Pan

COMPUTER

COMPUTER LIBRARY

| FAGHTON
INVALUABLE
UTILITIES

for the

ELECTRON

‘The complete
programmer’s toolkit -
essential programming

aids for your micro’

Pan/Personal Computer News
Computer Library

Jeff Aughton

Invaluable
Utilities for
the Electron

Pan Books London and Sydney

First published 1984 by Pan Books Ltd,

Cavaye Place, London SW10 9PG

in association with Personal Computer News
987654321

(c) Geoff Aughton 1984

ISBN 0 330 28675 7

Photoset by Parker Typesetting Service, Leicester
Printed and bound in Great Britain by

Richard Clay (The Chaucer Press) Ltd, Bungay, Suffolk

This book is sold subject to the condition that it shall not,

by way of trade or otherwise, be lent, re-sold,

hired out or otherwise circulated without the publisher's prior consent
in any form of binding or cover other than that

in which it is published and without a similar condition including

this condition being imposed on the subsequent purchaser.

DIGITALLY REMASTERED ON ACORN RISC OS COMPUTERS, SEPTEMBER 2011.

To PMK

Contents

Introduction

Section 1 : Basic utilities

Utility 1: Scrolling memory editor
Utility 2: Single key memory display
Utility 3: Printer memory dump
Utility 4: Disassembler
Utility 5: Block move
Utility 6: String search
Section 2: Basic utilities
Utility 7: Highlight end-of-line spaces
Utility 8: Remove end-of-line spaces
Utility 9: Pack
Utility 10: Bad
Utility 11: No-colon usTter
Utility 12: Find
Utility 13: Replace
Utility 14: MODE 6 PROC Writer
Utility 15: New TRACEBASIC single step
Utility 16: Symbol table
Section 3: Sound and graphics
Utility 18: Music processor
Utility 19: Character definer
Utility 20: Screen save
Utility 21: MODE 2 character creator
Utility 22: MODE 2 character plotter
Utility 23: Graphics aid
Utility 24: Large character generator
Section 4: Miscellaneous utilities
Utility 25: Display user keys
Utility 26: Printer screen dump
Utility 27: String sort
Utility 28: Universal input routine
Utility 29: Date conversion PrROcedure
Utility 30: Two *FXx138 routines
Utility 31: Multiple precision arithmetic

Introduction

This book contains some thirty utility programs for the Electron
microcomputer. As well as the standard utilities familiar to most micro
users, we include some original programs that you will not have seen
before.

Everyone, from the youngest beginner to the most hardened
veteran, will occasionally need to use a utility program and this book
is intended to be a sourcebook — a kind of programmer's ‘toolkit' of
such facilities. Thus, whatever your level of experience, you should
find something of interest in the following pages.

Before getting down to the main business of the book, let's begin by
explaining precisely what we meant by the term 'utility'.

A utility is something useful — in computer terms it refers to any
piece of code (not necessarily a program) that may help you asyou go
about the business of using your computer. The key word here is
'using’, which implies your active involvement in a creative process (as
opposed to the passive role of a participant in a video game). You may
find games interesting and enjoyable but you should ask yourself who
IS running the show. . . !

Utilities are primarily thought of as programming aids, but the truth
of the matter is that they have a part to play in any activity which
involves computers. Cataloguing files, listing programs, designing
envelopes — these are all areas in which utilities can help because they
all use the computer in some way. In their most basic forms, the first
two processes are served by the commands *CAT and LIST respectively;
a later program will attend to the third.

You should already be familiar with the concept of utilities, because
the Electron has a number of built-in facilities — DELETE and RENUMBER
are two good examples. These are not BASIC statements, they are part
of the machine, compliments of the manufacturer, to be used as and
when you see fit. If you do not write programs, then RENUMBER is N0
use to you. However, if you do, this utility (for that's what it is) will
help you tidy them up and, more usefully, open up gaps for the
insertion of additional lines.

DELETE illustrates the fact that utilities need not do anything esoteric.
It is a simple matter to delete lines from a BASIC program yourself but
this command allows you to remove a whole block of lines at one go,
saving you time and trouble.

Notice the distinction here: PRINT and DELETE are two very different
instructions. The first is an indispensable BAsic keyword (strictly

8 Introduction

speaking, hardly anything is indispensable, but that argument can get
very subtle and is ultimately pointless), while the second should be
regarded as a gift from Acorn. Actually, Electron owners have been
rather spoiled by such gifts, but there's always room for a few more —
everyone likes presents — and that's what this book is about.

How many more things like DELETE do we need? Well, the answer
really depends on what you want to do with your computer. Certainly,
as your programming skills develop you will want to spend less time
on chores (like typing in your own line numbers) and more time on
the creative side of designing your program. Even if your computing
activities are restricted to copying programs, then you will reach a
point where you think 'If only I could let the computer get on with this
while I. . . ' — what you need here is a utility, and you will have to
write it yourself unless one already exists. Quite a few of the routines
in this book came about in this way.

About this book

The programs in this book have been written with three aims:

I) To help you write your own programs more easily and to save you
time and effort while you are doing so. During the development of a
program, situations arise that are not catered for by built-in utilities
like TRACE and RENUMBER. A good example of this is the tenacious ‘Bad
program' error which, as you will know if you have suffered it, is quite
difficult to shake off. As a result, this book contains a utility to deal
with it.

Some utilities provides diagnostic information while others help you
to use existing BAsIC commands more efficiently (e.g. ENVELOPE), but
they all share the common aim of making your programming life
simpler. You will not find a utility to help you improve on your Space
Invaders top score!

i) To provide you with some pre-coded procedures ready to slot
iNnto your own programs.

Some routines are so versatile that they crop up time after time in
various forms, often in programs that would otherwise have very little
in common. As an example of this type of utility we have a string sort
routine that can be copied into any of your programs that needs to do
some sorting — quite a common requirement. The distinction between
these routines and those in (i) is very fine (especially in the case of
sorts — they are almost always regarded as utilities), but we thought
that we should raise the point before you did.

If you take the view that a utility is any program that saves you time
while you are using your computer, then these procedures definitely

qualify .

Introduction 9

iii) To illustrate some interesting programming ideas.

Because of the wide scope of the programs, a variety of
programming techniques have been employed to get the routines up
and running. Although this is not a teaching book, the programs have
been developed along the following lines: here's a problem, here's a
possible solution, now here's a program to implement that solution. In
this way the full background story to the program is given in addition
to the coding itself. Even if you do not type in any of the programs you
should find the listings interesting and the methods used will hopefully
stimulate a few ideas of your own.

Although we shall make the point more forcefully later in the text,
we would like to make it clear that these programs have been coded
to be as useful and as versatile as possible. Being utilities, the emphasis
had to be on practicality. This said, we also considered it essential that
you should understand them enough to be able to amend them to suit
your own purposes if they do not quite agree with ours. None of the
coding has been (deliberately) included for effect if it's there, then it's
probably because it's the best thing we could think of consistent with
the principles previously outlined.

Who needs utilities?

If you write programs, or even just amend them, then you do.
Obviously not everyone will want to use all the utilities contained in
this volume (you must be pretty prolific, or accident prone if you do),
but we hope that all programmers will find something to interest
them. Most of the routines are open to expansion in a number of ways
(some of these enhancements are suggested), and even if you can't
find the routine that precisely answers your particular need, there's a
good chance that there's something close to it that can be adapted
without too much trouble. We've tried to adopt the approach that ail
programs tend to get messed around with in some way and guidelines
for 'good messing' are included.

About utilities

In general, utilities are subject to most of the standard programming
principles, although it should be noted that in certain respects the
ground rules are somewhat different.

The single most important thing about any program is that it must
work (‘properly’ but that means different things to different people)
and this is certainly true of a utility. Nothing else really matters. If it
doesn't work (or worse still, if it works incorrectly), it's not a utility — it's

10 Introduction

a liability! The nature of utilities dictates that they are often the
sacrificial lambs for larger, more complicated programs which must be
protected at ail costs. If your utility has a fit and erases the host
program, it hardly matters how well it has been written or whether the
variable names are rigorously appropriate.

At this point the requirements for utilities and other programs
diverge (actually the distinction is rather arbitrary — the ‘principles of
good programming' are suitably vague, and most of the time amount
to basic common sense). A utility has to be easy to use. In its role as a
time-saver, it should take the minimum amount of time to run — taking
both human and computer time into account. Operational simplicity
IS very important, but satisfying this requirement can have an adverse
effect on a feature that is probably more important — the size of the
program. Many of these routines have to load into the computer
alongside other programs, or hide in out of the way places until they
are needed, and so they should be as short as possible.

This preoccupation with condensed code is definitely contrary to
accepted high-level language etiquette. All the standard battle-cries —
'use lots of REMS, 'spread your program out', long variable names only'
— are anathema to the utility programmer. For maximum versatility
(that's what utilities are about, remember), the program should be as
short as possible, and there are many ways of packing instructions into
a few lines.

Unfortunately, highly condensed programs are not suitable for
publication in a book, especially one that purports to explain how
each program works and how it may be modified. This has naturally
entailed a few compromises.

We're not big fans of REM statements and each program has about
one — right at the beginning. Likewise, very long variable names
(‘distance-between-two-points%') are not very popular and most of
ours are reasonably short, but hopefully easily understood once the
program is studied in conjunction with the 'variables' section.

None of the programs contain any operating instructions. No self-
respecting utility is going to waste space telling you how it works and
you will be expected to know how to run the program. This may not
appear 'user-friendly’, but in fact the friendliest thing a utility can do
for you is work efficiently, and this means omitting the instructions.
Where you have a number of choices, you may be given a prompt
showing the expected responses and full operating instructions are
provided with the description of each routine.

Similarly, another apparent omission is the lack of comprehensive
vetting facilities. Experienced programmers will smile to themselves at
this point and recall that in an average program total vetting of all
input data can generate ha[f as much code as the rest of the program.

Introduction 11

This is right out for utilities. Obviously we can't allow potentially
dangerous inputs as they may wreck the utility (or more seriously,
another program resident in the computer), so a certain amount of
vetting is necessary. However, it is simply not practical to try to trap
every invalid input and, if you are really determined to crash one of
these programs, then you can, but it is not likely to happen by
accident. You may consider it to be a standing entry in the 'Extensions'
section that comprehensive data vetting and error handling could be
added to the program.

Having just dismissed two of the most sacred principles of decent
programming, let's make the following observation: The programs in
this book are for you to use. As the owner/operator you are hardly
likely to deliberately wreck your own program, so most of the vetting
has been omitted on the grounds that it is only necessary to trap
simple errors. The same applies to instructions. After you have used
the program a couple of times you would probably resent page upon
page of flashing coloured instructions that ultimately only waste
valuable program space. The amount of memory saved by the
omission of these two items is both useful and necessary.

As we said, the programs presented here represent a compromise
and hopefully achieve a balance between the legible and the
pragmatic. When you type them in for yourself there are a number of
changes you can make to condense them even further. These
techniques are probably familiar to you and they include:

1) Omit spaces, except in PRINT statements (but watch it when you're
editing). Howevernoticehowdifficultitistoreadunspacedtext!

i) Leave out the REMS.

iii) In the assembler programs, there is some pretty comprehensive
annotation following the ;' signs. All of this can be omitted.

Iv) Pack several statements on to one line and separate them with :'s.
This is especially relevant to the assembler listings where each
instruction is on a line of its own. There is no need for this — it just
looks nice.

Well, now you should have grasped the central concept behind
utility programming — so long as the program works, it should be
condensed as much as possible. This method of coding will probably
cause the utility to run faster, too. Basically what you are aiming for is
a routine that works perfectly, occupies no memory and runs
instantaneously! Well, there's no harm in trying!

12 Introduction

Style

In many ways, the programming style which characterises these
utilities has been determined by the requirements outlined above.
Although these considerations place some restrictions on how the
programs should be written, there is always plenty of scope for
imposing one's own techniques and structures on the routines. We
have allowed ourselves the full vocabulary of Basic and have used
whatever command we believed to be appropriate to the task at
hand, regardless of theoretical considerations of parity. One thing you
won't be seeing is THEN following IF, it is a noise word, so we don't use
it — but there again, we never use LET, either!

Quite a number of routines are, of necessity, written in Assembly
language. The Electron positively invites you to do this and, even if
you have no experience of machine code, you should have no trouble
getting these routines running. While this book is in no respect
intended to be a machine code training manual, we hope that there is
enough information in the program descriptions for the machine code
novice to work his way through the Assembler routines. In some cases,
the equivalent Basic program is given to make you feel at home, and
by comparing the two you should be able to follow the Assembler
quite easily, assuming that you have some preliminary understanding
of the language. Obviously the Assembler routines do not follow the
same 'style’ as the BAsIC programs and neither are they documented in
exactly the same way, although the really important details (what the
program does and how you use it) are still there.

Most of the programs consist of a control section followed by a list
of procedures, then finally any function definitions and DATA
statements. We always use a single line (comprising line number, one
blank space, then <RETURN>) to separate the various sections. These
are never referred to and can be deleted if you wish.

As far as operation goes, there is very little that is common to all of
the programs — which is hardly surprising since they are so varied. For
example, some use the escAPEkey as a valid input while others will just
stop when you press it, so you will have to refer to the textual
instructions for operating details. In fact the only common link
between the programs, apart from the 'style’ mentioned previously, is
that where a key-press determines the program's progress, the ASCII
code of the pressed key is stored in variable F%— the Fthe stands for
facility’.

The format of the documentation

Following its title, each utility is described under these headings:

Introduction 13

Description:

This explains — in simple English — what the program does and why it
might be used. In this section, no reference is made to the actual
coding, only to what that coding achieves. For some programs,
particularly the non-standard utilities, this section proposes a fairly
detailed application of the routine.

Use

If a utility is not easy to use, then it is almost certainly a poorly
conceived utility. By definition, these programs should save time and
effort and if a result can be achieved more easily without the utility
then it will never be used. For reasons already mentioned, none of
these programs include instructions, and thus this section of the
documentation will be the source of all operating details.

It is a sad fact of a utility's life that it often has to work under the
most trying circumstances: in conjunction with other, more glamorous
programs; stored at strange low addresses; packed on to function keys
— it's no fun being a utility. This section suggests methods of operating
the utility that are as convenient for you and the routine (in that order)
as possible.

Most of the utilities in this book are obliged to work under unusual
conditions and you should study this section carefully before you even
attempt to load the routines.

How it works

This section describes, in very general terms, how the utility works. It
does not go into any great detail about what variables are used or how
a particular line works, but rather gives an overall picture of how the
sections of the program are fitted together. Subsequent sections fill in
the gaps of this brief description.

This method of describing programs — on a series of levels getting
progressively more specialised — is appropriate to the style of the
programs themselves, and the 'How it works' section explains the top
level of this process. In a sense it is at this level where all the hard
work comes, though it is precisely at this point where that becomes
least apparent. If you think that the 'clever stuff' (such asit is) is in a
few tricky lines of code at the end of the program, you have probably
been beguiled by the apparent simplicity of the first section of the
program. It is usually to these important early stages, where the flow of
the program is mapped out, that this section refers. The fine detail of
the program is described in the next two sections.

Procedures

14 Introduction

The preceding paragraph refers to a style of programming in which
structure plays an important part. The Procedures are the building
blocks that make up that structure. Most of the BASIC programs consist
of a control routine followed by a list of PrROCcedures in a sensible
order. The name of each pPrRocedure usually describes what it does,
and this section expands that description. Theoretically, it should still
be possible to state the purpose, if not the method of operation, of the
PROCedure in general terms without referring to variables, though this
is not a hard and fast rule.

Variables
Some variable names are retained throughout the length of a program;
these are the major variables whose roles are always described. In
addition, a program will contain a number of minor variables in
different parts of the routine which are used to represent (slightly)
different quantities. A good example of this would be the almost
universal use of 1, Jand K as counts in various FOR. . .NEXT loops — no
doubt a hangover from FORTRAN days. We are not keen on long
variable names, so most are quite short and their use may not always
be totally obvious — it is the purpose of this section to explain their
function.

It costs nothing, in terms of memory, to use the resident integer
variables A%-z% and when one is used in an unobvious way, its use will
always be explained.

Extensions
No program is ever finished — it is always possible to add bits here,
remove a few lines there, to produce a whole series of variations on a
single program. In this section we accept the fact that each program
could do more (or less, depending on the application) and suggest
some amendments that might be made. We have stopped at what
seems to be a suitable point to provide a utility that can be put to
good use right away. If you require a more specialised (or more
general) routine then there should be enough information to help you
write it, based on the utility that is already there. Also, it is in the spirit
of this book that you do some work for yourself. As a programmer —
why else would you be reading a book of utilities — you will be
challenged, or goaded, into amending the programs and in this section
we offer some advice on how to do so.

Some of these amendments are quite extensive (one may even be
impossible) and some are trivial, but all are worth thinking about and
you should benefit from so doing.

Introduction 15

Saving the programs

We now consider the storage of our utilities. These are, after all,
practical programs and it is important that they be located and loaded
as quickly as possible

Most professional or serious programmers will have a library of
utilities — this can be a tape, or a disc devoted solely to utility
programs and frequently-used procedures. You should start your own
library if you have not already done so — why not begin with some of
the routines in this book?

Utilities have been classified as either ‘programs' or ‘procedures' to
be merged with your own programs, and these are best kept separate
in your library. Also, your library will contain some of your most
important programs, so it is a good idea to make regular backup
copies. Throughout the book we assume that the code is held on
some storage medium and then loaded into the computer where it
remains undisturbed for aslong asit is required. Details on how to do
this are given with the individual routines.

Let us briefly consider the most likely means of storage.

Tape

The obvious drawback is that retrieval from a cassette tape is very
slow, although tape is cheap and readily available. Store the important
routines at the beginning of the tape and have several tapes with the
routines stored in different orders — one of them is bound to be near
the program you require.

Learn to use the utilities sensibly. If you load up the Envelope Editor
to design some envelopes for a game, do the lot at one go so that you
only need to load the routine once. This kind of thing is fairly obvious
and really comes down to good organisation on your part.

Disc
Without doubt, this is the place for utility programs. All disc owners
should have a disc containing nothing but utility programs and, if you
are fortunate enough to own a twin drive, this will probably be a
permanent fixture in one drive, certainly during the development of a
program. The Disc Filing System anticipates this and there is a
command (*LiB) for setting up one drive/directory as a library from
which programs can be *RUN. This is the optimum way of getting your
programs to run (provided that they are written in machine code), and
the library is where your utilities belong — it is designed for the job.
One small disadvantage of discs is that the DFS needs more space
for itself than the cassette system and it creates this space by
increasing the usual value of PAGE Provided your DFS does not set PAGE
beyond &1900 (this is most unlikely), you should have no problems

16 Introduction

with any of the programs in this book.

Notice, by the way, that the extra features available due to the disc
system necessitate the inclusion of a whole host of new instructions to
do the housekeeping. You don't need commands like *BuiLD and
*DUMP but they are useful time savers. In other words, they are
utilities.

ROM

The idea of storing utilities on a chip is not new and tool-kit Roms are
available for quite a few computers. These extend the powers of the
machine by providing a number of utilities — machine code monitors,
printer drivers and the like. You may take the view that these chips
only make up for what the manufacturer misses out, although that
would be very unfair as far as the Electron is concerned. Still, there is
always room for more features and the very best place to have them is
out of the way and yet on call on a wm chip. This is about as close as
you can get to the ideal utility described earlier — invisible, fast and
readily available. Whether you are a tape or disc fan, you will have to
admit that clearing a 'Bad program'’ by typing:

*BAD <RETURN>

IS just about the ultimate in convenience!

However, as far as this book is concerned, a ROM chip is not a
practical place to hold your utilities and we shall stick to the rather
more traditional storage mediums. Having had some experience with
utility Rotas (both writing and using), let's point out one problem with
even this seemingly idyllic situation. It is almost certain that whatever
you are used to using, the rRom will have slightly different features that
you would like to change. Tough. The whole point of ROMs is that you
cannot (easily) change their contents and you are pretty well stuck
with them. Row would not be a suitable medium for many of our
programs because they are so open-ended, and may be changed to
suit ,the requirements of the user.

The operating instructions supplied with each routine assume that
you have the program on either tape or disc, and any problems in this
respect will be explained.

NOTE

At the time of writing, the expansion possibilities of the Electron are
only just being realised. One of the first available add-ons allows the
computer to communicate with a printer and also includes two 'side-
ways' ROM sockets — something we have already mentioned. By the
time you read this there will probably be a number of utility chips on

Introduction 17

the market ready to fit into these sockets.

Unfortunately, no disc interface has yet appeared. This will be a
major development for the Electron and it is to be hoped that some
enterprising manufacturer will release an interface soon. We make
occasional references to discs throughout the book and any
information relating to them is based on the BBC disc system, with
which it will almost certainly be compatible. If this is case, then it will
be necessary to relocate some of the machine code routines which are
often assembled into Page 13 (&D00 — &DFF). A suitable place would be
Pages 9 and 10 (&900 — &AFF.) as these pages are (usually) as safe as
anywhere. However, if you use ENVELOPE numbers greater than 4, the
definitions overflow into Page 9 and will probably (you may be lucky)
corrupt anything in there.

With the cassette system this space is used for output and input by:

Page 9: *SPOOL, BPUT#
Pagel0: *EXEC, BGET#

and these commands are guaranteed to overwrite anything in those
Pages. Once you are aware of this, it should not be too difficult to
plan round the problem. If you store anything in, say, Page 9 you can
reasonably be expected to find it there later on when you need it. Be
warned: some of our utilities use BPUT# and BGET# — Or you might use
them, or *EXeC and *SPOOL, yourself — so try to anticipate this and use
the routine accordingly.

This is not a serious problem, but it should be mentioned here. In
most cases any code that is stored in this area is only needed for as
long as a particular routine is being used. Once the calling routine is
removed, the machine code may as well be too.

Finally, some routines require the use of a printer and, again, this is
not a standard Electron feature but will require the addition of a
printer interface. Generally speaking, a printer is just about the most
useful addition to a computer system and most serious programmers
will eventually want to take this option; hence the inclusion of our
printer utilities.

Section 1:
Basic utilities

In this section we look at some routines which all programmers should
have in their library of utilities. These routines form the basis for any
diagnostic or developmental work on a micro — for example, many of
the programs in this book were written following an initial
investigation with the memory display utility.

Because of their work-a-day nature, these programs offer few
gimmicks and have no facilities beyond their intended purpose.
Explanatory messages and error trapping have been kept to a
minimum so that the programs are as short (and therefore as versatile)
as possible. Consequently, if you want to get the most out of each
utility you should read the instructions relating to each routine very
carefully.

Each of the utilities in this chapter expects input, and delivers
output, in hexadecimal notation which comes rather more naturally to
computers than it does to humans. Mathematically speaking, this
means that numbers are represented in base 16 with the labels A to F
replacing the 'digits' 10 to 15. Hexadecimal (‘hex' for short) is now
universally used to represent addresses and data within computers,
and an understanding of hex is essential for the correct use of the
programs in this chapter (and for serious programming generally).

On the Electron, numbers prefixed by '&' are taken to be hex
whereas numbers prefixed '~' (tilde) will be converted to hex from
decimal for, say, printing purposes. Furthermore, facilities exist for
manipulating hex data, notably the *?' (query) and 'I' (pling) indirection
operators. Other nice features of interest to the keen programmer
include a variation on the DIM statement which allows you to
construct byte-sized tables, and a string indirection operator, $.

If you are not familiar with these concepts then you should refresh
your memory from the User Guide.

Utility 1:
Scrolling memory editor

Description

In many respects this, or something like it, is the single most important
utility a programmer can have and we give three different versions of
the utility, each having its own particular use.

The routines display, in hex, the contents of a chosen section of
memory, either stout or RAM, complete with the addresses, also in
hex. Such a display is often called a 'memory dump'. If the contents of
any location lie within the ASCII range 32-126, then the character
corresponding to that byte is also printed. This makes it easy to locate
items (e.g. programs) in store.

The first version of this routine is the deluxe model, which allows
forward and backwards scrolling and includes an edit facility. Using a
MODE 6 screen, each display line consists of an address (in red), the
contents of eight bytes of memory and, if appropriate, their character
representations.

As well as allowing you to inspect memory, the routine will let you
change it by entering bytes at the current cursor position. This is a
really useful facility which allows you a great deal of control over the
computer. However, you should be careful where you write data if
you are not familiar with the memory map of the machine. Obviously
you cannot write to ROM, but no damage will result if you attempt to
do so.

Use

Run the utility and enter the hex address from which the dump is to
start. Do not prefix the address with a ‘&' character — the program does
it for you. The following keys are effective:

L Move the display up (yes, up!!) by one line, thereby positioning
the cursor on the next line down. (The editing cursor is alway located
on the central line of the display). Holding this key down will give the
illusion of scanning down the memory one line at a time.

1 Move the display down by one line. This is precisely the opposite
effect from the one described above.

— Move the cursor right on to the next hex byte. This is used to get
you to the location you wish to edit. if you are only using the utility to
look at memory you will probably not use this, or:

— Move the cursor left to the previous hex byte. If, during this
operation (or the last one), the cursor shoots off the end of the line the

Utility 1 21

display will scroll and the cursor will be restored to the 'right' place —
I.e. where you expect it to go.

The cursor movement has been designed so that you cannot land
on the spaces between the hex bytes, however hard you try.
Consequently the editing cursor will always be in a sensible place to
start editing.

0-9, A-F Any of these keys insert the corresponding hex nibble (half
byte) at the cursor position and step the cursor on to the next location.

To exit the routine, press <ESCAPE>.

10 REM SCROLLING MEMORY EDITOR

20 MODE 6

30 *FX 4,1

40 *FX12,1

50 ON ERROR GOTO 730

60 X%=0:p0s=0:5S$="12345678"

70 INPUT " Start address (hex) "A$

80 addr%=EVAL("&"+A%$)-88

90 tlhc%=addr%

100 FOR 1%=1 TO 23

110 PROCIline(addr%):addr%=addr%+8

120 NEXT

130 vDU 28,0,24,39,1

140

150 REPEAT

160 VDU 31,X%+6,11

170 F%=INKEY(0)-48

180 IF FNhex PROCpatricia

190 IF F%=88 X%=(X%+21-pos) MOD 24:pos
=0:IF X%=21 PROCdown

200 IF F%=89 X%=(X%+27-pos) MOD 24:pos
=0:IF X%=0 PROCup

210 IF F%=90 PROCup

220 IF F%=91 PROCdown

230 UNTIL FALSE

240

250 DEFPROCpatricia

260 ptr%=X% DIV 3 + 88

270 VDU F%+48

280 IF F%>9 F%=F%-7

290 pos=(pos+1) MOD 2

300 IF pos F®=F%*16:mask%=15 ELSE mask
%=240

310 byte%=(tlhc%?ptr%e AND mask%)+F%

320 PRINT TAB(X% DIV 3 +30,11);FNbyte

330 tlhc%?ptr%=byte%

340 X%=X%+2-pos

22 Utility 1

350 IF X%>22 X%=pos:PROCup
360 ENDPROC

370

380 DEFPROCup

390 vDU 31,0,22,10

400 tlhc%=tlhc%+8

410 PROCIline(tlhc%+176)
420 ENDPROC

430

440 DEFPROCdown

450 vDU 30,11

460 tlhc%=tlhc%-8

470 PROCIine(tlhc%)

480 ENDPROC

490

500 DEFPROCIine(Z%)
510 Z%=Z2% AND &FFFF
520 vDU 23,1,0;0;0;0;32
530 @%=4:PRINT ~Z%;
540 @%=1:S$=""

550 FOR J%=0 TO 7

560 byte%=2%?J%

570 VDU 32,-48*(byte%<16):PRINT ~byte%

580 S$=S$+FNbyte

590 NEXT

600 PRINT S$

610 VDU 23,1,1;0;0;0;

620 *FX 15,1

630 ENDPROC

640

650 DEFFNhex

660 =(F%>=0 AND F%<10) OR (F%>16 AND F
%<23)

670

680 DEFFNbyte

690 A$=CHRS$byte%

700 IF (byte%<32 OR byte%>126) A$=""

710 =A%

720

730 *FX 4,0

740 *FX12,0

750 vDU 26,31,0,24,10,23,1,1,;0;0;0;

How it works
Having accepted your starting address, the program enters a loop,

Utility 1 23

waiting for you to press one of the relevant keys. The loop is endless,
and can only be left with ESCAPE.

To move the display up the screen, the cursor is moved to the
bottom line and then a ‘cursor down' command is sent, thus forcing
the display up by one line. Similarly, to scroll the display down, a
‘cursor home' followed by a 'cursor up' is used. This forces the display
down so that the new line can be slotted into place.

When bytes are edited, both hex and ASCII versions are updated
and finally (and most importantly), the byte is written back into
memory.

Procedures
PRocup and pProcdown cause the scrolling effects previously
described, in response to the cursor movement keys.

If a valid hex digit is entered PrRocCpatricia is called to deal with it. (if
Acorn can name parts of their computer after people, | can do the
same with my programs!) This prints out the hex, updates the ASCII
display and then stores the byte into memory.

The main procedure is PRocline; this is responsible for printing an
entire line consisting of address, eight hex bytes, and the
corresponding ASCII data to the screen. The parameter Z% which is
passed to the PrRocedure is the address of the first byte on the line.
PRoOCIline does not update any variables, it only prints out data.

Two functions are used to check the ranges of certain data. These
are FNhex which returns TRUE or FALSE, depending on whether a pressed
key is a valid hex item and FNbyte, which decides if byte% is in the
ASCII range (32-126).

Variables

In this particular program, most variables are 'local' to a small section
of code and so the same names can be used in different areas without
causing any problems.

When a key is pressed, P is set equal to its ASCII code, less 48.
Subsequent tests on that key are tests on F.

Perhaps the most difficult part of this program is controlling the
cursor movement and ensuring that the three areas that do get
updated are amended in unison. Four variables are used for this
purpose:

x% Is the displacement of the cursor from the first byte of the line
and is in the range 0-22, although not all of these values are attainable
(which aren't?). ptr% is the displacement from tihc% of the byte currently
being processed — it is used when memory is being updated. pos is
either O or 1, depending on whether the cursor is on the left or right
nybble of the current byte, and mask% is used to ensure that the part

24 Utility 1

of the byte that is not being updated is safely preserved.

The entire display is determined by the address of the byte in the
top left-hand corner and so this value is held in tihc%, which is the
really important variable in this program. thc% must be updated each
time the display scrolls up or down.

Other significant variables are byte%, which contains the contents of
the location currently under scrutiny, and s$ which is the ASCII string
built up as the line is processed.

Both this and the following programs use the PRINT formatting
variable @% to produce a neat display. Addresses are printed with
@%=4 SO that they are right aligned in a four byte field. When hex
data is to be PRINTed, @% is set to 1 so that the program, rather than
the computer, is responsible for miming out leading and trailing
spaces.

Notice also the use of the tilde (~) facility to PRINT out bytes in hex
fo rmat.

Extensions

The next two programs are just two of many possible variations on this
routine. They are presented as separate programs so that you may
choose the right utility for the job without including features (and
thereby wasting potentially valuable memory) that will not be
required. As far as this routine is concerned, one improvement would
be to include an ASCII editor similar to the hex one already included.
If you intend to enter much ASCII data, it is obviously easier to type it
straight in than it is to convert it to hex values. A (very) simplified
version of PROCpatricia Should do the trick.

Utility 2:
Single key memory display

Description

It is possible to condense the essential features of the previous routine
so that a dump can be made available simply by pressing a function
key. This utility will provide you with a scrolled memory dump;
starting at your chosen location, until you press ESCAPE. It has no frills
whatsoever and is entered in minimal BASIC abbreviations so that it
occupies the minimum amount of space in the function key buffer.
Because this coding is so difficult to follow, the listing includes an
expanded version so that you can see how the *KEY9 version works.

Use
It is only necessary to enter the text of line 30 (i.e. Without the line
number) to set up key f9 to do the dump. However, even that is
tedious, and you might like to save a one-line BASIC program consisting
of line 30. on its own. CHAINIng this would then set up the key for you.
To use the routine, press f9 and enter the starting address in hex
when the '?' prompt appears. Use SHIFT to provide another page of the
dump, and EscaAPEto quit the program.

10 REM SINGLE KEY MEMORY DISPLAY

20

30 *KEY9 |NI.A$:A=EV.("&"+A$):REP.:A$
=" @%=4:P.~A" "::@%=1:F.1=0TO7:B=A?I:V
.-48%(B<16):P.~B" "::A$=A$+CHR$(B*(B>32)
(B<127)-32((B<33)+(B>126))):N.:P.A$:A=
A+8:U.FA.|M

40 END

50

60 REM EXPANDED VERSION

70 VDU 14

80 INPUT A$

90 A=EVAL("&"+A$)

100 REPEAT

110 A$=""

120 @ %=4

130 PRINT ~A;"

140 @ %=1

150 FOR 1=0 TO 7

160 B=A?I

26 Utility 2

170 VDU -48*(B<16)

180 PRINT ~B;" ";

190 A$=A$+CHRS$(B*(B>32)*(B<127)-32*((B
<33)+(B>126)))

200 NEXT

210 PRINT A$

220 A=A+8

230 UNTIL FALSE

How it works

There is nothing difficult about the expanded version but notice the
use of relational operators (ROs) in lines 170 and 190. If you are not
familiar with ROs then you soon will be asthey are used quite a lot in
this book, though only where appropriate. The User Guide touches on
them briefly in its descriptions of TRUE and FALSE but does not quite
give the full story. Here is a brief explanation of line 170:

The computer compares B with 16 and, if it is less, the expression
(B<16) is given the value -1, or TRUE, otherwise (B<16) is given the
value 0, or FALSE. In other words, when the computer seesB<16 it asks
itself 'is B<16?' and answers accordingly. If you think about it, you will
realise that line 170 is really a shorter way of saying:

IF (B<16) VDU 48 ELSE VDU 0
or, in view of what VDU 0 does:
IF B<16 VDU 48

However, we must remember that this statement is part of a single line
and that, should the IF fail, Basic goes looking for the next line —
naturally it won't find it asthere isn't one and so the program stops. By
using the relational operators we avoid this problem.

Incidentally, the purpose of this line is to prefix hex items that would
only consist of a single byte with a leading '0' , thereby ensuring a nice
tidy display.

A more complicated example appears in line 190 and its purpose is
to PRINT CHR$(B) if Bisin the range 32 < B < 127 and otherwise to
PRINT CHR$(32) — i.e. a space. See if you can convince yourself that
it will do this.

Extensions
Considering the size of the function key area, it is unlikely that this
routine will expand much further. It may just be possible to include
the rather nice scrolling effect of the previous program, although we
suspect that it cannot be done.

You can consider this to be a challenge.

Utility 3
Printer memory dump

Description
There is really little to say about this except that it is a minor
modification of the previous routines to enable the memory dump to
be sent to a printer. The printer should be capable of outputting at
least 74 columns as each line contains the data for 16 bytes instead of
the 8 used by the screen routines.

A sample of the output produced by this utility is shown in Fig. 1 in
the next section.

Use

Where you LOAD the program depends on the other occupants of the
machine at the time — obviously you do not want to LOAD it in On top
of the very data you are trying to print out! Because the routine is so
short, it will fit into Pages 9 and 10 where it is out of harm's way, so
before you LOAD it off tape, set PAGE=&900 and then reset it to its
normal value when the LOADIng is complete. Remember that the
routine is at risk while it is in this area and it will disappear if you do
any exotic cassette operations (i.e. other than SAVE or LOAD). To
summon up the routine, you only need to enter:

PAGE=&900 <RETURN> then RUN <RETURN>

Alternatively, set up a function key to do the job for you.

Once again you must enter the start address in hex but, this time,
exit by pressing 'X'. To keep the printout tidy the current line is
completed before printing stops

10 REM PRINTER MEMORY DUMP
20 S$=STRINGS$(16," ")

30 INPUT "Start address (hex) "A$
40 A%=EVAL("&"+A$)

50 VDU 2,15

70 REPEAT

80 @%=4

90 PRINT ~A% AND &FFFF;" ",
100 @%=1:S%$="

110 FOR J%=0 TO 15

120 B%=A%?J%

28 Utility 3

130 IF (B%<32 OR B%>126) A$=""ELSE A
$=CHR$B%

140 VDU 32,C%,-48*(B%<16)

150 PRINT ~B%:;

160 S$=S$+AS

170 NEXT

180 PRINT S$

190 A%=A%+16

200 UNTIL INKEY$(0)="X"

210 VDU 3

Extensions

Here is another candidate for compressing on to a function key: by
referring to the previous routine you should have no difficulty in doing
so if it is really necessary, although there is little point in moving it from
Page 9 unless you need to store something else there.

Because this program has so much in common with the others it
could be combined with them to produce a more comprehensive (but
necessarily longer) routine. Whether you do this will depend on your
intended application for the program.

Despite their simplicity, these three programs are extremely useful
diagnostic aids and should be near the beginning of your utilities tape/
disc. They tell you (nearly) everything that is going on inside the
computer and, provided you know that to look for, they will help you
to answer 'What went wrong?' in most cases.

Their use is not restricted to fault-finding, however, and they can
reveal many interesting facts about the machine. We shall refer back
to these memory display utilities at various points throughout the
book.

Utility 4:
Disassembler

Description
One of the best features of the Electron is the built-in Assembler. This
makes it possible to write (source) code using 6502 mnemonics and
symbolic labels which are then translated into machine (object) code
by the Assembler. A disassembler performs the reverse process and is
absolutely essential for anyone writing — or even merely interested in —
machine code.

The output from this disassembler is similar to that of the Assembler
except that:

i) labels are not given
i) ASCII equivalents are supplied

iii) branch instructions are provided with a direction and the absolute
destination address

During disassembly, any invalid op-codes are assumed to be single
byte instructions and are replaced by "??7?"

As it can be difficult to follow disassembled code on the screen, you
are given the option of sending output to the printer when you first
run the utility.

At this point you may feel inclined to turn to another section on the
grounds that you are not yet au fait with machine code. If not, why
not?? You have the idea! machine on which to learn and there are
now numerous books and articles on the subject. The Electron has
been well designed to make machine code programming as painless
as possible and it is well worth making an effort to learn. Throughout
the book | assume that you are prepared to have a go at
understanding the assembler routines even though you may prefer to
be reading BASIC.

If you are still somewhat apprehensive about machine code a good
place to start is to type in this disassembler and use it to look at how
other people write programs. There are many machine code programs
available for the Electron and you can learn a great deal just by
studying them with the disassembler. In addition, several of our
utilities are written in machine code, although you do not need to be
familiar with machine code to get them to work or to understand the
principles underlying their operation.

30 Utility 4

Use

Normally it is best to LOAD the disassembler at the usual value of PAGE
and then set PAGE=PAGE+&C00 SO that programs may be LoADped and
RUN without affecting it. To use the utility, reset PAGE to the correct
value and then RuN. Select 'N' in response to the question
'Disassemble to printer?’, and enter the address (in hex) at which
disassembly is to commence. For starters, try an address somewhere in
BASIC, i.e. between &8000 and &BFFF — you will then see how the
experts write machine code. If the result of this is a Whole mass of
???s(invalid op-codes) it is because you have landed in the middle of
a data table rather than executable code. BAsIC contains several such
tables, so try a different address if you find one.

Pressing key 'A" will generate one line of output and if you hold it
down lines are produced at the rate of about three per second. If you
press ESCAPE, you are returned to the question 'Start address?' so that
you may continue disassembly from a different point. To exit the
program, you should press ESCAPEIN response to this question.

This approach will not be so successful if the program you want to
disassemble has to be LoADed in at PAGE for correct operation (as might
be the case for, say, a video game). Any absolute addresses within the
program would be displaced by an amount: (actual LOAD address —
true LOAD address), making the code very difficult to follow. The
simple solution to this is to Low the disassembler in a different place —
for example, near the top of memory to make room for the intended
disassemblee (if | may coin a word). Before doing so you should
switch to MODE 6 and reserve at least 12 pages (&Ccoo bytes) for the
routine.

Alternatively, the disassembler can be modified to include an offset
facility so that it can stay where it is and pretend that the code it is
disassembling is actually located somewhere else. We will look at the
offset facility in the Extensions section below.

10 REM DISASSEMBLER

20 MODE 6:@%=1

30 vDbU 19,1,3,0,0,0

40 INPUT "Disassemble to printer (Y/N
)", A$

50 IF A$="Y" vdu%=2 ELSE vdu%=15

60 ON ERROR GOTO 890

70 vDU 3,28,0,1,39,0,12

80 INPUT "Start address: &"A$

90 pc%=EVAL("&"+AS$):start%=pc%

100 ON ERROR GOTO 920

110 vDU 28,0,24,39,2,12,vdu%

120 REPEAT

130 IF vdu%=2 OR INKEY(0)=13 PROCIine
140 UNTIL FALSE

150

160 REM ONE S/R PER ADDRESSING MODE

170

180 RETURN : REM SOME SUBROUTINE!!!

190 PRINT "A";:RETURN

200 PRINT "#";pc%?1;:RETURN

210 GOSUB 230:PRINT ",X";:RETURN

220 GOSUB 230:PRINT ",Y";:RETURN

230 PRINT "&";:PROChex(pc%?1):RETURN

240 d%=pc%?1:t0%=pc%+2+d%:X$="+"

250 IF d%>127 t0%=t0%-256:X$="-":d%=25
6-d%

260 PRINT X$;d%;" (";

270 GOSUB 340:PRINT ")";:RETURN

280 PRINT "(&":;:PROChex(pc%?1):PRINT "
,X)";:RETURN

290 PRINT "(&"::PROChex(pc%?1):PRINT "
),Y";:RETURN

300 GOSUB 330:PRINT ",X";:RETURN

310 GOSUB 330:PRINT ", Y";:RETURN

320 PRINT "(";:GOSUB 330:PRINT ")";:RE
TURN

330 to%=(pc%?1)+256*(pc%?2)

340 PRINT "&";:PROChex(to% DIV 256):PR
OChex(to% MOD 256):RETURN

350

360 DEFPROCIine

370 pc%=pc% AND &FFFF

380 PRINT " ";

390 PROChex(pc% DIV 256)

400 PROChex(pc% MOD 256)

410 PRINT " ";

420 byte%=?pc%

430 IF (byte% AND 3)=3 byte%=3

440 RESTORE

450 FOR 1%=0 TO byte%-(byte% DIV 4):RE
AD code$:NEXT

460 am%=ASC(code$)-96

470 mn$=RIGHT$(code$,3)

480 asc$=""

490 ex%=-(am%>2)-(am%>9)

500 FOR 1%=0 TO ex%

510 asc%=pc%?1%

520 PRINT " ",

530 PROChex(asc%)

31

32

540
550
560
570
580
590

Utility 4

IF asc%<32 OR asc%>126 asc%=32
asc$=asc$+CHRS$(asc)

NEXT

REPEAT:PRINT " ";:UNTIL POS=16
PRINT " ":mn$;" ";

ON am% GOSUB 180,190,200,230,210,2

20,240,280,290,330,300,310,320

600
610
620
630
640
650
660
670
680
690
700

REPEAT:PRINT " ";:UNTIL POS=36
PRINT asc$

pc%=pc%+ex%+1

*EFX 15,1

ENDPROC

DEFPROChex(X%)
VDU -48*(X%<16):PRINT ~X%:;
ENDPROC

DATA aBRK,hORA,a???,a???,dORA,dASL

,aPHP,cORA,bASL,a???,jORA,jASL

710

DATA gBPL,iORA,a???,a???,eORA,eASL

,aCLC,IORA,a???,a???,kORA,KASL

720

DATA jJSR,hAND,a???,dBIT,dAND,dROL

,aPLP,cAND,bROL,jBIT,jAND,jROL

730

DATA gBMI,iAND,a???,a???,eAND,eROL

,aSEC,IAND,a???,a???,KAND,kROL

740

DATA aRTI,hEOR,a???,a???,dEOR,dLSR

,aPHA,cEOR,bLSR,jJMP,JEOR,jLSR

750

DATA gBVC,IEOR,a???,a???,eEOR,eLSR

,aCLI,IEOR,a???,a???,kEOR,KLSR

760

DATA aRTS,hADC,a???,a???,dADC,dROR

,aPLA,cADC,bROR,mJMP,jADC,JROR

770

DATA gBVS,iADC,a???,a???,eADC,a???

,aSEI,IADC,a???,a???,kADC,a???

780

DATA a???,hSTA,a???,dSTY,dSTA,dSTX

,aDEY,a???,aTXA,jSTY,jSTA,jSTX

790

DATA gBCC,iSTA,a???,eSTY,eSTA,fSTX

LATYA,ISTA,aTXS,a???,kSTA,a???

800

DATA cLDY,hLDA,cLDX,dLDY,dLDA,dLDX

,aTAY,cLDA,aTAX,jLDY,jLDA,jLDX

810

DATA gBCS,iLDA,a???,eLDY,eLDA,fLDX

,aCLV,ILDA,aTSX,kLDY ,kLDA,ILDX

820

DATA cCPY,hCMP,a???,dCPY,dCMP,dDEC

,aINY,cCMP,aDEX,jCPY,jCMP,jDEC

830

DATA gBNE,iCMP,a???,a???,eCMP,eDEC

,aCLD,ICMP,a???,a??? ,kCMP,kDEC

840

DATA cCPX,hSBC,a???,dCPX,dSBC,dINC

,aINX,cSBC,aNOP,jCPX,jSBC,jINC

850

DATA gBEQ,iSBC,a???,a???,eSBC,eINC

Utility 4 33

,aSED,ISBC,a???,a???,kSBC,kINC
860
870 REM ERROR HANDLING
880
890 IF ERR=28 GOTO 70
900 IF ERR<>17 GOTO 930
910 VDU 12,26:END
920 IF ERR=17 GOTO 60
930 PRINT "Error at ";ERL
940 REPORT:PRINT:END

How it works

Writing a disassembler is really an exercise in data organisation, and
any such program is bound to include one or more look-up tables to
decode data into the various formats required.

Given a starting address, the program assumes that a valid 6502
instruction will be found there; this enables it to work out how many
of the following bytes belong to {instruction and consequently where
the next instruction starts. The whole sequence is then repeated so
that disassembly carries on ad infinitum by a sort of inductive process.
Theoretically, if you start in the wrong place — that is, the middle of an
instruction — all the following code will be out of sync. In practice, it
usually falls into line within very few instructions

Using a 256-entry table (actually not strictly true, but let's think of it
like that for now) the first byte is converted to:

i) An addressing mode a—m (or 1-13)

i) A mnemonic op-code ADC - TYA and including 7??

The addressing modes are arranged so that the number of the mode
indicates the expected length of the instruction and so we don't need
an extra table to work that out. The addressing mode is read into
variable am% and the total length of the instruction is computed as
follows:

am% range number of bytes
am % <3 1
2 <am% <10 2
am% >9 3

34 Utility 4

Using relational operators (remember them?), this can be condensed
to a single line (line 490). Once the number of bytes is known, we can
print out the hex part of the display with, since we looked it up first,
the mnemonic op-code. Now, by consulting am% again we can decide
the format of the rest of the instruction by calling one of thirteen
subroutines.

Did | really say subroutine? I'm afraid so — for the first and only time
in this book we have to use the old-fashioned Gosus command
because of its compatibility with oN. Each subroutine prints out the
operands following the op-code even if, as in the case of 'implied’
instructions, that means printing nothing at all. Because the cm
statement (line 590) is so long, the subroutines are located near the
beginning of the program so that they have three-digit line numbers.
This does not affect the length of line 590 as stored ,but only when it
Is printed out. Normally, of course, the subroutines could be expected
to be found towards the end of the program. The relationship
between am% and the addressing modes is shown in Table 1.

Finally, the ASCII data is printed out and all pointers updated ready
to start on the next instruction.

The User Guide contains a list of all 6502 op-codes arranged
alphabetically. If you rearrange this table into numerical order, starting
with O for BRK, you will see several patterns in the way the codes are
allocated. (You will need to find out their hex representations first!)
The most striking one, which we take advantage of here, is that any
op-code Of the form &x3, &x7, &xB, &xF, where x is any hex digit, is
invalid. To the mathematician these bytes would all be ‘congruent to 3
MoD 4', or to the lay-person, when you divide one by 4 the remainder
is always 3. There are other invalid op-codes too, but this simpte
observation means that we can eliminate a quarter of our main look-
up table. Of course, we cannot use the same look-up criteria as if the
table had 256 entries, but the amendment (see lines 430, 450) is
hardly extensive.

Each entry in the table — that huge block of DATA statements —
consists of the addressing mode, in lower-case for clarity, and the
actual mnemonic, which is always three characters, required by that
byte. From this information, the format of the line can be pieced
together.

It has already been mentioned that output can be sent to the
printer. To do so, answer 'Y'to the first question and then supply a start
address. When the printer option is selected the printing is automatic
— no need to press the 'A' key. ESCAPE is used in the same way as
before.

Utility 4 35

am% Address Mode
Implied
Accumulator
Immediate
Zero-page
Zero-page, X
Zero-page,Y
Relative (branch)
(Indirect,X)
(indirect ,Y
Absolute
Absolute, X
Absolute,Y
Indirect

OIO|IN|O|O|D[WIN]|EF

[EE
o

| —
| —

=
N

[EEY
w

Table 1. The internal (am%) code used by the disassembler for each
6502 addressing mode.

Procedures
The main procedure of this program is PROCIline which is responsible
for printing one whole line of the display; each line consisting of one
disassembled instruction. When pProcline is called, variable pc% points
to the first byte of the instruction and on exit, pc% will be incremented
by the length' of this instruction and, as a result, will point to the next
one.

PROChex is a simple one-liner to print out the parameter X% as two
hex digits.

Variables
Throughout the program, pc% is used to point to the instruction
currently being disassembled. It is an address and stands for ‘program
counter' which, in machine language, is the name given to the address
of the instruction being obeyed by the microprocessor (or CPU — its
use is not restricted to micros). The contents of location pc% are called
byte%. Initially, byte% is converted to code$ which is one of the entries
in the data table and this is further subdivided into am%, the addressing
mode referred to earlier, and to mng, the 6502 mnemonic op-code
One very important variable is ex%, which is the number of bytes
expected by the instruction. It can take the values 1, 2 or 3 and is
needed to update pc% So that it can point to the next op-code. While

36 Utility 4

the instruction is being decoded, asc$ is built up ready to be output as
the last part of the line.

Extensions

The number of extra facilities that can be included in this disassembler
really depends on your programming requirements. A simple
amendment would be to print out operating system calls by their
vector names, rather than in hex. Thus:

JSR &HFE3

would become

JSR OSASCI

which is rather easier to follow. To include this facility would mean
adding a new table to the program — you would have to decide if the
benefit of the facility would out-weigh the loss of memory involved.

A really nice touch would be to include a 'backward' scroll key as
used in the memory editor. it is the nature of 6502 machine code that
it can only safely be read forwards since the instructions are of varying
length. This does not mean that it is impossible to work backwards,
only that any attempt to do so would have to involve an educated
guess and the best you could hope for would be to optimise that
guess. To understand the problem consider this example:

E82 C6 ?

E83 AC ?

E84 A5 ?

E85 48 ?

————————————————————————————————— we are here
E86 20 EE FF JSR &FFEE

Suppose that we are at the dotted line and we know that this really is
a bona tide instruction. What do those preceding bytes mean? They
could mean: DEC &AC: LDA &48 if we were to start reading them from
&E82. However, they could equally well stand for: (&C6).LDY &48AS5,
where the C6 belongs to some earlier instruction. On the other hand
they may just be data and mean nothing at all! Clearly you would
have to make the best of this and one possible algorithm to help you
decide is to go back say, 12 bytes, and assume that you are at the start
of an instruction. Disassembling forward to the present location may
work perfectly or it may introduce a few unrecognised op-codes. If so,
try again, this time going back by 11 bytes and, if necessary, a final
attempt to going back by 10 bytes (it is pointless trying more than
three times as the longest instruction occupies 3 bytes). Whichever of

Utility 4 37

these gives the best result may be taken as the correct one.

This is extremely imprecise, as it is bound to be, and it is probably
more of an academic exercise (although a good one] than a practical
addition to the routine. | must admit though, it would be very nice to
scroll through pages of disassembled code in either direction safe in
the knowledge that it was all correct. Maybe one day. . .

Earlier we hinted at the idea of introducing an 'offset facility into the
disassembler and this is a relatively straightforward amendment.
Having just bought Super-Pac-Alien-Nightmare-Kong (the latest video
game — a big hit in its abbreviated form) you will no doubt be anxious
to disassemble it to see how it works. Unfortunately, being in machine
code, it may well LoAD up at some horribly low address (eg. &900)
where you would prefer not to LOAD it.

If you force it to LOAD at, for example, &2000 and disassemble it from
there, any absolute addresses within the program will be out by &2000-
&900=&1700. Using the new version of the disassembler you would
reply 1700. in response to the question 'Offset’ and the routine would
then adjust all the addresses to suit.

Addresses that would normally lie between the start of the program
and &7rFrF are the only ones affected — all operating system calls, etc.,
are left alone. You will have an indication of what has been changed
since the hex bytes will be printed 'honestly', in all cases

To add the offset facility to the program these lines have to be
changed:

53 INPUT '""Offset &"A$

56 off%=EVAL("&"+A3$)

245 to%=to%+0ff%

335 IF to%>=start% AND to%<&8000 to%=t
0%+0ff%

390 PROChex((pc%+off%) DIV 256)

400 PROChex((pc%+0ff%) MOD 256)

Clearly this version of the disassembler with an offset of O is equivalent
to the original version. You might like to stick with the new version as
it is more versatile and only very slightly longer. Personally, 1 found
myself using an offset of 6 so often that | found the facility to be rather
redundant.

Finally, we look at another variation on the disassembler theme; this
is the one which allows you to follow branches and jumps.

When you are trying to follow a section of code on the screen, you
will often come across branches, JSRs and the like to code off the
screen and you may wonder what is going on there. Having got there,
you may wish you'd never been (like a holiday in Southport — sorry
Southport, don't mean it) and that you were back on the original path.

38 Utility 4

Using this variation, each time you come across a branch — imP, 3R, or
(provided you have 3Red at some point) an RTSor RTI— you have the
option of following that path or of continuing disassembly as though
nothing had happened.

As it turns out, this is not too difficult; the amendments you need
are:

25 DIM stack%(20)

95 sp%=0

255 branch%=2

375 branch%=0

475 IF ((byte%=&60 OR byte%=&40) AND s
p%>0) OR ASCmn$=74 branch%=1

621 IF branch%=0 GOTO 630 ELSE vDU 7

622 REPEAT UNTIL INKEY(-74)=0

623 *FX 15,1

624 IF GET<>32 GOTO 370 ELSE PRINT

625 IF byte%=&4C OR branch%=2 pc%=to%

626 IF byte%=&6C pc%=?t0%+256*(t0%?1)

627 IF byte%=&20 sp%=sp%+1:.stack%(sp%)
=pc%:pc%=to%

628 IF byte%=&60 OR byte%=&40 pc%=stac
k% (sp%):sp%=sp%-1

629 GOTO 370

This version occupies more memory than the others and so you
should set PAGE=PAGE+&F00 before running the program. Everything
will work as before except that the display will stop and the computer
will bleep when it comes to a branching instruction. To ignore the
branch press ‘A" as usual (you will have to release 'A' first if it is held
down) or, to follow the new path, press the space bar. If you choose
the second option the next line is printed following a blank line to
indicate a change in direction. Everything now functions as before
with the 'A’ key providing you with one (or several, if held down) lines
of disassembled code.

If the computer bleeps on an RTS instruction, you must have
previously followed a Jsrand pressing the space bar will return you to
the instruction immediately after the Jsrin the traditional way.

To implement this facility we have to have a stack — not surprisingly
called stack%(20) — and a stack pointer which appears in the
amendment as sp%. These are updated at the appropriate times (have
a look at the listings to see if you can work out when they occur) and
will allow you to follow a chain of subroutines down to a depth of 20.

At the start of a line, branch% is initialised to a and it is then set if the
instruction turns out to involve some form of branch. If branch% is set,

Utility 4 39

the nature of the branch is analysed in lines 620-628 and the
appropriate action taken.

Utility 5:
Block move

Description

This utility will move a section of memory — for example, a program —
to a new location anywhere in RAM. The only memory affected by the
move is the receiving area and the new location may overlap the old
one without any corruption of data.

One possible use for this routine is in creating 'cloned' copies of
programs in RAM so that one may be used for experimental purposes.
This is not as crazy as it sounds. Suppose you have this utility in store
at PAGE and you want to move a program down to overlay it. Clearly,
you cannot use the BLOCK MOVE routine to do the move as it is about
to be obliterated — if this happens you may end up with two corrupted
programs on your hands; both the utility and the program you were
trying to move. One way out would be to use the utility to reproduce
itself (they can't touch you for it) somewhere else in memory and then
use that version for the move.

Use

As we have just seen, the initial position of the routine in store is not
too important as it can always move itself off somewhere else.
However, because it is a BASIC program it should always be located at
a Page boundary.

When RUN the routine requests three addresses, all in hex (but you
mustn't enter the '&") — they are, respectively, the first and last bytes of
the block to be moved and the new position of the first byte.

If you want to see the routine in action, type MODE 6 <RETURN> and
then RUN <RETURN>. Enter the addresses 6000, 7000 and 6020.

The contents of the screen will slide three bytes to the right, starting
with the bytes at the bottom right of the screen and ending with the
byte in the top left-hand corner. This is because wow is the start of the
screen memory in MODE, and this little exercise will give you some
indication of the speed of the move.

Another interesting experiment is to now LIST the program and re-
RUN (without typing MODE 6) using the same addresses. The overall
effect will be the same but notice that the movement starts and
finishes in the middle of the screen, which seems to suggest that the
screen RAM doesn't start at &6000 any more! The explanation of this
effect is that the Electron uses a technique known as ‘hardware

Utility 5 41

scrolling’ which basically means that it reserves the right to decide
where the screen RAM starts, within the range assigned to the screen.
This enables the computer to perform extremely fast listings as it
hardly needs to reorganise the lines on the screen whilst it is scrolling
them.

10 REM BLOCK MOVE

20 PROCaddr("Start byte")

30 froms%=add%

40 REPEAT

50 PROCaddr("Final byte")

60 fromf%=add%

70 UNTIL fromf%>froms%

80 PROCaddr("New start")

90 tos%=add%

100 tof%=tos%+fromf%-froms%
110 IF froms%<tos% PROCup ELSE PROCdown
120 VvDU7

130 END

140

150 DEFPROCaddr(AS%)

160 PRINT'AS;

170 INPUT " "X$

180 add%=EVAL("&"+X$)

190 ENDPROC

200

210 DEFPROCup

220 REPEAT

230 ?tof%=?fromf%

240 tof%=tof%-1:fromf%=fromf%-1
250 UNTIL tos%>tof%

260 ENDPROC

270

280 DEFPROCdown

290 REPEAT

300 ?tos%=?froms%

310 tos%=tos%+1:froms%=froms%+1
320 UNTIL tos%>tof%

330 ENDPROC

How it works

The bytes are moved (‘copied’ is perhaps a more realistic description)
one at a time using the *?* (Query) operator. It is much faster to use "'
(pling), which moves four bytes at once, but you would have to know
that you were moving a multiple of four bytes, which would not
always be the case. Pling could be used to shift the bulk of the bytes

42 Utility 5

and then query could move the last few so that exactly the right
number are moved. This is very messy and is hardly worth including
for the gain in speed acquired.

If the block is to be moved downwards, the operation takes place
from the front and, if upwards, from the back — as in the screen
example given earlier. This is absolutely essential so that the block
does not get corrupted during the move. If the 'to' and ‘from’ areas do
not overlap, then it is not important how the move is done, but
obviously we should cater for all cases. Consider the two memory
maps in the diagram:

&0000 F1 L1 &FFFF

' '

Area l

&0000 F2 L2 &FFFF

Area 2

Here, F1 and F2 are the addresses of the first and last bytes of Area 1
and similarly for F2, L2 and Area 2. The two areas are the same size,
namely (L1-F1+1) bytes long.

Suppose that we wish to move Area 1 to Area 2. It should be clear
that we cannot start by moving the bytes at F1 to re as that would
overwrite the byte at F2 within Area 1. The bytes have to be moved in
the order:

L1 to L2
L1-1 to L2-1
L1-2 to L2-1
F1 to F2

Likewise, if Area 2 is to be shifted to overlay Area 1, the first byte to
move would be F2 to F1 and the last would be L2 to L1. Before the
move starts the routine needs to know which of these two cases it is
dealing with so that it can take the appropriate action.

Procedures

PROCaddr prompts with the parameter A$, and accepts an address
which it stores in variable add%. Two separate routines are required to
do the move depending on whether the move is up or down the

Utility 5 43

memory and this is the function of PRoOCup and PROCdown. Only one of
these is used during a RUN of the wutility.

Variables

The diagram shows that the important variables in the move routine
are the addresses of the start and finish bytes of the area moved from
(froms% and fromfos) and those same addresses in the area moved to
(tos% and tof%). Actually, one of these is redundant as it can be
calculated from the relationship:

fromf% — froms% = tof% — tos%

if we know the other three items — that is why only three addresses are
requested by the program

Extensions

There's not really much to add to this — the most significant change
would be to remove some coding if the utility was to be used for a
specific task. If you are ever lucky enough to own discs, then some
form of move routine is needed so that programs can be LoADed from
disc and then shifted down to &we, as though they had LoADed from
tape. To do this job a very specialised block move is needed in which:

i) The movement is always downwards

i) tos% probably=&E00

Iii) froms% probably=PAGE for your disc system
i) Pling (!) can be used to speed up the move

The whole routine could then be fitted on a function key, leaving you
with something like:

*KEYO I|."Last byte",L$:L%=EV.("&"+L$):F.
1%=PA. TOL% S.4:1%!-&B00=!1%:N.|M

Cryptic, but effective.

Utility 6:
String search

Description

This routine locates each occurrence of a string of bytes in memory
and prints out its location — i.e. the address of the first byte of the
string. Here we are using 'string' in the sense of 'sequence of bytes'
rather than the idea of a BASIC string, either A$ or $A, The maximum
length of the search string is 32 bytes and it may consist of any bytes —
not just printable characters.

It can be used with BAsIC programs to find all references to a variable
or, more usefully, with machine code routines to locate a piece of
code. Its use is not limited to programs and it could be used with, say,
a text file to locate each occurrence of a particular word.

Two versions are given: the first, in BAsIC, should be easy to follow
and will enable you to understand the principles involved. The
second, in machine-code, is the official version and extremely fast.
This routine has been coded to imitate the BASIC program (as far as is
practicable) and it is useful to compare the two programs.

Generally speaking, where a machine code routine is needed
(either for speed or for compactness) it is good practise to code it into
BASIC first to check that the logic of the program is correct. Once the
routine has been debugged and tidied-up it can then be re-coded into
assembler. Certainly it is not practical to write a machine code routine
to mimic the Basic program line for line but, if you stick to simple BASIC
commands, the correspondence between the two will be quite high.
With experience, it is possible to develop a BAsIC style that produces
easily converted code knowing that it is being written for just this
purpose. This highlights one disadvantage of the technique: you have
to make compromises in the way you initially code the program.
Similarly, the machine code that results is not necessarily optimal (in
terms of speed) but, if the Basic has been thought out carefully, it can
be close.

Use

Run the program and enter the search string in response to the 'it'
prompt. If you wish to locate a string of hex bytes, for example every
reference to &0eerFF (Which is how JSR &FFEE looks in machine code)
you should prefix the string with & and enter each hex byte as two
hex digits —i.e. in the form just quoted.

Utility 6 45

The routine now prints out all references to that string anywhere in
memory (both RAM and ROM). In BASIC, this takes quite a while, so you
will have to be patient. To speed things up you could limit the search
to a particular area of memory by adjusting the range of loc% in line
80.

If ‘& is the first byte of the string you are looking for, then clearly the
routine will interpret your string as being hex and to avoid this, you
should enter the whole string in hex, with ‘&' being replaced by &26.
For example, to search for the character string ‘&Y' you should look for
the hex string &2659.

When you look for a character string you may find references to it at
&3E0-&3FF, which is the keyboard buffer area and in Page 13, where it
is set up by this routine. Furthermore, if you run the BASIC program it
will appear as a variable at the end of your program. These are
unofficial sightings and may be ignored.

When the BasIc version was used to search for the word Basic, the
search took 202 seconds, which is reasonably fast for Basic. However,
the machine code routine found all three references in 1.1 seconds (a
speed increase of almost 280 times), which says something for the
efficiency of machine code.

As written, the assembler version generates the machine code each
time it is RUN and this is not necessary as the code is the same each
time. If required, you can delete the assembly procedure after the first
run, leaving a much shorter, neater routine.

To summarise, the preferred use of this routine is as follows:

I) LOAD the machine code version at PAGE.
i) RUN it.

iii) bELETEline 20 and lines 100-680

IV) Set PAGE=PAGE+&100

To use the routine, simply reset PAGE and RUN.

10 REM STRING SEARCH - BASIC

20 DIM A% (31)

30 INPUT LINE',A$

40 L%=LENAS$-1

50 IF LEFT$(AS$,1)="&" PROChex ELSE PR
OCchar

60

70 match%=0

80 FOR loc%=0 TO &FFFF

90 IF ?loc%=A%(match%) PROCfound ELSE
match%=0

100 NEXT

46

110
120
130
140
h%=-
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

10
20
30
40
50

Utility 6

END

DEFPROCfound
IF match%=L% PRINT ~(loc%-L%):matc

1

match%=match%+1
ENDPROC

DEFPROChex

L%=L%/2-1

FOR [%=0 TO L%
A%(1%)=EVAL("&"+MID$(AS$,2*1%+2,2))
NEXT

ENDPROC

DEFPROCchar

FOR 1%=0 TO L%
A%(1%)=ASCMID$(AS$,1%+1,1)
NEXT

ENDPROC

REM STRING SEARCH (MACHINE CODE)
PROCass

INPUT LINE',A$

L%=LENAS$-1

IF LEFT$(A$,1)="&" PROChex ELSE $&

980=A%

60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

?&82=L%
CALL &910
PRINT:VDU 7
END

DEFPROCass
addl=&80:addh=&81:leng=&82
FOR 1%=0 TO 2 STEP 2
P%=&910

[OPTI%:

.LO

LDX #0 ;match=0

STX addl ;loc=0

STX addh

LDY #0

L1

LDA (addl),Y ;get a byte

CMP &980,X ;found??

BEQ L4 ;yes — 'PROCfound’
L2

LDX #255
.L3

INX

INC addl
BNE L1
INC addh
BNE L1
RTS

L4

CPX leng
BCC L3
LDA addl

SBC leng
PHA

LDA addh
SBC #0
JSR L5

PLA

JSR L5
LDA #32
JSR &FFEE
BNE L2

.L5

PHA
LSR A
LSR A
LSR A
LSR A
JSR L6
PLA
AND #15
.L6

CMP #10
BCC L7
ADC #6
L7

ADC #48
JMP &FFEE

]
NEXT
ENDPROC

Utility 6

'no — match=-1
;match=match+1
;loc=loc+1

;not finished so loop back

;to basic

;whole string matched??

;no — keep checking

‘"WHOOPEE - it all matches

'calculate addr, of first

;...and print it in hex
.....in two instalments
;space

unconditional branch

;output A in hex

DEFPROChex

a7

48 Utility 6

710 L%=L%/2-1
720 FOR 1%=0 TO L%
730 1%?&980=EVAL("&"+MID$(A$,2*1%+2,2)

)
740 NEXT

750 ENDPROC

How it works
To understand the principles involved, let us consider the operation of
the eastc version of this utility.

Having accepted the search string, A$, array A%(31) is built up from
the ASCII codes of the bytes of the string. If A$ is preceded by ‘&' then
the ASCII code is the evaluation of two hex digits in string as. The size
of the array limits the search string to a maximum of 32 bytes.

Memory is scanned one byte at a time, looking for a match with the
first byte of the search string. When a match is found an indicator is
set to point to the next byte of the string (that is, the next member of
array A%(31)) and the search continues. When the indicator shows that
all bytes of the string have been matched, the address is printed out.
As soon as a comparison fails, the indicator is reset to O before the
search continues.

This process continues until every byte of memory has been
considered as a possible starting point for the string.

Procedures

Each time the indicated byte of the search string matches the current
byte of memory, PROCfound is called to check if the whole string has
been matched, in which case it prints out the correct address.
Otherwise, the indicator is updated to point to the next byte of the
string.

When the string is first entered, it has to be analysed and placed
into array A%(@31) — how this is done depends on whether the string
started with a 'w character; if so PROChex will set up the array and if
not, PROCchar is called.

Variables
For compatibility between the two types of search string, array A%(31)
contains the ASCII codes of the sequence of bytes which is being
sought out. Clearly, if the hex option is used, these bytes may well be
outside the ASCII range.

loc% is the address of the byte currently under investigation and will
assume all values from 0 to &FFFF inclusive.

match% indicates the number of consecutive bytes of the string that
have been matched to date and when it reaches the length of the
string it indicates that the whole string has matched. It is the pointer

Utility 6 49

into the array we that was mentioned eatrlier.

The assembler routine works in almost exactly the same way
although the small details are necessarily different. Now the search
string is located at maw and its length less 1 is stored in location &82,
where it can be accessed by the machine code. Variable loc% is stored
in two bytes (binary) at &80 and &81, and the variable match% is held in
the X-register.

To print out the hex address, the routine makes two calls to the
enigmatically named 'L5. This is a subroutine that outputs the hex byte
contained in the accumulator as ASCIl to the screen. Every
programmer has written this piece of code at some time or other and
you should be able to find it in the BAsiC ROM. To do so, use this utility
(that's what it's for!!) to find: &484A4A4A420, which is how the first few
bytes of L5 look in hex. Have a look at the rest of the routine with the
disassembler. You should be able to find a very similar routine in the
Operating System; somewhere between &C000 and &FFFF.

Extensions
We have already seen how to compress the routine and you are not
likely to want to speed it up, so what can we do with it? Some string
search routines wait for you to press a key after each occurrence has
been identified and before going on to the next one; you can then
ESCAPE or carry on with the search. Obviously the idea of this is to
enable you to find the significant appearances of the string but a better
way is to limit the scope of the search before it starts. You may well
feel, as | do, that such an amendment is possible but not really useful
as it would probably slow down the search in most circumstances.
One useful, though much more extensive, modification would be to
set each appearance in context by printing out the surrounding bytes
in both hex and ASCII. At this point we would have included so many
extra facilities that the routine may as well be combined with the
memory display utility that we have already seen.

50 Utility 6

Section 2:
BASIC utilities

Each of the utilities in this section modifies or operates upon a BASIC
program stored in the computer's memory. To understand how each
routine works it is necessary to know how BAsIC programs are held in
the machine and so we will look at this in some detail.

This is a very valuable exercise and if you have never done so
before you should LOAD a program into memory and study it carefully
using the memory display utility (in fact you can use the utility to look
at itself, if you like). Fig. 1 overleaf shows how the first program of this
section looks when LoADed into store at location &1100.

We can now see how the computer sees the program, as opposed
to the neat version we see after user. Referring to Fig. 1, notice that
each line starts with a RETURN character (&0D), and that the following
two bytes contain the line number, stored in binary, with the high
(*256) byte first. The first &0D character lies at the location PAGE.

The fourth byte of the line is its total length in binary. The length of
the line is the displacement from the opening &oD character to the
next &oD — that is, it is a pointer to the following line. Thus, to read
through the lines — for example, to count them — we only need to start
at PAGE and follow the series of links through to the end.

End? Well, the program has to end somewhere and this is indicated
by the first byte of the line number being &FF. In Fig. 1 this is located
at &11D2. Actually, any byte greater than 127 in this position will serve
to terminate the program. The byte following &FF is designated ToP
and is usually the start of the variable storage area. Top is affected by
commands such as LIST and END, although it cannot be altered directly.
RUNNING a program effectively sets LOMEM=TOP so if you want your
program to store its variables elsewhere you should reset LOMEM right
at the start of your program.

It should now be obvious that the Basic command NEw merely
overwrites PAGE with &oD and PAGE+1 with &FF, whereas OLD resets
PAGE+1 back to &0o0.

From the fifth byte onwards the text is stored in a mixture of
'‘tokenised' and ASCIl formats. When the line is entered at the
keyboard it is scanned for BAsIC keywords such as REM and PRINT and
when these are found, they are replaced by a one byte token. A table
containing ail the keywords together with their tokens is held in the
Electron's ROM at address &8071 — have a look at this area with your

"uoN09S

snoinaid ayy ul Aunn dwng Alowsy ayr Aq paonpoad sem

nojund syl 1sndwod ayl 01 sqoo| welboud DISyg e MOH ‘T 2inbiH

1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
11A0
11B0O
11CO
11DO0
11E0
11FO

OD 00 OA 23 F4 20 48 49 47 48 4C 49 47 48 54 20
53 50 41 43 45 53 20 41 54 20 4C 49 4E 45 2D 45
4E 44 53 0D 00 14 10 62 61 73 65 25 3D 90 2B 26
32 30 30 OD 00 1E 05 F5 OD 00 28 13 6C 65 6E 67
74 68 25 3D 62 61 73 65 25 3F 33 0D 00 32 1B 6C
69 6E 65 5F 65 6E 64 25 3D 62 61 73 65 25 2B 6C
65 6E 67 74 68 25 0D 00 3C 1B 6C 69 6E 65 5F 65
6E 64 25 3D 6C 69 6E 65 5F 65 6E 64 25 20 2D 20
31 0D 00 46 28 E7 20 3F 6C 69 6E 65 5F 65 6E 64
25 3D 33 32 20 3F 6C 69 6E 65 5F 65 6E 64 25 3D
36 34 3A E5 20 8D 54 7C 40 0D 00 50 17 62 61 73
65 25 3D 62 61 73 65 25 2B 6C 65 6E 67 74 68 25
OD 00 5A 11 FD 20 62 61 73 65 25 3F 31 3E 31 32
37 0D FF 00 00 61 73 65 25 00 D1 13 00 00 EB 11
65 6E 67 74 68 25 00 11 00 00 00 00 00 69 6E 65
5F 65 6E 64 25 00 DO 13 00 OO OO OO OO OO 00 OO

HIGHLIGHT
SPACES AT LINE-E
NDS base%= +&
200 (leng
th%=base%?3 2 |
ine_end%=base%+l|
ength% < line_e
nd%=line_end% -
1 F(?line_end
%=32 ?line_end%=
64: T|@ P bas
e%=base%+length%

Z base%?1>12
7 ase%
ength% ine
_end%

J121und

e 0] Alowsw Jo uondas siyl buns yuom aq [am Aew 1 ‘sweiboid

21Svd YlIIM MI0M yonw op 01 puaiul noA Ji ‘Aunn Aedsip Alowaw

[AS:

53

Each token is greater than 127 (or in machine language, it is
negative!), so that they are not confused with the ASCII characters
which make up the rest of the line. Compare the listing of the first
utility with Fig. 1 to see how most of the text has been tokenised.

One other interesting feature of Fig. 1 is the way in which the
instruction: GoTo 60 (in line 70) is stored. It is held at location &11A3 in
the form:

ET 20T 8DT 54 7C 40
GOTO SPACE LINE NUMBER CODED LINE
TOKEN NUMBER

We see that the line number is preceded by the token &sb which
effectively says ‘what follows is an encoded line number' and that the
number itself occupies three bytes; this is true whatever the number
is. This method of storing line numbers is convenient because:

i] It is easily recognised as being a line number by its token.

i) The number always occupies exactly three bytes, however the
program is renumbered — replacing Goto 1 by GoTo 10000 will not
extend the program; this is one of the reasons why RENUMBER is so
fast.

i) The number is coded in such a way that the bytes cannot be
confused with tokens; in other words, they are all less than 128.

A further point to note from Fig. 1 is that the program has actually RUN
and this causes the variables generated by it to be stored at LOMEM,
which is usually directly after the program. This causes an overhead
when RUNNIng programs, which explains why a long program can run
out of memory while it is running even though it loads correctly. The
last byte assigned to the program in Fig. 1 is at &11F9. We shall look
more closely at the method of variable storage later.

The way in which programs are stored is so fundamental to the
routines in this chapter that it is worth reviewing the important points
here.

) Starting at PAGE each line is stored in the form:

&OD | HI LO | LEN | =========mmses Textof line ~ ============-~ &0D

< LEN >

54

where the line number is 256*HI+LO and LEN is the number of bytes
assigned to the whole line as stored in memory.

i) The text within the line is held in a mixture of ASCIlI and (easily
recognised) tokens and referenced line numbers.

i) The last line of the program is stored as:

&OD | &FF

This line is not printed in a usT — it simply flags the end of the
program.

Bearing these points in mind, let us look at a few utilities.

Utility 7
Highlight end-of-line spaces

Description
This is not a practical utility, but is included here to illustrate some of
the observations we have just made.

During program editing using the cow key it is very easy to copy in
extra spaces at the end of a line. These spaces are duly stored along
with the rest of the line and use up more memory than is really
necessary. Also, it is a common practice (at least in this book!) to
include the odd blank line here and there to split the program up into
logical sections. It is not obvious just how many spaces have been
included in such a line.

This utility spots these extraneous spaces and highlights them by
overwriting them with @ characters. Notice that this may render the
program unusable by introducing syntax errors — | did warn you it
wasn't practical! The next utility is an extension of this one and does
actually remove them.

Use
LOAD the utility in the normal way and then set PAGE=PAGE+&200 before
LOADINg the target program (‘victim' might be more appropriate in this
case). Now generate some spaces at the ends of a few lines — there
may even be some there already. Restore the original value of PAGE
and run the highlighter. usting the target program (don't forget to
change PAGE again!) should reveal that the trailing spaces have been
replaced by @'s.

A number of utilities in this section require frequent PAGE changes
and it may be worthwhile setting up a couple of function keys to do
this for you.

10 REM HIGHLIGHT SPACES AT LINE-ENDS
20 base%=PAGE+&200
30 REPEAT
40 length%=base%?3
50 line_end%=base%+length%
60 line_end%=line_end% - 1
70 IF ?line_end%=32 ?line_end%=64:GOT
O 60
80 base%=base%+length%
90 UNTIL base%?1>127

56 Utility 7

How it works

Using the line length as a displacement from the initial &0ob we can
easily locate the end of the line. Working backwards, we replace any
spaces until a non-space character is found. After processing a line,
the pointer to the start-of-line is updated and the cycle repeated until
the end of the program is reached

Variables
base% IS the address of the &oD character at the start of a line. length% IS
the length of the line and line_end% is the address of its last byte

Extensions

An obvious modification to this program involves the development of
a routine which actually removes the spaces once they have been
identified. This means adjusting the line lengths and shuffling the lines
down as spaces are removed. The next utility achieves this.

57

Utility 8:
Remove end-of-line spaces

Description
This utility removes trailing spaces from lines in the manner just
described.

Use

Because the routine is an extension of the previous one, it may be
used in exactly the same way.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

REMOVE SPACES FROM END OF LINES
from%=PAGE+&200:to%=from%
REPEAT

PROCcalc

PROCshuffle

UNTIL from%?1>127
?2t0%=13:t0%?1=255

END

DEFPROCcalc
oldlength%=from%?3
newlength%=oldlength%
REPEAT
newlength%=newlength%-1
UNTIL from%?newlength%<>32
newlength%=newlength%+1
ENDPROC

DEFPROCshuffle

FOR 1%=0 TO newlength%-1
t0%?1%=from%?1%

NEXT

to%?3=newlength%
from%=from%+oldlength%
to%=to%+newlength%
ENDPROC

How it works

Having found a line with trailing spaces, the line length is recalculated
and the rest of the program dropped to overwrite them. Subsequent
lines are processed whilst they are shuffled down.

58 Utility 8

Procedures

PROCcalc reads the length of the line and computes its new length once
spaces have been removed. PROCshuffle actually moves the line down
into place and stores its new length.

Variables
to% and from% contain the addresses of the beginnings of lines in the
'new' program and the 'old’ respectively. Consider the program in the
diagram:

0,
t0% j7
&0D —|— | &0D —|—|—| &0OD &0D &FF

from%

After the first line has been processed (notice that it will not get
shuffled down as it has nowhere to go), the pointers to% and from%
will be as shown. Here, from% points to the actual line while to% points
to its intended destination.

When the utility has RUN, from%-to% will be the number of spaces
removed from the program.

Extensions
The next routine continues the theme of removing surplus bytes from
programs

Utility 9
Pack

Description

During the development of long programs it is customary to include a
plethora of REMs and spaces so that the code is easy to read. Once the
program has been tested, these are no longer necessary; indeed, if
memory is short, they can become a liability. Whereas program clarity
IS a great virtue, it often has to lose out to the more mundane
considerations of efficiency and practicality. As a result, the final
working version of a program is not always as well documented as one
would like.

This utility deletes all unnecessary spaces from programs and
removes was so as to pack the program into the smallest feasible
space. Lines consisting entirely of spaces are reduced to a single space
and the text following Rems is removed, although the word REM is
retained.

You should only Pack finished versions of programs, as the
condensed version can be difficult to edit unless you remember to re-
insert significant spaces. For example v=w OR M will be packed to
v=WORM, which the interpreter can still recognise as an OR statement
since the logical operator is held in tokenised form. However, if you
copy the line you will introduce a new variable called worM which
your coding is unlikely to recognise (unless you happen to be writing a
gardening program). This will then cause a 'No such variable' error,

'Pack’ can be very effective, especially on large programs. As an
example, it took 41 seconds to remove 204 bytes from the earlier
disassembler listing.

Use
'Pack’ can be used in a similar way to the previous two utilities. It is
small enough to fit into Pages 9 and 10, so that Lowing it with
PAGE=&900 Will leave it waiting in the machine until you need it.

In line 20, the variable page should be set to point to the start of
your program before you commit 'Pack’ to memory. Once this has
been done, PAGE=&900 followed by RUN will pack your program.

10 REM PACK
20 page=&3000
30 basef=page:baset=page

60 Utility 9

40 pf=3:pt=3

50 quote=0:rem=0

60 !'baset=!basef

70 IF basef?1>127 END

80 pt=pt+1

90 pf=pf+1

100 byte=basef?pf

110 IF byte=&0D baset?3=pt:basef=basef
+pf:baset=baset+pt:GOTO 40

120 IF rem GOTO 90

130 IF byte=&22 quote=1-quote:GOTO 180

140 IF quote GOTO 180

150 IF byte=&8D baset!pt=basef!pf:pt=p
t+3:pf=pf+3:GOTO 80

160 IF byte=&F4 rem=1:GOTO 180

170 IF byte=&20 GOTO 90

180 baset?pt=byte: GOTO 80

How it works

'Pack’ is a good example of bad programming — or so the purists would
have you believe — because it contains a number of interlocked loops
of the form: IF. .. coTOo In lines 110 to 170. However, for such a short
program, this type of coding is justified (indeed, it's the reason the
program is so short) and accurately reflects the tricky logical decisions
that have to be made. If you go to the trouble of flowcharting these
few lines you will see precisely how the program works and why the
order of the tests is very important.

Each byte of each line is examined for end of line, quote marks,
REM, line number token and space. Flags are set as appropriate i.e.
whether inside or outside quotes, and the byte may be either written
forward to the condensed version or ignored. Thus if both the flag for
the current byte being a space and the flag to indicate this is not inside
guotes are set then the space will not be carried forward.

Variables

basef and baset are equivalent to from% and to% in the previous program
and are used to point to the current line being condensed and its
image after the shifting process. quote and rem are flags which are set
when those BAsIC words are encountered.

Initialiy (at the start of a line) each is zero and quote is switched
between 0 and 1 each time double-quotes are found. This is
obviously necessary to avoid packing innocent data which appears in
PRINT strings. Once rem is set (to 1) it remains set for the duration of
the line; this effectively means that anything following REMis deleted.

byte is the byte of your program currently being evaluated.

Utility 9 61

Extensions

If required, 'Pack’ could be amended to selectively remove items — e.g.
REMS but not spaces or versa vice. Another enhancement would be to
remove comments from the assembler. This routine would be rather
complicated, since the comments would have to be treated as a
combination of REM and quote items, as code following assembler
comments is significant and a simple rem flag is not sufficient. In this
way assembler comments are rather different from BASIC REMS. We
leave this as an exercise for the reader!

Utility 10
Bad

Description

You may occasionally be afflicted by the '‘Bad program' error. This is
not a derogatory comment by the computer concerning your
programming skills, but an admission by the machine that it is unable
to interpret the contents of PAGE onwards as being a valid BASIC
program in the format previously noted.

When a program is corrupted it can often be restored to almost full
health provided the corruption is not too severe. (For example,
overwriting one program by another should be regarded as pretty
severel)

Two forms of corruption are common: namely a line-length (byte 4
of a line, remember) is incorrect or control codes (bytes less than 32)
appear in the middle of a program. 'Bad program' essentially means
that the line-lengths do not match up all the way through to &oD &FF —
the end of the program.

With any program in memory:

?(PAGE+3) = ?(PAGE+3)+1
followed by uisTwill cause 'Bad program' ,and:
?(PAGE+3) = ?(PAGE+3)-1

will restore the situation. This utility searches your bad program and
restores the line-length to what it believes to be the correct values. If
the end of the program is missing, it will write its own end (&0DFF)
when it can't find one within range of the previous line. This may or
may not be the true end of your program.

While this process is going on it is a simple matter to check for the
presence of any control codes and to overwrite them with @'s.
Actually, this form of 'corruption’ is often deliberate as it can render a
program unlistable. To see this, add this line to a program:

0 REMA

now, ?(PAGE+5)=21 will overwrite the A in the REM with a control code
21 — disable vDpu drivers. If you attempt to LIST the program, you will
see the REM and precious little else as the screen has been disabled. To
get out of this, use BREAK. Surprisingly the program will still RUN as
normal.

Utility 10 63

Use
When you get a 'Bad program' it is a good idea to *SAVE it before you
do anything else just in case your rescue attempt fails.

Enter MODE 6, Set PAGE=HIMEM-&200 and load BAD. Edit line 30 so
that addr% is the address of your bad program and RUN. Reset PAGE to
point to your program, which should now be LisTable. Spurious
characters, including a few @'s, may have appeared and the line
numbers might be out of step but at least you are now in a position to
edit and save the program. In some cases, the program is restored to
its original condition because the only fault was an errant line length.

If the line numbers are seriously affected then a quick RENUMBER
should sort them out.

'Bad' is also useful for retrieving valuable programs from tape if they
refuse to LOAD due to 'Data errors'. If you have such a program, use
*OPT 2,0 before LOADINg; this forces the computer to LOAD the program
even if it detects errors. An attempt to LIST will almost certainly give
'‘Bad program' which can then be eliminated with the utility.

If the program is particularly valuable, repeating the above process
will generate a number of different versions from which to piece
together a complete listing.

10 REM CURE 'BAD PROGRAM'
20 REM ASSUME LOADED AT.....
30 addr%=&1900

40 ?addr%=&0D

50 REPEAT

60 d%=3

70 d%=d%+1

80 IF d%<255 GOTO 120

90 addr%?d%=&0D

100 addr%?(d%+1)=&FF

110 GOTO 160

120 byte%=addr%?d%

130 IF byte%=&0D GOTO 160
140 IF byte%<32 addr%?d%=&40
150 GOTO 70

160 addr%?3=d%

170 addr%=addr%+d%

180 UNTIL addr%?1=&FF

How it works

Instead of stepping through the program in the (now) familiar way, this
utility searches the lines looking for &oD characters (and removing
nasty control codes on the way). When &opD is found it is assumed to
be the start of the next line and the length of the previous line is

64 Utility 10

adjusted to point to it. The process continues until end of program is
found or forced (this occurring when 'Bad' can't find a &oD to chain to).

Variables
addr% is the base of the line being checked and d% is the displacement
of the current byte from it into the line.

Modifications
Bad could be condensed to reside at &900 or even to be made
available by pressing a function key.

If end of program is forced because, for example, a &oD character is
missing, the cured program might be considerably shorter than the
original. In this case, the memory display utility can be used to scan
the end of the program to see if inserting a dummy &oD somewhere in
the last line will solve the problem. Doing this, then re-rRuNning 'Bad'
will certainly extend the program. A possible extension to '‘Bad' would
be an automation of this process.

You will realise that retrieving any bad program involves a certain
amount of guess-work and trial-and-error. If the nature of the
corruption is known then you're in a good position to restore the
program. This routine assumes that a particular type of corruption has
occurred and does its best to correct it. Because of the way it works,
the worst thing that can happen is that the &ob characters go missing.
Although it is possible to write '‘Bad' routines to deal with this and
other disasters, the only really safe way of rescuing your program is
manually, using your memory editor. If your program is so '‘bad’ that
even this doesn't work, then I'm afraid you'll have to face up to the fact
that your masterpiece is gone for good.

Prevention, as they say, is better than cure.

Utility 11
No-colon LisTer

Description

This is a short machine-code utility which enables programs to be
usrred in an easily digested form. In this respect, it is an extension of
the LisTO utilities already resident in the machine.

The routine produces a LISTO1 listing except that the statements in a
multiple statement line are us-red beneath each other with the colons
omitted — this makes the program very easy to read. A listing of 'Pack’
in this format appears below.

10 REM PACK

20 page=&3000

30 basef=page
baset=page

40 pf=3
pt=3

50 quote=0
rem=0

60 !'baset=!basef

70 IF basef?1>127 END

80 pt=pt+1

90 pf=pf+1

100 byte=basef?pf

110 IF byte=&0D baset?3=pt
basef=basef+pf
baset=baset+pt
GOTO 40

120 IF rem GOTO 90

130 IF byte=&22 quote=1-quote
GOTO 180

140 IF quote GOTO 180

150 IF byte=&8D baset!pt=basef!pf
pt=pt+3
pf=pf+3
GOTO 80

160 IF byte=&F4 rem=1
GOTO 180

170 IF byte=&20 GOTO 90

180 baset?pt=byte
GOTO 80

66

Use

Enter the program (without the assembler comments) and RUN it. This
generates code stored at &910 which will stay there until you overwrite
it with something else and sets up function key O to perform the
usTing. Everything, including ust, will function as normal until you
press f6 which will give you a scrolled usTing in the new format.
Notice that you cannot ESCAPE from this listing, so that you have to
read it to the end, as ESCAPE has been disabled; it is re-enabled when

Utility 11

the listing is complete.

10
20

REM LIST WITH
FOR 1%=0 TO 2

OUT COLONS
STEP 2

30
40
50
60
70

P%=&910
[OPTI%
.LO
CMP #34
BNE L1
80 LDA L4+8
90 EOR #255
100 STA L4+8
110 LDA #34
120 BNE L3
130 .L1
140 CMP #58
150 BNE L3
OSWRCH routine
160 BIT L4+8
?
170 BMI L3
180 STX L4+9
190 LDX #7
200 .L2
210 LDA L4,X
and indent
220 JSR L3
230 DEX
240 BNE L2
250 LDX L4+9
260 .L3
270 JMP &0000
280 NOP:NOP
290 .L4

;quotes?

;no — try something else
;yes — change quotes flag

;load quotes again

;and print them

‘Is it a colon?

:no — branch to normal

;are we in gquotes, though

;yes — no OSWRCH again
;OSWRCH should preseve XR

;print <RETURN>, linefeed

‘reload XR

;jump to OSWRCH

300
310
320
330
340

NOP

NEXT

FOR 1%=0 TO 7
READ L47?1%
NEXT

;data goes here:]

Utility 11 67

350 *KEYO *FX229,1|M?&947=0:1&93B=1&20
E:?&20F=&09:?&20E=&10|MLISTO1|MLI.|M!&20
E=1&93B|M*FX229,0|M

360 DATA 32,32,32,32,32,32,10,13

How it works

Pressing fO re-directs the osSwRCH vector (OSWRCH is the routine
responsible for writing all characters to the screen and most other
places) to point to the code located at &910.

If a'is detected, it is suppressed and replaced by a line feed and six
spaces. Of course, if the "' is not a statement separator (in other words
it is in quotes) it should be PRINTed in the normal way. Location &947 is
used as a quotes flag a la 'Pack’ (0 means out, 255 means in) and is
initialised to 0 on pressing f0. If your program contains an error such
that quote marks do not occur in pairs, the routine will go out of sync
and produce some strange (but harmless) effects.

Utility 12:
Find

Description

When debugging or amending long programs it is often necessary to
know the location of certain variables or constants. This utility PRINTS
out the line numbers at which a selected item occurs, together with
the total number of occurrences. In fact the ‘'variable' could equally
well be a constant since, as we have seen, they are stored in the same
ASCIl format. For completeness, the routine can also find each
appearance of a BAsIC keyword.

Use

The program is easy to use and is best left dormant in the computer
whilst debugging your program. To do this, LOAD it in at PAGE and edit
line 50 to point at, say, PAGE+&600. This is where the routine expects to
find your code, so set PAGE=PAGE+&600.

Programs may now be Loabed and RUN in the usual way. To use the
utility reset PAGE and RUN. Input the item you wish to find — either a
variable (e.g. BASE%), constant (e.g. 33005), or BASIC keyword (e.g. CALL).
The resulting line numbers show where it can be found.

One minor limitation of the routine is that you cannot use it to
search for line numbers because, as we know, they are held in
encoded form.

10 REM BASIC 'FIND'
20 REM < 6 PAGES
30 occ=0:lines=0:token=0
40 REM **** SET loc TO BASE OF PROG :
eg...
50 loc=&1400
60 INPUT'"Search for "A$
70 la=LENAS
80 PROCtesttoken
90 REPEAT
100 found=0
110 IF token PROCkeyword ELSE PROCTfind
120 IF found PROCbaseten
130 occ=occ+found
140 loc=loc+loc?3
150 UNTIL loc?1>127

160

Utility 12

PRINT 'occ"” Occurances in ";lines"

[ines"

170
180
190
200
210
220
230
240
250
260
270
0
280
290
300

END

DEFPROCTfind

IF la>loc?3-5 GOTO 360

IF INSTR($(loc+4),A$)=0 GOTO 360
guote=0:rem=0:skip=0:n=1:ptr=4
REPEAT

byte%=loc?ptr

IF byte%=&F4 rem=1

IF rem GOTO 340

IF byte%=&22 quote=1-quote:GOTO 34

IF FNtest(byte%)=0 GOTO 330
IF skip OR quote GOTO 340
IF byte%<>ASC(MID$(A$,n,1)) skip=1

:GOTO 330

310
320
nd+1
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

IF n<la n=n+1:GOTO 340
IF FNtest(loc?(ptr+1))=0 found=fou

n=1

ptr=ptr+1

UNTIL ptr>loc?3
ENDPROC

DEFFNtest(B%)

C%=1

IF B%<36 OR B%>122 C%=0
IF B%>38 AND B%<48 C%=0
IF B%>57 AND B%<64 C%=0
IF C%=0 skip=0

=C%

DEFPROCDbaseten

PRINT 256*(loc?1)+loc?2
lines=lines+1

ENDPROC

DEFPROCtesttoken
keys=&806F
REPEAT
word$=""
REPEAT
word$=word$+CHR$(?keys)
keys=keys+1

UNTIL ?keys>127

UNTIL A$=word$ OR word$="WIDTH"

‘keys=keys+2

69

70 Utility 12

600 IF A$=word$ token=?keys

610 ENDPROC

620

630 DEFPROCkeyword

640 FOR ptr=4 TO loc?3

650 IF loc?ptr=token found=found+1
660 NEXT

670 ENDPROC

How it works

Having accepted the item, it is first tested to see whether it is a BASIC
keyword and, if so, its token is searched for instead. The lines are
studied one at a time by means of the familiar base and displacement
technique and if the string appears in a line it is checked to be a valid
appearance; this is the most difficult part of the program.
Unfortunately we cannot just use the powerful INSTR command as the
following example shows.

Consider the line:

INPUT "TYPE A NUMBER" A$: A%=A%+1

A superficial test would suggest that the variable A occurs four times in
this line, whereas in fact it is not there at all. The reasons for this
should be clear and gives rise to much of the coding in PROCfind. A
more subtle example is provided by:

FOUR=TWO+THREE (perfectly good BASIC!)

ask yourself why you should not find variables such as T and OuR in
this line. You should now understand the rest of PROCfind.

Procedures

PROCfind scans the line for the hunted item and may call function TEST
to resolve tricky cases like the last example. An initial inspection is
made with INSTR and, if fruitful, the PROCedure takes a much closer look
at the line. PROCbaseten prints out the line number and keeps a count of
the number of line numbers output.

PROCtesttoken IS used to check whether or not the item you are
seeking is a reserved word. This is possible as BAsIC keeps a list of these
starting at &8071 together with their tokens. It is well worth having a
look at this area of Rom with your memory display utility.

If you are looking for a keyword, the coding is considerably
simplified, and PROCkeyword Will do the job for you.

Utility 12 71

Variables
token is set to the relevant BasiC token if searching for a keyword,
otherwise it is set to 0. loc is the address of the current line in RaAM and
found is the number of times the item is found on that line.

ptr is the displacement from loc of the current byte being inspected —
not surprisingly called byte. quote and rem flags are the same as we used
in 'Pack’ and skip is a flag set to say 'even if you do find the string,
ignore it'. The purpose of this flag is to avoid variables that appear at
the end of strings, such as the ouRr in the last example quoted. skip is
reset each time a byte that cannot be part of a string is detected.

Extensions
'Find' could be combined with an editor which actually listed the
entire line rather than just its number. This would set the item in
context and make it easy to skip through the occurrences when
searching for the ones required.

One very useful addition would allow the variable to be replaced by
another this is a great boon in development work and is the subject of
the next utility.

Utility 13:
Replace

Description
One of the admirable features of the Electron is its ability to handle
variable names of any length. This means that programs may feature
meaningful labels such as loop-count or answers instead of the traditional
and rather laconic 1% or A$. However, should a program get too long
(yes, that ever present problem of limited memory again) it is
sometimes prudent to trim some of your more verbose labels down by
a few bytes. Alternatively, thrifty programmers used to working with
very short names might want to expand them to make the program
more readable.

This utility is a cannibalised version of the previous one and enables
items, once located, to be replaced by a different name (or constant, if
you wish).

Use

The routine is used in the same way as 'Find' except that two names
are entered: the item to be replaced, and its substitute. Each time a
replacement occurs the machine 'blips' just to let you know that it
really is doing something since no results are printed out at the end.

Use of this routine may cause your program to expand and, like the
utility that follows, it has to be very careful where it stores BASIC
variables so that they are not overwritten. In line 30, LOMEM is set to
PAGE+&400 wWhich is just past the end of the utility, and your program
should start no earlier than PAGE+&600 (as with 'Find’).

When you have finished keying in the routine, check the value of
~(TOP-PAGE). If it is greater than &490, then you have copied in more
spaces than you need. Either remove them, or adjust line 30
accordingly.

10 REM BASIC 'REPLACE"'
20 REM < 6 PAGES
30 LOMEM=PAGE+&490
40 REM ***** SET loc to BASE OF PROG
ce.g...
50 loc=&3000:top=loc
60
70 REPEAT

Utility 13

80 top=top+top?3
90 UNTIL top?1>127

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
0
310
320
330

top=top+2

INPUT'"Search for "A$
INPUT'"Replace by "B$
la=LENAS$:Ib=LENBS$:diff=Ib-la

REPEAT
PROCfind
loc=loc+loc?3
UNTIL loc?1>127
END

DEFPROCTfind

IF la>loc?3-5 GOTO 390

IF INSTR($(loc+4),A$)=0 GOTO 390
guote=0:rem=0:skip=0:n=1:ptr=4
REPEAT

byte%=Iloc?ptr

IF byte%=&F4 rem=1

IF rem GOTO 370

IF byte%=&22 quote=1-quote:GOTO 37

IF FNtest(byte%)=0 GOTO 360
IF skip OR quote GOTO 370
IF byte%<>ASC(MID$(A$,n,1)) skip=1

:GOTO 360

340
350
ce
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

IF n<la n=n+1:GOTO 370
IF FNtest(loc?(ptr+1))=0 PROCrepla

n=1

ptr=ptr+1

UNTIL ptr>loc?3
ENDPROC

DEFFNtest(B%)

C%=1

IF B%<36 OR B%>122 C%=0
IF B%>38 AND B%<48 C%=0
IF B%>57 AND B%<64 C%=0
IF C%=0 skip=0

=C%

DEFPROCreplace
start=ptr-la+1

IF diff<O PROCdown
IF diff>0 PROCup

73

74 Utility 13

530 FOR I%=1 TO Ib
540 loc?(start+1%-1)=ASC(MID$(B$%$,1%,1)

)
550 NEXT

560 top=top+diff:ptr=ptr+diff
570 loc?3=loc?3+diff

580 SOUND 1,-8,200,1

590 ENDPROC

600

610 DEFPROCdown

620 B%=loc+start+la

630 REPEAT

640 B%?diff=?B%:B%=B%+1
650 UNTIL B%>top

660 ENDPROC

670

680 DEFPROCup

690 B%=top

700 REPEAT

710 B%?diff=?B%:B%=B%-1
720 UNTIL B%<loc+start
730 ENDPROC

How it works

Because this routine has to shift your program around in memory, it
must first calculate the position of the map of your program before it
can enter its main loop.

Using PROCfind as in the previous utility, the program scans the lines
looking for the item to be replaced. When found, it opens or closes a
gap in the program, depending on the relative sizes of the two names,
and writes in the new name. Although this process is easy to
understand, it involves a great deal of memory manipulation. Despite
this, the routine is still quite fast.

Procedures
PROCfind and PROCtest have been borrowed from 'Find' and have been
coded to perform the same function.

PROCreplace is called whenever the sought item is located. If the
replacing string is shorter than the replaced string then PROCdown is
called to shuffle the top part of your program down the memory
before the string is written into place. if longer, PROCup is called to shift
your program up in memory so as to open a gap to insert the new
name. Obviously neither needs to be called if the two strings are the
same length. In this case, the replacement is very rapid.

Utility 13 75

Variables

TOP always points to the Top of your program and keeps track of it
while your program is being shoved around. la and Ib are the lengths of
the two strings and diff is the difference between them. start points to
the first byte of the string being replaced.

Extensions

As this routine has so much in common with 'Find', they could be
incorporated into one long utility. Even if you don't do this it is worth
typing them in together and coming common chunks of code.

Stingy programmers sometimes use the same variable for more than
one purpose in different parts of a program — see how B% is used in
this very routine! You may wish to extend 'Replace' so that only
selective replacement takes place whereby you are offered each
occurrence and may choose whether or not to replace it.

Finally, the routine will fail if a line grows to more than 255
characters. This occasionally happens if you replace a short variable
name in along line with something-of-this-sort-of-size. It is possible to
detect this and to prevent it happening — another exercise for the
reader. Personally, | think you deserve all that you get if you enter lines
of this sort of length!

Utility 13

Utility 14:
MODE 6 PROCWriter

We now look at a very interesting utility which is both useful in itself
and also representative of a common and rather important type of
utility .

This is a program which actually writes Basic! What it produces is
one (or several) PrRocedures that may be copied into your own
program and used to format MODE 6 screens.

MODE 6 is commonly used to display rules, lists, menus and the like
because it is the 'natural' mode for the Electron; that is, the one that
uses least memory. The coding associated with such activities is
invariably rather dull, even — dare | say it — boring. Now one of the
uses of a computer is to take over those human tasks which we find
tedious and screen formatting procedures definitely fall into this
category.

With '‘Procwriter' you design the screens and the computer writes
the code for you (and quite a neat little coder it is, too). If the idea of
computers writing their own programs gives you a Big-Brother
complex, let us assure you that we did actually write this routine by
hand. Not many of the utilities in this book were written by
computers!

Using the cursor keys for movement, data is entered on to a blank
MODE 6 screen. When ESCAPE is pressed, the screen is read and a
PROCedure is generated to produce that screen. You then have the
option of formatting further screens (up to 99) or quitting. PROCedures
SO generated are separated from each other by a blank line and are
called 'screenl', 'screen2' and so on. The line numbers assigned to the
PROCedures start at 30000 and are incremented in steps of 10.

We are already familiar with the format of BASIC lines and this in
itself is not too difficult to mimic. The complication lies in producing
valid, syntactically correct Basic and this could take us into all sorts of
areas including logic and semantics. You should find it a very
rewarding exercise to extend this utility and to produce others in the
same vein. The idea is to select a 'vocabulary' and devise rules of
‘grammar’ which effectively determine how the elements of the
vocabulary should interact.

For the purposes of this utility the vocabulary is made up of the
following items:

Utility 14 77

DEF PROC CLS PRINT screen VDU
TAB(ENDPROC 0-9) ' " : ,

plus the ASCII data you enter on to the screen.

We now have to sort this lot into a meaningful order and the rules
for this are fairly straightforward. For example: cLs occupies a line on
its own, PRoc follows DEF, ' can only follow PRINT or itself and so on.

The resulting Procedure can be called by your program and is
written in reasonably efficient code, as can be seen by the example
below.

30000

30010 DEFPROCscreenl

30020 vDU28,4,22,35,3

30030 CLS

30040 PRINT" THIS PROCEDURE WAS WRITTEN"
30050 PRINT" BY THE FAMOUS"

30060 PRINTTAB(2,7)"'"MODE 6 PROCEDURE
WRITER""

30070 PRINT'™ ...just to show"

30080 PRINT'TAB(12)"that"

30090 PRINT'TAB(15)"it"

30100 PRINTTAB(6,18)"WORKS!!!!"

30010 ENDPROC

Use

LOAD the utility and RuUN it. Reply T' if you want your prRocedure to
establish a text window, otherwise press <RETURN>. To create the
window, you only need to mark diagonally opposite corners — use the
cursor keys to move around the screen and CTRL-Cto mark a corner.

Once both corners are marked, the rest of the screen is shaded so
that your window is easily seen.

Enter whatever data you like on to the screen using the cursor keys
for rapid movement and the usual ASCII keys to print characters on
the screen. DELETE works in the usual way or, alternatively, incorrect
items may be overwritten with new data.

When you are happy with the screen press EscaPe. The utility will
read the screen and generate the pProcedure to reproduce it. When
the computer bleeps, press Y to create another PROCcedure or N to
end .

When you have finished set PAGE=&3000 and LIST. You will find a set
of PROCedures to create the screens you have just designed and which
can be called by your own coding with PROCscreen1, PROcscreen2, etc.
The PROCedures have been given high line numbers so that they may
be saved to tape and merged into your own programs at a later date.

78 Utility 14

Alternatively, you might want to start coding straight away by adding
lines to the program. In this case it is probably safestto move the code
back down to &E00 so that it can be extended. The move can be done
by executing this piece of code:

FOR 1%=PAGE TO TOP STEP 4:1%!-&4200=!1% :NEXT.PAGE=&EO00

Of course, this will overwrite the utility coding, as that will currently
be stored at &€E00.

Finally, having completed the program, you will probably want to
RENUMBER it before SAVEINg it to cassette.

10 REM MODE 6 PROC WRITER

20 MODE 6

30 *FX 4,1

40 *FX12,5

50 LOMEM=PAGE+&CO00

60 HIMEM=&5000:base%=HIMEM

70 lineno%=29990:screen%=0

80 x1%=0:x2%=39:y1%=0:y2%=24

90

100 PRINT'™'T' to set text window, els
e <RETURN>";

110 REPEAT:F%=GET:UNTIL F%=84 OR F%=13

120 IF F%=84 C%=0 ELSE C%=2

130

140 CLS

150 ON ERROR GOTO 260

160 REPEAT

170 F%=INKEY(0)

180 IF F%=3 AND C%<2 PROCcorner

190 IF F%=136 PROCmove(-1,0)

200 IF F%=137 PROCmove(+1,0)

210 IF F%=138 PROCmove(0,+1)

220 IF F%=139 PROCmove(0,-1)

230 IF F%>31 AND C%>1 VDU F%

240 UNTIL FALSE

250

260 ON ERROR GOTO 640

270 lastline%=-1

280 screen%=screen%+1

290

300 PROCstartline

310 PROCstore(&20)

320 PROCendline

330

340 PROCstartline

350 RESTORE

360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720

Utility 14

FOR 1%=1 TO 8

READ W%:PROCstore(W%)
NEXT
PROCsetup(screen%)
PROCendline

IF C%=4 PROCdoavdu
PROCstartline
PROCstore(&DB)
PROCendline

FOR Y%=0 TO y2%-y1%

PROCscrline
NEXT
PROCstartline

PROCstore(&E1)
PROCendline

?base%=&0D:base%?1=&FF

*EX 15,1

REPEAT

VDU 7

W%=INKEY(300)

UNTIL W%=89 OR W%=78
IF W%=89 CLS:GOTO 130
VDU 30:REPORT:PRINT
*EX 4,0

*EX12,0

END

DEFPROCcorner

C%=C%+1:VDU 42

IF C%=1 tx%=POS:ty%=VPOS:ENDPROC
IF POS<tx% x1%= POS:x2%=tx% ELSE

X1%=tx%:x2%= POS

730

IF VPOS<ty% y1%=VPOS:y2%=ty% ELSE

y1%=ty%:y2%=VPOS

740
750
760
770
780
790
800
810

C%=4

COLOUR 129:CLS

VDU 28,x1%,y2%,x2%,y1%
COLOUR 128:CLS
ENDPROC

DEFPROCMove(dx%,dy%)
VDU 31,POS+dx%,VPOS+dy%

79

80

820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

Utility 14

F%=0
ENDPROC

DEFPROCscrline
X%=x2%-x1%

REPEAT

PROCreadscrbyte
X%=X%-1

UNTIL X%<0 OR byte%<>32
IF X%<0 ENDPROC

last%=X%+1

PROCstartline

PROCstore(&F1)

tabswitch=1

IF Y%<lastline%+5 PROCdownquotes

X%=-1

REPEAT

X%=X%+1

PROCreadscrbyte

UNTIL byte%<>32

first%=X%

IF tabswitch PROCxytab:GOTO 1070
IF first%>5 PROCxtab ELSE first%=0
PROCstore(&22)

X%=first%

REPEAT

PROCreadscrbyte
PROCstore(byte%)

X%=X%+1

UNTIL X%>last%

PROCstore(&22)
IF (last%=39 OR Y%=y2%-y1%) PROCst

ore(&3B)

1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

PROCendline
lastline% =Y %
ENDPROC

DEFPROCdownquotes
tabswitch=0

REPEAT
PROCstore(&27)
lastline%=lastline%+1
UNTIL Y%=lastline%
ptr%=ptr%-1
ENDPROC

1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760

PROCxytab
PROCstore(&8A)
PROCsetup(first%)
PROCstore(&2C)
PROCsetup(Y%)
PROCstore(&29)
ENDPROC

DEFPROCxtab
PROCstore(&8A)
PROCsetup(first%)
PROCstore(&29)
ENDPROC

DEFPROCstartline

l[ineno%=lineno%+10

?base%=&0D

base%?1=lineno% DIV 256
base%?2=lineno% MOD 256

ptr%=4
ENDPROC

DEFPROCendline

base%?3=ptr%:base%=base%+ptr%

ENDPROC

DEFPROCsetup(V%)
IF V%>9 PROCstore((V%DIV10)+48)
PROCstore((V%MOD10)+48)

ENDPROC

DEFPROCstore(U%)
base%?ptr%o=U%:ptrY%=ptr%+1

ENDPROC

DEFPROCreadscrbyte

VDU 31,X%,Y%
A%=&87

W%=USR(&FFF4) AND &FFFF
byte%=W% DIV &100

ENDPROC

DEFPROCdoavdu
PROCstartline
PROCstore(&EF)
PROCsetup(28)
PROCstore(44)

Utility 14

81

82 Utility 14

1770 PROCsetup(x1%)
1780 PROCstore(44)
1790 PROCsetup(y2%)
1800 PROCstore(44)
1810 PROCsetup(x2%)
1820 PROCstore(44)
1830 PROCsetup(y1%)
1840 PROCendline
1850 ENDPROC

1860

1870 DATA &DD,&F2,&73,&63,&72,&65,&65,&
6E

How it works
The routine first deals with the text-window option, if you require it
and then enters a loop (lines 160-240) to enable you to set up the
screen. By this time the cursor keys have been deprived of their usual
function and merely generate ASCII codes. All other keys write data to
the screen.

On EscaPEing from this loop, three lines are added to the
PROCedures:

i) Ablankline (Lines 360-320)
i) DEFPROCscreenl (Lines 340-400)
i)y cLs (Lines 440-460)

If you have selected the text window option; the code for that is
written by line 420 between steps (ii) and (iii).

Further lines to produce the required screen are now added — one
for each line of the screen on which data occurs, and the process ends
with an ENDPROC line, followed by &oD &FF to form a new Top for your
program. Finally, you are offered the option of creating a new
PROCedure Or completing the run.

This gives the general thread of the program. Like a few other
routines in this book, the really clever bits are determined by the way
in which the procedures interact.

Procedures
If you decide to draw a text window, PROCcomer IS called when you
press CTRL-C and the second entry to this Procedure (which will also
be the last) establishes the window and remembers the boundaries of
it for later use.

PROCmove IS a simple routine to move the cursor around under the
control of the arrowed keys.

Utility 14 83

Most of the work is done by PRoOCscrine which is responsible for
reading a line of the screen and, if data is found there, writing the
relevant coding into your program. The algorithm for this is
determined, to some extent, by the 'rules of grammar' mentioned
earlier and is depicted in the flow-chart of Fig. 2.

PROCdownquotes Stores sufficient ' characters to reach this screen line
from the previous one (on which data occurs). Both PROCxytab and
PROCxtab Set up TAB(ready to accept either one (X) or two (XY)
parameters. If more than five spaces are needed to prefix a line, then
a TAB(command is used to start the line off. In the introduction to this
section it was suggested that you make a list of the tokens and their
associated BAsIiC keywords. If you have done so, you will see how
these PrRocedures actually get the data into your program.

PROCstartine generates &0D and a line number ready to start a new
line in the target program; the line is completed by calling PROCendiine
which writes in its length and then updates the pointer base% to point
to the next line.

To enable the utility to store numbers (in ASCIl format, remember)
in your program, the procedure PROCsetup converts the parameter v
into its ASCII equivalent. PROCsetup can handle numbers up to two
digits long —i.e. up to 99 — which explains the limit on the number of
PROCedures possible. In practise, this should be quite sufficient!

PROCstore IS @ very important one-liner as it inserts all the data into
the lines of your program. The items are passed singly to PROCstore as a
parameter U%. PROCreadscrbyte reads the contents of the screen byte at
parameter U% into the variable byte% — this is done by using an OSBYTE
call with A=135 (see User Guide).

Finally, PROCdoavdu Will create the line to format a text window, if
you have chosen that option.

84

Utility 14

LN

Scan line from right until
non-space character found.
Remember its position.

'

Initiate new procedure line,
switch = 1

s this line within 5 lines
of the previous one?

Store sufficient ' characters
to get here from there.

switch =0
i
v

Scan line from left until
non-space character found.

p ENDPROC

switch =17?

Indent by more than
5 characters?

#v

‘ Set up and store TAB(X)

®

Set up and store
TAB(X,Y) command

$

|

Open quotes and read the rest
of the line from the screen
into the PRINT string.

Close quotes.

Full line or bottom line?

ENDPROC

Fig 2. Flow diagram of PROCscrline

Utility 14 85

Variables

base% IS the address of the &oD (start) of the current line which is being
built up in your program. ptr% is the displacement from it of the byte
currently being — or about to be — stored.

lastine% is the screen line number (0-24) of the most recent line of
the screen on which data is stored, excluding the current one. It is
used to decide whether to reach the current line by inserting '
characters or by using a TAB(X,Y) command.

first% and last% are the positions of the first and last non-space bytes
on the line being studied, and lie in the range 0-39.

At any time, the number of the screen you are working on will be
held in screen% and, similarly, the number of the program line you
building is in lineno%.

Because the program allows you to work within a text window, it
obviously needs to know the boundaries of that window and these are
stored in x1%, x2% (left, right) and y1%, y2% (top, bottom).

Extensions

There is plenty of scope for experimenting with this utility by
extending the facilities available or even by adapting it to write
PRoccedures (and programs?) of a totally different nature. A
reasonably straightforward modification would be to generate
PROCedures to format screens in all MODES, not just MODE 6. To get the
best out of these other MODES, you should extend the vocabulary to
include the word coLOuR, which means that you will have to devise
new rules of syntax for it. (As well as a method of inputting the colour
changes without affecting the screen display.)

If you do attempt this — and it's a very rewarding exercise — you may
begin to appreciate the problems encountered by the people who
devise computer languages. Each word that is added to the vocabulary
brings with it a new set of rules and, unfortunately, may disturb
existing rules which worked fine until the new item was introduced.
Before you attempt anything like this let's consider a less demanding
extension.

One minor inefficiency of this utility is that each screen line
generates a single PRINT string, whatever the format of the data. A line
such as:

HELLO <25 SPACES> SAILOR

would generate a 36 byte PRINT string although it could be stored more
efficiently as :

PRINT"HELLO"SPC(25)"SAILOR"

in other words, the vocabulary of the routine could be extended to

86 Utility 14

include items such as spc. CHR$ and ":" are other suitable candidates,
according to the requirements of the user.

As a programmer, | have found this routine to be extremely useful
and it is a true utility in the sense that we have defined it: a time and
labour-saving aid to program development. What more could you
want ?

Really must get to work on that ultimate utility — the one that writes
utilities !

Utility 15:
New TRACE/BASIC single step

Description

The TRACE facility is a useful aid to debugging but the results are often
difficult to interpret because the line numbers it generates are
interspersed with program output and user input. This tends to defeat
the object of program tracing which, after all, is to help you find errors
in your program. Most of the people | know who own an Electron
avoid this command simply because of the unfriendly nature of the
output. This is a pity because TRACE, if properly used, can be a very
powerful tool when trouble-shooting on your micro.

'‘New TRACE' modifies the inbuilt TRACEroutine to make it much more
usable, printing the generated line numbers at the top left-hand corner
of the screen (allright — the current text window) by intercepting the
line numbers before they are printed.

While we are at it (intercepting line numbers, that is), having
trapped the line number, it is useful to hold the machine up until a
key is pressed. In this way, we introduce an exceptionally useful
single-step into BAasic which simplifies debugging to a remarkable
degree. Despite the power of this facility, the routine that
accomplishes it is only just over 100 bytes of machine code!

Use

Enter the routine (omit the assembler comments if you like) and save
it. RUNNIng the program will store the new coding in Page 13, where it
should remain until you overwrite it, and function keys fO and fl will
be set up to switch the new routine in and out. Be careful not to re-
program these particular keys during any subsequent playing with the
machine. The BAsIC coding is now redundant and can be removed
with a DELETEOr a NEW.

To use with your BASIC program, press f8 and then <RETURN> tO
activate the new TRACE routine. Now when the program is run, the
traced line numbers will appear in the top left-hand corner of the
screen and, after each is printed, the computer will wait for you to
press either CTRL or SHIFT before proceeding to the next line. Holding
down sHIFT will cause the program to run at a slightly reduced speed,
whereas cTRL will only allow one line to be executed at a time — it
must be released before the program can continue.

When the run is complete, or after you have escaped, press fl1 to

88 Utility 15

cancel TRACE, and also to return the machine to normal output. Use fO
<RETURN> any time you wish to TRACE a program and always cancel it
with f1 after use.

10 REM NEW TRACE/BASIC SINGLE-STEP
20 REM CTRL for single-step

30 REM SHIFT for high-speed

40 jump=&80:wrch=&81:flag=&83

50 ptab=&84:xtab=&85:ytab=&86

60 osbyte=&FFF4

70 FOR 1%=0 TO 2 STEP 2

80 P%=&910

90 [OPTI%:

100 BIT &26A ;vdu queue still active?

110 BMI L2 ;yes, so come straight out

120 BIT flag ;was last byte a close br
acket?

130 BPL L1 ;N0 — carry on with test

140 PHA ;yes, so skip (this) space

150 LDA #0

160 STA flag ;reset flag...

170 PLA

180 RTS ;...and exit

190

200 .L1

210 CMP #91 '1s it a left bracket?

220 BEQ L3 ;yes — branch

230 CMP #93 ;maybe a close bracket??

240 BEQ L4 ;'yes — branch

250 .L2

260 JMP (wrch) ;neither so do normal O
SWRCH

270

280 .L3

290 PHA ‘left bracket received

300 TXA : — OSWRCH should
preserve registers

310 PHA

320 TYA

330 PHA

340 LDA #134 ;read cursor position

350 JSR osbhyte

360 STX xtab ;and remember it

370 STY ytab

380 LDX #4 ;pointer to i) home cursor
i) print

390 BNE L7 ;5 spaces iii) home

cursor again

400

410 .L4

420 PHA

430 TXA
registers

440 PHA

450 TYA

460 PHA

470 LDA #129
ed flag

480 STA flag

490 .L5

500 LDX #255

510 LDY #255

520 JSR osbhyte

530 INY

540 BEQ L65

550 LDX #254

560 LDY #255

570 JSR osbhyte

580 INY

590 BNE L5

600 .L6

610 LDX #254

620 LDY #255

630 JSR osbyte

640 INY

650 BEQ L6

660

670 .L65

680 LDX #0

690

700 .L7

710 LDA ptab,X
WRCH

720 BMI L8

730 JSR (jump)

740 INX

750 BNE L7

760

770 .L8

780 PLA
registers.

790 TAY

800 PLA

810 TAX

820 PLA

830 RTS

Utility 15

;right bracket received
; — preserve all

;set right bracket receiv

'SHIFT' held down?

;yes, so come out
'no — look for 'CTRL'

;loop until found

;now loop 'til released

;point to PRINT TAB(..

;send bytes to usual OS

;until negative

‘all done — restore

rand return

89

90 Utility 15

840

850 :]

860 NEXT

870 78&80=8&4C:?&81=?&20E:?&82=2&20F

880 *KEYO0 ?&20E=&10:?&20F=&09:TRACE ON
M

890 *KEY1 ?&20E=?7&81:?&20F=?&82: TRACE
OFF|M

900 FOR 1%=&83 TO &8F

910 READ ?1% : NEXT

920 DATA 255,31,0,0,255,30,32,32,32,32
,32,30,255

How it works

The routine exploits the (fortuitous — or was it planned?) fact that the
traced line numbers are surrounded by [] characters making them
easy to spot. OSWRCH is the routine responsible for writing characters
to the screen and so we intercept oswrRCH and look for these
characters (for non-machine coders: this is rather like steaming open
someone's mail, only a bit quicker) — their ASCII codes are 91 and 93.
However, it may be that the code is being sent not as a result of say:

PRINT "
but perhaps as part of a string of control codes as in:
VDU 23,224,91,93,6,8,0,8,6,6

In this case we should let the code through unchallenged. This is done
by inspecting the VDU queue to see if a command such as the one
above is being processed, if so, we ignore the character. The VDU
gueue tells the machine how many bytes are still expected by oswRrcH
before it can go about its normal business of writing characters to the
screen, and is located at &26A. Officially, it is considered bad form to
read this location directly and there is an osBYTE call (&DA) to do the
job for us. However, as with so many things in life, the temptation is
often too great to resist in our case for the simple reason that the
coding is quicker and easier.

When T is received, we remember the cursor position (osBYTE call
with A=134) and home the cursor ready to print out the line number.
Having done so, a T will duly arrive — this is suppressed and a loop
entered at L5-L65 waiting for CTRL, SHIFT Or ESCAPE. If CTRL Or SHIFT is
pressed the cursor is relocated to its stored position and the program

Utility 15 91

continues.
Simple, isn't it?

Variables
flag IS set when a ' character has just been detected. This is because
the normal traced output separates its line numbers with a space, and
this space can play havoc with the cursor position which is used by
this routine. flag is a marker used to suppress this space.

xtab and ytab are used as a temporary store for the ‘real' cursor
position.

Extensions
This useful little routine does suffer from a number of drawbacks,
none of which are serious, although it is as well to be aware of them.

Any T character attempting to reach the screen is assumed to
precede a line number and 7' characters are similarly misunderstood.
Your program should avoid printing these characters (why can't you
use nice round brackets like everyone else?) Also, indiscreet colour
changes and 'join cursor' commands can wreck the line numbers
output by the routine. It is hardly worth extending the utility to
anticipate these problems — it's easier to temporarily modify your
program to avoid them.

One other minor point is that, since the line numbers are printed at
the top left of the screen, it follows that nothing you print there is
going to survive for long, so don't panic if that part of your display
disappears.

If you program in Basic, you will find this utility to be an invaluable
debugging aid.

Finally, here is a puzzle for you to see if you have understood this
section. LOAD or type in the routine and RuUN it. Press f6 and then
<RETURN>. So far so good, but why won't the routine list properly?
Think about it.

Utility 16:

Symbol table

Description

Another useful debugging aid is a 'symbol table' — that is, a list of the
currently active variables together with their values. This utility
provides a scrolled alphabetic listing of all variables in use including
the contents of arrays of up to two dimensions. Other arrays are
named, but the values of their elements are not given.

Use

The routine should be LoADed below the problem program, and the
preferred method is to LOAD in 'List Variables' at the usual value of
PAGE, and then set PAGE=PAGE+&500. Normal BASIC programs can now
be LoaDed and run.

If you require a symbol table, first place a SToP instruction at the
point in your program where you would like to study the variables.
When your program STOPS, reset PAGE to point to the utility and type
GOTO 10 (not RUN!!) to produce your variable list. After the string, real
and array variables have been given, you have the option of listing the
resident integer variables — press Y to do so. Of course, if you only
need to know the values of the variables at the end of your program,
the swop instruction is not needed.

When you return to your program to conduct further tests don't
forget to reset PAGE. In fact, it may be possible to resume your program
from just after the stop, or even from an entirely different place
provided you are not in a PrRocedure, loop etc. However, it is unlikely
that you would wish to use the utility in this way as it is somewhat
risky.

If you intend to conduct a series of checks on your code, by far the
best method is to include the coding for the utility with your program.
To do so, amend it as follows:

10 DEF PROCsymbol

20 — delete
30 LOCAL

80 — delete
130 — delete

140 ENDPROC

Utility 16 93

and RENUMBER 30000. Save the new version as, say SYMBL.

The routine is now ready to be merged with your own program
which should now be Lowed into store. Typing END <RETURN> will
force the computer to calculate Top — get it to PRINT ~TOP-2 for you.
The merging is done by typing:

*LOAD "SYMBL1" <The result of ~TOP-2>

This assumes that your program does not use line numbers of 30000
upwards, so best check that before you start. Once the programs have
merged you can include as many PROCsymbol calls into your code as
you like. Each will interrupt your program and print out the values of
all variables used to date.

10 REM LIST VARIABLES

20 REMEMBER A%,B%

30 1&70=A%:'&74=B%

40 vDU 14

50 PROCvar(&482,65):REM UPPER CASE

60 PROCvar(&4C2,97):REM LOWER CASE

70 *FX15,1

80 B%=!&74

90 PRINT'""Want A%-Z%?";

100 VDU 7:A%=GET

110 IF A%=89 PROCintegers

120 PRINT

130 A%=!&70

140 END

150

160 DEFPROCvar(A%,B%)

170 LOCAL W%,X%,Y%,Z%

180 FOR X%=0 TO 25

190 Y%=?(2*X%+A%)+256*?(2*X%+A%+1)

200 IF Y% <PAGE GOTO 370

210 REPEAT

220 Z%=?Y%+256*Y%?1

230 Y%=Y%+1

240 $&910=CHR$(B%+X%)

250 Y%=Y%+1

260 IF ?Y%=0 GOTO 290

270 $&910=%$&910+CHRS$(?Y %)

280 GOTO 250

290 IF RIGHT$($&910,1)="(" PROCarray:G
OTO 350

300 IF RIGHT$($&910,1)="%" W%=1 ELSE W
%=0

310 PRINT $&910;"=";

94

320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790

Utility 16

IF W% PRINT CHR$34:

PRINT EVAL($&910);

IF W% PRINT CHR$34 ELSE PRINT
Y %=Z%

UNTIL Y%<256

NEXT

ENDPROC

DEFPROCarray

LOCAL V% ,W%
PRINT'"ARRAY: ";$&910;
PROCnamearray
W%=Y%?2+256*(Y%?3)
IF W%>9 W%=9

IF V%=4 PROConedim
IF V%=6 PROCtwodim
PRINT

ENDPROC

DEFPROCintegers

PRINT'"A%=";1&70

FOR A%=66 TO 90

PRINT CHR$A%;"%=";EVAL(CHR$A%+"%")
NEXT

ENDPROC

DEFPROCnhamearray

LOCAL W%

FOR V%=2 TO Y%?1-1 STEP 2
W%=Y%?V%+256*(Y%?(V%+1))-1
PRINT STR$~W%;",";

NEXT

VDU 127

PRINT")"

ENDPROC

DEFPROConedim

LOCAL V%

FOR V%=0 TO W%-1
$&980=3&910+STR$V%+")"
PRINT $&980;"=";EVAL($&980)
NEXT

ENDPROC

DEFPROCtwodis
LOCAL T%,U%,V%
T%=Y%?4+256*(Y%?5)
IF T%>9 T%=9

Utility 16 95

800 FOR V%=0 TO W%-1:FOR U%=0 TO T%-1
810 $&980=%$&910+STR$V%+","+STR$U%+")"
820 PRINT $&980;"=";EVAL($&980)

830 NEXT,

840 ENDPROC

How it works

This is quite a complex utility which relies upon the fact that Basic
holds its variables in a special, well-organised way which we shall look
at shortly. One complication is that, since the routine must print out
your variables, it must not use any of its own! This is tricky but not
impossible to achieve. Indeed an early version of this routine used
absolutely no Basic variables (how?) although it did suffer from the
drawback that it was totally incomprehensible.

This version uses LOCAL integer variables (A% and B%) which are
stored before use and reloaded at the end, and the string indirection
operator $ to generate its strings. The effect of using LOCAL variables T%-
Z% is to preserve the values of these items once the pPrRocedure that
uses them is complete. The illusion, having run the utility, is that no
variables have been used at all.

To find a variable, we first look in Page 4. Here there is a table of
pointers (that is addresses, stored low byte: high byte) to all the
variables used by the current program:

&482/3 points to first variable starting with A
&484/5 points to first variable starting with B
&486/7 points to first variable starting with C
&487/18 ...

&4B4/5 points to first variable starting with Z
&4C2/3 points to first variable starting with a
&4C3/4

&4F4/5 points to first variable starting with z

The variables themselves are stored at LoMEM (which is usually at the
end of your program), in the order in which they are referenced by
the program.

Integer variables @ to z% are stored in the first part of Page 4,
although we do not use that fact in this routine asit is easier to get at
them using EVAL.

Let us move from the theoretical to the specific and look at a simple
case which will help you understand this utility better.

96 Utility 16

Fig. 1 on page 52 shows a memory dump of the area assigned to a
program after it has RUN. The three variables used, in the order in
which they appear, are: base%, length%, and line_end%. (It is coincidental
that these are in alphabetic order). Fig. 3 shows the relevant section of
Page 4.

480 00 00 00 OO OO OO OO OO OO OO OO 00 00 00 00 0O
490 00 00 OO0 OO OO OO OO OO OO OO OO OO OO 00 00 0O
4A0 00 00 00 00 OO OO 00 OO0 OO 00 OO OO0 00 00 00O 0O
4B0O 00 00 00 00 OO OO OO0 OO OO 00 OO OO 00 00 00O 0O
4C0O 00 00 00 OO D3 11 00 OO OO OO OO OO0 OO 0O 00 0O
4D0 00 00 OO0 OO0 00 OO OO OO DE 11 00 OO 00 00 0O 0O
4EO0 00 00 00 00 OO0 OO 00 OO0 OO0 00 00 00O 00 00 00O 0O
4F0 00 00 00 OO0 OO OO0 OO OO0 OO 00 00O 00 00 00 00 0O

Fig.3. Area of Page 4 memory showing pointers to variables

The entry at &4c4 points to the first variable starting with b and
indicates &11D3. Now refer back to Fig. 1 and you will see that-this is
the value of TopP and the entry there (it's an address) is &0000. This is a
pointer to the next variable beginning with b and, as there isn't one,

Utility 16 97

the pointer is set to 0. Following the pointer is the rest of the name,
ending with &00 (at &11D9) and then the actual value of the variable
stored in the appropriate format.

base% iS Clearly an integer and so it is stored in four bytes from &11DA
to &11DD. Reals, strings and arrays each have their own formats but
they need not concern us as we can use the powerful EVAL function to
access their values without bothering to discover what they look like.

The only other entry (Fig. 3) in Page 4 is at 4D8 and points to the first
variable beginning with |. It indicates &11DE which is assigned to the
variable length%. This time, however, there is a link address to &11EB
(Fig. 1) because there is another variable beginning with |, namely
line_end%. The link address here is O indicating that there are no more
variables beginning with I.

The utility works by starting at Page 4 and following the pointers
until each variable has been found. When one is found, its name is
built up at &910 (line 270) from where it can be EvALUated.

The process is a bit more complicated when an array is found
although the principle is the same. See if you can work out the array
part for yourself by studying the program listing. We will look at the
method of storing string arrays — the most difficult type — when we
introduce the string sort utility later on.

Alternatively, why not Low your memory display utility and use it to
look at some simple programs that handle arrays? After a while the
method of storage will become clear.

Without re-dimensioning the array it is possible to list its elements
up to a subscript of 9 and this is done for arrays of one or two
dimensions. Other arrays are named but the values of their elements
are not given.

Procedures

PROCvar IS the main module responsible for building each variable
name and then EvALuating it. Two parameters are passed; the start
address of the chain in Page 4, and the ASCII code of the opening
character of the name.

If the variable turns out to be an array, which is detected by the
rightmost character of the name being a "), then PrRoOCarray is called to
deal with it. This names the array by calling PROCnamearray and prints
out its elements, if appropriate, by calling PROConedim or PROCtwodim.
PROCintegers IS a simple procedure to print out the values of the resident
integer variables.

Variables
None!!
Actually that's not strictly true: A» and B% are used once their

98 Utility 16

original values have been stashed away ready to reload at the end of
the routine. All other variables are necessarily resident integers,
declared as being LOCAL. to the Procedures in which they feature.

Any strings that maybe required are built up at &910, and possibly
&980, by means of the string indirection operator $. Thus the string
variables used are $&910 and $&980.

Extensions
Using similar coding to follow the links to the variable names, we
could produce a 'cross-reference’ listing (usually abbreviated to Xref)
which shows by the name of each variable the references, by line
number, to it. Xrefs are used to track down the locations of PrRocedure
names and other labels, especially in long programs where a manual
checking process would be unreliable. Unfortunately, to produce an
Xref we would have to use a technique similar to that in 'Find' and
then sort the list of names found, since Xrefs should be in alphabetical
order.

It is tempting to use the symbol table approach, as that will produce
the names in order, but this cannot work because:

1) Only active variables will appear in the list. If a name has not yet
been referenced it will not have an entry in the storage area.

i) Having found a name, we would still have to scan the BAsiC
program to find the lines on which it occurred.

From these observations it would appear that Xref has more in
common with 'Find' than it does with the symbol table and a true Xref
would be quite a complex routine to produce.

One interesting exercise would be to produce a list of PROCedures
together with the lines on which they are defined. This can be done
by using the ideas mentioned here and your starting point is &4F6/7
which is where BAsIC stores the reference to the first PRocedure. Your
second, and final, clue is that you will need your memory display
utility. Now it's up to you!

Finally, in the instructions for this utility it is suggested that you start
it off with coTo 10 as opposed to RUN. Why?

The diagnostic routines given in this section are among the most useful
in the book. Like all tools, their effectiveness is greatly increased if you
learn to use them properly, if possible by anticipating the
circumstances in which you are likely to use them. For example, if you
are in the middle of a delicate fault-finding situation, the last thing you
want to be doing is LoADIng in utilities, although sometimes it is
unavoidable. Instead, plan ahead. If you have a troublesome program,

Utility 16 99

LOAD in any required utilities first, so that they are available as soon as
problems occur and, hopefully, before the situation becomes
irretrievable.

There are many steps to writing successful programs and planning
and debugging are two very important aspects. The routines featured
in the previous two sections should provide you with most of the
debugging aids you are likely to need.

100 Utility 16

101

Section 3:
Sound and graphics

Although the Electron has only two BAsic commands for handling
sound, this is one of the least understood areas of the machine. The
difficulty is that both souND and ENVELOPE have complicated syntax
which never seems to get any easier to use. Two utilities in this section
are designed to ease the problem and between them should provide
you with all the souND material you are ever likely to need.

Conversely, the problem with graphics is not so much the command
syntax, as the bewildering array of commands. (In a sense, each of the
PLOT commands is a different instruction and only a few are named — a
good example is PLOT 5 which is equivalent to DRAW). The variety of
available commands means that very sophisticated displays are
possible — if only you know how to get them!

Graphics utilities are very common (the most written Electron utility
program of all is one of them) and programs relating to graphics can
also be found in other sections of this book.

102

Utility 17:
ENVELOPE editor

Description

The Electron can produce a wide range of sounds and effects through
the use of its SOUND and ENVELOPE commands, although some effort is
required to produce consistent, predictable results. In an attempt to
provide us with as many sounds as possible, the designers have
allowed these commands to expect four and fourteen parameters
respectively and here is an immediate trade-off between flexibility and
usability: the more things you can mess about with, the greater the
range of effects — and the harder it is to get them. Thus, an obvious
and essential utility for all potential sound users is one which allows
you to change both souND and ENVELOPE parameters quickly and to try
out the resulting sound with the minimum amount of fuss.

The routine presented here allows you to do just that and it will also
display the BASIC SOUND and ENVELOPE statements that you have just
built up. This is clearly necessary as they are the means by which the
sound will eventually be played.

As this program was originally written for the BBC computer, it will
allow you to alter all of the ENVELOPE parameters including those
concerned with amplitude control, which have no effect on the
Electron; these are fields 9 — 14. If your programs are ever run on a
BBC computer (or future expansion of the Electron allows the full
range of SOUND effects to be realised) then this facility may be useful.

As a gesture of defiance, | have retained PN for Pitch Number. For
some reason the Electron User Guide refers to this parameter as Pr.

If you have not come across these terms before, then you are
entitled to be confused! A great many effects are possible and only a
few of them can be adequately described in words — the best way to
find out how the various parameters affect the sound is to try them for
yourself and that is the purpose of the utility.

When you choose an envelope number the current state of that
envelope is displayed along with a SOUND statement that will be used
to play it. You may change the contents of any field by using the
cursor keys to increase or decrease that parameter and at any time
you can press P to play the sound. These facilities make it very easy to
home-in on a sound, since it enables you to quickly adjust individual
parameters and keep playing until you get the desired effect.

Utility 17 103

Use
There are no complications with this program and, as it is written
entirely in BASIC, it can either be RUN or CHAINed.

After you have entered the number of the envelope, that you wish
amend (the permitted range is 1-4 but this can be extended to include
all 16 possible envelopes), the present state of the envelope is dislayed
in 14 fields (not quite the same as the 14 parameters) along with a
SOUND statement that will be used when you want to play the sound.
You can press one of the following keys at almost any time:

D: Display BAsnz commands for both current ENvELOPE and SOUND.
The ENVELOPE parameters are set up with the computer and will be
retained vven when you quit the utility, whereas the sourw command
is only relevant to this program and is not stored outside it.

F: Amend field. This is the most valuable facility of the program. Each
of the displayed parameters has an associated field number which you
enter following key F (then press <RETURN>). The cursor is moved to
the correct field and you may at this point adjust the value of that
parameter by using the cursor up/down keys.

N: New envelope. When you have finished programming one
envelope this allows you to start on another. The sot-mo parameters
are reset to their starting values and the current state of the new
envelope is displayed. Basically, all that happens is that the program
restarts.

P: Play. The current SOUND/ENVELOPE combination is triggered so that
you can listen to the sound you have just created.

Q: Quit the program. Returns you to BAsIC and resets the cursor keys
and auto-repeat speed.

S: Stop the sound. When you play a sound, it is quite easy to hang up
a sound channel for longer than you intended. Pressing P several times
will queue up requests to play the sound that are not serviced until
the preceding requests are complete. S will send a higher priority
request to play a short burst of silence, effectively clearing the buffer.

Cursor up/down: When the cursor has been moved to a field
following F these keys increase or decrease the value in that field. The
keys auto-repeat and they have been speeded up so that you can
rapidly reach any required value. One of the problems with the
envelope command is that each parameter seems to have its own

104 Utility 17

range of values (‘seems'is right — with one exception, all fields are O-
255 asthey are held in one byte, but we try to stay consistent with the
manual) and validating the data can be difficult. With this utility there
are no such problems; when you reach either end of the scale for the
field you are amending, it ‘wraps-round' and takes you back to the
other end of the scale without stopping. This is very convenient
because it means that you don't even need to worry about what the
numbers are — they are always 'correct' so your only problem is getting
the sound right.

Suppose you start with an empty machine and select ENVELOPE 1. If
you choose to amend field 7 (PN2) by pressing ‘cursor up' it will quickly
run through values from O upwards. However, if you press 'cursor
down' , it will start from 0, go (down!) to 255 — its greatest possible
value — then run down from 255 until it reached 0, when the cycle
would be repeated. This wrap-around effect applies to all fields
including field 1 (Auto repeat pitch envelope) which can only take two
values: O (no auto-repeat) and 1 (auto-repeat). You may have noticed
that this is the opposite setting from bit 7 of the second parameter of
the ENvELOPE command as described in the User Guide. This is not an
error — it seems more sensible that '1' should mean Yes — do auto-
repeat’ while 0 means 'No, don't bother'. Change it if you don't agree.
The only field you cannot change is the envelope number in the
SOUND command — the reason for this should be obvious.

If you intend to use the ENVELOPE command at all you need a utility
such as this one to help you produce the desired results. The effects of
the various parameters on the overall sound are almost impossible to
predict accurately without much experience or prior calculation. The
purpose of this program is to remove much of the guesswork from this
otherwise difficult task.

10 REM ENVELOPE EDITOR
20 *FX 4,1

30 *FX12,4

40 @%=4

50 REPEAT

60 REPEAT

70 MODE 6

80 INPUT"Envelope number ? "env%
90 UNTIL env%>0 AND env%<5
100 PROCIinitial

110 PROCscreen

120 PROCHTillfields

130 REPEAT

140 F%=INKEY(0)

150 IF F%=68 PROCdisplay

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

g
370

pe "
38

390

400

410

420

430

440

450

460

470
tion "
480
490
500
510
520
530
540
550
560
570
580

Utility 17

IF F%=70 PROCfield

IF F%=80 PROCplay

IF F%=83 PROCstop

IF F%=138 PROCdec(field%)
IF F%=139 PROCinc(field%)
UNTIL F%=78 OR F%=81
UNTIL F%=81
PRINTTAB(0,23)

*FX 4,0
*FX12,0

END

DEFPROCinitial
base%=&8AE+16*env%
field%=0:min%=-255:max%=255
chan%=1:pitc%=100:durn%=100

ENDPROC

DEFPROCscreen

CLS

PRINT" ENVELOPE ";env%;" PARAMETER
PRINT" 1 Auto repeat pitch envelo
PRINT" 2 Step length (x 0.01 sec
PRINT" 3 PI1 "SPC(13)" 9 AA "
PRINT" 4 P12 "SPC(12)" 10 AD "
PRINT" 5 PI3 "SPC(12)" 11 AS "
PRINT" 6 PN1 "SPC(12)" 12 AR "
PRINT" 7 PN2 "SPC(12)" 13 AR "
PRINT" 8 PN3 "SPC(12)" 14 ALD ""
PRINT" SOUND PARAMETERS:™
PRINT" 15 Channel "SPC(8)" 16 Pitc
PRINT" Envelope 17 Dura
ENDPROC

DEFPROCTfillfields

FOR 1%=1 TO 18
PROCcurs(1%)
PRINT V%

NEXT

ENDPROC

DEFPROCcurs(Z%)
PROCread(Z%)

105

106 Utility 17

590 IF Z%=1 V%=1+((base%?2)>127)
600 IF Z%=2 V%=(base%?2) AND 127
610 IF Z%=15 V%=chan%
620 IF Z%=16 V%=pitc%
630 IF Z%=17 V%=durn%
640 IF Z%=18 V%=env%
650 IF V%>min%+255 V%=V%-256
660 PRINT TAB(xtab%,ytab%);
670 ENDPROC
680
690 DEFPROCread(Z%)
700 RESTORE
710 FOR J%=1 TO Z%
720 READ xtab%,ytab%,min%,max%
730 NEXT
740 V%=base%?Z%
750 ENDPROC
760
770 DEFPROCdisplay
780 vDU 28,0,24,39,20,12
790 PRINT "ENVELOPE ";env%;
800 FOR 1%=2 TO 14
810 PROCread(1%)
820 IF V%>max% V%=V%-256
830 PRINT ",";V%;
840 NEXT
850 PRINT""SOUND ":chan%:",";:env%:","
;pitc%;",";durn%
860 VDU 26
870 ENDPROC
880
890 DEFPROCfield
900 REPEAT
910 vDU 28,0,24,39,20,12
920 INPUT TAB(1,1)"Field? "field%
930 UNTIL field%>0 AND field%<18
940 VDU 12,26
950 PROCcurs(field%)
960 ENDPROC
970
980 DEFPROCplay
990 SOUND chan%,env%,pitc%,durn%
1000 ENDPROC
1010
1020 DEFPROCstop
1030 SOUND 16+chan%,0,0,1
1040 ENDPROC
1050

Utility 17 107

1060 DEFPROCInc(Z%)

1070 IF Z%=0 ENDPROC

1080 V%=V%+1

1090 IF V%>max% V%=min%

1100 PROCupdate

1110 ENDPROC

1120

1130 DEFPROCdec(Z%)

1140 IF Z%=0 ENDPROC

1150 V%=V%-1

1160 IF V%<min% V%=max%

1170 PROCupdate

1180 ENDPROC

1190

1200 DEFPROCupdate

1210 PRINTTAB(xtab%,ytab%)V%;

1220 IF Z%=1 base%?2=base%?2 EOR 128
1230 IF Z%=2 V%=V%+((base%?2)AND 128)
1240 IF Z%=15 chan%=V%

1250 IF Z%=16 pitc%=V%

1260 IF Z%=17 durn%=V%

1270 IF Z%>1 AND Z%<15 base%?Z%=V%
1280 ENDPROC

1290

1300 DATA 32,3,0,1,32,4,0,127,9,6,-128,
127,9,7,-128,127

1310 DATA 9,8,-128,127,9,9,0,255,9,10,0
,255,9,11,0,255

1320 DATA 29,6,-127,127,29,7,-127,127,2
9,8,-127,0,29,9,-127,0

1330 DATA 29,10,0,126,29,11,0,126,13,16
,0,3

1340 DATA 33,16,0,255,33,17,-1,254,13,1
7,0,16

How it works
The data for the four regular envelopes is stored at the end of Page 8
(the data for ENVELOPE 1 starts at &8co, each envelope having 16 bytes
to itself) and the parameters are read from, and written to, this area.
As soon as the ENVELOPE number has been selected, the SOUND
parameters are reset and the base address for the ENVELOPE
information is calculated. When the screen is displayed, the current
ENVELOPE information is filled in and the program enters a loop and
waits for you to press one of the relevant keys — each key has an
associated PrRoOcedure to carry out its processing.

At the end of the program is the DATA for each of the eighteen fields.

108 Utility 17

Each field has four entries and these are (in order): horizontal and
vertical screen co-ordinates of the field, then minimum and maximum
allowable values for that field. Each time a field is selected by pressing
F this information is read and used to update that field until a new
field is chosen.

Procedures

To restore the starting values for a new, or the first, envelope PROCinitial
is called followed by PROCscreen to build the display. The screen so
created is only a skeleton containing the fixed data — the rest of the
screen is completed by PRoCiillfields which does just that by reading the
relevant information from the Page 8 entry for the envelope and then
converting it to a form suitable for display.

Each of the above Procedures is only required during the
initialisation process for a particular envelope and is not needed
thereafter. The remaining PrRocedures may be called at various stages
of the processing.

One of the most important modules is PROCcurs which takes as its
sole parameter a field number in the range 1-18. The function of this
routine is to move the cursor to the correct place on the screen and
read the current value of that field into the variable vo (the v stands for
'value'). To help this PrRocedure read the data that describes the fields,
PRocread is called, again with the field number asits parameter. Since
the value of most of the fields is simply held at a displacement from
the base of the data for each envelope, this PROCedure can make a
fairly good attempt at reading the value; if it subsequently turns out to
be wrong, PrRoCcurs Will correct it. (If this sounds a bit hit-and-miss see
note on base% later).

Although the information on the screen is fairly close to what BAsiC
would expect, it is useful to see the current ENVELOPE and SOUND.)
statements displayed with their correct BAsiC syntax. Pressing D will
display the commands by calling PROCdisplay t0 set up a text window
and then to read the bytes from their Page 8 locations so that they
may be displayed on the screen. Once again the DATA statements are
used to ensure that each field is in exactly the right range as given in
the User Guide.

The most common activity in this utility is altering fields and
PROCfield is called each time you press F This Procedure vets the
field number to ensure it's in the range 1-18 and then calls PROCcurs to
move the cursor and to read the minimum and maximum allowable
values. The actual changes are done by PROCinc and PROCdec Which are
summoned in response to the cursor up and down keys respectively.
These Procedures update both the screen and Page 8 entries for the
field that is used as the parameter for the PrOCedure.

Utility 17 109

PROCplay and PROCstop are simple one-liners which start and stop the
sound. PROCplay can be pressed anytime and enables you to hear
the sound you have just established.

Finally, PROCupdate is called when the value of a field is altered — it is
used to update (what else?) the screen and Page 8 entries for the
envelope. Because of the way the program has been written, there is
no reason why you cannot update fields while the sound is playing,
especially if it has quite a long duration. This is very useful as it means
that tricky adjustments to the sound can be carried out on the spot
and it speeds up the process of designing both SoOuND and ENVELOPE
commands .

Variables

The current envelope number is stored as envos which retains this value
until you change envelopes with the N key. Similarly, at any time only
one field will be current and its number is stored in field% — this can
only be changed by pressing F to enter a new field number. Once the
envelope number has been selected, the data associated with that
envelope can be located in Page 8 and base% is used as a base for this
data — notice that it is actually located two bytes before the true start
of the data. This is very convenient for the program as the byte for
field n will then be located at (base% + n) where n is in the range 3-14.

We have already seen that each field has four constants associated
with it and stored in the DATA statements at the end of the program.
The first two items are xtab% and ytab% which are used by the screen-
handling Procedure to position the cursor in the right place when the
field is chosen. The remaining items are min% and max% and these
define the limits that the field can reach. If you attempt to select a
value outside one of these limits, then the value will be reset to the
other limit as though nothing had happened. We have used this
concept in several programs, where it has been called ‘wrap-around',
especially when used in the context of screen movement, and the
effect in this program is close enough to merit the same name.

The contents of the fields associated with the ENvELOPE command
are not held in any variables: instead they are read directly from the
envelope area in Page 8. However the parameters for the SOUND
command are held as program variables and channel, pitch and
duration are referred to as chan%, pitc% and durn% respectively.

Throughout the program, v contains the value of a field and z» is a
parameter passed into a PROCedure.

Extensions
The computer will recognise ENVELOPE numbers up to 16 and the
storage for those beyond 4 will overflow into page 9. Provided you do

110 Utility 17

not intend to use this area — it is used by BPuUT# and sPooL, and by
some of our utilities — then you can amend line 90 so that ENVELOPE
numbers up to 16 are acceptable.

Once you have set up some envelopes, you can display the relevant
BASIC statement and then write it down but this can be tedious,
especially if you have to copy 16 such statements off the screen. An
obvious amendment would be to include a save facility that *saved the
contents of the envelope areas so that they could be read back and
used by other programs. These programs would not need to execute
ENVELOPE Statements as that is equivalent to setting up the data in
Pages 8 and 9 and this would be done by a *LoAD.

Some envelope editing programs actually depict the pitch contour
as a function of time using a high resolution MODE to display the graph.
This looks impressive and does convey something of what the sound
will turn out like. Unfortunately, unless you have some experience of
this sort of graph, it may be found to be rather too confusing.
Furthermore, any particularly subtle effects would probably not show
up on the graph (though, to be fair, they would not be obvious from
the numeric data either). An example of such a graph is given in the
User Guide in the section on 'Making Sounds'.

However, because the routine is so short there is plenty of room to
add a graphics facility if required and anyway it would be an
interesting extension to program. One feature that we have already
noted will cause a few problems and that is that none of the
parameters is actually measured in time units. Instead, those
parameters feature as 'gradients' (or amount per step of time), and the
conversion between the two ways of representing the data is very
complicated. A worthwhile addition to the routine is to allow the
various 'stages' of the pitch contour to be entered in centi-seconds and
then to compute the corresponding ENVELOPE and SOUND parameters.
Until this is done, you can hardly consider drawing a graph of the
resulting ENVELOPE contour.

Utility 18:
Music processor

In the previous utility, we introduced a method of programming the
ENVELOPE command so that your computer could produce a wide
range of sound effects. We now turn to the problem of providing data
for those envelopes to work from. One common use of sound is to
provide background effects for games and, when used in this way, the
musical content is unimportant — humour and variety are usually the
order of the day. However, there is a more serious side to the use of
the music on the computer and in this the SOUND command takes on
a more important role.

‘Music' suggests discipline and form and persuading your computer
to play anything but the simplest tunes is surprisingly difficult. In fact, it
not so much the commands that cause the problems but finding data
with which to supply them. Like many of the most complex situations
that computers have to deal with, the solution to this one comes down
to data organisation.

Assuming that you are using the machine to play some already
existing tune, you obviously have to tell the micro what that tune is,
and as your computer cannot read music, there is already a
communication problem. A possible solution is to tell it what notes to
play, and how long to play them for, by means of a DATA statement. For
example:

10 REPEAT

20 READ pitch,length

30 SOUND 1,-15,pitch,length

40 UNTIL length=0

50 DATA 61,10,73,20,81,10,89,20,93,4
60 DATA 89,6,81,20,69,10,53,20,0,0

There are, however, a number of drawbacks to this simple approach.
The above code plays the first line of a famous tune but you would be
very hard pushed to guess what it was just by looking at the listing.
Editing or extending the tune is only possible through a laborious
process of converting note values into numeric data and then packing
them into DATA statements.

Another approach that is sometimes used is to store the information
in strings, say one per bar or line of the tune, and then to extract it at

112 Utility 18

play(ing)-time by using the command MiD$. The overall results
obtainable by these methods are adequate — we won't attempt to
better them — but the process is both time-consuming and error
prone.

This utility allows you to enter music data in a more meaningful way
so that it may be reviewed or edited quickly and easily. Once entered,
the data is converted to a special format used by this program and the
‘playbach’ routine given later. It is then stored ready to be recalled
later. Although the main purpose of the routine is to enable you to set
up music data for use in other programs, the utility is fun to use and, if
your music theory is a bit dodgy, you will also find it quite instructive.
At no time will you see notes represented by numbers (although they
are, really) — they will appear in standard musical notation or as keys
on a keyboard.

The next section explains what facilities are available and how they
are used but first, here is a summary of the program and its associated
routines.

Data is entered one bar at a time by using the keyboard as a 'piano’
to play the notes. As notes are entered they are placed in their correct
positions in the bar, which is displayed graphically, as is the
relationship between the piano and QWERTY keyboards. When the
bar is valid (musically, as opposed to aesthetically) it can be stored and
you proceed to the next bar. At any point you may edit a previously
saved bar, store the whole tune on tape or play it back without
affecting the data you have stored. When you break off like this you
can return to the tune and type in more information until it is finished.
Finally, when the tune is complete you should saveit on tape or disc.

Once you have stored the data it may be reloaded at a later stage by
this routine, although you will probably want to use the tune in your
own program and we show you how to do this. To replay the music
from within your program only requires a short routine which can be
copied from the main utility, although the exact format depends on
just what you want to do with the tune.

The method of storage allows each note the characteristics of pitch
and length while each bar has parameters which specify an ENVELOPE
and a register (octave) to be used for the duration of the bar. These
features can make up for the rather monotonous nature of computer
music by introducing variations into the sound.

I would like to thank John Rawcliffe for his help with the
development of this program.

Use
This is a very long program and it uses MODE 1 graphics, which occupy
most of the memory. To compensate for this we have split the

Utility 18 113

processing into two parts. The first part defines ENVELOPES and some
characters using the vbu 23 command. Once this has been done, the
code is no longer needed and so it can be overwritten by the main
program. Whether you use tape (PAGE=&E00) or diSCs (PAGE=&1900), you
only have to run the 'Header' program which sets PAGE to &1100 (which
Is appropriate to both tape and disc) and this then cHAINS the main
program.

When you first enter the program or after you have completed the
task you are doing, you will be confronted by the initial option screen.
This requires you to press a single key and the options are as follows :

A: Append data to the existing tune. You can only do this if there is an
existing tune, and you have not used up your 100 bar allowance.

C: Create tune. The previous tune is forgotten and you must enter the
time signature (either 3/4 or 4/4) for the new tune.

E: Edit existing tune. The unit of editing is a bar and you must enter
the number of the bar you wish to edit. You can do what you like to
the bar, but you can only enter the bar when the time values of the
notes and rests add up to the time signature. This validation is applied
to every bar you enter.

L: Load data from tape or disc. After you have given the title, the data
in memory is overwritten from the data on the file. This data will
previously have been saved by the utility.

P: Play the tune — a reasonably useful facility! Select the tempo from 1
(extremely slow) to 20 (extremely fast) and the tune will be played
with each bar number being displayed on the screen as the bar is

playing.

S: Save data to tape or disc. Your tune is stored ready to be used by
this, or your own program.

X: Exit the program.

Three of these facilities take you on to the main screen which consists
of a status line, a bar's worth of stave, and a 'keyboard' layout — at this
point, quite a number of keys become active. All of the following also
applies to editing, but that uses two additional keys so let us
concentrate firstly on creating and appending a single bar.

Whenever you press one of the 'keyboard' keys, the corresponding
note is played, taking into account the register (called 'octave shift),

114 Utility 18

ENVELOPE, and note length. The note is also added to the bar using
standard musical notation. When the bar is full, no further notes can
be added (neither will they sound) and you must press <RETURN> tO
enter the bar and proceed to the next one. In the case of 'Edit, you
are returned to the main screen.

S cycles the octave shift through the values O (low), 2 (middle) an 4
(high) and key V cycles the ENVELOPE numbers through 1-4. When the
full bar is entered, the current, or latest, values of the fields are stored
with the bar and will be used later when the bar is played. Key L is
used to vary the length of the note that will be entered when you
press a 'note’ key. The range of values is:

Dl dddd s

To enter a rest of the same value as the current note length, press the
space bar; the rest is indicated by placing the note on the middle line
and writing 'R’ over it. The effect of the <DELETE> key is to remove the
previous note from the bar and to re-position the cursor ready to
rewrite it.

Finally, to escape from this mode back to the option screen, just
press X when you are at the start of an empty bar. It is not possible to
exit unless you have tidied up all the loose ends.

When you are in the 'Edit' mode, <DELETE> removes the current
note — the one indicated by the edit arrow — and the cursor is not
moved. To step the cursor left and right, use the < and > keys
respectively; the movement wraps-around the bar. The only significant
differences between 'Edit' mode and the others are that you have to
move the cursor yourself and that you can enter an ‘untidy' bar
provided the note lengths all add up properly.

This covers the use of the routine, but you will want to know how to
retrieve the data yourself so that you can play the music in your own
program. Some details on how to do this are given in the Extension
section below.

10 REM MUSIC HEADER

20 ENVELOPE 1,3,0,0,0,0,0,0,126,-10,-
5,-2,120,60

30 ENVELOPE 2,2,0,0,-1,2,2,1,120,-10,
-5,-10,120,80

40 ENVELOPE 3,132,8,-8,0,1,1,0,60,-20
,0,-20,120,30

50 ENVELOPE 4,5,1,-1,1,1,1,1,30,-8,0,
-20,126,101

60 vDU 23,224,-1,-1,-1,-1,-1,-1,-1,-1

70 VDU 23,225,-2,-
80 VDU 23,226,-8
90 vDU 23,227,31,

100 vDU
110 vDU
120 vDU
60
130 VDU
124,60
140 VDU
126,60
150 vDU
160 VDU
170 VvDU
, 204
180 VDU
190 VDU

Utility 18

2,-2,-
,-8,-8,-
31,31,
23,228,12,14
23,229,12,12,

2

23,230,60,1

15,13,
12,1

4,-4,-4,-
23,231,60,124,204,204,204,204,
23,232,60,126,225,193,131,135,
23,233,60,60,60,60,0,0,0,0
23,234,-8,-4,6,3,3,3,6,60
23,235,12,28,60,60,108,108,204

23,236,60,6,3,3,3,6,-4,-8
23,237,204,204,-1,-1,12,12,12,

12
200
210

>L.

PAGE=&1100:CHAIN "MUSIC2"

1 REM 'MUSIC2'

10
20
30
40
50
60
70
80
)
90
100

MODE 1

DIM table 1010,temp 8,len(6)

*FX 4,1

PROCIinit

PROCsetup

REPEAT

VDU 4,26,12

PRINT'""Your choice: (A,C,E,L,P,S,X

PROCvet("ACELPSX"):PRINT G$:f%=F%
IF f%=1 AND nobars%>1 PROCappend

110
120
130
140
150

IF %=

IF %=
IF %=

IF %=
IF %=

2 PROCcreate

3 AND nobars%>1 PROCedit
4 PROCload

5 AND nobars%>1 PROCplay
6 AND nobars%>1 PROCsave

160
170
180
190
200
210
220
230
240

UNTIL f%=
*FX 4
MODE 6
END

DEFPROCIinit

note$="":r1$=""

vbu 19,1,5,0,0,0,19,2,5,0,0,0
line$="1100000000000000000007770"

115

116 Utility 18

250 shrp$=".#.#. #.#.#. . #.#. . #.#.#.."

260 tpos$="AABBCDDEEFFGHHIIJKKLLMMNG"

270 keys$="Q2W3ER5T6Y7UI900P@"[_"+CHR
$136

280 keys$=keys$+CHR$139+" "+CHR$127+CH
R$13+"LVX,.S"

290 FOR 1%=1 TO 16:READ K%:note$=note$
+CHR$K% :NEXT

300 DATA 228,10,8,230,229,10,8,230,229
,10,8,231,32,10,8,232

310 FOR 1%=0 TO 6:READ len(1%):NEXT

320 DATA .5,.75,1,1.5,2,3,4

330 FOR 1%=1 TO 14:READ K%:r1$=r1$+CHR
$(223+K%):NEXT

340 DATA 1,3,4,3,4,2,1,3,4,3,4,3,4,2

350 r1$=r1%$+rl$

360 r2$=STRING$(14,CHR$224+CHR$225)

370 ENDPROC

380

390 DEFPROCcreate

400 PRINT™'Time (3)/4 or (4)/4 ?";

410 PROCvet("34"):PRINT G$:sig=F%+2

420 FOR 1%=0 TO 996 STEP 4:table!l1%=0:
NEXT

430 PROCsetup

440 PROCappend

450 ENDPROC

460

470 DEFPROCsetup

480 nobars%=1:s%=2:env%=1:tempo=13:0ct
%=0

490 ENDPROC

500

510 DEFPROCappend

520 bar%=nobars%

530 PROCkeys

540 REPEAT

550 PROCvet(keys$)

560 IF F%<26 PROCnewnote

570 IF F%=26 AND ptr%>1 PROCdelete

580 IF F%=27 AND FNfull PROCDbarfull

590 IF F%=28 PROCnotelength(1)

600 IF F%=29 PROCenv(1)

610 IF F%=33 PROCoct(1)

620 UNTIL F%=30 AND ptro%n=1

630 table?(bar%*10)=255

640 ENDPROC

650

Utility 18

660 DEFPROCkeys
670 VDU 26,12,4,23,1,0;0;0;0;
680 PRINT " BARS BAR ENVELOPE N
OTE OCTAVE"
690 PRINT " FREE NUMBER NUMBER LE
NGTH SHIFT"
700 PRINT TAB(0,22)
710 FOR 1%=1 TO 3:PRINT TAB(6)r1$:NEXT
720 FOR 1%=1 TO 4:PRINT TAB(6)r2$:NEXT
730 VDU 5:GCOL 0,1
740 MOVE 240,315:PRINT"23 567 9
o ~\"
750 MOVE 204,130:PRINT"QWERTY U I
OP*| ™
760 MOVE 50,580:VDU 235
770 MOVE 50,548:VDU 237
780 MOVE 50,680:VDU 231+sig
790 MOVE 50,648:VDU 233+sig
800 PROCstave
810 ENDPROC
820
830 DEFPROCstave
840 ptr%=1
850 vDU 4,28,3,20,39,6,12,26
860 GCOL 0,3
870 FOR 1%=500 TO 692 STEP 48
880 MOVE 100,1%:DRAW 1200,I%:NEXT
890 MOVE 100,500:DRAW 100,692
900 MOVE 1200,500:DRAW 1200,692
910 PRINT TAB(2,5);101-nobars%;" "
920 PRINT TAB(9,5);bar%
930 PROCenv(0)
940 PROCoct(0)
950 PROCnotelength(0)
960 ENDPROC
970
980 DEFPROCnewnote
990 IF FNfull ENDPROC
1000 IF len(s%)+tot>sig ENDPROC
1010 IF nobars%<100 PROCupdate
1020 ENDPROC
1030
1040 DEFPROCdelete
1050 ptrY%=ptr%-2"D%
1060 L%=FNnote(ptr%) DIV 32
1070 P%=FNnote(ptr%) MOD 32
1080 PROCdeletenote
1090 K%=ptr%

117

118 Utility 18

1100 REPEAT:K%=K%-1

1110 UNTIL FNnote(K%)

1120 D%=FNnote(K%) DIV 64
1130 ENDPROC

1140

1150 DEFPROCbarfull

1160 table?(bar%*10-1)=0ct%
1170 table?(bar%*10)=env%
1180 bar%=bar%+1

1190 nobars%=nobars%+1
1200 PROCstave

1210 ENDPROC

1220

1230 DEFPROCnotelength(Z%)
1240 vDU 4,23,1,0;0;0;0;

1250 IF Z% s%=(s%+1) MOD 7
1260 K%=s% DIV 2

1270 PRINT TAB(28,4)MID$(note$,4*K%+1,4

1280 IF s% AND 1 K%=233 ELSE K%=32
1290 PRINT TAB(29,5)CHR$K%

1300 ENDPROC

1310

1320 DEFPROCenv(Z%)

1330 vDU 4,23,1,0;0;0;0;

1340 IF Z% env%=env% MOD 4 +1

1350 PRINT TAB(18,5);env%

1360 ENDPROC

1370

1380 DEFPROCoct(Z%)

1390 vDU 4,23,1,0;0;0;0;

1400 IF Z% oct%=(oct%+2) MOD 6

1410 PRINT TAB(35,5);0ct%

1420 ENDPROC

1430

1440 DEFPROCupdate

1450 P%=F%:L%=s%

1460 PROCdraw

1470 PROCpn

1480 table?((bar%-1)*10+ptr%)=32*L%+P%
1490 ptr%=ptr%+2"D%

1500 ENDPROC

1510

1520 DEFPROCplay

1530 REPEAT

1540 REPEAT

1550 CLS

1560 INPUT""Tempo: 1=Slow, 20=Fast "tem

po
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690

1700
1710
1720
1730
1740
1750
1760
mpo
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010

Utility 18

UNTIL tempo>0 AND tempo<21
tempo=22-tempo

FOR bar%=1 TO nobars%-1
oct%=FNnote(9):env%=FNnote(10)
PRINT TAB(0,9)"Playing bar ";bar%;
FOR 1%=1 TO 2*sig

T%=TIME

L%=FNnote(1%) DIV 32
P%=FNnote(1%) MOD 32

IF P% PROCpn

REPEAT UNTIL TIME>T%+tempo
NEXT 1%,bar%

PRINT'"Play it again, (Sam)? Y/N

PROCvet("YN")
UNTIL F%=2
ENDPROC

DEFPROCpPn
IF P%=25 V%=0 ELSE V%=env%
SOUND 1,V%,24*0ct%+4*P%,len(L%)*te

ENDPROC

DEFPROCedit

REPEAT

PRINT'"Edit which bar";

INPUT bar%

UNTIL bar%>0 AND bar%<nobars%
oct%=FNnote(9):env%=FNnote(10)
PROCkeys

FOR 1%=1TO 8

L%=FNnote(1%) DIV 32
P%=FNnote(1%) MOD 32

IF P% PROCdraw:ptr%=ptr%+2*D%
NEXT

ptr%=1

PROCarrow

REPEAT

L%=FNnote(ptr%) DIV 32
P%=FNnote(ptr%) MOD 32
PROCvet(keys$)

IF F%<26 PROCinsert

IF F%=28 PROCnotelength(1)

IF F%=29 PROCenv(1)

IF F%=31 PROCcursor(-2)

IF F%=32 PROCcursor(0)

119

120

2020
2030
2040
2050
2060
2070
2080
2090
%
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480

Utility 18

IF F%=33 PROCoct(1)

IF F%=26 AND P% PROCdeletenote
UNTIL F%=27 AND FNfull
C%=1:temp!1=0:temp!5=0

FOR 1%=1TO 8

K%=FNnote(1%) DIV 64

P%=FNnote(1%) MOD 32

IF P% temp?C%=FNnote(1%):C%=C%+2"K

NEXT

FOR 1%=1 TO 8
table?((bar%-1)*10+1%)=temp?1%
NEXT

table?(bar%*10-1)=0ct%
table?(bar%*10)=env%
ENDPROC

DEFPROCcursor(K%)
PROCarrow
ptr%=(ptr%+K%+8) MOD 8 +1
PROCarrow

ENDPROC

DEFPROCarrow

GCOL 3,3

MOVE 100+120*ptr%,400
VDU 5,94

ENDPROC

DEFPROCinsert
IF P% PROCdraw
PROCupdate
ptr%=ptr%-2"D%
ENDPROC

DEFPROCdeletenote
PROCdraw
table?((bar%-1)*10+ptr%)=0
ENDPROC

DEFPROCsave

PROCtitle

X=OPENOUT(title$)

BPUT# X,sig:BPUT# X,nobars%
REPEAT

V%=table?K%:BPUT# X,V%:K%=K%+1
UNTIL V%=255

CLOSE# X

2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640

2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810

Utility 18
ENDPROC

DEFPROCIoad

PROCtitle

X=OPENIN(title$)

Sig=BGET# X:nobars%=BGET# X
REPEAT

V%=BGET# X:table?K%=V%:K%=K%+1
UNTIL V%=255

CLOSE# X

ENDPROC

DEFPROCtitle

K%=1

REPEAT

PRINT'"Title (max 10 characters) "

INPUT title$
UNTIL LENtitle$>0 AND LENtitle$<11
ENDPROC

DEFPROCvet(A$)

REPEAT

*FX 21,0
G$=GET$:F%=INSTR(A$,G$)
UNTIL F%>0

ENDPROC

DEFPROCdraw

VDU 5:GCOL 3,3

dx%=120*ptr%
dy%=24*(ASCMID$(tpos$,P%,1)-64)
In%=48*VALMID$(line$,P%,1)

IF In% MOVE 90+dx%,400+In%:DRAW 14

0+dx%,400+In%

2820
2830

GCoOL 3,1
IF MID$(shrp$,P%,1)="#" MOVE 60+dx

%,440+dy%:PRINT"#"

2840

IF (L% AND 1) MOVE 140+dx%,445+dy%

VDU 233

2850
T"R"
2860
2870
2880
2890
2900
2910

IF P%=25 MOVE 100+dx%,575+dy%:PRIN

MOVE 100+dx%,472+dy%
D%=L% DIV 2

PRINT MID$(note$,4*D%+1,4)
ENDPROC

DEFFNfull

121

122 Utility 18

2920 tot=0

2930 FOR 1%=1 TO 8

2940 L%=FNnote(1%) DIV 32
2950 P%=FNnote(1%) MOD 32
2960 IF P% tot=tot+len(L%)

2970 NEXT
2980 =(tot=sig)
2990

3000 DEFFNnote(Z%)=table?(10*bar%-10+Z%

How it works

Once you have chosen a facility from the option screen, control is
passed to one of the PrRocedures described in the next section. It is at
the next level down that the real flow of the program is established
and, although each procedure is quite simple in itself, the interaction
between them is complicated and you should study the program
listing carefully, especially if you intend to amend the routine. At this
level, the most important feature is the way that the data is stored — in
fact, the whole of the program is affected by the format of this data. In
many respects, the most important decision when designing a
program such as this is 'How should the data be represented within
the computer? A good choice will simplify much of the work that
follows. The contents of the bars are stored in a table 1010 bytes long,
and each bar occupies exactly 10 bytes. The data is terminated by a
'bar' whose last byte is &FF (decimal 255) and so there is room for 100
bars of data in the table. Because the bars are a fixed length, it is easy
to calculate the start address of any one by using the formula:

start address = table + 10 * bar number — 9

and this is useful for editing the bars.

Each bar can contain a maximum of eight notes and these occupy
the first eight locations in the bar; the remaining two bytes contain the
octave shift and envelope numbers to be used for playing that bar.
This is shown in the diagram below:

position within bar

1 2 3 4 5 6 7 8 9 10

- 8 notes p- Oct |env

The data for each note is extracted from the byte for that note like
this:

Utility 18 123

Data byte for note = &B2 = 10 10010

Pitch

YN

Dotted note flag }

Note length

(1 = First note on keyboard)

Thus this note is F in the second octave and its length is a dotted
minim. We have seen that a setting of &FF is used to indicate the end
of the tune and two other special settings are used. These are: O,
which represents no note (this is not the same as a rest) and a pitch
value of 25 which means that the note is a rest, with the length being
indicated in the usual way.

When you savethe tune to your filing system, it is this table that gets
stored and if you want to write your own playing routine, it will first
need to read the table back in again. The data has been designed in
this way so that editing is easy — it is possible to pack the data before it
is stored and expand it again as you reload it; unless you have some
special reason for doing so it is probably not worth the effort involved.

Procedures
The list below gives the cast (in order of appearance) and explains the
function of each pProcedure.

PROCInit is called once to set up some strings and a few variables that
retain their values right through the run of the program. PROCcreate iS
entered when you select the ‘create’ option at the start of the program.
The table is cleared to O's and various pointers ate reset to indicate the
first bar. PROCappend is then called to allow you to enter the bars.

PROCsetup. This one-liner sets up default values for replaying the music

124 Utility 18

in case you do not set them up yourself.

PROCappend. This is the routine which allows you to enter the music. It
checks for all the acceptable key-presses and calls PROCedures to
deal with each one. You can only leave this routine by pressing X (exit)
when you are at the start of an empty bar. You are not allowed to
leave until the music has been tidied up. Similarly, the procedure to
enter the note and play it will only do so if there is room for it in the
bar.

PROCkeys draws the static part of the screen —i.e. the heading lines and
the piano keyboard. This is only needed once while you are creating a
tune as the bar itself is drawn by:

PROCstave. The bar lines are cleared and redrawn ready for a new bar
to be entered.

PROCnewnote. Checks to see if the note you have just played can be
fitted into the bar. If soit is entered by calling PROCupdate. PROCdelete
will delete the previous note in the bar and reset the various pointers.

PROCbarful. When you press <RETURN> to enter a full bar, this
PROCedure stores the displayed envelope and octave values with that
bar and updates pointers to indicate the next bar. The new stave is
drawn by calling PROCstave.

The next three Procedures are all responsible for updating parts of the
heading line. PROCnotelength, PROCenv and PROCoct Will all print to the
screen when called, but will only update the field in question if the
parameter is non-zero. To print the field without updating it, the
PROCedure is called with the parameter set to zero. The PRocedures
are called in response to the L, V and S keys respectively.

PROCupdate enters the new note on to the screen, into your ears (it
plays it) and into the table. The pointer to the current note is then
updated.

PROCplay. This routine is called when you want to replay the tune. It is
this piece of code that you will need to transfer to your own program
so that it can play the tune. In fact you do not need all of the code,
and about half of it can be omitted — more on this later.

PROCpn plays a note.

Utility 18 125

PROCedit. As the method of editing is different from that of entering
notes it requires its own Procedure, and this is it. When you select the
number of the bar you want to edit, it is displayed with a pointer to
indicate the note you are editing. To amend the details in the header
line, the normal pProcedures are called, but when you enter a note, it
will be inserted at the cursor position and overwrite the note (if any)
that was there. The editing has been designed to allow you to enter
anything, anywhere in the bar. However, you cannot enter the bar (by
pressing <RETURN>) until it is valid; that is, the note lengths must add
up to the time signature. When you move to a new note by pressing
the < and > keys, PROCcursor is called to move the arrow.

PROCcursor overwrites the previous arrow and redraws it in its new
position, while. . .

PROCarrow iS called to do the actual printing.

PROCIinsert replaces the note at the cursor by its new value and plays it.
This routine does not update the cursor position.

PROCdeletenote. In the same way that the previous routine added a note
without updating pointers, this Procedure will remove the note at the
cursor position.

PROCsave requires you to enter a title for your piece of music and then
SAVES it to the current filing system. Similarly:

PROCload asks you for the title of a tune which it will then locate and
LOAD.

PROCtitle is used by both of the previous routines to get a title between
one and seven characters long.

PROCvet IS an important routine for checking all single key inputs. The
parameter contains a list of valid replies and the routine exits when
one has been selected. Variable F contains the position of the reply in
the parameter string.

PROCdraw enters the notes on to the stave. As the data is EOR'ed on to
the screen, it can be erased by calling this PrRocedure again without
updating any pointers. The routine is messy because it has to deal with
a number of different situations, such as rests, sharps and lines above
or below the normal stave. (Why does music have to be so
complicated?)

126 Utility 18

Finally, two functions are defined; FNfull returns the value TRUE or
FALSE depending on whether or not the current bar is full. FNnote reads
a note value from the table. The note number within the bar is used as
the parameter for the function, while the bar is taken to be the current
bar. FNfull also serves one other purpose and that is to count the total
length of all the notes and rests in the bar. This total is held in variable
tot.

Variables
The list below shows the purpose of each of the important variables
used by the program.

line$ — To determine whether the note should be drawn outside the
normal stave and with its own line.

shrp$ — To determine whether the note you enter should be drawn
with a '#' sign before it.

tpos$ — TO convert each note to its true screen position (vertically).

Each of the above contains one entry for every note on the keyboard,
which is accessed via the MID$ command.

keys$ — This string is used to validate all key presses from the main
screen.

note$ — Contains the data for drawing the notes on the screen. Each
note consists of two user-defined characters and it is printed by
placing the first, following it with cursor down, cursor left and then
printing the second. Each of the four notes comprises four consecutive
bytes in this string.

len(6) — Holds the note lengths of all seven possible note types.

ri$ and r2$ are used to draw the piano keyboard. Each string
contains the data for one of the seven (but only two different) screen
lines that the keyboard occupies.

sig— The time signature of the current tune. It equals either 3 or 4.
nobars% — The number of bars in the piece (to date).

s% — The length of the note that will be entered when you are
creating or editing a tune. This can be altered by pressing L.

env% — The ENVELOPE used to play the current bar.

oct% — The number of octaves by which the notes of the bar will be
shifted (up) when the bar is played.

tempo — An indication of the speed of the music when it is played.

bar% — The number of the current bar.

pw% — The screen position of the next note to be entered. It takes
values from 1 to 8 inclusive.

L% and P — Always appear together and are respectively the length

Utility 18 127

and pitch of the current note (the one being played or entered). These
values are not absolute as they are extracted from a byte in the table.
Before the note is played they have to be further converted.

D% — the duration of the current note, ignoring the fact that it might
be dotted. It is used to keep the screen in order.

tempo — After the bar has been edited, it can end up in a real mess
and so it is copied to a temporary storage area, then tidied up and
copied back to the table. Next time you see the bar it will be neat and
tidy again. This storage area is the eight bytes following temp.

A few other variables appear but their use should be reasonably
obvious as most of them appear in just one PrRocedure so that they are
effectively LOCAL.

Extensions

This routine is a bottomless pit into which you can throw any number
of ideas — the only limitation being the amount of memory available,
and music is a sufficiently rich subject to ensure that you will
eventually reach that limit. The utility presented here was written to
help you create tunes for future use, rather than asan end in itself. It is
very easy to get carried away and include all sorts of features that any
eventually get too subtle for the routine that has to play the music!

Here are just a few ideas you might like to incorporate into the
program, although this list is by no means definitive:

More envelopes, more time signatures, more note types, more
voices, a bass clef, codas, rallentando, tied notes, portamento, auto-
harmonies, a compose facility, key changes, phrasing, trills, dynamics,
expression, and so on.

That little lot should keep you busy for a while! Actually, the last
item should serve to remind you that computers are not really suitable
for reproducing serious music and that we will never achieve perfect
results however much we add to the routine.

The 'playbach’ (groan!) routine below shows how you can read the
data created by this utility and use it in your own program.

As you will see, the routine has been pirated from the main program
and modified only slightly — notice though, how the data is loaded in
lines 90-110.

Depending on the circumstances, it is possible to simplify the
routine even more. If the tune is only played once, then you do not
need to have PROCplay as a PROcedure, and the variable tempo can be
replaced by a constant.

10 REM PLAYBACH
20 REM YOU WILL HAVE TO SET UP YOUR

128 Utility 18

30 REM ENVELOPES BEFORE YOU RUN THIS

40 MODE 6

50 HIMEM=&5800

60 DIM len(6)

70 FOR 1%=0 TO 6:READ |

80 DATA .5,.75,1,1.5,2,3,4

90 table=&5801

100 *LOAD "ANNA-MAG" 5800

110 sig=table?-1:nobars%="2?table

120

130 PROCplay(16)

140 END

150

160 DEFPROCplay(tempo)

170 tempo=22-tempo

180 FOR bar%=1 TO nobars%

190 octave%=FNnote(9):env%=FNnote(10)

200 FOR 1%=1 TO 2*sig

210 T%=TIME

220 L%=FNnote(1%) DIV 32

230 P%=FNnote(1%) MOD 32

240 IF P% PROCpn

250 REPEAT UNTIL TIME>T%+2.5*tempo

260 NEXT 1%,bar%

270 ENDPROC

280

290 DEFPROCpn

300 IF P%=25 V%=0 ELSE V%=env%

310 SOUND 17,V%,24*octave%+4*P%,len(L%
)*tempo

320 ENDPROC

330

340 DEF FNnote(Z%)=table?(10*bar%-10+Z
%)

en(1%):NEXT

129

Utility 19:
Character definer

Description
Oh no! Not another vbu 23 character definer!

It had been my original intention to omit this particular routine, but
as someone pointed out, you can hardly write a book of Electron
utility programs and not include a version of this most popular of all
utilities. Actually, the fact that this program has been written so many
times illustrates that there is a need for utility programs on advanced
computers where you can only get the best out of the machine by
inviting it help you do so.

As everyone is aware, the vbu 23 command enables you to create
your own user-defined characters within an 8x8 matrix of dots (it has
many other uses as well but let's not digress). Each line of the
character is stored as one byte and the eight bits of that byte
determine the configuration of the dots on that line. If you study the
explanation of *Fx20 in the User Guide you will see that any character
in the range 32-255 can be redefined, provided that memory is set
aside for each block of 32 characters you wish to edit. This is the
approach we use and this utility enables you to redefine any character
you like. Much fun can be had in swapping the alphabet for new
characters!

After you have chosen an ASCIlI character number, the current
definition of that character is reproduced on a large grid and it can
then be edited in a number of ways. Also displayed are the images of
that character in other MODES so that you have a good idea of what it
will look like when displayed. At any time you may chose the option
to display the entire character set so that you can see how your
creative efforts are progressing. The various facilities offered by the
program are listed in the next section.

Unlike some versions of this utility, it is only possible to create one
character at a time, as most of the screen area is fully occupied.

Use

If you only want to experiment with the 'official' free characters (that
IS, those in the range 224-255), then you should delete line 50 and
RUN the program in the normal way. However, to use the program as
written, you must first set PAGE=PAGE+&600 before the program is
LoaDed. The free space between the usual value of PAGE and your

130 Utility 19

program is used to hold the new definitions of characters with ASCII
codes between 32 and 223.

Once the program is running, enter the number (32--255) of the
character you want to edit. The current definition for that character is
displayed (in three formats) and the following keys now come into
effect :

Cursor keys: These keys move the cursor around the grid. The
movement includes auto-repeat and full wrap-around.

Space bar: This is used to alter the status of the 'dot' at the cursor
position, so that a dot becomes a space, and vice versa. The cursor is
moved one place to the right so that the next dot can be amended.

D: Displays the full character set. Each line contains 32 characters,
which correspond to a full Page in the reserved area.

E: Empty the grid. The entire grid is wiped ready for you to edit the
character.

F. Fill the grid. If you are going to define a character that contains
more dots than blanks, it makes sense to start off with the display full
of dots so that you only need to insert the blanks.

I: Invert the status of each bit within the grid so that dots become
spaces and spaces become dots. If you do this with the letters of the
alphabet you will achieve the 'reverse field' effect which is included as
standard on some compulters.

N: Proceed to edit a new character. If you take this option, the
character that you have just edited is not saved and will be lost. If you
mean to save a character, you must specifically say so.

Q: Quit the program.

S: Save the character currently on display. The vbu command required
to set up that character is displayed on the bottom line of the screen
and then executed. Following this, the cursor is returned to the grid to
allow further editing.

While the character is being amended, the MODE 1 and MODE 2
versions are also updated so that all three images show the same
character.

Utility 19

10 REM (ANOTHER) VDU 23 CHARACTER DEF

INER

20 MODE 1
30 DIM A%(7)
40 *FX 4,1
50 REM*FX20,6
60 REMOVE ABOVE LINE UNLESS PAGE AUGM
ENTED BY &600

70 REPEAT

80 REPEAT

90 CLS

100 INPUT'"ASCII code "char%
110 UNTIL char%>31 AND char%<256
120 PROCscreen

130 PROCreaddots

140 PROCTilI(255,0)

150 REPEAT

160 F%=INKEY (0)

170 IF F%=32 PROCTflip

180 IF F%=68 PROCdisplay

190 IF F%=69 PROCHTill(0,0)

200 IF F%=70 PROCIill(0,255)
210 IF F%=73 PROCIill(255,255)
220 IF F%=83 PROCsave

230 IF F%=136 PROCmove(-1,0)
240 IF F%=137 PROCmove(+1,0)
250 IF F%=138 PROCmove(0,+1)
260 IF F%=139 PROCmove(0,-1)
270 UNTIL F%=68 OR F%=78 OR F%=81
280 UNTIL F%=81

290 CLS

300 *FX 4,0

310 END

320

330 DEFPROCscreen

340 GCOL 0,2

350 PRINT TAB(0,6)"MODES 1,4,6:
MODES 2,5:""

360 PRINT'™D — Display all"

370
380
390
400
410
420
430
440
450

PRINT'"E — Empty"
PRINT'F — Fill"
PRINT™I — Invert"
PRINT'"N — New Char"

PRINT'™Q — Quit"

PRINT'™S — Save char"

FOR 1%=592 TO 1104 STEP 64
MOVE 1%,208:DRAW 1%,720
NEXT

131

132 Utility 19

460 FOR 1%=208 TO 720 STEP 64

470 MOVE 592,1%:DRAW 1104,1%

480 NEXT

490 ENDPROC

500

510 DEFPROCreaddots

520 LOCAL A%,X%,Y%

530 A%=10:X%=&80:Y%=0

540 ?&80=char%

550 CALL &FFF1

560 FOR 1%=0 TO 7

570 A% (1%)=1%7&81

580 NEXT

590 ENDPROC

600

610 DEFPROCTilI(U%,V%)

620 FOR Y%=0 TO 7

630 A%(Y%)=(A%(Y%) AND U%) EOR V%

640 FOR X%=0 TO 7

650 PROCpixels

660 NEXT,

670 X%=0:Y%=0

680 PROCmove(0,0)

690 ENDPROC

700

710 DEFPROCpixels

720 K%=828-4*Y%

730 IF A%(Y%) AND 2~(7-X%) GCOL 0,1 EL
SE GCOL 0,0

740 MOVE 596+64*X%,662-64*Y %

750 MOVE 596+64*X%,716-64*Y %

760 PLOT 81,56,-56

770 PLOT 81,0,56

780 PLOT 69,464+4*X%,K%

790 PLOT 69,470+4*X%,K%

800 PLOT 69,1040+8*X%,K%

810 PLOT 69,1044+8*X%,K%

820 PLOT 69,1048+8*X%,K%

830 ENDPROC

840

850 DEFPROCmMove(U%,V%)

860 X%=(X%+U%+8) MOD 8

870 Y%=(Y%+V%+8) MOD 8

880 VDU 31,2*X%+19,2*Y%+10

890 ENDPROC

900

910 DEFPROCflip

920 A%(Y%)=A%(Y%) EOR 2" (7-X%)

Utility 19

930 PROCpixels
940 PROCmove(+1,0)
950 ENDPROC

960

970 DEFPROCdisplay
980 CLS
990 PRINT TAB(13)"Character set"""

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

FOR 1%=32 TO 224 STEP 32
PRINT'"TAB(4);

FOR J%=0 TO 31

IF 1%+J%=127 VDU 32 ELSE VDU [%+J%
NEXT,

PROCrastinate

ENDPROC

DEFPROCsave
PROCvducodes
VDU 23,char%,A%(0),A%(1),A%(2),A%(

3),A%(4),A%(5),A%(6),A%(7)

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
tinue";
1270
1280

PROCmove(0,0)
VDU 7
ENDPROC

DEFPROCvducodes
VDU 28,0,29,39,28,12

PRINT "V.23,";char%:;
FOR [%=0 TO 7
PRINT",";A%(1%);
NEXT

VDU 26

ENDPROC
DEFPROCrastinate

*FX 15,1
PRINT TAB(8,31)"Press SPACE to con

REPEAT UNTIL GET=32
ENDPROC

How it works
Once you have chosen the character number, its current definition is
read into an array using an oswoRD call with A=10. The character is
displayed in its various formats and the program enters a loop from
which a procedure is called to perform the selected option. To exit
the loop you must type Q, which terminates the program.

133

134 Utility 19

Procedures

Once you have chosen a character number, PROCdisplay iS called to
create the initial screen — this Procedure will not be called again until
a new character is displayed. Similarly, PROCreaddots is called only once
to fetch the current status of the selected character.

PROCIill is used to reset the character definition, whatever the nature
of the redefinition is. To do this, it takes two parameters that are
ANDed and eored with the eight bytes that define the character to
compute the new bytes, and hence the new display. This may seem
like a strange way of setting the bits but it is actually very sensible; in
fact, this technique is used by the Electron itself when it is analysing
certain OsSBYTE. calls. The advantage of the method is that it allows any
bit, or combination of bits, to be set or unset within a byte. Once the
bytes that define the character have been amended, this PROCedure
calls PrOCpixels to reproduce the effect on the screen.

Whenever a cursor key is pressed, PROCmove is called with two
parameters (across and down) to shift the cursor. This routine may also
be called by others to restore the cursor to the grid area.

The spacebar controls the status of each dot and to do so it calls
PROCTip SO nhamed because it flips the status of the bit (i.e. dot) at the
cursor. If you find it annoying that the cursor is automatically stepped
to the right, delete the call to PROCmove at line 940. PROCdisplay and
PROCsave are used to perform their eponymous actions in response
to the D and S keys respectively. When PRoCsave is called, its first
action is to call PROCvducodes wWhich gives the vbu 23 command to
create that character. vbu has been abbreviated to v., which is
acceptable to Basic, so that the command will fit on to one line.

Finally, PROCrastinate (geddit?) is the delay routine which only returns
after you have pressed the spacebar. Nice piece of coding — shame
about the joke!

Variables

The most important variable used by the routine is the array A%(7); it is
into this array that the eight bytes defining the character are read.
Subsequent editing will amend the contents of the array so that it is
consistent with the character displayed on the screen at all times. The
ASCII code of the character being amended is referred to throughout
as char%.

In common with many programs that move items around the
screen, x% and Y% are used to indicate the screen co-ordinates of the
cursor. In fact the values are not absolute but relative to the top left-
hand corner of the grid area: these two variables effectively define the
position within the grid rather than on the screen.

Utility 19 135

Extensions

Since this is the most written utility of all, it is hardly surprising that
there are numerous variations on it. Some of these allow rotation and
reflection of the displayed shape (although personally, | think even
'Invert' is going a bit far) and many allow multiple characters to be
defined, say up to a 4*3 block. The latter addition is a useful one if
you intend to build very large shapes from several characters — you
can then use the screen almost as a 'sketch-pad' to create them.

One very useful addition that is easily included (have a go at this
yourself) is to allow the contents of the character storage areas to be
SsAVEd. Because the areas are separated, they should be saved in two
parts: one page from &coo (for characters 224-255) and six pages from
the original value of PAGE (for the rest). These commands will do the
job:

*SAVE C00+100
*SAVE E00+600

Your program should also include a procedure that can *LOAD the
areas back for future use.

If you like the idea of 'exploding’ the character set but do not want
the luxury of of being able to redefine every character, then you may
wish to use a lower *Fx20 command at line 50 — say *Fx20,1. If you look
at the write-up on this command, you will see that this only requires
one page to be reserved instead of the six we have used.

136

Utility 20:
Screen save

Description

Having created a complex screenful of graphics, you may wish to save
the contents of the screen to tape or disc and this short routine
enables you to do just that. This is particularly convenient with discs
because a picture can often be Lowed from disc much quicker than it
can be drawn in Basic. Although a cassette takes longer to Low, the
value of being able to savE a screen — either complete, or so that it
may be further developed — is immense.

Two versions of the utility are presented: a function key version that
works in immediate mode, and a PRocedure that can be called from
within a BAsIC program. The utility is in two parts: the SAVE routine
itself, and a corresponding LOAD routine.

In MODE 0, 1 or 2, the routine has to save 20000-odd bytes and this
takes some time — of the order of three seconds for disc systems, and
four and a half minutes for cassettes.

Use
Having established the screen following a MODE change or a CLs, it is
important to ensure that it does not scroll before it is saved. To savethe
screen from within a program, include PROCsave with that program and
call it when required. If you are working in 'immediate’ mode, simply
press function key f0. In either case, operate the cassette recorder as
soon as the SAVE operation begins; listen for the relay to click — you
will not get any tape messages.

Whether the screen is saved using PROCsave or key fO, it can be
reloaded by either PROCIoad or function key f1, as appropriate.

10 REM SAVE/LOAD SCREEN BY KEYS OR PR
OoCs

20

30 *KEYO |O|\|@|@|@|@0OS."S. S "+STR$~
H.+" 7TFFF"|M|M|Z|G

40 *KEY1 |O|\|@|@|@|@*L."S"|M|M|Z|G

50

60 END

70

80 DEFPROCsave

90 vDU 15,28,0,0,0,0

Utility 20 137

100 OSCLI"SAVE S "+STR$~HIMEM+" 7FFF"
110 VDU 26,7

120 ENDPROC

130

140 DEFPROCIload

150 VDU 15,28,0,0,0,0

160 *LOAD S

170 VDU 26,7

180 ENDPROC

How it works

The screen area is treated as a section of memory and is simply
*sAVEd. In the Block Move utility, we saw that the memory allocated to
the screen starts at HIMEM but HIMEM does not necessarily correspond
to the top left-hand corner of the screen display. This is because of the
hardware scrolling used by the computer. The (whole) screen will
always be saveed, but on reLOADINg, it will appear to be displaced if a
scroll has taken place.

To avoid this problem it is important to savethe screen before it gets
the chance to scroll. For most applications this is a sensible
requircment, anyway.

When f6 is pressed, page mode is cancelled and a zero-sized text
window is established so that any subsequent printout does not
disrupt the screen. After the screen rRAM has been *saved, the
computer bleeps and default windows are restored. You can retrieve
the cursor by pressing <RETURN>.

The use of a text window ensures that no messages can be printed,
but it also means that the first character of the stored screen will be a
space. This is slightly annoying but it is necessary to print something,
somewhere, before the window can be created. With the PRoC
version, this problem can be avoided by amending lines 90 and 150:
for discs, simply delete them and for tapes replace them by *opPT 1,0
(abandon cassette messages). If this is done, the saved screen is exactly
as seen, with the first character intact.

By far the best place for the text window is down at the bottom right
hand corner of the screen, where it is difficult to PRINT at the best of
times. Unfortunately, this position depends on the screen MODE and is
not constant. This in turn means that the routine would need to do
MODE checks and the coding would be much more complicated. It
hardly seems worth it to avoid the small inconvenience of having the
first character blanked out.

Procedures
The two procedures have been coded to perform exactly the same

138 Utility 20

functions as the key versions. This should make the rather mysterious
key coding easier to understand. To save space in the function key
area, the '|' operator has been used extensively to set up control codes
and this does make the definitions difficult to follow.

Extensions
The scrolling problem could be dealt with in several ways:

i) Don't scroll!

i) Read the screen using the oswoRbD 'read pixel' call and save it as a
file.

ii) For the adventurous only: read the address of the first byte of the
screen from locations &350/1 and make allowances for it, either before
or after the screen is saved. Best of luck with this one!

If you save the screen as a file (a series of bytes BPUT to tape or disc),
then it is possible to save the current MODE along with it and then the
screen can be forced to reLOAD correctly. Again, this is rather a luxury
and anyway it is possible to obtain some different (one refrains from
saying 'pleasant’) effects by reLoADIng in the ‘wrong' MODE. One of the
great advantagesw of this routine is its simplicity and any amendments
should retain this virtue as far as is practical. This routine is obviously
not meant to be used on its own, but would make a useful addition to
any program that created graphics displays — for example, some of
those, in this book!

Utility 21
MODE 2 character creator

Description

Video games are the most popular type of programs for home
computers and yet very little information is available about the way
they are written. This is partly because, for speed reasons, such games
have to be written in machine code, but mostly because it is more
profitable to write the games than it is to write about how to program
them!

Here we present a couple of utilities that are a must if you intend to
write any video games for the Electron. The second utility opens up
the possibility of writing fast moving arcade-type games in msn and
should appeal to all readers. Both utilities (they are complementary
and should be used together) assume that your program will use
MODE 2 so that the full range of colours is available. If you wish to use
other MmoDEs (which probably means 5 for chess and 1 for everything
else) you should enjoy doing the appropriate research to enable you
to modify the programs.

To generate high resolution multicoloured shapes on the screen, it is
fastest and easiest to address the screen directly — a technique with
the dubious title of 'PokeEing’ when applied to other computers.
Officially you are not supposed to do this because subsequent
expansion of your computer may misinterpret these direct references
to memory and Acorn have thoughtfully provided operating system
commands to do the job properly. However, until such expansion
appears, this will cause no problems and you should certainly not lose
any sleep over POKEIng a few bytes on to the screen here and there.

Obviously, before we can address the MODE 2 screen, it is necessary
to know its layout (memory-map), and this is described below.

The MODE 2 screen is divided horizontally into 32 lines and each line
is further divided into 80 'characters' consisting of 8 pairs of adjacent
dots arranged to form two columns. Note that these are not the
normal characters that you get in MODE 2 — there are only 20 of those
to a line.

140 Utility 21

HIMEM ! ! HIMEM+8

[[
HIMEM+1 | |
\ \
\ \
| |
\ \
\ \
| |

HIMEM+7 | | HIMEM+15
HIMEM+640 | |
f f
| |

79

31

&TFFFF
(=HIMEM+20479)

Fig. 4. Memory map of MODE 2 screen.

Utility 21 141

POKEINg, or storing data into HIMEM, HIMEM+1 etc. will cause one or
both dots (depending on the data) to light up in the first character
position. Locations HIMEM+8 through HIMEM+15 define the second
character and so on across the first row. After 80*8 bytes, we reach
the second row and the first pair of dots on that row are at HIMEM+640.

Thus, to illuminate the character at column X (0<=x<=79) and row Y
(0<=Y<=31) , we must POKE location :

HIMEM + 8*X + 640*Y
and the seven bytes following it.
The data required to create a particular effect is related to the pattern
of dots in a rather strange way, best illustrated by means of an

example. Suppose we wish to light up two adjacent dots as blue/
white, the calculation would be:

BLUE WHITE
Logical colour 4 7
Binary: 0100 0111
Merge: EO 1 0 0
| 0 1 1 1
EERERE
Answer: 00110101
Base ten: =53

Quite a tedious process!

This utility performs all of these calculations automatically and
includes edit and save facilities as well. The product is the data, either
on file or displayed on the screen, to create MODE 2 characters
between two and twenty-four dots wide and one row deep. Thus, it is
ideal for creating all sorts of nasty little aliens for your space games,
but it also has more friendly, down-to-earth uses.

This program enables you to set up the data in a sensible way but
does not get the character on to the screen for you (except for
preview purposes) — the next utility picks up from here and gets them

142 Utility 21

shifting around the screen in double-quick time!

Use
The program is written in BAsIC and can simply be RUN.

Initially, you will have to create a character, so select the 'Create
option. Choose the width of your ‘'alien’, which must be an even
number of dots between two and twenty-four inclusive — as a guide,
the width of a text character in MODE 2 is eight dots.

Using the cursor keys you can move around the grid in the usual
way (wrap-around, auto-repeat) and to colour in a dot, press the key
corresponding to the colour, as indicated by the menu at the bottom
of the screen. Notice that black never gets PRINTed as'0', but is always
left blank as it is easier to see the outline of the shape if this is done.
Use CTRL X to get out of this mode back to the main menu.

You will probably want to see the creature (no doubt that's what it
will be!) in glorious technicolour, so choose the 'View shape' option
and you will see how the character looks in MODE 2. If the beast is not
to your liking, entering 'Edit' mode will enable you to alter it using the
same facilities as 'Create’.

Once you are happy with the shape, you may 'List numeric data' to
see the sequence of numbers you must POKE on to the screen to
reproduce the character. You can write these numbers down but if
you intend to devise a number of characters, it is best to use another
of the facilities offered by the utility, namely 'Store numeric data'.
When this option is taken, the numeric data — along with its length —is
stored in a table held within the program and the format of the data in
the table is compatible with the next utility, where it is described in
more detail. Look after this table and, when you have finished adding
data to it, select the 'Save table' option which will savethe table to the
current filing system.

As presented here, the utility has no chance of reading the table
back in again, so you must be sure that the data within it is more or
less correct (some patching is possible) before you save it.

10 REM MODE 2 ALIEN CREATOR

20 MODE 3

30 *FX 4,1

40 DIM A% (12,8),array%(15),table% 100
0

50 FOR 1%=0 TO 15

60 READ array%(1%)

70 NEXT

80 ptr%=0

90 REPEAT

100 PROCmenu

110
120
130
140
150
160
170
180
190
200
210
220
230
240

250
ern”
260
270
280

290
300
310
320
330
340
350
360
370
380
390

Utility 21

IF M%=1 PROCcreate:PROCedit

IF M%=2 PROCedit

IF M%=3 MODE 2:PROCview:MODE 3
IF M%=4 PROCIist

IF M%=5 PROCstore

IF M%=6 PROCsave

UNTIL M%=7

*EX 4,0

END

DEFPROCmenu

VDU 26,12,7

PRINT"" Options:"'

PRINT TAB(7)"1) Set up new pattern

PRINT TAB(7)"2) Edit existing patt

PRINT TAB(7)"3) View shape"
PRINT TAB(7)"4) List numeric data"
PRINT TAB(7)"5) Store numeric data

PRINT TAB(7)"6) Save table"
PRINT TAB(7)"7) Quit program”
REPEAT

INPUT'""Your choice "M%
UNTIL M%>0 AND M%<8
ENDPROC

DEFPROCcreate

REPEAT

INPUT "Width of shape(even) "W%

UNTIL (W%>1) AND (W%<25) AND (W% A

ND 1)=0

400
410
420
430
440
450
460
470
480
490
500
510
520
530
540

FOR %=1 TO W%/2:FOR J%=1 TO 8
A% (1%,3%)=0

NEXT,

ENDPROC

DEFPROCedit

PROCboard

X%=0:Y%=0

VDU 28,tab%+2,14,tab%+3*W%,7
REPEAT

VDU 31,3*X%,Y%

F%=INKEY(0)

IF F%=136 X%=(X%-1+W%) MOD W%
IF F%=137 X%=(X%+1) MOD W%

IF F%=138 Y%=(Y%+1) MOD 8

143

144

550
560

Utility 21

IF F%=139 Y%=(Y%+7) MOD 8
IF (F%>47 AND F%<58) OR (F%>64 AND

F%<71) PROCtrish

570 UNTIL F%=24

580 ENDPROC

590

600 DEFPROCtrish

610 IF F%>64 byte%=F%-55 ELSE byte%=F%
-48

620 IF F%=48 F%=46

630 mask%=85:factor%=2

640 IF (X% AND 1) mask%=170:factor%=1

650 was%=A%((X% DIV 2)+1,Y%+1) AND mas
k%

660 A%((X% DIV 2)+1,Y%+1)=was%+factor%
*array% (byte%)

670 VDU F%

680 X%=(X%+1) MOD W%

690 ENDPROC

700

710 DEFPROCboard

720 CLS

730 PRINT TAB(19,4)"*** Press CTRL X

to recall menu ***"

740
750
760
770

J%)
780
790
800
810
820
830

tab%=(72-3*W%) DIV 2

PRINT TAB(0,6)

FOR J%=1 TO 8:PRINT TAB(tab%);

FOR %=1 TO W%:V%=A%((1%+1) DIV 2,

mask%=85:factor%=1

IF (1% AND 1) mask%=170:factor%=2
V%=(V% AND mask%) DIV factor%

K%=-1

REPEAT:K%=K%+1:UNTIL array%(K%)=V%
IF K%=0 A$="." ELSE A$=CHR$(48+K%-

7*(K%>9))

840
850
860
870
880
890
900
910
920
930
940
950

PRINT " ":A$;

NEXT 1%:PRINT:NEXT J%
PRINT TAB(0,20);
RESTORE 1340

FOR 1%=1 TO 16

READ X$:L=LEN X$
PRINT X$:SPC(20-L);
NEXT

ENDPROC

DEFPROCview
FOR 1%=1 TO W%/2:FOR J%=1 TO 8

Utility 21

960 ?(HIMEM+3431+8*1%+J%)=A%(1%,J%)
970 NEXT,

980 PROCrastinate

990 ENDPROC

1000
1010
1020

DEFPROCIist
PRINT'""THE SEQUENCE OF NUMBERS YO

U NEED IS:""

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
69,80,
1330
1340

FOR %=1 TO W%/2:FOR J%=1 TO 8
PRINT STR$(A%(1%,J%));",";

NEXT,

VDU 127

PROCrastinate

ENDPROC

DEFPROCstore
table%?ptr%=4*W%+1

FOR 1%=1 TO W%/2:FOR J%=1 TO 8
ptro=ptr%+1
table%?ptr%o=A%(1%,J%)

NEXT,

ptr%=ptr%+1

ENDPROC

DEFPROCsave
X=OPENOUT("scrdata")
FOR 1%=0 TO ptr%
BPUT# X,table%?1%
NEXT

CLOSE# X

ENDPROC

DEFPROCrastinate
PRINT'""Press C to continue”;
REPEAT UNTIL GET$="C"
ENDPROC

DATA 0,1,4,5,16,17,20,21,64,65,68,
81,84,85

DATA "0=BLACK",4=BLUE,8=BLACK/WHIT

E,C=BLUE/YELLOW

1350

DATA "1=RED",5=MAGENTA,9=RED/CYAN,

D=MAGENTA/GREEN

1360

DATA "2=GREEN",6=CYAN,A=GREEN/MAGE

NTA,E=CYAN/RED

1370
LUE,F

DATA "3=YELLOW",7=WHITE,B=YELLOW/B
=WHITE/BLACK

145

146 Utility 21

How it works

In common with a number of our utilities, the overall structure of this
program is very simple. Following a short initialisation section, several
separate PrRocedures can be summoned from a short loop which
controls the flow of the program. When the loop ends, so does the
program. A more comprehensive description of how it all works will
be found in the next two sections.

Procedures

When you first enter the program, or after you have used one of its
facilities, PROCmenu is Called to PRINT a list of the available options and
to receive your selection. If you choose the 'Create’ option, then
PROCcreate iS entered to accept the width of the shape and to initialise
the array A%(12,8) (or at least as much of it as you will use) and the
main PROCedure, PROCedit IS called. This PROCedure controls movement
around the screen and is responsible for updating the array A% so that
it reflects the state of the screen at all times. This is a complicated
process and PROCtrish is used to assist with the calculations.

PROCboard Sets up the screen whenever a character is to be edited or
created. Its most difficult task is to decipher the array A% into patterns
of colour, which is exactly the reverse of the steps carried out in
PROCtrish.

The remaining PrRocedures are quite straightforward and each is
called in response to a selection from the menu. Before PROCview Can
be called, it is necessary to engage MODE 2 so that the data bytes can
be Poked on to the screen. On leaving this PrROCedure MODE 3, which
is the natural MODE for this utility, is then restored. PROCIist Is used to
display the contents of the array, while PROCstore is used to commit
them to memory (the computer's — not yours). Finally, PROCsave stores
the contents of the table, as single bytes, to the filing system, be it tape
or disc.

Variables
The merging process described earlier is rather fiddly and involves
converting numbers into binary and re-organising their bits. To speed
up the process an array is used to hold the converted versions of each
number (or colour) in the range 0-15. This array is called array%(15)
(where does he get these snappy names from?) and is initialised at the
very start of the program. Swapping n for array%(n) is equivalent to the
step from 'Binary' to 'Merge' in the example given in the Description
section.

The array A%(12,8) has already been mentioned — it is the computer's
version of what you see on the screen. When you choose to store the

Utility 21 147

character you have just created, it is saved in a table whose first byte is
known as table%, and which extends for 1000 bytes; it is a protected
area and will not be overwritten. To indicate the extent of the table,
ptr% points to the last byte entered into it.

As usual, x% and Y% represent the position of the cursor in the grid
displayed on the screen (rather than the actual screen location, which
is a function of both wo and Yu). The overall width of your character,
in dots, is represented by w — since the dots occur in pairs this will
always be an even number.

When a dot has its colour changed, the heavy stuff starts (lines 630-
660) and what happens here is this: If you alter the left-hand dot of a
pair, for example, the right-hand colour is extracted (line 650) and
remembered as was%. Based on the new colour (indicated by byte% —
the colour you type-in in the range 0 — 15), the array entry for those
two dots is recalculated by inserting the new value for the amended
dot (line 660). Two new variables are introduced to help with this,
namely: mask% which is either 85 (binary 01010101) or 170 (binary
10101010) and factoro which is either 1 or 2. Both mask¥ and factor% are
used again by the PROCedure that displays the pattern of dots on the
screen. As used by this PrROCedure, they decode the bytes of the array
rather than encode them.

Assorted localised (but not LOCAL) integer variables are used for
temporary storage and the only other named variable is tab% which is
calculated by PrRoCboard to help to centralise the grid on the screen
whatever character width is selected.

Extensions

One function lacking from this program is the ability to edit the table
of data bytes. Because of this, | have not even included a section to
read in the table from tape or disc. This is not a difficult task but it will
certainly increase the length of the program (which, in turn, means
that you cannot allocate more bytes to the table which is possibly a
more useful amendment). The real problem arises when you want to
delete a shape from the table, because it will then be necessary to
reposition the data remaining in it.

Because of the organisation of the screen into 'lines' the tallest
character can only be one line, or eight dots high, and larger shapes
will have to be made up of two or more standard characters. As the
shape is deposited onto the screen in machine code, time is not a
problem and the coding required to handle tall characters is hardly
more complicated than that for the standard size.

When you feel that you have mastered this program, why not write
a similar routine (or cannibalise this one) to enable you to create
characters in MODE 1. Before doing so you will need to investigate the

148 Utility 21

layout of the screen in that MODE — there are plenty of clues in the
description of this program.

Before proceeding to the next utility, it is a good idea to get some
data ready for it. Choose a width of 10 (a good size for your common
alien) and firstly create a blank character — that should not cause too
many problems. Now invent two or three other shapes, also of width
10. When you have done so (don't forget to store each pattern into
the table), save the table onto tape.

Now that you have some characters on tape, let's get them onto the
screen.

Utility 22:
MODE 2 character plotter

Description

The previous utility enables you to set up data which, when Poked
onto a MODE 2 screen, will draw a character of your own design. This
program — which is not a utility as such — will get that character onto
the screen very quickly as it is written in machine code, although it
can be called from both Basic and machine code routines. If your
aliens are lacking zip, this is just the thing you need to get them
pinging round the screen at high speed.

This routine expects the data to be set up in a special (and, as we
shall see, familiar) way, which by a happy coincidence is exactly how
the previous utility does it. What luck!

There are two parts to this routine: the data has to be found and
extracted from the table, then it has to be deposited at the t orret |
screen location. Let us attend to these in turn.

The table you have saved on tape or disc contains the information to
draw a few characters onto the screen; this program will think of them
as character 1, character2, and so on. To locate character 3, say, we
start at the beginning of the table and pick up the byte there —
suppose it is 41 (which it will be if you followed the advice at the end
of the last utility; although it doesn't matter too much if you didn't).
This number represents the number of bytes, including itself, allocated
to the first character and by adding it to the address of the start of the
table, you will produce a new address, namely that of the next
character. Again, the first byte will represent the length of the data
associated with that character, so we can add once more to get the
address of the character we are looking for. All the time this stepping
process is going on, we count down the number of the character we
are searching for until it hits zero indicating that the search is
complete.

Where have you seen this before? Here's a clue — look at the section
on the storage of BAsSIC programs in Section 2. Basically (that's a
dreadful pun and not at all intentional) we locate our aliens in the
same way that BAsIc finds GoTo or Gosus line numbers. If you want to
be ultra-efficient try to make sure that important, much-used
characters occur at the beginning of the list so that the routine doesn't
need to waste its time (and here we are talking about millionths of a
second) looking for them. The data appears in the table like this:

150 Utility 22

table%

41 | 40databytes |25 | 24 databytes |61 | 60 data bytes
for Shape 1 for Shape 2 for Shape 3

Once the item has been located, the first data byte indicates how
many bytes are to be printed to produce that shape; in the example
above, 40 bytes are to be sent to the screen.

So, step one has been completed — first find your alien, as they say.
Now we must see how to get it (him? her? — who knows with aliens?)
onto the screen.

As far as our characters are concerned the effective resolution of the
screen is 80 across by 32 down. For super-smooth vertical movement,
the character should ideally be capable of spanning two lines, but this
would need a great deal of extra coding, although the same data
could still be used. In practice, this resolution has proved to be quite
sufficient for all of the usual types of game.

To draw the shape we need to know the location of its first character
that is, set of dot-pairs, which can be determined in x and Yy co-
ordinates, taking the origin to be at the top left-hand corner of the
screen, at HIMEM. The start location for the character will then be
HIMEM + 8*X + 640*Y — an expression we have already come across. The
routine does this calculation and stores the result in Zero-page for
future use. To print the character, we only need to poke bytes into this
and the following locations until all are used up.

Use

The routine has been written to make it as easy to use as is reasonably
possible. Once the code has been safely assembled the program lItself
can be deleted, if you so wish — obviously you will make sure that it
works first. Before running the program, amend line 40 so that base
points to the start of your table of data bytes. You should have this
table on tape, so get it into store with a *LOAD command, choosing a
safe place to load it. As HIMEM will be at wow for MODE 2, a suitable
place would be &2c00, so use the command:

*LOAD "scrdata" 2C00
Before going any further it is a good idea to protect this with HIMEM =
&2C00.

Change line 40 to read:

40 base=&2C00

Utility 22 151

and amend line 70 if you wish to store the code at some place other
than &910. The code can be called from BAsIC or machine code and
needs three parameters, passed to it via the accumulator, X and Y
registers as shown:

Machine Code BASIC Purpose Range
Accumulator A% Character number 1 — number of
items in table
X-register X% Start column 0-79
Y-register Y% Start row 0-31

After the shape has been displayed, control is returned to you. If you
are in machine-code, both the X and Y registers will contain 0 and the
accumulator will be indeterminate.

Machine coders should have little difficulty in getting this routine up
and running; for the BAsIC programmer, here is some supplementary
information.

What you do with the co-ordinates is your business, but once they
have been calculated you can call the routine to draw the shape for
you. In the last section of the previous utility | suggested saving a blank
character because the easiest way to move things around is to blank
the old shape out and rewrite it in a new position. This may seem like
an extremely unsophisticated way of doing things but you must
remember that the hard work is done by the machine code and it is
exceptionally fast. In general, this system will always work, although
for specific games, it may be better to create shapes that wipe
themselves out as they move (for example surround them with two
blank characters).

The short piece of code below will make alien number 2 fly across
the 21st line of the screen. See if you can follow how it works for
yourself.

10 MODE 2
20 X%=0 : Y%=20

30 REPEAT

40 A%=1: CALL &910
50 X%=X%+1

60 A%=2 : CALL &910
70 wait=INKEY (6)

80 UNTIL X%>74

Here | have assumed that you have stored a blank character for alien
number 1. If you want your alien to scream across the screen instead
of merely flying, try deleting line 70, or at least amending the INKEY
parameter to 1 or 2. This is only a very simple example but it

152 Utility 22

illustrates how fast multicoloured movement can be achieved from
BASIC — you can concentrate on the rest of the program without having
to worry about the screen handling.

This final, simple example shows you how to get your aliens into the
traditional battle formation:

10 MODE 2

20 FOR Y%=4 TO 16 STEP 3
30 READ A%

40 FOR X%=0 TO 60 STEP 6
50 CALL &910

60 NEXT : NEXT

70 END

80 DATA 2,3,3,4,4

If you go to the trouble of making this work (your data tape will need
4 aliens on it, at least) | guarantee that you will be impressed by the
speed with which the screen is set up — it is virtually instantaneous.

10 REM MODE 2 ALIEN PLOTTER

20 addrlo=&80:addrhi=&81

30 scrnlo=&82:scrnhi=&83

40 REM ***** SET base TO POINT TO TAB
LE *kk k%

45 base=&1500

50 FOR 1%=0 TO 2 STEP 2

60 REM SET P% TO SUIT — FOR EXAMPLE..

70 P%=&910

80 [OPTI%
90 .LO
100 PHA ;remember shape number
110 TYA ;get row
120 ASL A ;X2 (NB. C=0)
130 TAY
140 LDA &C36E,Y ;get low byte from x64
0 table

150 STA scrnlo :;remember it
160 LDA &C36D,Y ;fetch high byte

170 ADC #&30 ;+HIMEM for MODE 2
180 TAY ;YR=high byte

190 TXA ;get column

200 ASL A

210 ASL A X 4

220 BCC L2

230 INY ;augment high byte..

240 INY ‘twice

250
260
X
8
270
280
290
300
310
320
330
340
350
360
370
380
390

Utility 22

L2
ASL A ;X 2 more gives a total of

BCC L3

INY ;augment high

CLC

L3

ADC scrnlo ;add in low byte

BCC L4

INY

L4

STA scrnlo ;store low

STY scrnhi ;and high

PLA ;recall shape number
TAX use XR to count down
LDA #(base MOD 256) ;point to star

t of table

400
410
420
430
440
450
item
460
470
480
item
490
500
510
520
530
540
550

STA addrlo

LDA #(base DIV 256)

STA addrhi

LDY #0

.L5

LDA (addrlo),Y ;get length of data

DEX ;is this the right one??
BEQ L6 ;yes — go and display it
CLC ;N0 — SO point to next

ADC addrlo

STA addrlo

BCC L5 ;loop back

INC addrhi

BNE L5 ;loop back

.L6

TAY ;YR=no. of bytes to

print+1

560
570
580
590
600
610
620
630
640
650

DEY

L7

LDA (addrlo),Y ;get it...

DEY

STA (scrnlo),Y ;...and print it
CPY #0 finished??

BNE L7 'no — back for more
RTS:]

NEXT

END

153

154 Utility 22

How it works

If you have followed the rather detailed explanations of what this
program does, you should have a fairly good idea of how it goes about
doing it. The program breaks down nicely into three parts:

Lines 100-360. The value of HIMEM + 8*X + 640*Y is worked out and
stored (in binary) in locations scrnlo and scrnhi.

Lines 370-530. The shape to be displayed is located in the table and
the address of its first byte is set up in locations addrlo and addrhi.

Lines 550-620. The shape is built up on the screen by transferring
bytes from the table into screen RAM.

One point of interest is the way in which the *640 calculation is done.
An early version of the routine actually did the multiplication, which is
not too bad as 640 is a particularly easy number to multiply by in
machine code (it's equal to 512+128). However, there is a 640 times-
table held in the operating system and it seems a pity not to use it.
This version of the routine is the one given here and you will find the
table at &c375. It is well worth looking at this area with your Memory
Display utility.

Surprisingly, the multiplication method only required 6 more bytes
of store than the look-up technique used above; even so, that does
represent an inefficiency in use of both time and storage. For interest
the code is given here without comment — replace lines 130-170:

130 STA scrnlo
135 TYA

140 LDY #0

145 LSR A

150 BCC L1

155 LDY #128
160 CLC

165 .L1 ADC scrnlo
170 ADC #&30
175 STY scrnlo

Extensions

This is one of those rare programs that really is finished: there is little
left to do to it. If you intend to use it with your own machine code
programs you will probably want to change the assembly address at
line 70. Similarly, you are not obliged to store your table of data bytes
at &2coo — that was only a suggestion — and you may like to store the

Utility 22 155

table in, or at the end of, your program. There is no real limit on the
size of this table and it is determined only by the bim statement in the
previous routine. If you want more aliens/shapes then by all means
extend it.

Two possible improvements which really deserve the description of
'rewrites’ are to allow for fine vertical movement (by dots) and to
handle shapes spanning two or three screen lines. Unless all of your
characters span several lines it is probably best to deal with the latter
situation by including the above routine and to call it once for each
line to be output.

The first problem is far more difficult and (for starters) requires an
extra parameter in the range 0 — 7 to define the start position within a
character; we have assumed 0 in this routine, that is, the shape always
starts at the top of a screen line. There are quite a few other
complications besides so let us agree that we shall leave this one for
the very dedicated among you! The routine given here is still valid up
to the very last section (0 — 7) and it is this coding that will have to be
extensively rewritten.

You may also have noticed a slight reduction in horizontal resolution
ion too, for our characters can only occupy 80 positions whereas the
width of the screen is 160 dots. The complications involved in getting
round this are enormous and simply not worth the effort since the
difference in resolution appears minimal, even on a monitor.

156 Utility 22

Utility 23:
Graphics aid

Description

It is generally agreed that the Electron offers excellent graphics
facilities, although they can sometimes be difficult to use. Essentially,
all of the graphics commands are (or can be) vbu commands and a
sequence of vbu codes may be used to draw any shape, however
complex. This looks great in listings, but it can be difficult to read and
— more importantly, from our point of view — tedious to write.

Suppose you want to draw a red rectangle, of some size, halfway
down the right-hand side of the screen — what should you do? What
often happens, mostly due to a lack of planning, is a time-consuming
process of trial and error. Rather than get out the squared paper and
the eight times tables it seems easier to draw any old red rectangle,
check it, draw it again (bit closer that time) and again . . . by the third
or fourth attempt, the result may be passable. Even if the figure is
designed carefully beforehand, it is often necessary to see a shape on
the screen to know if it is correct, however it looks on paper. Again,
not everyone is expert on such things as 'relative plotting', 'colour
masks', 'fill with logical inverse colour' , etc., and some means of
experimenting with these new ideas should be welcome.

This routine is halfway between being a utility and a fun program
(by definition, utilities are not fun). It is a greatly extended version of
the 'etch-a-sketch' type of program that allows you to draw on the
screen using simple controls. In this routine we include a number of
useful (and some quite advanced) plotting techniques and a status line
that tells you what you are doing at any time. In the example of the
red rectangle quoted earlier, you would draw the shape using the
routines drawing facilities and then read off the ccoLs and coordinates
that defined the shape. When you have finished the screen you would
then be able to save it using the Screen Save utility given elsewhere in
this section, print it out, or simply stand back and admire it.

Having chosen a MoDE, the top line of the screen is reserved as a
status line containing useful information, while the rest is defined as
graphics window where you can play around to your heart's content.
The basic actions consist of moving the cursor (a small dot) and
selecting various options by pressing the function keys. Some of the
facilities provided on the function keys are essential, while others are
really a matter of personal choice. Those we have provided vary from

Utility 23 157

the necessary 'join two points' to the frivolous 'Moiré mode'. All ten
function keys are used.

Unless you are using this to doodle (yes, it's great for messing about
on too!) you may need to refer to the status line to see what is going
on. This line consists of seven fields and looks like this:

80866 F133 M

Notice that this is only given as an example. The significance of each
field (numbering them 1-7 from the left) is as follows:

1) Cursor horizontal position. This is the horizontal displacement of
the dot-cursor from the left hand edge of the screen. Its range is 0-
1278.

2) Cursor vertical position. This is the vertical displacement of the dot-
cursor from the bottom edge of the screen. Its range is WO — 982
(slightly less than the maximum 1023 as the top line of the screen is
reserved). Each of these co-ordinates is measured in suitable units for
subsequent PLOT and DRAW commands.

3) Cursor speed. F stands for ‘fast' and sstands for 'slow' . The sposition
Is very useful for fine movement and high definition, while Fis handy
for zooming around the screen quickly.

4) Number of fixed points. You are allowed to 'fix' up to two points
and this displays the number fixed at any time.

5) ccoL mode. The foreground colour (which is used for all your
drawing) is indicated by the colour of this character, while the number
indicates which GcoL effect is being used. For foreground plotting, the
official range is 0 to 4 — see description in the User Guide.

6) Palette change. This field is used during a palette change to indicate
the 'from' and 'to’ colours. At any time it shows the result of the latest
palette change.

7) Moiré mode. An M in this field indicates that the plotting is being
done in a special way, loosely related to moire patterns. Otherwise the
field will be blank.

In the next section we look at the various features available.

Use
The program is in BAsiC and can simply be RUN.

Once you have selected the MODE, the function keys come into
effect and we shall look at those shortly. The only non-function keys

158 Utility 23

that are relevant arc the cursor keys, Q and DELETE. The cursor keys
are used to move the cursor around — the movement features full
wrap-around and auto-repeat. DELETE will delete the last fixed point if
there was one, otherwise it will do nothing. This is necessary as certain
functions set their own fixed points which you may not require.
Finally, Q is used to quit the program, and to reset the cursor and
function keys to their normal modes of operation.

You can press a function key at (almost) any time to select an effect
— these are now described in detail.

fO: Speed select. This key toggles the speed setting between Fand s.

f1: Fix point. If you have not used both fixed points, this will fix one
for you. The point is left behind when you move the cursor away
and will appear in the current foreground colour.

f2: Join. Joins the previous fixed point to the current cursor position
with a straight line. Notice that, if there are two fixed points when
you do the join, the first will be lost and the current cursor position
Is inserted at the top of the list of fixed points. This means that you
can move around and 'join' to create a polygon without having to
specifically save any of the vertices — that is done for you. If you do
not want to remember the last point joined as a fixed point, use
DELETEtO get rid of it.

f3: Triangle. Draws a (filled) triangle using the last two fixed points
and the current cursor position as vertices. This implies, of course,
that you must have two points already fixed before you can draw
the triangle. If not, the request is ignored. The current cursor
position is saved as the latest fixed point and the one saved before
that will also be remembered. Consequently, after a ‘triangle’
command, there will still be two fixed points (as there were before),
but they will be the last two points visited. This scheme makes it
easy to draw rectangles and other shapes composed of triangles
because it has a chaining effect analogous to that of the 'join'
command.

f4: Circle. Draws a (filled) circle centred at the latest fixed point so
that the current position lies on the circumference. The centre is
held as the last fixed point so that a series of concentric circles is
easily drawn. If there are no fixed points the request is ignored.

f5: Moiré. Selects moire mode — the key acts as a toggle between
moire on and off. Asthe cursor moves, straight lines are continually

Utility 23 159

drawn to the last fixed point. Because of the relatively low
resolution, even in MODE 0, the slight imperfections in the lines give
the appearance of a moire. pattern. Strictly speaking, a moire
pattern consists of two almost identical patterns overlayed to give
'interference’ effects, but the results in this mode are very similar.

An example of the display in this mode is reproduced below —
this printout was done using the Printer Dump utility given in
Section 4. In this diagram, the frame around the graphics area was
drawn using ‘join‘; normally, no such boundary is used unless you

draw one yourself.
934 158 5 1 @

This 1is an

example of the

MOIRE mode.

f6: Text. Allows you to type in text to label diagrams and plans etc.
The cursor position will be the top left hand corner of the first text
character and the colour of the print is the same as the current
foreground colour. To exit from this mode, press <RETURN>. Notice
that DELETE does not work in this mode, neither can you erase letters
by overwriting them, as the printing is done using vbu 5, which
means that characters will overlay others rather than wipe them out.
This is actually a rather useful feature as it enables you to produce
different styles of lettering.

f7: Change colour. The current gcoL colour can be changed by
holding down either the ‘cursor up' or ‘cursor down' key to step
through the available colours. To indicate that you are in this mode,
field 5 is replaced by a solid block whose colour indicates the colour
you will select by pressing <RETURN>. All subsequent plots will use
this colour. When <RETURN> is pressed, the colour is retained, but

160 Utility 23

the field is replaced by the current GcoL mode number.

f8: Change GcoL. The cursor up/down keys will step the gcoL mode
through the values 0 — 4. Leave this mode by pressing <RETURN>.
Initially this field is set to O which means that all plotting will be
done in the colour specified, i.e. white.

f9: Palette. In MODES other than 2, you might like a rest from the
rather drab colour scheme, and use of this key enables you to
change the palette, thereby introducing new colours. Field 6 will
display a logical colour number in the range 0 — (maximum number
of colours for that MODE less 1); step through the range using cursor
up/down and press <RETURN> when you reach the logical colour
number you wish to amend. 'Cursor up' will now step that colour
(the logical colour number will change colour) through the full range
of colours. Press <RETURN> when you find the one you want.

This sounds very complicated but in practice it is easy to use. For
example, if we were in MODE 1, colour 2 would normally appear
yellow. To change this to say, magenta, we would select the 'palette’
facility and hold down a cursor key until field 6 showed the number
'2'. Now press <RETURN>. Holding down ‘cursor up' will swap colour
2 for the full paint-box of colours — stop when it turns magenta and
press <RETURN>. Notice that anything that appears in yellow will
change colour in sympathy with the swapping colours.

These facilities provide a good range of material for both the
experimenter and the working programmer. Recently, | have used this
routine to design a Backgammon board and the task was greatly
simplified by the ability to change palettes and to read off the Xand Y
co-ordinates of key points once the board began to take shape. On
the other hand, it can provide some interesting information about the
effects of different ccoL setting and colour changes.

The routine can easily be amended to accommodate other graphic
effects, depending on your own requirements. Some suggestions are
given below.

10 REM GRAPHICS AID

20 REPEAT

30 INPUT "MODE (0,1,2,4,5) "M%

40 mc%=VALMID$("020416000204",2*M%+1,
2)

50 UNTIL mc%>0

60 MODE M%

70 DIM FX%(2),FY%(2)

80 mx%=1280:my%=984

90 @%=4:X%=0:Y%=0:D%=16:nf%=0

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

Utility 23

gcol%=0:was%=0:fix%=0:moire%=0
white%=(mc%-1) AND 7
col%=white%

VDU 23,1,0;0:;0:0;

VDU 24,0;0;mx%-1;my%-1;

vDU 23,224,-1,-1,-1,-1,-1,-1,-1,-1
PRINT® O OFOO"

GCOL 0,7:PLOT 69,0,0

*EX 4,1

*EX 225,200

REPEAT

F%=INKEY(0)

IF F%=200 PROCspeed

IF F%=201 AND nf%<2 PROCTfix
IF F%=202 AND nf%>0 PROCjoin
IF F%=203 AND nf%>1 PROCtring
IF F%=204 AND nf%>0 PROCcircle
IF F%=205 PROCmoire

IF F%=206 PROCtext

IF F%=207 PROCcolour

IF F%=208 PROCgcol

IF F%=209 PROCpalette

IF F%=127 AND nf%>0 PROCdel
IF F%=136 PROCmove(-D%,0)

IF F%=137 PROCmove(+D%,0)
IF F%=138 PROCmove(0,-D%)

IF F%=139 PROCmove(0,+D%)
UNTIL F%=81

*FX 4,0

*FX 225,1

END

DEFPROCspeed
PROCbeep(6)

D%=18-D%

IF D%=2 A$="S" ELSE A$="F"
PRINT TAB(10,0)A$
ENDPROC

DEFPROCfix

PROCbeep(7)

@%=1:fix%=1

nf%=nf%+1
FX%(nf%)=X%:FY%(nf%)=Y %
PRINT TAB(12,0)nf%
ENDPROC

161

162 Utility 23

580 DEFPROCjoin
590 PROCbeep(8)
600 GCOL gcol%,col%
610 DRAW FX%(nf%),FY%(nf%)
620 FX%(Nnf%)=X%:FY%(nf%)=Y %
630 ENDPROC
640
650 DEFPROCtring
660 PROCbeep(9)
670 MOVE FX%(1),FY%(1)
680 MOVE FX%(2),FY%(2)
690 GCOL gcol%,col%
700 PLOT 85,X%,Y%
710 FX%(1)=FX%(2):FY%(1)=FY%(2)
720 FX%(2)=X%:FY%(2)=Y%
730 ENDPROC
740
750 DEFPROCcircle
760 PROCbeep(10)
770 R=SQR((FX%(nf%)-X%)"2+(FY%(nf%)-Y %
)"2)
780 VDU 29,FX%(nf%);FY% (nf%);
790 S=PI1/30:MOVE R,0
800 GCOL gcol%,col%
810 FOR P=S TO 2*P| STEP S
820 MOVE 0,0
830 PLOT 85,R*COSP,R*SINP
840 NEXT
850 VDU 29,0;0;
860 ENDPROC
870
880 DEFPROCMmoire
890 PROCheep(11)
900 moire%=1-moire%
910 IF moire% A$="M" ELSE A$=""
920 PRINT TAB(19,0)A%
930 ENDPROC
940
950 DEFPROCtext
960 PROCbeep(12)
970 VDU 5
980 REPEAT
990 W%=GET
1000 IF W%>31 AND W%<127 VDU W%
1010 UNTIL W%=13
1020 vDU 4,23,1,0;0;0;0;
1030 ENDPROC
1040

1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520

Utility 23

DEFPROCcolour
PROCbeep(13)

@%=1

REPEAT

F%=INKEY(0)

IF F%=138 PROCnewcol(-1)
IF F%=139 PROCnewcol(+1)
UNTIL F%=13

PRINT TAB(14,0)gcol%
COLOUR white%
ENDPROC

DEFPROCnewcol(dy%)

SOUND 1,-9,240,1
col%=(col%+dy%+mc%) MOD mc%
COLOUR col%

PRINT TAB(14,0)CHR$224
ENDPROC

DEFPROCgcol
PROCbeep(15)

COLOUR col%

REPEAT

F%=INKEY(0)

IF F%=138 PROCnewgco(-1)
IF F%=139 PROCnewgco(+1)
UNTIL F%=13

COLOUR white%

ENDPROC

DEFPROCnewgco(dy%)
gcol%=(gcol%+dy%+5) MOD 5
@%=1:PRINT TAB(14,0)gcol%
ENDPROC

DEFPROCpalette
PROCbeep(16)
@%=2:V%=0

REPEAT

F%=INKEY(0)

IF F%=138 PROCchcol(-1)
IF F%=139 PROCchcol(+1)
UNTIL F%=13

VDU 7

REPEAT

F%=INKEY(0)

IF F%=139 PROCvducol
UNTIL F%=13

163

164 Utility 23

1530 COLOUR white%

1540 ENDPROC

1550

1560 DEFPROCchcol(dy%)

1570 V%=(V%+dy%+mc%) MOD mc%
1580 PRINT TAB(16,0)V%

1590 ENDPROC

1600

1610 DEFPROCvducol

1620 W%=(W%+1)MOD 16

1630 vDU 19,V%,W%,0,0,0

1640 COLOUR V%:PRINT TAB(16,0)V%
1650 ENDPROC

1660

1670 DEFPROCdel

1680 PROCbeep(3)

1690 GCOL 0,0

1700 PLOT 69,FX%(nf%),FY%(nf%)
1710 nf%=nf%-1

1720 @%=1

1730 PRINT TAB(12,0)nf%

1740 ENDPROC

1750

1760 DEFPROCmove(dx%,dy%)
1770 IF fix%=0 GCOL 0,was%:PLOT 69,X%,Y
%

1780 X%=(X%+dx%+mx%) MOD mx%
1790 Y%=(Y%+dy%+my%) MOD my%
1800 was%=POINT(X%,Y %)

1810 GCOL 0,co0l%:PLOT 70,X%,Y%
1820 @%=4:fix%=0

1830 PRINT TAB(0,0)X%" "Y%

1840 GCOL gcol%,col%

1850 IF moire% DRAW FX%(nf%),FY%(nf%)
1860 *FX 15,1

1870 ENDPROC

1880

1890 DEFPROCbeep(W%)

1900 SOUND 1,-9,12*W%,10

1910 ENDPROC

How it works

Once the initialisation has been completed, the program enters a large
loop (lines 210-380) which checks for any valid key being pressed.
Action is taken depending on the key found and, with the exception
of Q (quit program) this causes a PROcedure to be called to handle the
processing of that request. On completing the prRocedure, control is

Utility 23 165

returned to the loop.

Procedures
The bulk of this program is made up of PrRocedures — for a start, each
key option has an associated Procedure. These are:

Key PROcedure Name
fO speed
f1 fix

f2 join

f3 tring
f4 circle
5 moire
f6 text

f7 colour
f8 gcol

fo palette

The function of each of these PrRocedures should be obvious — the set
is completed by some less obvious ones:

PROCnewcol is called by PROCcolour to step the foreground colour
through a range of values. The parameter indicates whether the step is
up (+1) or down (-1). Similarly, PROCnewgco performs the same service
for PrROcedure PROCgcol. Two such Procedures are required by the
palette-changing PrRocedure; one to change the logical colour number
and one to change the actual colour once the logical colour has been
selected. These are denoted by PROCchcol and PROCvducol respectively.

If there are fixed points, pressing the DELETE key will remove the
latest one and calls PROCdel to do so.

One very important routine is PROCmove Which is used to move the
cursor, update the display and draw a new line if 'Moiré' mode is set;
this PrROCedure is called each time a cursor key is pressed. It takes two
parameters, namely: amount of horizontal and amount of vertical
movement in that order.

Last and least, PROCbeep does just that.

Variables
Variables abound in this program — here is a list of the important ones,
together with their meanings.

FX%(2) The X co-ordinates of the fixed points.
FY%(2) TheY co-ordinates of the fixed points.
mx% The width of the screen (constant = 1280).
my% The height of the screen (constant = 984).

166 Utility 23

X% The current X co-ordinate of the cursor.

Y% The current Y co-ordinate of the cursor.

D% Displacement of each step in a move. For 'slow' b»=2 and
for 'fast' Dw=16.

nf% The number of fixed points at any time.

gcol% The current ccoL mode in the range 0-4.
col% The current foreground (plotting) colour.
was% The colour of the point ‘'underneath’ the cursor.

fix% Setto 1 to indicate that the point beneath the cursor is to
be replotted, instead of being blanked out. Otherwise fix%
is setto 0.

white% The number that represents white in the current MODE.
With one exception (what is it?), this is one less than the
number of colours available in that MODE.

In addition quite a few 'local' variables are used within PROCedures
(but not across the program) as temporary storage. The use of these
variables is reasonably obvious when you look at how they are used.
One variable may serve several functions in the different sections in
which it appears, but because of the way it is used, this will not cause
any problems.

Extensions

The number of variations is basically limited to the number of
functions you can squeeze out of your function keys. In this utility, the
keys are programmed to generate ASCII codes from 200 upwards. To
get more from them, you can reprogram the CTRL, SHIFT and CTRL/SHIFT
versions of the key (using *Fx 225 — 228) and extend the program loop
by including the relevant procedures.

As written, the routine falls neatly between 'useful' and 'enjoyable’ —
if you have more (or less) serious uses for it, then this will be reflected
in the modifications you choose to include. For example, if you want
to use the program for drafting out plans or mathematical figures a grid
of squares would be useful for guidance. One key could be used to
switch the grid in or out.

Another useful facility is sometimes known as 'rubber-banding'
which means that as you move a line around, the previous copy of the
line is deleted giving the illusion of a rubber band fixed at one point
with the other being dragged around the screen under your control.
This is an easy amendment, as the 'Moiré' facility is itself a simplified
version of this technique. To enable the 'Moire' mode to become a
'rubber-band’ mode you will need the following additions to the
routine:

Utility 23 167

1765 IF moire% MOVE X%,Y%:GOTO 1780
1795 IF moire% GCOL 3,c0l%:DRAW FX%(nf%
),FY%(nf%)

The effect of this is to EOR the colour of the line you have just drawn
with itself, producing black. (Probably — it depends very much on how
the colours got onto the screen in the first place. Because this is not a
'pure’ effect, and depends on other factors, it has been omitted from
the original list of facilities.)

Unless you use a monitor for your display, you may have some
difficulty in reading MODE 0 screens. At present, the cursor is only the
size of the smallest dot possible in the chosen mobe and this will no!
be visible on a television set. One worthwhile improvement would be
to enlarge the cursor — perhaps to a ‘crosshair sight' — so that it is easier
to see. You might like to do this for yourself by amending lines 1770 —
1810.

We have already observed that any series of graphics commands
can be thought of as a string of vbu statements. In many cases, the
instructions that create a screen are far more compact than the screen
itself and that set of instructions is nothing more than a list of vbu
codes. This suggests the interesting possibility of remembering
significant codes (ones that contribute to the form of the screen, rather
than those associated with your wandering around it) and saving them
for future use. As an example, the four bytes:

12,17,1,65

are easily remembered and, when preceded by vbu, they will clear a
MODE 2 (Say) screen and print a red letter A in the top corner. This may
not seem very interesting, but if you want to store that screen (in the
normal way with *sAve) it will cost you 20,480 bytes! The four single
byte codes, together with a small overhead to do the vbuing are
definitely a better bet. Even fairly complicated screens can be broken
down into a shortish list of vDu codes which could be stored and then
‘drawn’ back onto the screen using vbu commands (or OSWRCH if you
are writing in Assembler).

To implement this feature in the utility will require some care.
Basically, an area must be set aside to hold the data and important
vDU codes (such as those from PLOT or GcoL commands) should be
stored there as they are executed. When the screen is complete,
saving the table of data is tantamount to saving the instructions for
drawing the screen and those instructions can be implemented by a
one-liner as simple as this:

168 Utility 23

MODE 2:X=OPENIN("data"):REPEAT:
VDU BGET#X: UNTIL EOF#X

This interesting technique would allow many 'screens'to be stored in a
much smaller space than would normally be occupied by just one
normal high-resolution screen. Furthermore, for certain types of
screen, it would be much faster to 'draw’ it than it would be to *LOAD it
from tape (but probably not disc); and so, for once, we gain on the
roundabouts and the swings.

Although this feature is not included in our utility, the program was
written with the idea in mind and the amendments should not be too
difficult. The best approach would be to take one function at a time
and to include in its PRocedure the correct instructions for generating
the appropriate vbu codes. Calling a new procedure would execute
that list of codes (thereby updating the screen) and also store them in
the table. Before you quit the program, *sAVE the table to tape.

If you go through with this modification you will need one further
PROCedure to read the data back into the program, ready for further
processing. We have already seen that this is a fairly simple job.
Alternatively, the code could be merged into an entirely different
program, for example a game. This could then create the screen from
a small amount of data held either within the program (as DATA) or on
file outside it. If you decided on the latter approach, then the data
would be available to any program that cared to use it, provided it
contained the 'drawing' procedure.

Although this routine is more 'experimental’ than some of our others
it does, nonetheless, contain a number of useful features and will be
found to be extremely helpful in the design of graphics effects.
Effectively it allows you to throw away your sketch-pad and graph
paper and to create your graphics where they are most at home — on
the screen.

169
Utility 24:
Large character generator

Description

When you are trying to create a display page, perhaps to introduce a
program, the only means of emphasising text is by printing it in a
different colour. To create effective titles, it is a good idea to have a
variety of letter styles at your disposal and this little routine goes some
way to providing them for you.

The purpose of the utility is to enable you to print enlarged letters in
any of the graphics modes. The letters so produced are accurate
enlargements of the normal lettering for that MoDE and this makes
them particularly easy to use as they fit neatly on to the text grid (say,
40x32) rather than the daunting 1280x1024 graphics grid. Functions
such as spcand TAB still work in the usual way and all the 'big' printing
will be done by a special Procedure to be included in your program.
Any normal printing is still done with PRINT.

The horizontal and vertical scale factors (hsf and vsf respectively) are
independent and experimenting with different values will produce a
wide variety of letter styles. A very simple application is to select MODE
2 and then set hsf=1, vsf=2 which produces double height lettering
that is both pleasant and easy to read, unlike the usual ghastly lettering
for that MODE.

It is possible to mix different letter sizes anywhere (text-wise) on the
screen and complex, impressive looking displays can be created with
just a few simple commands.

Use
Merge PROCbanner with your own program — two ways of doing this are
suggested in the User Guide.

Following a MODE instruction, you should include these two lines in
your program:

xstep%=1280 DIV <horizontal resolution>
ystep%=1024 DIV <vertical resolution>

These ensure that the big letters produced by the Procedure are exact
scale models of the true lettering for the MODE you are using. From the
listing below you will gather that the correct divisors for MODE 1 are
320 and 256 respectively. Of course, these lines could be more
efficiently coded as:

170 Utility 24

xstep%=4 : ystep%=4

To print any word or phrase, PROCbanner must be called with six
parameters in this order:

1) Horizontal tab, measured in standard text units (columns) for the
current MODE. For example, in MODE 1 the range of this parameter is O-
39.

2) Vertical tab, measured in standard text units (lines) for the current
MODE. This and the previous parameter define the start of the top left-
hand corner of the first character to be printed.

3) The width of each new letter, in whole number multiples of the
normal width of that MODE's letters.

4) The height of each new letter, in whole number multiples of the
normal height of that MODE's letters.

5) The logical colour number for the printing.

6) The string to be printed.

The only restriction in your choice of parameters is that no letter
should spill over the edge of the screen. If one does, then the whole of
the screen will be filled in as a large dot, which tends to spoil the
display ! Notice that great care has been taken to ensure that the
effect of:

PROCbanner(6,12,1,1,1 ,"PMK")
is identical to that of:

COLOUR 1
PRINT TAB(6,12)"PMK"

so that PRINT and banner are totally compatible.
The listing below includes a short preamble to show how the
parameters might be used.

10 REM LARGE LETTERS

20 MODE 1

30 xstep%=1280 DIV 320

40 ystep%=1024 DIV 256

50 PROCbanner(8,4,8,7,1,"KIM")

Utility 24 171

,"FERN")

60 PROCbanner(8,15,6,4,
2,3,"LAURA")

70 PROCbanner(8,24,5,

80 G=GET

90 END

100

110 DEFPROCbanner(x%,y%,xsize%,ysize%,
col%,A%)

120 A%=10:X%=&70:Y%=0

130 x%=x%*xstep%

140 y%=y%*ystep%

150 xsize%=xsize%*xstep%

160 ysize%=ysize%*ystep%

170 FOR 1%=1 TO LENAS$

180 ?&70=ASCMID$(AS$,1%,1)

190 CALL &FFF1

200 ytab%=1023-y%*8

210 FOR row%=&71 TO &78

220 xtab%=x%*8-xsize%

230 po2%=128

240 REPEAT

250 IF (po2% AND ?row%)=0 GOTO 280

260 VDU 24 ,xtab%;ytab%-ysize%+ystep%;x
tab%+xsize%-xstep%;ytab%:;

270 VDU 18,0,c01%+128,16,26

280 xtab%=xtab%+xsize%

290 po2%=po2% DIV 2

300 UNTIL po2%=0

310 ytab%=ytab%-ysize%

320 NEXT row%

330 x%=x%+xsize%

340 NEXT 1%

350 ENDPROC

2
3

How it works
Each letter of the string is processed in exactly the same way by the
main loop of the program (lines 170-340).

Initially, the dot matrix for the letter is read into store by using an
osword call with A=10 and the program then enters its second loop in
which the bit patterns for each row are interpreted and then printed
to the screen

Each 'dot' that makes up the letter is actually a graphics window of
appropriate size that is coloured in by using (the vbu equivalent of) a
cLG command. Notice that if a dot is not required in any position then
nothing is printed, rather than having the dot printed in the
background colour. This is convenient because it speeds up the
PROcedure and also makes it possible to overlay letters to get highlight
and 3D effects, thus making the routine more versatile.

172 Utility 24

Each of the eight rows that makes up the pattern for the letter is
processed in this way.

Variables
The six parameters referred to in the previous section are respectively:
xstep%, ystep%, xsize%, ysize%, col%, and A$. On entry to the routine, the
first four items are scaled into graphics units from their original text
values. The scale factors for this are xstep% and ystep%.

row% IS the address of a byte returned by osworD and whose bit
pattern defines how the contents of that row should look. Before each
graphics window can be filled in, it must be defined; this is the
purpose of the very long vbu statement in line 260. xtab% and ytab% are
the screen co-ordinates of the start (i.e. top left-hand corner) of this
window.

To extract the bits from the bytes that define the character, a mask is
used and this is known as po2%. Its values are diminishing powers of 2
from 128 to 1 inclusive.

Extensions

The purpose of this utility is to provide a quick and easy way of
creating display screens and further additions to the routine should
enhance its repertoire of effects. One area we could improve is the
use of colour. A simple amendment will allow a background colour
and the possibility of different letters of a word being printed in
different colours. Indeed, there are no grounds, other than those of
good taste, for not allowing each dot of a letter to be individually
coloured. The effect of this could be truly hideous, but if speckled
letters are your thing, this is how to get them.

An advanced (but potentially very interesting), modification would
be to increase the resolution of the letters.

If you RUN the sample program you will see that the word 'KIM' is
printed in very large letters, although still on an 8x8 matrix. This makes
the letters look rather more crude and computer-like than they do
when printed in the usual way. (‘'Q' is particularly ugly, although it
looks fine in normal size.) By going up to a 16x16 matrix it will be
possible to improve the quality of the lettering. An obvious way to do
this is to provide a new data table for the letters instead of relying on
the one built into the computer. This table would be very large (four
times the size of the standard table) and tedious to compile.

A more creative method would be to include some ‘image
enhancing' coding to intelligently fill out the existing 8x8 pattern. One
possible algorithm — and it's only a suggestion; you will probably think
of others —is to find chess-board patterns like those below and then to
fill in the shaded squares, too.

Utility 24 173

v

Applying this algorithm to the letter 'G' will result in the difference

illustrated below:

L]

"Normal (left) and enhanced (right) images of the letter 'G" "

One drawback is that the high-resolution version of the routine will
will at a quarter of the speed of the original for the simple reason that
it has four times as much work to do.

The interesting feature of the method is that you are filling in
information that was never there in the first place! The computer
assumes that it was provided with insufficient data and 'makes up' the
rest based on what it has been given. This technique — well known to
all good story-tellers — is now used extensively in astronomy. You may
have seen photographs that have been returned by spacecraft and
then ‘computer-enhanced' to fill in the details and so provide
remarkably accurate information about the surfaces of planets, systems
of stars and so on

This amendment to our original program will provide a relatively
straightforward introduction to this interesting field.

175

Section 4
Miscellaneous utilities

In this section we look at a few assorted routines which are grouped
together here primarily because they don't belong anywhere else. As
the range of techniques employed is necessarily quite wide, you
should be able to get something from each utility, even if you do not
type it in. For example, the String Sort includes a method of organising
files which is useful whether or not you wish to sort data.

Although this section contains our final selection of utilities, there
are many other possible routines to help you get the most out of your
Electron. We have covered the most common utilities, aswell asa few
new ones, but as everyone who uses a computer has different
requirements, there will always be room for more. Throughout the
book, we have tried to encourage you to extend and improve the
programs and have hopefully pointed the way to some interesting and
worthwhile investigations.

Soon it will be your turn, but let us first look at our final set of
programs.

176

Utility 25
Display user keys

Description

Most programmers have their own pet uses for the Electron's user-
defineable keys. Some like to store BasiC keywords on them so that
PRINT", DEFPROC, Or Whatever are available at a touch, while others use
them to store mini-programs, as with some of the utilities we have
already seen. Without doubt they are one of the most practical
features of the machine and during a serious hacking session will
probably be re-programmed many times for different tasks.

Even if you physically label the keys with the initial definition
assigned to them, you may well reset them in the course of a program
and it is likely that, after a while, you will never be sure exactly what
each key has been programmed to do. The simple answer is to press it
and see, but that may have dire consequences. A safer way is to type a
line number (O is a good one) and then press the key so that its
contents are printed out but not executed. This is sufficient for most
cases but will not always present the full definition.

A more reliable method is to read the definition from the key
storage area, which is how the next routine works. Using this utility we
can see exactly how each key has been programmed since it displays
the character strings currently assigned to all the function keys.

At this point we should remind ourselves that there are sixteen such
keys (see the notes on *Fx4 in the User Guide) and in addition to
generating character strings they can also produce ASCII codes after a
*Fx225-227 command. The ASCII code facility is independent of the
character string associated with the key and does not concern us here.

To print out the key contents is not a difficult exercise and you might
like to have a go at it yourself. The first step is to check out Page 11
(woo onwards) using our memory display utility. This is the area where
the key definitions are held and with a little experimentation you
should see the technique that Acorn have utilised to store them. We
won't go into the details here, but the important features will be
considered in the 'How it works' section.

When RUN the routine prints out the contents of all sixteen keys,
surrounding the strings with a pair of ' "' characters. The reason for this
Is that, if the string has been set up to print, say, eight spaces (for
example, if you are writing neat assembler code), then the spaces will
Because the definitions are surrounded by quotes, single quote marks

Utility 25 177

within the definitions have to be printed twice so that the string may
be cowed without introducing syntax errors. This may look strange,
but it is the correct way of printing quotes within quotes.

Use

The utility is RUN like any other Basic program and will fit into three
pages, so set PAGE=PAGE+&300 before LoADIng. Obviously, once the
keys have been listed to the screen they are fair game for editing using
the cow key. This is a useful facility if you have typed in a long, but
not quite correct, key definition asyou can then cow it having RUN the
utility. Also, if required you could string two or more definitions
together on one key.

10 REM DISPLAY USER KEYS

20 MODE 6

30 PRINT TAB(7)"CONTENTS OF FUNCTION
KEYS"

40 FOR K%=0 TO 15

50 PRINT "*KEY ";K%;" ";CHR$34;

60 PROCKkey

70 NEXT

80 PRINT'

90 END

100

110 DEFPROCkey

120 ptr%=K%?&B00:max%=255

130 FOR 1%=0 TO 15

140 disp%=1%?&BO00

150 IF 1% =K% OR disp%<ptr%e GOTO 180

160 IF disp%<max% max%=disp%

170 IF disp%=ptr% 1%=15:max%=255

180 NEXT

190 IF max%<255 PROCIistkey

200 PRINT CHR$34

210 ENDPROC

220

230 DEFPROCIistkey

240 REPEAT

250 ptro%=ptr%+1:byte%=ptr%?&B00

260 IF COUNT=39 PRINT"" "

270 IF byte%<32 PRINT "|";:byte%=byte%
+64

280 IF byte%=34 PRINT"""";

290 IF byte%>128 PRINT "|!";:IF byte%<
160 PRINT "|";:byte%=byte%-64

300 PRINT CHR$byte%;

178 Utility 25

310 UNTIL ptr%=max%
320 ENDPROC

How it works

The key definitions are packed into Page 11 one after the other with
no obvious gaps between them, so how does the computer know
where each key definition starts and finishes?

The first part of this is easy. A table starting at &Boo points to the start
of each definition and is updated each time a key is (re-defined. If you
enter *Keys LIST then the entry at &B00+5 is updated to point to your
string, the pointer being a single byte binary displacement from wm.
You will notice that all of the free keys have their pointers updated
even though they apparently have nothing to point at. This can be
checked by using your memory display utility.

So finding the string start is easy, but finding the end is something of
a problem. if the keys are entered in strict numeric order then clearly
a key definition ends as soon as the next one starts, but this situation is
not likely to arise often. What we must do is to scan the displacements
for all of the other keys and find the next highest above that for the
current key. This is where the next key starts and, by inference, where
the new one stops.

Obviously it would be easier to hold both start and stop
displacements within the table but that would limit the amount of
precious space available for the keys. Besides, this system is more fun
to decipher! For each key, the utility first picks up the displacement of
the start of the string and then calculates the next largest displacement
above it. The bytes contents between those two addresses are printed
out asthe definition of that key. You will see that control codes such as
IM (RETURN) and |z (‘restore default windows') are stored as control
codes - these two would be &oD and &i1A respectively. It is the
responsibility of the routine to decode any such bytes back into their
ASCII formats. Any bytes with ASCII codes above 127 are entered by
preceding the normal ASCII character with '|!" and these characters
must be decoded as well. This feature allows you to store BASIC
keywords by their tokens, as in:

*KEYS5['u '} ' % |M
which is the tokenised form of:

*KEYS5 REPEAT UNTIL GET

Utility 25 179

This only occupies four bytes in the user-key buffer!

If you are determined to pack the key contents astightly as possible,
this is certainly the way to do it. A simple method of getting the
correct tokens into the buffer is the let Basic do it for you like this:

10 REPEAT UNTIL GET [M
20 OSCLIC("KEY5"+$(PAGE+4))

GoTO 20 will then tokenise the key definition and define the key. Your
knowledge of BASIC program storage will help you understand how
this works.

Procedures

Only two PROCedures are required by this utility; PROCkey is called for
each key to see if it has a string attached to it, and PROCIistkey displays
the string if one exists.

PROCkey is called with ma equal to the key number being processed
(0-15) and prints out the key name and opening delimiter of the
string. Having performed the calculations described above it is then in
a position to call PROCIistkey if it has found something there. In ail cases
it terminates by printing a' " ' character.

Variables

K% is the key number and the program basically consists of a loop
(lines 40-70) in which k% varies from 0 to 15. The displacement of the
first byte of the string is held in ptr% and if this key turns out to be
active, ptr% Is incremented to point to the various bytes of the string
whilst they are being printed.

PROCkey determines the end of the string by loading the lowest
displacement higher than that for your key into maxe, which is initially
set to 255. If after all sixteen keys have been checked max% is still
equal to 255, then there is no definition for that key; otherwise max% is
used as the upper bound when the string is being printed.

When a key definition is found the bytes are taken one at a time
from the buffer into byte% prior to PRINTINg; this is necessary since the
bytes have to be tested to see if they are control codes and must
hence PRINT differently.

Utility 26
Printer screen dump

Description

Most dot-matrix printers are capable of reproducing high resolution
graphics provided they are supplied with the correct information, and
a popular requirement for printer owners is a routine for copying the
contents of the screen. This utility is just such a routine, enabling you
to 'dump' the screen to an EPSON RX-80 printer. Although there are
numerous different makes of printer there is now some degree of
standardisation between them in, for example, their use of Escape
codes, and the routine should work on other printers with the
minimum of alteration. It has been used successfully with a SHINWA
CP80) with no modifications at all.

The routine is in two parts: firstly a short program that assembles
machine code into Page 9 and, secondly, a pProccedure that you
should copy into your program and call whenever a screen dump is
required. The program is presented in this way since if anything worth
saving has appeared on the screen it will be as the result of a program
being wm and that program can then call the dump routine to print
the screen. However many times the procedure is called, the first
program only needs to be Rum once to assemble the machine code. A
sample of the printout produced by the program appears below.

Z=4-3%(6/(X"243)48/(Y"243))

Utility 26 181

Use

The Assembler program as given stores the machine code in Page 13,
starting at wm If this is not suitable for some reason, then the safest
place is at the current value of PAGE. To do this, set PAGE PAGE+&100 and
then LOAD the Assembler routine. Change line 80 so that P% equals the
old value of PaGE or, if you like, PAGE-&100, and RUN the prgram. Now
LOAD the program that is to create the screen for you and merge the
dump Procedure with it. Actually, since this routine is so short, it is
probably quicker to type it in - just tag it on to the end of your
program. If, following the earlier suggestion, you have located the
machine code at PAGE then line 30070 must be changed to:

30070 CALL (PAGE-&100)

When you want to dump the screen, call PROCdump with two
parameters. The first is the starting line on the screen (0 - 31) and the
second is the number of lines you require (1 - 32). For example, to
dump the top half of a MODE 0 a screen, you would use PROCdump(0,16).

When the PROCedure is complete, the printer is reset and then turned
off. Any text or graphics windows will have been cancelled. The
PROCedure may be called again at any time by your program.

30000 REM BASIC PROCEDURE FOR SCREEN DUMP
30010 DEFPROCdump(P1%,P2%)

30020 VDU 23,1,0;0;0;0;

30030 ?&72=(1022-32*P1%) MOD 256

30040 ?&73=(1022-32*P1%) DIV 256

30050 ?&77=P2%

30060 VDU 26,2,1,27,1,65,1,8

30070 CALL &910

30080 VDU 1,27,1,64,3

30090 ENDPROC

30100

30110 REM 1ST PARAM=START LINE (0-31)
30120 REM 2ND PARAM=NO OF LINES (1-32)

10 REM M/C FOR SCREEN DUMP

20 OSWRCH=&FFEE:OSWORD=&FFF1
30 xlo=&70:xhi=&71

40 ylo=&72:yhi=&73:pix=&74

50 po2=&75:tot=&76:max=&77:ccs=&78
60 ?ccs=&0A:ccs!1=&02804C1B

70 FOR 1%=0 TO 2 STEP 2

80 P%=&910

90 [OPTI%:

100 .LO

182

110
120
130

Utility 26

LDX #0 'start of new line-
L1
LDA #1 : send control codes for

linefeed

140

JSR OSWRCH ; and to set 'bit-imag

e' mode

150
160
170
180
190
200
210
220
230
240
250

LDA ccs,X

JSR OSWRCH

IN X

CPX #5

BCC L1

L2

LDY #0 ;all codes now sent
STY xlo :Xx-coordinate = 0
STY xhi

L3

STY tot ;data byte (for printer) =

0...so far

260
270
280
290
300
310

LDA #128 ;initial power of 2

STA po2

L4

LDX #(xlo MOD 256)

LDA #9

JSR OSWORD ;read logical colour of

pixel...

320
330
340
350
360
370
380
390
pixel
400
410
420
430
440
450
460
470

LDY #0

LDA pix ;..into pix

BEQ L5 :nothing there - so branch
LDA tot ;non-zero (not black)

ORA po2 ;SO0 augment total

STA tot

.L5

SEC ;set up location of next
down

LDA ylo

SBC #4

STA ylo

BCS L6

DEC yhi

L6

LSR po2 ;divide power of 2 by 2
BCC L4 ;more to do in this column

- loop back

480
490
500
510

only)

LDA #1

JSR OSWRCH

LDA tot

JSR OSWRCH ;send byte to printer (

Utility 26 183

520 CLC ;set up new y-coordinate
530 LDA ylo

540 ADC #32

550 STA ylo

560 BCC L7

570 INC yhi

580 .L7

590 CLC ;augment x-coordinate by 2
600 LDA xlo

610 ADC #2

620 STA xlo

630 LDA xhi

640 ADC #0

650 STA xhi

660 CMP #5 ‘whole line done ?

670 BCC L3 ;N0 - so go back and do
next column

680 LDA ylo ;yes - adjust Y for next
line down

690 SBC #32

700 STA ylo

710 BCS L8

720 DEC yhi

730 .L8

740 DEC max ;required no of lines done
"

750 BNE LO ;N0 - back to start a new
line

760 RTS ;yes -back to calling
program:
]

770 NEXT

780 END

How it works
Although this description applies specifically to the RX-80, it will no
doubt be relevant to many other printers.

The matrix of dots used for each character is nine (wide) by nine
(high) which means that the printer's most basic operation is to print a
vertical column of nine dots (or blanks). A single text character is
formed by printing nine such columns side by side, with the bottom
dot in each column being unused in order to space out the print lines.

The 'bit-image mode', in which the printer can reproduce graphics,
requires data to be sent to the printer in single bytes (no surprises
there), with each of the eight bits controlling one dot in the column.
Again the ninth position is unused. If this state of affairs continued

184 Utility 26

each line of print would be separated by a blank line one dot high and
the first step is to eliminate this before the dump gets started.

When the printer is first activated by the dump procedure, the print
command vDU 1,27,1,65,1,8 (Or ESCape "A" 8) is used. This sets the line
spacing at 8/72 inches instead of the usual 9/72 inches. Consequently,
when a line feed is performed, the paper is wound on by eight dots
instead of nine (the dots are separated by 1/72 inch) to eliminate the
gap between the rows.

After the dump has finished, the printer is reset to the normal state
so that it may be used for listings etc. by sending the command vw -1,
en (Escape "@"). BASIC sets up the vertical displacement from the
graphics origin of the starting line (two bytes binary) and also the
number of lines to print. The machine code then takes over.

Each line is printed in exactly the same way, and the machine code
consists of a loop to print each column of dots, after which the
number of lines required is decremented until it hits zero, indicating
that the dump has finished.

The printer mode chosen is the RX-80's 'dual-density bit image
mode' which is capable of printing 969] dots across the paper. Since
the Electron has a resolution of 640 dots horizontally the printed
screen does not occupy the full width of the paper. To engage this
mode we have to use the EScLL code at the start of each line and tell
the printer how many dots to expect - the answer to this one is always
640. To send the information, a block of control codes is held in Zero-
page and sent to the printer at the start of each line. The block looks
like this:

ccs
&0A &1B &4C &80 &02
linefeed ‘ESCAPE’ ‘L 640 data bytes

The printer then assumes that the next 640 bytes are to be treated as
dot patterns. These are read from the screen, converted to binary and
passed to the printer according to the scheme:

Utility 26 185

=&C6

O‘O‘O

HHHI—L

*

*

o

< not used

SCREEN BINARY HEX PRINTER
PATTERN PATTERN

We read the status of the dots on the screen using an oSwoRD call
with A=9 (see description in the User Guide) and if a dot is logical
colour O (usually black) it is deemed not to be present, otherwise it is
printed. In lines 280-470 the routine scans a column of eight dots and
builds up a byte to send to the printer, so that in the diagram above it
would send ms. Having sent the byte, we augment addresses to
indicate the next column of dots and proceed as before. This
continues until 640 bytes have been sent, representing an entire
screen line of eight dots depth. Before going on to the next line it is
necessary to adjust the screen Y co-ordinate to point to the top of the
next line down. If there are more lines to print, the whole process is
then repeated; otherwise, the routine exits to BASIC.

Variables

The oswoRD call that reads the status of the screen pixels requires a
parameter block containing the low and high X and Y co-ordinates of
the point. These are held in Zero-page locations &70 to &73 and are
referred to as xlo, xhi, ylo, yhi. Both ylo and yhi are set up by BASIC to
point to the top pixel of the required start line and each new line
starts with xlo and xhi being setto zero. The logical colour of the pixel is
automatically read into &74 (clever, these osworD calls!) which the
Assembler knows as pix. BASIC also sets up location &77 with the
number of lines to print this variable is called max.

As the Assembler looks down each column of dots, it builds up a
total called tot by ORIng the existing total with descending powers of 2.
This power starts at 128 (=27) for the top dot in the column and
finishes at 1 (29) for the bottom one. The power of 2 in use at any
time is held in po2.

At the start of each line, the block of control codes has to be sent to
the printer by using the machine code equivalent of vim v The first of
these codes is located at ccs.

Extensions
Use of the oswoRbD call for reading the screen ensures that dots whose

186 Utility 26

logical colour is O are not printed, while all others are. If you have
used the vbu 19 command to change the colour palette, then it is
possible to print dots that are invisible to the naked eye (ie. black), but
which are picked up by the read routine. This is not a problem, but
should be borne in mind if you want to dump exotically coloured
screens. The safest thing is to accept that you are printing in black-
and-white and display the screen accordingly.

Alternatively, you may adjust the routine to be more selective in
what it prints by replacing the simple test on pix at line 340 with
something more sophisticated. While this amendment is not difficult it
does seem rather illogical; the idea of a screen dump is that you get
what you see. In other words, retain black backgrounds and avoid
palette changes to or from black.

This utility will work in all of the graphics modes, namely 0, 1, 2, 4
and 5. Modes 3 and 6 are text only and you are unlikely to want to
use the routine with those - which is just as well as the osworbD calll
will not work with these modes!

Some screen dump programs read the screen directly, rather than by
an oswoRrbD call, and so they can handle all screen MODES. The present
system is neater and shorter (and probably a little slower), and the lack
of MODES 3 and 6 is not a severe limitation. if it becomes necessary to
reproduce the screen text in the middle of a program, then the
wocedure listed below will help.

31500 REM SCREEN TEXT DUMP
31510 DEFPROCtextdump(x%,y%)

31520 LOCAL A%,C%,X%,Y%

31530 VDU 2

31540 FOR Y%=0 TO y%

31550 FOR X%=0 TO x%

31560 VDU 31,X%,Y%

31570 A%=&87

31580 C%=(&FFFF AND USR(&FFF4)) DIV &100
31590 IF C%<32 OR C%>126 C%=32

31595 PRINT CHR$C%:;

31600 NEXT X%

31610 PRINT

31620 NEXT Y%

31630 VDU 3

31640 ENDPROC

This PrROCedure uses an 0sBYTE: call to read the character at the cursor
position, as seen in the MODE 6 Procedure writer utility. It should be
called with two parameters: the number of columns and the number

Utility 26 187

of rows (both numberings starting at 0) of the screen in the current
MODE. The characters that are printed are not the characters as seen
on the screen but the printer's interpretations of them, so the
procedure is not a true screen dump although it does convey exactly
the same information.

To prove that it works, the above listing was not produced by
turning the printer on and typing usT, but by listing to the screen
(MODE 3, in this case) and then calling the PrRocedure. Enterprising
coders should have little difficulty in condensing this onto a function
key.

Finally, a word about timings. Reading the screen one dot at a time
IS a very slow process, hence requiring the routine to be written in
machine code. In keeping with the philosophy established' in the
String search utility, a working version was first produced in BAsIC. This
was extremely slow, and in comparison the printer seemed like one of
the fastest peripherals ever invented.

This current version prints almost continuously and takes just over
100 seconds to print a full Morn: o screen. The RX-80 has a double
speed mode (Esc'y”) but this does not allow horizontally adjacent dots
to be printed and gives a much weaker image. If you wish to
experiment with other printing modes (if for example you are using a
different printer), the esc"L" code is sent to the printer in line 60 of the
assembler routine. It is the third hex byte (4C) of the plinged string.

Utility 27
String sort

Description

The most common use of computers is in data-processing applications
where the computer is responsible for reading and writing data files; it
may also be called upon to perform some routine calculations as part
of the processing. Such files can be very large (several megabytes for
mainframes) and are nearly always sorted, Obviously if the data is in a
random sequence it is more difficult to locate a particular piece of
information within the file than if the data is ordered in some way.

A file consists of a series of 'records', each containing a set of data
fields' which are associated with each other, and constituting a
processing unit. The Electron - in common with most home computers
- does not support such record processing since only byte, numeric
and string data types may be written to or read from a file. As well as
giving the string sort Procedure, we will consider a simple way of
adding a suitable record processing facility for use in conjunction with
it, although each can function independently of the other. The
method consists of treating strings as records and hence, in what
follows, 'string’ and 'record' are used interchangeably.

To sort a collection of records requires the use of one or more 'keys'.
A key is a data field within the record used as the basis for sorting; up
to a point, the rest of the data in the record is not important. If more
than one key is used each is assigned an importance, ranging from
'major' to 'minor'. A familiar example is a set of football league tables.
Here the major key is the division and the minor key is the position
within it. For teams of equal standing a third key is introduced, namely
alphabetical order.

The sort described here uses only one key, which may be located
anywhere within the record. However, if the record is carefully
structured it can give the illusion of sorting on several keys.

To sort a large number of records is a complex process, especially if
all of the records cannot be loaded into the computers memory at
once, and a great deal of sophisticated effort has been expended in
producing efficient sorting procedures. The mathematics are
complicated but the prime requirement is simple; to sort the
information as fast as possible.

We look at a routine that will sort strings (remember that could
mean records) based on a key starting at a fixed position within the

Utility 27 189

string. The procedure expects all of the strings to be in memory at the
same time, and this limits the size of me array to about 2000 strings,
depending on their size and that of the program that is going to
process them.

The algorithm used is not the most efficient, but as the sort is done
entirely in machine code it is sufficiently fast. To illustrate the
technique used, a BASIC version is given and this should help you to
understand how the main procedure works.

The strings to be sorted must be held in the array As., which can be
as large as you like provided it can be held in store, and the sort will
be in ascending ASCIlI order (if you want the strings to be in
descending order you only have to read them backwards the sort is
still valid). Although the sort is a string sort, there is no reason why
numeric data cannot be sorted provided it is first converted to string
format. In this respect a string sort is more versatile than a numeric
sort, as it simply sorts using the ASCII codes without requiring the
information to be in any special format. In particular, this makes it
ideal for sorting records which is one of its intended uses.

To enable the Procedure to sort records, you should organise your
data in a particular way, which is perhaps best explained by means of
an example.

Suppose we have a file containing details of the members of a tennis
club. For each member, the following fields are required:

Surname 12 bytes maximum
Initials 2 bytes maximum
Sex 1 byte
Membership number 3 bytes

The file could be written by using PRINT# to write each separate field
as a string, but to read a record would then require four separate
INPUT# commands. This is not only slightly tedious, but also illogical,
since we should expect to read an entire record at one go as the
record constitutes the processing unit. Furthermore, sorting such a
piecemeal file would be difficult since it is not obvious which fields are
associated, except by their being grouped together. We should
organise the file properly and include routines to build and dismantle
the records as strings.
Assume that this new information is to be inserted on the file:

Field Data BASIC string
Surname Aughton name$
Initials J initial$

Sex M sex$

Membership no. 123 number$

190 Utility 27

The record is built by executing the following code:

1000 record$=name$+5TRINGS$(12," "}

1010 record$=LEFT$(record$,12)+initial$
+ll n

1020 record$=LEFT$(record$,14)+sex$+num
ber$

which creates the string "AUGHTON JM123", and this string is
written to the file as a data record. Notice that the record has been
filled out with spaces to ensure that it is a fixed length. This is
convenient when using discs as it enables a search to be carried out
quickly, but is not so good with cassette files as extra data is being
written. However, since corresponding fields occur in the same place
in each record they are easier to dismantle. If we compare the above
record with another:

recl$= "AUGHTON J M123"
rec2%$= "KIRWAN PMF345"

we can see that each field starts at a fixed place within the string and
can hence be used as a key for the sort.

To recreate the fields from the record, having read it in from our file,
we could do something like this:

2000 name$=LEFTS$(record$,12)
2010 initial$=MID$(record$,13,2)
2020 sex$=MID$(record$,15,1)
2030 number$=RIGHTS$(record$,3)

This simple example introduces a method of manipulating data as
records rather than a series of separate fields. Whether you choose to
organise your files in this way depends on how much data they
contain and the way in which you wish to access that data. A
limitation of the method is that a string may only be 255 bytes in
length, which is therefore the maximum size of a record. In practice,
this is unlikely to be a problem.

To sort these records - or any collection of strings - you should first
read them into the array - and then call the sort procedure. For
example, to sort this file into alphabetical order by surname we simply
use PROCsort(100,1) which says 'sort the first 100 strings based on a key
starting at the first element of the string’. Similarly, to sort into
membership number order we would use PROCsort(100,16) as that field
starts at the 16th byte of the string. In this respect the machine code

Utility 27 191

sort is more versatile than the Basic (as well as being a good deal
faster), since the BAsIC just sorts on whole string. Obviously, It Is an
easy job to amend the BAsIC, but such an amendment would slow it
down even more and defeat the object of explaining the sorting
algorithm used.

Finally, after having sorted our strings we could then rewrite the file
or process the data in some other way. It was mentioned earlier that
the sort could appear to be based on several keys and in fact this is an
inherent feature of the method - it comes free of charge! When the
sort compares strings, it does so starting from the key field and
working to the end of the record, thus taking in all the fields in
sequence. Notice that if two records are otherwise equal, the shorter
one is taken to be the least, which is equivalent to saying th'at it is
padded with spaces until it is the same length as the other string.
Consequently the effect of PROCsort(100,1) on the ‘tennis' file will be to
sort it into surname order and, where two surnames match, into the
order of the initials. It will then place matching records into female/
male order and finally membership order. This is a genuine four-key
sort, the major key being surname and the minor key being
membership number. To change the order of the keys, the structure of
the data within the record should be altered to reflect the required
order.

This feature, together with the ability to base the sort on any field of
a record gives us a very powerful and versatile utility.

Use

The routine is presented as three Procedures, which should be copied
into your program and called at the appropriate times. The third
procedure assembles the machine code for the actual sort and is not
required thereafter; if memory is short we can take advantage of this
fact to gain a few bytes. However, let us look first at the simplest way
to use the utility:

1) Renumber the procedures with high line numbers.

2) Merge all three Procedures with your record processing coding.
3) At a suitable point in your program call PROCassto assemble the
machine code.

4) Call PROCsort.

5) Do as you will with the sorted strings - probably file them away or
print them.

It might seem a good idea to assemble the machine code into Page 9
instead of wasting space in the program area, but cassette users
cannot do this as PRINT# and INPUT# use {area of memory when

192 Utility 27

accessing files, so until discs arrive they will have to find another place
for the code. In either case, considerable savings can be made by
running the assembly PROCedure first and then loading in the rest of the
program. This method is recommended if you have to do a large
volume sort. The sort PROCedure must be called with two parameters.
The first gives the number of strings you wish to sort and the second is
the starting position of the sort key within the string, The entire
righthand end of the string starting from this position is taken as the
key. If the sort PROCedure finds that something is wrong, it generates a
syntax error and the explanations for these (using our line numbering)
are:

Line 60: The routine cannot find the array A$ on which sort is always
based.

Line 110: You are trying to sort more records than there are in the
array.

Line 180: You have specified a key starting point within a string which
Is longer than one of your record strings.

Your program should include oN ERROR coding to deal with these
situations - probably by outputting derisory comments! The time taken
by the sort obviously depends on the number of strings but the
following times give some indication of the speed (all timings in
seconds):

Number of strings Machine code BASIC
100 1 13
200 3 51
300 6 113
400 10 205

Remember that the BASIC routine does not include the variable key
starting position facility, and if this facility was not included in the
machine code version it would be even faster. In this example, the
strings sorted were titles of records (the round plastic ones!) between 3
and 28 bytes in length and the program used was:

10 DIM A$(400)

20 PROCass

30 X=OPENIN("SINBLES")
40 FOR 1%=1 TO 400

50 INPUT#X,A$(1%)

Utility 27

60 NEXT 1%

70 PROCsort(400,1)

80 END

Here are the utility listings:

10 REM SLOW SORT - BASIC
20 FOR J%=1 TO N

30 MIN$=A$(J%):V%=J%

40 FOR 1%=J% TO N

50 IF A$(1%)<MINS$ V%=1%:MIN$=A$(I1%)
60 NEXT 1%

70 AS(V%)=A$(V%):A$(J%)=MINS$

80 NEXT J%

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

REM M/C SORT (WITH OFFSET)

DEFPROCso0rt(N%,M%)

size=0

addr=?&482+256*?7&483

IF addr=0 ERROR!

REPEAT

IF addr!2=&03002824 PROCfound
addr=?addr+256*(addr?1)

UNTIL addr<PAGE

IF size>N% size=N%-1 ELSE ERROR!
?&70=start MOD 256

?&71=start DIV 256

?&72=size MOD 256

?&73=size DIV 256

?2&82=M%

CALL a

IF ?7&82=0 ERROR!

ENDPROC

DEFPROCfound
Size=addr?6+256*(addr?7)
start=addr+12

ENDPROC

DEFPROCass
jalo=&70:jahi=&71
jclo=&72:jchi=&73
ialo=&74:1ahi=&75
iclo=&76:ichi=&77
minlo=&78:minhi=&79
minal=&7A:minl=&7B
ptr=&7C:valo=&80

193

194

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620

Utility 27

vahi=&81:first=&82

DIM Z% 200

FOR [%=0 TO 2 STEP 2
P%=72%

[OPTI%

.a

LDY #3 'MIN$=A%(J%)'
.b

LDA (jalo),Y

STA minlo,Y

DEY

BPL b

LDA jalo 'V%=J%"
STA valo

LDA jahi

STA vahi

LDA jalo '1%=J%" - by address
STA ialo
LDA jahi
STA iahi

LDA jclo '1%=J%" - by count
STA iclo
LDA jchi
STA ichi

.C
LDY #3 ;get details of string

A$(1%)...

630
640
650

later

660
670

th

e

e

680
690
700
710
720
730

740
750
760

LDA (ialo),Y ;..its length..
STA ptr+3
TAX ;into XR for big test

DEY
LDA (ialo),Y ;..its allocated leng

STA ptr+2
DEY
LDA (ialo),Y ;..its address-hi byt

STA ptr+1
DEY
LDA (ialo),Y ;..its address-lo byt

STA ptr

CPX minl is A$(1%) shorter than M

Utility 27

IN$?7?
770 BCC x ;yes - use THAT length
780 LDX minl ;no - XR=shorter length
790 .x
800 CPX first ;is the string too short
for the chosen
810 BCC z ; starting point? If so,
error and out
820 LDY first ;YR=offset into string
830 DEY
840 INX
850 TXA
860 SBC first
870 TAX ;:XR=number of bytes to
check
880
890 .d
900 LDA (ptr),Y ;compare the bytes one
at
910 CMP (minlo),Y ;a time until:
920 BCC e ; a) the first is lower
930 BNE f ; b) MIN$ is still lowest
940 INY ; ¢) they match so keep
trying
950 DEX : until one is exhausted
960 BNE d
970 LDX ptr+3 ;(in this last case
980 CPX minl ;the shorter one is lowes
t)
990 BCS f
1000
1010 .e
1020 LDA ialo :new min found so prepare
to swop
1030 STA valo
1040 LDA iahi ;implement 'V%=1%'
1050 STA vahi
1060
1070 LDA ptr ;this section does '"MIN$=A
$(1%)"
1080 STA minlo
1090 LDA ptr+1
1100 STA minhi
1110 LDA ptr+2
1120 STA minal
1130 LDA ptr+3
1140 STA minl
1150

195

196 Utility 27

1160 .f

1170 CLC ;implement 'NEXT 1%"' - by
address

1180 LDA ialo

1190 ADC #4

1200 STA ialo

1210 BCC ¢

1220 INC iahi

1230

1240 .g

1250 LDX iclo \and similarly by count
1260 BNE h

1270 DEC ichi

1280 BMI j

1290 .h

1300 DEC iclo

1310 JMP ¢ NEXT 1%'
1320

1330 .j

1340 LDY #3 :this bit does
'AS(V%)=A3$(J%)"

1350 .k

1360 LDA (jalo),Y

1370 STA (valo),Y

1380 DEY

1390 BPL k

1400

1410 LDY #3 ;and this does
'A$(J%)=MINS’

1420 .1

1430 LDA minlo,Y

1440 STA (jalo),Y

1450 DEY

1460 BPL |

1470

1480 CLC ;set up 'NEXT J%' - by
address

1490 LDA jalo

1500 ADC #4

1510 STA jalo

1520 BCC m

1530 INC jahi

1540

1550 .m

1560 LDX jclo ;and by count,too
1570 BNE n

1580 DEC jchi

1590 BMI p ;all finished - back to

Utility 27 197

BASIC

1600 .n

1610 DEC jclo
1620 JMP a NEXT J%'
1630 .z

1640 LDX #0
1650 STX first
1660 .p

1670 RTS:]
1680 NEXT
1690 ENDPROC

How it works

There are two aspects to the operation of this utility; the sort routine
itself and the way in which the machine code handles BASIC string
arrays. The sort algorithm is by far the simpler process.

Let us consider the operation of the BAsIC routine in sorting the
sequence of letters (single character strings):

N O N N E L W J

In this sort, we look through the whole list to find the 'least’ data item
(that having the lowest ASCII value) and fetch it to the front by
swapping it with the data that was originally in that position. On our
next look, we only need to start at the second item, as the first is now
known to be in the correct position. Each subsequent look-through
(the technical term is ‘pass)) is at a reduced list, gradually diminishing
to only one item. Even if the data is fully sorted before the last passis
reached, the sort is unable to detect this and grinds on until the bitter
end. If you sorted a pack of cards this way, you would have to go
through the (diminishing) pack fifty-two times. Basic tackles the job
like this: The first data item is considered to be the least so far and is
stored in MIN$. We now look through the list and compare each item
in turn with MIN$. If an item is less than ww we remember its position
(in w) and give MIN$ the same value. When a pass has been completed
we have found the true first item (it is in position V) and it is swapped
with the old first item to give the sequence :

E O N N N L W J

The process is now repeated, but starting from the second item - the

198 Utility 27

first is never seen again. Thus, to sort the list takes eight passes.
Actually only seven are needed, as the last item must be in the right
place if all the others are but using eight passes makes the machine
code simpler. A pass requires first eight, then seven, then six, etc.,
comparisons to be made. One reason why this sort is inefficient is that
little use is made of the information gained after each comparison has
been made; other sort techniques have more to do after each
comparison but have to do it less often and such sorts are usually
faster. Our sort algorithm is not so bad, and is certainly a great
improvement on the so-called 'bubble’ sort which constantly swaps the
data around since our method only requires a single swap for each
pass.

A further advantage of this method is that it produces the simplest
coding, which is a great help in converting it into machine code. If
you look at the machine code version you will see that it has been
documented using the same terms as the BAsSIC coding, which it
follows very closely. The big problem, of course, is that machine code
does not recognise string arrays and for efficiency should be able to
sort them as BASIC strings rather than copy them into an area that
machine code can access, and then have to copy them back again so
that BAsIC can get at them. In our method the strings never get moved
at all - they are simply relabelled. To understand the method we need
to look at the format of a BAsIC string array.

In the Symbol Table utility we looked at the Electron's method of
storing variables starting from a set of pointers in Page 4. As our sort
array begins with A, we start by finding the address at &482/3 which
you should recall is the pointer to variables beginning with A. By
following a series of link addresses, we will eventually arrive at the
area allocated to the array. The entry in the variable storage area for
the array will look something like this:

‘lB ‘15‘24‘28‘00‘03‘29‘00‘00‘00 ‘00‘00 ‘26 ‘1A‘27‘1F‘4D‘1A‘ 26‘1E‘73‘1A‘06‘06‘
I — E— I I I |

A$(0) A$(1) AS(2) A3(3)

Descriptors

number of elements
size of header

delimiter header

rest of name - ‘$(’

link address

Utility 27 199

The use of the link address is described in the Symbol Table utility and
IS not relevant to our array. As the array is called As(. .) would expect
the rest of the name (the A is assumed, remember) to be $(which, in
hex, is &2428, and to mark the end of the name it is followed by a
delimiter value of &00. The next few header bytes describe the array in
detail and the number of bytes this takes depends on the number of
dimensions in the array. As our array has only one dimension, the
header needs only three bytes, which is the significance of the &03 - if
you add 3 to the address of this byte you are (almost) into the array
proper.

To enable the computer to reserve space for the array details (it
makes no attempt to reserve space for the strings themselves) the next
two bytes indicate the size of the array. In the example just quoted we
used a DIM A$(40) statement, which sets up an array of 41 elements,
A$(0) to A$(40). The 41 is stored in two bytes binary (&2900 - the low byte
comes first) in the array header. The next 41 sets of four bytes contain
the details of each string and these bytes (let's call them a 'descriptor’)
have the format:

26 (1A |27 1F

TN

address of string bytes allocated string size

So the first two bytes point to the text of the string while the last byte
indicates its length. The number of bytes allocated is not needed by
us, but the machine makes use of it whenever a string is given a new
value. If that value fits in the curresntly allocated space then it's
inserted, otherwise more space has to be created for the new value.
This byte does not concern us and the sort routine makes no reference
to it.

If we decided to swop round some of these descriptors then the
strings would still work out to be the same but they would appear (to
BASIC) to have been re-ordered - in other words they would be sorted:
For example, if in the above situation the &261A271F - sequence was
swapped with the &4D1A261E then BAsIC would not realise that anything
had gone wrong (it hasn't) but As@1) and As$@2) would have been
transposed. Thus our sorting technique consists of rearranging the
descriptors; the strings that they describe can stay where they are.

Although the Assembler is written to mimic the BASIC it must be
realised that a command such as A$(Vo)=A$%) is extremely complex
and not at all easy to simulate with a few bytes of machine code.

200 Utility 27

However, as we have seen, we do not have to manipulate the strings
at ail, so things are not so bad. To make the coding easy, two versions
of ma and pa are used. Firstly, there are the counts to implement the
FOR ... NEXT loops. Both counts start at the top and work backwards,
which is the usual method of machine code counting. Secondly, since
these counts are pretty hopeless at pointing to strings, we use an
address to point at the descriptor for the current string. Thus wherever
1% changes in BASIC, its machine code counterparts iclo/hi (count - going
down] and ialo/hi (address - going up in fours) must be similarly
changed. In the same MIN$ does not exist in machine code, but a
descriptor for it is held in store in Zero-page. In view of all this, the bit
that does the actual comparing of strings (section d) seems pretty
trivial!

When both counts have decremented to zero, we return to BAsIC. If,
on return, the contents of &82 have been set to zero, then an error has
occurred in that a string has been found that is too short for the
specified key position. Otherwise &82 holds the position of the key
within the string and must be within the range 1 to (length of shortest
string). Most of the free area of Zero-page is used, namely bytes &70 to
&82, S0 you should be careful if you intend to use this sort in
conjunction with other machine code routines.

At sections ¢ and e of the code sequences of bytes are moved, and
this could be done more elegantly using indexed loops, thereby saving
a few bytes. Remember however that this is a sort routine - elegance
doesn't come into it, especially as loop ¢ might execute half a million
times in a large sort. The extra time taken by the elegant version is
guite noticeable, whereas the few bytes saved are of no great
consequence. Indeed, anything that goes into the inner loop of the
two nested loops in the program can have a disastrous effect on
timings, whereas it is not too serious to tamper with the outer loop. An
indexed loop is used in section b and causes no problems

Variables
BASIC is given the job of finding the array A$ and addr is used as a
onwards and size is set equal to the number of elements in the array.
The machine code uses 19 bytes in Zero-page to store important
variables, including those passed to it by Basic. These variables are:
the address of the first descriptor (the one for A$(1)) in jalo/hi, the
number of strings in the array in jlo/hi and the position of the key field
within the string in first. Notice that a indentifies an address while ¢
indicates a count.

Strings are located by referring to their descriptors, two of which are
held in Zero-page, with ptr holding the first byte of the descriptor for

Utility 27 201

the current record (the one that BAsIC calls A$(1%)) and minlo, minhi, minal,
minl representing the least string to date (MIN$ in BASIC). When a new
least string is found, we remember its position by storing the address
of its descriptor in valo/hi.

Extensions

This routine is complete in itself, although you may want to use it in a
more efficient way as memory will be at a premium during a large
sort. If possible you should divide your processing into pre- and post-
sort routines where the last act of the pre-sort routine is to assemble
the sort code in a safe place. Having run the sort, the post-sort section
will file the sorted data away before terminating the program.

Utility 28
Universal Input routine

Description

One important requirement of all professional software is a decent
input vetting routine. When the user enters data into the computer,
the program should be capable of handling - without fuss - anything
that is typed in.

Generally speaking, the INPUT command should not be used as it
allows an unlimited amount of data to be entered. This can cause
screen scroll and other unpleasant effects which will wreck the display.
One possible solution is to use a text window for the data entry which
will obviate this problem but may well introduce others.

The best way to input data is via INKEY or GET statements, as the
amount and form of the data can then be strictly controlled, and the
best way to achieve this is through a specialist input routine.

The operating system has an osworD command for this very
purpose (see the description of osworD with A=0 in the User Guide)
but even that has its drawbacks. INPUT uses this oswoRrbD call and is
coded to accept ail input in the ASCII range 32 to 255, i.e. all
printable characters. if you use this call on a reduced range of
characters then illegal items (outside your range) are not stored but still
get printed on the screen. Again, this can cause scrolling.

The routine presented here comprises three short PrRocedures and is
a useful addition to any program that would otherwise use INPUT
commands. When you call the routine, it prints out a prompt string
and accepts any characters within a selected ASCII range up to a
specified length limit. DELETE and RETURN will function as normal, but
no other keys outside the chosen range will have any effect.

As you enter characters, the program builds a string called In$ which
is eventually returned to the user's program. If that program requires
numeric input, then it is your responsibility to code into the main
program a statement of the form:

Number=VAL(In$)

You would then expect to perform subsequent checks on the data to
ensure that it was valid - the routine only gets the data into the
machine for you and cannot verify that it is exactly what you want.

By careful choice of ASCIlI range, much tedious vetting can be

Utility 28 203

avoided. For example, specifying a range of 48 to 57 limits the
characters that can be input to the range 0 to 9 so that, in this case,
In$ has to represent a positive integer, which can then be processed
by the host program. There is another school of thought regarding user
input that says that everything entered should be accepted, and then
anything incorrect specified after <ReETURN> has been pressed. This is
deemed to be more ‘user-friendly’ but seems an unnecessary
elaboration. If we ensure that only strictly controlled data can be
entered, the subsequent vetting of that data is greatly simplified.

Use
Merge the pProcedures with your program and then, whenever you
need to accept data, call PROCinput with six parameters:

column [
[Iscreen address for prompt string
row U

prompt string (can be ™)

maximum number of bytes to accept
lowest acceptable ASCII value
highest acceptable ASCII value

When you press <RETURN> the procedure exits with the input string
stored in ms. A nu\\ string is not acceptable, and at least one valid
character must be entered. For examle take the call:

PROCinput(0,3,"How old are you?",2,48,57)

This will print the question at the start of the fourth screen line and
accept either one or two characters in the range 0-9. While this
prevents people entering 'Seventeen' (possibly quite innocently) and
similar invalid items, it cannot trap '0" and it is up to your program to
do any such further tests required on the input data.

One other point you should bear in mind is that you are less likely
to get erroneous responses if you indicate clearly what is required.
Your prompt string should, wherever possible, include guides such as
'0-9' or 'Y/N' if the answer you expect is not completely obvious.

10 REM BASIC UNIVERSAL INPUT

15 MODEG®6

16 PROCinput(0,11,"Universal Input De
mo:",10,48,122)

17 END

20

204 Utility 28

30 DEF PROCinput(x%,y%,prompt$,L%,L0%
,Hi%)

40 *FX 15,1

50 K%=0:In$=""

60 PRINT TAB(x%,y%)prompt$;

70 REPEAT

80 Z%=GET

90 IF Z%=127 Z%=0:1F K%>0 PROCdel

100 IF Z%>=L0% AND K%<L% AND Z%<=Hi% P
ROCadd

110 UNTIL Z2%=13 AND K%>0

120 ENDPROC

130

140 DEF PROCdel

150 K%=K%-1:In$=LEFT$(In$,K%):VDU 127

160 ENDPROC

170

180 DEFPROCadd

190 K%=K%+1:1n$=In$+CHR$(Z%):VDU Z%

200 ENDPROC

How it works
Having printed your prompt string, the program goes into a loop in
which it GeTs bytes from the keyboard; the bytes are examined as
soon as they are entered. Each byte is first tested to see if it is DELETE
and, if there is already some data present, the delete operation is
carried out. if a byte is outside the chosen range, or if the full quota of
data has been accepted, the byte is completely ignored. The
exception to this is RETURN, which ends the routine provided that
some valid data has already been entered.

As bytes are added to or deleted from the string, they are printed on
the screen and the string is updated. In this way, the input string
reflects what is actually on the screen at any time.

Procedures
The main PROCedure is PROCinput Which contains the entry and exit
points for the routine. If the DELETE key is pressed, it calls PROCdel tO
print the delete and to recompute the input string (by chopping off the
last byte added to the string).

When a valid character is received, PROCadd is called to add the
character to the string and to print it on the screen.

Variables

Most of the variables used by the routine are parameters passed to it
when it is called. In$. is passed back by the routine and is the string
that has been input. In addition, two integer variables are used and

Utility 28 205

these may be declared as LOCAL if necessary. They are zw, which is the
byte that has just been input at the keyboard, and k%, which
represents the current length of the input string. K% is used to decide
whether any more data - including DELETE - can be accepted. There
are many possible variations on this routine, and it is up to the user to
decide exactly what is needed. In a sense, the program presented
here is itself an extension of the OSWORD routine we have already
described with the 'prompt’ facility added. This came about as a result
of the simple observation that most data input will be in response to
some query and that the coding to produce the query would be more
or less the same each time. We could generalise the routine by adding
more optional features, but it will obviously occupy extra memory and
you will have to decide if there will be an overall benefit by including
such amendments.

Bear in mind that the object of including an input routine is to make
subsequent programming easier and to save duplicating code. There is
no point in including such a routine, however exatic, if it is only going
to be called once.

Some extra features that you may consider adding are:

1) Echo each valid (or invalid) character with a 'bleep'.

2) Clear the input area to spaces before accepting input. This
enables the routine to be re-called if the data is proved to be invalid.

3) Include an error message facility so that certain types of error can
be reported by the routine.

4) Allow the routine to perform range checks on the data.

5) Add more ranges so that, for example, only 0-9 or A-F can be
input.

6) Add an edit facility whereby the cursor may be moved around
the string input area to edit individual bytes. This is useful if you
discover that you have made a mistake in the second byte but you are
now on the 25th.

7) Let the routine print the current value of a string following the
prompt so that you may edit it as in 6) above.

8) Perform partial vetting on the data. As soon as you type
something disagreeable, the machine says so.

These are just some of the variations that might be included to
enhance this routine. The program presented here is a basic utility
which may have to be changed to suit specific requirements, although
it works perfectly well as written. Certainly the concept of a specialist
input routine is one you should consider for all of your programs and
this utility may be used as a basis for it.

Utility 29:
Date conversion procedure

Description

Many commercial programs require extensive data vetting, and in fact
such security and error-checking considerations often make up the
bulk of this type of program. One common requirement is a routine to
validate a date and verify that it is consistent with the day specified.

Although not strictly speaking a utility, this PROCedure is included
because of its interest value and the fact that it performs a useful
function - besides that, it's fun!

Given any date this century the PROCedure calculates the day of the
week on which it falls. It does not check that the date is valid, and if
you want to know what the 93rd of January is it will be quite happy to
tell you. We will look at a routine to check the date later on.

The most notable feature of this routine is that it is so short; other
PRocedures to do almost the same thing can be spread over a great
many program lines but, as you can see, that is hardly necessary. It
uses a method known to magicians and professional stage performers
who can convert dates to days in about four seconds - you should be
able to do so too, if you study the coding carefully and rehearse well.
The technique is described by Martin Gardner in the book
Mathematical Carnival.

Use

Simply append the PROCedure to your program and call it with the
three parameters:

1. Day (1 to 31)
2. Month (1 to 12)
3. Year (0 to 99)

These parameters should be checked beforehand since the
PROCcedure assumes that they are correct. As written, the program just
prints out the day and quits. For example, if you RUN it and enter the
numbers 8, 8 and 66 the program will print MONDAY. You could
suppress the printing and have it return the day in variable p$ by
deleting line 50 and inserting the line:

135 D$=D$+"DAY"

Utility 20 207

If you use the routine in one of your own programs, which is its
intended use, the only code you need is that in lines 80 - 160. You
will probably have to RENUMBER it and you should also check that your
program does not use the variables o, M, v and D$ asthey are needed
by the PrRocedure.

10 REM DATE CONVERTER

20

30 INPUT"DAY,MONTH,YEAR ",D%,M%,Y %

40 PROCday(D%,M%,Y %)

50 PRINT'D$;"DAY"’

60 END

70

80 DEFPROCday(D,M,Y)

90 D=D+VALMID$("144025036146",M,1)

100 D=D+(Y DIV 12)+(Y MOD 12)+(Y MOD 1
2) DIV 4

110 IF (Y MOD 4=0) AND M<3 D=D-1

120 RESTORE 160

130 FOR I1=0 TO D MOD 7:READ D$:NEXT

140 ENDPROC

150

160 DATA "SATUR",SUN,MON,TUES,WEDNES,T
HURS,FRI

How it works

The algorithm is a refined version of an obvious method especially
designed for fast calculation and you should refer to Martin Gardner's
book for more details. This routine is just a literal translation of the
method.

Variables
The PROCedure itself only uses the variables D, M, Y and D$ and they
stand for . . . well, you can probably guess.

Extensions

An obvious improvement is to verify before we start that the date
requested is valid and this can be simply done by including
PROCuvalidate (it's a pun - think about it) given here:

30000 DEFPROCvalidate(D,M,Y)

30010 IF Y<O0 OR Y>99 Oh dear!

30020 IF M<1 OR M>12 Heavens above!
30030 X%=VALMID$("303232332323",M,1)

208 Utility 29

30040 X%=X%+28+((Y MOD 4 =0)*(M=2)
30050 IF D<1 OR D>X% You've blown it!
30055 IF (D=INTD)*(M=INTM)*(Y=INTY)=0 Wh
oops!

30060 ENDPROC

Your coding should also include an oN ERROR address to handle the
syntax errors produced in the event of a failure. Notice how the
inclusion of a simple vetting routine can double the length of a piece
of code! It is for this reason that we have kept error checking to a
minimum in our routines - it is simply too tedious to try to catch every
potential error. Of course, if any of these routines were to be used
professionally, such coding would have to be included.

One further amendment would be to extend the routine to print out
a calendar for a particular month or year, but in this case the coding in
our routine would really only be needed once to compute a reference
day from which all of the others could be calculated.

Utility 30:
Two *FX 138 routines

Description

Although the *Fx138 command only merits a two line write-up in the
User Guide it is, nonetheless, a powerful facility. Just why this should
be so may not be immediately apparent and next two utilities will give
some idea of how the command can be exploited.

The purpose of this command is to insert characters into the
keyboard buffer so that they appear, to the computer (which is easily
duped, being a mere machine), to have been typed in at the
keyboard. If you think about it, you will agree that your influence over
the computer is determined by what you can communicate to it via
the keyboard and this command effectively relieves you of the
responsibility - the computer is quite capable of pressing its own keys!

This may remind you of the amusing 'infinite number of monkeys'
story (seated at typewriters, they would eventually produce ail of
Shakespeare - perhaps even this book). The point of the story being
that random tappings at a keyboard will, given enough time, produce
anything. Clearly this is an interesting idea, although you will probably
not get very far by inserting just any old characters into the buffer!
More wuseful things happen if the characters are generated
automatically, or in some well-defined way - as in these programs.

One oft-written utility for early microcomputers would insert the
characters '10', 20" etc. into the keyboard buffer each time you
pressed <RETURN>. In this way, the user didn't have to type in her (or
his) own line numbers - the computer did it automatically. This boon
to all lazy programmers is, of course, a standard feature on the
Electron - it is the AuTO command.

Notice that it is not sufficient to PRINT characters; they have to be
'‘typed in' by fooling the computer into believing that they have come
from the keyboard so that it will take notice of them.

Although the two utilities described here only use the computer in
destructive or informative roles, there is no reason why they should
not be amended to perform more creative functions. As they stand,
both routines operate on the lines of an already existing BASIC
program.

Once a program has been completed; it is the usual practice to
RENUMBER it. It follows that any line whose number does not end in '0'
does not 'belong' to the program. Very often, while a program is being

210 Utility 30

debugged it is useful to insert ReEMs, stops and diagnostic PRINT
statements between the main lines of the code. To restore the
program to normality these will have to be removed once the program
has been debugged. The first utility in this section sniffs out these odd
lines and removes them.

Another situation that can occur is that a program can be enhanced
by inserting lines (see, for example, the branch-following coding that
can be incorporated into the disassembler listing given earlier in the
book). The second of our utilities lists all the lines that do not belong
to the program, so that any changes to the coding are immediately
apparent.

Use

Both utilities should live at the bottom end of your host program (each
occupies lines 0 - 9) and the easiest way to do this is to Execthem in.
For each utility this process is recommended:

1) Typeitin

2) SAVE It in the usual way (this step is only precautionary)
3) *spooL "Title"

4) LIsT

5) *sPOOL

This creates an ASCII file of the utility with the name 'Title' (no doubt
you will think of something more imaginative). This is not a program
that can be RUN; it is a piece of text that apparently came from the
keyboard (another example of characters being inserted into the
keyboard buffer!) This file can now be used any time you wish to
merge the utility with one of your own programs. Assuming that the
program contains no line number less than 10 (if it does, that line will
be deleted) and is in store, the merging process consists of the single
command:

*EXEC "Title" <RETURN>

As this does not give any cassette messages, the tape should be
positioned just before the spooLed utility before you hit <RETURN>.
When RuN, all lines that do not end in '6' will be deleted from your
program (their line numbers will appear on the screen) and, for good
measure, the utility goes on to delete itself. If you want to RUN your
program a few times before hacking out the surplus lines, replace line
0 by coto (your first line number) and the program can then be RuUN

Utility 30 211

as normal. When you are ready to remove the lines, delete line 0 and
RUN.

The 'listing' utility is used in exactly the same way and, as it is less
destrucfive, you might like to experiment with that first. Although its
function is to list all lines alien to the program it will not, of course, list
itself.

REM ZAP NON-0 MOD 10 LINES
P%=PAGE
P%=P%+P%?3
L%=256*P%?1+P%?2
IF L%>32767 GOTO 9
IF (L% MOD 10)=0 OR L%<10 GOTO 2
A$=CHR$11+" "+STR$(L%)+CHRS$13+"GO
"+CHR$13
FOR %=1 TO LEN A$:0SCLI "FX138 0
"+STR$(ASC(MID$(A$,1%,1))):NEXT

8 END

9 A =CHR$11+"DEL.0,9"+CHR%$13:GOTO 7

—
@)
~NWoOUuAWNERO

0 REM LIST NON-0 MOD 10 LINES
1 P%=PAGE
2 P%=P%+P%?3
3 L%=256*P%?1+P%?2
4 |F L%>32767 GOTO 9
5 IF (L% MOD 10)=0 OR L%<10 GOTO 2
6 A$="L."+STR$(L%)+CHR$11+CHR$8+CHRS
8+CHR$13+"GOTO2"+CHR$13+CHRS$11
7 FOR 1%=1 TO LEN A$:0SCLI "FX138 0
"+STR$(ASC(MID$(AS$,1%,1))):NEXT
8 END
9 A$=" "+CHR$13:GOTO7

How it works

The layout of a BAsIC program in the Electron's memory is described in
detail in Section 2 and a number of utilities show how to step through
a BASIC program to ToP. In these two programs, only the line number is
examined - if it is a multiple of 10, the line is ignored and we go on to
the next one, otherwise the characters that forma the line number are
placed in the keyboard buffer, followed by a <RETURN> character. To
prevent the buffer from filling up (it is only 32 bytes long) it is now
necessary to END the program (!) and at this point the line will be
deleted. That would be that, except that we are also careful to insert
GOTO3 into the buffer to kick the whole process off again - in this way,
each line of the program will get scanned.

212 Utility 30

The coto command is absolutely essential in this routine asit allows
the main loop (lines 2-8) to be re-entered each time a line is deleted,;
this would not be possible with a REPEAT ... UNTIL loop.

The characters that are sent to the keyboard buffer include a few
spaces and cursor control codes so that the final list of deleted lines
looks nice - as though you really had typed it in at the keyboard. To
send the characters we use the oscLl command to simulate a
seguence of commands of the form: *Fx138 0 N, where N is the ASCII
value of the character that is to be inserted into the buffer.

For its last trick the routine generates a self-destruct line that
removes all trace of it from your program.

The 'listing' utility works in a very similar way, except that a whole
host of control codes are needed to ensure a nice tidy display (mostly
to erase the GoT02. that appears). One very subtle difference between
the routines is that coto3s at line 6 becomes coto2 (which would
seem to be correct) in the listing version of the utility.

It is a very useful exercise to try to work out why GOTO3 is correct -
ask yourself what happens to the rest of a program when a line is
deleted from it! Alternatively, change it to GoTto2 and see what
happens.

Understand now?

Variables
At all times, ws is the address of the line under scrutiny - or at least the
first awry byte of it. Starting at PAGE, it will step through your program
in the now customary manner until it reaches Top-2, its final value. The
number of the line currently addressed by p»is held in L%.

A$ contains the characters to be inserted into the buffer. They are
taken one at a time from A$ and oscLied into the buffer with the *Fx
138 command.

Extensions

The *Fx 138, command is very powerful and it is not difficult to imagine
how it, might be used to write Procedures rather like the 'MODE 6
Procedure Writer' utility. In fact, this command is better suited to the
job as it enters its data at the keyboard rather than POKEIng it into
memory and consequently it would be easier to control should
amendments be necessary. This is a fairly advanced application that
you might like to tackle as your programming skills develop.

Another application for this useful command is to get your program
to 'type things in' while it is running. In this way, you can do NEw or
DELETE commands from within a program, although these instructions
would normally generate syntax errors (let's leave aside the question of
why you might want to do this!). Thus:

Utility 30 213

*KEY 0 "DELETE 200,300|M"
*FX 138 0 128

will do the pDeLETE for you as the second of these instructions 'presses'
function key fO There is no reason why these particular lines cannot
be part of a program. Other BAsiC keywords that can be (ab)used in
this way include AUTO, LIST, RENUMBER and OLD.

Lastly, one bizarre development would be an 'infinite number of
monkeys simulator' to develop programs (although it could equally
well produce poetry or weather forecasts - you would have no say in
the matter). If you want to give your INOMs a fighting chance of
creating something useful then the least you could do would be to
limit the range of codes to printable ASCII characters. This trend is
strictly for the experimenters, although who's to say that the INOMs
will not eventually produce a masterpiece?

Don't wait too long!

Utility 31
Multiple precision arithmetic

Description

If you are a child of the calculator age, it is likely that you have only a
nodding acquaintance with ‘long’ multiplication and division. For
better or for worse, these skills have almost been made redundant by
the invention of new calculating aids and, whilst most people can
perform basic number manipulation, the underlying principles are less
well understood. Unless you 'know your tables' the methods are long-
winded and prone to error.

Most everyday numbers are small enough to fit on the cheapest
pocket calculator and few of us ever venture into the realms of
numbers that are so large that they can only be computed by
laborious pencil and paper methods.

However, large numbers do have their uses. In financial programs
the fact that numbers can only be held to 10 significant figures, as on
most home micros - some handle less figures, a very few handle more
- is a severe limitation. Given that the last figure will be unreliable
anyway and that two digits are needed for the pence, the greatest total
that can safely be used is only in tens of millions of pounds. This may
seem like a lot (it is a lot!) but it does mean that you cannot use a
micro to run a bank or a large business unless this problem has been
overcome.

Of course, larger computers can support 20 or 30 digit accuracy
which is enough for all financial and most scientific purposes. If it is
necessary to use numbers bigger than this, then specialised routines
must be written to deal with them, and one such routine is the subject
of this final utility. The sole justification for dealing with such large
numbers is the interest of the numbers themselves, rather than what
they might represent. This field, admittedly not everyone's cup of tea,
involves Number Theory, which is one of the most obtuse areas of
mathematics. However, there is nothing deep or cerebral about this
particular program, and it can be used at a very simple level to
manipulate numbers great and small.

The routine can add, multiply, subtract or divide two positive
integers provided the result is less than 255 digits long- It is written as
a Procedure and, by repeatedly calling it, you can produce powers,
factorials and even (if you know your maths) roots of numbers. This
application is a 'fun’ use of the routine - a practical use would be in a

Utility 31 215

program that handled large amounts of money.

Such programs have to manipulate data correct to the very last digit.
The answer is produced as a string ready for printing or for return to
the Procedure for a bit more treatment. If the result of a subtraction is
negative, then the result is returned as a positive number and a flag is
set (the routine also bleeps) for you to test and then act on as
appropriate. If you attempt to divide a number by a larger number,
the routine exits with the flag set to indicate that this has happened.
Otherwise, the result of a division is the integer part of the answer,
that is, it behaves like the Basic command Div.

The program is written in BASIC and, since it treats numbers as being
composed of single digits (fair dos - they are) it is fairly slow, especially
at division.

Use

The set of procedures should be merged with the program that is to
use them. If you only want to perform one or two types of
calculations, then great chunks of the routine can be omitted - the
table below shows which Procedures can be left out if you do not
need a particular facility.

Facility Operation Routines to be omitted

1 Addition add

2 Multiplication mult

3 Subtraction subtract, negative

4 Division divide, isBgreater, shiftleft, shiftright

The host program should dimension three integer arrays, namely
A%(255), B%(255), and C%(255). These are needed by the routine to hold
partial results while it is working. A$ and B$ should be set up with the
two integers to be processed and, in a subtraction or a division, you
should ensure that vAL(A$) > vAL®B$). Call the routine with a facility
number in the range 1 - 4 asthe parameter, and on exit c$ will be set
up with the answer. If, on return, the flag N%, is non-zero, then
something unusual has happened; if N%=-1 then you are trying to
divide a number by a larger one (solution: tag a few 0's onto it), and if
N%=-1, the result of a subtraction should be thought of as negative.

As a simple illustration, the second listing given here is a suitable
host program for the routine. It invites you to type in two numbers
and to then select one of the four operations. After calling the utility, it
prints the answer and then asks for more numbers.

30000 DEFPROCfermat(F%)
30010 PROCinitial

216 Utility 31

30020 IF F%=1 PROCadd

30030 IF F%=2 PROCmult

30040 IF F%=3 PROCsubtract

30050 IF F%=4 PROCdivide

30060 PROCreorderc

30070 IF N% VDU 7

30080 ENDPROC

30090

30100 DEFPROCinitial

30110 N%=0:LA=LENAS$:LB=LENB$
30120 IF LA>LB L%=LA ELSE L%=LB
30130 FOR 1%=0 TO L%

30140 A%(1%)=-(1%<LA)*VALMID$(AS$,LA-1%,1
)

30150 B%(1%)=-(1%<LB)*VALMID$(B$,LB-1%,1
)

30160 NEXT

30170 ENDPROC

30180

30190 DEFPROCadd

30200 U%=L%

30210 PROCzeroc

30220 FOR 1%=0 TO L%-1

30230 C%(1%)=A%(1%)+B%(1%)
30240 NEXT

30250 ENDPROC

30260

30270 DEFPROCmMult

30280 U%=2*L%

30290 PROCzeroc

30300 FOR 1%=0 TO L%-1

30310 FOR J%=0 TO L%-1

30320 K%=1%+J%

30330 C%(K%)=A%(J%)*B%(1%)+C% (K%)
30340 NEXT J%,1%

30350 ENDPROC

30360

30370 DEFPROCsubtract

30380 U%=L%-1

30390 PROCzeroc

30400 C%=0

30410 FOR 1%=0 TO L%-1

30420 K%=A%(1%)-B%(1%)-C%
30430 IF K%<0 K%=K%+10:C%=1 ELSE C%=0
30440 C%(1%)=K%

30450 NEXT

30460 IF C% PROCnegative

30470 ENDPROC

30480
30490
30500
30510
30520
30530
30540
30550
30560
30570
30580
30590
30600
30610
30620
30630
30640
30650
30660
30670
30680
30690
30700
30710
30720
30730
30740
30750
30760
30770
30780
30790
30800
30810
30820
30830
30840
30850
30860
30870
30880
30890
30900
30910
30920
30930
30940
30950

Utility 31

DEFPROCnegative
N%=1

FOR 1%=0 TO L%-1
C%(1%)=9-C%(1%)
NEXT
C%(0)=C%(0)+1
ENDPROC

DEFPROCdivide
PROCisBgreater

IF yes N%=-1:ENDPROC
L%=-1

REPEAT

L%=L%+1

PROCshiftleft
PROCisBgreater

UNTIL yes

U%=L%

PROCzeroc
PROCshiftright

C%=0

FOR 1%=0 TO LB
K%=A%(1%)-B%(1%)-C%
IF K%<0 K%=K%+10:C%=1 ELSE C%=0
A% (1%)=K%

NEXT
C%(L%)=C%(L%)+1
PROCisBgreater

IF NOT yes GOTO 30690
PROCshiftright
L%=L%-1

IF L%>-1 GOTO 30760
ENDPROC

DEFPROCisBgreater

K%=LA+1

REPEAT

K%=K%-1

UNTIL K%=0 OR B%(K%)<>A%(K%)
yes=B%(K%)>A% (K%)

ENDPROC

DEFPROCshiftleft

FOR 1%=LB TO 1 STEP -1
B%(1%)=B%(1%-1)

NEXT

B%(0)=0:LB=LB+1

217

218 Utility 31

30960 ENDPROC
30970
30980 DEFPROCshiftright
30990 B%(LB)=0:LB=LB-1
31000 FOR 1%=0 TO LB
31010 B%(1%)=B% (1% +1)
31020 NEXT
31030 ENDPROC
31040
31050 DEFPROCzeroc
31060 FOR 1%=0 TO U%
31070 C%(1%)=0
31080 NEXT
31090 ENDPROC
31100
31110 DEFPROCreorderc
31120 C%=0:CSIG=0:C$=""
31130 FOR |1%=0 TO U%
31140 K%=C%(1%)+C%
31150 C%(1%)=K% MOD 10:C%=K% DIV 10
31160 IF C%(1%) CSIG=1%
31170 C$=CHR$(48+C%(1%))+C$
31180 NEXT
31190 C$=RIGHT$(CS$,CSIG+1)
31200 ENDPROC
10 DIM A%(255),B%(255),C%(255)
20 A$=STRINGS$(255," "):B$=A%$.C$=A%
30 REPEAT
40 INPUT "A="A$
50 INPUT "B="B$
60 INPUT "1:A+B 2:A*B 3:A-B 4:A/B
"Op%
70 IF Op%<5 PROCfermat(Op%):PRINT'CS$'
80 UNTIL Op%>4
90 END

How it works
The incoming numbers are extracted from their strings one digit at a
time and placed into two arrays. The facility chosen then determines
what happens to the arrays. Very simply, all that happens is that the
usual techniques of addition, multiplication, etc., are applied to the
digits to produce the result, also in array form. Finally, the digits are
strung together again to provide the answer in string form.

As the computer is dealing with single digits, the largest calculation
that it has to worry about is 9 * 9, which is unlikely to tax a machine
of the Electron's powers. The catch is of course that many such

Utility 31 219

calculations have to be performed and it is this factor which slows
down the operation. A much faster technique would be to split the
numbers up into 'digits' which were actually 5 (this is risky, 4 would be
better) decimal digits long and work with those. The penalty for this
improvement is that the code would have to be a great deal more
complicated.

The method used for division is rather complex and relies on a
process of shifting the decimal point (multiplying and dividing by 10)
and repeated subtraction. It is exactly analogous to the pencil-and-
paper technique of ‘long' division. The other operations are easier to
understand, so let us consider the simplest case, namely addition.

Suppose we require to perform the sum 67853 + 1729, the arrays
A% and B% would need to be set up like this:

5 4 3 2 1 0
A% 0 6 7 8 5 3
B% 0 0 1 7 2 9

In addition the first 6 elements of the array co will be zeroised - this is
the area in which the result is stored. Notice that each number has at
least one leading zero (this is convenient if it is required to shift the
numbers in a division) and that the numbers are both the same length.
If the numbers are offered to the routine with leading zeros, these are
stripped off and the larger number will be left with just one zero at the
beginning.

If you study the addition procedure, you will see that the array C%
Is then computed giving:

C%(5) =0
C%(4) =6
C%(3) =8
C%(2) =15
C%(1) =7
C%(0) =12

When the array cxis converted to a string, all of the ‘carries' are done
before each digit is added to the string. For example, since C%(0)=12
the final digit of the string (the least significant) will be 2 and c%() will
receive a carry, making it equal to 8. Before returning the string, the
procedure makes sure that all leading zeros have been stripped off
and the final result will then be c$="69582".

Multiplication and subtraction should also be easy to follow. A flow-
chart showing the algorithm used by the division procedure is given in
Fig. 6 opposite.

220 Utility 31

Procedures
The PrRocedure containing entry and exit points for the routine is
called fermat in honour of one of the greatest of all mathematicians,
who was rather adept at handling large numbers. This PrRocedure calls
three others: PROCinitial to build up arrays A% and B%, one of the
facility' Procedures already mentioned, and finally PROCreorderc to
restore the array cw to string form. While the facility is being
performed, PROCzeroc Will be called to set sufficient elements of array
C%1to zero - the answer will occupy those zeroised places.

If a subtraction has given a negative result, then PROCnegative is called
to '10's complement' the answer and to indicate the fact that this has
happened by setting the flag N%.

PROCshiftleft and PROCshiftright are used by the division routine to perform
those actions on the array Bee, and PROCIisBgreater is used by the
same routine to determine whether the number represented by array
B% is greater than that represented by array A%.

Variables

Most of the important variables have already been discussed; others of
interest are LA, LB and L%. These are, respectively, the true lengths of A$
and Bs asinitially received by the routine and then the greater of these
two. The division procedure needs to adjust LB as it shifts B% around
and it also needs to work out its own value of L%.

U% is the expected maximum length of the result, and c% is always
used to represent a carry (it could be greater than 1). The variable yes
answers the question 'Is B$ greater than As'.

Extensions

The most likely reason for amending this program is to increase the
speed, since it can be rather slow in multiplying or dividing gigantic
numbers. This is not a fault in the program (considering the size of the
numbers involved it often seems remarkable that the computer can do
the sum at all), but it may turn out to be a limitation, especially if you
are going to use it to work out powers or factorials. In fact, the actual
calculations performed by the program are so straigfitforward that it
could even be converted to machine code without too much trouble.

Utility 31 221

i

Shift B left until B > A

v

L% = Number of shifts — 1

'

Shift B right (once)

v
Compute: A=A-B

'

Augment L%th digit of result

<

« IsB>A?

Y
Shift B right

:

Compute: L% =L% -1

ISL% <0? >N

Fig. 6. Flowchart to show routine to divide A by B, using ‘long'
division.

222 Utility 31

Alternatively, the digits could be blocked in groups of four, instead of
singly, which would mean less calculation would be needed, again
giving an increase in speed. A further benefit is that bigger numbers
could be handled, but printing them could be a problem as the
maximum string length is 255 characters.

If it is required to deal with numbers greater than 255 digits in
length, they should be stored in a string array, rather than in the single
string C$ - at this point the whole program is beginning to get out of
hand and it should be replanned for the specific task you have in
mind. The existing procedures should form a good basis for any
extensions that you may wish to apply.

More Pan/Personal Computer News Titles for the Electron

Robert Erskine & Humphrey Walwyn,
Paul Stanley & Michael Bews
Sixty Programs for Your Electron £5.95 0 330 28455 X

A massive software library for the price of a single cassette. Explosive games,
dynamic graphics and invaluable utilities, this specially commissioned
collection takes BASIC to the limits and beyond.

Four of the country's best-selling software writers have pooled their talents to
bury programming clichEs and exploit your micro'S potential to the full.

Whether you are a games player or a more serious user, here's the book to
make your micro work for you.

Jeremiah Jones & Geoff Wheelwright
Companion to the Electron £5.95 0 330 28456 8

All Electron enthusiasts will find the Companion an invaluable guide to the
world of this compelling micro, whatever their experience and expectations. It
is both a guide to the inbuilt capabilities of the Electron (covering the use of
BASIC, machine code, the operating system and Assembly language for
advanced programming), and an exploration of the expansion possibilities of
this superb machine. Extensive appendices provide sample programs
demonstrating the full usg of the Electron's numerous facilities.

Graphics, sound, word-processing and peripherals, games and utilities are all
described, explained and analysed enabling the user to unleash the full
explosive power of the Electron.

