface Adapter, VIA, chip. The 26-way connector, PL9, is the
printer plug which is connected to one-half of the VIA and, with its additional
buffer circuits, provides a standard Centronics parallel printer interface. The soft-
ware routines necessary to drive the interface are provided in the machine
operating system. The other half of the VIA is connected to the 20-way plug,
PL10, and provides the User Input/Output Port which has eight data lines and
two additional control lines for general interfacing requirements. This is the most
flexible port for the attachment of external circuits or equipment to the computer
and a detailed review of its operation is given in the next chapter.

Moving to the next connector, we come to another general-purpose interface
but one which is more structured for specific interfacing purposes when extend-
ing our computer system. The 34-way connector, PL11, carries what the designers
have called the 1 MHz bus. It is so called because one of its main features is a
1 MHz clocking signal. The computer processor runs normally at 2 MHz but this
is too fast for many of the standard components used in interfacing and the pro-
cessor must be slowed down whenever a transfer on the 1 MHz bus is involved.
The 1 MHz clock used externally, IMHZE, is itself derived from the 2 MHz clock
used internally by the processor and, when an address lying in the areas of FRED
or JIM is detected (that is, an address starting with &FC or &FD), the 2 MHz
clock is stretched to make one cycle last as long as one cycle of the 1 MHz clock.

The 1 MHz bus carries the following signals: eight data lines, DO to D7; eight
address lines, AO to A7; NPGFC; NPGFD; NRST; NIRQ; NNMI; IMHZE; R/NW;
ANALOG IN, and several ground return lines. Some of these need a bit of explana-
tion. A full address in the computer needs sixteen bits and it is often convenient
to think of it as made up of two parts: the upper half defining a page address with
each page containing 256 bytes, and the lower half defining a particular byte
within the page. In this representation, memory area FRED, which contains only
addresses beginning with &FC, is then page FC, and similarly JIM is page FD.
Because the decoded signals are low active, that is, they switch to logical ‘0’ when
selected, the bus signals are coded NPGFC and NPGFD, meaning ‘not page FC’
and ‘not page FD’ respectively. The bidirectional data bus drive circuits are
arranged to be active only when NPGFC or NPGFD is present, and then only the

Input-Output Facilities 17

low eight address lines, AO to A7, are required to define an address within the
page. The direction in which the data bus drivers operate is controlled by the
R/NW, read/not write, line with data transferred to the computer when the
line is at ‘1°, and from the computer when it is at ‘0’.

Page &FC, FRED, is intended for use with peripheral units requiring only
limited memory space, and specific blocks have been reserved for Teletext, Prestel,
IEEE-488 bus, Cambridge Ring, Winchester disc memory and test hardware. Other
blocks are reserved for future use by Acorn, but one block of 63 bytes running
from &FCCO to &FCFE is allocated for general use, and it is best to restrict our
usage to that area.

Page &FD, JIM, on the other hand, is intended for peripheral equipment requir-
ing a larger memory space, and it makes available a total of up to 64 kbytes by use
of an external paging register. The eight address lines, AO to A7, available on the
bus are used to define the location within a page; the eight-bit extended page
number, which acts as the top eight bits of the address for the peripheral unit, is
transferred on the data bus to the page register, which must be provided by the
user and is itself addressed as location &FF on page &FC. A copy of the page
register content is kept for internal reference at &EE of the zero page of the
computer. The backplane card of the BBC Expansion Box, which is specifically
designed for use with the 1 MHz bus, contains a page register with address
recognition and signal shaping circuits, and its use is recommended wherever
possible. The page register is reset to 00 by use of the NRST reset line provided
on the bus. Again, a lot of the address space on page &FD is reserved by the
manufacturers for specific uses. In fact all pages from &00 to &7F are reserved,
which means that only the half of the pages that have a ‘1’ as the most significant
bit of the address are available to the user; that is, pages &80 to &FF.

All the signals described so far, except the reset, NRST, are high-speed signals
which, when transmitted on an extended length of wire can give rise to reflections
and crosstalk. It is therefore recommended that each line should not exceed about
2 feet (60 cm) in length, and should be correctly terminated by 2K2 resistors to
+5 volts and ground. The load on each line should not exceed one LSTTL load.
The three signals NRST, NNMI and NIRQ, however, are different and do not
require termination; NNMI and NIRQ use open-collector gates (see appendix A)
connected to give a wired-OR function, and the necessary pull-up resistors are
provided as 3K3 resistors internally at the microprocessor. Non-maskable interrupt,
NMI, and Interrupt request, IRQ, are signals that can be used to interrupt the
program in the computer when external equipment requires attention. The wired-
OR arrangement means that several devices can be attached to the line and any
one is able to switch the line to the ‘0’ active state. Interrupts are covered in
chapter 2, when we look at the interface adaptors used in inputting and
outputting.

One other feature of the 1 MHz bus is the ANALOG IN connection which pro-
vides a convenient way of coupling an external analogue signal to the internal audio
circuits. The signal, which should not exceed 3 volts rms, is mixed with the output

18 Interfacing the BBC Microcomputer

of the sound and speech generators just before the audio amplifier which drives
the loudspeaker.

The final 40-way IDC plug is that for the tube, PL12. The tube consists of a
few control signals and a set of connections directly onto the internal address and
data buses of the computer, and as such should be used very carefully. In fact, as
has been emphasised earlier, it is advisable to use the tube only in the way intended
so that the operation of an extended system is not impaired. It is designed to allow
very high-speed communication between the internal 6502 and a high-speed second
processor, so that the BBC computer effectively acts as a slave, dealing with routine
and time-consuming operations such as scanning the keyboard, refreshing the
display and dealing with other input-output operations including transfers to disc,
printer and so on. Several second processors are available or planned, ranging from
the 6502 running at 3 MHz clock rate and with 64 kbytes of RAM, through the
780 running at 4 MHz, again with 64 kbytes of RAM, enabling all CP/M based
programs to be run, to the powerful 16032 16-bit processor, allowing up to
16 Mbytes addressing and with 32-bit internal data operations. The connections
of PL12 are shown in figure 1.12 and we see that, although all eight data bits are

NRST DATA ADDRESS
NTUBE BUS BUS
NIRQ We
2 MHz CLK 1 2030405060 AOA1A2A3A4A5A
TITTIY
o)

=

39
I T—I—I—I—L
5V

Figure 1.12 Connections to tube, PL12

brought out, only the seven lowest address lines are made available. The NTUBE
select line goes low (that is, to ‘0”) when a tube address is detected, and that occurs
for any address from &FEEO to &FEFF. These 32 locations are used in conjunction
with the 7 address lines by a special tube controller chip to transfer data through
the tube at the full 2 MHz clock rate.

2 The User Port

In connecting external equipment to a computer, one of the most common require-
ments is to light lamps to indicate the condition, or status, of the system, and to
sense the settings of switches which are used to control the equipment. The user
port is designed specifically for this sort of use and is, therefore, the first of the
general-purpose interfacing provisions for us to look at in some detail. We recall
from chapter 1 that it makes use of part of a Versatile Interface Adaptor, VIA,
which provides a wide range of facilities to interface external circuits to the
computer, and in order to control the flow of signals through the ports we must
have a good understanding of how the device operates.

The main function of the VIA is the provision of two registers, port A and
port B, each of which allows eight bits of data to be transferred to or from the
computer in any desired pattern, but it also provides a shift register for parallel-
serial operation, and two internal timers. The way in which the ports, shift register
and timers operate is controlled by the values held in additional registers inside the
chip. These control registers are cleared to a quiescent, disabled condition when
the internal reset line of the computer is taken to ground, as it is when powering-
up the computer and when CONTROL/BREAK is generated. The appropriate bit
patterns must therefore be loaded into the control registers during the initialisation
program sequence which immediately follows the reset. Once the VIA is program-
med to operate in a certain way, it will continue to do so until the bit patterns are
changed. There are several different sections of the VIA, figure 2.1, with signals to
and from the microprocessor on the left, and signals for external connections on
the right. When we add up all the necessary registers inside the VIA we find that
there are sixteen, so four inputs, RSO to RS3, are provided to allow us to specify
any one of them, and these inputs are controlled by address bits AO to A3. In
order to select, or activate, the VIA, the chip select input, CS1, must be at ‘1’ and
CS2 must be at ‘0’. CS1 is held permanently at ‘1’ so selection is controlled by the
VIAB signal which is connected to CS2 and is generated by the address decoding
circuitry when the address range &FE60 to &FE7F is detected.

Address bits AO to A3 indicate the individual register address and the full list
of address codes is given in the table of figure 2.2. The remaining signals to the
control section are used in carrying through transfers of data between the VIA
and the 6502 microprocessor. These are under the control of the processor which
uses the read-not write line, R/W, to indicate whether it is providing data (in
which case the R/W line is at ‘0’ indicating writing) or is expecting to receive data

19

Interfacing the BBC Microcomputer

20

21DWYIS 421dDPY 2OD[42IU] JIIVSII 4 [T dNSL]

140d
¥3sn
o 8400 y315/934
wm Z8d NOILO3H1a V1iva
9l Mmu au0
bl bad SLINJHIO | _1nd1inoj
¢l cad H344N8 g
w_ z8d HOLV1 LNdNI
. 18d
08d
014 »{8S y315193Y
B — L4IHS
v Orzan
g 140d
Z O - >
180 gy V 1HOd - ——— |
J ISt . JOHNER
6l & >| IIVHSANVH
%)

e yresive vHOA y3151934
LLOT—7gq vd NOIL103H1a V1va
m"o 9a VHO
{ jof—dd{SLITISD SLINJYID ___1ndino|

¥Q JAIHA

6 = yaddne Y344ng v

L Za HOLVY1 LNdNI
SOor—q

£ 00 I ov14
140d hmamwmhz_
y3iNigd o po=eEEEsT g
431 37gvN3
LdNYHILNI

Kyl

ocL
43ILNNOD

1 z
HOLV1| ¥3WIL

ﬂ
e 43LNNOD

L HIWIL

||||| - JAM

4OV 704.1NOD
AHYITIXNY

1VvH3HdIH3d

-

SN8 V1vd TVYNHILNI

%

< 13S3Y
<—)
eg [T WM
B2 Pt
dd | gzsH
Oud
> O |- ISY
2
I~— 0SYH
~.— 750
< 1SD
SdAV
4344Nn89
sng
viva

The User Port 21

RS3 RS2 RS1 RSO ADDRESS REGISTER
0 0 0 0 0 &FE6B0 DRB Data register B
1 0 0 0 1 &FEB1 DRA Data register A
2 0 0 1 0 &FE62 DDRB Data direction register B
3 0 0 1 1 &FE63 DDRA Data direction register A
4 0 1 0 0 &FE6G4 T1CL Timer 1: write latch, read counter
5 0 1 0 1 &FEB5 T1CH initiate count
6 0 1 1 0 &FEB6 TILL load latch, low byte
7 0 1 1 1 &FE67 T1LH high byte
8 1 0 0 0 &FE6G8 T2CL Timer 2: write latch, read counter
9 1 0 0 1 &FEB9 T2CH initiate count
10 1 0 1 0 &FEBA SR Shift register
1 1 0 1 1 &FE6B ACR Auxiliary control register
12 1 1 0 0 &FE6C PCR Peripheral control register
13 1 1 0 1 &FEBD IFR Interrupt flag register
14 1 1 1 0 &FEGE IER Interrupt enable register
15 1 1 1 1 &FEGF DRA Data register A, without handshake

Figure 2.2 VIA register address codes

(in which case the R/W line is at ‘1’ indicating reading). The 1 MHz system clock,
(@, ensures the correct timing of the transfers.

The data registers in both peripheral ports, A and B, consist of eight data lines
which can be programmed to act as inputs or outputs in any order, as defined by
the settings in the corresponding bits of the associated Data Direction Registers,
DDRA and DDRB. Setting a particular bit of a DDR to ‘0’ ensures that the corres-
ponding bit of the data register acts as an input, whereas a ‘1’ ensures that the bit
acts as an output. When a bit of the data register is programmed to operate as an
output, the actual value of that bit is determined by the setting of the correspond-
ing bit in the Qutput Register, OR. From figure 2.2 we see that DDRB is addressed
as &FE62, so, to set up all eight bits of port B to act as outputs for example, we
would load the DDR with 255. That is

10 ?&FE62 =255

Thereafter, we output to port B merely by writing to the output register at &FE60.
For example

40 ?7&FE60 = A

The output register has no effect on bits of the data register that are programmed
to act as inputs.

In addition to controlling the logical values on the lines of the data registers, we
must also ensure that each output circuit is capable of providing the current
necessary to drive whatever equipment we wish to connect. The drive capabilities
of the two ports of the VIA are slightly different and anyway port A has been
provided with additional buffer drive circuits since it is intended to act as the out-
put port to a parallel printer, via plug PL9. The drive circuits are provided by a
7418244 octal buffer-driver chip in which each output can drive up to 15 standard
TTL loads (see appendix A for details of TTL operation). Because of these output

22 Interfacing the BBC Microcomputer

buffers, we cannot use port A as an input port but we can, of course, use it to drive
equipment other than a printer if we wish, provided that we do not exceed the
drive capabilities of the 74L.S244 chip. Port B is connected to the output connec-
tor, PL10, directly, and each line will drive one standard TTL load. In addition,
each line can provide a source current of one milliamp at 1.5 volts, allowing it to
drive Darlington transistor circuits if required. A Darlington transistor, or more
strictly a Darlington pair, is a compound connection of two transistors in which
the collectors are connected together and the emitter current of the first transistor
provides the base current of the second. The resulting current gain is the product
of the two individual gains, so we get a high gain without increasing the overall
base current demands, though the base-emitter voltage increases to about 1.4 volts.
In many cases an output port is used to drive a set of indicators and one of the
most popular types of indicator is the light emitting diode, LED, because it will
operate at voltage and current levels similar to those directly available from the
logic circuitry. A typical LED will give a good illumination when passing a current
of 15 to 20 milliamps. Our output port circuits, however, will sink up to 1.6 milli-
amps when at ‘0’, and will source a minimum of 1 milliamp when at ‘1°. Neither
of these levels is sufficient to drive the LED directly, but we can employ a simple
transistor amplifier to boost the current level. In the circuit of figure 2.3a, the
transistor turns on when the port output is at ‘1’, turning the LED on at a current
level limited to a safe value by the series resistor. If it is required that the LED
switch off when the port output is at ‘1°, the circuit of figure 2.3b can be used.

< +5V * +5V
W G
R
R
PORT PORT
B B
3K3
OUTPUT OUTPUT S
W o

R is a current-
(a) limiting resistor (b)
(for example, 220) =

Figure 2.3 Use of transistor to drive the LED. (a) LED ON when output at ‘1’,
(b) LED OFF when output at ‘1’

A seven-segment LED display is a single-digit numeric display, which is made
up of seven light emitting diodes, and in many cases an eighth diode for the
decimal point. In general, all the diode anodes are connected together, although
common cathode versions are also available. We can thus drive one seven-segment
display from our eight-bit user port, figure 2.4a. The individual decimal digits are

The User Port

PBO v LT .
L —
PB1 v g, T ;
VIA]
PORT B |PB2 v {1 —
PB3 :>_‘ {_} U H
PB4 > {_}
PBS S 1
USER ol L
PORT [— o
PB6 v IS
PB7 j.)“ {1
LN
ULN2803A 8 x180 Q2
Darlington —L-
drivers -
(a)
Common Segments Data value
anode
p a b c d e f g Hex Dec.
0 o111 11 1 0 7E 126
1 0011 00 0 0 3 48
2 o1 101 1 0 1 6D 109
3 o111 1 00 1 79 121
4 001100 1 1 33 51
5 01 011 0 1 1 BB 91
6 0O 1 01 1 1 1 1 5F 95
7 0111 000 O0 70 112
8 o1 1111 1 1 7F 127
9 o1 11101 1 7B 123
A o1 11011 1 77 119
b o001 1 1 1 1 1F 31
C 01 00 1 1 1 0 4E 78
Anode Cathode d 00111101 3 6
E 01 00 1 1 1 1 4F 79
F 01 0 O0O0 1 1 1 47 71
Point 10 000 0O O O 80 128
PORT B 76 5 4 3 2 10
(b)

Figure 2.4 Driving a seven-segment LED display. (a) Segment connections.
(b) Segment coding

23

formed by lighting the correct segments, and we can extend the idea to generate
the full hexadecimal character set on the same display by including the six letters
A to F, as long as we tolerate lower case b and d, so as not to confuse B with 8

and D with 0.

24 Interfacing the BBC Microcomputer

A program to output data to a single display is very simple. This one, figure
2.5, counts in decimal. Lines 60 and 70 use the internal timer, which counts in
one-hundredths of a second, to define the half-second period during which each
digit is displayed.

10 ?8FEEZ2=255 /Setup User Fort as output
20 I=0 /Initialize integer count
30 RERD A /Read bit pattern code
40 ?&FEE0=R /0Output pattern to User Fort
S0 I=I+1: IF I)>9 THEN I=0: RESTORE /Restart count
60 TIME=0

70 RERFEAT UNTIL TIME) SO0 /FPause
80 GOTO 30 /Repeat

90 DATA 126,48,109,121,51,91,95,112,127,123

/This program counts repetitively
from 0O to 9.

Figure 2.5 Counting in decimal

A simple extension of the program, figure 2.6, allows us to display the value ¢
any of the numeric keys on the keyboard. By pressing any key from 0 to 9 the
value is displayed, and pressing the full stop illuminates the point. The point is
permanently displayed until the full stop is pressed again. Further extension of
the program, figure 2.7, will give us a flashing display. We choose here to flash at
a visible rate, but in many cases a light emitting diode will operate more efficient
if pulsed, and if pulsed sufficiently rapidly it still appears to be permanently on.
The pulsing means that we can operate the LED at much higher current levels for
short periods so that the average power dissipation is still not excessive. Many

10 ?&FE&2=255 /Setup User Port
20 DP=0 /Ensure point is off
30 RESTORE

40 A=GET /Input a value
S0 IF R=46& THEN DP=128-DF /If fullstop, invert msd
60 A=A-47 /Select data entry to match
70 IF A<(1 OR AY10 THEN GOTO 30 /Key not numeric
80 FOR I=1 TO A: READ B: NEXT I /Read up to required code
90 C=B+DF /Add point setting
100 ?&FEEDO=C /0utput to User Port

110 6OTO 30
120 DATA 126,48,109,121,51,91,95,112,127,123

/This program displays the value of
any numeric key pressed. Pressing
fullstop switches the decimal point
to its other condition.

Figure 2.6 Display numeric keys

The User Port 25

systems use a higher drive voltage of 10 to 15 volts, with the LED pulsed on for a
few milliseconds then off for a few milliseconds. We shall see later that this allows
us to multiplex, or timeshare, the display so that we can deal with a large number
of displays from a given number of ports.

10 ?&FEE2Z=255 _______ /Setup User Port
20 RESTORE

30 A=GET /Input from keyboard
40 IF A=70 THEN PROCflash /Press F to flash
S0 A=A-47 /Select data entry
60 IF A(1 OR AY>10 THEN GOTO 20 /Key not numeric
70 FOR I=1 TO A: READ B: NEXT /Read up to required code
80 ?&FEEOD=B /Output to port
90 GOTO 20 ________

100 DEF PROCflash /FLASH procedure
110 ?&FEEOD0=0 /Clear output port

120 RESTORE
130 REPRPERT

140 ?&FEE0O=R /0utput bit pattern
150 TIME=0: REPEAT UNTIL TIME >S50 /Pause
160 ?&FEE0=0 /Clear port
170 TIME=0: REPEAT UNTIL TIME)40 /Pause
180 A=INKEY(10) /Press any key to stop

190 UNTIL A -1

200 RESTORE

210 ENDPROC

220 DATA 126,48,109,121,51,91,95,112,127,123

/A procedure "FLASH" is defined to switch
display on and off for periods specified
in lines 150 and 170.

Figure 2.7 A flashing display

In some cases we may need to control larger and more powerful lamps or other
loads that cannot be driven directly from the interfacing circuitry, and it is then
worth considering the use of relays, or power transistors or thyristors. All these
devices are merely electrically controlled switches and there are many different
types in many different shapes and forms. The important point to remember in
every case is that the contact rating or current rating of the selected device must
be high enough to cope with the expected load current.

The simplest form of relay is the reed relay, figure 2.8a, which has usually a
single normally-open contact that closes when the external coil is energised. In
many cases the coil is designed to be driven directly from logic circuitry, and
contact ratings up to about 0.5 amps are available. Larger, multiple contact relays
are available but require driver transistors to energise the coils, figure 2.8b. As
with all inductive loads, when switching the current in the relay coil, large
transient voltages can be produced by the stored energy, and it is essential to
connect a suitable diode across the coil in such a way that the transient voltage

26 Interfacing the BBC Microcomputer

~

A

Glass

% envelope gt
N

N\

COIL \
o A7 5
7 Normally open E
/] contacts 20
Ooa
)% I
(a) (b)

Figure 2.8 (a) Reed relay. (b) Driving a larger relay

forward-biases the diode and is short-circuited. Many relays have the protective
diode built in.

A very convenient type of relay for larger loads is the solid-state relay, SSR,
which consists of a driver circuit optically coupled to a light emitting diode con-
trolled by the input signal. The optical coupling ensures complete isolation between
input and output circuits of the relay up to a voltage of several thousand volts.
Since the input circuit of the relay consists of a diode, it can be driven very easily
from the output port, figure 2.9. Low power rated opto-isolated drivers may have
to use a second higher-rated relay to cope with heavy loads, but the larger solid-
state relays can handle several amps and make use of a triac as the output driver.
They often include zero-crossing detectors to control the switching point so as to
prevent spikes being generated on the supply. The efficiency is limited, so these
devices run quite warm and should be mounted on a suitable heat-sink. Another
point to watch is that a logic ‘1’ at the input of the SSR switches the relay on.
When a VIA is initialised then each bit of the port is set as an input, which appears
to the SSR as a ‘1’, so if it is important to ensure that any equipment does not
switch on until required, and can be switched off quickly by pressing the BREAK
key, it is safest to control the SSR with a logic ‘0’. This can be achieved by putting
an inverter, or simple common-emitter transistor circuit between the port and the
SSR.

A common extension to the controlling of switches is the requirement to
sequence the operations correctly so as to indicate necessary steps or to carry out
an automatic routine. This can take a multitude of forms, but probably the
best-known sequence is that used for traffic lights, and it forms a convenient
illustration of the method fundamental to all control sequences. Programs of any
desired complexity can be built-up around the basic sequence, to include with the

The User Port 27

65V

|
ZERO ' Qb o
L VOLTAGE | | _ 240V
SWITCHING| | LOAD ac
CIRCUIT ﬁl——o
|

OuTPUT | ¥ o _ 23
PORT SOLID-STATE RELAY

Figure 2.9 Use of a solid-state relay

traffic lights, for example, filter lights, biasing, pedestrian phases and so on. For
our simple example we assume two sets of lights, which must sequence as shown
in figure 2.10a, and a program to achieve this simple sequence, as given in figure
2.10b. Here we make use of a procedure, CHANGE, which itself makes use of a
subroutine, LIGHTS. The subroutine involves an OSBYTE call to the SHEILA
base address plus &60, that is, to the user port address, and the value to be sent

to that address is placed in location &70. The procedure outputs the new pattern
to the lights and then waits N seconds before sending out the next pattern. Merely
by adjusting the output codes and time delays appropriately, this program can be
used as the basis for a large range of sequencing controllers.

We have concentrated so far on outputting signals from the computer, but
accepting signals is equally important, and that is what we now move on to. At
this stage we will consider only those signals that are already in a digital form; that
is, those that come from switches of some sort, so that they are either on or off.
Simple switches and relays are obviously included here, and we can also deal with
keyboards and the few direct digital output transducers, such as the optical shaft
position encoder. We will deal with non-digital signals later.

We now use the VIA port in its input mode by setting the data direction register
at &FE62 to &00. This means that when we read from &FE60 we read the input
register, IRB, and this register can be operated in either the latching mode or the
non-latching mode. Latching mode is selected by setting bit 1 of the auxiliary
control register (register 11 at &FE6B) to ‘1°. If it is at ‘0’ we get non-latching
mode, and reading from port B reads the values present on the port pins at that
time, whereas when operating in latching mode the values read are those that were
present when a change of signal occurred on control line CB1. The sense of the
change causing the latching can also be programmed, either high to low transition
or low to high transition, by setting bit 4 of the peripheral control register
(register 12 at &FE6C) to ‘0’ if negative-going latching is required, or to ‘1’ for a
positive-going edge.

Since the port is to receive either a ‘1’ or a ‘0’, it might seem that the best
arrangement would be to use a change-over switch, as in figure 2.11a. This will

28

250
260
270
280
290
300
310

Interfacing the BBC Microcomputer

| 2
A 8
) i N & e }
R A G R A G Tifne
PORT B 7 6 5 4 3 2 1 0 Hex (seconds)
- = 1 0O 0 O 0 1 21 5
- -1 1 0o 0 1 0 32 1
- - 0 0 1 1 0 0 oC 5
- -0 1 0 1 1 0 16 1
(a)
DIM FROG 30 /Reserve 31 bytes for assembler at "PROG"
?&FE62=255 /Set port to output mode
OSBYTE=&FFF4& /&FFF4 will be referred to as OSBYTE
FOR I=0 TO 2 STERF 2: P%=PR0OG /Set assembler options and
[OPTI /PC=PROG. Start machine
. LIGHTS /code section LIGHTS.
LDA #151 /Setup OSBYTE &97 (151) call
LDX #&60 /with offset &60
LDY &70 /and value to be written
JSR OSBYTE /Call linking routine
RTS
] /End of LIGHTS section
NEXT /Repeat with 0OPT2
N=500 /Setup S sec. period
?2&70=8&21 /Load R1 G2 code
FROCchange
N=100 /Setup 1 sec. period
?28&70=&32 /Load R1A1 A2 code
PROCchange
N=500 /Setup S5 sec. period
?&70=8&0C /Load G1 R2 code
PROCchange
N=100 /Setup 1 sec. period
?2&70=&16 /Load R1 R2A2Z code
PROCchange
GOTO 140 _______ /Repeat the cycle
DEF PROCchange /The CHANGE procedure
CALL LIGHTS /calls the LIGHTS routine
TIME=0 /and waits for N/100 seconds
REPEAT UNTIL TIME) N
ENDFROC
/The main program runs from
line 140 through line 260.
(b)

Figure 2.10 Traffic light control. (a) Traffic light sequence. (b) Control program

work quite happily, but change-over switches are more expensive than single-
throw types and the arrangement of figure 2.11b is just as effective. R is a pull-up
resistor which ensures that the line to the port is held at logic ‘1’ until the switch
is operated.

The User Port 29

5V

wv 2K2
o

T

= (a) (b)
Figure 2.11 Switch inputs. (a) Change-over switch. (b) Single-throw switch

All mechanical switches suffer from bounce of the contacts to a greater or
lesser extent, so that as the switch is operated the contacts will make but will not
remain in contact at the first attempt. They bounce open again, and may bounce
several times before finally resting in contact as intended. This settling period,
which may extend over several milliseconds, is of no consequence in some
applications, since the computer may not be programmed to check the switch
value until the switch has had ample time to settle down. But the computer
operates very quickly and in a few milliseconds can carry out several thousand
operations, so if it is programmed to check the switch setting at short intervals it
may wrongly interpret the bouncing as several independent operations of the
switch. To be on the safe side we almost always debounce any switches, either by
use of a simple flipflop or by a checking sequence in our program. The use of the
flipflop is illustrated in figure 2.12 where the flipflop sets when the switch contacts
first come together, and remains set until reset by the return of the switch or the
application of a reset signal. The disadvantage of this method is that it requires
additional circuitry, though several flipflops suitable for use in this way are pack-
aged together for convenience, as in the SN74LS279 which contains four flipflops.
As we are already making use of the computer to sense the setting of the switch,

+5V BV

2K2 2K2 2K2
ndiiees

o—e SQ—>‘|:—0 g O
fo\g R i R

RESET

Figure 2.12 Switch debouncing by use of flipflop

240
250
260
270
280
290
300
310
320
330
340

360
370

Interfacing the BBC Microcomputer

DIM PROG S00 /Reserve a block of bytes for assembler
DIM AC10) /Reserve array to receive switch numbers
T1LO=&FE6G4 /Define locations of VIR B Timer 1, low byte
TIHI=&FEES / Timer 1,high byte
ACR=&FEERB / Aux. control reg
FR=&FEED / Interrupt flg. reg
?2&FEE2=0 / Data direction reg
FOR I=0 TO 2 STEP 2: P%*=PR0OG
[(OPTI /Start machine code section START
. START
LDA &FEED: STA &70 /Read input port and store in &70
CMFP #0: BEQ START /If zero, start again
LDA #0: STA ACR /otherwise clear aux. control reg
LDA #&88: STA T1LO /Setup time delay in Timerl
LDA #&13: STA T1HI
. DELAY
BIT FR /Check bit &€ of flag reg. to detect end
BVC DELAY /of delay and branch back until bit set
LDA &FEE&O0 /Read input port again and compare
CMP &70: BNE START /with previous valuej;if not equal
RTS /start again.
]
NEXT _ _ /Exit routine with switch values in &70
CALL START

C=255-?8&70 /Complement, so that an ON switch gives a "1"
W=0

FOR I=0 TO 7 /Find ON switches by ANDing each bit
A=2"1 /in turn (referenced as powers of two)
B=A AND C /with the stored value. Write numbers

IF B¢ O THEN W=W+1: AW)=I /o0f ON switches in array A

NEXT

MODE?7

IF W=0 PRINT TARB(S5,6);"SWITCHES ALL OFF" : GOTO 240

FOR I=1 TO W /List ON switches

PRINT TAB(5,5+I); "SWITCH ";A(I)3;" IS ON"

NEXT

GOTO 240 ______
/The main program runs from line 240 through line
370. It makes use of a machine code routine to
check for any switch being set, and checks again
when Timerl interval is completed. This is shown
by the Overflow flag,which is set by bitEé of the
flag register when BIT test is carried out.

Figure 2.13 Debouncing program

however, we normally prefer to use the programmed checking method. The
technique is to note when a switch closure is detected and then to check again a
certain time later when the bounce has had time to die away. If the switch is still
closed we accept that the switch has been operated. The program of figure 2.13
scans eight switches connected to the input port, and uses a time delay of eight
milliseconds to allow for the bounce decay.

The User Port 31

The outputs from an optical shaft position encoder are similar to those from
mechanical switches, but being electronic switches they do not suffer from contact
bounce. The encoder uses a disc, mounted on the shaft, which has windows laid
out in a special pattern, figure 2.14. The output code is generated by opto-
transistors which detect light from the sources on the other side of the disc if a
window happens to lie between. Gray-coded binary, rather than the standard
binary, is used to eliminate errors arising from misreading the settings when
window edges happen to coincide with the detector and some ambiguous indica-
tion could result. With Gray-coded discs no two window edges coincide.

Sources Detectors

(a) (b)

Figure 2.14 Optical shaft position encoder. (a) Binary-coded disc.
(b) Gray-coded disc

If we have a requirement to input more than eight bits of code, or to scan more
than eight switches, we must either provide more input ports or must develop some
external selection circuitry to allow us to check successive sets of eight bits. A
useful approach is to arrange the switches in a matrix, as in figure 2.15, which is
the method widely used in keyboard scanning. Here we use half the port to output
a scanning pattern, and the other half to input codes from the matrix which can
therefore contain up to sixteen keys. When no key is pressed, the pull-up resistors
ensure that the four inputs are all at ‘1’. The scanning pattern is made up of four
bits, only one of which is at ‘0’. This single ‘0’ is shifted on each succeeding step
of the complete scan so that it appears first on the A column of keys, then on the
B, then on the C, and so on. After D it reverts to A and the cycle repeats. When a
key is pressed, nothing happens until the scanning pattern puts the ‘0’ on the
column containing that key. The ‘0’ is then routed through the closed contact to
the input bit connected to that row and the computer detects a pressed key. The
scanning pattern and inputted code together make up a ‘grid reference’ for the
key. If key B2 is pressed, for example, the input code becomes 1101 when the
output pattern is 1011 so the key B2 is defined by the 8-bit code 1101 1011.

The character or value indicated by the key is found by using the code as a
pointer to a look-up table of character codes, as in the program of figure 2.16a.

32 Interfacing the BBC Microcomputer

LSD
OUTPUT oy
Al B1 < D1 313
""""" 0 04 ¢ 0 0 0 &0 0+
J A2 B2 c2 - D2 _
A3 83 o3 D3
INPUT O O &0 O O —© °
A4 B4 ca D4
MSD 5 04 6 04 “6 0q 6 04

Figure 2.15 Matrix keyboard

A modified method of scanning, making use of the ability to switch the port
between input and output modes, is sometimes preferred. The four column bits
are first set to output 0000. If a key is pressed, say B2 again, the row input code
becomes 1101. This is latched in the port register and the modes are now reversed
so that the row connections become outputs, carrying the pattern 1101, and the
column connections become inputs. Since switch B2 is still pressed the ‘0’ is con-
nected back to the column inputs to give the pattern 1011, so that the overall
‘grid reference’ is 1101 1011 as before. The program for this type of scanning is
shown in figure 2.16b. Larger keyboard matrices can be dealt with by including
extra decoder chips, though the reversing scan method just described cannot then
be used. The arrangement in figure 2.17 is capable of dealing with a full 64-key
QWERTY-type keyboard.

In discussing the inputting and outputting of data by the computer we have so
far assumed that the program routines are entirely under the control of the
computer. In other words, it is the computer that initiates all the operations. In
checking the keyboard, for example, the scanning sequence is run at regular
intervals by the computer, regardless of whether anyone is likely to use the key-
board or not. In simple systems, where the processor is not required to carry out
many other tasks, this is perfectly acceptable. Most calculators work on this basis,
with the processor idly scanning the keyboard for most of its time waiting for the
next key to be pressed. But most systems can make better use of the time avail-
able, if they are notified in some way only when a key is pressed, and can ignore
the keyboard until then, continuing meanwhile with some other productive pro-
gram. When a key operation does occur, the running of the existing program must
be interrupted until the keyboard scanning operation is completed and then the

340
350
360
370
380
390
400
410

The User Port 33

MODE?7
PRINT TAB(0,0) ;CHR$(141) ;"PRESS A KEY ON THE PFAD"
PRINT TAB(0O, 1) ;CHR$(141) ;"PRESS AR KEY ON THE PRAD"

DIM FROG S00 /Reserve a block of bytes for assembler
OSBYTE=&FFF4
FOR I=0 TO 2 STEP 2
P%=PROG
[(OPTI /Start machine code section START
. START
LDA #&F:STA &FEE2 /Set DDR to give outputs on 4 lsd
LDA #&97:LDX #&60:LDY #7:JSR OSBYTE /and write 0111
LDA #&96:L.DX #&E0:JSR OSBYTE:STY &70 /Read port
LDA &70:CMP #&F7:BNE FIN /Branch if key detected
LDA #&97:LDX #&EO:LDY #&B:JSR OSBYTE/Write next pattern
LDA #&96:L.DX #&60:JSR OSBYTE:STY &70 /1011 and repeat
LDA &70:CMP #&FB:iENE FIN
LDA #&97:LDX #&EO:LDY #&D:JSR OSEYTE/Write next pattern
LDA #&96:LDX #&60:JSR OSBYTE:STY &70 /1101 and repeat
LDA &70:CMP #&FD:BNE FIN
LDA #&97:LDX #REO:LDY #RE:JSR OSBYTE/Write next pattern
LDA #&96:L.DX #&ED:JSR OSBYTE:STY &70 /1110 and repeat
LDA &70:CMP #&FE:BNE FIN
.FIN
RTS
]
NEXT I __ _____ /Exit routine with value held in &70
CALL START

IF ?&70=254 GOTO 270/Repeat scan cycle until key detected
N=0

RESTORE

READ A /Look up value in DATA table
IF A=?&70 PROCdisplay:GOTO 270

N=N+1

IF N>15 PRINT CHR$(7):60T0 270/Indicate multiple keypress
GOTO 310 _______

DEF PROCdisplay
PRINT TRE(15,10) ;CHR$(141) ;N /Print double—-height value

PRINT TAB(15,11) ;CHR$(141) ;™N

ENDPROC
DATA 238,222,190, 126,237,221, 189, 125, 235,219,187, 123, 231

DATA 215, 183,119

/The main program runs from line 270 through
line 350. The machine code scanning routine
is repeated until a depressed key is detected
then the value in &70 is used to look up the
corresponding character code in a DATA table.

(a)
Figure 2.16 (continued overleaf)

34

340

Interfacing the BBC Microcomputer

MODE7
PRINT TAE(O,0) ;CHR$(141) ;"FPRESS A KEY ON THE PAD"
FRINT TAB(0, 1) ;CHR$(141) ;"PRESS A KEY ON THE PAD"
DIM FPROG S00 /Reserve a block of bytes for assembler
OSBYTE=&FFF4
FOR I=0 TO 2 STEP 2
F%=PROG
[OPTI
. START
LDA #&FO:STA &FE6&2 /Set DDR to give outputs on
LDA #&97:LDX #&60:LDY #&F:JSR OSBYTE /4 msd; write 1111
LDA #&96:LDX #&60:JSR OSBYTE:STY &70 /Input pattern and

LDA &70:AND #&F:STA &70 /store 4 lsd at &70
LDA #&F:STA &FEE2 /Reverse DDR setting and output
LDA #&97:LDX #&60:LDY &70:JSR OSBYTE /returned pattern
LDA #&96:LDX #&E0:JSR OSBYTE:STY &70 /Store final
RTS /pattern and exit
] /routine with value

NEXT I ___ /held in &70.

CALL START

IF ?&70=255 GOTO 200/Repeat scan cycle until key detected
N=0
RESTORE
READ A
IF A=?&70 PROCdisplay:GOTO 200
N=N+1
IF N>15 PRINT CHR$(7) :60TO 200
GOTO 240 ________
DEF PROCdisplay /DISPLAY procedure
PRINT TAB(15, 10) ;CHR$(141) ;N
PRINT TARAB(15,11) ;CHR$(141) ;™N
ENDPROC
DATA 238, 222,190, 126, 237,221, 189, 125, 235, 219, 187, 123, 231
DATA 215,183,119

/The main program is almost identical to that
in figure 2.16a, but the machine code section
uses a reversing scan method, changing the DDR
setting twice each cycle.

(b)

Figure 2.16 (above and page 33) (a) Program look-up table. (b) Reversing scan

pattern

The User Port 35

program can be resumed. The same sort of reaction can be incorporated to cover
any external interruption. This is exactly the way we operate in real life when we
have to interrupt some job that we are doing to answer the telephone or a knock
at the door.

In a computer system we think in terms of fasks being carried out, although, of
course, the processor can run the program for only one of the tasks at a time. The
main task, in most cases the user’s program, is known as the foreground task , but
many other sections of program have to be brought into operation on occasion,
as and when required, and these are classed as background tasks. Updating of the
internal elapsed time clock, for instance, is carried out under interrupt control
every hundredth of a second. When a background task is to be carried out it will
need to use some or all of the registers, and all the current values and settings
being used by the foreground task must be preserved so that on completion of the
background task we can take up the original task again exactly as when we left it.
These housekeeping operations are organised by the interrupt servicing routine in
conjunction with the interrupt hardware.

The 6502 processor has two hardwired connections which carry the signals
from the interrupting circuitry. They are the non-maskable interrupt, NMI, and the
interrupt request, IRQ. The non-maskable interrupt is so called because the pro-
cessor cannot be programmed to ignore it, whereas the IRQ signal can be enabled
or disabled under program control using special instructions. As part of the hard-
ware operating procedure, at the end of every instruction the processor checks
whether an interrupt has occurred, and, when it detects that an interrupt signal
has appeared at one of the pins, it goes into a special instruction fetch routine,
regardless of what the next program instruction would have been. The special
instruction provided by the processor hardware is of the indirect jump to sub-
routine type and makes use of an address, or vector, provided by the user and
held at the top end of the memory. The six highest memory locations are set aside
for three 16-bit vectors which point to the starts of the appropriate handling
routines. In addition to the IRQ and NMI signals there are a software interrupt,
using the BRK instruction, and the hardware RESET signal. The BRK instruction
should not be confused with the BREAK facility on the keyboard. In fact, the
BREAK key uses the RESET signal. The vector locations and their contents are
shown in figure 2.18. When an interrupt occurs, the processor first inhibits any
further interrupts and then carries out the indirect jump to the interrupt routine,
using the vector held in the memory. In so doing it pushes the contents of the
program counter and the status register onto the stack so that the existing values
can be restored when the completion of the routine is indicated by the return
from interrupt, RTI, instruction. The stack is a 256-byte block of the read/write
memory, &0100 to &01FF, which acts as a last in, first out, LIFO, memory.
When we push data onto the stack it is written automatically into the next location
indicated by the stack pointer, which is then incremented by one. When we read
from the stack, commonly called pulling or popping, the data is copied from the
location indicated by the stack pointer after it has been decremented by one.

36 Interfacing the BBC Microcomputer

o p—m—
ID——'W
2 P
3
D 431‘
5
OUTPUT o -
% ®B—— | 16 COLUMN LINES
8 p—
A 9 p——
10 Pho——
1 p——
F _______ 12 p—o
13 p—
14 p—
15 p——y
74LS154 -
INPUT 1| 2| 3| 4| 5| 6] 7| 8| 9
alw| el rl T| Y| Ul 1] O
Al s| o] F| 6| H| 4] k] L
zl x| c| v| 8| N| M

Figure 2.17 Scanning a larger matrix

We see from figure 2.18 that IRQ and BRK share the first vector, and if that
vector is called it is necessary to determine which of the two caused the interrupt,
since it is unlikely that they will require the same interrupt handling routine. The
hardware is designed to set the BRK status bit, bit 4 in the status register, when a
BRK instruction is encountered, and by reading the status register value from the
stack we can check the value of the status bit. The sequence used by the BBC
machine operating system, MOS, is given on page 466 of the User Manual.

There is an inherent priority in the interrupt arrangements so that simultaneous
interrupts would be given precedence in the order RESET, NMI, BRK, and IRQ.
The operating system of the computer is heavily dependent on interrupt action
and it makes use of various facilities in different ways. Because of its hardware
design we cannot choose to ignore an NMI interrupt signal and it is therefore used
in circumstances that demand very fast response from the processor, such as the
disc and Econet controllers. The start of the NMI service routine can be found at
&0DO00, but it is safest to consider NMI as being strictly reserved for system use,
and to leave well alone.

The BRK instruction is mainly used in dealing with errors and makes use of the
BRKYV vector, which is one of several software vectors held in page 2 of RAM.

&FFFF z High byte Start address of IRQ or BRK handling routine
&FFFE Low byte

&FFFD High byte Start address of RESET sequence

&FFFC Low byte

&FFFB High byte Start address of NMI handling routine
&FFFA Low byte

Figure 2.18 6502 interrupt vectors

The User Port 37

When the BRK is detected, the vector stored at &0202 and &0203 is used to enter
the error routine, having copied into &FD and &FE the address of the instruction
following BRK. This is in fact a single byte instruction, &00, but it is taken to be
a two-byte instruction so as to allow more flexibility in inserting BRK instructions
when required. The extra byte is used to store an error code, the error message
then follows the error code, and the whole thing is terminated by a zero byte.

As far as we are concerned, IRQ is the main interrupt facility and it is used
extensively by the machine operating system as well as being available for the
user’s own purposes. There are two levels at which the system will respond,
priority being given to its own requirements when dealing with the keyboard,
the system VIA, the ADC chip, the serial system, sound generator, and so on.

The interrupts associated with these background tasks are called events since they
are routine signals to the operating system rather than unexpected external signals,
or often catastrophic error indications. When an event is detected the event vector,
EVNTV, held in &0220 and &0221, is used in conjunction with an event code in
the accumulator. The event code indicates which event has occurred, as summarised
in figure 2.19. The user event, code 9, can be generated during an interrupt hand-
ling routine by an OSEVEN call using address &FFBF. The value 9 should be
loaded into register Y, and when the call is executed the contents of the Y register
and the accumulator are exchanged.

Code Indication

Output buffer, X, is empty

Input buffer, X is full (Y contains the character waiting to be entered)

A key on the keyboard has been pressed (Y contains the key code)

ADC conversion is complete (see chapter 3)

TV vertical sync. pulse has occurred

Internal timer has reached zero

ESCAPE code has been received from keyboard or RS423 channel

An error has been detected on the RS423 channel (Y contains the doubtful character)
An ECONET error has been detected

A user event has occurred

OCONOOOARWN—=O

Figure 2.19 Event codes

If checking an IRQ interrupt indicates that it is not a BRK, program control is
passed to the handling routine whose starting address is held as IRQ1V in &0204
and &0205. The routine checks first whether the interrupt is from one of the
background operations. This it does by a polling process which looks in turn at
the interrupt status of each of the known interrupt sources in the system. If it
finds that the interrupt is not from one of its expected sources it passes control
to a secondary routine, whose starting address is indicated by IRQ2V in &0206
and &0207. The first chip checked, and therefore the one with highest priority, if
interrupts coincide, is the ACIA used in the serial communication section. Bit 7 of
the status register at &FEOQ8 is set if this chip is the source of the interrupt, and
bits 0, 1 and 2 must then be checked to discover exactly which section of the
ACIA generated the interrupt. If bit 7 is not set, the routine next checks the

38 Interfacing the BBC Microcomputer

system VIA, VIAA, which deals with the majority of the background operations.
The VIA is a very complicated device from the interrupt point of view and has a
much larger range of possible interrupt sources. The routine checks the interrupt
flag register at &FE4D to discover whether bit 7 is set. If it is, it then checks
which section has generated the interrupt by checking bits 0 to 6. The significance
of a ‘1’ on each bit of the flag register is listed in figure 2.20.

Bit Cause of Interrupt Meaning
0 Change of signal on pin CA2 A key has been pressed at the keyboard
1 Change of signal on pin CA1 A vertical sync. pulse has occurred
2 Completion of eight shifts Does not normally occur as the shift register is not
in the shift register used by the system. If an interrupt does occur

here, it is passed to the user routine via IRQ2V
3 Change of signal on pin CB2 A light pen interrupt; again not used by the system.
in input mode If an interrupt does occur it is passed to user routine

4 Change of signal on pin CB1 The ADC has completed a conversion

5 Timer 2 interval is complete The current word from the speech synthesizer is complete

6 Timer 1 interval is complete One-hundredth of a second has elapsed. The internal
clock must be incremented

7 Any bit, 0 to 6, is set One of the ahove interrupts has occurred

Figure 2.20 Flag register indications

If, having polled the ACIA and the system VIA, the routine has still not found
the cause of the interrupt, it then checks the interrupt flag register of the second
VIA, VIAB, at &FE6D. However, as VIAB is almost entirely devoted to the user
port transactions, only the setting of bit 1 is of importance to the operating
system, since that pin is used to signify that a new character can be sent to the
parallel printer channel. Any other interrupts are passed on by a call to the user’s
routine via IRQ2V. When the user routine is completed a return from subroutine,
RTS, instruction should be used to rejoin the main system handling routine.

Unlike the NMI interrupts, IRQ interrupts can be selectively disabled, that is,
masked, or enabled by the user. The 6502 processor has two instructions to control
the acceptance of interrupts on IRQ, and a flag in the status register to indicate
the current state of the interrupt mask. If the flag is at ‘1’, interrupts will not be
accepted at IRQ. The flag is set to ‘1°, that is, the interrupts are masked, by use of
the set interrupt disable, SEI, instruction, and it is cleared by the clear interrupt
disable, CLI, instruction. Remember that all further interrupts are disabled auto-
matically when an interrupt is accepted, and interrupts must be re-enabled by the
handling routine. It is important that interrupts are not disabled for too long, not
more than about 2 milliseconds, say, since all the background operations will
quickly come to a halt; but equally we must be careful if we enable further
interrupts too soon, as the handling routine can itself then be interrupted. Various
operating system routines are accessible to enable or disable specific interrupts.
An OSBYTE call with A = &E7, for instance, will enable or disable interrupts
from the user VIA, and *FX14, N will enable event number N when used in
assembler program sections. The corresponding disable call is *FX13, N.

The User Port 39

Finally in this section we must look in a bit more detail at how the VIA can be
programmed for different conditions, so that we can make use of the interrupt
facilities provided by the processor. Looking back to figure 2.1, we see that there
are two registers specifically concerned with the control of interrupts, the Interrupt
Enable register and the Interrupt Flag register. They in turn make use of the
Peripheral Control and Auxiliary Control registers. The Interrupt Flag register,
register 13 at &FE6D, indicates with a ‘1’ in the appropriate position if an interrupt
has been generated. This can be an interrupt generated within the VIA, such as
from the shift register or one of the timers, or it can be from outside using CB1
and CB2 (or CA1 and CA2, although on VIAB these are used in connections to
the printer on PL9). Bit 7 of the Interrupt Flag register is a general indicator and
sets to ‘1’ if any other bit is set. The allocation of the remaining bits is the same
as for VIAA, and is indicated in the column headed ‘Cause of Interrupt’ in
figure 2.20. That column refers only to changes of signal but the direction of
change of the signal that generates the interrupt can also be controlled by the
setting of bits in the Peripheral Control register, register 12 at &FE6C. The user
port makes use of port B, so we shall not concern ourselves with the port A codes
on bits 0 to 3. Bit 4 relates to CB1: if bit 4 is set to ‘1’ an interrupt will be
indicated in bit 4 of the Interrupt Flag register by a positive-going transition on
CB1; if bit 4 is at ‘0’ the interrupt is indicated when a negative-going transition is
detected. Any of these interrupt flags can be cleared automatically when the out-
put register, ORB at &FE60, is selected, as it is almost certain to be during the
handling routine that deals with the interrupt. We should note that, if the shift
register within the VIA is in use, CB1 is used to carry the clock pulses controlling
the shifting, but the interrupt flag will still respond as programmed. Bits 5, 6 and
7 relate to CB2 which can operate as either an input or an output. This is deter-
mined by bit 7, and bits 5 and 6 then indicate the mode of operation. This is
most clearly shown in tabular form, as in figure 2.21.

The Interrupt Flag register, therefore, tells us which if any of the possible
interrupts has occurred, but there is yet another register which allows us to dis-
able and subsequently re-enable any of the seven interrupt sources. The Interrupt
Enable register, register 14 at &FE6E, corresponds bit for bit with the Interrupt
Flag register, except for bit 7 which is used to indicate whether the action is to be
an enabling or a disabling of the interrupts. To enable interrupts, we set bit 7 to
‘1" and also set to ‘1’ the bit positions corresponding to those interrupts that we
wish to enable. Other interrupts are unaffected and remain enabled or disabled
as before. Setting bit 7 to ‘0 has the effect of disabling the interrupts indicated
by the ‘1’ settings in the other bit positions. Thus, for example, storing &48 at
&FEG6E would disable interrupts from timer 1 (bit 6) and pin CB2 (bit 3).

We can illustrate some of these ideas by introducing a pedestrian-controlled
button in our traffic light sequence of figure 2.10b. The amended program shown
in figure 2.22c reacts to the interrupt generated when a push button connected to
CBI is pressed by the pedestrian. During the routine light sequence the program
checks whether or not a pedestrian interrupt has occurred. If not, it continues

Peripheral control register

PCR 7 6 5 4 3 2 1 0

s —
Y
l— Port A control

0 = Set flag bit 4 on negative-going
transition on CB1

1 = Set flag bit 4 on positive-going
transition on CB1

0 = Set CB2 to input mode:

0 = Set flag 3 on negative-going
transition on CB2

1 = Set flag 3 on positive-going
transition on CB2

0 = Clear flag when ORB selected
1 = Do not clear flag

1 = Set CB2 to output mode:

00 = Set CB2 low on write to ORB;
reset when CB1 changes

01 = Set CB2 low for one cycle
following write to ORB

10 = Set CB2 low

11 = Set CB2 high

Figure 2.21 VIA peripheral control register

200 o
PE%— S :ae
— TN B5
14 A— = PB4
G LAMP 14 PB3
. DRIVERS 120" ©
— Yo PB2
24 A— ; S PB1
G —— Yo PBO
e cs\vnA ¢
llTT
o o ZY 8
2K2
sv—__}— b
. (a)
1 2
2 —A N & e -
P R A G R A G Time
PORTB 7 6 5 4 3 2 1 0 Hex (seconds)
-0 1 0 0 0 0 1 21 5
_ -0 1 1 0 0 1 0 32 1
Pedestrian ___| — 0 0 0 1 1 0 0 oc 5
interrupt -0 0 1 0 1 1 o0 16 1
-0 0 1 0 1 0 o0 ;2 ;
-1 1 0 0 1 0 0 11,
(Flash) -9 1 0 0 0 © 0 B0iz2 izhea

(b)

10 BUTTON=0:DELAY=0 /Reset condition
20 ?&FEEC=0:?8&FE62=255 /Set up the VIA
30 DIM PROG 30

40 OSBYTE=&FFF4

50 P%=PROG

60

70 . LIGHTS

a0 LDA #151

30 LDX #&€&0

100 LDY &70

110 JSR OSBYTE

120 RTS

130 i

140 N=500 /Set up 5 sec. duration
150 ?&70=8&21 /Load R1 G2. Change lights
160 PROCchange:PROCbutton /and check pedestrian button
170 N=100 /Set up 1 sec. duration
180 ?&70=&32 /Load R1A1 AZ. Change lights
190 PROCchange:PROCbutton /and check pedestrian button
200 N=500 /Set up S5 sec. duration
210 ?&70=8&0C /Load G1 R2. Change lights
220 PROCchange:PROCbutton /and check again.

230 IF DELRAY)O DELARY=DELAY-1 /While RED2 is on, deal with
240 IF BUTTON=1 AND DELAY=0 PROCpedest /pedestrian interrupt
250 N=100 /Set up 1 sec. duration
260 ?&70=%&16 /Load A1 RZA2. Change lights
270 PROCchange:PROCbutton /and check pedestrian button
280 GOTO 140 ________

290 DEF PROCchange /Define CHANGE procedure

300 CALL LIGHTS

310 TIME=0

320 REPEAT UNTIL TIME) N
330 ENDPROC

340 DEF PROCbutton /Define BUTTON procedure to check
350 A=?&FEE&D /for pedestrian interrupt on CB1
360 IF (16 AND A)=1&6 BUTTON=1 /Set BUTTON if interrupt has
370 ENDPROC /occurred.

380 DEFPROCpedest /Define PEDESTRIAN procedure
390 N=100 /Set up 1 sec. duration
400 ?8&70=814 /Load A1 R2
410 PROCchange /Change lights
420 N=500 /Set up 5 sec. duration
430 ?&70=864 /Load R1 R2 and pedestrian GO
440 PROCchange /Change lights and
450 I=0 /flash AMBER2 four
460 REPERAT I=I+1 /times; 0.25 sec.
470 N=25 /on, and 0.25 sec.
480 ?7&70=8&E0 /off.

490 PROCchange

S00 N=25

S10 ?28&70=8&22
520 PROCchange
530 UNTIL I=4
540 BUTTON=0:DELAY=2 /Set DELAY to prevent new pedestrian
§50 ENDPROC /sequence for two complete light cycles
/The main program, lines 140 through 280, makes use of
three procedures. The first,CHANGE, uses a machine code
routine to output the new lights code and to time the
delay specified in the main program.The second, BUTTON
checks for an interrupt on CB1l. The third, PEDEST, adds

the pedestrian sequence.
(©)

Figure 2.22 Traffic light sequence with pedestrian interrupt. (a) Port connections.
(b) Light sequences. (c) Program

42 Interfacing the BBC Microcomputer

with the routine light sequence. If it has, however, the program sets a variable
and, when RED?2 on is reached, the sequence is changed to include the three
additional steps, figure 2.22b, necessary to switch both light sets to RED. After
the flashing AMBER 2 and pedestrian light the main sequence is rejoined, with
the re-enabling of the pedestrian interrupt being delayed for two full cycles so as
not to disrupt the flow of traffic unduly.

3 Analogue Signal Handling

We have already noted that most values we might wish to measure with our
computer are analogue in nature, in that they vary smoothly between an upper
and a lower limit. But the computer itself can handle only digital values, and we
therefore have to convert these variables from analogue to digital form. One of
the simplest methods of conversion makes use of an accurately controlled ramp-
ing voltage, from an integrator circuit, which is fed to one input of a comparator
circuit. The other input carries the analogue voltage that is to be converted. As
long as the ramping voltage is smaller than the analogue voltage, clock pulses are
allowed to increment a digital counter. At the start of a conversion both the ramp
voltage and the counter are at zero, but the count increases as the ramp voltage
grows until the comparator detects that the two voltages are equal. The output of
the comparator is digital, and when it switches low the clock pulses are stopped so
that the counter contains a digital value which is directly proportional to the
analogue voltage. When a new conversion is required, the integrator capacitor
must be discharged and the counter reset to zero. The conversion process has
counted the number of regular clock pulses in a time interval that has been made
exactly proportional to the analogue voltage, if the voltage ramp can be control-
led accurately enough. The accuracy does rely very heavily on the stability of the
clocking pulse rate and also on the linearity of the ramp voltage waveform. The
linearity in turn depends on the characteristics of the capacitor used in the
integrator and the stability of the reference voltage used with it. However, there
are various methods that can be used to improve the stability and linearity,* and
this type of converter is quite accurate enough for many applications.

A second type of analogue-to-digital converter, ADC, replaces the integrator
with a digital-to-analogue converter, DAC, which generates a digital ramp voltage
to compare with the analogue voltage, figure 3.1. The counter starts each con-
version from zero and is incremented by each clock pulse. The DAC generates
the staircase voltage, V, proportional to the value in the counter as each pulse
arrives, and when the comparator detects that the voltage V; just exceeds the
analogue voltage it changes its output state and stops the count. The counter
then holds the required digital approximation to the analogue voltage.

A third type of converter makes use of a voltage-to-frequency conversion,

* These are explained in more specialised texts, such as in G. B. Clayton, Data Converters,
Macmillan, 1982.

43

44 Interfacing the BBC Microcomputer

Reset ———

Clockj:}__

Digital

COUNTER BUFFERS vilie

DIGITAL-TO-
ANALOGUE
CONVERTER
Vo
v >—
COMPARATOR
vmax
_________ _4[_ VRN (..
|
d x
Vo :
| I
| |
| |
I |
t f ,
Start Count Time
stopped

Figure 3.1 Feedback analogue-to-digital converter

rather than the voltage-to-time principle used in the previous types. Again an
integrator is used to generate a ramp voltage and a comparator compares the
ramp voltage against a reference voltage. When the two voltages are found to be
equal, the comparator triggers a monostable circuit to generate a short pulse
which operates an electronic switch and shorts out the capacitor. The ramp
voltage drops to zero and, as it is now lower than the reference voltage, the cycle
repeats. The result is a sawtooth waveform at the integrator, and the pulses used
to short out the capacitor, figure 3.2, can also be used as the output waveform.
The analogue voltage applied to the integrator circuit determines how rapidly the
ramp voltage increases, so that a larger voltage will mean that the ramp voltage
reaches the reference voltage more quickly, and the output pulses will be more
frequent. Thus the frequency of the pulses is directly proportional to the magni-
tude of the analogue voltage. A considerable frequency range is available from
commercial voltage to frequency converters, VFC, typically varying from about
10 Hz to 100 kHz. In order to use the converter as an ADC we simply have to
count the number of pulses in a given period.

45

Analogue Signal Handling

421424100 Aduanbaif-03-2801104 7€ 24n8l,]

YOLVHYOILNI
ATA“ 1. T <>
Y
.l Tr
o)
Lo
e 378V.LSONOW |A_H
HOLIMS 43,

401VYHVYdNOD

46 Interfacing the BBC Microcomputer

There are many other types of ADC but these three are sufficient to allow us
to explore the possibilities of use with the computer. All converters are designed
to convert an analogue voltage value into an equivalent digital value, but the
accuracy, speed and resolution vary widely. The resolution of a converter is, in
general, given by the number of bits in the digital counter, and that in turn
determines the frequency required of the clocking waveform, since we want to
ensure that the maximum input voltage to the converter gives a maximum count
on the counter. A resolution of 8 bits means that the input voltage range can be
divided into 256 steps, so that each step is approximately 0.4 per cent of the full-
scale value.

A 10-bit resolution gives us a step of approximately 0.1 per cent, and high-
quality converters give even better resolution by using 14 and sometimes 16 bits.
The conversion time, or sometimes its inverse the conversion rate, is a measure of
how quickly the converter can complete the digitization process, and is clearly
related to the clock rate and the resolution. Typical times vary from 50 nano-
seconds in a very fast, and expensive, type, to several milliseconds. In order to
ensure that the input voltage does not vary during the conversion period, and
especially if we must know the exact time at which our digitized value was
accurate, we sometimes make use of a sample and hold circuit, which, as its name
indicates, samples the input voltage when strobed and holds the value until strobed
again. Having achieved a digital value from our converter, with a certain resolution
and conversion speed, we have to accept that it is still only an approximate
representation of the analogue voltage and its accuracy is affected by many factors.
Deviations from linearity in the integrator voltage ramp, variations in clock
frequency, and unwanted signals (or noise) are often troublesome, and may mean
that the reliable resolution is lower than the nominal resolution of the converter.

The BBC computer uses an ADC that is based on the first of the conversion
principles described above. The other two methods have been included because
they can be used very easily in conjunction with the computer, as we shall see
later. In chapter 5 we shall also use a software-based successive approximation
method. The NEC uPD7002, provided in the computer, is a four-channel CMOS
integrating converter using a single 5 volt supply and capable of converting to a
resolution of either 8 or 10 bits. The uPD7002 was intended originally to be a
12-bit converter, and in 10-bit mode actually gives a 12-bit value. Only one of the
four input channels can be operative at any time, of course, and a multiplexer
connects the selected channel to the conversion circuits. A selection register,
figure 3.3, is used to hold the channel number and the 8-bit or 10-bit resolution
indicator, and writing to this register starts a conversion sequence. On completion
of the conversion the end of conversion, EOC, line is taken low to indicate that
the counter holds the digital value and can be used to provide an interrupt signal.
When required, the value is read out as one or two bytes, dependent on the reso-
lution demanded, with the lower four bits of the second byte always at ‘0. The
status register can be read at any time to discover the state of the conversion
process, and figure 3.4 shows the significance of the bits. In normal usage, the

Analogue Signal Handling 47

00
T CHANNEL
REGISTER 0 1 2 3 GND
“m “m SELECTION J ’ 1 |
REGISTER
MULTIPLEXER| =
01
— H(IZOUNTER —
_____ |
e "ol
LO h o
RD—>| SEQUENCE
CONTROL
(1 MHZE) CLK CLK CLOCK
o'l CIRCUIT
AQ —>»
_.“C__
Al—> R
Vaer —> V. I :
B ner INTEGRATOR ~ COMPARATOR
EOC ~— -
(to CB1 of VIA A) EGC

Figure 3.3 NEC uPD7002 A/D converter block schematic

selection register is addressed by writing to &FECO and the status register is
addressed by reading from &FECO.

The conversion time depends on the resolution required. For 8-bit resolution
and a clock frequency of 1 MHz, the time is typically S milliseconds, but for
10-bit resolution it doubles to about 10 milliseconds. The reference voltage in
the computer is generated using three diodes in series to give approximately 1.8
volts. This defines the maximum input voltage that can be accepted for conver-
sion, and also indicates why the highest resolution attainable in practice is limited
to 10 bits rather than 12. A 10-bit resolution implies that the smallest recognisable
step in voltage is (1.8/1024) volts, which is approximately 1.75 millivolts. Any-
thing smaller would not be distinguishable from noise voltage variations, though
the converter will continue to present a full 12-bit value.

The routine control of the ADC is one of the background tasks carried out by
the operating system, and, unless we instruct it otherwise, the four channels are
continually scanned in turn. The converter takes 10 milliseconds to complete a
channel conversion, which it indicates by generating an end of conversion interrupt
signal to VIAA, via pin CB1. This interrupt is used to indicate an EVENT 3, with
the channel number placed in the Y register. The operating system calls the event
handling routine and the two-byte digital value is transferred to selected memory
locations in page 2 of memory, as listed in figure 3.5. Then the REPORT location,
&02BE, is updated to show which channel has just completed conversion. Finally,
the next consecutive channel number is written to the converter, so starting the

48 Interfacing the BBC Microcomputer

ADDRESS BITS

A1 | AO
- -1 ADDRESS WRITING READING
Y
L o0 &FECO Write to selection Read Status register
register
01 &FEC1 Not selected Read Counter: high
g Outputs remain in

10 &FEC2 high-impedance state Read Counter: low
1 &FEC3 Special test facility Read Counter: low

SELECTION REGISTER

d 6 5 4 3 2 1 0

—_——
| S Multiplexer selection code, 0-3
Flag input

0 = 8 bits; 1 = 10 bits

STATUS REGISTER

7 6 5 4 3 2 1 0

\—Y—l —Y—‘
‘—Multiplexer channel code, 0-3

Flag output

0 = 8 bits; 1 = 10 bits

Two most significant digits of counter
BUSY. 0 = Conversion in progress
EOC. 0 = Conversion completed

COUNTER
76543210“76543210

0j]010]0

. J

& 4
- Counter: low byte

Counter: high byte

Figure 3.4 NEC uPD 7002 register allocations

Memory location Channel number
&02B6 1(0)
&02B7 2(1) is
20288 3(2) St o
&02B9 4 (3)
&02BA 1(0)
&02BB 2 (1) .
&02BC 3(2) High byte
&02BD 4 (3)
&02BE Report Number of last channel

to complete

Figure 3.5 A/D converter memory locations

Analogue Signal Handling 49

next conversion. We can discover the most recently measured value on any of the
channels by means of the ADVAL command and a channel number, but note that
the hardware recognises channel numbers O to 3, whereas the software refers to
them as channels 1 to 4. 7= ADVAL(3), for instance, will set 7 to the value found
in &02BC, high byte, and &02B8, low byte. The program of figure 3.6 will display
the value on any of the four channels selected by pressing the appropriate key
from O to 3. The channels correspond to channels O to 3 on the paddle connector,
SKT6, connected as shown in figure 1.9b with the maximum input voltage defined
by Vrgr, which is assumed to be 1.8 volts. Then the measured voltage V' =1.8

x ADVAL (N)/65520. The value used is calculated from the full 16-bit number
held in memory, but we must recall that the bottom four bits of the low byte are
always zero. This means that the values will always be multiples of sixteen, which
is why we divide by 65 520 and not 65 536. To convert to a 12-bit equivalent
numerical value we merely divide by sixteen, giving 7= ADVAL(3) DIV 16, for
example. In most cases, however, as we have seen, the conversion is accurate only
up to ten bits and it may be better to divide by 64 to give a range from 0 to 1023.
If we wish to work in machine code, an OSBYTE call with A = &80 has the same
effect as ADVAL. The channel number must be placed in the X register before
the call, and the binary value is returned to Y, high byte, and X, low byte. If an
OSBYTE &80 call is used with the X register at zero, the value in location &02BE
is returned to register Y and &02BE is cleared to zero. Only the three least
significant digits of Y have any significance; 000 indicates no channel has com-
pleted since the value was last read, and a value from 001 to 100 indicates which
was the last channel to complete. As noted in chapter 1, this call also returns to
register X the status of the fire buttons on the games paddles. In this case only
the bottom two bits are of significance; bit 0 indicates the state of the LEFT
button, 1 = ‘pressed’, and bit 1 indicates the state of the RIGHT button. Using
the ADVAL(0) form of command returns the value calculated from the 16-bit
value formed by registers X and Y together, so to find the state of the fire
buttons we must select the least significant two bits using FB = ADVAL(0)

AND 3; and to discover the number of the last channel to complete conversion
we use CH = ADVAL(0) DIV 256.

10 MODE?7

20 PRINT CHR$(30) ;"WHICH CHANNEL (0-3)7?"; /Home cursor
30 B=GET /Input channel number
40 A=B-48 /and select the 4 lsd
S0 IF ACD OR A>3 GOTO 20 /Reject if not O to 3
60 X=ADVAL (A+1) /Read selected channel
70 VOLT=(1.8%X) /65520 /Calculate voltage
80 VOLT=INT(VOLT#100) /100 /Adjust to two decimal places
90 CLS

100 PRINT TAB(10, 6) ;CHR$(141) ;"CHANNEL= "A /Display value in
110 PRINT TAB(10,7) ;CHR$(141) ;"CHANNEL= "A /double-height

120 PRINT TAB(10, 10) ;CHR$(141) ; "VOLTABGE="VOLT /characters.
130 PRINT TAB(10, 11) ;CHR$(141) ;"VOLTAGE="VOLT
140 GOTO 20

Figure 3.6 Use of ADVAL command

50 Interfacing the BBC Microcomputer

Effect of *FX16,N

All channels switched off

Channel 1 (0) selected

Channels 1 (0) and 2 (1) selected

Channels 1 (0), 2 (1) and 3 (2) selected
Channels 1 (0), 2 (1), 3 (2) and 4 (3) selected

PWN—O =

Note: Values of N greater than 4 are taken as 4

Figure 3.7 Use of *FX16,N call

The operating system, when left to itself, converts each channel in turn, taking
approximately 10 milliseconds to complete each conversion. In many applications
we do not need to use all four channels and call *FX16,N is provided to allow us
to switch off some, or all, of the channels. The number N defines how many
channels are to be active, and must be placed in the X register beforehand. Its
effect is summarised in figure 3.7. On completion of the call, the old value of N
is returned in register X. When using only one channel we do not need to restrict
our readings to channel 1 as directed by *FX16,N. There is another call that can
be used to initiate a single conversion on any channel. This is *FX17,N and
again N, with a value from 1 to 4, must be placed in the X register before the
call. The converted value is then returned to memory in the normal way. The
disadvantage, of course, is that each conversion must be triggered with the
*FX17,N call. Three other OSBYTE calls are available to provide information
on what the analogue-to-digital converter is doing at any time: OSBYTE &BC
returns the number of the channel currently being used in the conversion,
OSBYTE &BD returns the number of channels being scanned, as in figure 3.7,
and OSBYTE &BE returns the current resolution setting — &00 or &0C indicates
10-bit resolution, &08 indicates 8-bit.

When scanning only a limited number of channels, we can take readings much
faster from the remaining active channels. Using only channel 1, for example,
successive 12-bit conversions can be completed every 10 milliseconds, and rather
faster if we specify an 8-bit resolution. If we wish to derive sufficient information
from our sampled values to define in full a time-varying signal, the rate at which
we must take the readings, or samples, is clearly dependent on the speed at which
the signal changes. Theory shows* that it depends on the highest frequency com-
ponent contained in the signal and the sampling theorem indicates that our
readings must, in fact, be taken at a rate at least twice the highest frequency in
the signal. If the fastest we can take readings on channel 1 is one every 10 milli-
seconds, then we are sampling at a maximum of 100 Hz and so the highest
frequency component that we can cope with satisfactorily is 50 Hz. This is the

* See, for example, chapter 14 of Taub and Schilling, Digital Integrated Electronics,
McGraw-Hill, 1977.

Analogue Signal Handling 51

same as the mains frequency and, in electronic terms, is very low, but it is
perfectly adequate for slowly varying signals such as those from potentiometers
using dc voltages. We will come across several examples of such applications in
later sections of the book.

In many applications we need to deal with signals that are varying much more
rapidly than 50 Hz, and we then have to provide our own converters. As we have
a versatile computer already to hand, it is sensible to make use of the computer
as much as possible in the conversion process, and we can do so if we use one of
the other two conversion principles that we looked at earlier in this chapter. The
second method suggested uses a digital-to-analogue converter which gives a stair-
case ramp waveform as the input from a counter increases. A comparator then
detects when the staircase voltage exceeds the unknown analogue voltage and
stops the count. We can supply the count from the computer and so only need
an external DAC and a comparator. The signal from the comparator can be used
to generate an interrupt on pin CB1 of the user port to indicate that the count
must be stopped.

The circuit of a digital-to-analogue converter is normally much simpler than
for an analogue-to-digital converter, and often makes use of a resistive ladder net-
work. This is shown in figure 3.8 where A, B and C are connected to current
switches which have a very low impedance to ground in both states. They are
controlled digitally to inject current into the ladder only when a ‘1’ is present.
The output voltage of the amplifier is governed by the amount of current at its
input, and that is determined by where the currents are injected into the ladder.
If we look at the structure of the ladder we will see that the resistances appearing
at the various nodes are related in a very simple way. The resistance R is clearly
2R, so the resistance R, at node 1 is R, in parallel with 2R, since switch C is
effectively at earth. Thus R, = R (2R in parallel with 2R), and resistance R is
R, in series with R, making 2R again. In fact, if we go to the corresponding point
at any of the nodes we will get a resistance to the left of 2R. A little bit of thought
shows that the resistance to the right also will always be 2R since the ladder is

Operational
R, R, A3 amplifier

Virtual
2R earth

Figure 3.8 The resistive ladder network

52 Interfacing the BBC Microcomputer

symmetrical. And the ladder can be extended by adding R-2R sections for as
many inputs as we need.

Now let us see what this means for a current, /, injected into the ladder at one
of the switches, switch C for example. At the first node, the resistance to the left
is 2R and the same to the right, so the current will split equally and 7/2 will flow
towards node 2. At node 2 the resistance ahead is 2R with the same to the right
(since switch B presents an effective earth), so the current splits equally again and
I/4 flows towards node 3. The final split at node 3 means that //8 arrives at the
amplifier. If a second current, /, is injected at switch A, for example, it splits
only once and //2 arrives at the amplifier. The total current from these two in-
puts is therefore /8 +1/2 = 5(I/8), so the output is proportional to 5 which is the
value indicated by the digital settings on ABC of 101. The current reaching the
amplifier, and therefore its output voltage, is always proportional to the binary
value on the switches. The circuit is normally manufactured in a single dual-in-
line package containing the ladder network and amplifier together with the
current switches and biasing network. In many cases a reference voltage is used
in conjunction with the current switches, so that the voltage output is the product
of the reference voltage and the digital value on the inputs. This is known as a
multiplying DAC, MDAC. An alternative approach in making a DAC is to use a
summing amplifier with each input resistor differing by a factor of 2 from the
previous one. However, this necessitates a wide range of resistance values which
makes severe demands on the current switch design, so the ladder network, with
its two resistor values, is preferred. The resistance presented to any of the current
switches is 3R regardless of its place on the ladder.

The third method of conversion suggested earlier approaches the problem from
a different direction by using the applied voltage to control the frequency of a
series of pulses. By counting the number of pulses in a given period of time we can
obtain a digital value that is directly proportional to the analogue voltage applied
to the voltage-to-frequency converter. Many of the relatively few direct digital
transducers operate by generating pulse trains. This is particularly easy where a
rotating shaft is in use, since optical or magnetic sensors can be used to detect
each revolution of the shaft. The optical sensors often make use of an infra-red
light emitting diode and a phototransistor housed together in one package and
relying either on reflected light, figure 3.9a, or on interrupted light, figure 3.9b.
Both types are readily interfaced with TTL and other logic circuits. The magnetic
sensor responds to the movement of ferrous parts within a few millimetres of the
pole piece at the end of the unit. This type of ‘pickup’ is often used to sense the
teeth of a rotating gear wheel. Bear in mind that the output of a simple magnetic
pickup is more a nasty looking sinewave than a recognisable series of pulses, and it
must be smartened up by use of a Schmitt trigger type of circuit. Several logic gates
and buffers, such as the 74L.S14 and CD40106B hex Schmitt inverters, are pro-
vided with these special input circuits specifically for this purpose.

The rotating shaft idea can also be used in digital flow meters or wind velocity
meters by using a propellor-driven rotor, but in applications where a rotating shaft

Analogue Signal Handling 33

&

M / LE_D M_/ Disc
/. 5

ig TP

C
Phototransistor
o
+ - E (3
Reflective E LED Phototransistor

surface

(a) (b)

Figure 3.9 Optical sensors. (a) Reflective opto-switch. (b) Slotted opto-switch

is not part of the system, the pulse train can be generated by a relaxation oscillator
using a unijunction transistor, UJT, or programmable unijunction transistor, PUT.
The frequency of the oscillator is controlled by the value of one of the timing
components. Figure 3.10, for example, shows a light-dependent resistor, ORP12,
being used to control the charging rate of the capacitor. The voltage on the emitter
of the UJT increases as the capacitor charges up via the variable resistance. At a
certain critical voltage the UJT conducts and discharges the capacitor. The collapse
of the voltage switches off the UJT and the cycle begins again. When the UJT, T1,
conducts, the discharge current generates a transient voltage at the base of T2 and

o RS +5 V

1

Figure 3.10 Light intensity to frequency converter

54

Interfacing the BBC Microcomputer

the resulting output at the collector is a negative-going pulse that is several tens of
microseconds in length. The repetition rate is governed by the resistance of ORP12
which varies from several megohms to less than 2000 ohms when fully illuminated.
Regardless of how the pulses are generated, it is necessary to count them over a
pre-determined period to give the final digital representation of the input variable.
A simple method is to use each pulse as an interrupt signal, which indicates to the
computer that the count must be incremented. We can use either CB1 or CB2 on
the user port for this purpose, and can cope with positive-going or negative-going
pulses by programming the peripheral control register, &FE6C, appropriately
(using the details given in figure 2.21). For correct working, figure 3.11a, the
interrupt must be serviced and further interrupts enabled before the next pulse
appears. If the computer is heavily loaded or the pulses appear at too high a rate,
we can relieve the pressure of repetitive interrupts by making use of the timer-
counter provided in the VIA, as in figure 3.11b. Negative-going pulses applied to
pin PB6, pin 18 of the user port, can be used to decrement the value held in the

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

MODE7
DIM PROG 100 /Reserve block of bytes for assembler
RB=&FEE0D /Label Data Register B
TICL=&FE64 / Timerl low byte
T1CH=&FEES / high byte
PCR=&FEEC / Peripheral control reg
FR=&FEED / Flag register
IER=&FEEE 7 4 Interrupt enable reg
FOR I=0 TO 2 STEPRP Z2Z:P%=PROG /Start SETUP routine
[OPTI
. SETURP
LDA TiICL /Clear flag bit & by reading TI1CL
LDA #&90:8TA IER /Set IER to enable interrupts on CB1
LDA #&EF:EOR PCR:STR PCR /using negative-going edge
LDAR &80:STA TiCL
LDA &B1:STA T1CH /Set TIMER1 to value found in &80/81
LDA RB /Read register B to clear interrupt flag
. LOOF
LDA FR:AND #&40 /Select bit 6 of flag register and
BEQ LOOP /loop until bit 6 sets indicating
LDA #&10:8STA IER /time out,then disable interrupts
RTS
J
P%=&B0O0 /Interrupt routine is located at &BOO
[OPTI
PHA /Preserve content of accumulator on stack
cLe
LDA &70:ADC #1:STA &70 /Increment 16-bit counter
LDA &71:ADC #0:STR &71 /in &70/71.
LDA RE /Clear interrupt flag
PLA /Restore accumulator content from stack
RTI
INEXT
PRINT TAB(D,0);"Time period required":
INPUT Ws$ /Input required time interval and
! &80=EVAL (W$) /store in &80/81.
'&70=0 /Zero the counter in &70/71
! &206=&0B0O0O /Set interrupt vector at IRQ2V

Analogue Signal Handling 35

390 CALL SETUP
400 P=(?8&71%256)+78&70 /Calculate number of pulses

410 PRINT TAB(0O,2) ;"Number of pulses=";P /and display

/The main program runs from line 340 through line 410.

A user supplied time value is stored and used in the
SETUP routine which loads Timerl and enables interrupts
on CBl. Interrupts cause the program to vector via IRQ2V
to the handling routine at &B0O0O; the counter increments
and interrupts are reenabled.When bit 6 of the flag reg
is set,indicating time up on Timerl , further interrupts
are disabled and the number of pulses is calculated and

displayed.
(a)

10 MODE?7
20 DIM PROG 100
30 DDRB=&FEG62 /Label Data Direction register
40 T1CL=&FE&4 4 Timerl low byte
S0 TiCH=&FEES / high byte
60 T2CL=8FE6E8 / Timer2 low byte
70 T2CH=&FE6E9 / high byte
80 FR=&FEGD / Flag register
90 ACR=&FEEB / Auxiliary control reg
100 FOR I=0 TO 2 STEP 2:P%=PROG /8tart SETUP routine
110 [OPTI
120 . SETUP
130 LDA #0:STA DDRB /Set DDRB for inputs

140 LDA #&20:0RA ACR:STA ACR /Set pulse counting mode(bitd)
150 LDA #&FF:STA T2CL:STA T2CH /Set Timer2 to count pulses

160 LDA &70:STA TiCL /on input bit 6 of port B
170 LDA &71:STA T1CH /Load and start Timerl
180 . LOOP

190 LDA #E4:BIT FR /Test bit € of Flag register and
200 BVC LOOP /loop until timeout on Timerl
210 RTS

220]

230 NEXT /Exit routine only when Timerl has timed out

240 PRINT TAB(D,0);"Time period required";
250 INPUT W$

260 ! &70=EVAL (W$) /Set time period
270 CALL SETUP

280 T2=?T2CL+ ((?T2CH) *256) /Calculate number of pulses
290 T2=&FFFF-T2 /as complement of T2 count
300 PRINT "Number of pulses="3;~T2 _________ /Display value

/Timer2 counts down from &FFFF as pulses
are received on ORB pinG. The final number
of pulses is the complement of the value
held in Timer2 when Timerl times out.

(b)
Figure 3.11 Pulse counting. (a) Using interrupts on CB1. (b) Using VIA timer-counter

56 Interfacing the BBC Microcomputer

16-bit counter of timer 2. The counter makes use of the registers T2C-L, &FE68,
and T2C-H, &FE69, and must be set to the count mode by setting bit 5 of the
auxiliary control register, &FE6B, to ‘1. In this inode, the counter is intended
primarily to count down for a pre-determined number of pulses and then to
generate an interrupt signal. However, we can read the counter registers at any
time, so, if we set the initial value to its maximum, and ensure that the counting
time interval is less than that needed to count to zero, we can use the counter in
the normal way. Actually, even if the count reaches zero and the interrupt signal
is generated, the counter continues to decrement so the value is still recoverable.
The loading procedure is carried out in two parts: writing the low byte of the
starting value to register &FE68 loads the value into a latch as a temporary store.
When the high byte is written to register &FE69 it goes directly to the counter
and the low byte is simultaneously transferred from the latch to the counter.
Thus loading the high byte initiates the count — and also clears the interrupt flag.

4 The 1 MHZ Bus

We saw in chapter 1 that, in addition to the user port, the computer has a very
flexible high-speed interfacing bus operating at 1 MHz and providing buffered
access to the internal address and data buses. The 1 MHz bus allows us to connect
circuitry and system extensions to our computer, which are more complicated than
those on the user port, but in order to make good use of its capabilities we have to
understand the way in which it is structured and a few of its idiosyncracies.

The peripheral circuitry using the 1 MHz bus is intended to be housed in an
expansion box external to the computer and, in common with all the interface
connections except the disc, to use a separate power supply rather than drawing
power from the computer. Acorn Computers Ltd, and other manufacturers,*
supply standard expansion enclosures to take the Eurocard-based range of
peripherals, and many of the commonly required peripheral controllers are, there-
fore, already available at reasonable cost. However we may still need to build our
own non-standard equipment, either to mount in the expansion box or to be
free-standing.

The expansion box should be connected to plug 11 of the computer by a 34-
way ribbon cable of up to about 2 feet (600 mm) in length. The address, data and
control signals on the bus are carried through TTL buffers at the computer end and
should be buffered again at the peripheral end of the bus so as to limit the load on
each line to one LS TTL (see appendix A). This restriction, together with the wired-
OR arrangements on the interrupt lines, is imposed so as to allow more than one
peripheral unit to be attached to the bus, and, for the same reason, ‘feed through’
connector arrangements are recommended, so that the additional items can be
cascaded as required. The buffers used are the 741.S244 octal buffer/line driver for
the address bus, and the 741.S245 octal bidirectional transceiver for the data bus.
Full details of these two chips are given in appendix D.

The input-output devices using the 1 MHz bus are memory mapped onto pages
&FC and &FD. That means that the processor refers to the registers used by the
input-output equipment as though they were memory locations. The full input-
output memory map for the computer is given in appendix C. OSBYTE calls are
provided to initiate transfers of data on the bus, some for reading, that is, trans-
ferring data to the processor, and some for writing to the input-output registers.
OSBYTE &92 (or #*FX146) reads from page &FC, FRED, and OSBYTE &93

* Control Universal Ltd, for example, with their CUBE products.

57

58 Interfacing the BBC Microcomputer

(*FX147) writes to page &FC. Similarly OSBYTE &94 (*FX148) reads from
page &FD, JIM, and OSBYTE &95 (*FX149) writes to page &FD. Before making
the call, the location required within the page must be loaded into the X register,
and the byte that is to be written must be put into register Y. If the call involves
reading, the byte is routed to register Y.

The data bus drivers are enabled only when an address lying within the FRED
or JIM range is detected, but the address bus drivers are permanently enabled. The
direction of the data flow on the data bus is determined by the setting of the
R/W (read/not write) signal, being into the computer (that is, reading) when high,
and out (or writing) when low. The address bus carries only the lower eight bits of
the full 16-bit address, but the page indicators, NPGFC and NPGFD, are also
provided. If the user is operating in the FRED page of memory, we have seen that
the address can lie between &FCO0 and &FCFF. The full address is represented by
NPGEFC plus the eight bit value on the address bus, as in figure 4.1. We can use any
of the 256 locations on the page, but Acorn have indicated their standard alloca-
tion of various ranges, and, if it is possible that the system may be extended at a
later date, it is best to restrict our operations to the address ranges allocated.
From the list given in figure 4.2 we see that 63 bytes in the range &FCCO to
&FCFE have been reserved for user requirements and, in practice, this is more
than adequate for the majority of applications. Where more memory space is
necessary we move to the JIM page and gain access to a possible 64 kbytes of
external memory. However, before we leave FRED we must look in more detail
at how the transfers are organised.

15 87 0
- ..
! FC 00-FF
SR -

» J! —)

| Indicated by NPGFC
being low

Eight-bit address bus value

Figure 4.1 Effective address on FRED, page &FC

&FC00-&FCOF
&FC10-&FC13
&FC14-&FCI1F
&FC20-&FC27
&FC28-&FC2F
&FC30-&FC3F
&FC40-&FC47
&FC48-&FC7F
&FCB0-&FC8F
&FC90-&FCBF
&FCCO-&FCFE
&FCFF

Test hardware

Teletext

Prestel

|IEEE-488 interface

Reserved for future Acorn use
Cambridge ring interface
Winchester disc interface
Reserved for future Acorn use
Test hardware

Reserved for future Acorn use
User applications

Paging register for use with JIM

Figure 4.2 Allocation of addresses on FRED, page &FC

The 1 MHz Bus 39

It was explained in the first chapter that the clocking rate on the 1 MHz bus is
half the rate of the microprocessor clock, so as to allow the use of many of the
relatively slow peripheral devices which are widely available. The normal clocking
arrangement with the 6502 microprocessor is that a memory operation, such as
an instruction fetch or reading or writing data to memory, occupies one cycle of
the clock waveform. In effect, the clock pulse acts as an indication that the
address signals on the bus at the time it is high constitute a valid address. The
external 1 MHz clock signal, IMHZE, is derived from the same 2 MHz waveform
that controls the microprocessor in normal operation via the 74LS32 OR gate,
gate 1 on figure 4.3. However, when a 1 MHz bus address is detected (that is, &FC
or &FD), the pulse-stretching circuitry is triggered and, in effect, one cycle of
1 MHz waveform is inserted via the OR gate to give the waveform shown as Qpy
in figure 4.4. Thus for the duration of the 1 MHz bus operation the microprocessor
is running at 1 MHz, not 2 MHz. This approach works perfectly well as far as the
microprocessor is concerned, but creates a couple of problems when we try to
carry out memory transfers at the other end of the bus. In all systems we make
use of the valid memory address, VMA, type signal, to ensure that the circuitry
reacts to an address on the bus only when it is intended to be there and is stable.
At other times the signals on the various address lines are changing in a haphazard
way, and we may briefly detect an address that we are seeking, which in reality is
merely a chance occurrence on the bus. These spurious pulses or spikes from the
address detection circuits are normally of no significance because the processor
clock signal is low, so indicating that the address is not valid and should be ignored.
But the external equipment, which relies on the IMHZE clock signal, will see
alternate spikes as valid indicators since its clock signal is then high. We must
therefore suppress the awkward spikes.

A second problem arises when a device using the 1 MHz bus is selected while
the IMHZE clock happens to be high. When NPGFC (or NPGFD) goes low, the
device will be enabled immediately, as required, but, because the processor clock
is stretched, it will be accessed again when the IMHZE clock goes high the next
time. This is shown in the waveforms of figure 4.4. Of course, in many cases this
double enabling will not matter, but in some cases it can have awkward side-effects,
such as clearing an interrupt flag prematurely.

Several methods have been suggested for overcoming these problems, by
generating a ‘clean’ version of the selection signal; NPGFC then becomes
CNPGFC, the C indicating ‘clean’. A similar operation is required for NPGFD.
Some of the proposed circuits, however, merely shift the problem from occurring
when 1MHZE is high to when IMHZE is low, and are not recommended. Two
circuits have been found to work well. The first uses a gated set-reset flipflop
formed from the gates contained in a single quad two-input NOR package,
741502, as shown in figure 4.5a. This circuit prevents the selection signal going
low until the IMHZE signal is low. The method is almost always satisfactory, but
it does allow the spurious pulse preceding the selection signal to get through. A
second circuit, figure 4.5b, is more thorough and uses a single D-type flipflop,

Interfacing the BBC Microcomputer

60

Aygmnoard Surysraps-asind Surmoys 10ssa204doonu z() ¢ 40f Lu3no.ano Surui [£F a4ndly

Ndo
¢0S9

ZHW ¢

Z_Q

| ()

=

CESTVL

IZHW | ~———
ﬁ|||||||||||Mm:III|IIIIJ
| vLSTYL 0 “
_
—1 0 |
| 4 _
_ 4 |
_ zesIveL a _
Hd
_ a .TA } - |~..
Hd |
_ o P ¥0STvL |
_
_ | 0
_ 1sy |
_ 1SSTbL _ '
_ |
_ 1IN2410 _ 0 a
L] | 9NHOLIYISISING | PHWZI 0] s
410 vLSIVL
< o
0 a 0 a
sas|nd 320|9 ZH\ Z |BWION ZHWN | 43LNNOD ANV
ZHIN

pajoalap
ssaippe
snq ZHW |

The 1 MHz Bus 61

STRETCHING STRETCHING

OPERATES OPERATES
Oy 2 MH |||||F‘“|"'|[‘ —||"|r'“r*"7—|r‘
IN 7 4 | L_J ! | |r___!
I
)

| . |
|
1 MHZE | -
[[R 1 l
I | I I i
I | | |
NPGFC r"’—
(NPGFD) V /Aj %_
| |
CNPGFC (a) ' A
(using circuit of V//% l
figure 4.5a) | !
CNPGFC (b) W -
(using circuit of [
figure 4.5b) 1 MHz bus address 1 MHz bus address Bus device
detected while 1 MHZE detected while accessed twice
is low 1 MHZE is high

Figure 4.4 Bus timing waveforms, showing double access if IMHZE is high when
the bus address is detected

741502
1 MHZE 741502 741532
CNPGFC
NPGFC nPa
CNPGFC
1 MHZE
—s- CNPGFC
NPGFC 741502 o
CNPGFC
(a) (b) 741574

Figure 4.5 Generation of the ‘clean’ selection signal

741874, and an OR gate, 74LS32, to filter out the spikes and to generate a single
width pulse under all conditions.

Where more memory than the 63 bytes available on page &FC is required, we
must move to page &FD, JIM. Here the external equipment can use up to 64K
locations, which still needs sixteen address bits, but, in this case, since the locations
are all external, all sixteen bits have to be defined and we have only the lower eight
bits available on the bus. The problem is overcome by making use of an external
register which holds eight bits sent over the data bus. This paging register provides
the upper eight bits of the address, which are known as the extended page number,
and, together with the lower eight bits on the address bus, gives us the full 16-bit

62 Interfacing the BBC Microcomputer
address, as in figure 4.6. The paging register itself must have an address so that we
can select it when we wish to change the external page number, and it is allocated

the top location in the FRED page, that is, &FCFF.

15 8 7 0

00-FF 00-FF

Eight-bit extended page
number held in the
paging register

Eight-bit address bus value

Figure 4.6 Effective address on JIM, page &FD

Commercially available expansion boxes include the paging register on the
backplane of the box. It takes the form of a 74L.S273 eight-bit D-type latch which
is controlled by a latching signal generated by a 74L.S133 NAND gate. The gate
IMHZE clock are all high, since this concurrence indicates a write operation to
address &FCFF. The data on the data bus is then latched into the 74L.S273, since
the control signal goes high again when the IMHZE clock pulse ends. The register
is cleared whenever a reset, NRST, signal occurs. The overall backplane arrange-
ments, including the paging register, are shown in schematic form in figure 4.7
but for full details the appropriate Acorn application note* should be consulted.

Two further features should be noted with respect to operation on page &FD.
Read and write strobes, NRDS, NWDS, are generated from the ‘clean’ page select
signal and the IMHZE clock. Also a block 0, BLKO, signal is provided, which is,
in effect, an NVMA (FD) signal present only when address bits A12 to A15 are
zero. In the same way as we have found it useful to think of 64K locations as 256
pages of 256 bytes, it is also useful on occasions to consider blocks of pages,
rather like chapters, and, in this context, we have sixteen blocks of sixteen pages.
The block number is given by the top four address bits, so it also appears as the
most significant of the four digits in the hex address. For example, &072A lies in
block 0.

The addressing arrangements provided allow selection of any external location
from &0000 to &FFFF, but, again, the manufacturers have reserved part of the
available address space for specific purposes. User applications should be restricted
to the upper half of the address range, using blocks &8 to &F. Since the paging
register is a write-only memory location as far as the computer is concerned, it has

* BBC Microcomputer—Application Note No. 1 — 1 MHz Bus. Part No. 40700, Acorn
Computers Ltd.

63

The 1 MHz Bus

2180] auv)dyovq X0q UOISUI]XT] [} 24ANSL]

SNg ZHW L
(Qd4)VINAN 1IN2YID
a494d
g49dno | dN a49dN
NV3TD
SayN -
SAMN |
(04)VINAN
W 3
11N241D
o— 04940 e 949dN
olg he NV3T0
S
o A My
zeSIML o 3LiEM
INO0TVYNY > INO0TVYNY
INNN N IWNN
DHIN - DHIN
IZHW L IZHW L
1SHN 1SHYN
e
Glv-8Y A HOLV
00| gei1svL 2
£L2SWL ?
LV-0Y A sNg ss3yaav A
£a-0a A.r sng v.iva % £La-00

64 Interfacing the BBC Microcomputer

no way of checking what the value is at any time. When interrupts occur it would
normally be arranged that the page register value would be read and pushed onto
the stack, and then be rewritten on completion of the interrupt handling routine.
But reading the register is not possible, so a copy, or image, is held at a specified
location in the internal RAM, where it can be read when required. So that it is
still within the input-output processor’s map, even when a second processor is in
use, the image register is located in page zero, at &00EE. The image must, of
course, be updated every time the page register is altered, and, to prevent con-
fusion if an interrupt occurs when one and only one of the locations has been
modified, the image register at &0OEE should always be changed before the actual
register at &FCFF. Reversing the procedure would mean that, in such circum-
stances, the page register would be restored to its old value still held in the image
register, when the interrupt sequence was completed.

The potential uses of the 1 MHz bus are pretty well unlimited: FRED page
gives us 255 directly usable locations, and the JIM page extends the available
memory mapping space by another 64K through use of the paging register. Most
of the locations on FRED are reserved for use with specific system extensions
such as a Teletext decoder or a Winchester disc unit. But one of the extension
units, the IEEE-488 bus interface, is unlike most of the others in that it provides
a gateway into any cluster of other instruments interconnected by the IEEE-488
bus, figure 4.8. This bus was developed originally by the Hewlett-Packard
Corporation as their HP-IB (interface bus) to allow standardised interconnection
of the increasing number of ‘intelligent’ instruments used in laboratories, control
systems and automatic test equipment. Instruments with widely varying operat-
ing speeds were able to exchange data using a standard procedure, and the idea
was quickly taken up by other manufacturers, being known as the GP-IB, General
Purpose Interface Bus, by those who did not wish to publicise Hewlett-Packard.

INTERFACE
MICROCOMPUTER UNIT

g

IEEE-488 BUS
INSTRUMENT INSTRUMENT INSTRUMENT
1 2 3

Figure 4.8 IEEE-488 interface arrangements

The 1 MHz Bus 65

It was eventually standardised as ANSI/IEEE Std 488-1975 and has had only
minor modifications since. A slightly different form is known in Europe as
standard IEC-625-1.

When in use, the units connected to the bus are classified as the bus controller,
talkers and listeners. Some instruments, such as printers, are always listeners, some
are always talkers, but some, such as video display units with a keyboard and
display, can be either a listener or a talker, depending on the transaction required.
Only one talker may be active at any time, but the number of listeners is restricted
only by the addressing arrangements on the bus. The original standard provided for
a maximum of fifteen device addresses, but the current arrangement contains an
extended addressing facility to handle a very much larger number.

In attempting to understand the working of the bus, we must remember that
there are two levels of operation, which we shall refer to as the protocol level and
the physical level. The physical level covers the operation of the bus signals them-
selves in actually transferring messages along the cables between units. The protocol
level consists of the set of rules governing how the transactions are set up and
managed. For instance, suppose we have a system in which the IEEE bus connects
several instruments, including perhaps a digital voltmeter, a printer, a program-
mable power supply and the computer, which acts as the system controller. When
we switch on, the controller initialises the system by sending an interface clear,
IFC, signal to all interface units, followed by a coded message, device clear, DCL,
to set the units to a known quiescent state, rather like a reset on the computer.
The controller then has to set-up, or program, the units by sending a sequence of
messages and data to each unit in turn. For each unit we need a listen address
message to alert the unit, then the necessary programming data word and finally
an unlisten address message to tell it to stand down again. At some stage in an
experiment, we may wish to send data from the digital voltmeter to the printer,
so the transaction must be set-up by the controller. The first thing is for the
controller to send the listen address message to the voltmeter, followed by the
data word needed to activate its digital output circuitry, and then the unlisten
command. Next it sends the listen address message for the printer, and follows
that with the talk address message to the voltmeter. The ‘route’ is now set up and
the voltmeter feeds a succession of data words onto the bus and the printer accepts
them from the bus. An ‘end of data string’ signal is fed onto the bus when the last
byte is transmitted, to indicate that the transaction is completed.

The protocol sequences are specified in terms of bus signals, such as the inter-
face clear, IFC, signal, and bus messages, such as the listen address, talk address,
data word, unlisten command, and so on. The messages make use of the data lines
on the bus together with one of the control lines. The complete set of signal lines
on the bus comprises eight data lines, five bus management lines and three data
transfer control lines. There are also eight ground return lines. Specific pins on a
standard 24-way connector are allocated as shown in figure 4.9. The standard
connector is stackable to give the necessary feed-through facility, and is held in
place by captive locking screws which are often finished in black to indicate the
standard metric thread since some early instruments used non-metric threads. The

66 Interfacing the BBC Microcomputer

DIO1 % DI05 DIO1-8 DATA BUS

D102 20 14 |DIOB EOI END OR IDENTIFY

D103 aQ s |DIO7 REN REMOTE ENABLE
DAV DATA VALID

DI04 Ll NRFD NOT READY FOR DATA

EOI sl 017 |REN NDAC NOT DATA ACCEPTED

DAV 60 018 |DAV IFC INTERFACE CLEAR

NRFD | 70 019 |NRFD SRQ SERVICE REQUEST

NDAC | sl 020 |NDAC GND ATN ATTENTION

IFC ol D= |IFC RETURNS

SRQ w00l 022 |sRa

ATN 1l 02 [ATN

SHIELD w LOGIC GND

Figure 4.9 Standard pin connections for IEEE-488 bus signals

signals on the data lines are interpreted as an 8-bit byte of data unless the ATN
line is at logical ‘1°, in which case they are intended as a 7-bit command. In
general, the commands are of four classes indicated by bits 6 and 7* of the byte:

00 defines a universal bus management command
01 is a listener address
10 is a talker address

and 11 is a secondary address or command.

When an address is indicated, the actual value is held in bits 1 to 5, but the address
with all ones is reserved as a universal unlisten or untalk command. We can, there-
fore address up to 31 units directly, but, by using the secondary addressing facility,
each primary address can contain up to 32 secondary addresses. Figure 4.10 shows
the sequence to carry through the transfer of binary-coded data from the volt-
meter to the printer.

The remaining bus management lines, REN, SRQ, and EOI, are used in rather
more specialised operations. Remote enable, REN, can disable any local controls
on an instrument, so putting it under bus control. Service request, SRQ, is an
interrupt type signal, and end or identify, EOI, indicates the last byte in a multiple-
byte data transfer, but is also used by the controller when identifying interrupting
units.

The electrical signals on the bus are specified in terms of TTL levels, using
negative logic. Thus a signal between 2 and S volts is the high or ‘0’ state, and a
signal between 0 and 0.8 volts is the low or ‘1’ state. The active-low convention
is used to allow wired-OR operation, and open-collector drivers are used in most
cases, though three-state drivers can be used on the data lines and some of the
control lines. The total bus length is restricted to 20 metres, and each signal line

* The data bits are specified as 1 to 8, not 0 to 7.

The 1 MHz Bus 67

DATA BITS
r A .
ATN EOI IFC 8 7 6 5 4 3 2 1
IFC 0 0 1 0 0 0O 0 0 0 0O O Reset
DCL 1 0 0O 0 0 0O 1 0 1 0 O Deviceclear
LA (Voltmeter) 1 0 0O 0 0 1 0 0O 1 0 1 Listenaddress
DAB 0 0 0 1T 1 0 0 0 0 0O O Voltmeter
set-up code
UNL 1 0 0 0 0 1 1 1 1 1 1 Unlisten
LA (Printer) 1 0 0 0 0 1 0 O 1 1 0O Listenaddress
TA (Voltmeter) 1 0 0O 0 1 0 0 0 1 0 1 Talkaddress
DAB 0 0 0 0 0 1T 1 1 0 0O O Databyte
DAB 0 0 0O 00 1 1 0 1 0 1 Databyte
DAB 0 0 0 0 0 1 1 0 1 1 1 Databyte
DAB/EOI 0 1 0 0 0 1 1 0 0 1 0 Lastdatabyte
UNT 1 0 0O 01 0 1 1 1 1 1 Untalk
UNL 1 0 0O 0 0 1 1 1 1 1 1 Unlisten

Figure 4.10 IEEE bus transactions for data transfer

must be correctly terminated by a resistive load, with a diode clamp to prevent
negative voltage excursions. By using a terminated bus, the data transfer rate can
be taken up to 2 Mbytes per second, but the actual overall transfer rate is governed
by the speed at which the slowest unit involved in the transfer can provide or
absorb the data. The matching of widely differing transfer capabilities is achieved
by means of a handshake arrangement involving the three data transfer control
signals, DAV, NRFD and NDAC. The main principle of any handshaking transfer
is that each side involved must respond to the last action of its partner before the
transfer can proceed. Let us assume, by way of illustration, that we have one
talker and one listener already addressed by the controller, as with our voltmeter
and printer example a little earlier. The talker having outputted the current data
bits, and sensing that the listener is ready for data, because NRFD is high and
NDAC is low, sets DAV low. The listener detects the change on the data valid,
DAV, line and so pulls NRFD low. When the data word has been absorbed into
the buffer, NDAC is allowed to go high. The talker holds the data steady on the
bus until it senses that NDAC has gone high, then sets DAV high and replaces the
data with the next word. The cycle now repeats. The procedure appears some-
what complicated at first, but is in fact simple in concept and is widely used, not
just with the IEEE-488 bus, since it removes the problems of differing delays on
long interconnection paths. Data is accepted by the listener only when the
negative-going edge of DAV arrives at the listener, and is changed only when the
talker in turn receives the response from the listener. The interdependencies are
shown diagrammatically in figure 4.11. The active-low wired-OR arrangement
ensures that several listeners can be active at once, since the control line will
remain low until the last listener is ready to let it go high. One unfortunate feature
of the handshake method is that a transfer can ‘*hang-up’ if a response is not forth-
coming — we might have forgotten to switch the printer on! — and a watchdog

68 Interfacing the BBC Microcomputer

Talker Listener
Release DAV.| ~—~ ___ No
DAV goes high| Last data — =~

transfer complete
‘ @ Yes
il PuII NDAC low.
Releose NRFD.
_— |NRFD goes high

Llstener ’
/reody for data
® _——

Pull DAV low Doto avonloble

Accept data

i
@ Pull NRFD low.

/e —— —— —|Release NDAC.
Data accepted INDAC goes high)

Data
accepted |

|
Doto I i | x]

DAV

NDAC]

Listener

J

NRFD

Figure 4.11 Flowchart and timing waveforms of the IEEE-488 standard
communication procedure, showing the ‘handshake’ principle

timer must be built in to prevent an endless wait. As each signal is generated, the
timer is restarted and, if it ‘times out’ before a response is received, then the whole
transfer is aborted.

The IEEE-488 interface is available from Acorn as a ready-to-use unit. It comes
complete with a ROM, which contains the filing system and will handle up to 14
pieces of equipment. In many other applications, however, we may wish to use
the 1 MHz bus with our own non-standard interface, so let us now look at how to
control data transfers across the bus, by making use of the ‘cleaned up’ selection
signals that we derived earlier. In order to illustrate the principles, we will assume
that the requirements are very simple: the external circuitry requires only one
input port and one output port. We could use our old friend the Versatile Inter-

The 1 MHz Bus 69

face Adaptor here since it provides two ports, but we have already discussed the
VIA in some detail, so it is perhaps a convenient place to introduce another
similar device, the Motorola MC6821, which is known as the Peripheral Interface
Adapter, PIA. This was actually the forerunner of the VIA and is worth con-
sidering since, although not provided with so many features, it is only about
two-thirds the price of the VIA. It also provides two peripheral ports, A and B,
and each has associated with it a data direction register, DDR, and a control
register, figure 4.12. Although the internal data buses are shown as bidirectional
for clarity, there are in fact two unidirectional buses. The DDR is used to set up
each bit of the port as either input or output, ‘0’ for an input. The A and B ports
differ slightly, so that, although they can both be used as either inputs or outputs,
port A is provided with internal pull-up resistors to allow its use as an input port
without the need for external components, and port B has three-state drivers
allowing its use directly as an output port with a current-sinking capability of

10 milliamps, and a current-sourcing capability of 1 milliamp at 1.5 volts. The
handling of interrupt signals is also easier if the ports are used in this way. Two
control signals are associated with each port, for use with external circuitry, and
they are controlled in turn through the various bits of the control register.

The PIA has six internal registers but it is mounted in a standard 40-pin dual-
in-line package and, when all the data bus and port connections and the necessary
control pins have been allocated, there are only two pins available for internal
register selection. The problem is overcome by carrying out the selection in two
parts, using the two pins, RS1 and RSO0, and one of the bits of the control register.
RS1 selects either the A or the B side of the PIA, figure 4.13, and, if RSO is at ‘1°,
the control register is uniquely selected. However, if RSO is at ‘0’, it indicates
either the data direction register or the peripheral register, and the particular one
intended is determined by the setting of bit 2 of the appropriate control register,
CRAZ2 or CRB2. Thus in programming the PIA to operate in a certain way, we
must address the first word to the control register and make sure that bit 2 is at
‘0’. We then address the data direction register and set up the port bits as inputs
or outputs. Finally we go back to the control register to set bit 2 to ‘1’ so that
future accesses will be to the peripheral register. Note that a low on the RESET
input has the effect of setting all internal registers to zero, so bit 2 of the control
register is then already at ‘0’. Similarly the data direction register will already
contain ‘0’s, indicating an input port, and need not be re-addressed if that is
what is required.

The remaining bits of the control register are devoted to controlling and
responding to signals on the control lines, CAl and CA2 (or CB1 and CB2). Lines
CA1 and CBI are input-only lines and each sets bit 7 of its control register when
it receives the appropriate signal, which is indicated by the code in bits 0 and 1
of the control register. CAl, for example, can be programmed to respond to
either a negative-going edge or a positive-going edge, as shown in figure 4.14. By
setting bit 0 to ‘1’ we can enable the IRQ output to provide an interrupt signal
to the computer, but, if we prefer, we can disable the IRQ signal and monitor

Interfacing the BBC Microcomputer

70

ampuiayss vid It .NKBM.W%

180 g
7041NOD g0l
g = 1dNYYILNI
840
4315193y
704 1NOD 13534
ayd e— 378VN3
y sy344ng et
1-08d ﬁvmoimmhz_ AHV 4311934 i
VY 3IHdIY3d —~—
JOHLINOO|e — gy
g4aa
43181934 = &0
NOILD3HIAQ V1vd f— LSO
le— 05D
vyaa
¥31S193Y
NOILO3HIA V1va
vHd
sy344ng
L-0vd A'Ivl_vmofmmkz_ﬁv _yaisioay ¢
VHIHdIY3d A
VY0 sne La-0a
43151934 v1va
7T0H1NOD
Zvo v
7041NOD = vl
e LdNYYILNI

The 1 MHz Bus 71

RS1 RSO CRA2 RS1 RSO CRB2

0 0 0 DDRA 1 0 0 DDRB
0 0 1 PRA 1 0 1 PRB
0 1 [4) CRA 1 1 4] CRB

Figure 4. 13 PIA register selection

CRA
IRQ | IRQ DDRA CA1
Al | A2 | CAZCONTROL |,ccess| conTROL
——— [N —
Interrupt L CA1 edge to set CRA7 flag:
flag 1 00 = negative-going. TRQ disabled
Interrupt 01 = negative-going. IRQ enabled
flag 2 10 = positive-going. IRQ disabled

11 = positive-going. IRQ enabled
0=DDRA: 1 =PRA
0 = CA2 edge to set CRAG flag:

00 = negative-going. IRQ disabled
01 = negative-going. IRQ enabled
10 = positive-going. IRQ disabled
11 = positive-going. IRQ enabled

1 = CA2 acts as an output:

Control of set and reset conditions
(A and B control registers differ):
00 = CA1 goes high when CR bit 7
is set. Reset by data read
operation

Figure 4.14 PIA control register, CRA

the operation of input CA1 under program control by checking the flag bit,
CRA7. A similar arrangement holds for the B side. CA2 can act either as an input
or an output, controlled by bit 5 of the control register. When set as an input it
operates in the same way as CA1 but uses CRAG6 as the flag bit. CB2 operates in
the same way. The flag bits are cleared automatically during a read operation of
the peripheral register, PR. When set as outputs, CA2 and CB2 are intended to be
used in controlling peripheral data transfers, and they operate in slightly different
ways. The possible operating modes are too numerous to be summarised effectively
here, and the data sheets* should be consulted when the complete specification
is required.

Having decided to use a PIA in our simple application, we must ensure that the
device is correctly connected to the bus and that an initialisation procedure is
included in our program to set up the ports as we need them. The registers of the

* Motorola MC6821. Microcomputer Components, Motorola Inc., 1979.

72 Interfacing the BBC Microcomputer

PIA are to be mapped onto page &FC and we should use locations within the
allocated block which begins at &FCCO. The individual registers could then be
selected according to the values on address bits O and 1 by connecting them to
RS0 and RS1 respectively. A convenient arrangement would be

&FCCO selects DDRA/PRA
&FCC1 selects CRA
&FCC2 selects DDRB/PRB
&FCC3 selects CRB.

The memory space that we are using lies at the top of the page, so in most
cases it is sufficient to detect when an address on page &FC is &CO or higher. We
can do that by using address bits 6 and 7 as chip select signals, since any address
in which they are at ‘1" will be &CO or higher. However, if page &FD is likely to
be used in our system, we must also exclude from our chip selection range the
address of the paging register, &FCFF. An address with a ‘0’ on any address line
from A2 to AS will indicate an address other than &FCFF, and, since we need
only a few locations, we can afford to use a very restricted code detection, and
look for a ‘0’ on only one of the address lines. The circuit of figure 4.15 makes
use of CS2 on the PIA to look for ‘0’ on A5, so with A6 and A7 connected to
CS0 and CS1, the device responds only to addresses on page &FC that start with
&C or &D, and not &E or &F. The inverse of CNPGFC is connected to the Enable
input to control the timing of the transfers. The timing waveforms involved are
shown in figure 4.16 and, as with any bus organised system, it is important that
the timing requirements are satisfied.

NPGFC[— CLEAN | CNPGFC
upP ENABLE
1MHzE |- CIRcUIT| T L

pno-7 K S5
A7 —== CSO
A6 —== CS1
A0-7 > A5 —=f CS2
A0 —== RSO CA1

A1 —== RS1 CA2

HANDSHAKE
CB2 SIGNALS
NIRQ IRQA
_ CB1
R/W R/W
NRST RESET
-) 0
DO-7 > DO-7
PIA
1 MHz BUS MC6821 USER CIRCUITRY

Figure 4.15 PIA connections to the 1 MHz bus

The 1 MHz Bus 73

1 MHZE ——\—/——-\—
|
: i
1 |
A0-7 YN | s VY
L #
| |
| |
CNPGFC / \

=
>
o<
o>
0
m
ho
w
—_— - —

) W

|
v OE
_ 5%, - 24

DO-7

Reading data

VALID W
DATA
T
Writing data

Figure 4.16 Bus transfers timing waveforms

Finally, the initialisation procedure must set up port A as an input port and
port B as an output port, and leave each control register set for the interrupt mode
required, ensuring that bit 2 is at ‘1’ in both cases. The sequence can be

summarised as follows:
At &FCC1 load binary 00000000
At &FCCO load binary 00000000
At &FCC1 load binary 00000100

At &FCC3 load binary 00000000
At &FCC2 load binary 11111111
At &FCC3 load binary 00000100

Bit 2 of CRA=0
DDRA set to indicate 8-bit input port

Bit 2 = 1: other bits are set as required
for interrupt operations

Bit 2 of CRB=0
DDRB set to indicate 8-bit output port

Bit 2 = 1: other bits are set as required
for interrupt operations.

This can be achieved as shown in the program section of figure 4.17, though, as
previously explained, some of the steps can be omitted if a reset will always

precede the initialisation.

The circuitry using the signals from the PIA can vary widely but must, of course,
provide and accept data in the correct form, and handle the handshaking require-
ments. For the sake of convenience, the designer will, in many cases, make use of
one of the standard interfacing chips. We have looked at the VIA and the PIA, but
other common variants, such as the programmable 10 chips by Intel and Zilog, are

similar in operation.

74 Interfacing the BBC Microcomputer

10 DDRA=&FCCO /Label Data Direction register A
20 CRA=&FCC1 / Control register A

30 DDRB=&FCC2 / Data Direction register B
40 CRB=&FCC3 / Control register B

50 P%=&70 /Program starts at &70
e0

70 LDA #0:STA CRA /Clear CRA; bit2=0 selects DDR
80 STA DDRA /Set port A for inputs
S0 LDA #4:STA CRA/Define CAl,CARZ edges;bitZ=1 selects port
100 LDA #0:5STA CRB /Clear CRB; bit2=0 selects DDR
110 LDA #&FF:STA DDRE /Set port B for outputs

120 LDA #4:STA CRB/Define CB1,CB2 edges;bit2=1 selects port
130 RTS
140 b]
150 CALL &70
etc.

Figure 4.17 Initialisation procedure for PIA

An example of a typical requirement would be to use our computer to accept
data from a VELA which is acting as a data logger in some experiment. VELA,
which stands for VErsatile Laboratory Aid,* is a self-contained, 6802-based
instrument which is programmed to operate as a wide range of laboratory instru-
ments. The VELA programs are held in ROM, and program 15 of ROM 1 controls
the transfer of any 1024-byte block of data from the internal RAM to an external
computer. The interface chip is a Motorola PIA, located at &E00O in the VELA
memory map. CA2 of the PIA is programmed to provide a positive pulse, DAV,
indicating valid data on PAO to PA7, and CA1 is programmed as an input to
receive the data acknowledge signal, which completes the transfer. In order to
match the PIA to the VELA PIA, we program PAO to PA7 as inputs, as before,
to accept the data. CA1 is programmed as an input, reacting to the positive-going
DAV signal and setting the flag of bit 7 of the control register, CRA, and CA2 is
programmed to go high when CRA bit 7 is set, so acknowledging the receipt of
data. The flag is reset automatically when the data on PAO to PA7 is read by the
computer. Thus CRA must be set to 00100110, &26, and line 90 of figure 4.17
should become

LDA #&26: STA CRA

The VELA data transfer program is listed on pages 180 and 181 of the Software
Reference Book** and all we need in the computer is a short linking program to
check bit 7 of the control register, so that, when the flag sets, the next of the
1024 bytes of data can be read and transferred to the computer memory. CA2
generates the acknowledge signal automatically for us when the flag sets, and it is
removed automatically when the processor reads the data in.

* VELA is supplied by Educational Electronics, Leighton Buzzard, Bedfordshire, UK.
** The VELA Software Reference Book, by A. R. Clarke, is distributed by Instrumentation
Software Ltd, Leeds, UK.

The 1 MHz Bus

The linking program would take the form

300 FOR N=1TO 1024

310 REPEAT

320 F =2&FCC1 /Check for bit 7 set
330 UNTIL (F AND 128) =128

340 D = 2&FCCO0 /Read data byte
350 M=&2200 +N /Adjust pointer
360 ™M =D /Store byte

370 NEXT

75

5 Some Applications

Many devices that we may wish to control from our computer require only to be
switched on and off at appropriate times. This type of device is digitally control-
led and will respond to the value ‘0" or ‘1" in the form of a voltage on a particular
connection. Other, apparently non-digital, devices can also be controlled by
switching on and off, so that the final value of some variable is governed by how
long the on and off intervals are. For example, the heating element in an oven can
be switched on and off at intervals to give any required temperature between a
minimum and a maximum, as in a conventional thermostatically controlled oven.
The water temperature control section of an automatic washing machine also
works in this way; the hot water supply is turned fully on, and the cold water
supply is pulsed on and off at a rate that gives the correct temperature of the
water mixture.

This method is often referred to as bang-bang control, since it involves switch-
ing between the two extreme limits of fully on and fully off, by means of pulses.
The generation of a train of pulses is therefore a common requirement, sometimes
varying the pulse repetition frequency, PRF, while maintaining a constant mark-to-
space ratio, and sometimes holding the frequency constant but varying the ratio.
The mark-to-space ratio is the ratio of the time in each cycle during which the
voltage is high, the mark, to the time during which it is low, the space, and is
illustrated in figure 5.1. The timer-counters provided in the user port VIA can be
programmed to generate a simple pulse sequence very easily. When bits 6 and 7 of
the auxiliary control register, &FE6B, are both set to ‘1°, the top bit of the port,
PB7, provides a square wave output at a frequency determined by the value fed
into timer-counter 1, and with a one-to-one mark-to-space ratio. The frequency is
defined by the value, N, held in the latches T1L-L and T1L-H, associated with the
counters, since each half of the output cycle is generated by counting N down to
zero under the control ofthe clock signal. At the end of the count, the polarity of
the output signal on PB7 is reversed and the counter is automatically restarted.

In practice, the change-over operation involves taking the counter through the all
ones condition as well as the zero, so the actual period is (N + 2) clock periods. In
our case, that is (N + 2) us since the VIA uses the 1 MHz clock. If we are wanting
to time operations very accurately we must note a little quirk of the VIA in that
the first, but only the first, low period of the output waveform, after loading the
high byte to the counter, is (N + 1.5) us long, not (N + 2) us. The interrupt request
output, IRQ, can be enabled, if required, by setting bit 6 of the interrupt enable

76

Some Applications 77

register, &FE6C. It has no effect on the signal at PB7 but can be used as an
indication of the end of each counting period. The IRQ signal will stay low until
reset either by writing to the high byte of the counter, &FE6S5, or by reading the
low byte at &FE64. The pulse generator program of figure 5.2 illustrates many of
these ideas and can be used to generate square wave signals over quite a wide
frequency range.

(a)

il
(m__i—“——] I ___1 l_____

|
| | |

Figure 5.1 Pulse trains. (a) Varying frequency, constant 1:1 mark-to-space ratio.
(b) Constant frequency, varying mark-to-space ratio

10 MODE?7

20 DIM PROG 100

30 TiLL=&FEE6 /Label Timerl latch low byte
40 T1CH=&FE&S / counter high byte
S0 ACR=&FEEB / Auxiliary control reg
60 IER=&FEEGE / Interrupt enable reg
70 FOR I=0 TO 2 STEP 2:P%=PR0OG /Start WAVE routine
80 [OPTI

90 « WAVE

100 LDA #&40:8TA IER /Enable interrupts on Timerl
110 LDA ACR:ORA #&CO:STA ACR /Set bits 6 and 7 of aux.reg
120 LDX &70:8STX TiLL /for squarewave output at PB7
130 LDX &71:8TX TiCH /Start Timerl
140 RTS
150 a

160 NEXT ______ /Exit routine with pulse generator free-running
170 REPERT

180 INPUT "TIME LENGTH FOR PULSE";T$

190 N=EVAL(T$)

200 !&70=N /Set length of pulse
210 CALL WAVE

220 UNTIL N=0 /Pulse generator continues until N is set to O
230 END

/This program, lines 170 through 230, takes a user
supplied pulse length, N, and uses it in the
routine WAVE so that Timerl is automatically
reloaded with it each time the count reaches
zero. On each zero,the output level on PB7 is
inverted giving a 1:1 markispace waveform of
period 2ZN.

Figure 5.2 Pulse generator program

78 Interfacing the BBC Microcomputer

One common application of this type of waveform is in the control of the
speed of a small stepper motor. Stepper motors are now not very expensive and
their use can often result in more accurate timing or metering than with a dc
motor. When run at a constant speed, a stepper motor is, in effect, a synchronous
motor running on square waves.

Most stepper motors are of the permanent magnet type, though other forms of
construction are available. The stator surrounds the rotor and is made up of two
cup-like housings with staggered pole pieces, which are magnetised by the coils,
figure 5.3. The rotor is a toothed permanent magnet with as many teeth, or poles,
as there are on each stator cup. It is the interaction of the rotor magnetic field
with the field generated by the coils that causes the rotor to step, and the stator
pole positions ensure that there are well-defined stable equilibrium points at which
the rotor will settle. By correctly phasing the supply to the separate stator coils,
the rotor can be made to step forwards or backwards as required, and, because the
rotor is a permanent magnet, there is a restoring torque developed to hold the
rotor at the stable point until intentionally stepped on again. The essential
elements of the stepper motor are shown diagrammatically in figure 5.3a, but the
action of the fields is clearer if the motor is ‘opened out’ as in figure 5.3b. As can
be seen from the figure, the pole pairs of the stator are mechanically displaced by
half a pole pitch, and there is a quarter pole pitch displacement between the poles
of stator section A and stator section B. Each step of the rotor takes it through
one-quarter of a pole pitch, so the shaft angle is determined by the number of
pole pairs in the stator section. Commonly available motors have step angles and
corresponding steps per revolution of

1.8° 200 steps
7.5° 48 steps
15° 24 steps
18° 20 steps

An important feature of stepper motors is that, although the error on the single
step angle may be up to 6.5 per cent, errors on multiple steps are non-
cumulative. In fact they average out to zero within the four-step sequence needed
to move the rotor one pole pitch, and maximum accuracy is obtained by working
in multiples of the four steps.

The simplest motor drive circuits are possible with unipolar windings of the
field coils, so that each stator section has two windings as shown in the diagram,
one for magnetising in a positive sense and the other for magnetising in a negative
sense. The normal four-step switching sequence is achieved by energising the
positive and negative windings in the following order:

Section A Section B

Step 1 + +
Step 2 + -
Step 3 -

Step 4 - +

Stator cup A

Stator cup B

Some Applications

Rotor

(a)

79

o= s () !
winding € N N winding
Stator cup A
+ *—‘__"/ S B -
winding ¢—P7 AN N N winding
Stator cup B

Rotor magnets

(b)

Figure 5.3 The stepper motor. (a) Construction. (b) Magnetic arrangements

In terms of the pulses needed from the driving circuitry, the waveforms are as
shown in figure 5.4a, and these could be generated on four pins of the user port
with both the timing and the phasing of the signals being calculated internally.
However, it is often preferable to use a standard drive chip, such as the SAA1027,
to provide the correct phasing, so that only the timing information need be pro-
vided by the computer, and this is where our pulse waveform comes in. The chip
requires a train of pulses at the trigger input, T on figure 5.4b, and each step is
triggered by a positive-going edge. The repetition rate of the pulses determines the
stepping rate, and the number of pulses determines the number of steps. The signal

80 Interfacing the BBC Microcomputer

o
| |
_
+ + | +
o ON ON | ON
A< ‘ }
Qe ON | ON
(‘ + +
N
= | ON ON | ON
B < |) |
1
PRESET \ ‘
CONDITION (a)
+12 V
MOTOR
% ""’gIEAsSlSTOR SERIES
0.1 uF RESISTORS
|_—| 14 T4 [13
- a1l8 IR
PB7 T "
Q2 7300
PB6 R SAA1027 5
Q3 ~<HO0
PB5 S -
PORT B GND Q4 00
(b)

Figure 5.4 Stepper motor drive arrangements. (a) Drive waveforms for
clockwise rotation. (b) Circuit

level at the rotation input, R, indicates the direction of rotation required, with a
low level giving clockwise rotations. The third input, S, is a preset input, allowing
us to set the outputs to a known condition as shown on the waveform figure. The
values required for the bias and motor series resistors are governed by the actual
motor used, and are quoted in the manufacturer’s data.

The program of figure 5.2 allows us to generate a square wave sequence and to
change its frequency, but it is always a 1:1 mark-to-space ratio. However, the VIA
timer has an alternative mode of operation which will give a much more complex
output, in that we can control the length of each high period and each low

Some Applications 81

period of the waveform. In this mode of working we make use of the fact that
the counter is reloaded, at the end of each count, from the latches, and the latches
can be loaded with new values while the counter is running. The procedure is to
start the sequence by loading the initial values into the counter, T1C-L at &FE64
and T1C-H at &FE65. The count begins as soon as T1C-H is loaded so we
immediately load our second value into the latches, T1L-L at &FE66 and T1L-H
at &FE67. At the end of the count, bit 6 of the interrupt flag register, &FE6D, is
set, and the new count value is transferred from the latches to the counter. By
testing for bit 6 being set we know when we can load the next value into the
latches, and we then reset bit 6 by reading T1C-L, &FE64. Each time bit 6 of the
flag register is set we can load a new value into the latches. This method of opera-
tion can be used to vary the pulse width within a constant frequency waveform,
as in figure 5.1b, and gives a form of pulse width modulation, PNM. The program
of figure 5.5 modulates the width of the pulse at PB7 on the user port, by loading
first the required pulse length, defined by the current value of W%, to give the
correct high-level duration, then loading the complement of the value for the low-
level duration, so that the total cycle length is constant. We have shown the
variable as a linear function but it could be any signal, such as the digitized audio
signal from a microphone, for example.

The pulse width modulation idea can also be used in the sort of bang-bang
control application mentioned at the beginning of the chapter, but now we need
some feedback of information, so that we know what the value of our controlled
variable actually is and, therefore, how much it differs from what we want it to be.
The difference is called the error, and knowing its magnitude we can generate the
appropriate signals to adjust the variable in such a way that the error reduces
towards zero. The schematic diagram of figure 5.6 shows this closed loop approach
in general terms, though it must be recognised that our explanation is very much
simplified: a large body of control theory is necessary to ensure that a complex
system works satisfactorily, with good speed of response and accuracy of control.
But on a simple system such as an oven controller we can get reasonable results,
because the changes occur very slowly. The sensor in this case, figure 5.7, is a
temperature-sensitive current source which increases its current output by 1 uA
for each 1°C rise in temperature, and the voltage developed by the current is
measured on channel 0 of the analogue-to-digital convertor. The control element
is a resistor connected to the mains through a solid-state relay switch, which in-
cludes a zero-level detecting switch circuit to reduce interference problems. Pulses
to switch the mains on and off are supplied, as before, from PB7 on the user port.
The times involved in this application, as already noted, are very long, being of the
order of seconds rather than microseconds, so from a computer point of view we
are talking in terms of changing the level on PB7 at intervals, rather than pulsing,
but the principle is the same. The temperature is read by means of an ADVAL(1)
command, and is subtracted from the value corresponding to the required setting.
If the temperature is too low a positive error results and the heater is switched on,
or left on, until a negative error occurs which indicates that the temperature is now

82

10

20

30

40

S0

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
3e0
370
380

Interfacing the BBC Microcomputer

MODE7
DIM PROG 200
TICL=&FEE4 /Label Timerl counter low byte
T1CH=&FEGES high byte
TiLL=&FEEE Timerl latch low byte
T1LH=&FE&7 high byte
ACR=&FEGEB Auxiliary control reg
FR=&FEGED Flag register
IER=&FEEE Interrupt enable register
FOR I=0 TO 2 STEP 2:P%=PROG
[OPTI
. START
LDY #0 /Clear index register
LDA TiCL /Clear flag by reading Timerl count
LDA #&40:STA IER /Enable interrupts on Timerl
LDA ACR:0ORA #&CO:STA ACR /Set bits 6 and 7 in ACR

LDA &BDOO, Y:STA TiCL

LDA &C0O0,Y:STR T1CH /Start counter with first values
. LOOP

LDA &BO0O, Y:EOR #&FF:STA TiLL /Load latches with comp.
LDA &COO, Y:EOR #&FF:STR TiLH /of values for next count

. TEST1

BIT FR:BVC TEST1 /Wait until bit 6 of flag reqg sets
LDA TiCL /indicating end of count.Clear flag
INY /Increment index
LDA &BOO, Y:STA TiLL /Load latches with values
LDA &COO0,Y:STA T1iLH /for next count.

. TESTZ2

BIT FR:BVC TEST2 /Wait until end of count
LDA TiCL /Clear flag register
JMP LOOP

INEXT __

FOR I=0 TO 255 /Calculate and store 256 values

Wx=65280%*1/255 /in locations &BO0O/CO0 to &BFF/CFF

I?&B0O0=W%* MOD 256
I?&C00=W%* DIV 256
NEXT
CALL START_______
/The main program consists of lines 330 through
380, in which 256 values of W% are calculated and
stored,and the routine START is called.START uses
the first pair of values in the counter of Timerl
and loads the complement into the latches to make
up the next counter value. The end of count,which
is detected by bit 6 of the flag reg, starts the
next count automatically, then loads the latches
with the next pair of values or the complement. By
using Y as an index register, the cycle repeats
every 256 values.

Figure 5.5 Pulse width modulation program

Some Applications 83

. PROCESS
Bang-bang
Sensor control
element
A
Y
Analogue- Compare measured ERROR Generate
to-digital > value with > control
conversion required value SIGNAL waveform
Set required
value
Figure 5.6 Closed loop control
SK6 3K3 1% 5V OVEN
metal film
CHO * 590 kH
2 SENSOR
ADC
4K7 560
GND|
HEATER
PL10 1 A rated _‘l:h
N aKk7 17W ww L1
SSR ~ 240V
USER ‘ ac
PORT - -0 N
3K3
PB7 BC183
GND

Figure 5.7 An oven controller

too high. The heater is then switched off until the oven cools down and a positive
error is indicated again. The values corresponding to specific temperatures are
governed by many factors in the make-up of the system and must be found by
means of a calibration exercise across the temperature range.

The pulse mode of operation is also of use in driving multiple LED displays.
When compared with the arrangement in which the segments of several different
seven-segment displays are continuously driven, the number of drive circuits is
greatly reduced because we time-share the drivers between the displays. Far from
reducing the effectiveness of the displays, our eyes actually perceive a higher
brightness level from pulsed displays than from those that are continuously driven.

84 Interfacing the BBC Microcomputer

The procedure is to send the code for the segments to be lighted to all displays at
the same time, but to provide a return path only for the one that is to display the
digit. One way of achieving this is shown in the circuit of figure 5.8 which has four
seven-segment displays. We have the seven drivers for the segments as usual, but
these feed all the displays, and in addition we merely need four drivers for the
digits, which are to be selected one at a time. We must find some way to provide
the extra drive signals, since we have only eight lines available on the port, and one
way is to generate the digit select signals in a four-stage ring counter. A ring
counter is a special type of counter in which only one output is at ‘1’ at any time,
and the ‘1’ steps on each time that a pulse is applied to the counter. It is in fact a
shift register, with only one stage set to ‘1°, and the last stage is connected back to
the first to form the ring. A 74LS194A shift register can be used for the ring
counter as shown in figure 5.9, making use of the handshake signal from CB2 of
the VIA as the clocking signal. Since only seven segment lines are required, PB7
can be used to control the initial setting of the shift register, to ensure that it acts
as a ring counter. CB2 must be programmed to pulse mode by setting bits 5, 6 and
7 of the VIA peripheral control register, &FE6C, to 101. Then, each time data is
written to the output port, a negative-going data ready pulse is generated on CB2,
and the ring counter steps on at the end of the pulse. If PB7 is set to ‘1°, the data
ready pulse will load the values pre-wired on the shift register parallel inputs, so
ensuring that it contains the single one in stage D. Next we set PB7 to ‘0’ and PBO
to PB6 to the code needed for the segments of display 1. Subsequent values on the
output port relate to displays 2, 3, 4, back to 1, and so on. Note that the segment
drivers switch on when a ‘0’ is presented by the output port; PB7 must be
retained at ‘0’ throughout.

We have already seen that pulse mode operation is of use in generating special
irregular waveforms of square waves, and we now move on to the generation of
some non-square waves. One such waveform is the staircase which is a sort of
digital sawtooth waveform in which the voltage increases, or decreases, in steps,
normally at regular intervals. We previously came across this type of waveform in
one of the analogue-to-digital converters, and another of its uses is in the control
of the spot position on the face of a cathode ray tube when characters are to be
drawn. It is then providing a digital timebase signal. The staircase is simply the
output we get from a digital-to-analogue converter when we feed the inputs from
a counter, as in the feedback ADC shown in chapter 3 (figure 3.1). The counter is
easily provided by the computer, and we can connect the DAC directly to the user
port. Line 130 of the program of figure 5.10 provides the counter action by incre-
menting the value in the output port and, for each value of the count, timer 1 is
triggered to generate a delay. Lines 170 to 190 detect when the time delay is
completed. Although BIT FR is primarily an instruction that compares the contents
of the accumulator with the interrupt flag register, we make use of its secondary
feature of transferring bits 6 and 7 of the interrupt flag register to the overflow and
sign flags respectively. We then wait for the completion of the time delay by check-
ing the completion flag in bit 6 of the interrupt flag register, and jumping back to

85

Some Applications

sAe|dsip apoy1ed-uowwos
paxa|diyjnw 104 paubisap A||ea1j10ads
a.e ‘JaAup Ae|dsip XaH ‘Z6YSLNS
pue “JaAup Juawbas penD ‘L 6HSLNS

dppdsip (A7 paxajduyingyy 8¢ 24nsiy

(*Bas/yw Oz 1uaLind “Ae)
L88E GSN

sAejdsip apoyied
-uowwod Juawbas
-U3A8s 1N04

188E€ GSN

551

"

SIAALIP v
Ae|dsip
inoy €
J0 |R10} Z
s ||||||||J“
<4l 1
__ZBYSLNS
ﬂ ’
AOL+
—56
SI3ALIP }
1uawbas £}
uanas p
j0 |10} 5
. q
.
<."||| e
L6VSLNS |

86 Interfacing the BBC Microcomputer

PBO d
b
PB1
c
e d to segment
res e drivers
PB4 .
PB5 5
PB6
USER v
PORT
PB7 S1 SO CLR Qapt——1
caz ' CLK Qs 2{ 1o display
',g, : 7415194 Qc 3(drivers
] 4
0 —dc s} :T—
1'—d L R
| Parallel load | Display 1 | Display 2 | Display 3 etc.
.ck(ce2) L] L LS L] LI
S1(PB7) |
W 0
Qe A 0]_“"‘_1I
|
Q. A 0 I_—L
|
W) 1 1 z {—
| |

Figure 5.9 Generation of display selection signals

.DELAY until it is set. The program continues until restarted by pressing BREAK.
The size of the steps in the staircase can be varied by altering the counter incre-
ment value. We can also vary the step size as the amplitude of the voltage increases,
as is done in some compander, compressor-expander, circuits used in digital com-
munication systems. But if we wish, we can do without the counter altogether and
feed values to the DAC which will give us an output waveform of any complexity
within the limits of the converter performance. The program of figure 5.11 gives
us a sinewave by calculating the amplitudes of the components of one cycle of the
sinewave at the frequency selected at the keyboard, storing them at locations
&2000 upwards, and then outputting them repetitively using the subroutine

Some Applications 87

10 #KEY10 OLDIMRUNIM /Program BREAK key to restart
20 ?&FE&2=255 /Set output port
30 TICL=&FEE4 /Label Timerl low byte
40 TICH=&FEGES / high byte
S0 ACR=&FEGE b4 Aux.control reg
60 FR=&FE6&D / Flag register

70 DIM PRODG 300
80 FOR I=0 TO 2 STEP 2:P%=PROG

90 [OPTI

100 . SETUP

110 LDA #0:STA &FE6OD /0utput zero
120 « CYCLE

130 INC &FEE&OD /Increment output value
140 LDA #0:STA ACR /Set ACR
150 LDA &70:STA TiCL

160 LDA &71:STA T1CH /Load and start counter
170 . DELAY

180 BIT FR /Check for flag set when
190 BVC DELRY /count complete.

200 JMP CYCLE /Repeat cycle
210 5|

220 NEXT __________

230 MODE?7

240 PRINT TAB(7,2) ;CHR$(141) ;"DIGITAL STAIRCASE"

250 PRINT TAREB(7,3) ;CHR$(141) ;"DIGITAL STAIRCASE"

260 PRINT TAB(3, 10) ;"DELAY LENGTH BETWEEN PULSES="3

270 INPUT As

280 ! &70=EVAL (R%) /Load user defined delay in &70/71
290 CALL SETUP

/The main program starts at line 230. It calls
SETUP which increments the step counter and
uses the defined delay in Timerl to control
the duration of each step

Figure 5.10 Digital staircase generator

.CYCLE. The calculation of the values is carried out in lines 200 to 280. For
component n, the value stored is

C% = 127.5 [sin<f'5%2’l'535> + 1J « AMP

where FRE is the frequency defined by the input at line 420, and AMP is the
percentage amplitude defined at line 400. The number of components stored for

a complete cycle is governed by the rate at which the values can be dealt with by
the circuitry, and, since each output takes about 18 us, the number of components
varies from a maximum of about 130 at 400 Hz to a minimum of less than four at
16 kHz. In fact, at the higher frequencies the irregularities become so pronounced
that the waveform cannot be said to be sinusoidal, since the number of components
is too low to give the smoothness required. At all but the highest frequencies, a
reasonable sinewave ¢an be obtained by including a 0.1 uF capacitor across the
DAC output, to act as a simple low pass filter.

88 Interfacing the BBC Microcomputer
w +5 V
User port 14
PR7 20 3 msd 470 Low-pass
18 2 filter sinewave
PB6 16] 4 output
PB5 output - P
PB4 14 13
pg3 12 12
PB2 10 1
PB1 > 2
PBO -2 91 1sd Vrer |2 2;
ZN429E +
oV DAC ZNREF
19 7 025
2.5V ref.
(a)
10 HIMEM=&2000 /Reserve memory above &2Z000 to prevent
20 DIM PROG 200 /overwriting of calculated data.
30 ?&FEBZ=255 /Set output port
40 FOR I=0 TO 2 STEP 2:P%=PROG
S0 [OPTI
60 . WAVE
70 LDA #0:STA &70:LDA #&20:STA &71 /Load store pointer to
80 . CYCLE / &2000
90 LDY #0 /Clear index register
100 LDAR (&70),Y /Load next value
110 BER WAVE /1f zervo, Jump to WAVE
120 STA &FE&OD /otherwise, output value
130 CLC:LDAR &70:ADC #1:8TA &70
140 LDA &71:ADC #0:STA &71 /Increment pointer
150 JMP CYCLE /and repeat the cycle
160]
170 NEXT________
180 MODE7:FROCtitles /Ask user for amplitude and frequency
190 I1=0
200 REPEAT /Calculate values of components of
210 R=A+F2 /one cycle and store from &2000 onwards
220 B=SIN(R)+1
230 C=B%*127.5
240 C%=(C*Amp) /100
250 IF C%=0 C%=1
260 7?(&2000+1)=C%
270 I=I+1
280 UNTIL RAY2*PI
290 PRINT TARB(10, 20) ;"WE® RE OFF"3;8SPC(20)
300 ?(&2000+1I1)=0 /Set last entry to zero
310 CALL WAVE ________
320 DEF PROCtitles
330 *KEY10 OLDIMRUNIM /Program BREAK key to restart
340 PRINT TAB(8,1) ;CHR$(141) ;"SINE WAVE GENERATOR"
350 PRINT TRAB(8,2) ;CHR$(141) ;"SINE WAVE GENERATOR"

Some Applications 89

360 PRINT TAB(2,5) ; "AMPLITUDE PERCENTARGE ="
370 PRINT TAB(2,6) ; "FREQUENCY HZ (400-1600)="
380 PRINT TAB(10, 20) ; "PRESS BREAK TO EXIT"
390 PRINT TAE(27,5);

400 INPUT Amp

410 IF Amp (1 OR Amp)100 GOTO 390

420 PRINT TAB(27,6) ;:INPUT Fre

430 IF Fre(l GOTO 410

440 DIG=52945/Fre

450 F2=2%P1/DIG /Calculate frequency F2
460 PRINT TAB(10,20) ;"Please wait a moment"
470 ENDPROC

/The main section starts at line 180 and
runs through line 310.The TITLES procedure
requests an amplitude(as a percentage) and
a frequency between 400 and 1600Hz. The
component values of one cycle of the wave-
form are calculated and stored at &2000
onwards. Routine WAVE successively outputs
the components and repeats the cycle until
BREAK is pressed.

(®)

Figure 5.11 Sinewave generator. (a) Circuit. (b) Program

When we come to dealing with input signals we can often work in pulse mode,
as we have with the outputs. It is very easy to count pulses and even easier to
detect levels, such as we get from switches and other digital transducers. But the
majority of input variables are analogue and the values must be converted to digital
form using the voltage-to-frequency converters or other methods of analogue-to-
digital conversion. In all cases the input signal amplitude must lie within the limits
acceptable to the converter, and the range is often narrow — 0 to 1.8 volts in the
case of the internal ADC. If the signal lies outside the acceptable range, it must be
either attenuated or amplified to suit. Reducing the amplitude is straightforward,
and in most cases we use the potentiometer effect of two resistors, as described in
the first chapter. The circuit using a resistor ratio with a variable voltage is often
replaced by a variable resistor ratio with a fixed voltage, as in the games paddles,
for instance. The voltage then indicates the angular position of the spindle of the
potentiometer. Several simple pieces of equipment are available, or can be made
very cheaply, making use of this principle to convert rotational, or linear, move-
ment to an analogue voltage which is then converted to digital form. Figure 5.12a
shows an arm which can be used to provide data on spring extensions and simple
harmonic oscillations, by means of the rotation of the horizontal spindle of the
potentiometer, as the weight moves up and down. If the displacement is relatively
small, we can express it in terms of the rotation angle in radians and the length of
the arm, so that d =10. Also, the speed at which the analogue values have to be
converted is then within the capability of the internal converter, and the simple

90

Figure 5.12 Study of simple harmonic motion. (a) Arm arrangement as pendulum

Interfacing the BBC Microcomputer

Potentiometer

| Potentiometer
\ (a)
MODEO
PROCinitialize /Select single ADC channel and adjust
MODEO /scale factor
FROCscreen /Draw axes and prompt user
PROCreading /Take first reading
X%=10:MOVE X%,6 512
REFPERT /Plot readings
PROCreading
X%=X%+1
DRAW X%, Y%
UNTIL X%=1280
A$=GET$ /Press any key to restart
GOTO 30

DEF FROCscreen
MOVE 10, 1024:DRAW 10,0:MOVE 9, 1024:DRAW 9,0

MOVE 10,S512:DRAW 1280,512 /Draw axes
PRINT TAB(2,0) ;"Press any key to start";

A$=GET$:FRINT TAB(2,0) ;SPC(24); /Read key and
ENDFROC /clear prompt
DEF FROCreading /Take a reading and scale it
V=ADVAL (1)

Y%= (V*SCALE/64)

IF Y%)1023:Y%=1023 /Limit maximum
ENDPROC
DEF PROCinitialize /Adjust scale factor
*#FX16,1 /Use single ADC channel

PRINT TAE(0D,0) ;"Set to maximum swing then press a key"
REFPERAT

Vmax=ADVAL (1) /Set maximum voltage
UNTIL INKEY (1) (-1

IF Vmax(S00 PRINT"Reading too low;try other side"

IF Vmax (S00 GOTO 280

SCALE=65520/Vmax /Calculate scale factor
ENDPROC

/The procedure INITIALIZE selects a single ADC
channel and calculates the voltage scale factor.
Procedure SCREEN draws the axes and prompts the
user to start a plot. Procedure READING is used
to take readings which are scaled and drawn, as
X% is incremented to 1280. A new plot is started
by pressing any key.

(b)

and for spring extensions. (b) Program

Some Applications 91

program of figure 5.12b is sufficient to plot the oscillations. The voltage from the
potentiometer is proportional to the angle and is used with the scaling factor to
give the value to be plotted. The initialize procedure is included to allow the user
to adjust the scale of the graph plotted on the screen. Bear in mind that the damp-
ing effect of the friction in the potentiometer spindle can be large, so we must use
a long arm (which also helps the accuracy) and as slack a spindle as possible.

It is not essential for a potentiometer to have a rotating spindle of course; the
contact that picks off the voltage along the standard wire of a Wheatstone bridge is
also a potentiometer, in which the voltage at the contact is proportional to the
distance along the wire. This feature can be used in a simple digitizer, with which
we can enter coordinates of different points and shapes drawn on a sheet of paper.
Two wires are required, one for the X direction, AB, and one for the Y, CD, as
shown in figure 5.13a. The slider on each wire carries a strip of Perspex or a ruler,
and the voltages V. and V), give the coordinates of the point, P, at which the strips
coincide. The program of figure 5.13b reads the X potentiometer value on ADVAL
channel 1, and the Y value on channel 2. The display is presented initially as the
normal white foreground, colour 7, but can be changed to any colour value 0 to 9
by pressing the appropriate key. In addition

Key C clears the screen

Key S saves the display on tape or disc

Key L loads a previous display from tape or disc
Key Q stops the program.

The two slider form of digitizer is not particularly easy to use, and commercial
versions use the radius arm principle. Two arms, of length /, are used; the first
controls potentiometer A and carries potentiometer B at its free end. The second
arm then controls potentiometer B as the pointer, P, is moved, as in figure 5.14.
Using simple trigonometric theory, the coordinates of a point, P, are given by
X =rcos 6 and Y =rsin 0. Unfortunately, we do not know the values of and 6
directly, and we must develop expressions for them in terms of the length, /, and
the angles, A and B, which we do know. Firstly, from figure 5.14 we see that
r/2 =1sin(B/2) so

r =2l sin (B/2)
Secondly, 6 = A — {(1r/2) - (B/2)} giving
cos 6 = sin {A + (B/2)} and sin 0 = — cos {A + (B/Z)}

Using these relationships we can devise an extension of the previous program to
cope with this form of digitizer, figure 5.14b. For those who wish to take advan-
tage of the work that has already been done, a full description of a radius arm
digitizer, with constructional details and controlling program, is given in the June
1983 issue of The Micro User.*

* Mike Cook, ‘Arms Stretch with the Graphics Digitizer’, The Micro User, Volume 1, No. 4,
June 1983, pages 80-86.

92

190
200
210
220
230
240

Interfacing the BBC Microcomputer

GND 3 T} v,

CHANNEL 1 p

VREF

(a)

Colour=7
*FX16, 2 /Enable channels 0 and 1
MODE2
PROCdigitizer /Take first reading
MOVE X1%,Y1%
REPERT

PLOT70, X1%,Y1% /Plot point in inverse colour
A=INKEY (1) /Keys 0-9 indicate colour
IF (R-47))>0 AND (A-47) <11 Colour=A-48

IF CHR$(R)="C" THEN CLS

IF CHR#%(R)="8" THEN *SAVE"PIC"3000 8000

IF CHR$(R)="L" THEN *LOAD"PIC"3000

GCOL O0,Colour

PLOT70, X1%,Y1% /Plot point in inverse colour
PROCdigitizer /Take next reading

DRAW X1%, Y1%

UNTIL CHR$(R)="Q"
END _______
DEF PROCdigitizer /Take and scale readings
X=ADVAL (1)

Y=ADVAL (2)

X1%=X/51.2

Yi%=Y/64

ENDPROC

/Procedure DIGITIZER is used to read X
and Y values, which are scaled before

returning to the main program to plot
the point.

(b)

Figure 5.13 A simple digitizer. (a) Construction. (b) Program

290
300
310
320
330
340
350
360
370
380
390

Some Applications 93

A X =rcosf
L !
X |
/2 '
AN |
» |
/ ® I
N
7/ \\ |
7
Y \\:/2 '
B ~ |
N |
/ Sl
Y=rsinp—————ee = p
(a)
MODE?7
#FX16, 2 /Enable chamnmels 0 and 1
PROCinitialize
Setpt=1:Colour=1

X%=0:X2%=0:Y%=0:Y2%=0

MODE2:MOVE 6€40,0

PROCcalc

PROCcontrols

PROCplotpoints

GOTO 70 ______

DEF PROCcalc /Read values and calculate coordinates
A1=ADVAL (1) ¥*Scalel
A2=ADVAL (2) #*Scale2
AngleR=2%PI*A1 /65520
AngleB=2%PI*A2/65520
X1=C0S (AngleAR+AngleB) -COS (AngleR)
Y1=SIN(AngleR)-SIN(AngleR+AngleR)
X%=620+ (X1*Xscale)

Y%=(Yi#Yscale)

ENDPROC
DEF PROCcontrols /M=Move D=draw line to new point
Key$=INKEY$ (1) / P=plot at new point

IF Key#="C" CLS

IF Keys$="Q" END

IF Key$="L" THEN *LOAD"PIC" /Load previous plot
IF Key$="S" THEN *SAVE"RPIC"3000 8000 /Save plot
IF Key$="M" Setpt=0:X2%=X%:Y2%=Y%:Xold=X%:Yold=Y%

IF Key$="D" AND Setpt=0 PROCdrawline

IF Key$="P" Setpt=1

IF VAL (Key%) ()0 OR Key$="0" Colour=VAL (Key$)

GCOL 0,Colour

ENDPROC
DEF PROCplotpoints

IF Setpt=0 FPROCmove:ENDFROC

DRAW X%, Y% /Draw line to X,Y
ENDPROC
DEF PROCmove

PLOT70, Xold, Yold

PLOT70, X%, Y%

Figure 5.14 (continued overleaf)

94 Interfacing the BBC Microcomputer

400 Xold=X%:Yold=Y%*

410 ENDPROC

420 DEF PROCdrawline

430 MOVE X2%, Y2% /Position cursor
440 DRAW X%, Y% /Draw line
450 ENDPROC

460 DEF PROCinitialize

470 PRINT TRB(0,0);"Rotate both arms to max. position"

480 PRINT TAB(S,1);"and press any key"

430 REPEAT

S00 A=ADVAL (1)

510 B=ADVAL (2)

S20 UNTIL INKEY(1) ()-1

530 Scalel=65520/R /Scale factors on RADC so as to give
540 Scale2=65520/B /a maximum reading equal to 2¥pi.
550 Xscale=310 /Scale factors to control
560 VYscale=512 /screen window size.

570 ENDPROC

/Speed of operation is not important, so the main
program, lines 10 through 100, uses procedures rather
than assembler routines. INITIARLIZE sets up scale
factors; CALC takes readings and calculates the co-
ordinates X,Y; CONTROLS reacts to control key oper-
ation, and PLOTPOINTS plots the new point.Two other
procedures, DRAWLINE and MOVE, are used in plotting
the output as either lines or points.

(b)

Figure 5.14 (above and page 93) Radius arm digitizer. (a) Construction.
(b) Program

The analogue voltage input levels from the digitizers are well within the required
levels because we make use of the reference voltage provided. In many other cases,
however, the analogue voltage presented to the system is so small that it falls below
the minimum voltage accepted by the converter, and we must amplify the signal.
This is true of the outputs of many transducers, and the pre-amplification is said
to be conditioning of the signal. This has to be done with far more care than when
we attenuated an over-large signal, because in amplifying the signal we also
emphasise any errors and effects due to noise and other unwanted signals. The
usual approach is to use an operational amplifier with negative feedback, but
before we see how to use the op-amp in a specific circuit (in this case dealing with
the signals from a microphone), we shall look at the basic ideas on which it is based.

An op-amp is a difference amplifier which amplifies the voltage existing between
its two inputs, and takes its name from the circuits used for arithmetic operations
in analogue computers. When the intrinsic gain of the amplifier is large enough, the
performance of the amplifier with feedback can be controlled almost entirely by
the feedback components. The open-loop voltage gain of a typical op-amp is of the
order of 20000 (106 dB) but, when used with negative feedback, the gain is some-
thing nearer 100 (40 dB). The input impedance of the op-amp is also very high,

Some Applications 95

being typically in the megohm range, so the amplifier itself takes negligible input
current. When the negative feedback is applied, the input voltage approaches zero,
and the input acts as a virtual ground.

The circuit of figure 5.15a shows the simple arrangement for an inverting
amplifier. The overall voltage gain is —R /R, and the effective input resistance is
R,. Ry is usually between 10 k€2 and 100 k2 and R is 1 k2 to 10 k2. If we
apply the input to the other terminal we get a non-inverting amplifier with a gain
of (Rg +R;)/R; and a very much higher input resistance. Regardless of the con-
nection, the action of the circuit is always to change the output voltage in such a
way that the difference voltage at the inputs is reduced towards zero. If, for
instance, the input to the circuit of figure 5.15b is increased, the output increases
in phase with it and, by potentiometer action, a proportionate voltage increase
occurs at the negative input, so preventing the difference voltage from increasing.
Additional components may be necessary to provide compensation for currents
and voltages arising from asymmetries inside the op-amp, but many of the popular
types contain their own compensating networks.

Re
—{
R,
Vi | B o = v, +
—— Vo —— Vo
Vo . _Re
v, R, = "_:}—R
:
Rw = Ry QR1 ¥9= Ry +Re
| R‘l
(a) (b)

Figure 5.15 Operational amplifier with feedback components. (a) Inverting
amplifier. (b) Non-inverting amplifier

The power supply voltages to the op-amp are normally between 3 and 22 volts,
positive and negative. The two polarities are provided to enable the output signal
to vary about zero volts, as is usually required of an ac signal, and the amplitude
of the output signal has a maximum within about 1.5 volts of the supply voltage.
In our applications, however, we require the output voltage to vary between zero
and the positive reference voltage. The op-amp can be operated with the negative
supply terminal at ground, but then the lowest achievable output level is about
1.5 volts above ground. In order to balance the signal, we use ac coupling and a
bias network at the input so that the quiescent, or no-input, value at the output
lies midway between ground and the reference voltage. Figure 5.16a shows the

Interfacing the BBC Microcomputer

96

(e)

¥31NdNOD | H3LYIANOD Q/V | = Y3V |
it S i S
m_._ | \.‘— | |
AD gea bg—t—nd RINGT “ “
18d fg——o01{ 36ZYNZ 620434 NZ I |
z8d foL ——1i1 Ra | _
€8d FZI A% 434
[1 N A0Ce | || AL - AL
oo e : | |
98d I8! Z1
o .8|7|7|.m. 1Nd1N0 |5 | “
“ vl | “
i ova _ |
_ _
z80 = —+ I 4 _
T =
189 | _ auoydoudi
E] ! n
| _ 30eLEvD [N LU —
! ! 472z0|
— _ oLy X022 | !
|
uod 1asn | _ __
[
I AGH @ + !
| “ I
! _ _

370
380
390
400
410
420
430
440
450
460
470
480
4390
S00
S10
520
530
5S40

Some Applications 97

MODE4

Vref=2.5

?&FEEC=64 /Set up CB1 and CB2
?&FE62=255 /Set up DDR for outputs
'&72=82200 /Set pointer to start of data store
DIM PROG S00

FOR I=0 TO 2 STEP 2:P%=PROG

[OPTI
. SETUP
LDA #0:STA &FEG6OD
LDA #8&80:8TA &70:8STA &FEE&OD
LDA &FEED:AND #8:BNE NEGTRAN
- POSTRAN
CLC:ROR &70
LDA &FEE0:CLC:ADC &70
LDY #0:STY &FE&0
STA &FEGO:LDA &FEED:AND #8:BNE NEGTRAN
LDA &70:BNE POSTRAN
JMP STORE
. NEGTRAN
CLC:ROR &70
LDA &FEE0:SEC:SBC &70
LDY #&FF:STY &FEEOD
STA &FEE0:LDA &FEGED:AND #16:BNE POSTRAN
LDA &70:BNE NEGTRAN
. STORE /Store value in data store
LDA &FE60:LDY #0:STA (&72),Y
CLC:LDA &72:ADC #1:STR &72
LDAR &73:ADC #0:STA &73
CMP #&56:BNE SETUP
RTS
]

NEXT ________

TIME=0:CALL SETUPRP:T1=TIME /Time taken for readings
PROCscalefactors

Tstart=0:Tend=T:Loc=0

REPEAT

PROCscreen

C=0:X1%=0

X=10-(Scalel*Scale2%)

REPERT /Plot curve using values
C=C+Scale2% /held in data store.
X=X+ (Scalel*Scale2%)

Loc=Loc+Scale2%*

IF INT(X)=X1% GOTO S00
Y1=? (LOC+&2200)
Y2%=(Y1%3.5)+40

X1%=X

DRAW X1%,Y2%

UNTIL C)Point% OR (Loc+Scale2%))&33FF

*FX21,0 /Flush keyboard buffer

PRINT TARB (15,0)"Press a key";:A$=6ET$

UNTIL (Loc+Scale2%))&33FF
END

Figure 5.16 (above and opposite) (continued overleaf)

98 Interfacing the BBC Microcomputer

550 DEF PROCscreen /Draw and label display axes
560 CLS:e%=&20109 /Adjust print field
570 PRINT TRB(D,0);Tstart;"ms" ;SPC(26) ;Tend; "ms"

580 MOVE 1280, 40:DRAW 10,40:DRAW 10, 940

590 PRINT TRB(O, 1) ;Vref;" volts"

600 PRINT TAB(D,31);"0";" volts";SPC(20);"time";

610 Tstart=Tend:Tend=Tend+T

620 ENDFROC

630 DEF FROCscalefactors

640 CLS:@%=10

650 PRINT"Time scale for each screen (max ";T1")ms"

660 INPUT T /Adjust timebase to required value
670 IF T<1 OR T)>T1 GOTO 640

680 Point%=&3400%T/T1

690 Scalel=1270/Paoint*

700 Scale2%=T/20:IF Scale2%(1 Scale2%=1

710 ENDFROC

/The main program runs from line
340 through line 540.1t uses four
assembler routines, (60-330), and
two procedures, (550-710).

(b)

Figure 5.16 (above and pages 96, 97) A simple oscilloscope. (a) Circuit.
(b) Program

circuit arrangement for handling the signal from a microphone and feeding to the
analogue-to-digital converter for display on the computer screen. This allows us to
use the computer display as a simple oscilloscope.

In order to speed-up the operation of the analogue-to-digital converter we have
this time used the successive approximation method and approximately 13 000
samples of the input waveforms are converted and stored in about 3 seconds. The
successive approximation method checks the value of each bit of the digital value
in turn, starting with the most significant bit, and therefore converts an eight-bit
number in a constant eight comparisons, regardless of the size of the value being
converted. Each conversion begins by setting bit 7 to ‘1’ and all other bits to ‘0’

— representing half the maximum value possible. The comparator output indicates
whether the incoming sample is greater than half of the maximum value or less than
half. If it is greater than the set value, that bit is retained at ‘1’ and the next most
significant bit is also set to ‘1°, ready for the next comparison. But if it is less than
the set value, that bit is cleared to ‘0’ before the next most significant bit is set to
‘1. This process continues through all the bits and leads to the alternative name

for this conversion method of put and take. When all eight bits have been checked,
the port holds the digital value of the sample.

As with all programs, we can understand how the program of figure 5.16b
operates if we break it down into sections. The first section, lines 70 to 330,
consists of four machine code routines, .SETUP, .POSTRAN, NEGTRAN,
and .STROBE. The comparator output gives a positive transition if the digital

Some Applications 99

equivalent input exceeds the analogue input, and a negative transition when

it falls below the analogue input. The comparator output is therefore con-
nected to both CB1 and CB2, on the user port, and these are programmed in the
peripheral control register (PCR at &FE6C) to detect a negative transition on CB1
and a positive transition on CB2 (line 30). Routine .SETUP sets the most significant
bit to ‘1" and checks bit 3 of the interrupt flag register (IFR at &FE6D) for an
indication on CB2. Location &70 is used as an indicator to show which bit of the
word is being dealt with at each stage, and after eight successive rotates right
indicates that the conversion is complete. Routine POSTRAN rotates the pointer
bit in &70 right, and adds the next bit to the existing value in the output port. In
other words, we are ‘putting’ the next bit of the word to ‘1°. Routine NEGTRAN
rotates the pointer bit right, as before, but now subtracts it from the existing value
in the output port, so we are ‘taking’ the previous bit away as we set the next bit
to ‘1°. Routine .POSTRAN checks the setting of the CB2 flag, bit 3 of &FE6D, and
routine .NEGTRAN checks the setting of the CB1 flag, bit 4 of &FE6D, to deter-
mine whether to ‘put’ or ‘take’ the next bit. On completion of the conversion, the
routine .STORE writes the final port value into the data store at the next location
indicated by the pointer held in &72 and &73. This pointer is set initially to
&?2200 at line 50, and can run up to &5600.

The section of program from line 410 to line 500 plots the curve using the values
assembled in the data store. The pointer LOC gives the address of the current value
to be plotted, and C is a counter to indicate when the required number of points
has been reached. This section is part of the bigger section, from line 340 to line
540, which makes use of two procedures. The first, PROC screen, is defined in lines
550 to 620, to draw and label the axes for the display. The second, PROC scale
factors, is defined in lines 630 to 710, and sets up various factors used in drawing
the graph. Variable T defines the timebase value, Point% is the number of sample
values per time period, Scale 1 is the size of the increment on the x-axis for each
value plotted, and Scale 2% is used in calculating the resolution of the display, in
terms of the number of points to be plotted.

As a final example, figure 5.17 shows a simple circuit for charging and dis-
charging a capacitor via a resistor. The rate at which the capacitor charges and
discharges is governed by the magnitude of the resistance and capacitance, and the
method of analogue-to-digital conversion must be chosen so that it is fast enough
to cope with the changing voltages. This form of circuit is mainly of interest in
showing the charge and discharge curves, so we can choose large enough values for
C and R to allow us to use the built-in converter this time.

The main program, in figure 5.17b, runs from line 10 to line 180. Line 30 calls
the procedure PROC setup, which is defined in lines 190 to 370, to set-up and
label the axes, and to ask the user to indicate whether the capacitor is to be
charged or discharged. Having received an appropriate response, and the user
having operated the change-over switch, lines 40 to 70 are used to detect when the
voltage begins to change. Line 80 notes the initial voltage, line 160 notes the final
voltage, and lines 100 to 150, in between, plot the graph. The second procedure,

100

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

Interfacing the BBC Microcomputer
—O
SK6
Typical values:
R C = 1000 xF
o R =18k
Voe Note that capacitors
15 :
[o) CHO have wide tolerance
ranges, so actual
C time constants
may differ from
T 8 estimated values
e GND
(a)
*#FX16, 1 /Select single ADC charnnel
MODEO
PROCsetup
REFEAT /Wait for change in voltage
V1%=ADVAL (1) 7400
V2%=ADVAL (1) 7400
UNTIL VI% V2%

Vs%=VZ2%*#400: X%»=70
MOVE 70, 40
REPEAT
A=ADVAL (1)
E%=(A/84) +40
X%A=X%+1
DRAW X%, B%
UNTIL X#%=1280
Vf%x=A
PROCcalculate
GOTO 10 _______
DEF PROCsetup
MOVE 70, 940:DRAW 70, 40:DRAW 1280, 40
J=32:@%=820202 /Adjust print field
FOR I=0 TO 2 STEP 0.15
J=J-2
PRINT TRB(O,J):I
NEXT
J=4:%=10
FOR I=0 TO 18 STEP 4
PRINT TAEB(J,31);3;I;
J=J+17
NEXT
FRINT TRE(27,31);"time (s)";
PRINT TRB(1,2);"voltage (v)"
FRINT TRB(15,1);
PRINT"Press C(charging) or D(discharging) when ready";
A$=GET$
IF A "C" AND A% () "D" GOTO 3I30
PRINT TAB(15, 1) ;"Capacitor now ";
IF A$="C" PRINT "charging. ";SPC(28)
ELSE PRINT "discharging" ;SFC(28)

Some Applications 101

400 ENDPROC

410 DEF PROCcalculate

420 IF A%$="D" Y2%U=VsX/EXF (1)

430 IF A$="C" Yau=Vfu—(VFA/EXP (1))

440 X=75:Y2%=(Y2%/84)+40

460 REPERT

470 X=X+1

480 UNTIL POINT(X,Y2%) ()0 OR X=1280

490 IF X<()1280 GOTO S30

500 FPRINT TAB(15,1) ;"Try.again - capacitor not fully ";
510 IF A$="C" PRINT "“charged":G0OTO 570

520 ELSE PRINT "discharged":GOTO 570

530 MOVE 70, Y2%:DRAW X, Y2%:DRAW X, 40

540 TC=(X-70)%17.55/1210

550 @ex%=&20309

560 PRINT TRB(15,1) ;"TIME CONSTANT= ";TC;" seconds"
570 A$=6ETS$ /Press any key to continue

580 ENDRROC

(b)

Figure 5.17 Charge and discharge of a capacitor. (a) Circuit. (b) Program

PROC calculate, is defined in lines 380 to 530. This procedure calculates and dis-
plays the time constant of the circuit, using the initial and final values of the
voltage previously measured.

And that is where we shall have to stop. The space available in this book has
allowed us to give only a broad introduction to the virtually limitless possibilities
in interfacing with your BBC microcomputer. The examples that we have given
have been chosen to illustrate the basic methods applicable to all interfacing
requirements in one way or another, and to show the interdependency of hard-
ware and software. We have given you pointers to what is possible, but interfacing
is all about doing, and the greatest satisfaction will come by trying out your own
ideas. Here’s wishing you success!

Appendix A: Transistor-Transistor Logic

Transistor-transistor logic, TTL, became the dominant logic family in the mid-
1960s as the first steps towards integrating circuits became possible. Although
metal-oxide-silicon, MOS, logic has since become at least as important, and
integration is several orders of magnitude greater, many of the performance
criteria of logic families in general are still specified in terms of TTL circuits.

The industry standard TTL is the 74 series, in which the allocated number defines
the logic operation and pin layout, regardless of manufacturer. The basic TTL
circuit, as, for example, in the 7400 two-input NAND gate of figure A.la, uses a
multi-emitter transistor, T1, at the input, and a push-pull circuit, T3 and T4, at
the output. This is also known as a totem-pole circuit. Transistor T2 acts as a
phase-splitter to provide the output stage with the necessary antiphase signals.
When either input A or B, or both, is taken to a voltage, V}; , lower than about
half a volt (but not negative), the corresponding emitter conducts and transistor
T2 cuts off. The emitter current, /y; , has a maximum value of 1.6 milliamps. If
both input emitters are taken to a voltage between 2 and 5 volts, Vg, neither
emitter conducts and T2 switches on. The control of the gate can best be seen in
terms of the current in the 4k resistor: the current is diverted away from T2
through the emitter if the input voltage is low, and flows to T2 if neither input is
low. In the latter case, the current at the base of T2 switches it on, so that T4 is
also switched on and T3 is switched off. The output voltage then falls to V5 at
about 0.2 volts, and the circuit draws in, or sinks, up to 16 milliamps of current.
When the current is diverted away from T2, it switches off, also switching off T4
and switching on T3. The output voltage now rises to Vg, and the circuit can
provide, or source, up to 400 microamps. The 130 €2 resistor is included to protect
the output transistors, by limiting the current during switching, but also has the
effect of reducing the value of V. The additional voltage drops across the diode
D3, included to ensure correct switching levels, and across T3, mean that the
typical value of Vg is only 3.4 volts. The action of the circuit is such that any
low voltage, ¥y , on an input, sets the gate output high, Vo, and the gate output
only goes low, Vg , if there are no low voltages at the inputs. If we think of the
high-level voltage as representing logic ‘1°, the circuit acts as a NAND gate. By
including inverters at inputs and output, as appropriate, other forms of gate such
as AND, OR and NOR can be generated. The same form of circuit is also used in
building flipflops, and more complex systems.

102

103

§1242] 2301104 (q) 11no4D (v) 2103 [LL p4vpuni§ [y a4ndl|

(a) (®)

abuel abueu
abejjoa 1ndinQ abejjon 1nduj .w..

9, 0 St 0 . 0B 0 ! !
e.ow N o227
1l : L AL ca La
7

Appendix A: Transistor-transistor Logic

dz : z vl 0 g
| =
ok € £a 2 b v
. HI .m
o 204 ve " W A ¥
Mo, N M \ v £l
5 S - %9'L Ay

A G+ *

104 Interfacing the BBC Microcomputer

Vi and Vyp are the voltage levels at the gate inputs needed to cause the gate
to operate correctly, so generating the output levels, Yoy and Vy , which are
dependent on the logic conditions. The standard TTL levels have quite a wide
tolerance, as shown in figure A.1b, and are specified as follows:

Vi = 1.0 V minimum Von = 2.4 V minimum (typically 3.4 V)

Vi = 0.8 V maximum VoL = 0.4 V maximum (typically 0.2 V)
The corresponding current levels are

Iy =40 A maximum Ioy = —400 yA maximum

Iy =—1.6 mA maximum oy =16 mA maximum

The negative sign indicates that current is flowing out of the gate terminal.

Since each gate can sink 16 milliamps at its output, and each emitter input that
it drives requires a current of 1.6 milliamps, when its input voltage is low, the one
gate can drive up to ten similar gates. It is said to have a fanout of 10. When the
driven emitters are taken to the high level, each takes 40 microamps and the driving
gate can provide 400 microamps, so again the fanout is 10.

Improvements in fabrication techniques over the years have led to extensive
developments in TTL circuitry, and modern TTL is usually the low-power Schottky
version, 74LS, or, increasingly, the advanced low-power Schottky, T4ALS (some-
times designated 74F). The majority of LS TTL circuits do not now use the multi-
emitter input transistor, but make use of Schottky diodes, since these give a shorter
switching delay. Schottky diodes do not suffer the charge-storage problems of
conventional diodes (and transistors) and so switch between states much faster.
They are also used as clamping diodes on the transistors to prevent charge-storage.
With the help of the Schottky diodes, and by increasing the circuit resistance
values somewhat, 74LS circuitry can operate at about twice the speed of standard
TTL, but at only one-fifth of the power dissipation. Some of the input and output
levels are slightly modified when compared with standard TTL:

Ity = 20 pA maximum Von = 2.7 V minimum (typically 2.4 V)
Iy, =—0.36 mA maximum Vop = 0.5 V maximum (typically 0.35 V)

The newer 74ALS versions make use of die shrinking techniques recently
developed, which, together with modified isolation methods, gives another
doubling of the speed and a further halving of the power dissipation.

In many cases the input loading requirements and the output driving capa-
bilities of different versions are quoted in terms of unit loads (UL) normalised
to the standard TTL figures. Thus, in the high state, one unit load, UL, is 40
microamps, and in the low state, one unit load is 1.6 milliamps. The input load
factor for 74LS TTL is then 0.36 mA/1.6 mA = 0.225 UL (normally rounded to
0.25 UL) in the low state, and 20 uA/40 pA = 0.5 UL in the high state. The output
current /o is 8 milliamps, so the low-level drive factor is 8.0 mA/1.6 mA = 5 UL,
and the high-level drive factor is 400 uA/40 uA = 10 UL.

Appendix A: Transistor-transistor Logic 105

Special drive circuits such as the 7415245 are designed to operate at much
higher current levels:

Iy = 30 pA maximum Ioy = —15 mA maximum
Iyp = —0.2 mA maximum g =24 mA maximum

giving load factors of 20 uA/40 uA = 0.5 UL (high state) and 0.2 mA/1.6 mA =
0.125 UL (low state), and drive factors of 15 mA/40 uA = 375 UL (high state)
and 24 mA/1.6 mA = 15 UL (low state).

Many large-scale integrated circuits use NMOS technology, which is a voltage-
controlled form of logic, rather than the current control used in TTL. However,
in most cases, the outputs are again standardised in terms of TTL levels. The
port B connections of the VIA on the user port, for example, are quoted as
having current levels of

It = 100 pA maximum Ioy = —1 mA maximum
Iy =-1.6 mA maximum Igp = 1.6 mA maximum

In terms of unit loads, therefore, the input load factors are 100 uA/40 uA =

2.5 UL in the high state and 1.6 mA/1.6 mA = 1 UL in the low state. The output
drive factors are 1 mA/40 uA =25 UL in the high state and 1.6 mA/1.6 mA =1 UL
in the low state. Thus, as long as the factors are correctly matched, NMOS and TTL
can be directly connected together. The same applies with CMOS and TTL, except
that when driving CMOS from TTL the CMOS, operating at 5 volts, requires a

Vin value of 4.3 volts minimum, whereas LS TTL output voltage, Voy, is typically
3.4 volts and can be as low as 2.7 volts. The solution is to include a 10k pull-up
resistor to +5 volts at the output of the TTL gate. Standard CMOS can drive two
74LS inputs directly.

Under certain circumstances it is desirable to connect the outputs of two or
more gates together, but a little thought will show that the TTL totem-pole circuit
of figure A.1a would not last long if connected to a similar circuit. Very soon, one
circuit would be set with its upper transistor, T3, on, while the other would be set
with its lower transistor, T4, on, and one of the transistors (normally the upper)
would act as a fuse, as a large current flowed from +5 volts to ground!

One occasion for outputs to be connected together is in wired-OR logic, when
the common point is to be taken low if gate A, or gate B, or any other gate out-
put goes low. In such circumstances we must use open-collector versions of the
TTL gates. These are identical to normal gates except that T3, D3 and the 130
resistor are omitted. It is then necessary to provide an external resistor at the
commoned outputs to act as the collector load. The resistor value depends on the
number of gates involved and suitable values are given for different conditions in
the manufacturer’s literature.

A second requirement for commoned outputs arises in bus-organised systems,
such as our microcomputer. Any one of many registers may be required to feed
data onto the bus, but only one register is selected at any time. Here we make
use of three-state circuits which have additional enabling circuitry built in.

106 Interfacing the BBC Microcomputer

When the gate is enabled it acts as a conventional TTL circuit with totem-pole
output. But when it is disabled, both transistors in the totem-pole circuit are
switched off, so that the circuit presents a high impedance to the bus, and is
effectively disconnected from it.

The use of these logic circuits, and the design of logic systems in general, is a
fascinating area of study. Anyone wishing to develop the ideas that we have
briefly outlined here should consult more specialised books such as Fundamentals
of Modern Digital Systems by B. R. Bannister and D. G. Whitehead, published by
Macmillan, 1983.

Appendix B: Machine Code
Programming

Whenever the computer is running it is working methodically through a sequence
of instructions which is known as the program. The range of operations from
which the instructions can be selected is limited and each operation is very
simple, but the processing circuitry can deal with about half a million instructions
each second, which makes it very powerful.

The instructions are coded in binary, which is the only form that the circuitry
can accept, and it is this form that is called machine code. Users, however, find it
difficult and very time-consuming to work in binary, and the need to concentrate
on getting the coding right tends to restrict the range of programming ideas that
we can employ. The obvious thing to do is to construct programs in a form that
is more meaningful to the user, and pass the tedious work of conversion into
machine code back to the computer. The more meaningful version of machine
code is called assembler language, and the program that the computer uses to
translate the assembler code to the form it requires is the assembler. Thus when
the computer is running the assembler, it is using the user’s assembler language
program as data to be translated to another form of data. The user’s program in
assembler language is the source code which is translated to object code in binary,
and the object code can then be run as a program in its own right. Since the
assembler relates closely to the machine code of the particular microprocessor, it
is also processor-specific, and it is often preferable to work in a higher-level
language which, with minor modifications, could run on different computers if a
suitable translating program is provided. Many high-level languages have been
designed, but by far the most popular for personal computers is BASIC which is
an acronym for Beginners’ All-purpose Symbolic Instruction Code.

Programs written in BASIC, or any other high-level language, use pseudo-English
statements which are much more understandable to the user, but are meaningless
strings of characters to the circuitry that will actually carry out the operations
defined. Again, each BASIC statement has to be translated, and a special program
is provided which operates on the user’s program and converts it to a form similar
to assembler. It is then further converted to machine code form which is acceptable
to the computer circuitry. Most high-level languages employing this method of
translation make use of a type of program known as a compiler; the complete user
program is translated to machine code form, so that, once the compilation is com-
pleted, the program can be run and rerun as often as required, without further
translation. BASIC, however, is normally dealt with in a different way. Each

107

108 Interfacing the BBC Microcomputer

BASIC statement is interpreted into machine code form, and is immediately carried
out. No copy is kept of the machine code form and the interpreter program must
re-interpret each statement if it returns to it. This makes BASIC much slower than
compiled languages, especially where repetitive loops are concerned.

The operation of the different levels of program can conveniently be thought of
as a series of software shells, built around the processing circuitry of the computer.
The hardware forms the kernel, and the assembler language makes the innermost
shell. BASIC, or some other high-level language, forms another shell, and so on. By
designing different additional shells, we can effectively change the characteristics
of the computer, as far as a user is concerned, without having to change any of the
hardware. Applications packages, such as word-processing programs, for example,
can be added as extra shells, and users need no knowledge of how the computer is
operating internally. However, there are advantages in working in assembler
language, especially when we are interfacing other equipment to the computer;
programs are shorter and operate much faster and they also make much more
efficient use of memory. Furthermore, knowing in more detail how the processor
actually works allows us to exploit some of its special features, which are not fully
used by the high-level languages. There are, of course, times when it is easier to
use BASIC, and a very important feature of the BASIC interpreter held in the
ROMs in the BBC microcomputer is the ability to mix machine code sections with
BASIC statements, to get the best of both worlds. In effect, we can operate in
two shells at the same time.

The processor used in the BBC computer is the 6502, which is one of the
processors in the 6500 series. The microprocessor operates on data in eight-bit
bytes, and in common with all microprocessors it has a range of registers which
are used in carrying out specific operations. Many of the registers are only for
internal use — what we call housekeeping operations — and, as far as the program-
mer is concerned, the 6502 has three general registers, the accumulator and index
registers X and Y. In addition, three of the special registers are important: the
program counter, PC, the stack pointer, SP, and the processor status register.

The program counter indicates the location in program memory where the
next instruction is to be found. It is a 16-bit counter since any part of the
65 536 location memory space may be used for program purposes. At the
beginning of each instruction cycle the instruction must be fetched from memory.
The complete information necessary to specify an instruction may require one,
two or three bytes, but in all cases the first byte fetched is the op-code byte. This
byte is decoded to indicate the type of operation involved, and it also indicates
how many more bytes, if any, are needed to complete the instruction. Each op-
code byte is associated with a mnemonic from the instruction set listing, such as
LDA for load accumulator, STX for store content of X register, and so on. The
complete set of mnemonics is given in appendix D, section 1 together with the
total number of bytes needed in each case. The additional bytes are necessary to
specify the operands that are to be used in carrying out the instruction. LDA, for
example, means load accumulator with a data byte, and we need to specify the

Appendix B: Machine Code Programming 109

location in memory, or elsewhere, that is to be used to provide the data. There are
several different ways in which the operands can be specified, and these addressing
modes are explained in appendix D, section 1. In building-up the instruction, each
time a byte is taken from memory the program counter is incremented, so that,
when all the necessary bytes have been fetched, the program counter points to
the start of the next instruction, ready for the next fetch sequence to begin. The
fetch sequence is complete when various housekeeping operations have been
carried out, and the execution phase follows immediately. During this phase the
operations indicated by the instruction are carried out, and, where appropriate,
the condition flags are set. The condition flags are individual flipflops which
indicate the status of the processor after each operation, and together they form
the condition code which is held in the processor status register.

The flags are

carry, C set to ‘17 if a carry occurred at the most-significant bit
of the accumulator

zero, Z set to ‘17 if accumulator value became zero

overflow, V set to ‘17 if the number range of the accumulator was
exceeded

negative, N set to ‘1’ if the msb of the accumulator became ‘1°, so

indicating a negative value

decimal mode, D set to ‘1 if arithmetic operations are to be in binary-
coded decimal

interrupt disable, I set to ‘1’ if external interrupts are disabled

break command, B set to ‘1’ if the instruction was BRK.

The number of mnemonics in the instruction set is 56, though, when we take all
the addressing variations into account, the number of instruction types available is
almost three times that. The instructions can be split into four main groups:

e Those involved with transfers of data between registers and to and from memory.
e Arithmetic and logic operations, such as add, AND, compare, decrement,
exclusive-OR, increment, rotate, etc.
e Flag operations, such as set or clear the carry flag, set or clear the decimal
flag, etc.

The majority of the instructions in these first three groups affect the settings of at
least some of the flags in the processor status register, to reflect the new conditions.

e Branch instructions. This group includes jump, JMP, jump to subroutine, JSR,
return from subroutine, RTS, and several conditional jumps, such as branch if
carry flag set, BCS, branch if minus, BMI (that is, branch if negative flag set),
and so on. The branch instructions react to the flag settings but do not modify
them.

110 Interfacing the BBC Microcomputer

The effect of all jump instructions is to change the program counter value, so that
the next instruction is taken not from the next sequential location but from the
indicated new location. Most jumps and branches are non-return, and subsequent
instructions are taken sequentially from the new position. Jump to subroutine,
JSR, however, retains the original value of the program counter, so that when a
return instruction, RTS, is encountered, the original value of the program counter
can be restored. The value is stored until required in a section of memory known
as the stack, which is exactly the same as all the other read/write random access
memory, except that it is addressed via a counter known as the stack pointer, SP,
which is automatically incremented or decremented when used. Special instructions
allow us to write to and read from the stack, and these are known as push and pull
respectively. The stack, in the BBC computer, is located in page 1 of memory and
runs from &0100 to &01FF.

The assembler provided in the computer is a conventional two-pass assembler,
which allows the use of labels to indicate locations. A small section of program,
for example, could be

START

LDA &FE60 : STA &70
CMP #0 : BEQ START
LDA #0 : STA ACR

During assembly, the label .START is allocated the value of the address at which
the op-code LDA is stored, and, whenever the label is encountered later on, the
address is substituted. Individual instructions are terminated either by the return
at the end of a line, or by the colon. This small section of machine code loads the
accumulator from location &FE60, stores that value at location &70, then com-
pares the value with zero and, if equal to zero, jumps back to the location labelled
START. Otherwise it continues to the next instruction following, and loads the
accumulator with zero; it finally stores the zero in the register location labelled
ACR.

This has of necessity been only a brief introduction to assembly language pro-
gramming. Section 43 of the User Guide contains a full account of the methods
used to link the assembler sections, such as we have discussed, into a BASIC
program. A much more thorough coverage of the whole field of machine code
programming will be found in Assembly Language Programming for the BBC
Microcomputer (second edition) by Ian Birnbaum, published by Macmillan, 1984,

Appendix C:Input-Output Memory Map

/7

|
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

&FFFF
OPERATING SYSTEM
ROM
&FFoo | i K
&FEFF
, JNPUT-OUTPUT
&Fcoo | 3K
&FBFF
OPERATING SYSTEM
ROM
&C000 |15K
&BFFF
PAGED
ROMs
8000 |16K
&TFFF
RAM
32K
&0000

&FEFF

&FEEO
&FEC3
&FECO
&FEA3
&FEAO
&FEB4
&FEBO
&FE6F
&FEBO
&FE40

&FE30

&FE21
&FE20
&FE18

&FE10

&FE09
&FE08
&FEO1

&FE0D
&FDFF

&FDOO
&FCFF
&FCFE

&FCCO
&FCBF
&FC90
&FC8F
&FC80
&FC7F

&FC48
&FC47
&FC40
&FC3F
&FC30
&FC2F
&FC28
&FC27
&FC20
&FC1F
&FC14
&FC13
&FC10
&FCOF
&FC00

TUBE
ADC uPD7002
ADLC, ECONET 68854
FDC 8271
VIAB 6522
VIA A 6522
PAGED ROM SELECT 74LS163
VIDEO ULA
ECONET INTERRUPT CONTROL
SERIAL ULA
ACIA 6850
CRTC 6845
LOW EIGHT BITS
OF EXTENDED
ADDRESS USED WITH
PAGING REGISTER
JIM PAGE REGISTER
USER APPLICATIONS
ACORN RESERVED
TEST HARDWARE
1 MHz
ACORN RESERVED BUS

WINCHESTER DISC

CAMBRIDGE RING

ACORN RESERVED

IEEE-488 INTERFACE

PRESTEL

TELETEXT

TEST HARDWARE

111

Ji

FR

J\

SHEILA

ED

Appendix D: Data Sheets

1. SY6500 8-bit Microprocessor Family
Reproduced by courtesy of Synertek Inc.,
Honeywell House, Charles Square, Bracknell, Berkshire, UK
. SY6522 Versatile Interface Adapter, VIA
Reproduced by courtesy of Synertek Inc.,
Honeywell House, Charles Square, Bracknell, Berkshire, UK
3. uPD7002 12-bit Binary A/D Converter
Reproduced by courtesy of NEC Electronics (UK) Ltd,
Devonshire House, Bank Street, Lutterworth, Leicestershire, UK
4. SN74LS244 Octal Buffers and Line Drivers with 3-state Outputs
Reproduced by courtesy of Texas Instruments Ltd,
Manton Lane, Bedford, UK
5. SN74LS245 Octal Bus Transceivers with 3-state Outputs
Reproduced by courtesy of Texas Instruments Ltd,
Manton Lane, Bedford, UK

o

The manufacturers reserve the right to make changes at any time in order to
improve design and to supply the best product possible. Therefore, they cannot
assume any responsibility for the information given or represent that it is free
from patent infringement.

112

Appendix D: Data Sheets 113

ertek. S$Y6500
8-Bit Microprocessor

Family

Features
® Single 5 V +5% power supply ® |[nstruction decoding and control
® N channel, silicon gate, depletion load technology ® Addressable memory range of up to 65 K bytes
® Eight bit parallel processing ® "Ready” input
® 56 Instructions ® Direct memory access capability
® Decimal and binary arithmetic ® Bus compatible with MC6800
® Thirteen addressing modes ® Choice of external or on-board clocks
® True indexing capability ® 1 MHz, 2 MHz, 3 MHz and 4 MHz operation
® Programmable stack pointer ® On-chip clock options
® Variable length stack * External single clock input
® [nterrupt capability " Crystal time base input
® Non-maskable interrupt ® 40 and 28 pin package versions
® Use with any type or speed memory ® Pipeline architecture
® Bi-directional Data Bus

Description

The SY6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of
products includes a range of software compatible microprocessors which provide a selection of addressable memory range,
interrupt input options and on-chip clock oscillators and drivers. All of the microprocessors in the SY6500 family are
software compatible within the group and are bus compatible with the MC6800 product offering.

The family includes six microprocessors with on-board clock oscillators and drivers and four microprocessors driven by
external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs
or crystals provide the time base. The external clock versions are geared for the multi-processor system applications where
maximum timing control is mandatory. All versions of the microprocessors are available in 1 MHz, 2 MHz, 3 MHz and
4 MHz maximum operating frequencies.

Members of the Family Ordering Information
PART SY P6502A
NUMBERS|CLOCKS|PINS |TRG | NMi | RYD|ADDRESSING T ‘[
SY6502 [On-Chip | 40 N RY 64 K SYNERTEK INC SPEED
5Y6503 ‘ 28 |V |V 4K No Suffix = 1 MHz
Sves04 | - 28 | v 8K NO PREFIX A=2 MHz
SY6505 28 | V v 4K 0°C to 70°C B=3MHz
SY6506 e 28 | V 4K C =4 MHz
SY6507 : 28 Vv 8K PACKAGE TYPE
SY6512 |External| 40 | v | v | V 64 K P = Plastic
SY6513 B 28 j v 4K D = CERDIP
SY6514 “ 28 8K C = Ceramic SPECIFIC TYPE
SY6515 - 28 | V / 4K 02-07
- 65XX FAMILY ———‘ 12-15

Only 6502 and 6512 are available in 3 and 4 MHz

114 Interfacing the BBC Microcomputer

Synertek;

S$Y6500

Pin Functions

Clocks (@, @,)

The SYB51X requires a two phase non-overlapping clock
that runs at the Vcc voltage level.

The SYB50X clocks are supplied with an internal clock
generator. The frequency of these clocks is externally con-
trolled. Clock generator circuits are shown elsewhere in this
data sheet.

Address Bus le-A‘sl (See sections on each micro for
respective address lines on those devices.)

These outputs are TTL compatible, capable of driving one
standard TTL load and 130 pF.

Data Bus (DB-DB_)

Eight pins are used for the data bus. This is a bi-directional
bus, transferring data to and from the device and peripherals.
The outputs are three-state buffers, capable of driving one
standard TTL load and 130 pF.

Data Bus Enable (DBE)

This TTL compatible input allows external control of the
three-state data output buffers and will enable the micro-
processor bus driver when in the high state. In normal
operation DBE would be driven by the phase two (62) clock,
thus allowing data output from microprocessor only during
0,. During the read cycle, the data bus drivers are internally
disabled, becoming essentially an open circuit. To disable
data bus drivers externally, DBE should be held low. This
signal is available on the SY6512, only.

Ready (RDY)

This input signal allows the user to halt the microprocessor
on all cycles except write cycles. A negative transition to
the low state during or coincident with phase one (9,) will
halt the microprocessor with the output address lines
reflecting the current address being fetched. This condition
will remain through a subsequent phase two (8,) in which
the Ready signal is low. This feature allows microprocessor
interfacing with low speed PROMS as well as fast (max. 2
cycle) Direct Memory Access (DMA). If ready is low during
a write cycle, it is ignored until the following read opera-
tion. Ready transitions must not be permitted during ﬂz
time

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence
begin within the microprocessor. The microprocessor will
complete the current instruction being executed before
recognizing the request. At that time, the interrupt mask
bit in the Status Code Register will be examined. If the
interrupt mask flag is not set, the microprocessor will begin
an interrupt sequence. The Program Counter and Processor
Status Register are stored in the stack. The microprocessor
will then set the interrupt mask fiag high so that no further
interrupts may occur. At the end of this cycle, the program
counter low will be loaded from address FFFE, and program
counter high from location FFFF, therefore transferring
program control to the memory vector located at these
addresses. The RDY signal must be in the high state for any
interrupt to be recognized. A 3K external resistor should
be used for proper wire-OR operation

Non-Maskable Interrupt (NMI)

A negative going transition on this input requests that a
non-maskable interrupt sequence be generated within the
microprocessor.

NMI is an unconditional interrupt. Following completion of
the current instruction, the sequence of operations defined
for IRQ will be performed, regardless of the state interrupt
mask flag. The vestor address loaded into the program
counter, low and high, are locations FFFA and FFFB
respectively, thereby transferring program control! to the
memory vector located at these addresses. The instructions
loaded at these locations cause the microprocessor to
branch to a non-maskable interrupt routine in memory.

NMI also requires an external 3K resistor to Vee for
proper wire-OR operations.

Inputs IRQ and NMI are hardware interrupts lines that are
sampled during @, (phase 2) and will begin the appropriate
interrupt routine on the @, (phase 1) following the comple-
tion of the current instruction

Set Overflow Flag (S.0.)

A NEGATIVE going edge on this input sets the overflow
bit in the Status Code Register. This signal is sampled on
the trailing edge of @, .

SYNC

This output line is provided to identify those cycles in
which the microprocessor ic doing an OP CODE fetch. The
SYNC line goes high during @; of an OP CODE fetch and
stays high for the remainder of that cycle. If the RDY line
is pulled low during the G‘ clock pulse in which SYNC went
high, the processor will stop in its current state and will
remain in the state until the RDY line goes high. In this
manner, the SYNC signal can be used to control RDY to
cause single instruction execution

Reset (RES)

This input is used to reset or start the microprocessor from
a power down condition. During the time that this line is
held low, writing to or from the microprocessor is inhibited
When a positive edge is detected on the input, the micro-
processor will immediately begin the reset sequence

After a system initialization time of six clock cycles, the
mask interrupt flag will be set and the microprocessor will
load the program counter from the memory vector locations
FFFC and FFFD. This is the start location for program
control.

After V. reaches 4.75 volts in a power up routine, reset
must bﬁ held low for at least two clock cycles. At this time
the R/W and SYNC signal will become valid.

When the reset signal goes high following these two clock
cycles, the microprocessor will proceed with the normal
reset procedure detailed above

Read/Write (R/W)

This output signal is used to control the direction of data
transfers between the processor and other circuits on the
data bus. A high level on R/W signifies data into the pro-
cessor; a low is for data transfer out of the processor

Appendix D: Data Sheets 115

Imeriek,

SY6500

Programming Characteristics

INSTRUCTION SET — ALPHABETIC SEQUENCE

ADC Add Memory to Accumulator with Carry
AND “AND" Memory with Accumulator
ASL Shift left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator
CPX Compare Memory and Index X

CPY Compare Memory and Index Y

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

EOR “Exclusive-or”” Memory with Accumulator

INC Increment Memory by One
INX Increment Index X by One
INY Increment Index Y by One

JMP Jump to New Location
JSR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Index X with Memory

LDY Load Index Y with Memory

LSR Shift One Bit Right (Memory or Accumulator)

NOP No Operation
ORA “OR" Memory with Accumulator

PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)
ROR Rotate One Bit Right (Memory or Accumulator)
RTI Return from Interrupt

RTS Return from Subroutine

SBC Subtract Memory from Accumulator
with Borrow
SEC Set Carry Flag

SED Set Decimal Mode

SEl Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory

STY Store Index Y in Memory

TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Pointer
TYA Transfer Index Y to Accumulator

ADDRESSING MODES
Accumulator Addressing

This form of addressing is represented with a one byte
instruction, implying an operation on the accumulator.

Immediate Addressing

In immediate addressing, the operand is contained in the
second byte of the instruction, with no further memory
addressing required.

Absolute Addressing

In absolute addressing, the second byte of the instruction
specifies the eight low order bits of the effective address
while the third byte specifies the eight high order bits.
Thus, the absolute addressing mode allows access to the
entire 65K bytes of addressable memory

Zero page Addressing

The zero page instructions allow for shorter code and
execution times by only fetching the second byte of the
instruction and assuming a zero high address byte. Careful
use of the zero page can result in significant increase in
code efficiency.

Indexed Zero Page Ad:

ing — (X, Y indexing)
This form of addressing is used in conjunction with the
index register and is referred to as “"Zero Page, X" or "Zero

Page, Y.” The effective address is calculated by adding the
second byte to the contents of the index register. Since this
is a form of “Zero Page” addressing, the content of the
second byte references a location in page zero. Additionally
due to the “Zero Page " addressing nature of this mode, no
carry is added to the high order 8 bits of memory and
crossing of page boundaries does not occur

Indexed Absolute Addressing — (X, Y indexing)

This form of addressing is.used in conjunction with X and Y
index register and is referred to as “Absolute, X,” and
“Absolute, Y.” The effective address is formed by adding
the contents of X or Y to the address contained in the
second and third bytes of the instruction. This mode allows
the index register to contain the index or count value and
the instruction to contain the base address. This type of
indexing allows any location referencing and the index to
modify multiple fields resuiting in reduced coding and
execution time

Implied Addressing

Inthe implied addressing mode, the address containing the
operand is implicitly stated in the operation code of the
instruction.

116 Interfacing the BBC Microcomputer

yoertek.

$Y6500

Relative Addressing

Relative addressing is used only with branch instructions
and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand
which is an “Offset” added to the contents of the lower
eight bits of the program counter when the counter is
set at the next instruction. The range of the offset is
-128 to +127 bytes from the next instruction.

Indexed Indirect Addressing

In indexed indirect addressing (referred to as (Indir-
ect, X)), the second byte of the instruction is added to
the contents of the X index register, discarding the
carry. The result of this addition points to a memory
location on page zero whose contents is the low order
eight bits of the effective address. The next memory
location in page zero contains the high order eight bits
of the effective address. Both memory locations specify-
ing the high and low order bytes of the effective address
must be in page zero.

Programming Characteristics

PROGRAMMING MODEL

7]
7]
7]

15 7 @

[PCH I PCL] ProGrAm counTER
7]

Indirect Indexed Addressing

In indirect indexed addressing (referred to as (Indir-
ect),Y), the second byte of the instruction points to a
memory location in page zero. The contents of this
memory location is added to the contents of the Y index
register, the result being the low order eight bits of the
effective address. The carry from this addition is added
to the contents of the next page zero memory location,
the result being the high order eight bits of the effective
address.

Absolute Indirect

The second byte of the instruction contains the low
order eight bits of a memory location. The high order
eight bits of that memory location is contained in the
third byte of the instruction. The contents of the fully
specified memory location is the low order byte of the
effective address. The next memory location contains
the high order byte of the effective address which is
loaded into the sixteen bits of the program counter.

N|V sBfplt]z]|cC PROCESSOR STATUS REG P~

[—— CARRY 1= TRUE

ZERO 1=RESULT ZERO
=+ |IRQDISABLE 1= DISABLE
b———————+ DECIMAL MODE 1= TRUE

'———————— BRK COMMAND 1=BRK

——————————e OVERFLOW 1= TRUE

T ——————— EORTINE 1=NEG

ynertek

Appendix D: Data Sheets

117

SY6500

INSTRUCTION SET — OP CODES, EXECUTION TIME, MEMORY REQUIREMENTS

0w o weoarwt | momicr | 2oact 1] commiriomconts
—wonc ornanion oe[n] 4 oe|n] Jor]n] <Joe[nTen 2z c 1 o v
ADC | A+MeC=A u.mu_Iz 2 I 1 27 == ¥
AND| AAM-A mif29)2 2] |) -
ast | cel___o«o | digd @
B8CC | BRANCHONC-8 12) 9922 !
BCS | BRANCHONC:! @) 802 |2 1 | -
BEQ | BRANCHONZ-) (2])22 { f - -
81T | AaAMm | M, s M
BM) | BRANCHONN:1 2 1.;7'2 | i
BNE | BRANCH ON Z= @) 00|22 | -
BPL | BRANCHONN-9 12) 0)22 |
BAK | (Seefig 1) =T Tl 11 T ﬂ
BVC | BRANCHON V-0 (2) %22 |
BVS | BRANCHON V-1 12) ! 2|2 i 1 |
| ° -
|)
| °
\ o
2 ‘ TR
2 L - -
2 R
iNEED
o
J 2
2/eD|a | 3853 |2 | a /10
eeje|afes)s|2f | || | 7
| €82]
I CIE 1
IMP | JUMP TO NEW LOC ac|3 |3 |
ISR | (See Fig 2) JUMP SUB 206 | 3| .
LDA|M-A (1|as|2 |2|ap|a [3]as]3 |2 At . .
—ATE | ABOLVTE | PERG PAGE i - .. - T ras . . MELATIVE | maenecT et v CONDITION CODLS
o ornanion loe[w [o|or[N] «for[w] «or]n [«[or[n] d op[n] «]oe[n] #]or]n] o[or[n] #|or]n] e]op|n] «lor[n] afor[n[ofn z c 1 © v
LOX | M=x m[az[2[2]ae[a[3]as[3]2 BE[4]3 e6[a (2], v - - - -
LOY [M-y ifae|2|2|acla|3faal3|2 sala|2(8C|4 |3 “ - - -
tsa e[l _d»c 4€6|3|a6|s | 2|ea|2 566 (2[s€(7 (3 0 v - -
NOP | NOOPERATION €al2 |1 52 = =
ORA|AVM=a 092 3jes|3|2 01/6/ 2[5 2|1s]a|2]10/a[3]10]a]3 ¢ v - - -
PHA | A-M s1-5s 4831 s === <
PHP | P =M $-1-8§ 983 1 | - - -
PLA [Se1-5 M- A 684 |1 | -~ .
PLP | Se1-§ M- P 8|4 |1 (RESTORED!
ROL 2€[6[3[26 (5 2{2a]2 ’ 366 | 2[3€|7 |3 V44 -
ROR 6E(6(3]86(5| 2642 I 7616 2|7€]7 |3 R
RT1 | (Ses Fig V| ATANINT 496 | RESTORED!
ATS | (SesFig 2) ATAN SUB 6061 | | - ===
$8C | AMT—A mes|2 |2[eo|a|3|es|3|2 €16 2|f1|s| 2[Fs|a|2|Fola|3[Fe|a |3 PPN v
SEC [1-C 38|21 L | 1= -
SED [1-0 | #8l2 |1 NN
SEI | 1-1 821 [
STA [Aa=-m 80|a[3f8s|3|2| | 816 2|91/6| 2[95 4 | 2[90|5|3f99'5 |3 ‘
STX [x=m 8€|4|3|86(3|2 !
STY | Y=m 8c(a|3|sal3|2f | 9ala|2 |
TAX | A-x Aa[2 |1 | |
TAY | A=Y a8(2 1 T T +‘T'
TSX | S=x BA(2 [|| i P
TXA| X=A 8A(2 |1 ‘ | | Vv m -
TXS | x-S 942 |1 | - = e o
TYa|v-a 98[2 1 L N Pkl l L] J; ll === -
1) ADD 1 TO "N IF PAGE BOUNDARY IS CROSSED X INDEX x + ADD - NOT MOODIFIED
(20 ADD 1 TO “N" IF BRANCH OCCURS TO SAME PAGE ¥ OINDEX ¥ - SUBTRACT M, MEMDRY 81T 7
ADD 2 TO N IF BRANCH OCCURS TO DIFFERENT PAGE A ACCUMULATOR A AND M, MEMORY 817 &
3) CARAY NOT = BELOW M MEMORY PER EFFECTIVE ADDRESS v oR N NO CYCLES
(4) IF IN DECIMAL MODE Z FLAG IS INVALID My MEMORY PER STACK POINTER ¥ EXCLUSIVE OR ® NO BYTES
ACCUMULATOR MUST BE CHECKED FOR ZERO RESULT + MODIFIED

118 Interfacing the BBC Microcomputer

SY6522/SY6522A

Versatile Interface
Adapter (VIA)

ertek.

Features

® Two 8-Bit Bidirectional 1/O Ports

® Two 16-Bit Programmable Timer/Counters
® Serial Data Port

® Single +5V Power Supply

® TTL Compatible

® CMOS Compatible Peripheral Port A lines

® Expanded ““Handshake” Capability Allows Positive
Control of Data Transfers Between Processor and
Peripheral Devices

® Latched Output and Input Registers

® 1 MHz and 2 MHz Operation

Description

The SY6522 Versatile Interface Adapter (VIA) is a
very flexible 1/O control device. In addition, this de-
vice contains a pair of very powerful 16-bit interval
timers, a serial-to-parallel/parallel-to-serial shift re-
gister and input data latching on the peripheral ports.
Expanded handshaking capability allows control of
bi-directional data transfers between VIA's in multiple
processor systems.

Control of peripheral devices is handled primarily
through two 8-bit bi-directional ports. Each line can

be programmed as either an input or an output. Several
peripheral 1/0 lines can be controlled directly from
the interval timers for generating programmable fre-
quency square waves or for counting externally gen-
erated pulses. To facilitate control of the many power-
ful features of this chip, an interrupt flag register, an
interrupt enable register and a pair of function con-
trol registers are provided.

INTERRUPT L)
CONTROL
FLAGS INPUT LATCH
(FR)
ENABLE ouTPUT BUFFERS
(1ER) > (ORA) (PA) PORTX
————————— 4
DATA oata L DATADIR
BUS <::> 8US (DDRA]
BUFFERS [
PORT A REGISTERS
PERIPHERAL
(PCR)
S .
S ——
AUXILIARY PORT A ca1
(ACR) :> |l o———————— a2
FUNCTION PORT B
CONTROL
HANDSHAKE
CONTROL
LATCH LATCH
- (TILH) muu
: Rl I eSS SHIFT REG c81
RW —— (SR) b 8>
o COUNTER COUNTER
—_— (TIC-H) (Tic-L)
) ————anl
o cHip TIMER 1 PORT B REGISTERS
C82———=1 AcCESS
RSO .| contRoL TIMER 2 INPUT LATCH
(IR
ey = wren 1] [p=—emsina]
[r p— (T211) ouTPUT BUFFERS —
Asa (ORB) ®8) OAT S
=t COUNTER | COUNTER ...]
(T2C-H) : T2cL) DATA DIR
(DDRB)

Figure 1. SY6522 Block Diagram

Synertek;

Appendix D: Data Sheets 119

SY6522/SY6522A

Absolute Maximum Ratings* Comment*
. s This device contains circuitry to protect the inputs
Unit
Rating Symbol Yelos ks against damage due to high static voltages. However,
Supply Voltage Vee |-0.3t0+7.0| V it is advised that normal precautions be taken to
Input Voltage Vin [-0.3t0+7.0| V avoid application of any voltage higher than maxi-
Operating Temperature mum rated voltages.
Range Ta 0to+70 | °C
Storage Temperature
Range Ty [-55t0 +160| °C
Electrical Characteristics (Vee = 5.0V * 5%, T = 0-70°C unless otherwise noted)
Symbol Characteristic Min. Max. Unit
Viu Input High Voltage (all except ¢$2) 2.4 Vee \
Ve Clock High Voltage 24 Vee Vv
ViL Input Low Voltage -0.3 0.4 Y
Iin Input Leakage Current — Viy =0 to 5 Vdc - 2.5 HA
R/W, RES, RSO, RS1, RS2, RS3, CS1, CS2,
CA1, 92
Its Off-state Input Current — V|y = .4 to 2.4V - 10 HA
Vee = Max, DO to D7
™) Input High Current — Vi = 2.4V -100 - HA
PAO-PA7, CA2, PBO-PB7, CB1, CB2
iy Input Low Current — V,_ = 0.4 Vdc - -1.6 mA
PAQ-PA7, CA2, PBO-PB7, CB1, CB2
VoH Output High Voltage 24 - \%
Vee = min, ligag = -100 pAdc
PAO-PA7, CA2, PBO-PB7, CB1, CB2
Vou Output Low Voltage - 0.4 A
Vee = min, ligag = 1.6 mAdc
lon Output High Current (Sourcing)
Vou = 2.4V -100 - MA
Vou = 1.5V (PBO-PB7) -1.0 - mA
loL Output Low Current (Sinking) 1.6 - mA
VoL = 0.4 Vdc
logf Output Leakage Current (Off state) - 10 HA
iRQ
Cin Input Capacitance — Ta = 25°C, f = 1 MHz
(R/W, RES, RSO, RS1, RS2, RS3, CS1, C82, - 7.0 pF
DO-D7, PAG-PA7, CA1, CA2, PBO-PB7)
(CB1, CB2) = 10 pF
($2 Input) - 20 pF
Cour Output Capacitance — Ta = 25°C, f = 1 MHz - 10 pF
Pp Power Dissipation (V¢c = 5.25V) - 700 mwW

120 Interfacing the BBC Microcomputer

Synertek; SY6522/SY6522A

Test Load
OPEN COLLECTOR
5V OUTPUT TEST LOAD
Y
240
3Ka
PIN l]lAv PIN
CpF]: 240 I 100 pF
C = 130 pF MAX. FOR DB0-DB7
C =30 pF MAX, FOR ALL OTHER OUTPUTS =
Figure 2. Test Load (for all Dynamic Parameters)
b Taca Tev
fe—Tq
4 \ ‘—/ O
cLock
le—Tcon—+] le— ¢
R
CHIP SELECTS, A
REGISTER SELECTS,
e AN A
Trcn Tean
s
PERIPHERAL
DATA
A
—] Tun |o—
p
VALID
Figure 3. Read Timing Characteristics
Read Timing Characteristics (Figure 3)
S§Y6522 SY8522A
Symbol Parameter Min. Max. Min. Max. Unit
Tey Cycle Time 1 50 0.5 50 us
Tacr Address Set-Up Time 180 - 90 - ns
Tcar Address Hold Time I o - 0 - ns
Tecr Peripheral Data Set-Up Time 300 - 300 - ns
Tcor Data Bus Delay Time - 340 - 200 ns
THR Data Bus Hold Time 10 = 10 - ns

NOTE: tr, tf = 10 to 30ns.

Appendix D: Data Sheets 121

|

SY6522/SY6522A

1,

2
cLock

b T o — — Tcaw

CHIP SELECTS,
REGISTER SELECTS

o9

[Twew—>1 [*— Tocw —=T*— Teww —‘i

DATA
BUS

PERIPHERAL LML
DATA W

Figure 4. Write Timing Characteristics

Write Timing Characteristics (Figure 4)

SY6522 SY6522A

Symbol Parameter Min. Max. Min. Max. Unit
Tey Cycle Time 1 50 0.50 50 Hs
Tc $2 Pulse Width 0.44 25 0.22 25 Hs
Tacw Address Set-Up Time 180 - 90 - ns
Tcaw Address Hold Time 0 - 0 - ns
Twew R/W Set-Up Time 180 - 90 — ns
Teww R/W Hold Time 0 - 0 - ns
Tocw Data Bus Set-Up Time 300 t 150 - ns
Tuw Data Bus Hold Time 10 - 10 - ns
Tepw Peripheral Data Delay Time - 1.0 - 1.0 Hs
Temos Peripheral Data Delay Time

to CMOS Levels - 2.0 - 2.0 s

NOTE: tr, tf = 10 to 30ns.

122 Interfacing the BBC Microcomputer

Synertek. N SY6522/SY6522A

Peripheral Interface Characteristics

Symbol Characteristic Min. Max. Typ. Unit | Figure

t b Rise and Fall Time for CA1, CB1, CA2, and CB2 — 10 us —_
Input Signals

Teaz Delay Time, Clock Negative Transition to CA2 - 10 us 5a, 5b
Negative Transition (read handshake or pulse mode)

Trs Delay Time, Clock Negative Transition to CA2 Positive — 1.0 us 5a
Transition (pulse mode)

Trs2 Delay Time, CA1 Active Transition to CA2 Positive - 20 us 5b
Transition (handshake mode)

TwhHs Delay Time, Clock Positive Transition to CA2 or CB2 0.05 10 us 5c, 5d
Negative Transition (write handshake)

Tos Delay Time, Peripheral Data Valid to CB2 Negative 0.20 16 us 5¢, 5d
Transition

Trs3 Delay Time, Clock Transition to CA2 or CB2 — 10 HS 5c
Positive Transition (pulse mode)

Trsa Delay Time, CA1 or CB1 Active Transition to CA2 or — 20 Hs 5d
CB2 Positive Transition (handshake mode)

Ta Delay Time Required from CA2 Output to CA1 400 — ns 5d
Active Transition (handshake mode)

To Set-up Time, Peripheral Data Valid to CA1 or CB1 300 — ns 5e
Active Transition (input latching)

Tsr1 Shift-Out Delay Time — Time from ¢, Falling Edge - 300 ns 5f
to CB2 Data Out

Tsr2 Shift-In Setup Time — Time from CB2 Data in to 300 — ns 59
®; Rising Edge

Tsra External Shift Clock (CB1) Setup Time Relative to 100 Tey ns 5g
@3 Trailing Edge

Tipw Pulse Width — PB6 Input Pulse 2xTey — 5i

Tiew Pulse Width — CB1 Input Clock 2 xTey — 5h

Ties Pulse Spacing — PB6 Input Pulse 2xTey — 5i

Tics Pulse Spacing — CB1 Input Pulse 2 xTey — 5h

TaL CA1, CB1 Set Up Prior to Transition to Arm Latch Tc +50 — ns 5e

TeoH Peripheral Data Hold After CA1, CB1 Transition 150 — ns 5e

Tew: Set Up Required on CA1, CB1, CA2 or CB2 Prior to Tc + 50 — ns 5j
Triggering Edge
Shift Register Clock — Delay from ¢

Toer to CB1 Rising Edge 200 ns 5k

TorpL to CB1 Falling Edge 125 ns 5k

Appendix D: Data Sheets 123

SY6522/SY6522A

READ IRA
OPERATION

caz
DATA TAKEN'

/S

- Tas

Figure 5a. CA2 Timing for Read Handshake, Pulse Mode

READ IRA
OPERATION

cA2
DATA TAKEN

cal
‘DATA READY"

SV
.
N

[Tasz
p
E a
y
7
t ACTIVE
TRANSITION

Figure 5b. CA2 Timing for Read Handshake, Handshake Mode

b2

WRITE ORA, ORB
OPERATION

CA2 CB2
‘DATA READY"

PA, PB
PERIPHERAL
DATA

S\

Tms Tasa

|

T\ /

Figure 5¢. CA2, CB2 Timing for Write Handshake, Pulse Mode

Interfacing the BBC Microcomputer

SY6522/SY6522A

Twns
WRITE ORA ORB
OPERATION
L

CA2, CB2
“DATA READY"

PA, P8
PERIPHERAL \\
DATA \

fo— T —f——— T —f

cA1, cB1
"DATA TAKEN"
ACTIVE
TRANSITION
Figure 5d. CA2, CB2 Timing for Write Handshake, Handshake Mode
PA. W \
PERIPHERAL 1\ \\\ \\\\ W \\
INPUT DATA MM \ MMM
T Toom
CcA1,CB1 /
INPUT LATCHING
CONTROL
ACTIVE
TRANSITION
Taw

Figure 5e. Peripheral Data Input Latching Timing

é2

v D)

Tsar———=

c81
SHIFT CLOCK
(INPUT OR
OUTPUT)

)

Figure 5f. Timing for Shift Out with Internal or External Shift Clocking

DELAY TIME MEASURED FROM THE FIRST &2
FALLING EDGE AFTER CB1 FALLING EDGE

Appendix D: Data Sheets 125

SY6522/SY6522A

cB2
SHIFT DATA
(INPUT)

c81

SHIFT CLOCK
(INPUT OR
OUTPUT)

. |
saz |

Figure 5g. Timing for Shift In with Internal or External Shift Clocking

SETUP TIME MEASURED TO THE FIRST &3
RISING EDGE AFTER CB1 RISING EDGE

,.__l Tens fo—

ce1
SHIFT CLOCK
INPUT

J —

Tics |

I

Figure 5h. External Shift Clock Timing

PB6
PULSE COUNT
INPUT

/

|
—_—

Figure 5i. Pulse Count Input Timing

e x\\\\fwﬁm}y

Figure 5j. Setup Time to Triggering Edge

EDGE

Torr Toet

Figure 5k. Shift-in/out with Internal Clock
Delay CD2 to CB1 Edge

Interfacing the BBC Microcomputer

Synertek, SY6522/SY6522A

Pin Descriptions
RES (Reset)

The reset input clears all internal registers to logic 0
(except T1 and T2 latches and counters and the Shift
Register). This places all peripheral interface lines in
the input state, disables the timers, shift register, etc.
and disables interrupting from the chip.

$2 (Input Clock)
The input clock is the system ¢2 clock and is used to
trigger all data transfers between the system processor
and the SY6522.

R/W(Read/Write)

The direction of the data transfers between the
SY6522 and the system processor iscontrolled by the
R/W line. If R/W is low, data will be transferred out
of the processor into the selected SY6522 register
(write operation). If R/W is high and the chip is select-
ed, data will be transferred out of the SY6522 (read
operation).

DBO0-DB7 (Data Bus)

The eight bi-directional data bus lines are used to
transfer data between the SY6522 and the system
processor. During read cycles, the contents of the sel-
ected SY6522 register are placed on the data bus lines
and transferred into the processor. During write
cycles, these lines are high-impedance inputs and data
is transferred from the processor into the selected re-
gister. When the SY6522 is unselected, the data bus
lines are high-impedance.

Cs1, C52 (Chip Selects)

The two chip select inputs are normally connected to
processor address lines either directly or through de-
coding. The selected SY6522 register will be accessed
when CS1 is high and CS2 is low.

RSO-RS3 (Register Selects)

The four Register Select inputs permit the system pro-
cessor to select one of the 16 internal registers of the
SY6522, as shown in Figure 6.

Register RS Coding Register Description
Number RS3 | RS2 | RS1 | RSO Desig. Write Read
0 0 0 0 ORB/IRB Output Register ‘B Input Register “B"*
1 0 0 1 ORA/IRA | Output Register “A" Input Register “A""
2 0 0 0 DDRB Data Direction Register “‘B"
3 0 0 1 1 DDRA Data Direction Register A"
4 0 1 0 0 T1C-L T1 Low-Order Latches [T1 Low-Order Counter
5 0 1 0 1 TIC-H T1 High-Order Counter
6 0 1 1 0 TiL-L T1 Low-Order Latches
7 0 1 1 1 TI1L-H T1 High-Order Latches
8 1 0 0 0 T2C-L T2 Low-Order Latches | T2 Low-Order Counter
9 1 0 0 1 T2C-H T2 High-Order Counter
10 1 0 1 0 SR Shift Register
1 1 0 1 1 ACR Auxiliary Control Register
12 1 1 0 0 PCR Peripheral Control Register
13 1 1 0 1 IFR Interrupt Flag Register
14 1 1 1 0 IER Interrupt Enable Register
15 1 1 1 1 ORA/IRA | Same as Reg 1 Except No ““Handshake’’

Figure 6. SY6522 Internal Register Summary

Appendix D: Data Sheets 127

Synertek.

SY6522/SY6522A

IRQ (Interrupt Request)

The Interrupt Request output goes low whenever an
internal interrupt flag is set and the corresponding in-
terrupt enable bit is a logic 1. This output is “open-
drain” to allow the interrupt request signal to be
“wire-or'ed”” with other equivalent signals in the
system.

PAO-PA7 (Peripheral A Port)

The Peripheral A port consists of 8 lines which can
be individually programmed to act as inputs or out-
puts under control of a Data Direction Register. The
polarity of output pins is controlled by an Output
Register and input data may be latched into an in-
ternal register under control of the CA1 line. All of
these modes of operation are controlled by the sys-
tem processor through the internal control registers.
These lines represent one standard TTL load in the
input mode and will drive one standard TTL load in
the output mode. Figure 7 illustrates the output
circuit.

CA1, CA2 (Peripheral A Control Lines)

The two Peripheral A control lines act as interrupt in-
puts or as handshake outputs. Each line controls an
internal interrupt flag with a corresponding interrupt
enable bit. In addition, CA1 controls the latching of
data on Peripheral A port input lines. CA1 is a high-
impedance input only; while CA2 represents one stan-
dard TTL load in the input mode. CA2 will drive one
standard TTL load in the output mode.

PAO-PAT7,
CAa2

i}
1/0 CONTROL |
OUTPUT DATA :

INPUT DATA oo

Figure 7. Peripheral A Port Output Circuit

PBO-PB7 (Peripheral B Port)

The Peripheral B port consists of eight bi-directional
lines which are controlled by an output register and a
data direction register in much the same manner as the

PA port. In addition, the PB7 output signal can be
controlled by one of the interval timers while the
second timer can be programmed to count pulses
on the PB6 pin. Peripheral B lines represent one
standard TTL load in the input mode and will drive
one standard TTL load in the output mode. In addi-
tion, they are capable of sourcing 1.0mA at 1.5VDC
in the output mode to allow the outputs to directly
drive Darlington transistor circuits. Figure 8 is the
circuit schematic.

CB1, CB2 (Peripheral B Control Lines)

The Peripheral B control lines act as interrupt inputs
or as handshake outputs. As with CA1 and CA2, each
line controls an interrupt flag with a corresponding in-
terrupt enable bit. In addition, these lines act as a
serial port under control of the Shift Register. These
lines represent one standard TTL load in the input
mode and will drive one standard TTL load in the
output mode. Unlike PBO-PB7, CB1 and CB2 cannot
drive Darlington transistor circuits.

+6V

INPUT/
OUTPUT ! P,
CONTROL <
1 >
i
PB0-PB7.
I~ cs1.cB2
'
|
ouTPUT 1
DATA |
INPUT DATA

Figure 8. Peripheral B Port Output Circuit

FUNCTIONAL DESCRIPTION
Port A and Port B Operation

Each 8-bit peripheral port has a Data Direction Reg-
ister (DDRA, DDRB) for specifying whether the peri-
pheral pins are to act as inputs or outputs. A 0 in a
bit of the Data Direction Register causes the corres-
ponding peripheral pin to act as an input. A 1 causes
the pin to act as an output.

When programmed as an output each peripheral pin
is also controlled by a corresponding bit in the Out-
put Register (ORA, ORB). A 1 in the Output Regis-
ter causes the output to go high, and a 0" causes the
output to go low. Data may be written into Output
Register bits corresponding to pins which are pro-

128 Interfacing the BBC Microcomputer

Synertek,

SY6522/SY6522A

grammed as inputs. In this case, however, the output
signal is unaffected.

Reading a peripheral port causes the contents of the
Input Register (IRA, IRB) to be transferred onto the
Data Bus. With input latching disabled, IRA will always
reflect the levels on the PA pins. With input latching
enabled and the selected active transition on CA1
having occurred, |RA will contain the data present
on the PA lines at the time of the transition. Once
IRA is read, however, it will appear transparent, re-
flecting the current state of the PA lines until the
next “latching” transition.

The IRB register operates similar to the |RA register.
However, for pins programmed as outputs there is a
difference. When reading IRA, the level on the pin
determines whether a0 or a 1 is sensed. When reading
IRB, however, the bit stored in the output register,

REG 1 — ORA/IRA

7|e|s]|a]|3|2]|1|0o

————— a2

OUTPUT REGISTER “A™ (ORA)
e Y,
OR
PAS4

INPUT REGISTER “A” (IRA]

PAS

Pin
Data Direction WRITE READ
Selection

(OUTPUT) | MPU writes Output Level | MPU reads level on PA pin
ng disabled) | (ORA|

DDRA = “17 (OUTPUT)
(Input latching enabled)

MPU reads IRA bit which 15
the level of the PA pin at the
time of the last CAY active
trangition.

DORA = “0" (INPUT) MPU writes into ORA, but [MPU reads level on PA pin.
(Input latching disabled] | no effect on pin level, until
DDRA changed

ORB, is the bit sensed. Thus, for outputs which have
large loading effects and which pull an output 1"
down or which pull an output “0" up, reading IRA
may result in reading a ’0” when a 1" was actually
programmed, and reading a “1"" when a 0"’ was pro-
grammed. Reading IRB, on the other hand, will read
the “1" or ‘0" level actually programmed, no matter
what the loading on the pin.

Figures 9,10, and 11 illustrate the formats of the port
registers, In addition, the input latching modes are
selected by the Auxiliary Control Register (Figure
16.)

Handshake Control of Data Transfers

The SY6522 allows positive control of data transfers
between the system processor and peripheral devices

REG 0 — ORB/IRB

|7554]2|o|

| - PBO
P81
PB2
TPUT REGISTER “B"
pga| OUTPUT REGISTER 8" (ORB)
oR
84| INPUT REGISTER “B" (ORB)
L a5
;— os
P87,
Pin
Data Direction WRITE READ
Selection

DDRB = “1" (OUTPUT) | MPU writes Output Level |MPU reads output register bit
(ORB) in ORB Pin level has no atfect.

DDRB = “0" (INPUT) | MPU writes into ORB, but | MPU reads imput level on PB
(Input latching disabled) | no effect on pin level, until | pin.

DDRB changed
DDRB = 0" (INPUT) MPU reads IRB bit, which is
(Input latching enabled) the level of the PB pin at the
time of the last CB1 active
transition.

Figure 9. Output Register B (ORB),
Input Register B (IRB)

DDRA = 0" (INPUT)
{Input iatching enabled)

MPU reads IRA bit which 15
the level of the PA pin at the
time of the last CA1 active
transition,

Figure 10. Output Register A (ORA),
Input Register A (IRA)

REG 2 (DDRB) AND REG 3 (DDRA)

l7 6|slal3]2]1 jl
[—ssu"pAo
PBIPAT

PB2/PA2

PBIPA3| DATA DIRECTION REGISTER

8" OR “A” (DDRB/DDRA]

B ——— LTV

PBS/PAS

PBE/PAG

PBI/PAT
0" ASSOCIATED PB/PA PIN IS AN INPUT
(HIGH IMPEDANCE)

17 ASSOCIATED PB/PA PIN IS AN OUTPUT
WHOSE LEVEL IS DETERMINED BY
ORB/ORA REGISTER BIT

Figure 11. Data Direction Registers (DDRB, DDRA)

through the operation of ““handshake’’ lines. Port A
lines (CA1, CA2) handshake data on both a read and
a write operation while the Port B lines (CB1, CB2)
handshake on a write operation only.

Read Handshake

Positive control of data transfers from peripheral de-
vices into the system processor can be accomplished
very effectively using Read Handshaking. In this case,
the peripheral device must generate the equivalent of
a "“Data Ready "' signal to the processor signifying that
valid data is present on the peripheral port. This signal
normally interrupts the processor, which then reads
the data, causing generation of a ““Data Taken'’ signal.
The peripheral device responds by making new data
available. This process continues until the data trans-
fer is complete.

Appendix D: Data Sheets 129

Synertek. SY6522/SY6522A

e L i

DATA READY
AN ¥

©

RO ouTPUT

READ IRA OPERATION

DATA TAKEN

HANDSHAKE MODE
(CA2

DATA TAKEN

PULSE MODE
(CA2)

Figure 12. Read Handshake Timing (Port A, Only)

WRITE ORA ORB
OPERATION

| |
1

DATA READY
HANDSHAKE MODE

Vi i -

(CA2 CB2)
DATA READY

PULSE MODE
ICA2 cB2)

‘DATA TAKEN
(cA1. €811

Iz

TRG ouTPUT

1 [

Figure 13. Write Handshake Timing

In the SY6522, automatic “Read”’ Handshaking is
possible on the Peripheral A port only. The CA1 in-
terrupt input pin accepts the ‘‘Data Ready’’ signal
and CA2 generates the “Data Taken'' signal. The
“Data Ready" signal will set an internal flag which
may interrupt the processor or which may be polled
under program control. The “Data Taken’ signal can
either be a pulse or a level which is set low by the sys-
tem processor and is cleared by the “Data Ready"’
signal. These options are shown in Figure 12 which
illustrates the normal Read Handshaking sequence.

Write Handshake

The sequence of operations which allows handshaking
data from the system processor to a peripheral device

is very similar to that described for Read Handshaking.

However, for Write Handshaking, the SY6522 gener-
ates the ““Data Ready’’ signal and the peripheral de-
vice must respond with the "“Data Taken' signal. This
can be accomplished on both the PA port and the
PB port on the SY6522. CA2 or CB2 act as a ““Data
Ready’’ output in either the handshake mode or pulse
mode and CA1 or CB1 accept the “Data Taken'' sig-
nal from the peripheral device, setting the interrupt
flag and cleaning the ““Data Ready” output. This
sequence is shown in Figure 13.

Selection of operating modes for CA1, CA2, CB1,
and CB2 is accomplished by the Peripheral Control
Register (Figure 14).

Timer Operation

Interval Timer T1 consists of two 8-bit latches and a
16-bit counter. The latches are used to store data
which is to be loaded into the counter. After loading,
the counter decrements at 2 clock rate. Upon reach-
ing zero, an interrupt flag will be set, and TRQ will go
low if the interrupt is enabled. The timer will then
disable any further interrupts, or (when programmed
to) will automatically transfer the contents of the
latches into the counter and begin to decrement
again. In addition, the timer may be programmed to
invert the output signal on a peripheral pin each time
it “times-out”’. Each of these modes is discussed sep-
arately below.

The T1 counter is depicted in Figure 15 and the
latches in Figure 16.

REG 12 — PERIPHERAL CONTROL REGISTER

17 T

T
cazcontroL ——T L. CA1 INTERRUPT CONTROL

QOOEAE T

G100 INPUT NEGATIVE ACTIVE EDGE 1= POSITIVE ACTIVE EDGE
T RRUPT

11 |INPUTNEG AN S » | CAZCONTROL

0]1]0]INPUT POSITIVE ACTIVE EDGE 3]2[[oreRaTion

0[] 1| INDEPENDENT INTERRUPT 0]0]0 INPUT NEGATIVE ACTIVE EDGE

INPUT 203 £DG FoToT 1] INDEPENDENT INTERRUPT

1,00 HANDSHAKE OUTPUT INPUT NEG EDGH 3

[Fle]1 Pucse ouTeuT [0] 1[0 INPUT POSITIV

v[1]o]Cow ouTPuT) o[[

¥ HIGH OUTPUT

CB1INTERRUPT CONTROL

===

FEEE

0+ NEGATIVE ACTIVE EDGE
1= POSITIVE ACTIVE EDGE
*SEE NOTE ACCOMPANYING FIGURE 25

Figure 14. CA1, CA2,CB1, CB2 Control

Interfacing the BBC Microcomputer

SY6522/SY6522A

ating modes. The four possible modes are depicted
in Figure 17.

Two bits are provided in the Auxiliary Control Reg-
ister (bits 6 and 7) to allow selection of the T1 oper-

REG 4 — TIMER 1 LOW-ORDER COUNTER

COUNT
VALUE
32
64
-—

WRITE - 8 BITS LOADED INTO T1 LOW ORDER
LATCHES. LATCH CONTENTS ARE
TRANSFERRED INTO LOW-ORDER
COUNTER AT THE TIME THE HIGH
ORDER COUNTER IS LOADED (REG 5)

READ -~ 8 BITS FROM T1 LOW-ORDER COUNTER
TRANSFERRED TO MPU. IN ADDITION,
T1INTERRUPT FLAG IS RESET (BIT6
IN INTERRUPT FLAG REGISTER).

REG 5 — TIMER 1 HIGH-ORDER COUNTER

|7|8l5 l|] Z| | I
|—2sa

1024

2048 COUNT
VALUE

WRITE — 8 BITS LOADED INTO T1 HIGH-ORDER
HES. ALSO, AT THIS TIME BOTH

HlBN AND LOW-ORDER LATCHES
TRANSFERRED INTO T1COUNTER,
AND INITIATES COUNTDOWN. T1
INTERRUPT FLAG ALSO IS RESET

READ — B BITS FROM T1 HIGH-ORDER COUNTER
TRANSFERRED TO MPU.

Figure 15. T1 Counter Registers

REG 6 — TIMER 1 LOW-ORDER LATCHES

1|6 54 3|2| |0|

L,
2
4
8 COUNT
16 | VALUE
2
6
128]

WRITE - 8 BITS LOADED INTO T1 LOW-ORDER
LATCHES. THIS OPERATION IS NO
DIFFERENT THAT A WRITE INTO
REG 4.

READ - 8 BITS FROM T1 LOW-ORDER LATCHES
TRANSFERRED TO MPU. UNLIKE REG 4
OPERATION, THIS DOES NOT CAUSE
RESET OF T1 INTERRUPT FLAG.

REG 7 — TIMER 1 HIGH-ORDER LATCHES

l7|5l5l4|1|2 |D
|——256

512

1024

2048 | count
4096 VALUE

e ———ers) WD

e —— Y304

32768

WRITE - 8 BITS LOADED INTO T1 HIGH. ORDER
LATCHES UNLIKE REG 4 OPERATIO!
NO LATCH TO-COUNTER TRANS‘EKS
TAKE PLACE

READ ~ 8BITS FROM T1 HIGH-ORDER LATCHES
TRANSFERNED TO MPU.

Figure 16. T1 Latch Registers

REG 11 — AUXILIARY CONTROL REGISTER

|765132 uI

T
T1 TIMER coumm-————i_j

OPERATION P87
[TIMED INTERRUPT
EACH TIME T115
LOADED DISABLED
0[] CONTINUOUS
INTERRUPTS

[0 TIMED INTERRUPT | ONE SHOT

EACH TIME T11S | QUTPUT
LOADED
1|1/ CONTINUOUS SQUARE
INTERRUPTS WAVE
OUTPUT

T2 TIMER CONTROL

LATCH ENABLE

il e

OPERATION
TIMED INTERRUPT
COUNT DOWN WITH

PULSES ON PB6

SHIFT REGISTER CONTROL

2[OPERATION
DISABLED

SHIFT IN UNDER CONTROL OF 12

SHIFT IN UNDER CONTROL OF 02

|1 1] SHIFT IN UNDER CONTROL OF EXT CLK
00| SHIFT OUT FREE RUNNING AT T2 RATE

1[0 1] SHIFT OUT UNDER CONTROL OF T2
1
1

O SHIFT OUT UNDER CONTROL OF 02 |
1|SHIFT OUT UNDER CONTROL OF EXT CLK

Figure 17. Auxiliary Control Register

Note: The processor does not write directly into the low order counter (T1C-L). Instead, this half of the counter is loaded auto-
matically from the low order latch when the processor writes into the high order counter. In fact, it may not be necessary to
write to the low order counter in some applications since the timing operation is triggered by writing to the high order counter.

Appendix D: Data Sheets 131

Syerel

SY6522/SY6522A

w_ ML e rureroro

WRITE TICH
OPERATION

TRG oUTPUT

P87 QUTPUT
(T1,ONLY)

T1 COUNT

T2 COUNT NN | N2

| o | reee | rere | Frro | FRec |

e N + 1.5 CYCLES

Figure 18. Timer 1 and Timer 2 One-Shot Mode Timing

Timer 1 One-Shot Mode

The interval timer one-shot mode allows generation
of a single interrupt for each Timer load operation.
In addition, Timer 1 can be programmed to produce
a single negative pulse on PB7.

To generate a single interrupt ACR bits 6 and 7 must
be O then either TIL-L or TIC-L must be written with
the low-order count value. (A write to TIC-L is effec-
tively a Write to TIL-L). Next the high-order count
value is written to TIC-H, (the value is simultan-
eously written into TIL-H), and TIL-L is transferred
to TIC-L. Countdown begins on the ¢ following the
write TIC-H and decrements at the ¢ rate. T1 inter-
rupt occurs when the counters reach 0. Generation
of a negative pulse on PB7 is done in the same manner
except ACR bit 7 must be a one. PB7 will go low
after a Write TIC-H and go high again when the
counters reach 0.

The T1 interrupt flag is reset by either writing TIC-H
(starting a new count) or by reading TIC-L.

Timing for the one-shot mode is illustrated in
Figure 18.

Timer 1 Free-Run Mode

The most important advantage associated with the
latches in T1 is the ability to produce a continuous
series of evenly spaced interrupts and the ability to
produce a square wave on PB7 whose frequency is
not affected by variations in the processor interrupt
response time. This is accomplished in the “free-
running’’ mode.

In the free-running mode, the interrupt flag is set and
the signal on PB7 is inverted each time the counter
reaches zero. However, instead of continuing to decre-
ment from zero after a time-out, the timer automati-
cally transfers the contents of the latch into the
counter (16 bits) and continues to decrement from
there. It is not necessary to rewrite the timer to en-
able setting the interrupt flag on the next time-out.
The interrupt flag can be cleared by reading TIC-L,
by writing directly into the flag as described later,
or if a new count value is desired by a write to TIC-H.

All interval timers in the SY8522 are “re-triggerable”.
Rewriting the counter will always re-initialize the
time-out period. In fact, the time-out can be prevent-
ed completely if the processor continues to rewrite
the timer before it reaches zero. Timer 1 will operate
in this manner if the processor writes into the high
order counter (T1C-H). However, by loading the
latches only, the processor can access the timer dur-
ing each down-counting operation without affecting
the time-out in process. Instead, the data loaded into
the latches will determine the length of the next time-
out period. This capability is particularly valuable in
the free-running mode with the output enabled. In
this mode, the signal on PB7 is inverted and the in-
terrupt flag is set with each time-out. By responding
to the interrupts with new data for the latches, the
processor can determine the period of the next half
cycle during each half cycle of the output signal on
PB7. In this manner, very complex waveforms can be
generated. Timing for the free-running mode is shown
in Figure 19.

132 Interfacing the BBC Microcomputer

SY6522/SY6522A

WRITE TICH \ ‘ ’
OPERATION

ouTPUT

|
H

PB7 OUTPUT

.

|—-— N+ 15CYCLES ot

N +2CYCLES

Note: A precaution to take in the use of PB7 as the timer output concerns the Data Direction Register contents for PB7. Both
DDRB bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer output. If either is a 0, then PB7 functions as a normal
output pin, controlled by ORB bit 7.

Figure 19. Timer 1 Free-Run Mode Timing

Timer 2 Operation

Timer 2 operates as an interval timer (in the “one-
slot’” mode only), or as a counter for counting nega-
tive pulses on the PB6 peripheral pin. A single con-
trol bit is provided in the Auxiliary Control Register
to select between these two modes. This timer is com-
prised of a “‘write-only’’ low-order latch (T2L-L),a
“read-only’’ low-order counter and a read/write high
order counter. The counter registers act as a 16-bit
counter which decrements at ®2 rate. Figure 20 illus-
trates the T2 Counter Registers.

Timer 2 One-Shot Mode

As an interval timer, T2 operates in the “‘one-shot”
mode similar to Timer 1. In this mode, T2 provides a
single interrupt for each “write T2C-H" operation.
After timing out, (reading 0) the counters “roll-over”
to all 1's (FFFF4g) and continue decrementing, al-
lowing the user to read them and determine how long
T2 interrupt has been set. However, setting of the
interrupt flag will be disabled after initial time-out
so that it will not be set by the counter continuing to
decrement through zero. The processor must rewrite
T2C-H to enable setting of the interrupt flag. The
interrupt flag is cleared by reading T2C-L or by
writing T2C-H. Timing for this operation is shown in
Figure 18.

REG 8 — TIMER 2 LOW-ORDER COUNTER

7|slsfa]3]2|1|0

8 COUNT
VALUE

0

2

64

128

WRITE - 8BITS LOADED INTO T2 LOW-ORDER
LATCHES

READ - 8 BITS FROM T2 LOW-ORDER COUNTER
TRANSFERRED TO MPU. T2 INTERRUPT
FLAG IS RESET

REG 9 — TIMER 2 HIGH-ORDER COUNTER

7 els]n :Iz 1|0
|_Lm
s12

1024

2048 COUNT
VALUE

WRITE - 8BITS LOADED INTO T2 HIGH.ORDER
COUNTER. ALSO, LOW-ORDER LATCHES
TRANSFERRED TO LOW-ORDE
COUNTER. IN ADDITION, T2 INTERRUPT
FLAG IS RESET

READ ~ 8 BITS FROM T2 HIGH-ORDER COUNTER
TRANSFERRED TO MPU

Figure 20. T2 Counter Registers

Appendix D: Data Sheets 133

Synertek.

SY6522/SY6522A

Timer 2 Pulse Counting Mode

In the pulse counting mode, T2 serves primarily to
count a predetermined number of negative-going
pulses on PB6. This is accomplished by first loading
a number into T2. Writing into T2C-H clears the in-
terrupt flagand allows the counter to decrement each
time a pulse is applied to PB6. The interrupt flag will
be set when T2 reaches zero. At this time the counter
will continue to decrement with each pulse on PB6.
However, it is necessary to rewrite T2C-H to allow
the interrupt flag to set on subsequent down-counting
operations. Timing for this mode is shown in Figure
21. The pulse must be low on the leading edge of 2.

Shift Register Operation

The Shift Register (SR) performs serial data transfers
into and out of the CB2 pin under control of an in-
ternal modulo-8 counter. Shift pulses can be applied
to the CB1 pin from an external source or, with the
proper mode selection, shift pulses generated inter-
nally will appear on the CB1 pin for controlling ex-
ternal devices.

The control bits which select the various shift register
operating modes are located in the Auxiliary Control
Register. Figure 22 illustrates the configuration of the
SR data bits and the SR control bits of the ACR.

Figures 23 and 24 illustrate the operation of the vari-
ous shift register modes.

Interrupt Operation

Controlling interrupts within the SY6522 involves
three principal operations. These are flagging the in-
terrupts, enabling interrupts and signaling to the pro-
cessor that an active interrupt exists within the chip.
Interrupt flags are set by interrupting conditions
which exist within the chip or on inputs to the chip.
These flags normally remain set until the interrupt
has been serviced. To determine the source of an in-
terrupt, the microprocessor must examine these flags
in order from highest to lowest priority. This is ac-
complished by reading the flag register into the pro-
cessor accumulator, shifting this register either right
or left and then using conditional branch instructions
to detect an active interrupt.

Associated with each interrupt flag is an interrupt
enable bit. This can be set or cleared by the proces-
sor to enable interrupting the processor from the cor-
responding interrupt flag. If an interrupt flag is set to
a logic 1 by an interrupting condition, and the corres-
ponding interrupt enable bit is set to a 1, the Inter-
rupt Request Output (TRQ) will go low. TRQ is an
“open-collector’” output which can be “‘wire-or'ed”
with other devices in the system to interrupt the
processor.

In the SY6522, all the interrupt flags are contained
in one register. In addition, bit 7 of this register will
be read as a logic 1 when an interrupt exists within
the chip. This allows very convenient polling of sev-
eral devices within a system to locate the source of
an interrupt.

WRITE T2CH
OPERATION

PB6 INPUT u

IRG OUTPUT

N | N“

Figure 21. Timer 2 Pulse Counting Mode

REG 10 — SHIFT REGISTER

|765432|D
=

SHIFT
REGISTER
BITS

NOTES

1 WHEN SHIFTING QUT BIT 7 IS THE FIRST BIT
OUT AND SIMULTANEOUSLY IS ROTATED BACK
INTOBIT O,

2. WHEN SHIFTING IN. BITS INITIALLY ENTER
BIT 0 AND ARE SHIFTED TOWARDS BIT 7

Figure 22. SR and ACR Control Bits

REG 11 — AUXILIARY CONTROL REGISTER

L SHIFT REGISTER

MODE CONTROL

OPERATION

DISABLED

SHIFT IN UNDER CONTROL OF T2

SHIFT IN UNDER CONTROL OF /'y

SHIFT IN UNDER CONTROL OF EXT CLK
SHIFT OUT FREE RUNNING AT T2 RATE
SHIFT OUT UNDER CONTROL OF T2
SHIFT OUT UNDER CONTROL OF 3
SHIFT OUT UNDER CONTROL OF EXT CLK

=|=|=[=]lelelele]>

~|=lele|=]=le|e]w

~lo|=lo|=le]|=[e]~

134 Interfacing the BBC Microcomputer

Synertek; SY6522/SY6522A

SR Disabled (000)

The 000 mode is used to disable the Shift Register. In this mode the microprocessor can write or read the SR, but the
shifting operation is disabled and operation of CB1 and CB2 is controlled by the appropriate bits in the Peripheral
Control Register (PCR). In this mode the SR Interrupt Flag is disabled (held to a logic 0).

Shift in Under Control of T2 (001)

In the 001 mode the shifting rate is controlled by the low order 8 bits of T2. Shift pulses are generated on the CB1 pin
to control shifting in external devices. The time between transitions of this output clock is a function of the system
clock period and the contents of the low order T2 latch (N).

The shifting operation is triggered by writing or reading the shift register. Data is shifted first into the low order bit
of SR and is then shifted into the next higher order bit of the shift register on the negative-going edge of each clock
pulse. The input data should change before the positive-going edge of the CB1 clock pulse. This data is shifted into
the shift register during the ¢, clock cycle following the positive-going edge of the CB1 clock pulse. After 8 CB1
clock pulses, the shift register interrupt flag will be set and TRQ will go low.

WRITE OR READ n
SHIFT REG o L

N+2
+2CY
N+2 CYCLES Crciis

ok
gmourmr N B L 7L I

ExSIal////IInmmmimiii S i SEB i SEB.)| 7///////////////;“//

" -

Shift in Under Control of (010)

In mode 010 the shift rate is a direct function of the system clock frequency. CB1 becomes an output which
generates shift pulses for controlling external devices. Timer 2 operates as an independent interval timer and has no
effect on SR. The shifting operation is triggered by reading or writing the Shift Register. Data is shifted first into

bit 0 and is then shifted into the next higher order bit of the shift register on the trailing edge of each @5 clock pulse.
After 8 clock pulses, the shift register interrupt flag will be set, and the output clock pulses on CB1 will stop.

:
READ SR |
OPERATION

CB10UTPUT
SHIFT CLOCK

ona - LK X X3 X_e X_s X X7 X X7

"o |

Shift in Under Control of External CB1 Clock (011)

In mode 011 CB1 becomes an input. This allows an external device to load the shift register at its own pace. The
shift register counter will interrupt the processor each time 8 bits have been shifted in. However, the shift register
counter does not stop the shifting operation; it acts simply as a pulse counter. Reading or writing the Shift
Register resets the Interrupt flag and initializes the SR counter to count another 8 pulses.

Note that the data is shifted during the first system clock cycle following the positive-going edge of the CB1 shift
pulse. For this reason, data must be held stable during the first full cycle following CB1 going high.

SHIFT CLock I L0 10 1T 7/1:
oara " LZIITIR_ RIZZITK—> XK= XKZZZK— X [T = WL

|
L

3|
ol

Figure 23. Shift Register Input Modes

Appendix D: Data Sheets 135

Synertek. SY6522/SY6522A

Shift Out Free-Running at T2 Rate (100)

Mode 100 is very similar to mode 101 in which the shifting rate is set by T2. However, in mode 100 the SR Counter
does not stop the shifting operation. Since the Shift Register bit 7 (SR7) is recirculated back into bit 0, the 8 bits
loaded into the shift register will be clocked onto CR2 repetitively. In this mode the shift register counter is disabled,
and IRQ is never set.

WRITE SR
OPERATION

N'?[‘,YCLES?‘ ——t—4- N+2 CYCLES
cB1ouTPUT 1 X 3 4 |B| |9|
SHIFT CLOCK
I G S S/ S G

€B2 OUTPUT
DATA

Shift Out Under Control of T2 (101)

In mode 101 the shift rate is controlled by T2 (as in the previous mode). However, with each read or write of the shift
register the SR Counter is reset and 8 bits are shifted onto CB2. At the same time, 8 shift pulses are generated on CB1
to control shifting in external devices. After the 8 shift pulses, the shifting is disabled, the SR Interrupt Flag is set and
CB2 remains at the last data level.

"

2
cLock
: | = \
WRITE SR | | ‘
OPERATION "

|
N+2CYCLES —fo >te- >+ N+2CYCLES 1
|

T L 1 1. 1.5
22 M X X XS
TRG ;

Shift Out Under Control of ¢ (110)
In mode 110, the shift rate is controlled by the ¢, system clock.

g
cLock
R o T o e e A e A
OPERATION Il ! |

1

| |
CB10UTPUT 1 4 7 8
carouteur ———Lf—lm

e M X XX/ X X

L]

Shift Out Under Control of External CB1 Clock (111)

In mode 111 shifting is controlled by pulses applied to the CB1 pin by an external device. The SR counter sets the SR
Interrupt flag each time it counts 8 pulses but it does not disable the shifting function. Each time the microprocessor
writes or reads the shift register, the SR Interrupt flag is reset and the SR counter is initialized to bagin counting the
next 8 shift pulses on pin CB1. After 8 shift pulses, the interrupt flag is set. The microprocessor can then load the
shift register with the next byte of data.

Srmanon | 1
Fivt W | I | | I | ! L1l
s I ! A 2 X [

RQ

4]

Figure 24, Shift Register Output Modes

136 Interfacing the BBC Microcomputer

Syerek

SY6522/SY6522A

The Interrupt Flag Register (IFR) and Interrupt En-
able Register (IER) are depicted in Figures 25 and
26, respectively.

The |IFR may be read directly by the processor. In ad-
dition, individual flag bits may be cleared by writing
a 1" into the appropriate bit of the IFR. When the
proper chip select and register signals are applied to
the chip, the contents of this register are placed on
the data bus. Bit 7 indicates the status of the IRQ out-
put. This bit corresponds to the logic function: IRQ =
IFR6 x IER6+IFR5 x IER5+IFR4 x |IER4 + IFR3 x
IER3 + IFR2x IER2 + IFR1 x IER1 + IFRO x IERO.
Note: X = logic AND, + = Logic OR.

The IFR bit 7 is not a flag. Therefore, this bit is not
directly cleared by writing a logic 1 into it. It can
only be cleared by clearing all the flags in the register
or by disabling all the active interrupts as discussed
in the next section.

REG 13 — INTERRUPT FLAG REGISTER

SET BY CLEARED BY

CA2 ACTIVE EDGE READ OR WRITE
1 REG 1 (ORA)*
CA1 ACTIVE EDGE READ OR WRITE
REG 1 (ORA]
COMPLETE 8 SHIFTS | READ OR WRITE
SHIFT REG

CB2 ACTIVE EDGE
1 ACTI

TIME-OUT OF T2

READ OR WRITE ORB*
| READ OR WRITE ORB_|

[READT2LOWOR |

WRITE T2 HIGH
TIME-OUT OF TV READ 71 LOW OR

WRITE T1 HIGH
ANY ENABLED CLEAR ALL
INTERRUPT INTERRUPTS

* IF THE CA2/CB2 CONTROL IN THE PCR IS SELECTED AS
“INDEPENDENT” INTERRUPT INPUT, THEN READING OR
WRITING THE OUTPUT REGISTER ORA/ORB WILL NOT
CLEAR THE FLAG BIT. INSTEAD, THE BIT MUST BE
CLEARED BY WRITING INTO THE IFR, AS DESCRIBED
PREVIOUSLY

Figure 25. Interrupt Flag Register (IFR)

For each interrupt flag in !FR, there is a corres-
ponding bit in the Interrupt Enable Register. The
system processor can set or clear selected bits in
this register to facilitate controlling individual inter-
rupts without affecting others. This is accomplished

by writing to address 1110 (IER address). If bit 7 of
the data placed on the system data bus during this
write operation is a 0, each 1 in bits 6 through 0
clears the corresponding bit in the Interrupt Enable
Register. For each zero in bits 6 through 0, the cor-
responding bit is unaffected.

Setting selected bits in the Interrupt Enable Register
is accomplished by writing to the same address with
bit 7 in the data word set to a logic 1. In this case,
each 1 in bits 6 through 0 will set the corresponding
bit. For each zero, the corresponding bit will be un-
affected. This individual control of the setting and
clearing operations allows very convenient control of
the interrupts during system operation.

In addition to setting and clearing IER bits, the pro-
cessor can read the contents of this register by placing
the proper address on the register select and chip
select inputs with the R/W line high. Bit 7 will be
read as a logic 1.

REG 14 — INTERRUPT ENABLE REGISTER
7|e|s|a|3]|2|1]0
LCAz
CcA1

SHIFT REG
cB2 0= INTERRUPT DISABLED

cB1 1= INTERRUPT ENABLED

TIMER 2

TIMER 1

SET/CLEAR

NOTES:

1.IFBIT 7 1S A 0", THEN EACH “1” IN BITS 0 - 6 DISABLES THE
CORRESPONDING INTERRUPT.

2. IFBIT71SA "1, THEN EACH "1 IN BITS 0 - 6 ENABLES THE
CORRESPONDING INTERRUPT.

3.IF A READ OF THIS REGISTER IS DONE, BIT 7 WILL BE “1" AND
ALL OTHER BITSWILL REFLECT THEIR ENABLE/DISABLE STATE

Figure 26. Interrupt Enable Register (IER)

Synertek,

Appendix D: Data Sheets

137

SY6522/SY6522A

Pin Configuration

0[] car
39l caz
38[] RS0
17[0 Rs1
36| RSz
35[] RS3
1a[] RES
33[] oo
2o
n[J o2
30[] 03
29[D4
28] os
27[] o8
267 07
257 12
24[7 cs1
2] cs?
22[7] RW
217 1ro

Package Availability

40 Pin Plastic
40 Pin Ceramic

Ordering Information

Order Package Frequency

Number Type Option
SYP 6522 Plastic 1 MH;
SYP 6522A Plastic 2 MH2
SYC 6522 Ceramic 1 MHz
SYC 6522A Ceramic 2 MH2

138

Interfacing the BBC Microcomputer

NEC

NEC Microcomputers, Inc. 4 PD7002

DESCRIPTION

FEATURES

PIN CONFIGURATION

12-BIT BINARY A/D CONVERTER

The uPD7002 is a high performance, low power, monolithic CMOS A/D converter
designed for microprocessor applications. The analog input voltage is applied to one
of the four analog inputs. By loading the input register with the multiplexer channel
and the desired resolution (8 or 10 bits) the integrating A/D conversion sequence is
started. At the end of conversion EOC signal goes low and if connected to the inter-
rupt line of microprocessor it will cause an interrupt. At this point the digital data can
be read in two bytes from the output registers. The uPD7002 also features a status
register that can be read at any time.

* Single Chip CMOS LSI

Resolution: 8 or 10 Bits

4 Channel Analog Multiplexer

Auto-Zeroscale and Auto-Fullscale Corrections without any
External Components

High Input Impedance: 1000M¢2

Readout of Internal Status Register Through Data Bus
Single +5V Power Supply

Interfaces to Most 8-Bit Microprocessors

Conversion Speed: 5 ms

Power Consumption: 20 mW

Available in a 28 Pin Plastic Package

e o o o o o o

xo 1 287 Eoc PIN NAMES
X1 C 2 27 D Aq Xo X1 External Clock Input
vss O 3 2671 Ag Vss TTL Ground
¢ de 25{7 RD C Integrating Capacitor
GD [5 2a[] WR GD Guard
Ci E 6 23 : cS VREF Reference Voltage Input
GD [7 uPD 22[] Do GND Analog Ground
vper [] 8 7002 217 by CH3 Analog Channel 3
GND [9 207 o, CH2 Analog Channel 2
cH3 [0 191 b3 CH1 Analog Channel 1
CH2 [: 1 18] D4 CHO Analog Channel 0
cH1 [h2 173 os VDD TTL Voltage (+5V)
CHO 513 16[1 Dg Dp-D7 Data Bus
Voo 14 15[D7 CS Chip Select
WR, RD Control Bus
AQ.Aq Address Bus
EOC End of Conversion Interrupt

WPD7002

Appendix D: Data Sheets

139

£ ege BLOCK DIAGRAM
" M
o 1 2 3
INEN
1 DSECTION vob
0,0 MPX DECODE ANALOG
! > AND 12/8 91T MULTIPLEXER
0 O—+— REGISTER :
Dy 1 HIGHBYTE l
—O VaEr
04 O—4—1 THAEE Pt —
STATE
10— susren pro
07 O—4— N——— -
0y O=—vt—vv A/D ANALOG
STATUS SECTION 1 INTEGRATING
0y O—t+— CAPACITOR
ANALOG
CONTROL CONVERSION GND
MODE DATA DATA
REGISTER REGISTER
1 1]
cs O—+—1
WA O—t—r1 1218
40 0——
12817 DATA
A0 O—1+— SEQUENCE
CONTROL
M 0—1— SECTION AD DIGITAL
SECTION
£0C O—dt—1
L O vss
-
EIQ—"—i
Ta=25:2°C.Vpp = +6 : 025V, VREF = +2.50V. tek = 1 MHz DC CHARACTERISTICS
LIMITS TEST
v NIT
PARAMETER SYMBOL T VP wax] Y CONDITIONS
Resolution 12 Bits VoD =5V,
VREF =25+ 0.26V
Non Linearity 005 | 008 | %FSR | Vpp = 5V,
VREF =25+ 0.26V
Fullscale Error %FSR | Vpp - 5V.
VREF =25 : 025V
Zeroscale Error 005 | 008 | %FSR | Vpp = 5V,
VREF =25 : 0.25V
Fuliscale Temperature Coeff c.ent 10 PPMIC] Vpp = 6V
Zeroscale Temperature Coetficient 10 PPM/C| Vpp = 5V
Analog Input Voltage Range Via 0 VREF | V
Analog Input Resistance RiA 1000 M Via = Vgsto Vpp
Total Unadjusted Error 1 TUE 1 005 | 008 | %FSR | VREF = 22510275V,
Vpp = 5V
Total Unadjusted Error 2 TUE.2 005| 008 | %FSR | VREF - 25V,
Vpp = 4.75 10 525V
Clock Input Current Ix| 5 50 BA
Clock Input High Level VXIH Vpp-14 v
Ciock Input Low Level VxiL Vss+14| V
High Level Input Voltage ViH 22 v T,=-20Cto+70°C
Low Level Input Voltage ViL * 08 |V Ty = -20°Cto +70°C
High Level Output Voltage VoM 35 v o= -16mA
Ty = ~20°C 1o +70°C
Low Level Output Voitage VoL 04 v g = +16mA
Ta = -20°C to +70°C
Digital Input Leakage Current Iy 1 10 uA V| =VgstoVpp
High-Z Output Leakage Current 1Leak 1 10 HA Vp = Vgs to Vpp
Power Dissipation Pd 15 25 mwW fek < 1 MHz

140

ABSOLUTE MAXIMUM
RATINGS*

AC CHARACTERISTICS

TIMING WAVEFORMS

Interfacing the BBC Microcomputer

1 PD7002

Operating Temperature -20°C to +70°C
Storage Temperaturec..00iuuieiinn.. -65°C to +125°C
AL IDpUt VOIREOE . vy s somni s 5 9oammg o % s § 5 Bosiss & % -0.3to Vpp +0.3 Volts
POWEISUPPIP & 5 & iheitin 45w s 5 3 S S BB M ¥ 5 A d B8 Gkl 5 6 5 -0.3to+7 Volts
Power Dissipation . . .
ANAIOGGND VOIRGE ;i & s v o o wieis ¥ 5 buwis b o bl o 5 5 08 & 5 5 Vgs £ 0.3 Volts
COMMENT: Stress above those listed under “Absolute Maximum Ratings’’ may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at these or
any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability

"Ta=25°C
Ta=25":2°C; Vpp = +6 + 0.25V; VREF = 2.5V: fck = 1 MHz: CNT = 0.033 uF

PARAMETER SYMBOL LIMITS UNIT TEST
MIN TYP MAX CONDITIONS
Conversion Speed (12 bit) ICONV 8.5 10 |° 15 | ms fck = 1 MHz
Conversion Speed (8 bit) tCONV 2.4 4 5 | ms fck = 1 MHz
Clock Frequency Range fok 0.1 1 3 MHz
Integrating Capacitor Value CinT® 0029 uF VREF =250V,
fek =1 MHz
Address Setup T<_me tAW 50 ns
CS,Ag, A1, to WR
Address Setup Time tAR 50 ns
TS, Ag, Ay, to RD
Address Hold Time WR to WA 50 ns
CS, Ag. A
Address Hold Time RD to RA 50 ns
CS,Ag, Aj
Low Level WR Pulse Width tww 400 ns
Low Level RD Pulse Width RR 400 ns
Data Setup Time Input tpw 300 ns
Data to WR
Data Hold Time WR to) 50 ns
Input Data
Output Delay Time RD to tRD 300 ns 1TTL + 100 pF
Output Data
Delay Tﬂe to High Z tDF 150 ns
Output RD to Floating
Output
b ClNT(uFNMlnl=0,029/1CK(MHzl
cs
Ao. A1
o taw} ; {twa
ow: W
D7-Dg ==
Y X
Ao. A1
1RR - 11RA
RD N
- ‘AR R IDF —ei

D7-Dg

WPD7002

Appendix D: Data Sheets

_coulnm TEBMINALS INTERNAL DATA INPUT-OUTPUT
CS | RD| WR | Ay | Ag MODE FUNCTION TERMINALS
x x X X Not selected
High impedance
L H H X x Not selected -
L H L L L | Write mode | Data latch Input status, Dy, Dg = MPX address
A/D start D3 = 8 bit/12 bit conversion
designation ® D3 = Flag Input
L H L L H Not selected =
High impedance
L H L H L Not selected =
L H L H H Test mode Test status Input status 6
L L H L L | Readmode | Internal status | D7 = EOC, Dg = BUSY, D = MSB,
D4 = 2nd MSB, D3 = 8/12,
D = Flag Output Dy = MPX,
Dg = MPX
L L H L H Read mode | High data byte | D7-Dg = MSB — 8th bit
L L H H Read mode | Low data byte
07-Dg = 9th — 12th bit, D3-Dg = L
L L H H H Read mode Low data byte

Notes: (1) Designation of number of conversion bits: 8 bit = L; 12 bit = H

@ Test Mode

Used for inspecting the device. The data input-output terminals assume an input
state and are connected to the A/D counter. Therefore, the A/D conversion data

read out after this is meaningless.

(PLASTIC)
ITEM |_MILLIMETERS | INCHES
A 3BOMAX. | 1496 MAX.
8 249 0.098
c 254 0.10
o 05201 0,020,004
€ 3302 B
F 15 0059
G 254MIN._ | 0.10MIN
H 0SMIN._ | 002MIN
1 522MAX_ | 0205 MAX
J 572MAX. | 0.225MAX
K 15.24 06
i 132 052
y Ay
M 025° 09 | 001" 0%

141

CONTROL TERMINAL
FUNCTIONS

PACKAGE OUTLINE
uPD7002C

142 Interfacing the BBC Microcomputer

TYPES SN5415S240,SN541LSZ41,SN54L5244,SN545240,SN545241,
SN741S240,SN74LS241,SN741S244,SK745240,SN745241

OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

Typical Typical Typical Propagation Typicsl Typical Power
loL loH Delay Times Ensbie/ Dissipation
(Sink (Source Disable (Enabled)
Current) Current] Inverting Noninverting Times Ioverting Noninverting
SN54LS’ 12mA -12mA 10.5 ns 12ns 18 ns 130 mW 135 mwW
SN74LS" 24mA —15mA 105ns 12 ns 18 ns 130 mw 135 mW
SN545’ 48mA —-12mA 45n; 6ns 9 450 mw 538 mW
SN74S’ 64 mA —15mA ASns 6ns 9ns 450 mw 538 mw
SN5415240, SN545240 . ..J
e 3-State Outputs Drive Bus Lines SN74LS240, SN745240 .. .JOR N
or Buffer Memory Address Registers (TOP VIEW)
Voo 26 W1 oza vz 24 v 2A2 TV 2a

e P-N-P Inputs Reduce D-C Loading

e Hysteresis at Inputs Improves
Noise Margins

description

o /
These octal buffers and line drivers are designed ////I/ /
specifically to improve both the performance and C{> < —&-
density cf threestate memory address drivers, clock
drivers, and bus-oriented receivers and transmitters. =
1
[

The designer has a choice of selected combinations of
inverting and noninverting outputs, symmetrical G
(active-low output control) inputs, and comple-
mentary G and G inputs. These devices feature high SN54LS241, SN54S241 ... J
fan-out, improved fan-in, and 400-mV noise-margin. SN"LSZH(,TSS;I:IS'ZEA':,. +-JORN
The SN74LS’' and SN74S’ can be used to drive

£ . Ve 2 WYY A4 Y2 A3 1Y) 2A2 tYe 2AY
terminated lines down to 133 ohms.

schematics of inputs and outputs
'LS240, ‘LS241, ‘LS244
EQUIVALENT OF TYPICAL OF ALL o
EACH INPUT OUTPUTS / / /
v {>Z ddddddd
Sy :

INPUT

e NS yHrHsHHsHeH HeHesw

e SNS4LS244 .. .J
SN74LS244 .. . JORN

(TOP VIEW)
UTPUT
Vec 26 i am 2 2a3 WD 2a2 ave a1
"S240 'S241 Wl In L4 - Ly o ” n

EQUIVALENT OF
EACH INPUT

GND

)
NP7
G

INPUT ——
‘LS240,'LS241,°LS244;
R =50 2 NOM
sz;o,-zs;t‘::"w ey HsHsH HeHsHw»
W WMy Tve W T3 wa rv: A B

TYPES SN54LS240,SN5415241,SN54LS244,

SN74L5240,SN74LS241,SN7415244
BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

Appendix D: Data Sheets

143

recommended operating conditions

SNB4LS" BN74LS’
FARAMETER MIN NOM MAX | MIN NOM MAX UNIY
Supply voltage, Ve (see Note 1) 4.6 6 6.6 | 4.76 5 6.26 \
wh-level oulput current, Igy -12 —-16 | mA
Low-level output current, 1o 12 24 mA
[Operating lres-air tsmpeiatuie, T4 -66 126 0 ['C

NOTE 1

Voltage velues are with respect 1o network ground terminel,

electrical characteristics over recommended operating free-air tsmperature range (unless otherwise noted)

SNG4LS" SN74LS’
PARAMETE T ITIONS !
YESTCOND)TY MIN_TYPI Max |MIN_Tvei wmax | M7
Vin High-level input voltage 2 2 Vv
ViL Low-level input vollage 07 08 \
Vik Tnput clamp voltage Vee = MIN, Iy =-18 mA -15 -1.6 Vv
Hysteresis (V7 - Vy_T Vce = MIN 0.2 04 0.2 0.4 v
Vce = MIN, -
ce + VH=2V. 24 34 24 34
VoW High-level output volLage Vi = ViL max, lop= ~3mA Vv
Vce = MIN, VIH=2V, 2 2
Vi =05V, gy = MAX
Ve = MIN, | - 12mA 4 4
VoL Low-evel output valtage ViH=2V, L o 2 v
Vi = Vi max | 'OL =24 mA 06
Off-state output current,
‘0ZH HiGh-AaVEI VOITage apDIEE Vee = MAX, Vo=27V 20 20
| Offstate output current, :"‘ =2V, bA
OZL \ouw.luvel voltage appiied 1L = ViLmex [Vo~ 04V -20 -20
Input current at maximum
" D Ve *MAX, V=7V 0.1 0.1 | mA
™ High-level input current, any input Ve = MAX, V=27V 20 20 KA
e Low-ievel input current Ve = MAX, Vi =04V -0.2 -0.2 | mA
108 Short-circuit output current® Ve = MAX —40 -225 | —40 -226 | mA
Outputs high All 17 27 17 20
oowontow | (CCTMAX Fis2a0 26 44 TIYN
icc Supply current puis e Outouts open | L5241, Ls244 27 46 2746
All outputs | UIPUIOPN 5230 29 50 2050
dnabied ‘LS241, 'LS244 32 b4 32 54
"For conaitions shown as MIN or MAX, use the sppropriate value specified under recommended operating conditions.
FAll typical values are at Vo =BV, T4 = 26°C.
®Not more than one Quiput shouid be shoried st 8 Lime, and durstion of the shortcircult should not exceed ong second,
switching characteristics, VCC =6V, TA = 256°C
‘LS240 ‘LE241, ‘LS244
PARAMETER TEST CONDITIONS MIN_ TYP MAX [MIN TYP MAX UNIT
Propegation delay ume,
'PLH low-to-high-level output 8 “ 12 18] e
Propagation delay tume, C =45pF, R_=6670,
PHL high-10-low-level output 12 18 12 18 ™
Pz Output enable time 10 low level 20 30 20 30 n
PZH Output enable time 10 high level 16 23 16 23 ns
%3 Output disable tme from low level CL = 50F, RL=66710, 16 25 15 25 n
Qutpul disable time from high level 10 18 10 18 ns

PHZ

144 Interfacing the BBC Microcomputer

TYPES SN54S240, SN545241, SN74S240, SN74S241
BUFFERS/LINE DRIVERS/LINE RECEIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

SN548° SN74S’
PARAMETER MIN_ NOM MAX !NQNOM MAX UNIT
Supply voltage, Voo (see Note 1) 4.6 1] 56 |4.76 5 625 v
High-level output current, IgH -12 —-15 | mA
Low-level output current, Igp 48 b4 | mA
Operating lree-air temperature, TA (see Nots 3) -66 128 0 0] °C

NOTES: 1. Voltege values ere with respect 1o network ground terminal.
3. An SNDB4S241J operating st free-air tempersture sbove 118°C requires @ heat sink that p des » thermal from cees to
freealr, Ryc A, ©f Nt mare than 40" C/W.

electrical characteristics over recommended operating free-air temperature rangs (uniess otherwise noted)

‘8240 ‘8241
1
PARAMETER TEST CONDITIONS MIN TYPI MAX | MIN TYP! WMAX UNIY
Vin High-ievel input voi tage 2 2 A
Vi Low-level input voitage 08 08 4
Vi Input clamp voltage Ve =MIN,)= —18 mA -1.2 -1.2 v
Hysteresis (Vyg ~ V) Vee = MIN 0.2 04 0.2 0.4 v
” vee = MIN, ViH=2V, 27 27
SN74S Yt aia] % :
SN64S" and Ve = MIN, ViH=2V, 24 34 24 34 v
SN74s’ ViL=08V, IgH=-3mA
High-level output vol
VOoH igh-level output voltage SN54S’ and Vee = MIN, ViH=2V, % 2
SN74s’ VIL* 06V, IQH = MAX
VECMIN, - Vig=2V. | 54 34 24 34

Vi =08V, Igq=-3ImA
Vec=MIN, vig=2v, 4
ViL =06V, Igy = MAX
Vec*MIN, viy=2v,

-leval
VoL Low-leval output voltege VIL=08V, oL = MAX 0.66 0.66 v
Off-state output current,
'0ZH p, ;h-tevel voltage spplisd VoC=MAX, | Vo =24V B0 50
VIH=2V, uA
Off-state output current, - N
lozuL low-eval voltage spplied Vi =08V Vo=06Vv =20 =50
Input current at maximum
I iiativdliogs Veec=MAX, V=68V 1 1| mA
Im™ High-level input current, any input Ve ® MAX, V=27V 650 60 | wA
Any A —400 —400 | uA
he Low-level input current }m—— Ve =MAX, V| =06V =) —2 | maA
10s Short-circuit output current® Vege = MAX —50 -226 | -50 —225 | mA
SN54S* 80 123 95 147
OurputsBigh SN74s' 80136 96 160
Vee = MAX, [SNb4s’ 10C 146 120 170
| I
CC Supply-current Outputslow | o "0 s open [SNTAS' 100 160 20 i80] ™A
Butputs SN54S” 100145 120170
disabled SN74s’ 100 150 120 180
TFor conditions shown ss MIN or MAX, use the appropriste value specit under operating

tan typcel valuss we st Ve =BV, Ty = 26°C.
*Not more then 0ne outpuT sNouId be BN Orwed et 8 time, end durstion of the shori<ircult should not excesd one second.

switching characteristics, VCC =5V, Ta = 26°C

‘$240 ‘$241
PARAMETER TEST CONDITIONS MINTYP MAX | MIN TVP MAX uNIY
Propagstion delay yme,
L PLH low-10-high-level output 45 ¥ . 9| e
Propegstion delay lime, CL = 60 pF, AR =900,
'PHL high-10-low-level output 45 7 8 9 i
Pz Output enasble time 10 low level 10 16 10 186 ns
P2 ~ Dutput ensble tima to high level 8.5 10 8 12 ns
P2 Output disabie time from low level Cp = 6pF, RL=900, 10 16 10 16 ne

PHZ Qutput disable tima from high level 6 9 [] [) ng

Appendix D: Data Sheets 145

TYPES SN54LS240,SN541S241,

SN541S244 SN545240,SN545241,SN74L5240,
SN74LS241,SN741LS244,SN74S240,SN745241

OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

DRIVER | _| RECEIVER
. LONG-LINE -
" Lsevs2a [REPEATER REPEATER REPEATER T WBTLEAY, 543
1/8°LS241, 5241 178 °LS241, 'S241 1/8'Ls241, 524
et {>—w 5 o lvralidart {>—4= N P rakhd [n\w Ly
o 'i‘ :i: ,I" e
T WNRUTT T ou

‘LS241, 'S241 USED AS REPEATER/LEVEL RESTORER

CONTROL OR MICROPROGRAM ROM/PROM
R
MEMORY ADORESS REGISTER

SYSTEM AND/OR MEMORY ADORESS BUS

'LS241,'S240 USED AS SYSTEM AND/OR MEMORY BUS DRIVER—4-8IT
ORGANIZATION CAN BE APPLIED TO HANDLE BINARY OR BCD

[Msze— 71
| 324
P ; I |
| | 114 °LS241, "S241 PARTY LINE 14 15261, 8241
| I DRIVER MULTIPLEINPUT/OUTPUT BUS V8 LS287.
o] — r—<- " - -1
FROM INPUT A ! INPUT B
il 51' , R S
| sus TO OTHER _| |_TooOTHER
BUFFERS ! 1" BUFFERs
| ouTPUT /gll ouTPUT
Al | [
L | |
|
|

| —— N—— ——
BUS RECEIVERS BUS
' CONTROL INPUT QUTPUT CONTROL
H 8 A L L

H
| | HoL 8 8 ML
- LoL A 8 H W
sl | 10 €] A A L H
INPUT | OATA oL NONE NONE L ow
PORTS Ao
[D I
' ' PARTY-LINE BUS SYSTEM
l ' WITH MULTIPLE INPUTS, OUTPUTS, AND RECEIVERS
| | External resistance between any input of the ‘S240 or 'S241
| and ground or Ve must not exceed 40 k.
IG INPUT PORT
|] CONTROL

INDEPENDENT 4.B1T BUS DRIVERS/RECEIVERS
IN A SINGLE PACKAGE

146

Interfacing the BBC Microcomputer

TYPES SN54L5245, SN74L5245

OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

BULLETIN NO. DL-§ 7612471, OCTOBER 1976

e Bidirectional Bus Transceiver in a SNS4LS245 .. . J PACKAGE
vl : " SN741S245 ...) OR N PACKAGE
High-Density 20-Pin Package A
e 3-State Outputs Drive Bus Lines Directly
e P-N-P Inputs Reduce D-C Loading on L e
Bus Lmes v OC 1 82 81 Ba 88 86 87 88
20 |vof [w]| (o] [w]| [1s "
o Hysteresis at Bus Inputs Improve Noise] | [
Margins e ['j i

e Typical Propagation Delay Times,
Port-to-Port ... 12 ns

4l
<

"
. . . 1
e Typical Enable/Disable Times ... 17 ns 1 T T \ O W
\ /o Z"S o ! o
oL 10H ! |
TYPE (SINK (SOURCE 5k TJ
CURRENT] CURRENT) == " =1
SN54L5245 12mA -12mA +— ST 9 Y Y YYS
SN74L5245 24 mA ~15mA
positive logic: see function table
description

These octal bus transcevers are designed for asynchronous two-way communication between data buses. The control
function mplementation minimizes external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the
logic level at the direction control (DIR) input. The enable input (G) can be used to disable the device so that the buses
are effectively isolated.

The SN5415245 is characterized for operation over the full military temperature range of —55°C to 125°C. The
SN7415245 is characterized for operation from 0°C to 70°C.

schematics of inputs and outputs FUNCTION TABLE

EQUIVALENT OF EACH INPUT | TYPICAL OF ALL OUTPUTS EaBLE DIRECTION
= ——— Ve P CONTROL OPERATION
Veg —e o 50 12 NOM | DIR
I 9k NOMm o V_“‘ & L B data to A bus
INPUT = P v *‘(12 H A dara to B bus
g f ““outeut H x Isolation
. 7
e
& : i '\, H = nigh level, L ~ low level, X = irrelevant
;&4—-1 _ﬁ‘
S SR
-

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V¢ (see Note 1) 7V
Input voltage 3 5 s o w N
Operating free-air temperature range: SN54 LS245 v —55 Cto 125°C

SN74L5245 0°C w0 70°C

Storage temperature range

NOTE 1 Voitage values sre a1t respect 10 network ground terminal

. —65°C to 150°C

Appendix D: Data Sheets 147

TYPES SN54L5245, SN74L5245
OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

SN
PARAMETER 5415245 SN74LS245 UNIT
MIN NOM MAX |MIN NOM MAX
Supply voltage. Voo 45 5 55475 5 525| v
High-level output current, IoH -12 -15 | mA
Low-level output current, Igg 12 24 | mA
Operating free-air ‘emperature, T -55 125 0 70| °C
slectrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
SN 4
PARAMETER TEST CONDITIONS' BAL 3308 Sh7at 5290 UNIT
MIN TYPT MAX [MIN TYP! MAX
ViH Highdevel input voltage 2 2 v
ViL Low-level input voltage 0.7 0.8 v
Vik Input clamp voltage Ve = MIN, I} = —18mA -15 -15 \4
Hysteresis (V14 — VT_JA or Binput] Ve = MIN 0.2 0.4 0.2 0.4 v
Vee = MIN, lon=-3mAl 24 34 24 34
VoH High-level output voltage ViH=2V, v
Vi = Vi max | 'OH = MAX 2 2
Vce= MIN, loL = 12mA 0.4 0.4
VoL Lowdevel output voltage ViH=2V, v
ViL = Vi max | 'OL =24 mA 0.5
i Off-state oumut current, v 27V 2 20
OZH . ichdavel voltage spplied Vee = MAX, Qe
= HA
, Off-state output current, Gat2v VRSV 20 2
OZL |omtevel voltage applied o= B
input current at maximum
I Ve =MAX, V=7V 0.1 0.1 | mA
INPUt vOitage
H High-evel input current Ve = MAX, ViH=27V 20 20 | uA
e Low-level input current Veg = MAX, ViL=04V -0.2 -02 | mA
105 Shortcircuit oumut currentl Ve = MAX —40 —-226 |40 -225 | mA
Tortal, ouuts high 25 46 25 46
Ice Supply current | Total, outpuss low | Vo = MAX, Outputs apen 58 100 58 100 | mA
Outputs at Hi-Z 654 105 64 105
TFor conditions shown as MIN or MAX, use e appropriate val.e specified under recommended operating conditions.
TANl typical vaiues sre at Vec =5V, T = 25°C.
9 Not more than one utput should be shorted at a time, and duration of the short<ircuit should not exceed one second.
switching characteristics, Voc =5V, Tp = 26°C
PARAMETER TEST CONDITIONS MIN TYP MAX | UNIT
P ime,
_— ropagation delay time. 12 18 o
low-to-high-devel output
P i ime,
PHL ropagation delay time, CL = 45 pF, R =667 02 12 18 i

high-todow-level output

tpzL Output enable time to low level
pzZH Output enabie time to high level
Lz Outputdisable time from low level

20 30| ns

15 25| ns

CL =5pF, RL =667 102
PHZ Ouwmut disable time from hign level L k 10 18| ns

Appendix E:Summary of Connections

SK1 UHF out

SK2 Video out

SK3 RGB

1. Red

2. Green
3. Blue

. Data in
. Data out
.0V

SK4 RS423

O w3

SKS5 Cassette port . Output
.0V
. Input

. Output

B WO —

.5V

.0V

.0V

Channel 3
Analogue ground
.0V

. Channel 1
Analogue ground

SK6 Analogue in
8 1

© 0 0 00 0O 0O
© 0 00 00 O

15 9

00 O Ut AW -

148

w

[=))

Sync.

.0V
.5V

. Clear to send, CTS
. Ready to send, RTS

. N.C.
. Motor control
. Motor control

. Light pen strobe, LPSTB
10.
11.
12.
13.
14.
15.

101 (PB1)

VREF
Channel 2
100 (PBO)

VREF
Channel 0

Appendix E: Summary of Connections

SK7

Econet

PL8 Disc interface

2 34

©0O0O0OOOOCOOOOCOOOOOO

0000000000000 00O0OO

1 33

PL9 Printer connector

2 26

©O0o0OO0OO0OOOCOOOCOOO

0000000000000

1 25

PL10 User port
2 20

0Oo0oo0o0o00000O0

©Oo0o000O0OCOO0QCOO

1 19

. Data
.0V
. Clock

.0V
.+5V,1.25A
. NG,

Side select
Index
N.C.
Index

. Drive select 0
. Drive select 1
« NG,

Load head

. Direction

MmO

20.
22,
24.
26.
28.
30.
32.
34.

. Data
. Clock

. SV,75puA
. +12V,1.25A
Y

Seek step
Write data
Write enable
Track O
Write protect
Read data
Side select
N.C.

All odd numbered pins are connected to 0 V

9.
1L
13.

~N D W

STB

DATA 0
DATA 1
DATA 2
DATA 3
DATA 4
DATA 5

15.
17.
19.
21.
23,
25,
26.

DATA 6
DATA 7
CAl
N.C.
N.C.
N.C.
N.C.

149

All even numbered pins (except 26) are connected

to0V

1. +5V
2. CB1
3.45V
4.
6
8

CB2

. PBO

PB1

10.
12.
14.
16.
18.
20.

PB2
PB3
PB4
PBS
PB6
PB7

All odd numbered pins (except 1 and 3) are connected

to0V

150 Interfacing the BBC Microcomputer

PL11 1 MHz expansion bus 2. R/NW (R/W) 23. D5
4. IMHZE 24. D6
2 A 6. NNMI (NMI) 25. D7
0O0O0OO0OOO0OOOOOOOOOOOO 8‘ NIRQ(fm) 26.0V
SIS 0. NPORC{PRED} 0. A0
12. NPGFD (JIM) 28. Al
14. NRST (RST) 29. A2
16. ANALOGUEIN 30. A3
18. DO 31. A4
19. D1 32. AS
20. D2 33. A6
21. D3 34. A7
22. D4
All odd numbered pins 1 to 17 are connected to 0 V
PL12 The tube 2. R/NW (R/W) 22. DS
4. 2MHZE 24. D6
2 40 6. NIRQ (IRQ) 26. D7
0000000000000 000000O 8 NTUBE(ﬁE) 28 AO
:000000000000000000309 10‘ NRST(K‘S"—I‘) 30. Al
12. DO 32. A2
14. D1 34. A3
16. D2 36. A4
18. D3 38. AS
20. D4 40. A6

Odd numbered pins 1 to 29 are connected to 0 V;
31 to 39 are connected to +5 V

Index

Accumulator 2
Address bus 1
ADVAL command 14,48
Advanced Data Link Control, ADLC
15
Advanced low-power Schottky TTL
104
ANALOG IN 17
Analogue-digital converter, ADC
12,43
conversion rate 46
conversion time 46
resolution 46
successive approximation
method 98
Analogue inputs 12, 43-56
ANSI/IEEE Std 488-1975 65
Assembler 2,5,7,107
Asynchronous Communications
Interface Adapter, ACIA 10
Auxiliary Control Register, of VIA
39

Background task 35
Bang-bang control 76
Baud rate 10
Block numbers 62
BRK instruction 36
Bus
address 1
control 1
data 1
1 MHz 3,16,57-75
BYTEV 5§

Capacitor, charge/discharge display
99

Cassette port 8,11

Clean page selection signals 59

Clear Interrupt Disable, CLI 38

Clock stretching circuitry 59

Closed loop control 80

Compiler 107

Condition flags 109
Contact bounce 29

Control bus 1

Conversion rate, of ADC 46
Conversion time, of ADC 46
CRT controller 8

Darlington transistor 22
Data bus 1
Data Direction Register, DDR 21, 69
Debouncing, of switch 29
Digital-analogue converter, DAC 12,
51
Digitizer
radius arm 91
two sliders 91
DIM statement 6

Econet 14

End of conversion signal 46
Ethernet 14

Events 37

Expansion box 17,57
Extended page number 17,61
External paging register 17

Fanout 104

Field, of instruction 2

Fire buttons 14,49

Floppy Disc Controller, FDC 16
FOR statement 7

Foreground task 35

Frame 10

FRED 3,57

FX calls §

Games paddles 14

General Purpose Interface Bus,
GP-IB 64

Gray code 31

151

152

Handshake transfers 67
Highway 1

Housekeeping operations 35, 108
HP-IB 64

IEC-625-1 bus standard 65
IEEE-488 bus 64
Image, of page register 64
Index registers 2
Initialisation of PIA 73
Input port 3
Instruction 2
Instruction set 2
Instruction types 109
Insulation Displacement Connectors,
IDC 15
Interpreter 108
Interrupt 32
vectors 36
Interrupt Enable Register, of VIA 39
Interrupt Flag Register, of VIA 38
Interrupt Request, IRQ 17,35,37

JIM 3,57,61
Joystick controller 14

Keyboard scanning 27

Last in, first out memory, LIFO 35
Light emitting diode, LED 22
Light pen strobe, LPSTB 14
Light-dependent resistor 53
Listener, on IEEE-488 bus 65
Local area network, LAN 14
Look-up table 31

Low-power Schottky TTL 104

Machine code programming 107-10
Mark-to-space ratio 76
Masking, of interrupts 38
Memory

LIFO 35

RAM 1

ROM 2

stack 35
Memory-mapped I[/O 3,57,111
Mode 7 7
Multiplexing, of displays 25, 83
Multiplying digital-analogue converter,

MDAC 52

Non-maskable Interrupt, NMI 17,
35

Index

107
108

Object code
Op-code byte
Op-code set 2
Open-collector TTL 105
Operational amplifier 94
OPT command 7
Optical shaft encoder 31
Opto-switch 53
OSBYTE calls 5,49,57
Oscilloscope 95

Output port 3

Output Register, OR 21
Oven controller 81

Page 16

Page register 17,61

Pedestrian control of traffic lights
39

Peripheral Control Register, of VIA
39

Peripheral Interface Adapter, PIA
69

Pixel 7

Pop, from stack 35,110

Port 3

Potentiometer 12

Printer interface 16

Program counter, PC 2

Programmable unijunction transistor
53

Pull, from stack 35,110

Pull-up resistor 28

Pulse width modulation 81

Push, to stack 35,110

Put-and-take ADC 98

RAM, random access memory 1
Read only memory 2
Read/write memory 2
Reed relay 25
Relaxation oscillator 53
Relay 25

solid-state, SSR 26
Reset button 14
Reset vector 35
Resolution, of ADC 46
Return from Interrupt, RTI 35
Return from Subroutine, RTS 7, 38
Reversing scan method 32
Ring counter 84
ROM, read only memory 2
RS232-C standard 8
RS423 standard 8

Index 153

Sample and hold circuit 46
Sampling theorem 50
Sawtooth waveform 44
Schottky diode 104
Second processor 17
Selection register, of ADC 46
Set Interrupt Disable, SEI 38
Seven-segment display 22
SHEILA 3
Signal conditioning 94
Simple harmonic motion 89
Sinewave, generation of 86
Solid-state relay, SSR 26
Source code 107
Stack 35
Stack pointer, SP 2,35,110
Staircase generator 87
Staircase waveform 43
Start bit 10
Status 19
Status register

of ADC 46

of processor 2
Stepper motor 78
Stop bit 10
Successive approximation method 98

Talker, on IEEE-488 bus 65

Task 35

Teletext mode 7

Threestate TTL 105

Totem-pole circuit 102

Traffic light sequence 26, 39

Transistor-transistor logic, TTL
102-6

Tube 17

UART 10
Unijunction transistor, UJT 53
Unit load, of TTL 104

Universal Asynchronous Receiver/
Transmitter, UART 10
User port 16, 19-42

V24 interface 8
Valid memory address, VMA 59
Vector 35
break, BRKV 36
byte, BYTEV §
event, EVNTV 37
IRQ1V 37
IRQ2V 37
VELA 74
Versatile Interface Adapter, VIA 14,
19,118-37
Auxiliary Control Register,
ACR 39
Interrupt Enable Register, IER
39
Interrupt Flag Register, IFR
38

Peripheral Control Register,
PCR 39
Video signals 7
Voltage to frequency converter, VFC

Watchdog timer 67
Wiper, of potentiometer 12
Wired-OR 17,57, 66, 105

Zero page 17

*FX calls 5
IMHz bus 3,16, 57-75
MPD7002 converter 12, 138-41

This book will appeal to both the keen hobbyist and the student or teacher of science

or technical subjects. It aims to show how the versatile BBC Microcomputer canbe

used in a variety of applications that generally involve the monitoring and control of
equipment.

Although the authors do not assume a high level of technical and programming
knowledge, it is not intended for the beginner.

Chapter 1 introduces the basic ideas of data transfers within the computer and to
input and output ports. Then follows a description of the methods of including
machine code programs within a BASIC program. The input/output facilities of the
BBC machine are explained and described.

The second chapter is devoted to the 8-bit parallel user port. Having described the

versatile interface adapter (VIA), which provides the main facilities of the port, the

authors discuss inputting from keys and switches, and outputting to indicator lights
and relays. Interrupt handling is also discussed.

Chapter 3 deals with analogue signals. Three methods of analogue-to-digital
conversion are introduced and explained. These cover the internal converter and
external converters.

The 1 MHz bus is the subject of chapter 4, along with the addressing and timing
methods necessary for its successful use. The control of data transfers across the
1MHz bus is explained and illustrated in terms of driving a peripheral interface
adapter (PIA) chip.

The final chapter presents a range of applications: methods of generating pulse
trains, counting pulses and modulating the pulse width are described, with
applications in bangbang control, stepper motor control and multiplexed LED
displays. These ideas are extended to the generation of staircase and other complex
waveforms. Input signal conditioning is explained, and some applications described
include digitisers, a simple oscilloscope and the display of capacitor charge and
discharge curves.

The book concludes with several useful appendixes, including data sheets for the
interfacing and buffer chips used in the microcomputer.

ISBN 0-333-37157-7

