A SCIENCE
TEACHER'S

COMFPANION
tothe

BBG

I\/HCROCOI\/IPUT.:

A Science Teacher’s Companion
to the BBC Microcomputer

Macmillan Microcomputer Books
General Editor: Ian Birnbaum (Adviser for Microelectronics in
Education, Humberside LEA)

Advanced Graphics with the Acorn Electron
Ian O. Angell and Brian J. Jones
Advanced Graphics with the BBC Microcomputer
Ian O. Angell and Brian J. Jones
Assembly Language Programming for the Acorn Electron
Ian Birnbaum
Assembly Language Programming for the BBC Microcomputer,
second edition
Ian Birnbaum
Using Your Home Computer
Garth W.P.Davies
A Science Teacher’s Companion to the BBC Microcomputer
Philip Hawthorne
Beginning BASIC with the ZX Spectrum
Judith Miller
Using Sound and Speech on the BBC Microcomputer
M. A. Phillips

Also from Macmillan

Advanced Graphics with the Sinclair ZX Spectrum
Ian O. Angell and Brian J. Jones
Advanced Programming for the 16K ZX81 Mike Costello
Beginning BASIC Peter Gosling
Continuing BASIC Peter Gosling
Practical BASIC Programming Peter Gosling
Program Your Microcomputer in BASIC Peter Gosling
Codes for Computers and Microprocessors P.Gosling and Q. Laarhoven
Microprocessors and Microcomputers — their use and programming
Eric Huggins
The Sinclair ZX81 — Programming for Real Applications
Randle Hurley
More Real Applications for the ZX81 and ZX Spectrum Randle Hurley
Programming in Z80 Assembly Language Roger Hutty
Digital Techniques Noel Morris
Microprocessor and Microcomputer Technology Noel Morris
The Alien, Numbereater, and Other Programs for Personal Computers —
with notes on how they were written John Race
Understanding Microprocessors B.S.Walker
Assembly Language Assembled — for the Sinclair ZX81
Anthony Woods

A Science Teacher’s Companion
to the
BBC Microcomputer

Philip Hawthorne

Portadown College
Co. Armagh

M

MACMILLAN

© Philip Hawthorne 1985

All rights reserved. No reproduction, copy or transmission
of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied
or transmitted save with written permission or in accordance
with the provisions of the Copyright Act 1956 (as amended).

Any person who does any unauthorised act in relation to
this publication may be liable to criminal prosecution and
civil claims for damages.

First published 1985

Published by

Higher and Further Education Division
MACMILLAN PUBLISHERS LTD
Houndmills, Basingstoke, Hampshire RG212XS
and London

Companies and representatives

throughout the world

British Library Cataloguing in Publication Data
Hawthorne, Philip
A science teacher’s companion to the BBC
Microcomputer. — (Macmillan microcomputer books)
1. Science—Computer-assisted instruction
I. Title
507'.8 Q183.9

ISBN 978-0-333-38285-1 ISBN 978-1-349-07644-4 (eBook)
DOI 10.1007/978-1-349-07644-4

Associated software cassette: 978-0-333-39094-8

Contents

PREFACE vii

1 THE SCIENCE MACHINE 1

An introduction to the use of the BBC
microcomputer in Science education, the BBC micro
as a teaching aid, as a scientific instrument and
as an administrative aid for testing, stock
control, word processing etc.

2 SIMULATIONS, DEMONSTRATIONS AND TUTORIALS 8

Program listings covering several areas of Science
at various levels, and using various programming
techniques, with detailed notes to explain how
each program works. See software list for program
details.

3 CONTROL AND MEASUREMENT - INTERFACING 128

The user port: User port addresses, connections,
buffer circuit, breadboard circuits, using port B,
logical masking, connecting switch to user port,
User port program examples, relay driving circuit.
Using the timers in the via: Interrupts, vectors,
Timer operating modes, handling interrupts,
counting pulses, real-time clock, millisecond
timer.

Events: Various events described, audio feedback
from keyboard, automatic data acquisition.
Analogue port: Analogue to digital conversion,
resolution, ADVAL, *FX16, experiments with the
analogue port, connection details, voltage divider
circuit, 1light sensor, details of other sensors,
temperature measurement, capacitor discharge,
analogue display program.

vi Contents

Digital to analogue converter: Setting up and
testing the DAC, generating low frequency sawtooth
and sine waves, a programmable audio oscillator,
voltmeter teaching aid, plotting diode and
transistor characteristics.

A simple robot: Construction, circuit details,
testing, controlling the robot, controller
programs.

4 TESTING, FILES AND RECORD KEEPING

Computer based tests, inputs and data, quiz
program, multiple choice programs, files, class
record program, file operations, notes on disk
files, disk file format, modifying listed programs
to work on disks, random access files, pupil
record program, index sequential files, simple
stock control program.

5 USING ASSEMBLY LANGUAGE

The advantages of assembler, differences between
machine code and assembler, some assembly language
instructions described, indexed addressing, large

character program, machine code timing, fast
moving graphics, kinetic model of a gas.

Appendix A: Bibliography

Appendix B: Suppliers’ Addresses

Appendix C: Components for Chapter 3

Software List

Cassette Details

208

249

274

275

276

2717

278

Preface

The prefaces of books are probably more cliche-ridden
than any other part of the text but I really do owe a
deep debt of gratitude to the numerous people who
assisted in various ways during the writing of this
book. I mention them in no particular order and if I
omit anyone I hope he or she will forgive me.

Many of my pupils gladly acted as ‘guinea pigs’ when
the programs were being tested and many offered helpful
suggestions for improvements. In particular I would
like to thank 1Ian McAlpine for lending his extensive
knowledge and, on occasions his computer. Mrs Dorothy
McCaughey provided many helpful suggestions and
cheerfully waded her way through the early drafts with
her red pen! Mr Gerry Lappin of the local School ‘s
Computer Centre kindly 1loaned equipment and offered
encouragement.

To all my colleagues in Portadown College who took
an interest in the project and especially to Mr T.H.
Armstrong and Mr Bertie Fulton for allowing me to
utilise the school equipment and facilities, a really
big thank you.

And last, but by no means least, many thanks to
Carol, to whom this book is dedicated, for helping with
the typing, proof reading, supplying countless
sandwiches and cups of tea and for being so patient and
understanding.

The program listings have been displayed such that
long lines have been indented where they have been
broken to fit onto the page; on these occasions,
please exercise a degree of caution when keying in, to
ensure that the integrity of each line is maintained.

Throughout the text I have used the masculine
pronoun only, to aid readability; it goes without
saying that this encompasses both male and female
readers!

vii

1 The Science Machine

"What can I do with a computer?" "Can it really help
with my teaching?"

These are just two of the many questions that
teaching colleagues are liable to ask when it is known
that one is a computer enthusiast. One of the reasons
for writing this book is to provide some of the many
possible answers to such questions, for indeed there is
no simple answer.

The range of applications of the microcomputer in
the science classroom has increased as the power and
capabilities of computers themselves have increased.
The BBC computer represents the ’‘state-of-the-art’ as
far as the small personal micro is concerned and
fortunately it has been designed to allow for almost
unlimited expansion so that it should never be made
obsolete by future developments. For example, there
are already several second processors available,
including a 16-bit device, which ensure that the BBC's
power and speed are fully up to current standards and
will remain so for a long time to come.

If a science teacher were asked to 1list the
desirable features of a computer for wuse 1in science
teaching, the list would probably include:

1. Large memory. .

2. Use of standard BASIC with enhancements for easy
graphics handling.

3. High resolution colour graphics for diagrams and
graphs.

4., Simple sound capabilities.

5. Analogue-to-digital converter to enable voltages
to be measured.

6. Digital-to-analogue converter to enable voltages
to be generated.

7. User port for ’‘control’ experiments.

The BBC micro more than satisfies these requirements
(except for 6, but see chapter 3 for an “add on” D/A
converter). In addition it provides an excellent
‘structured” version of BASIC, which makes programs
easy to write and easy to understand, and a full

1

2 A Science Teacher's Companion to the BBC Microcomputer

assembler which greatly eases the problems of writing
machine code programs. The use of the assembler is
discussed in chapter 5.

Other ’‘bonus’ features which perhaps become apparent
only after wusing the machine for a while, include the
paged ROM system (which allows extra memory chips
containing, for example, word processor, disk utility,
‘spreadsheet”~ and extended machine code monitor
programs to be inserted and instantly “loaded”), the
excellent keyboard, the simple but efficient editing
facilities, the user-defined function keys and the
superb but under-utilised Teletext mode.

In case anyone has any doubt, although I am a
computer enthusiast, particularly where the BBC machine
is concerned, I still insist that the computer should
be used only when appropriate and not just for its own
sake. Teachers rightly criticise students for the
inappropriate use of pocket <calculators to perform
trivial calculations, so we must ourselves be wary of
similar over-eagerness to apply the computer in every
conceivable teaching situation. The computer is just
another teaching resource, though admittedly a much
more versatile one than most, and it should be used
when it proves to be most expedient in a given
circumstance. It is the responsibility of the
individual teacher to carefully assess each application
or piece of software and decide for himself if it is
really appropriate to his own needs. This goes for any
commercial software, the programs in this book and
those that the teacher may write himself.

Though many authorities argue against the teacher
writing his own programs I feel it is one of the main
ways in which new ideas will be generated. Provided
that the programs satisfy the teacher’s pedagogical
requirements, then they will have served a useful
purpose, besides improving his grasp of programming
principles. It is only when teachers become fully
aware of the «capabilities of the micro that it will
begin to achieve its full potential.

I also believe that students can improve their
understanding of a subject by writing simple programs
related to it. I have encouraged those of my students
who own a home computer (most of them!) to select
suitable subject areas and to spend a short period, at
home, developing a program which they then use with
their colleagues. Without exception the program
authors all agree that their real knowledge of the
topic has been improved because of the need to
understand every aspect of it - the computer will not
tolerate woolly thinking!

The Science Machine 3

The applications of the computer within a school
science department fall into three main categories:

1. As a teaching aid.

2. As a scientific instrument.

3. As an aid to departmental administration such as
setting «class tests, maintaining and analysing
class records, in stock control, in word processing
etc.

THE BBC MICRO AS A TEACHING AID

Science teachers will probably find that one of the
most useful areas in which the BBC micro can be used is
in the simulation of experiments. Personally I believe
that this should be restricted to those experiments
that are otherwise too complex or dangerous to perform
in the school lab, or for which it is unlikely that
suitable apparatus will be available. It would, for
example, be perfectly possible to use the BBC ‘s
excellent graphics to draw an electrical circuit on the
screen, complete with ‘working rheostat and meters but
would this teach the pupils anything about real
circuits? A much better treatment of this topic would
demonstrate the movement of free electrons within an
enlarged section of the conductor and show how this is
affected by the applied potential difference and how it
determines the current flowing. In this case, the
computer enhances the understanding of the real
experiment without replacing it. I term this type of

program a ‘demonstration” rather than a simulation,
though in some cases the distinction may not be so
obvious. In most cases demonstrations will consist of

an animated diagram, with some user-control, so they
may be regarded as a kind of computerised “film loop’,
but with the very important advantage of being fully
interactive. This will not usually be limited just to
the ability to start and stop the animation at given
points but the user will be able to alter the values of
the various parameters controlling the demonstration.
In this way a much deeper understanding of the
underlying principles should be achieved. A typical
program of this type 1is "RADECAY" which seeks to
impress on the students not only the randomness, at the
nuclear level, of the radioactive decay process but
also the resulting macroscopic pattern of the mass/time
graph. By altering the decay parameters and then
immediately observing the effects, the students should
obtain a grasp of the essential relationships.

4 A Science Teacher’'s Companion to the BBC Microcomputer

The high quality of the graphics on the BBC micro
greatly assists in the production of attention-grabbing
visual effects. We can profit from the students’
enthusiasm for computer-produced displays (a la video
games) if the programs use this graphics ability to the
full. Fortunately the range of graphics commands
provided by BBC BASIC and the overall speed of the BBC
machine make the writing of good graphics-based
programs a relatively easy task. Only when a lot of
rapid movement is required would the wuse of Assembly
Language need to be considered.

A third type of program within this area is what I
call the ‘tutorial® program as typified by the
"VERNIER2" program from chapter 2. Whereas the
demonstration programs will often be
teacher-controlled, the tutorial or °‘CAL’ program is
generally intended for use by an individual or small
group of students and seeks to teach a particular topic
or technique using an approach similar to that of the
programmed learning method.

THE BBC MICRO AS A SCIENTIFIC INSTRUMENT

Few, if any, other microcomputers come so well suited
to the role of scientific instrument as does the BBC
micro. The numerous interfaces that are fitted as
standard equipment to the BBC Model B make it easy to
connect the micro to a wide range of external equipment
and the excellent graphics ensure that the data is

effectively displayed. The versatility of the micro
means that it can be utilised in a very wide range of
applications, which broadly fall into two main

categories - data acquisition and control technology -
though there are several areas where both aspects may
be combined. For example, the computer could take
measurements from an experiment and respond by
controlling the experimental conditions.

Data Acquisition

In this type of application the computer is monitoring
some aspect of its environment, often using some
suitable sensor. This may range from the simplest
example in which the computer measures and displays the
voltage across the plates of a discharging capacitor
(see "CAPACITOR" in chapter 3) to an automatic
data-acquisition program ("EVENTAD" in chapter 3) in
which it takes measurements at specified intervals over
a prolonged period of time and stores them for later
display, either in graphical, digital or tabular form.
There is a certain dilemma to be faced here in that the
use of a computer to completely take over an experiment

The Science Machine 5

could obscure the wunderlying principles rather than
elucidating them. This 1is the ’‘black-box’ effect in
which the computer takes all the readings, works out
the intermediate stages and displays only the final
answer. The student could be left with 1little or no
idea as to what the experiment actually entailed. 1In
certain cases this may be acceptable, the final value
being the desired conclusion after a long series of
experiments has been performed. The student could
perform one or two measurements himself and the teacher
will satisfy himself that the student understands the
essential principles of the experiment and how to
perform any necessary calculations. Only then would
the use of the computer be introduced to relieve the
tedium of taking a large set of results, all of which
repeat the same procedures time and again. In this way
the computer is used for its rightful purpose, as our
untiring servant, and at no time does it threaten to
monopolise and obscure the experiment.

A very important Jjustification for using the
computer as a data-acquiring machine 1is that the
students are bound to encounter it in this role in
their future careers, whether in higher education or in
industry. Teachers can help to foster familiarity and
overcome any fears that the student may have (though it
is usually the ‘older generation’” who suffer from
anxiety about computers!) by introducing this aspect of
the computer as early as possible in the student’s
academic career. This could perhaps be as one part of
a series of experiments, alongside others, using more
conventional apparatus.

Control Technology
Another important area of the application of computers
that 1is becoming increasingly common is in the control
of machines. Most washing machines are now
microprocessor controlled and there is even a microchip
controlled toaster! No doubt the cooker will soon be
asking "Shall I start dinner now?" Schools are
becoming aware of the importance of this aspect of
computing and some examination boards now provide a
“Technology ’ syllabus, though this tends to be
concerned more with the ‘nuts and bolts”® side of
engineering applications. I define the term “control
technology” as the use of a programmable electronic
device to control the operation of a piece of hardware.
The electronic device need not be a microprocessor or
microcomputer, but this is by far the most common type
of controller. The hardware essentially provides the
computer with its ’‘muscle” or motive power, so enabling

6 A Science Teacher’'s Companion to the BBC Microcomputer

it to extend its sphere of influence out into the real
world. Suddenly the strings of binary ‘ones’ and
‘zeros’ spring to life and are seen in, perhaps, their
true context, rather than as abstrac concepts in an
unfamiliar number system. :

The versatility of the hardware is increased by
using a software-controlling program which is easily
adapted to cater for changes in the machine’s mode of
operation. If one takes the example of a machine tool
producing a particular component, in the conventional
machine extensive mechanical adjustment and retooling
is required to incorporate even a minor change in the
component ‘s design. With the computer-controlled
machine the necessary changes require only a new
program or punched tape to be produced and the modified
component is rolling off the production line in next to
no time.

The aspects of control technology introduced in this
book will be of interest to those who are seeking a
basic understanding of the principles. Once these are
grasped the range of potential applications is limited
only by the imagination and ingenuity of the
individual.

THE BBC MICRO AS AN ADMINISTRATIVE AID

Many of the activities associated with the running of a
science department readily lend themselves to
computerisation. At the class level this includes the
setting and administering of tests, though wunless the
school 1is fortunate enough to have a set of BBC micros
that is big enough for class use, this will probably
have to be restricted to diagnostic testing (see
chapter 4). It is an interesting and useful exercise
to have students prepare short tests for their
colleagues. If this is done in groups it can provoke
much useful discussion on the ‘correct” and “incorrect’
responses, and leads the students into a deeper
understanding of the underlying principles.

The teacher will also find it wusetul to have a
simple file-handling program on which he can store and
process the essential information on his students. The
ability to do this quickly and to reveal correlations
that may not have been obvious otherwise will convince
most sceptics that a computer “filing system” has much
more to offer than the conventional mark book. At a
departmental level, data base systems can prove useful
for all the filing and stock-control duties that may
otherwise prove a burden. Commercial packages are

The Science Machine 7

available but they tend to be expensive and are rarely
suited to the exact requirements of the individual

user. This book therefore explains the principles of
setting up and interrogating data stored as files on
tape or disk. The wuser can then modify and use the

basic procedures to generate his own program to match
the required specifications.

One commercial package that is well worth buying is
some form of word processor. This should preferably be
in a ‘sideways” ROM as it will thus leave more of the
precious RAM free to store the user’s text. An
additional benefit is that the program is “loaded” and
run in an instant simply by typing *WORDWISE or

whatever the name of the package is. The word
processor will soon prove itself invaluable for the
production of letters, memos and students” notes. A

major advantage 1in the latter case is that the text
remains as a file on tape or disk so that future
changes are very easy to implement. An interesting
possibility is the use of the word processor to build
up banks of questions as text files. Later, when a
test or examination is required, it can be assembled
from its component parts and edited as necessary; then
the final draft can be ‘dumped” onto a printer.
(Incidentally, when multiple copies are required, the
most econcmical production method is to use the printer
to ‘cut’ a stencil directly. The printer’s cartridge
ribbon should be removed to ensure a clearly cut copy.)

2 Simulations, Demonstrations and
Tutorials

This Chapter covers the wuse of the BBC micro as a
teaching aid through the presentation of a wide range
of programs which cover the simulation of experiments,
the demonstration of dynamic processes using animated
graphics and the individualised tutoriali approach of
computer assisted learning (CAL). You should find the
programs useful in their own right and, hopefully you
will be able to use many of the techniques in your own
programs. The program notes that accompany each
listing will help to explain how it works and should
assist you to adapt it to your own teaching methods or
syllabus, or to extend it in whatever way you may
choose.

PROGRAM NOTES

The explanatory notes that accompany each listing take
the following general form.

(a) The program name as it appears on screen and the
‘File name used on the cassette. This is followed
by a brief description of what the program does,
including the suggested 1level at which it is
aimed. Many of the ‘advanced’ programs could,
however, be used with classes at lower levels, in
a demonstration mode under the teacher’s control
rather than by an individual or small group of
more advanced students, as was intended
originally.

(b) A list of the procedures and functions used by the
program, the line number at which each starts and
what it does. 1In general you will find that the
programs consist of a fairly short main section
followed by the procedure/function definitions.
You may find it convenient when studying a program
to underline, 1in coloured ink, each of the ’DEF
PROC”~ and 'DEF FN statements so that ycu can find
them quickly.

(c) A fairly detailed explanation, with reference to
the 1line numbers in the 1listings, of the more

Simulations, Demonstrations and Tutorials 9

important sections of the program. For example, I
assume that you will be fully aware of what 720
MODE 5° does so this sort of thing will not be
explained! Some of the later programs depend on
techniques used and explained in earlier ones, so
you should try to work through the listings in the
order that they are presented.

(d) Suggestions for possible modifications to the
program.One such suggestion might be to allow it
to run on a Model A computer. (Unless stated
otherwise you may assume that all programs will
run on either a Model A or a Model B.)

A separate list of variables will not usually be given
since, as far as possible, the Beeb’'s ability to use
meaningful variable names has been exploited. Loop
variables that are simply being used as counters will
usually just use “I%°, 'J%° or ‘K% while variables
such as 'X%7, Y% ', "Xco% and ‘Yco% generally refer
to the X,Y coordinates of the screen. ‘

Note for disk users

Because the value for PAGE on a normal system is &1900,
there may be insufficient memory to allow some of the
longer programs to run. In this case you can add the
short move-down routine listed below. This will
automatically relocate the program to run at &E00, so
when you are finished with the program press BREAK to
restore the DFS to normal. You may like to create a
text file of this routine, using *SPOOL, so that it can
be merged to any program using *EXEC. (Type *SPOOL
DMOVE, LIST, *SPOOL to create a file called "DMOVE"
which can be merged using *EXEC DMOVE.)

0 IF PAGE <> &E00 THEN GOTO 32764
32764 *TAPE
32765 FOR I%=0 TO (TOP-PAGE) STEP 4:
I%!&EO00 = I%!PAGE:NEXT:PAGE = &E00

32766 *KEYO OLD|MRUN|M
32767 *Fx138,0,128

RADIOACTIVE DECAY ("RADECAY")

This program simulates a simple two-stage
radioactive-decay process in which the parent nuclei -
shown as white dots - decay into a stable daughter
product - red dots. A bar graph of the number of
parent nuclei remaining is plotted and it 1is possible
to select different initial numbers and various decay
constants. Although mainly intended for advanced

10 A Science Teacher's Companion to the BBC Microcomputer

level, the graphics should prove useful with 07 level
classes.

Listing "RADECAY"

10 REM "*** RADECAY ***
20 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off
30 PROCintro
35 CLEAR
40 PROCmenu_l
50 PROCmenu_2
70 DIM N(N_init)
80 max_time=1100
90 time=0
100 no_now=N_init
110 MODE 5:VDU 23;8202;0;0;0; :REM "Cursor off
120 PROCscreen
130 GcoL 0,2
140 MOVE time+128,N_init+64:MOVE time+136,N _init+64
150 PLOT 85,time+128,64:PLOT 85,time+136,64
160 REPEAT
170 PROCupdate
180 UNTIL no_now<0.l*N_init OR time>max_time
190 GcoL 0,1
200 MOVE 128, (N_init+64):PLOT 21,1279, (N_init+64)
210 MOVE 128, (N_init/2+64):PLOT 21,1279, (N_init/2+64)
220 VDU 5
230 MOVE 600, (N_init+64)+32:PRINT "initial no"
240 MOVE 600, (N_init/2+64)+64:PRINT "Half the":
MOVE 600, (N_init/2+64)+32:PRINT "initial no"
250 VDU 4
260 PRINT "Press R to re-run"
270 PRINT "Press E to end."
280 key=FNgetkey("RrEe")
290 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off
300 IF key=1 OR key=2 THEN 35 ELSE END
310 DEF PROCintro
320 PROCtitle("Radioactive Decay")
330 PRINT “"Radioactive decay is a process in which";
340 PRINT "the nucleii of certain";CHRS 130;"unstable"
;CHRS 135;"elements";
350 PRINT "change ";CHR$ 130;"spontaneously";CHR$ 135;
" into nucleii of";
360 PRINT "other elements. These other nucleii may";
370 PRINT "themselves be stable, in which case the";
380 PRINT "process stops, or unstable, changing by";
390 PRINT "further radioactive decay into yet other";
400 PRINT "elements. Each decay process consists of";
410 PRINT "the emission of ";CHRS$ 129;"radiation";
CHRS 135;"such as";CHR$ 129;"alpha";
420 PRINT "particles or";CHR$ 129;"beta";CHRS 135;
"particles.This program";
430 PRINT "does 'nt show them but represents a group";
440 PRINT "of initial";CHR$ 130;"parent";CHRS 135;
"nucleii(as white dots)";
450 PRINT "which decay into";CHR$ 130;"daughter";
CHRS$ 135;"nucleii (red).";
460 PRINT "These are assumed stable in this case.";
470 PRINT ““CHR$ 132;CHRS 157;CHRS$ 131;" PRESS
SPACE BAR TO CONTINUE"
480 X=FNgetkey(" ")
490 CLS
500 PROCtitle("Radioactive Decay")
510 PRINT “"The ";CHR$ 129;"probability";CHR$ 135;
" that a given nucleus";
520 PRINT "will decay during the next interval of";
530 PRINT "time is called the";CHRS 130;"decay constan
t.";CHRS 135;" Each";
540 PRINT CHRS$ 130;"isotope";CHRS 135;"has a different
value of decay";
550 PRINT "constant but, for any given isotope, its";
560 PRINT "value does not depend on any external";
570 PRINT "factors such as";CHRS$ 129;"temperature,pres
sure";CHRS 135;"and";

590
600
610
620
630
640
650
660
670
680
690

710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

Simulations, Demonstrations and Tutorials 11

PRINT CHR$ 129;"chemical state."CHR$ 135;"In this
simulation the";

PRINT "number of parent nucleii remaining after";
PRINT "each time interval is plotted as a bar";
PRINT "graph. You should note the shape of the";
PRINT "graph and observe the effect of choosing";
PRINT "a different number of parent nucleii to";
PRINT "start with and different decay constant";
PRINT "values. After how many time intervals";
PRINT "will the number of parent nucleii have";
PRINT "fallen to half the initial number? Does";
PRINT "this depend on the initial number and/or";
PRINT "the decay constant?";CHRS 134;CHRS 136;

" ...INVESTIGATE...";

PRINT °"CHRS 132;CHRS 157;CHRS 131;" PRESS SPACE
BAR TO CONTINUE"

X=FNgetkey(" ")

ENDPROC

DEF PROCmenu_1

CLS

PRINT ““"Initial number of nucleii"

PRINT ““""(A).....200"

PRINT "(B).....300"

PRINT "(C)..... 400"

PRINT "(D).....600"

PRINT °~“'CHRS 136;"Please select an option"
opt=FNgetkey ("ABCDabcd")

SOUND 1,-15,200,5

IF opt=1 OR opt=5 THEN N_init=200

IF opt=2 OR opt=6 THEN N_init=300

IF opt=3 OR opt=7 THEN N_init=400

IF opt=4 OR opt=8 THEN N_init=600

ENDPROC

DEF PROCmenu_2

CLS

PRINT ~“"Decay constant"

PRINT “““"(A)..... 0.05"

PRINT "(B)..... 0.10"

PRINT "(C).....0.15"

PRINT "(D).....0.20"

PRINT “°°CHR$ 136;"Please select an option"

opt=FNgetkey ("ABCDabcd")

SOuND 1,-15,200,5

IF opt=1 OR opt=5 THEN K=0.05

IF opt=2 OR opt=6 THEN K=0.1

IF opt=3 OR opt=7 THEN K=0.15
IF opt=4 OR opt=8 THEN K=0.2
ENDPROC

DEF PROCscreen

GCOL 0,3

FOR I%=1 TO N _init DIV 100

FOR X%=1 TO 10

FOR Y%=1 TO 10

PLOT 69,X%*16+160*I%,Y%*8+800
NEXT Y%:NEXT X%:NEXT I%
MOVE 128,64 :DRAW 128,700
MOVE 128,64 :DRAW 1200,64
VDU 5

MOVE 0,650:PRINT "No"

MOVE 1000,32:PRINT "Time"
VDU 4

ENDPROC

DEF PROCupdate
no_decayed=K*no_now
no_now=no_now - no_decayed
FOR I%=1 TO no_decayed
rand%$=RND (N_init)

IF N(rand%)=1 THEN 1210
N(rand%)=1

X%=(rand$ DIV 10+1)*16+160
Y$=(rand$ MOD 10+1)*8+800
GCOL 0,1:PLOT 69,X%,Y%
NEXT I%

time=time+32

T=time+128

GCOL 0,2

MOVE T-8,no_now+64:DRAW T+8,no_now+64
PLOT 85,T-8,64

PLOT 85,T+8,64

12

PROC

310
730

880

1030

1170

1350

1400

A Science Teacher's Companion to the BBC Microcomputer

1340 ENDPROC

1350 DEF FNgetkey(key$)

1360 LOCAL pos

1370 REPEAT :pos=INSTR(key$,GETS)

1380 UNTIL pos

1390 =pos

1400 DEF PROCtitle(text$)

1410 PRINT TAB((39-LEN (text$))/2);CHRS 141;text$
1420 PRINT TAB((39-LEN (text$))/2);CHRS 141;text$
1430 ENDPROC

/FN List

PROCintro prints the introductory text.
PROCmenu_1 prints a menu of initial numbers and
inputs a choice.

PROCmenu_2 prints a menu of decay constants and
inputs a choice.

PROCscreen draws a white dot for each nucleus and
draws and labels the graph axes.

PROCupdate calculates the number of nuclei
decaying and updates the display and graph.
FNgetkey waits for a valid key to be pressed and
returns the position (in the supplied string) of
the pressed key.

PROCtitle prints a double-height title centred on
the screen.

Program Description

35-

140-
160-

190

200-

220

230-

250
260-

300 Main loop which inputs choices from menus and
DIMensions the array N(N_init) to hold the status
of each nucleus (0 = undecayed,l = decayed). Other
variables are then set to their initial values.
150 Plot the initial number on the bar chart.
180 Repeatedly wupdate the display until the
condition in line 180 is satisfied.

Selects red graphics.
210 Plot horizontal dotted lines (PLOT2l gives a
dotted line) at the “initial number” and ‘half
initial number values.

Enables text to be positioned using graphics
cursor.
240 Label dotted lines.

Restores normal cursor action.
300 Wait for the 'R” or 'E° keys to be pressed,
and re-runs or ends. FNgetkey accepts only those
keys supplied in the string parameter ‘key$ and
returns a value that is the position of the pressed
key in the string (for example, E is in position
3). Note the use of CLEAR” in line 35 to allow
the array to be redimensioned for the new number of
nuclei. If this 1is not done you would provoke a
‘Bad DIM error by trying to dimension an already
existing array.

Simulations, Demonstrations and Tutorials 13

310-1430 Procedure/Function definitions. Of these the
more important are:

PROCscreen. Lines 1050-1090 set up three nested
loops to plot a dot for each of the initial
nuclei. 1050 divides the 1initial number into
groups of 100 and the X%,Y% loops plot these as
10 x 10 blocks. Lines 1100-1150 simply draw and
label the bar graph axes.
PROCupdate. Lines 118(6-1190 work out how many
nuclei will decay and how many will be left.
Lines 126G0-1270 then choose an undecayed nucleus
at random (1220 checks its status stored in the
array and 1230 changes it to ‘decayed’). Lines
1240-1250 calculate the X,Y coordinates of the
chosen nucleus and line 1260 replots it in red.
The rest of the procedure updates the time
variable and plots the new number of nuclei on
the bar graph.
FNgetkey uses the “INSTR ~ function to find the
position, in the string parameter ‘key$’ ', of the
single character string obtained by the 'GETS’
function. The position 1is zero if the key
pressed is not in ‘key$’, so the loop repeats
until a valid key is pressed.

Modifications

One possible modification would be to plot the number
of daughter nuclei in addition to the number of
original parent nuclei. This can be done by extending
PROCupdate to plot the daughter nuclei in colour 1, but
it is necessary to allow for the fact that at the start
there are more parent than daughter nuclei and at the
end the situation is reversed. If GCOLO is used then
plotting a larger bar on top of a smaller one would
completely over-paint the latter. You could insert a
test along the lines-of “IF no now>0.5*N_init THEN plot
parents before daughters ELSE plot daughters before
parents’. This will always plot the larger value
first. (A similar technique is wused in the next
program: "RASERIES" lines 1050-1110 and PROCplot at
lines 1210-1260.)

RADIOACTIVE SERIES ("RASERIES")
This 1is essentially an extension of the previous
program, "RADECAY", in that it simulates a three-stage

decay of the form:

isotopel—m isotope2 —p isotope3

14 A Science Teacher's Companion to the BBC Microcomputer

It is assumed that isotope3 is stable and so represents
the end of the decay series. As before each isotope is
represented as a dot 1in a different colour and the
accompanying bar graph uses these same colours to plot
the number of nuclei of each. The initial number of
nuclei is fixed (700) but students are able to choose
the decay constant values for isotopel and isotope?2.
They are asked to try to obtain equilibrium conditions
for isotope2. This program is for advanced-level use.

Listing "RASERIES"

10 REM "*** RASERIES ***

20 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off
30 PROCintro

40 CLEAR

50 N_init=700

60 opt=0

70 DIM N%(N_init),K(2)

80 PROCmenu(1):PROCmenu(2)

90 max_time=1100

100 time=0

110 no_now_isol=N_init

120 no_now_iso2=0:no_now_iso3=0

130 MODE 5:VDU 23;8202;0;0;0; :REM "Cursor off

140 vDU 19,2,2,0,0,0:REM "*** GREEN

141 REM "* v.19,2,4,0,0,0 ON B/W TV

150 PROCscreen

160 GCOL 0,3

170 MOVE time+128,N_init+64:MOVE time+136,N_init+64

180 PLOT 85,time+128,64:PLOT 85,time+136,64

190 REPEAT

200 PROCupdate

210 UNTIL no_now_isol<0.01*N_init CR timed>max_time

220 sounD 1,-15,200,5:SOUND 1,0,200,5:SOUND 1,-15,200,
5:SouUND 1,0,200,5:SOUND 1,-15,200,5

230 PRINT "Press R to re-run"

240 PRINT "Press E to end."

250 key=FNgetkey("RrEe")

260 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off

270 IF key=1 OR key=2 THEN 40 ELSE END

280 DEF PROCintro

290 PROCtitle("Radioactive Series")

300 PRINT “"The program ";CHR$ 130;" ‘Radioactive Decay
“";CHR$ 135;" dealt with a simple two-stage decay

process: the";CHR$ 130;"daughter";CHR$ 135;"produ
ct was ";CHR$ 129;"stable."

310 PRINT "In many decay processes the intermediatepro
ducts are unstable, giving rise tofurther
products and producing a "CHR$ 129;"decay";

CHRS 129;"series."

320 PRINT “"This program will simulate a three-stagera
diocactive series, represented by:"

330 PRINT “"Isotope 1 -->";CHR$ 129;"Isotope 2"

CHRS 135;"-->";CHR$ 132;"Isotope 3"

340 PRINT “"Isotopes 1 and 2 are unstable and youwi
11 be asked to select values for theirdecay consta
nts. Isotope 3 is assumed tobe stable."

350 PRINT °‘CHRS 132;CHRS 157;CHR$ 131;" PRESS SPACE
BAR TO CONTINUE"

360 X=FNgetkey(" ")

370 CLS

380 PROCtitle("Radioactive Series")

390 PRINT “"While running the program with varyingva
lues you will observe conditions thatproduce

an";CHRS 130;"equilibrium";CHRS 135;"state of
Isotope2. In other words the number of nucleiio
f Isotope2 remains constant for a time."

400 PRINT "This is a case of";CHR$ 129;"Dynamic Equili

brium";CHR$ 135;"iethe rate at which Isotope 2

is decayinginto 1Isotope 3 is balanced by the
rateat which it is being produced from thedecay
of Isotope 1."

410

420
430
440
450
460

470
480
490
500
510

520

530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850

860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060

1070
1080
1090

Simulations, Demonstrations and Tutorials 15

PRINT 'CHR$ 132;CHRS 157;CHRS$ 131;" PRESS SPACE
BAR TO CONTINUE"

X=FNgetkey(" ")

ENDPROC

DEF PROCmenu(I%)

CLS

PRINT °~'CHR$ 134;CHRS 157;CHR$ 132" Decay constan
t for Isotope ";I%

PRINT TAB(14);"(A).....0.05"
PRINT TAB(14);"(B).....0.10"
PRINT TAB(14)"(C).....0.15"
PRINT TAB(14)"(D).....0.20"

PRINT ~°'CHRS 134;CHRS 157;CHR$ 132;CHRS 136;
" Please select an option"

IF opt=0 THEN 530 ELSE @%=&2020A:PRINT

CHRS 134;CHRS 157;CHRS$ 132;"Value selected for
Isotope 1 = ";K(1):@%=10

opt=FNgetkey ("ABCDabcd")

SOuND 1,-15,200,5

IF opt=1 OR opt=5 THEN K(I%)=0.05

IF opt=2 OR opt=6 THEN K(I%)=0.1

IF opt=3 OR opt=7 THEN K(I%)=0.15

IF opt=4 OR opt=8 THEN K(I$%)=0.2

ENDPROC

DEF PROCscreen

GCOL 0,3

FOR I%=1 TO N_init DIV 100

FOR X%=1 TO 10

FOR Y%=1 TO 10

PLOT 69,X%*16+160*I%,Y%$*8+800

NEXT Y%

NEXT X%

NEXT I%

MOVE 128,64 :DRAW 128,700

MOVE 128,64 :DRAW 1200,64

VDU 5

MOVE C,650:PRINT "No"

MOVE 1000,32:PRINT "Time"

@%=62020A

GCOL 0,3:MOVE 300,732:PRINT "Isotopel=";K(1l)

GCOL 0,1:MOVE 300,700:PRINT "Isotope2=";K(2)

GCQL 0,2:MOVE 300,668 :PRINT "Isotope3=Stable"
@%=10

VDU 4

ENDPROC

DEF PROCupdate

no_decayed_isol=K(1l)*no_now_isol

no_now_isol=no_now_isol - no_decayed_isol

no_decayed_iso2=K(2)*no_now_iso2
no_now_iso2=no_now_ iso2*no decayed isol-no_decayed
1502

no _now_iso3=no_now_iso3+no_decayed_iso2

FOR I%=1 TO no decayed isol

rand%=RND (N_init)

IF N%(rand$)<>0 THEN 880

N%$(randg)=1

X$=(rand% DIV 10+1)*16+160

Y$=(rand% MOD 10+1)*8+800

GCOL 0,1:PLOT 69,X%,Y%

NEXT I%

FOR I%=1 TO no_decayed_iso2

rand$=RND (N_init)

IF N%(rand%)<>1 THEN 960

N%(rand%)=2

X%=(rand% DIV 10+1)*16+160

Y$=(rand% MOD 10+1)*8+800

GCOL 0,2:PLOT 69,X%,Y%

NEXT I%

time=time+32

T=time+128

Nl=no_now_iscl:N2=no_now_iso2:N3=no_now_iso3

IF N1>N2 AND N2>N3 THEN PROCplot(Nl 3): PROCplot(NZ
,1):PROCplot(N3,2) :ENDPROC

IF N1>N3 AND N3>N2 THEN PROCplot(N1,3):PROCplot(N3
»2) :PROCplot(N2,1) :ENDPROC

IF N2>N1 AND N1>N3 THEN PROCplot(N2,1):PROCplot(Nl
+3):PROCplot(N3,2) :ENDPROC

IF N2>N3 AND N3>Nl THEN PROCplot(N2,1):PROCplot(N3
,2) :PROCplot (N1, 3) :ENDPROC

16 A Science Teacher's Companion to the BBC Microcomputer

1100 IF N3>N1 AND N1>N2 THEN PROCplot(N3,2):PROCplot(Nl
,3):PROCplot(N2,1) :ENDPROC

1110 IF N3>N2 AND N2>N1 THEN PROCplot(N3,2):PROCplot(N2
,1):PROCplot(N1,3):ENDPROC

1120 DEF FNgetkey(key$)

1130 LOCAL pos

1140 REPEAT :pos=INSTR(key$,GETS$)

1150 UNTIL pos

1160 =pos

1170 DEF PROCtitle(text$)

1180 PRINT TAB((39-LEN (text$))/2);CHRS 141;text$

1190 PRINT TAB((39-LEN (text$))/2);CHR$ 141;text$

1200 ENDPROC

1210 DEF PROCplot(value,colour)

1220 GCOL 0,colour

1230 MOVE T-8,value+64:DRAW T+8,value+64

1240 PLOT 85,T-8,64

1250 PLOT 85,T+8,64

1260 ENDPROC

PROC/FN List

280 PROCintro prints the introductory text.

440 PROCmenu(I%) is adapted from PROCmenu 2 in
"RADECAY" to allow the decay constant value to be input
for each isotope (I% = isotope number).

600 PROCscreen sets up the initial screen display.

810 PROCupdate calculates number of nuclei of each
isotope and plots each on display and bar graph.

1120 FNgetkey, see "RADECAY".
1170 PROCtitle, see "RADECAY".
1210 PROCplot draws a vertical bar, height ="value’, in
colour ‘colour’. Used by PROCupdate to draw bar graph.

Program Description

40- 270 Main loop initialises variables and DIMs two
arrays: N() for the status information of each nucleus
(0 = isotopel, 1 = isotope2, 2 = isotope3), and K() for
the two decay constant values selected in PROCmenu.
Line 140 changes logical colour 2 (usually vyellow) to
actual colour 2 (green). Line 220 produces three short
‘beeps” from the speaker to indicate the end of the
simulation and that an input (E or R) is expected.
280-1260 Procedure/function definitions. These are
very similar to the corresponding routines in the
preceding program, with the following additions:

PROCscreen. The only difference here 1is that
the decay constant values are printed, in the
appropriate colour, for each isotope. Line 740
sets the print format to fixed decimal places.
This is done to prevent the computer printing
‘0.05" as '5E-2° which is confusing to all but
the computer expert! Line 780 restores normal
formatting.

PROCupdate. This now has to update the number
and displays for three isotopes, so it has been

Simulations, Demonstrations and Tutorials 17

extended to suit. Lines 820-860 do the maths
and lines 870-940 replot the decayed nuclei of
isotope 1 1in the colour chosen for isotope 2.
Lines 950-1020 do the same for
isotope2/isotope3. In plotting the bar graphs
we now have to deal with three quantities
plotted on the same axes, so care has to be
taken with the order of plotting: it must be
done in order from largest to smallest. Line
1050 assigns short variable names to the number
of each isotope to be plotted. This is done
merely to save some typing in the following
lines (1060-1110), which sort out the order in
which the graphs will be drawn.

PROCplot draws a vertical ‘bar” (height given by
‘value’ parameter) by moving to the top left
corner, drawing to the top right corner, filling
a triangle to the bottom left corner and finally
filling another triangle to the bottom right
corner.

Modifications

If you are using a monochrome monitor you may find it
easier to distinguish the three colours if you use blue
in place of green for logical colour 2. This can be
done by replacing line 140 by: °140 VvDU19,2,4,0,0,0".
It is possible to increase the initial number of nuclei
a little, bearing in mind that the screen array of
‘nuclei” and the bar graphs have to fit the available
space. You can try changing the value of 'N_init’ in
line 50 but you will also need to move the display of
nuclei up the screen to clear the graph axes. This can
be done by increasing the "800 at the end of lines
650,920 and 1000.

RUTHERFORD S ALPHA SCATTERING EXPERIMENT ("ALPHA")

This is a graphics simulation of the scattering of an
alpha particle by an (infinitely) heavy nucleus. The
alpha particle moves under the action of an
electrostatic repulsive force and its path is plotted
using an iterative method. Students can input the
alpha particle energy and may adjust the initial
position to obtain different ‘miss distances’. This
program is for advanced level use.

18 A Science Teacher's Companion to the BBC Microcomputer
Listing "Alpha"

1 REM "** ALPHA **
10 MODE 7:VDU 23;8202;0;0;0;
20 PROCintro
30 MODE 4
40 VDU 28,0,6,36,0
50 VDU 29,640;512;
60 PROCnucleus
70 REPEAT
80 PROCvariables
90 REPEAT :CLS :INPUT TAB(0,2)"Alpha particle energy
(.1-20MeV)",Energy
100 UNTIL Energy>=0.1 AND Energy<=20
105 vDU 23,1,0;0;0;0;:REM "Cursor off
110 U=SQR (2*Energy*1E6*e/m)
120 VX=U:VY=0
130 CLS :PRINT “~“"** Use : and / keys NOW **"~~
"** Press SPACE to start plot **"
140 PROCYmove
150 SY$=STR$ (ABS (SY))
160 CLS :PRINT ~“"Alpha particle energy=";Energy;
"Mev "
170 PRINT ""Initial miss distance=";LEFTS(SYS$,4);
"x10";RIGHTS (SY$,3); "m"
180 REPEAT
190 PROCupdate
200 PLOT 69,PX,PY
210 UNTIL PX<-Xorigin OR PX>Xorigin OR PY¥<-Yorigin
OR PY>Yorigin
215 vDU 23,1,1;0;0;0;:REM "Cursor on
220 PRINT TAB(0,6)"Another run? (Y/N)";
230 REPEAT
240 AS=GETS$
250 UNTIL AS$="Y" OR A$="N"
260 IF AS$="N" THEN MODE 7:END
270 UNTIL FALSE
280 END
290 DEF PROCvariables
300 Xorigin=640:Yorigin=512
310 T=1E-20
320 e=1.6E-19
330 m=4*1.66E-27
340 SX=-5E-12:5Y=0
350 XF=620/5E-12:YF=512/5E-12
360 PX=SX*XF:PY=SY*YF
370 ENDPROC
380 DEF PROCnucleus
390 PLOT 69,0,0:PLOT 69,0,1
400 PLOT 69,1,0:PLOT 69,1,1
410 PLOT 69,-1,0:PLOT 69,-1,1
420 PLOT 69,0,-1:PLOT 69,-1,-1
430 ENDPROC
440 DEF PROCYmove
450 REPEAT
460 IF INKEY (-73) THEN PY=PY+l
470 IF INKEY (-105) THEN PY=PY-1
480 PLOT 70,PX,PY
490 PLOT 70,PX,PY
500 UNTIL INKEY (-99)
510 SY=PY/YF
520 ENDPROC
530 DEF PROCupdate
540 R=SX*SX+SY*SY
550 AX=214.16*SX/(SQR (R)"3)
560 AY=214.16*SY/(SQR (R)"3)
570 X=VX*T+.5*%AX*T*T
580 Y=VY*T+,5*AY*T*T
590 VX=VX+AX*T
600 VY=VY+AY*T
610 SX=SX+X:SY=SY+Y
620 PX=SX*XF:PY=SY*YF
630 ENDPROC
640 DEF PROCintro
650 CLS
660 PRINT CHRS$ (130);CHR$ (141);"Rutherford’s Alpha
Scattering Expt."

PROC/FN
290

380

440

530

640

Program
40

50
70-270
90

100

110

140

150

180-210

Simulations, Demonstrations and Tutorials 19

670 PRINT CHRS$ (130);CHRS (141);"Rutherford’s Alpha
Scattering Expt."
680 PRINT ~“"This program is designed to simulate
thescattering of an alpha particle by a";
690 PRINT "Gold nucleus.This is shown(not to scale)as
a small dot in the «centre of the";
700 PRINT "screen."
710 PRINT “"You may select the energy of the alphaan
d you may also adjust the distance";
720 PRINT "between its original path and the centreof
the Gold nucleus."
730 PRINT “"The alpha is shown as a small flashingdo
t at the left of the screen. You can";
740 PRINT "move this up and down using the : and
/keys. When you are ready you can start";
750 PRINT "the plotting by pressing the space bar."
760 PRINT ““’'CHR$ 136;CHRS 134;CHRS 157;CHRS 132;
" Press SPACE now to start"
770 REPEAT
780 AS$=GETS
790 UNTIL A$=" "
800 CLS
810 ENDPROC

List

PROCvariables sets main variables to their
initial values. ‘T’ is the time increment, ‘e’
is the electronic charge and m’~ is the
alpha-particle mass. ‘SX” and ‘SY’ are the X
and Y displacements, respectively, and 'XF~ and
‘YF’ are scaling factors used to convert these
to the screen plotting values “PX” and 'PY’ .
PROCnucleus plots a group of 8 pixels in the
centre of the screen.

PROCYmove allows the user to move the ‘alpha’
up and down the left of the screen until the
space bar is pressed.

PROCupdate performs the iterative calculation
of the alpha’s X,Y position.

PROCintro prints the text and waits for the
space bar to be pressed.

Description

Sets up a text window at the top of the screen.
Moves graphics origin to screen centre.

Main loop.

Inputs alpha-particle energy.

Verifies it is in the acceptable range.
Calculates the initial velocity “U”.

PROCYmove then allows the user to select the
initial position of the alpha-particle.
Converts the Y displacement to a string so that
it can be formatted in the more familiar
scientific notation (for example “4.25 X
10-12m 7).

Form an inner loop which obtains the updated
position and plots it (line 200). The 1loop
ends when the alpha-particle leaves the screen.

20 A Science Teacher's Companion to the BBC Microcomputer
220-260 Ask if another run is required and obtain a ‘Y~
or 'N° answer. If ‘N’ the program reverts to
Mode 7 and ends at line 260, else the main loop
repeats.
290-810 Procedure definitions:
PROCYmove is a REPEAT...UNTIL loop which ends
- when the space bar is pressed. Lines 460 and
470 use the negative INKEY statement to check
if the : or / keys are pressed and adjust the
Y screen coordinates as appropriate. Lines
480 and 490 plot a dot twice in logical
inverse fashion which effectively means it is
erased again after the second plotting. Line

510 calculates the Y displacement
corresponding to the final screen coordinate
value.

PROCupdate employs an iterative method to
calculate the position of the alpha particle
at the end of successive short time intervals.
This involves setting initial values of
displacement, velocity and acceleration (SX,
VX and AX for the X-direction and SY, VY and
AY for the Y-direction). At the end of a
small increment of time (T), new acceleration
values are calculated and the distances
travelled (X and Y) during this increment are
determined. The new velocities are then
worked out and finally the new position is
calculated. These new values of S, V and A
are then available for the next iteration.
Line 620 converts the calculated displacements
to screen coordinates for plotting.

Modifications

At the moment the program deliberately does not clear
the screen between runs as this allows the student to
observe the effect of varying the ‘miss distance’ while
keeping the energy constant, and vice versa. It may be
useful to add an option to clear the screen if it
becomes too cluttered. You could alter line 130 to

130 CLS:PRINT ""** Use : and / keys NOW **"~ "%
Press 'C’ to clear screen **"’““"x* press SPACE
to start plot **"

and add the instruction

475 IF INKEY(-83) CLG:PROCnucleus

Simulations, Demonstrations and Tutorials 21

You would also need to set up a graphics window (using
VDU24) to prevent the CLG from clearing the whole
screen, including the text. You could put the VDU24
statement at 1line 55, but I will 1leave it as an
exercise for you to try this for yourself. Remember,
however, that the origin was shifted in the preceding
line (50) and that if you try to set up a window with
any of the corners outside the visible screen area, the
computer will set the window to the full size of the
screen. So be careful!

LONGITUDINAL WAVES ("LONGWAVE")

This program illustrates the motion of 1longitudinal
waves across the screen using the important technique
of ‘palette switching® to produce smooth animation.
The technique involves drawing several views of a
moving object or scene, using a different logical
colour for each view. A repeated redefinition of the
logical/actual colour relationships causes each view to
be revealed in turn, thus giving the impression of
continuous movement. Note that, although the program
itself is quite short it relies on the large number of
logical colours available in Mode 2 so it will not
operate on a 16K machine. The program is suitable for
use with ‘0’-level and CSE classes.

Listing "LONGWAVE"

10 REM "* LONGWAVE *

20 ON ERROR RUN

30 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off

40 PRINT “TAB(10);CHR$ (141);"LONGITUDINAL WAVES"

50 PRINT TAB(10);CHR$ (141);"LONGITUDINAL WAVES"

60 PRINT “"A longitudinal wave is a series of"

70 PRINT CHR$ 131;"compressions";CHRS$ 135;" and";
CHRS$ 131;"rarefactions";CHR$ 135;" moving"

80 PRINT "along. The particles of the medium do"

90 PRINT "NOT travel along. They just move TO and"

100 PRINT "FRO. Watch the movement of the coloured

line in the display which follows."

110 PRINT “"The compressions are regions where"

120 PRINT "the particles are ";CHR$ 131;"closer togeth
er";CHR$ 135;"than"

130 PRINT "normal. The rarefactions are where they

are";CHRS$ 131;"further apart";CHR$ 135;"than";

140 PRINT " normal."

150 PRINT “"Note that in a longitudinal wave the"

160 PRINT "direction of";CHR$ (130);" vibration";
CHRS (135);"is";CHR$ (130);" parallel";CHR$S (135);

"ot
170 PRINT "the direction of";CHR$ (130);"wave travel"
180 PRINT “’CHR$ (132);CHRS$ (157);CHRS (131);" PRESS

THE SPACE BAR TO CONTINUE"
190 REPEAT UNTIL GET$ =" "
200 MODE 2:VDU 23;8202;0;0;0; :REM "Cursor off
210 vpu 28,0,16,19,0
220 FOR col=1 TO 14
230 vbU 19,c01,0,0,0,0
240 NEXT col
250 vpu 19,15,2,0,0,0

22 A Science Teacher's Companion to the BBC Microcomputer

260 COLOUR 15

270 PRINT “"LONGITUDINAL WAVES"

280 PRINT “"Please wait 5 secs."

290 colour=1

300 FOR phase=0 TO 350 STEP 57

310 FOR X=0 TO 1279 STEP 128

320 IF X=640 THEN GCOL 0,colour+7 ELSE GCOL 0,colour
330 Y=128*SIN RAD (X/4+phase)

340 MOVE X+Y,400:DRAW X+Y,100

350 NEXT X

360 colour=colour+l

370 NEXT phase

380 col2=7:REM White

390 col3=1:REM Red

400 CLS

410 PRINT “"The compressions"

420 PRINT “"are moving across"

430 PRINT “"from right to left"

440 PRINT “"but the lines just"

450 PRINT “"move to and fro."

460 PRINT “"You will see this"

470 PRINT “"if you watch the"

480 PRINT “"RED line."
490 ON ERROR MODE 7:END
500 REPEAT

510 FOR col=1 TO 7

520 vbUu 19,col,c012,0,0,0
530 vDU 19,col+7,c0l13,0,0
540 PROCpause(.15)

550 vpu 19,co01,0,0,0,0
560 vbU 19,co0l1+7,0,0,0,0
570 NEXT col

580 UNTIL FALSE

590 DEF PROCpause(t)

600 T=TIME

610 REPEAT UNTIL TIME >=T+t*100
620 ENDPROC

/0

PROC/FN List
There is only one procedure used in this program:

590 PROCpause waits for the specified number of
seconds

Program Description

40-190 Print an introductory explanation.

210 Set up a text window

220-240 Change logical colours 1 to 14 to actual
colour 0 (black). Hence the drawing is not seen as it
is built up.

250 Logical colour 15 is set to ’‘green’. This
will be wused to print the text that accompanies the
graphics.

290-370 Draws seven sets of vertical bars across the
screen. Each set 1is drawn in a different logical
colour and the bars in each set are spaced according to
the SIN function (lines 330,340). The outer ’‘phase’
loop controls the number of sets and the phase
relationship between them. The inner ‘X’ loop controls
the horizontal position of the bars.

500-580 Main animation loop. The outer 1loop is a
REPEAT...UNTIL FALSE 1loop which repeats the inner
FOR...NEXT 1loop indefinitely. This inner loop

Simulations, Demonstrations and Tutorials 23

(510-570) takes the logical colours 1 to 7 in turn and
switches each to white, pauses, and then switches the
colour back to black. Each of the logical colours 8
to 14 is also switched “on” and then ‘off” again, but
the ‘on” colour 1is red. The switching sequence is
achieved using the VDUl9 statement and results in each
‘view’ being seen for a short time before being
replaced by the next one. The reason for switching
colours 8 to 14 to red is to produce a moving ‘marker’
that pupils can watch to observe the wave motion. This
marker was drawn by the action of 1line 320 which
selects logical colours 8 to 14 if the X variable has
the specified value, otherwise colours 1 to 7 are used.
Thus there are two groups of lines: one group 1in
logical colours 1 to 7 and a smaller group in colours 8
to 14. A different actual colour can thus be selected
for each group, so making the marker appear clearly as
a moving red bar among the white ones.

590-620 PROCpause is a short delay routine that will
be wused in many of the following programs. It first
sets the variable ‘T to the value of the computer’s
‘clock": the pseudo-variable TIME, which counts up in
centiseconds. The loop repeats until TIME has reached
the value T+t*100; that is, 100t centiseconds more than
the value it had when the procedure was called. Thus
the parameter ‘'t is the delay required, in seconds.

Modifications

You may like to experiment with the loops that draw the
waves (lines 300-370), though the range of values that
will give suitable results seems to be rather
restricted. Alternative colours can be used by
changing the 7 and 1 in lines 380 and 390 to the number
of the actual colour you require. The apparent speed
of the waves can be altered by changing the value of
the pause in line 540.

PROJECTILE MOTION ("GUN", "BOMBER", "GUNNER")

This section consists of a suite of three
programs,intended for CSE/’0’-level students, which
deal with various aspects of projectile motion. "GUN"
represents the horizontal projection of a shell from a
gun on top of a cliff. The user has to choose the mass
of ’‘gunpowder” to be wused in order to hit a target
placed at a random distance from the foot of the cliff.
The program displays the number of shots fired, the
hits scored and the accuracy rating. The second
program, "BOMBER", illustrates the motion of a bomb
dropped from an aircraft in horizontal flight. The

24 A Science Teacher’'s Companion to the BBC Microcomputer

plane s velocity and the target position are chosen at
random and the ’‘pilot” has five bombs with which to
score a hit. "GUNNER" is a program that brings in the
concept of angle of projection and its effect on the
range, in the form of a game in which two players fire
alternate shots at each other’s gun emplacements. The
randomly produced landscapes force students to think
carefully about the effects of muzzle velocity and
angle of firing on the horizontal range achieved.

Listing "GUN"

10 REM "*** GUN ***

20 ON ERROR MODE 7:END

25 ENVELOPE 1,131,-1,0,0,200,1,1,1,-1,0,-2,60,60
30 ENVELOPE 2,1,0,0,0,0,0,0,127,-1,-1,-1,126,100
40 MODE 5

50 vbu 28,0,6,19,0

60 H%$=710:HITS%=0:Shots$%=0

70 vbU 23,224,1,1,123,31,255,127,63,31,23,225,128,128

,192,192,255,254,252,248

80 vpU 23,226,0,0,96,255,88,24,124,255

90 REPEAT

100 hit%=FALSE

110 vpuU 19,1,1,0,0,0

120 GcoL 0,3

130 MOVE 0,H%:DRAW 100,H%:DRAW 100,64 :DRAW 1279,64
140 VDU 5

150 MOVE 32,H%+32:PRINT CHRS 226;

160 R%=RND (500)+500

170 MOVE R%,96

180 GcoL 0,1
190 PRINT CHRS 224;CHRS 225;

200 VDU 4
210 go=0
220 GcoL 0,3
230 REPEAT
240 CLs
250 PRINT "Shots ";Shots%;TAB(10)"Hits ";HITS%
260 IF Shots%<>0 THEN @%=&20105:PRINT TAB(2,2);"Accura
cy ";HITS%*100/Shots%;"%";:@%=10

265 VDU 23,1,1;0;0;0;:REM "Cursor on

270 REPEAT
280 PRINT TAB(0,4);SPC (38)

290 INPUT TAB(0,4)"How many kilogrammes of gunpowder",M
300 UNTIL M>=1 AND M<=24

305 vDU 23,1,0;0;0;0;:REM "Cursor off

310 Shots%=Shots%+1

320 PRINT TAB(6,0);Shots%;

330 SOUND 0,2,4,20

340 U=20*SQR (M)

350 sounD 1,1,255,83

360 FOR t=0 TO 11.5 STEP 0.5

370 SY$=4.9*t"2:Y%=H%+20-SY%

380 X%=FNX(Y%)

390 IF POINT(X%,Y%)=1 THEN PROChit

400 PLOT 69,X%,Y%

410 PROCpause(0.17)

420 NEXT t

430 go=go+l
440 UNTIL go=5 OR hit$

450 PROCpause(2)

460 CLG

470 UNTIL FALSE

475 END

480 DEF FNX(Yval$%)=U*SQR (2*(H%+20-Yval%)/9.8)+100
490 DEF PROChit

500 SOUND 0,2,6,50

510 hit%=TRUE

520 HITS%=HITS%+1

530
540
550
560
570
580
590
600
610
620
630
640

Simulations, Demonstrations and Tutorials

PRINT TAB(15,0);HITS%
FOR L%=1 TO 100

vbu 19,1,RND (3),0,0,0
PROCpause(0.02)

NEXT L%

vou 19,1,0,0,0,0
ENDPROC

DEF PROCpause(t)

LOCAL T

T=TIME

REPEAT UNTIL TIME >=T+t*100
ENDPROC

25

PROC/FN List

180 FNX calculates the shell’s X coordinate, from a
knowledge of its Y value.

490 PROChit produces an explosion effect, sets the
flag "hit% and increments and prints the number
of hits.

600 PROCpause

Program Description

20-80
25-30

60

70-80

90-470
100
130
150
160

170-190
230
260
270-300
310

330
340

350
360-420

Initialising section.

Set up sound envelopes. Envelope 1 1is the
‘whistling shell effect and envelope 2 helps
to produce an effective explosion.

Sets the height of the cliff (H%) and =zeros
the number of hits and shots.

Define user characters.

Main program loop.

Clears ‘target hit’ flag: hit%.

Draws cliff.

Prints gun on cliff top.

Chooses random range value, R%, between 501
and 1000 ’‘squares’.

Print the target.

Start of REPEAT...UNTIL loop. It ends at line
440 if five attempts have been made or if the
target has been hit.

Calculates and prints, to 1 decimal place, the
percentage accuracy of shooting so far.

Input mass of gunpowder (M) and verify that it
is in an acceptable range.

Increments number of shots fired.

Gunfire sound.

Calculates muzzle velocity. It 1is assumed
that the chemical energy of the powder is
fully converted to kinetic energy of the
shell. Hence the muzzle velocity (U) 1is
proportional to the square root of the mass of
powder (M).

Starts ‘whistling shell” sound.

FOR...NEXT loop which plots the shell’s
trajectory. The loop variable 't° is the time

26 A Science Teacher's Companion to the BBC Microcomputer

of flight in seconds and SY% 1is the height

fallen. X% and Y% are the shell’s X,Y
coordinates.
390 Checks 1if the target has been hit. The

function POINT(X%,Y%) reads the logical colour
at the point with screen coordinates (X%,Y%).
The target is printed in red (logical colour
1) so that, if the point where the bomb is
about to be plotted is ‘17, then we have a hit
and hence PROChit is called.

400 Plots the shell.

410 Short delay - helps to synchronise the flight
of shell and the accompanying sound effect.

430 Increments number of attempts.

460 Clears the graphics screen.

470 Repeats the main loop an infinite number of
times.

480-640 Procedure definitions:
PROChit generates the explosion sound (line
500), sets hit% to TRUE to record that a
hit has occurred and increments and prints
the number of hits. Lines 540-580 create
an explosion effect by looping the target
~colour through a series of random colour
changes before changing it to the
background colour.

Modifications

You may feel that relating the mass of ‘gunpowder’ to
the resulting range is too difficult for some pupils
(to double the range, for example, will require four

times as much powder). If so it is a simple matter to
change the INPUT statement (line 290) to allow the
muzzle velocity (U) to be entered directly. Line 340

can then be omitted but you will have to alter the test
in line 300 to suit the expected range of U values.

At present, if the student misses with all five
‘goes” the program simply repeats again with a new
target position. Try to add a 'GAME OVER’ feature if
five attempts have beer made and the target has not
been hit. (One approach - Extension 1 - is given below
but try the prcklem yourself before looking at my
suggestion.)

A more difficult change to implement is to randomise
the height of the cliff: it becomes very easy to hit
the target after a few attempts. The main probler is
that the test for a hit requires that cne of the shell
positions should be plotted just above ground level so
that it will lie within the target area. At the moment
the “t” loop is adjusted so that the last point plotted

Simulations, Demonstrations and Tutorials 27

fulfils this requirement, but changing the height
obvicusly alters the time of flight (Tof) and upsets
these arrangements. However the Tof can be calculated
from Tof = SQR(2H/g) where H is the height fallen and g
is the acceleration of free fall (9.8). Note also that
H<>H% since the shell starts slightly above the cliff
top and the ‘ground” level is at Y = 96, not Y = 0.

An additional small problem is that the flight is no
longer synchronised to the sound of the shell falling
so the pause at 1line 410 wculd need to be made
dependent on the Tof. As an exercise, and bearing the
above points in mind, try the following {one suggested
answer - extension 2 - is given below): for each run of
five ‘goes’, choose a new random height (H%) in the
approximate range of 600-700 screen units and make any
other necessary changes to restore correct operation.
(Hint: try reducing the step size in line 360 to, say,
0.2.)

Extension 1. Add the following:

445 IF NOT hit% THEN CLS:PRINT TAB(5,3)"GAME
OVER" : END

Extension 2. Delete “H%=710:° from line 60 and add

95 H%=RND(100)+600
345 Tof=SQR((H%-48)/4.9)

and change lines 360 and 410 to

360 FOR t=0 TO Tof STEP 0.2
410 PROCpause(Tof/240)

Listing "BOMBER"

10 REM "*** BOMBER ***

20 ON ERROR MODE 7:END

25 ENVELOPE 1,132,-1,0,0,200,1,1,6,-1,0,-3,125,125

30 ENVELOPE 2,1,0,0,0,0,0,0,127,-20,-1,-1,127,100

40 vpuU 23,224,0,0,1,255,7,127,127,63,23,225,0,0,224,2
40,240,255,255,254:REM " ** TANK **

50 vDU 23,226,224,112,63,31,15,0,0,0,23,227,0,7,255,2
55,255,0,0,0,23,228,0,224,254,255,254,0,0,0:
REM "** PLANE **

60 tank$=CHRS$ 224+CHRS 225

70 plane$=CHRS$ 226+CHRS 227+CHR$ 228

80 H%=736

90 MODE 5

100 vDbU 28,0,6,19,0

110 REPEAT

120 CLG

130 BOMB%=FALSE :hit%=FALSE :bombs=5

150 VDU 4:PRINT TAB(5,2);"BOMBS..." ;bombs

160 MOVE 0,64 :DRAW 1279,64

170 vbU 19,1,1,0,0,0

175 vbU 19,0,4,0,0,0

180 GCOL 0,1

190 R%=RND (500)+680

28 A Science Teacher's Companion to the BBC Microcomputer

200 VDU 5

210 MOVE R%,96:PRINT tank$

220 U=RND (40)+20

230 GCOL 4,3

240 REPEAT

250 TI=0

260 FOR t=0 TO 1280/U STEP .5

270 X%=U*t

280 VDU 5

290 MOVE X%,H%:PRINT plane$;

300 IF NOT BOMB% AND bombs>0 AND INKEY (-99) THEN
BOMB%=TRUE :TI=t:bombs=bombs-1:SOUND 1,1,255,15:
VDU 4:PRINT TAB(13,2);bombs:VDU 5

310 IF BOMB% THEN PROCplot_bomb(X%,ABS (t-TI))

320 PROCpause(0.02)

330 MOVE X$%,H%:PRINT plane$;

340 NEXT t

350 UNTIL hit% OR bombs<=0

360 UNTIL FALSE

370 DEF PROCplot_bomb(Xco%,time)

380 LOCAL Y%

390 Xco%=Xco%+96

400 Y$=H%-16-4.9*time"2

410 IF POINT(Xco%,Y%)=1 THEN PROChit:BOMB%=0:ENDPROC

420 PLOT 69,Xco%,Y%

430 IF Y%<=96 OR Xco%>=1280 THEN BOMB%=0

440 ENDPROC

450 DEF PROChit

460 SOUND 0,2,6,50

470 hit%=TRUE

480 FOR L%=1 TO 100

490 vbU 19,1,RND (3),0,0,0

500 PROCpause(.02)

510 NEXT L%

520 vpU 19,1,4,0,0,0

530 ENDPROC

540 DEF PROCpause(time)

550 LOCAL T

560 T=TIME

570 REPEAT UNTIL TIME >=T+time*100

580 ENDPROC

The prcgram illustrates one technique for creating
smooth movement of user-defined characters across the
screen: linking the text and graphics curscrs using
VDU5 and printing using the 1logical inverse method
(GCoL4) . With the cursors 1linked in this way the
characters can be printed anywhere on the screen
(wherever the graphics cursor is positioned), not just
in the normal lines and columns of the selected mode.

PROC/FN List
370 PROCplot_bomb plots a dot at the current
bomb coordinates.
450 PROChit, as previous program.
540 PROCpause.

Program Description
20-100 Initialising section.
60- 70 Creates strings from user characters defined
previously.
110-360 Main loop.
170 Resets target colcur (PROChit leaves it set
to background).

Simulations, Demonstrations and Tutorials 29

175 Makes background colour blue.

220 Chooses random plane speed.

240-350 REPEAT UNTIL target hit or all bombs used.

260-340 FOR..NEXT loop to move plane across screen
and check if bomb release (space bar) is

pressed.
290 Prints plane.
300 Checks:
(1) If no bomb is in flight - BOMB% is FALSE

(2) If there are any bombs left
(3) If the space bar is pressed - INKEY(-99).

If all three conditions are met then

(a) Set BOMB% to TRUE
Save the time at which bcmb was dropped
in the variable TI

(c) Subtract 1 from number of bombs
(d) start sound effect
(e) Print new number of bombs.

310 Checks BOMB% and if TRUE calls
PROCplot_bomb.
330 Erases plane (logical inverse plctting).

370-580 Procedure definitions:

PROCplot_bomb. Xco% is the bomb’s (and
the plane’s) X coordinate and ‘time is
the time elapsed since the bomb was
dropped. Line 410 checks for a hit in the
same way as in "GUN". Line 430 checks 1if
the bomb is below the target height or if
it has left the screen. The BOMB% flag is
cleared to enable a new bomb to be
dropped.

Modifications

Your exercise this time is to add a score facility to
the program. Use the variable SC% to keep the score
and award 500 points for a hit plus a bonus of 100
points for each unused bomb. As a penalty, subtract
500 points if the target is not hit when all the bombs
have been used. Do not forget that variables wusually
have to be assigned a value before they can be referred
to, so ’initialise” SC% to zero early in the program.
I have given my suggestions below but once again it
will be a good test of your understanding of the
program if you try it yourself first. You need not
worry 1if your solution differs from mine so long as it
works: there is more than one way to skin a computer!

30 A Science Teacher's Companion to the BBC Microcomputer

Suggested extension to "BOMBER"
Add the following lines:

85 SC%=0
155 PRINT TAB(5,4);"SCORE...";SC%
355 IF hit% SC%=SC%+500+bombs*100 ELSE SC%=SC%-500

Listing "GUNNER"

10 REM "*** GUNNER ***

20 ON ERROR MODE 7:END

30 VDU 23,224,224,240,248,252,254,254,254,254

40 vDU 23,225,7,15,31,63,127,127,127,127

50 ENVELOPE 1,132,-1,0,0,200,1,1,6,-1,0,-3,125,125
60 ENVELOPE 2,1,0,0,0,0,0,0,127,-20,-1,-1,127,100
70 IF RND >.5 THEN PL%=1 ELSE PL%=2

80 REPEAT

0;:REM "Cursor off
0
0,19,3,2,0,0,0

160 LX%=RND (120)+160:RX%=RND (120)+1030

170 LY$=RND (120)+48:RY%=RND (120)+48

180 PROCland(LX%,RX%)

190 REPEAT

200 COLOUR 2

210 IF PL%=1 THEN PRINT TAB(2,0);"LEFT "; ELSE
PRINT TAB(2,0);"RIGHT ";

220 PRINT "GUN TO FIRE"

225 VDU 23,1,1;0;0;0;:REM "Cursor on

230 INPUT “"Muzzle velocity:"U

240 INPUT "Angle:"ang

245 VDU 23,1,0;0;0;0;:REM "Cursor off

250 VX=U*COS RAD (ang):VY=U*SIN RAD (ang)

260 IF PL%=1 THEN VDU 29, (LX%+32);(LY%+32);:DI%=1
ELSE VDU 29, (RX%+32); (RY$+32);:DI%=-1

270 GCOL 0,2

280 MOVE 0,0

290 DRAW DI%*32*COS RAD (ang),32*SIN RAD (ang)

300 PRINT “"ANY KEY TO FIRE" :A=GET

310 CLS

320 souwnD 0,2,5,5

330 PROCplot

340 GCOL 0,0

350 MOVE 0,0

360 DRAW DI%*32*COS RAD (ang),32*SIN RAD (ang)

365 IF PL%=1 THEN PL%=2 ELSE PL%=1

370 UNTIL hit$

380 UNTIL FALSE

390 END

400 DEF PROCland(LGUNX%,RGUNX$%)

410 LOCAL X%,Y%

420 GCOL 0,3

430 MOVE 0,0

440 FOR X%=32 TO 1279 STEP 8

450 IF X%>(LGUNX%-50) AND X%<(LGUNX%+100) THEN Y$%=LY$%
ELSE IF X%>(RGUNX%-50) AND X%<(RGUNX%+100)
THEN Y%=RY$% ELSE Y%=RND (40)+20

460 IF X%>400 AND X%<900 THEN Y%=60+RND (30)+250*
SIN RAD ((X%-400)/2.7)

470 DRAW X%,Y%

480 PLOT 85,01dX%,0

490 MOVE X%,Y%

500 oldX%=X%

510 NEXT X%

520 GCOL 0,1

530 VDU 5:MOVE LGUNX%,LY%+32:VDU 224 :MOVE RGUNX%,RY%+3
2:VDU 225,4

Simulations, Demonstrations and Tutorials 31

540 ENDPROC

550 DEF PROCplot

560 LOCAL DONE$%

570 GCOL 0,2

580 t=0

590 REPEAT

600 SX=DI%*VX*t:SY=VY*t-4.9*t"2

610 IF POINT(SX,SY)=3 THEN DONE%=1:SOUND 0,-15,4,2

620 IF POINT(SX,SY)=1 THEN DONE%=1:PROChit

630 PLOT 70,SX,SY:PLOT 66,8,0:PLOT 66,-8,4:PLOT 66,-8,
-4:PLOT 66,8,-4

640 PROCpause(0.02)

650 PLOT 70,SX,SY:PLOT 66,8,0:PLOT 66,-8,4:PLOT 66,-8,
-4:PLOT 66,8,-4

660 t=t+0.2

670 UNTIL DONE% OR SY<-168

680 ENDPROC

690 DEF PROChit

700 SOUND 0,2,6,50

710 hitg=1

720 FOR L%=1 TO 100

730 MOVE SX,SY

740 GCOL O0,RND (3)

750 PLOT 65,50-RND (100),50-RND (100)

760 NEXT L%

770 PROCpause(2)

780 ENDPROC

790 DEF PROCpause(time)

800 LOCAL T

810 T=TIME

820 REPEAT UNTIL TIME >=T+time*100

830 ENDPROC

This program is definitely of the ’‘game’ variety (it is
fun to play!) but it also has a serious purpose: to
teach the effect of angle of projection on the
trajectory and horizontal range of a projectile.
Hopefully students will discover for themselves that 45
degrees gives maximum range, without the need for any
‘“trig’. They will also find that this is not always
the best angle to use (there is a ‘mountain’ in the
way) .

PROC/FN List

400 PROCland draws the landscape with gun
turrets at the points (LGUNX%,LY%) and
(RGUNX%,RY%).

550 PROCplot plots the shells trajectory and
checks for a hit on the ground or a gun
turret.

790 PROCpause.

Program Description
20- 70 Setting up characters, envelopes etc;

70 Randomly select which player will shoot
first.

80-380 Main loop.

130 Select colour 2 as red and colour 3 as

green.

32

A Science Teacher's Companion to the BBC Microcomputer

160-170

180
190-370
210-240

250

260

280
290
320
330
340-360
365

380
400-830

Choose random coordinates for left and right

gun positions (LX%,LY%) and (RX%,RY%)

respectively.

Draw the landscape.

REPEAT...UNTIL a hit is scored.

Indicate whose turn it is and input muzzle

velocity and angle.

Calculate horizontal (VX) and vertical (VY)

velocity components.

Check player number (PL%) and set graphics

origin to the point at the centre of the

‘“firing” gun. Also set direction indicator

(DI%) to indicate if firing to the right (+)

or to the left (-).

Move to centre of “firing’ gun.

Draw the gun barrel at the correct angle.

Gunshot sound.

Plot the shell’s path.

Erase the gun barrel.

Exchange player numbers (so that they fire

alternately).

End of main loop.

Procedure definitions
PROCland draws a green landscape across
the bottom of the screen using a loop
(lines 440-510). Line 450 checks if the X
coordinate 1atches that of one of the gun
turrets (LGUNX% or RGUNX%) and sets the
value to the Y coordinate of the turret,
otherwise a random value is chosen. Line
460 checks if we are in the central region
and draws a mountain using a SIN function
with a slight random element added in.

Lines 470-480 fill the landscape by using
PLOT85 to fill a triangle between the
current point, the point plotted at the
previous time round the 1loop, and the
point (0l1dX%,0) that has the previous X
coordinate value and a Y value of zero.
Line 500 saves the previcus X value in
‘oldxs . Lines 520-530 print the gun
turrets in the appropriate places.
PROCplot wuses a REPEAT...UNTIL 1loop to
update the shell ‘s position at successive
increments of time (t increases by 0.2
each time round the 1loop - 1line 660).
Line 600 calculates the X and Y
coordinates, reversing the X coordinate if
necessary, using the direction flag DI%
which was set -earlier. Line 610 checks
for a hit on the ground (colour 3) and

Simulations, Demonstrations and Tutorials 33

line 620 does the same for a hit on a gun
(colour 1), and yes you can shoot
yourself, so watch it! In either case the
flag variable DONE% is set and the 1loop
will therefore end when 1line 670 is
executed. The loop also ends if the Y
coordinate 1is less than -168. This takes
account of off-screen impacts. Line 630
plots the shell (a small cluster of
pixels) and, after a short pause, line 650
erases it again.

PROChit uses a different technique from
the previous programs to achieve its
explosion effect. This time we use PLOT65
(plot a dot relative to the current cursor
position) to produce a random series of
dots, in random colours (line 740),
clustered around the point of impact.
This gives an effective impression of
debris flying out from the exploding gun.

Modifications

You may prefer the shell to leave a trace of its path,
as 1in the previous programs, so that students can more
easily observe the effect of different angle/velocity
combinations. This is easily achieved by deleting the
PLOT70 lines (630 and 650) and using

630 PLOT69,SX,SY

I resisted the temptation to add a score facility to
the program as I felt that it might distract from the
“educational ~ purpose a little, but if you want to try
it I have shown one possible method below.

The score variables are S1% for player 1 (the left
gun) and S2% for player 2. You need to add the lines

75 S1%=0:52%=0

715 IF PL%=1 S1%=S1%+10 ELSE S2%=S2%+10

716 PRINT TAB(2,0)"LEFT GUN...";S1%;
TAB(2,2)"RIGHT GUN..";S2%

Note that no allowance is made for ’suicides’ - you can
score by blowing yourself up! Probably the simplest
way to prevent this is to disallow an angle of 90
degrees by adding a check on the angle value input in
line 240. Experiment to find the largest angle allowed
before self-destruct occurs and put a ‘REPEAT..UNTIL
ang < largest vaiue loop around the input line.

34 A Science Teacher's Companion to the BBC Microcomputer

THE VERNIER SCALE ("VERNIER2")

One of the problems encountered in teaching the use of
instruments such as the vernier caliper and the
micrometer is the difficulty posed by the small size of
the scale. This program is designed to overccme this
problem by giving a large enough representation of a
vernier scale that it should be easily seen even from
the back of the class. It is actually presented in a
self-teaching format in which an individual is first
given an explanation of how to read the scale and is
then shown five examples, with the correct answers
supplied. The final part of the program presents
further examples and the pupil has three attempts to
give the correct reading in each case. Should he fail
to give the correct answer after three attempts the
computer will supply it. After at least ten examples
have been attempted the pupil may finish and 1is given
his score. The program is for Model B or 32K Model A.

Listing "VERNIER2"

0 REM Mhkhkhhkhkhkhkkhkhkhkhkkkkkkk

1 REM "* VERNIER2 *
10 REM "* (c) P. Hawthorne *
11 REM "* 1983 *
12 REM MWhdkhkdkkdkhkhkhkkkkkkkkkk
20 MODE 7

25 VDU 23;8202;0;0;0; :REM "Cursor off
30 PRINT CHRS$ (141);TAB(1l);"The Vernier Scale"
40 PRINT CHR$ (141);TAB(1ll);"The Vernier Scale"
50 PRINT °“"When a reading is between two marks
on"
60 PRINT "a scale it can be given more accurately"
70 PRINT "if the instrument has a";CHR$ 130;"vernier
";CHRS 135;"scale."
80 PRINT “"A vernier scale for use with a mm scale"
90 PRINT "is 9 mm long and has 10 equal divisions"
100 PRINT "so each division is 9/10 or 0.9 mm."
110 PRINT ‘"To read the scale note where the";
CHRS$ 130;"zero"
120 PRINT "mark of the vernier scale is. It will"
130 PRINT "usually be between two of the divisions"
140 PRINT "on the mm scale.Take the";CHR$ 129;"lower";
CHR$ 135;"of these"
150 PRINT "and then find the mark on the vernier"
160 PRINT "scale which is";CHRS 129;"exactly";
CHR$ 135;"opposite (or is"
170 PRINT "nearest to) a mark on the mm scale. Add"
180 PRINT "this vernier reading to the mm reading"
190 PRINT "to obtain the final answer.The examples"”
200 PRINT "which follow will help make this clear."
210 PRINT °‘CHRS (132);CHR$ (157);CHR$ (131);" PRESS
SPACE BAR TO CONTINUE"
220 REPEAT UNTIL GETS$ =" "

230 MODE 4

240 FOR K%=1 TO 5
250 CLG

260 CLS

270 PROCcentre(2,"Reading a Vernier Scale")
280 value=RND (1)*20+.1

290 reading=INT (10*(value+.05))/10

300 A=10:B=42:C=512

310 VDU 29,0;-200; :REM graphics origin

320 PROCrectangle(A,350,1269,162)

330
340
350
360
370

380
390
400
410
420
430
440
450

460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700

720
730
740
750

760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910

920
930
940
950
960
970
980
990
1000
1010

Simulations, Demonstrations and Tutorials 35

PROCscale(B,C,0,30,"mm")
PROCvernier(A,C,B,428,128,value)

PRINT “"In the example below the zero end of"
PRINT "the vernier is between :-"

PRINT °TAB(16);INT (reading);" and ";INT (reading)
+1;" mm"

PRINT “"The ";FNI(reading);

IF FNI(reading)=1 THEN PRINT "st";

IF FNI(reading)=2 THEN PRINT "nd";

IF FNI(reading)=3 THEN PRINT "rd";

IF FNI(reading)>3 THEN PRINT "th";

PRINT " mark on the vernier is opposite"
PRINT "one of the marks on the mm scale."
PRINT “"Hence the reading is ";reading;:IF
FNI(reading)=0 THEN PRINT ".0";

PRINT " mm."

PRINT :PROCcentre(l4,"PRESS ANY KEY.")
AS$=GET$

NEXT K%

CLG :CLS

score=0:goes=0

VDU 24,0;128;1279;700;

vDU 28,0,9,39,3

REPEAT

goes=goes+1

CLG

value=RND (1)*20+.1

reading=INT (10*(value+.05))/10
PROCrectangle(A,350,1269,162)
PROCscale(B,C,0,30,"mm")
PROCvernier(A,C,B,428,128,value)

try=0

CLS

REPEAT

SOUND 1,-15,100,5

INPUT “"What is the reading shown (in mm)",input
try=try+1l

UNTIL ABS (input-reading)<=0.05 OR try=3

CLS

IF ABS (input-reading)<=0.05 THEN PRINT "CORRECT":
score=score+l ELSE PRINT "SORRY,THAT 'S NOT CORRECT
.""The correct reading was ";reading;" mm"

PRINT “"Press ‘E’ to end or any other key" "to
obtain next reading."

A$=GETS$

UNTIL AS="E"

CLS

IF goes<l0 THEN PRINT “"You must try at least
10 examples."”” ""Press any key to continue.":AS$=
GETS$:GOTO 540
MODE 7
IF score/goes*100 >70 THEN PRINT "Well done."

PRINT “"You scored ";score;" correct out of ";goes
END

DEF PROCrectangle(X,Y,length,height)

MOVE X,Y:PLOT 1,length,0

PLOT 1,0,height:PLOT 1,~length,0

PLOT 1,0,-height

ENDPROC

DEF PROCscale(X,Y,min,max,label$)

LOCAL len,K%

VDU 5

MOVE X,Y:PLOT 0,100,-64:PRINT label$

FOR K%=min TO max

IF K% MOD 10=0 THEN len=96 ELSE IF K% MOD 5=0
THEN len=64 ELSE len=32

MOVE X+K%*40,Y

DRAW X+K%*40,Y-len

IF len=96 THEN MOVE X+K%*40-292,Y-len:PRINT K%;
NEXT K%

VDU 4

ENDPROC

DEF PROCvernier(end,Y,scale,length,height,value)
LOCAL len,K%
VDU 5

36 A Science Teacher's Companion to the BBC Microcomputer

1020
1030
1040
1050
1060
1070
1080

1090
1100
1110
1120
1130
1140
1150
1160
1170

MOVE end+value*40,Y

DRAW end+value*40,Y+height

DRAW end+value*40+length,Y+height
DRAW end+value*40+length,Y

FOR K%$=0 TO 10

IF K% MOD 5=0 THEN len=64 ELSE len=32
IF len=64 THEN MOVE scale+value*40+K%*36-292,Y+hei
ght-32:PRINT K%;

MOVE scale+value*40+K%$*36,Y

DRAW scalet+value*40+K%$*36,Y+len

NEXT K%

VDU 4

ENDPROC

DEF FNI(R)=INT (l0*(R-INT (R))+.5)
DEF PROCcentre(Y%,M$)

PRINT TAB((40-LEN (M$)) DIV 2,Y%);M$;
ENDPROC

PROC/FN List

800
860
990
1140

1150

PROCrectangle draws a rectangle with its
bottom left corner at the point (X,Y).
PROCscale draws and labels a scale, starting
at the point (X,Y).

PROCvernier draws the vernier scale.

FNI(R) returns an integer that gives the
first significant figure after the decimal
point of ‘R”.

PROCcentre prints the supplied string on the
centre of the specified line.

Program Description

10-790
240-490
280
290
300

320-340
350-460

540-730

680

700

Main program section.

K% loop to give five examples.

Choose random value between 0.1 and 20.
Convert to nearest 0.1 mm.

A=left edge of rectangle; B=left edge of
scale; C=top of scale.

Draw the complete vernier scale.

Explain how the reading is obtained.
"INT(reading) ~ is the whole number part of
the answer and ’'FNI(reading) is the decimal
part.

Question setting loop which ends if the user
presses ‘E’ and has answered at least ten
questions.

Allows an error of up to +/-0.05 or up to
three tries.

Checks if input was correct and increments
score, otherwise gives correct answer.

800-1170 Procedure/function definitions:

PROCrectangle uses the PLOT1 (‘draw
relative’) statement.

PROCscale. Line 890 first moves to the
top left corner of the rectangle
previously drawn and then moves relative
to this point to print the scale label

Simulations, Demonstrations and Tutorials 37

('mm” in this case). The K% loop draws
the scale marks and numbers them every 10
mm. The length of the marks is given by
“len”, chosen in line 910.

PROCvernier combines the functions of the
preceding two procedures: lines 1020-1050
draw the outline of the vernier and lines
1060-1110 draw the scale and number it
every five divisions.

Modifications

To use the program in a class demonstration mode you
will find it convenient to bypass the instructional
section by adding

25 PRINT"Instructions? (Y/N)":IF GETS<>"Y"
THEN MODE 4:GOTO 230

Perhaps the pupil should be penalised for taking
several attempts to obtain the correct answer. A
suitable ‘marking scheme’ might be: 5 marks for correct
answer in 1 attempt, 3 for 2 attempts and 1 for 3
attempts. Can you add suitable extra program code tc
achieve this? Here is one approach:

in line 700 replace ‘score = score+l” by ’score =
score + 7 - 2 * try and change ‘goes’ in lines 770 and
780 to “(5 * goes) .

MASS SPECTROMETER ("MASPEC_3.3")

This is a complete tutorial program, for advanced level
students, on the theory and operation of the
‘Bainbridge’ type of mass spectrometer. Various
options are available to the student, including a
demonstration routine to explain the principles and
test modes to allow the user to gain familiarity with
the operation and to identify isotopes present in
unknown samples. There is a HELP procedure to show how
the results are calculated from the measurements. The
program requires a Model B machine.

Listing "MASPEC_3.3"

10 REM Nhkhkhkhhkkhkkhhkhkkkhkhkkhkkkkkk

20 REM "***** MASPEC 3.3 ***x%

30 REM "akk ok ok ok (C) 1583 * Kk Kk kK

40 REM "****x* p_ Hawthorne ****%

50 REM Whkhkhkhkhkkhkhkkhkkkhkkkhkkkhkkkkkk

60 MODE 7

70 VDU 23;8202;0;0;0;

80 PRINT TAB(10,12)CHR$ 141;"Mass Spectrometer"
90 PRINT TAB(10,13)CHRS 141;"Mass Spectrometer"

38 A Science Teacher's Companion to the BBC Microcomputer

100
110
115
120
130
140
150
160
170

180

190
200
210
220
230
240
250
260
265
270

280
290

300
310
320
330

340
350
360
370
380
385
390

400
410

420
430
440
450
460
470
480
490
500
505
510

520

530
540
550
560

570

580
590
600
610
620
630
635
640

650
660
670
680

PROCpause(5)

DIM peak$(17),S(17),C(17),m(3),abun(3),newlens(3)
PROCchars

REPEAT

MODE 7

VDU 23;8202;0;0;0;

opt%=FNmenu

IF opt%=1 THEN MODE 4:PROCdemo

IF opt%>1 AND opt%<5 THEN MODE 4:PROCinit:
PROCchoose_sample (CHR$ (opt%+95)):PROCtest

IF opt%=5 THEN MODE 4:PROCinit:S$=CHRS (RND (7)+96
) :PROCchoose_sample(S$) :PROCtest :PROCquestion

IF opt%$=6 THEN PROCtable

IF opt%=7 THEN MODE 4:PROChelp

UNTIL FALSE

END

DEF PROCdemo

CLS

PROCinit

GCOL 0,1:PROCdiagram

REPEAT

CLS :PRINT "Ions emerge from the ionsource with

a range of";

PRINT "velocities."’

PRINT "Between the plates theelectric field
exerts a";

PRINT "force, EQ, to the left.";

PROCarrow("L",138,636,20)

PROCpause(5) :CLS

PRINT "The magnetic force BQvacts to the right
and is";

PRINT "proportional to the ionsvelocity."

PROCarrow("R",170,636,20)

PROCpause(5)

review=FNcont_review

UNTIL NOT review

REPEAT

CLS :PRINT "If the ion’s velocity isjust right
the E and B";

PRINT "forces will be equal andopposite so the
ion will";

PRINT "pass undeflected throughthe velocity select

or."

PROCdraw_track(350,1)

PROCpause(15)

CLS :PRINT "Hence:"’

PRINT "Elec. force = Mag. force"’

PRINT " ";CHRS$ 226;" EQ = BQv so v = E/B"

PROCpause(15)

PROCdraw_track(350,0) :CLS

review=FNcont_review

UNTIL NOT review

REPEAT

CLS :PRINT "Ions which have smallervelocities
will have a";

PRINT "smaller magnetic forceand so will be
deflectedto the left."

VDU 24,124;540;216;716;:REM "GR WIN

PROCion(1l,lefts)

PROCpause(10)

CLG :CLS :PRINT "Ions which have largervelocitie

s will have a";

PRINT "larger magnetic forceand so will be
deflectedto the right."

PROCion(1l,right$)

PROCpause(10)

CLG

review=FNcont_review

UNTIL NOT review

VDU 24,0;0;1279;1023;:REM "RESET GR.WIND.

REPEAT

CLS :PRINT "In the analyser regiononly the magne

tic fieldacts and it deflects theions into a
semicircularpath."

PROCdraw_track(350,1)

PROCpause(15) :CLS

PRINT CHR$ 226;" Magnetic = Centrepetal”

PRINT TAB(4,1)"force";TAB(16,1);"force"”’

Simulations, Demonstrations and Tutorials

690 PRINT CHRS$ 226;" BQv = mv";CHRS$ 227;"/r"
700 PRINT “"And since v=E/B then:"
710 PRINT " m = B";CHR$ 227;"rQ/E";
720 PROCpause(15)
730 PROCdraw_track(350,0)
740 review=FNcont_review
750 UNTIL NOT review
755 REPEAT
760 CLS :PRINT "The diameter of the iontracks is
4.16m (ie thedistance from slit todetector).
Hence:"~
770 PRINT TAB(7);"r = 2.08m"
780 PRINT “"All ions have charge e";
790 PROCpause(10)
800 review=FNcont_review
810 UNTIL NOT review
820 ENDPROC
830 DEF PROCtest
840 GCOL 0,1:PROCdiagram
845 REPEAT
850 CLS :PRINT "Adjust B-field to givemaximum readin
g on thecurrent indicator."
860 PRINT “"Use : key to increase B" ""Use / key to
decrease B"
870 PRINT " C/F keys select range";
880 PROCpause(5)
890 review=FNcont_review
900 UNTIL NOT review
910 CLS :PRINT TAB(0,3);"Press SPACE at any time"’
"to return to OPTION page"
920 PROCpause(4)
930 CLS :PRINT TAB(2,0);"r=2.08m E=50,000V/m"
940 PRINT TAB(4,2);"Q=e m = B";CHRS$ 227;"rQ/E"
950 REPEAT
960 FOR I%=1 TO no_of_isotopes
970 radius%=FNr(B,m(I%))
980 PROCdraw_track(radiusg,l)
990 PROCmeter(radius%,abun(I%)/100,I%)
1000 NEXT I%
1010 PROCadjust_B
1020 UNTIL A=9
1030 ENDPROC
1040 DEF PROCinit
1050 VDU 23;8202;0;0;0;
1060 FOR I%=0 TO 17
1070 S(I%)=SIN (I%*PI /16):C(I%)=COS (I%*PI /16)
1080 NEXT I%
1090 RESTORE 1130
1100 FOR I%=0 TO 16
1110 READ peak%(I%)
1120 NEXT I%
1130 DATA 8,28,64,112,176,240,300,340,350,340,300,240,1
76,112,64,28,8
1140 oldlen%=0:coarse%=TRUE
1150 1left%=TRUE :right%=FALSE
1160 E=5E4:B=0.055:amu=1.66E-27:e=1.6E-19
1170 vbu 28,16,7,39,0:REM "* TEXT WIND.
1174 ENDPROC
1176 DEF PROCchars
1180 vbU 23,224,8,4,2,255,2,4,8,0:REM " R arrow
1190 vbpUu 23,225,16,32,64,255,64,32,16,0:REM "L arrow
1200 vpu 23,226,0,24,24,0,0,102,102,0:REM " “therefor
e
1210 vDU 23,227,96,144,32,64,240,0,0,0:REM " “squared’
1220 ENDPROC
1230 DEF PROCchoose_sample(sample$)
1240 LOCAL I%,dummys$
1250 RESTORE 1340
1260 REPEAT
1270 READ dummy$
1280 UNTIL dummyS$=sample$
1290 READ symbol$
1300 READ no_of_isotopes
1310 FOR I%=1 TO no_of_isotopes
1320 READ m(I%),abun(I%),A%
1330 NEXT I%
1339 REM "** SAMPLES **
1340 DATA "a","B",2,10.013,20,10,11.009,80,11

40

A Science Teacher's Companion to the BBC Microcomputer

1350
1360
1370
1380

1390

1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510

1520
1530
1540
1550
1560
1570
1580

1590
1600
1610
1620
1630
1640
1650

1660
1670
1680
1690
1700

1710
1720
1730
1740

1750
1760
1770
1780
1790

1800
1810

1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970

DATA "b","F",1,18.998,100,19
DATA '"c¢","C",2,12.000,98.89,12,13.003,1.11,13
DATA "e","He",2,3.016,.01,3,4.003,99.99,4
DATA "4","Ne",3,19.992,90.92,20,20.994,0.26,21,21.
991,8.82,22
DATA "f","Mg",3,23.985,78.6,24,24.986,10.11,25,25.
983,11.29,26
DATA "g","Al",1,26.982,100.0,27
ENDPROC
DEF PROCdraw_track(r%,cols)
GCOL 0,col%
MOVE 170,760:DRAW 170,508
PROCsemicircle(r%,col%)
ENDPROC
DEF PROCadjust_B
LOCAL radius%,I%
@%=5&2040A
PRINT TAB(7,6);"B=";B;"T";
IF coarse% THEN PRINT TAB(5,4);"<COARSE>";
ELSE PRINT TAB(5,4);"< FINE >";
PRINT TAB(14,4);"Range";
@%=10
*FX15,0
REPEAT
A=INSTR("*:?/CcFf ",GETS)
UNTIL A
IF (A=5 OR A=6) AND NOT coarse$% THEN coarse$%$=
TRUE :SOUND 1,-10,200,2 ELSE IF (A=7 OR A=8)
AND coarse% THEN coarse%=FALSE :SOUND 1,-10,200,2
IF coarse% THEN dB=.004 ELSE dB=.0001
IF A>4 THEN ENDPROC
FOR I%=1 TO no_of_isotopes
radius%=FNr(B,m(I%))
PROCsemicircle(radius$%,0)
NEXT I%
IF A=1 OR A=2 THEN B=B+dB ELSE IF A=3 OR A=4
THEN B=B-dB
ENDPROC
DEF PROCdiagram
vDU 29,-40;0;
MOVE 160,512:DRAW 190,512
MOVE 230,512:DRAW 1000,512:DRAW 1000,600:DRAW 1080
,600:DRAW 1080,512:DRAW 1120,512:REM "** TOP
LINE
MOVE 1000,512:DRAW 1028,512:MOVE 1054,512:
DRAW 1080,512:REM "** DET. SLIT
MOVE 160,540 :DRAW 160,700:MOVE 160,620:DRAW 60,620
:REM "** L/H PLATE
MOVE 260,540:DRAW 260,700:MOVE 260,620:DRAW 360,62
0:REM "** R/H PLATE
MOVE 140,720:DRAW 190,720:MOVE 230,720:DRAW 300,72
0:REM "** UPPER SLIT
REM "** BRACKETS
MOVE 360,720:DRAW 380,700:DRAW 380,660
MOVE 360,516 :DRAW 380,536 :DRAW 380,580
REM "** ION SOURCE
MOVE 200,760:DRAW 140,760:DRAW 140,940:DRAW 280,94
0:DRAW 280,760:DRAW 220,760
REM "** INDICATOR
MOVE 1010,580:DRAW 1070,580:MOVE 1040,580:
DRAW 1040,690:DRAW 960,690 :DRAW 960,720:DRAW 600,7
20
DRAW 600,660:DRAW 960,660 :DRAW 960,690
REM "** DRAW SEMICIRCLE
VDU 29,600;512;
R%=480 .
MOVE R%,0
FOR ang%=0 TO 16
DRAW R%$*C(ang%),-R%$*S(ang$%)
NEXT ang$
VDU 29,0;0;
PROClabels
ENDPROC
DEF PROClabels
LOCAL name$,X%,Y$
vDU 5
RESTORE 2000
READ name$,X%,Y%

1980
1990
2000

2010
2020

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170

2180
2190
2200
2210
2220

2230
2240
2250
2260
2270
2280
2290
2300
2310
2320

2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690

Simulations, Demonstrations and Tutorials 41

MOVE X%,Y%:PRINT name$

IF name$="source" THEN VDU 4:ENDPROC ELSE 1970
DATA "-",55,650,"+",270,650,Magnetic,1000,180,fiel
d4,1000,148, (into screen),872,116

DATA Analyser,60,120,region ->,60,88

DATA Velocity,340,640,selector,340,608,Indicator,6
40,640,"0",544,754,"50",708,754,"100",872,754,Dete
ctor,1020,640,I0n,270,910,source, 270,878

DEF PROCsemicircle(radius,colour)

LOCAL XC%,YC%,ang%

GCOL 0,colour

XC%=170+radius:YC%=508

VDU 29,XC%;YC%;

MOVE =~-radius,0

FOR ang%=0 TO 16

DRAW -radius*C(ang%),-radius*S(ang%)

NEXT ang$

IF radius>411 AND radius<421 THEN PLOT 1,0,68
VDU 29,0;0;:REM "** Reset origin

ENDPROC

DEF PROCmeter(value,scale,J%)

LOCAL K%,step,newleng

IF (value-412)*2<0 OR (value-412)*2>16 THEN newlen
$(J%)=0 ELSE newlen%(J%)=scale*peak$((value-412)*2)
IF J%<no_of_isotopes THEN ENDPROC

FOR K%=1 TO no_of_isotopes
newlen%=newleng+newlent (K%)

NEXT K%

IF newlen%<oldlen% THEN step=-4:GCOL 0,0 ELSE
step=4:GCOL 0,3

FOR K%=oldlen% TO newlen% STEP step

MOVE 564+K%,664:DRAW 564+K%,716

NEXT K$%

oldlen%=newlen%

ENDPROC

DEF FNr(B,m)=200*m*amu*E/(B"2*e)

DEF PROCarrow(direction$,X%,Y%,no_flashes%)
LOCAL arrow$

GCOL 4,1

IF direction$="R" THEN arrow$=CHR$ 224 ELSE arrow$
=CHRS$ 225

VDU 5

FOR J%=1 TO 2*no_flashes$%

MOVE X%,Y%:PRINT arrows$;

PROCpause(.4)

NEXT J%

VDU 4

GCOL 0,1

ENDPROC

DEF PROCpause(secs)

LOCAL time

time=TIME

REPEAT UNTIL TIME >=time+secs*100

SOUND 1,-10,150,1

ENDPROC

DEF FNgetkey(key$)

LOCAL pos

REPEAT :pos=INSTR(key$,GETS)

UNTIL pos

=pos

DEF FNcont_review

CLS :LOCAL key

PRINT TAB(5,3);"C TO CONTINUE"

PRINT TAB(5,5);"R TO REVIEW"

*FX15,0

key=FNgetkey ("CcRr")

IF key=3 OR key=4 THEN =TRUE ELSE =FALSE

DEF PROCion(col%,left%)

LOCAL Y%,A

GCOL 0,col%

VDU 29,170;720;

IF left% THEN A=-0.002 ELSE A=0.002

MOVE 0,0

FOR Y$%$=0 TO -150 STEP -4

DRAW A*Y%"2,Y%

NEXT Y%

VDU 29,0;0;

ENDPROC

42

A Science Teacher's Companion to the BBC Microcomputer

2700
2710
2720
2730
2740

2750
2760
2770
2780
2790
2800

2810
2820

2830
2840
2850
2860
2870
2880
2890
2900
2910
2920

2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120

3130

3140
3150
3160

3170
3180
3190

3200
3210
3220
3230

3240
3250

3260
3270
3280
3290

3300
3310

DEF FNmenu

CLS :PRINT

VDU 141,131,157,132:PRINT TAB(12);"Options"

vDU 141,131,157,132:PRINT TAB(12);"Options"

PRINT “'TAB(3);"How the mass spectrometer works..(
1)

PRINT °'TAB(3);"Test a sample of BOron...........(2

PRINT ’'TAB(3);"Test a sample of Fluorine........(3

PRINT ‘TAB(3);"Test a sample of Carbon.......... (4
)
PRINT ’“TAB(3);"Identify an unknown sample.......(5
e
PRINT ‘TAB(3);"See a table of atomic masses.....(6

PRINT °“TAB(3);"How to calculate the atomic mass.(7
yn e

FOR J%=1 TO 2

VDU 136,141,131,157,132:PRINT TAB(4);"Please enter
your choice"

NEXT J%

*FX15,0

REPEAT

A%=GET -48

UNTIL A%>0 AND A%<8

=A%

DEF PROCtable

CLS

FOR J%=1 TO 2

VDU 141,135,157,129:PRINT "SYMBOL";TAB(8);"MASS
No";TAB(18);"ATOMIC MASS,u"

NEXT J%

PRINT ~

RESTORE 1340

REPEAT

READ dummy$,sym$,no_of_isotopes

FOR I%=1 TO no_of_isotopes

READ am$,abund%,A%

PRINT TAB(6);sym$;TAB(14);A%;TAB(25);am$

NEXT I%

UNTIL dummy$="

PRINT ‘TAB(12);"(lu=1.66x10-27kg)"

PRINT ““:VDU 136,131,157,132

PRINT TAB(4);"Press any key to continue"

A%=GET

ENDPROC

DEF PROCquestion

LOCAL I%,try%,ans,num$

CLS :CLG :VDU 26

REPEAT

INPUT ~“"How many isotopes were present in the

sample",num$

IF num$<>no_of_ isotopes THEN PROCwrong ELSE
PROCright

UNTIL right

PROCpause(3) :CLS

IF no_of_ isotopes>l THEN PRINT ~“"Taking the isoto
pes in ascending order of mass:"

FOR I%=1 TO no_of_isotopes

PRINT ““"What is the mass (in u) of ";

IF no_of_isotopes=1 THEN PRINT "the isotope."

ELSE PRINT "isotope ";I%

try%=0

REPEAT

INPUT ans

IF ABS (ans-m(I%))>0.04 THEN PROCwrong ELSE
PROCright

try$=try%$+l

IF try$>=4 AND NOT right THEN PROChelp:CLS :
PRINT °““"Please re-input the mass of the isotope."
UNTIL right

PROCpause(3) :CLS

NEXT I%

PRINT ““"Now try to identify the isotope/s using
the table of atomic masses in Option (6)"

PROCpause(5)

ENDPROC

Simulations, Demonstrations and Tutorials 43

3320 DEF PROCwrong

3330 right=FALSE

3340 PRINT ““"No, that’s not correct."
3350 PRINT “"Please try again."

3360 ENDPROC

3370 DEF PROCright

3380 right=TRUE

3390 PRINT ’““"Yes, that’s correct."
3400 ENDPROC

3410 DEF PROChelp

3420 CLS :try3=0

3430 PRINT “~“"You have to use the following formula

tocalculate the mass, m :

3440 PRINT “~'TAB(16);"m=B";CHRS 227;"rQ/E"

3450 PRINT “" where:" ""r=2.08m" " ""Q=e=1.6x10-19C" "~
"E=50,000V/m"

3460 PRINT ““"NB The value calculated for m will be

inkg. To convert to atomic mass units (u)divide
m by 1.66x10-27."

3470 PRINT ~°°" Press ANY key to continue"
3480 any%=GET
3490 ENDPROC

PROC/FN List

230

830

1040

1230

1420

1470

1670

1930

2030

2150

2280

2290

PROCdemo produces an anirated diagram and
explanatory text to convey the basic
operating principles of the spectrometer.
PROCtest simulates the testing of a sample
chosen from a 1list contained in DATA
statements (1340-1400).

PROCinit sets up variables and user-defined
characters.

PROCchoose_sample reads in data for a chosen
sample. The required sample is specified by
an identification letter ("a", "b", etc.)
passed in the parameter ’‘sample$’ .
PROCdraw_track draws an 1ion track with
specified radius and colour. Uses
PROCsemicircle.

PROCadjust_B checks control keys and changes
ranges or the value of ‘B’ as appropriate.
If 'B° is changed the tracks are erased and
redrawn with the new radius.

PROCdiagram draws a labelled diagram showing
the construction of the spectrometer.
PROClabels prints labels read from DATA in
lines 2000-2020. The numbers are X, Y
graphics coordinates.

PROCsemicircle draws a semicircular track
and extends it into the detector if the beam
falls on the detector slit.

PROCmeter simulates an analogue galvo to
give a reading proportional to abundance.
FNr calculates beam radius for the specified
magnetic field and mass values.

PROCarrow flashes a left or right arrow for
the specified number of times.

44

A Science Teacher’'s Companion to the BBC Microcomputer

2410 PROCpause is the usual delay with an

added

2470

2520

2590

2700

2890

3080

3320

3370

3410

‘beep” as the delay expires.

FNgetkey, see earlier programs.
FNcont_review allows student to continue to
the next section or to review the preceding
one.

PROCion draws the ion paths within the
velocity selector.

FNmenu prints a list of options and obtains
the student’s choice.

PROCtable 1lists atomic symbols, masses and
mass numbers.

PROCquestion tests the student ‘s
understanding of the calculations.

PROCwrong prints a response to a wrong
answer.

PROCright prints a response to a correct
answer.

PROChelp reviews the theory and shows how to
calculate the atomic mass.

Program Description

120-210

230-3490

Main loop which obtains a choice of option
number (1 to 7) from the menu and calls the
appropriate procedures.
Procedure/function definitions:
PROCdemo. Most of this is
self-explanatory. Some of the less
obvious points are
In line 460 the 'CHR$226 prints a
mathematical “therefore” symbol.
Line 530 sets a graphics window 1in the
velocity selector region. Hence the ion
tracks can be erased using 'CLG"~ without
clearing the entire diagram.
The 'CHRS$227° in lines 690,710 is a

superscript 27, used to represent
“squared .
PROCtest. The main part is a

REEEAT...UNTIL loop which ends when the
space bar is pressed (A = 9). Within this
loop, a FOR..NEXT 1loop calculates the
radius, draws the track and wupdates the
meter reading for each isotope.

PROCinit. The only unusual part of this
procedure is the setting up of a “look-up’
table for the SIN and COS values. These
are placed in the arrays S() and C() where
they can be later accessed much more
quickly than by recalling the SIN/COS

Simulations, Demonstrations and Tutorials 45

functions each time. Hence the speed of
circle drawing is increased. The other
main variables are

‘E° - the electric field strength, in
v/m.

‘B” - the magnetic field strength, in T.

‘amu’” - the value of the atomic mass

unit, in kg.

‘e’ - the charge on the electron, in C.
PROCchoose_sample is self explanatory. If
you want to add extra data the format for
the DATA statement is identification
letter, chemical symbol, number of
isotopes, mass of first isotope, relative
abundance, mass number, mass of second
isotope, etc. (In line 3020 you will have
to change the "g" to the identification
letter of your last sample.)

PROCadjust_B waits for one of the control
keys to be pressed (1550-1570) and then
takes suitable action. Line 1580 inverts
the logical value of the Boolean variable
‘coarse%” 1if the currently selected range
is compatible with the key pressed. (If
‘coarse%’ is TRUE the <COARSE> range is
selected, otherwise the <FINE> range is
chosen.) The variable “dB” in line 1590
is the change in "B’ that will occur each
time it 1is adjusted. The value assigned
depends on the range selected. Lines
1610-1650 erase the o0ld tracks (plot in
colour 0) before adjusting the ‘B~ value.
Hence the tracks will be redrawn with
their new radii when control returns to
PROCtest.

PROCdiagram is simply a series of
MOVE/DRAW statements which are REM'd so
that you <can alter the diagram if you
wish.

PROCsemicircle calculates the coordinates
of the centre of the track and moves the
graphics origin to this point (lines
2060,2070). The semicircle is drawn by
lines 2080-2110 using the SIN/COS 1look-up
tables and 1line 2120 extends the end of
the track if it falls on the detector
‘slit”.

PROCmeter produces, on a ‘bar-graph’ meter
display, a reading that depends on the
abundance of the isotope (that is the
parameter ‘scale’) and how close the beam

46 A Science Teacher's Companion to the BBC Microcomputer

is to the centre of the slit - a radius of
416 will fall exactly on the centre. The
response characteristics of the meter are
stored in the array ’‘peak$%()’ . Line 2170
checks if the value supplied is within the
allowed range (412-420) and assigns an
appropriate value to ‘newlen%()” for this
isotope. When the new readings for all
the isotopes have been obtained the total
scale 1length ‘newlen% will be calculated
(lines 2190-2210). If the new 1length is
less than the o0ld 1length we will move
backwards from the old length to the new
length (negative STEP), drawing across the
scale c¢f the meter in colour 0, so the
reading 1is erased back to ‘newlentg ”.
Otherwise we move forward and draw in
colour 3 to extend the reading up to
‘newlen$” - see lines 2220-2250.
FNcont_review calls ’‘FNgetkey and returns
a FALSE value if 'C” or ‘¢’ is pressed and
a TRUE value if 'R’ or 'r’ is pressed.
PROCion moves the graphics origin to the
ion source exit slit (line 2620) and draws
a parabolic track curving to the 1left if
the Boolean variable ’left%” 1is TRUE,
otherwise the path is drawn to the right
(line 2630.)

FNmenu returns a numeric value in the
range 1 to 7, obtained in lines 2850-2870.
GET returns the ASCII value of the key
pressed and since ASC("1") = 49 then
GET-48 returns the value 1 if the "1~ key
is pressed, 2 when the 27 key is pressed
and so on.

PROCquestion is fairly self-explanatory.
It allows an error of up to 0.02 in the
student “s value for the atomic mass and
if, after three tries the answer is still
not correct, the "help” routine is called

(line 3250.) This process continues until
the correct answer is given
(REPEAT...UNTIL right - see lines
3210-3260).

Modifications

You will probably want to add data for extra samples.
This can be done by following the DATA format given
above but note that at present all samples consist of
isotopes of one element only. This could be extended

Simulations, Demonstrations and Tutorials 47

by giving, in the DATA statements, the symbol for each
isotope present but you will have to alter the READ
statements in PROCchoose_sample and PROCtable to suit
the new format. It should also be easy to extend
PROCtest to ask further questions about the operation
of the spectrometer. The variable ‘right’ is set to
TRUE by calling PROCright, or FALSE by calling
PROCwrong. This variable can thus be tested in an
UNTIL statement and the question loop repeated until
the answer is ‘right’.

INVESTIGATING THE SOUND COMMANDS ("SOUND_EDIT")

"SOUND_EDIT" 1is a simple menu-driven sound editor
designed to enable you to explore the “SOUND and
"ENVELOPE "~ commands. The wuse of sound within the
framework of educational programs is still largely
unexplored. A later program ("H_SPECT") attempts to
introduce sound in an imaginative way in an effort to
reinforce the impact of the visuals. For details of
the 'SOUND” and 'ENVELOPE commands see the User Guide,
page 180 to 187.

Listing "SOUND_EDIT"

10 REM "***xkkkhkkkkhkhkhkkhhkkk

20 REM "**x* SOUND_EDIT ***
30 REM Wk k Kk - * k%
40 REM "*** VERSION 1.1 ***
50 REM Nhkkhkhkkhkkhkkhkhkhkhhkhkkkk
60 MODE 7
70 VDU 23;8202;0;0;0;:REM "* CUR. OFF
80 CLS
90 PROCinit
100 REPEAT
110 PROCselect
120 UNTIL FALSE
130 END
140 DEF PROCmenu
150 PRINT “CHRS (141);TAB(14)"SOUND EDITOR"
160 PRINT CHR$ (141);TAB(14)"SOUND EDITOR"
170 PRINT °CHR$ (132);CHR$ (157);CHRS (131);TAB(16);
"Options"”
180 PRINT "L - Listen to the current sound"
190 PRINT "S - Change the SOUND statement"
200 PRINT "T - Change ENVELOPE step value"
210 PRINT "P - Change ENVELOPE pitch parameters"
220 PRINT "A - Change ENVELOPE amplitude parameters"
230 PRINT ‘CHR$ (132);CHR$ (157);CHR$ (131);CHRS (136)
;TAB(13);"Please Select"

240 PRINT ~“"SOUND ";C;",";A;",";P;",";D

250 PRINT “"ENV.";N;",";T;",";P(0);",";P(1);",";P(2);
WLMaB(3);", "D (4) 3", iP(5);", "sA(0):", "A(L):", "A(2
);","A(3);","A(4);","A(5)

260 ENDPROC

270 DEF PROCselect

280 CLS

290 PROCmenu

300 REPEAT

310 opt=INSTR("LSTPA",GETS$)

48 A Science Teacher's Companion to the BBC Microcomputer

320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

490
500
510
520
530
540
550
560
570
580
590

600
610
620
630

640
650
660
670
680

690
695
700
710
720
730
740
750

760
770
780
790
800
810

820
830

840
850
860
870
880

890
900
910
920

930
940
950
960
970
980

UNTIL opt<>0

CLS

IF opt=1 THEN PROCplay

IF opt=2 THEN PROCsound

IF opt=3 THEN PROCT

IF opt=4 THEN PROCpitch

IF opt=5 THEN PROCamp

ENDPROC

DEF PROCinit

DIM P(5),A(5),P$(5),A$(5)

C=1:A=1:P=53:D=20

N=1:T=1

FOR I=0 TO 5:READ P(I),P$(I):NEXT I

FOR I=0 TO 5:READ A(I),AS$(I):NEXT I

DATA O,PIl1,0,PI2,0,PI3,0,PN1,0,PN2,0,PN3

DATA 127,AA ,-40,AD ,0,AS ,-2,AR ,127,ALA,80,ALD
ENVELOPE N,T,P(0),P(1),P(2),P(3),P(4),P(5),A(0),A(
1),a(2),A(3),A(4),A(5)

ENDPROC

DEF PROCplay

SOUND C,A,P,D

ENDPROC

DEF PROCT

PRINT " “"The current value of T is ";T

PRINT ““"Enter new T value (range 0 TO 255)"

REPEAT

INPUT T

UNTIL T>=0 AND T<256

ENVELOPE N,T,P(0),P(1),P(2),P(3),P(4),P(5),A(0),A(
1),A(2),A(3),A(4),A(5)

CLS

ENDPROC

DEF PROCpitch

PRINT “CHRS$ 132;CHRS$ 157;CHRS 131;TAB(12);"Pitch
Parameters" "’

FOR K=0 TO 5

PRINT TAB(10);"(";K+1;") to change ";P$(K);"=";P(K)

NEXT K

PRINT TAB(10);"(7) for Options page"

PRINT ““TAB(6);"Press"CHR$ 129"L"CHRS$ 135"to liste
n to sound."

PRINT TAB(8,20);CHRS (136);"Please select a number"
REPEAT

REPEAT
I=INSTR("1234567L",GETS)
UNTIL I<>0

IF I=8 THEN PROCplay

IF I>6 THEN 840

PRINT TAB(0,I+3);CHRS 129;CHRS 157;CHRS$ 135;:
REM "** HIGHLIGHT CHOICE **

PRINT TAB(8,20);SPC (39)

PRINT TAB(9,16);CHRS$ 136;"Enter new ";PS$(I-1);
INPUT " value: "P(I-1)

PRINT TAB(O0,I+3);" "

PRINT TAB(0,16);SPC (39)

PRINT ‘TAB(8,20);CHR$ (136);"Please select a numbe
"

PRINT TAB(28,I+3);P(I-1);" "

ENVELOPE N,T,P(0),P(1),P(2),P(3),P(4),P(5),A(0),A(
1),A(2),A(3),A(4),A(5)

UNTIL I=7

ENDPROC

DEF PROCsound

PRINT ’IISOUND “;C;",";A;",";P;",";D;

PRINT ““"Enter";CHR$ (129);"pitch";CHRS (135);
"value (0 to 255)"

REPEAT

INPUT P

UNTIL P>=0 AND P<256

PRINT “"Enter"CHRS$ (129);"duration";CHRS (135);
"value (0 to 254)"

REPEAT

INPUT D

UNTIL D>=0 AND D<255

CLS

ENDPROC

DEF PROCamp

Simulations, Demonstrations and Tutorials 49

990 PRINT °‘CHRS 132;CHRS 157;CHRS 131;TAB(9);"Amplitud
e Parameters"”’
1000 FOR K=0 TO 5

1010 PRINT TAB(10);"(";K+1;") to change ";A$(K);"=";A(K)
1020 NEXT K
1030 PRINT TAB(10);"(7) for Options page"

1040 PRINT ““TAB(6);"Press"CHRS 129"L"CHRS$ 135"to liste
n to sound."

1050 PRINT TAB(8,20);CHRS (136);"Please select a number"

1055 REPEAT

1060 REPEAT

1070 I=INSTR("1234567L",GETS)

1080 UNTIL I<>0

1090 IF I=8 THEN PROCplay

1100 IF I>6 THEN 1200

1110 PRINT TAB(O0,I+3);CHRS 129;CHRS 157;CHRS 135;:
REM "** HIGHLIGHT CHOICE **

1120 PRINT TAB(8,20);SPC (39)

1130 PRINT TAB(9,16);CHRS 136;"Enter new ";AS(I-1);

1140 INPUT " value: "A(I-1)

1150 PRINT TAB(0,I+3);" "

1160 PRINT TAB(0,16);SPC (39)

1170 PRINT TAB(8,20);CHRS (136);"Please select a number"

1180 PRINT TAB(28,I+3);A(I-1);" "

1190 ENVELOPE N,T,P(0),P(1),P(2),P(3),P(4),P(5),A(0),A(
1),A(2),A(3),A(4),A(5)

1200 UNTIL I=7

1210 ENDPROC

PROC/FN List

140 PROCmenu prints the menu screen with the
current SOUND and ENVELOPE commands.

270 PROCselect obtains the option (“opt ")
selected from the menu and calls the
appropriate procedure.

400 PROCinit sets up variables and arrays
containing the various parameter values.

500 PROCplay executes the current "SOUND ~
command .

530 PROCT allows the value of the T parameter
to be defined.

620 PROCpitch allows new values for the ENVELOPE
pitch parameters to be entered.

860 PROCsound inputs new SOUND command pitch and
duration values.

880 PROCamp inputs new values for ENVELOPE
amplitude parameters.

Program Description

The program is quite straightforward, the main loop
(100-120) repeatedly calling PROCselect which then
calls other procedures as necessary. The arrays P()
and A() are used to store the current envelope pitch
and amplitude parameters, respectively. The initial
‘default” values are given in the two DATA statements
(460-470) and these are easily altered if desired. The
parameter names are in accord with those used in the
User Guide and are also stored in these DATA

50 A Science Teacher’'s Companion to the BBC Microcomputer

statements. They are read into arrays P$() and AS$().
The SOUND channel (C), amplitude (A), pitch (P) and
duration (D) have values assigned in line 420.

REACTION TIMING ("REACTION")

Apart from being a wuseful program which allows the

investigation of the subject’s reaction time and 1its
possible dependence on the type of stimulus used,
"REACTION" illustrates the use of the user port and the
storage of experimental data as files on tape or disk.
To protect the keyboard from over-enthusiastic subjects
who can be inclined to give it a bashing, the program
uses a separate push-button switch connected to the
‘B7° line of the wuser port - see chapter 3 for
connection details. The stimulus to which the subject
must respond can either be an LED or a sound or both.
The LED - light-emitting diode - is driven by the user
port via a simple buffer circuit, details of which are
also given in chapter 3. The VDU is wused to provide
the operator with essential information while the
program is running. The type of stimulus used and the
numpber of tests for each subject may be selected. All
the results are stored in the memory (room has been
reserved for 500 but this could be expanded) and at the
end of a session all results can be saved onto
tape/disk for later analysis. In addition they may be
loaded 1in again at a later time and the session
continued from where it was left off. The results may
also be obtained in tabular form on the screen or a
printer.

Listing "REACTION"

10 REM "hkkkkkhhkhkhkhkhhknkkkn
20 REM "**x REACTION Kk

30 REM "*%% * % %k
40 REM "**x* (c) *kk
50 REM "*** P, Hawthorne ***
60 REM "ok ok ok * %k %k
70 REM "*** 1983 bkl
80 REM Nhhhkhkhkhhhkhkhkhhhhkhhhkkkk
90 MODE 7

100 ?&FE62=127:?&FE60=0

110 on%=TRUE :0ff%$=FALSE

120 DIM subject%(500),time%(500)

130 ‘DIM stimg 500

140 FOR I%=0 TO 500

150 ?(stim%+I%)=0

160 NEXT

170 VDU 23;8202;0;0;0;

180 PRINT TAB(6,12);"Input data from tape (Y/N)?2"

190 choice%=FNgetkey("YyNn")

200 IF choice%=3 OR choice%=4 THEN subj_num$=l:test_nu
m$=0:tests_this_subj%=1 ELSE PROCget_data

210 PROCscreen

220 REPEAT

230 *FX15,1

240 PROCprint

250 comm%$=FNgetkey("123459")

350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

540

550
560

570
580
590
600
610
620
630

640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840

850
860
870
880
890

Simulations, Demonstrations and Tutorials

IF comm$<4 THEN column%$=0:row%$=2*comm%+1 ELSE
column%=20:row%=2*commg-5
PRINT TAB(column$,row$%);CHRS 134;

IF comm$=1 THEN light%=on%:sound%=off%:time%(test_

num$) =FNtime(light%,sound%) :PROCinc

IF comm$=2 THEN light%=off%:sound%$=on%:times(test_

numg)=FNtime(light$%,sound$%) :PROCinc

IF comm$=3 THEN light%=on%:sound%=on%:time%(test_n
um%)=FNtime(light%,sound%):PROCinc

IF comm$=4 THEN PROCrand

IF comm$=5 THEN subj_num$%=subj_num$+l:tests_this_s
ubj¥=1

IF comm$>0 AND comm$<4 THEN subject%(test_num$-1)=
subj_num$:?(stim%+test_num%-1)=comms

IF comm%<5 THEN PRINT TAB(17,19);time%(test_num%-1
);" centiseconds ";TAB(17,20);time%(test_num%-1)
;" centiseconds "

PRINT TAB(column$,row%);CHRS 132;

UNTIL comm$=6

PROCend

STOP

DEF PROCprint

LOCAL I%

FOR I%=1 TO 2

PRINT TAB(17,9+I%);subj_num$

PRINT TAB(17,12+I%);tests_this_subj%;" "

PRINT TAB(17,15+I%);test_num$

NEXT I%

ENDPROC

DEF PROCinc

test_num¥=test_num%+1
tests_this_subj%=tests_this_subj%+l

ENDPROC

DEF PROCscreen

CLS

PRINT CHRS$ 131;CHR$ 157;CHR$ 129;TAB(16,0);

CHR$ 141 ;"COMMANDS"

PRINT CHRS$ 131;CHR$ 157;CHR$ 129;TAB(16,1);

CHRS 141 ;"COMMANDS"

FOR Y%=1 TO 3

PRINT TAB(0,2*Y%+1);CHR$ 132;CHRS$ 157;CHRS 135;Y%;
" “;CHRS$ 156;TAB(20,2*Y%+1);CHRS 132;CHRS 157;
CHR$ 135;Y%+3;" ";CHRS 156;

NEXT Y%

PRINT TAB(23,7);"9"

FOR data%=1 TO 6

READ X%,Y%,name$

PRINT TAB(X%,Y%) ;name$

NEXT data$

DATA 6,3,light,6,5,sound,6,7,light & sound,26,3,ra
ndom choice,26,5,next subject,26,7,End

FOR I%=1 TO 2

PRINT TAB(0,9+I%);CHRS$ 141;"Subject number ="
PRINT TAB(0,12+I%);CHRS$ 141;"Next test No...=
PRINT TAB(0,15+I%);CHRS 141;"Total tests...
PRINT TAB(0,18+I%);CHRS 141;"Previous time..="
NEXT I%

ENDPROC

DEF FNgetkey(valid$)

REPEAT

K$=INSTR(valid$,GETS)

UNTIL K$%

=K%

DEF FNtime(L%,S%)

TIME =0

REPEAT

IF (?&FE60 AND 128) THEN PROCcheat

UNTIL TIME >=RND (10)*100+200

IF S$ THEN SOUND 1,-15,150,2

IF L% THEN ?&FE60=1:REM "TURN ON LED

TIME =0

REPEAT UNTIL (?&FE60 AND 128):REM " Read bit

B7

?&FE60=0:REM "TURN OFF LED
=TIME

DEF PROClist

CLS

FOR K%=1 TO 2

51

52 A Science Teacher's Companion to the BBC Microcomputer

900 VDU 141,132,157,131:PRINT TAB(2);"Subject";
TAB(13);"Time";TAB(22);"Stimulus"

910 NEXT K%

920 VDU 28,0,24,39,2:REM "Text window

930 FOR I%=0 TO test_num3%-1

940 IF (I%+1) MOD 20=0 THEN PROCwait:CLS

950 PRINT subject%(I%),time%(I%),?(stim3+I%)

960 NEXT I%

970 PRINT ~

980 VDU 132,157,131 :PRINT "Finished. Press SPACE
BAR to EXIT"

990 key%=FNgetkey(" ")

1000 VDU 26:REM "Reset windows

1010 ENDPROC

1020 DEF PROCrand

1030 LOCAL I%,rand%,num_tests$

1040 vDU 31,0,23,132,157,131:PRINT "How many tests
do you want done "

1050 INPUT num_tests$

1060 VDU 11:PRINT SPC (40);

1070 FOR I%=1 TO num_tests$

1080 TIME =0:REPEAT UNTIL TIME =150

1090 rand%=RND (3)

1100 IF rand%=1 THEN light%=1:sound%=0

1110 IF rand%$=2 THEN light%=0:sound%=1

1120 IF rand$=3 THEN light%=1:sound%=1

1130 time%(test_num%)=FNtime(light%,sound%)

1140 PROCinc

1150 PROCprint

1160 PRINT TAB(17,19);time%(test_num3%-1);" centiseconds

";TAB(17,20);time%(test_nums-1);" centiseconds

i

1170 subject$(test_num$-1)=subj_num$:?(stim%+test_nums-
1)=rand$

1180 NEXT I%

1190 PRINT SPC (40)

1200 ENDPROC

1210 DEF PROCcheat

1220 PRINT TAB(15,22);CHR$ 141;"CHEATING!!!";TAB(15,23)
;CHRS$ 141;"CHEATING!!!";

1230 REPEAT UNTIL (?&FE60 AND 128)=0

1240 PRINT TAB(0,22);SPC (40);TAB(0,23);SPC (40);

1250 TIME =0

1260 ENDPROC

1270 DEF PROCend

1280 CLS

1290 vDU 141,132,157,131:PRINT TAB(12)"Options"

1300 vDU 141,132,157,131:PRINT TAB(12)"Options"

1310 PRINT “~““TAB(14);"You may now:"~

1320 PRINT “"Save the data onto tape........Press <S>"

1330 PRINT “"Obtain a printout of the data..Press <P>"

1340 PRINT “"List the data on the screen ...Press <L>"

1350 PRINT “"Exit from the program..........Press <E>"

1360 PRINT ~~

1370 FOR I%=1 TO 2

1380 vDU 136,141,132,157,131:PRINT TAB(4);"Please enter
your choice"

1390 NEXT I%

1400 choice%=FNgetkey("SsPpLlEe")

1410 IF choice%=1 OR choice%=2 THEN PROCsave:PROCend

1420 IF choice%=3 OR choice%=4 THEN PROCdump:PROCend

1430 IF choice%$=5 OR choice%=6 THEN PROClist:PROCend

1440 IF choice%=7 OR choice%=8 THEN PROCsure:PROCend

1450 ENDPROC

1460 DEF PROCsure

1470 CLS

1480 PRINT TAB(10,12)"Are you sure (Y/N) 2"

1490 ans%$=FNgetkey("YyNn")

1500 IF ans%=1 OR ans%=2 THEN END

1510 ENDPROC

1520 DEF PROCsave

1530 LOCAL X,J%

1540 CLS

1550 vbpu 28,9,12,27,11

1560 X=OPENOUT ("reaction")

1570 PRINT #X,test_num%,subj_nums,tests_this_subj%

1580 FOR J%=0 TO test num%-1

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770

1780
1790
1800
1810
1820

1830
1840

1850
1860
1870

Simulations, Demonstrations and Tutorials 53

PRINT #X,subject%(J%),time%(J%)

BPUT #X,?(stim%+J%)

NEXT J%

CLOSE #X

VDU 26

ENDPROC

DEF PROCget_data

LOCAL X,J%

X=OPENUP ("reaction")

INPUT #X,test_num$,subj_num$,tests_this_subj%

FOR J%=0 TO test_num$-1

INPUT #X,subject%(J%),time%(J%)
?(stim%+J%)=BGET #X

NEXT J%

CLOSE #X

ENDPROC

DEF PROCwait

PRINT ~

VDU 132,157,131:PRINT " MORE! Press SPACE BAR
to continue"

A=FNgetkey(" ")

ENDPROC

DEF PROCdump

VDU 2:REM "Printer ON

PRINT TAB(6);"Subject";TAB(17);"Time";TAB(26);
"Stimulus";TAB(36);"Subject";TAB(47);"Time";

TAB(56);"Stimulus"”

FOR J%=0 TO test_num%-1 STEP 2

PRINT subject%(J%),time%(J%),?(stim%+J%),subject%(

Jg+1),time% (J%+1),?2(stimg+J%+1)

NEXT J%

VDU 3:REM "Printer OFF

ENDPROC

PROC/FN List

380

470

PROCprint prints, 1in double height, the
current subject number, the number of tests
for this subject and the present total of
‘tests.

PROCinc increments the total number of
tests and the number of tests for this
subject.

510 PROCscreen sets up the non-changing parts of

the teletext screen, showing the various
commands available.

710 FNgetkey.

760

FNtime does the actual reaction timing.

870 PROClist prints the tabulated results on the

screen.

1020 PROCrand can be wused to carry out the

various tests on a random basis -which is
useful to avoid any bias in the operator or
so that he may do a self-test.

1210 PROCcheat is a hold loop which notifies the

operator that the subject is holding the
switch closed. Timing will not proceed
until the switch is released.

1270 PROCend is used at the end of a session to

control listing, dumping and saving of data.

54

A Science Teacher's Companion to the BBC Microcomputer

1460

1520

1650

1750

1800

PROCsure provides the operator with a chance
to change his mind if he has chosen to exit
the program, perhaps by mistake before
saving the data.

PROCsave opens a file and records the data
currently stored in the memory.

PROCget _data is used to read in a file of
data recorded during a previous session.
PROCwait simply waits for the space bar to
be pressed - it is used when 1listing the
data to the screen.

PROCdump sends the data to an attached
printer.

Program Description

130-

180-

220-

260-

280-

100

120

160

200

360
230
240

250
270

340

330

340

350

Set up user port lines: B0 to B6 as outputs,
B7 as input. Turn off all outputs.

Set up arrays for subject number and
reaction times - can be enlarged if memory
constraints allow.

Reserve memory for 500 bytes and set them
all to zero. This is wused to store the
stimulus numbers. These have values of 1, 2
or 3 only, so considerable memory can be
saved by wusing single bytes rather than
integer arrays, which wuse four bytes to
store each number.

Allow data to be input from tape, 1if
desired, otherwise the essential values are
initialised by the program.

Main 1loop, ends if command number 6 ('End’)
is selected.

Flush old key presses from the buffer.

Print the latest values.

Get one of the commands (comm%).

Highlight the chosen command. (260 works out
where to print the highlighting colour
control ccde - CHRS$134).

These lines call the appropriate procedures
and functions, depending on the chosen
command (commands 1 to 3 = manually chosen
stimulus, command 4 = randomly chosen
stimulus, command 5 = move on to next
subject)

For manual commands (1 to 3) record the
subject number and stimulus number (1 =
“light”, 2 = “sound” and 3 = ’light and
sound).

For all timing commands, print the latest
reaction time.
Remove the command highlight.

Simulations, Demonstrations and Tutorials 55

390-1870 Procedure and function definitions. The
most important of these are the following

760-860 FNtime(L%,S%). L% 1is a Boolean
(TRUE/FALSE) parameter which controls the
on/off state of the LED, and S% performs
the same function for sound. Lines
770-800 set wup a random delay before the
stimulus is provided. 780 checks if the
subject s switch 1is already closed (user
line B7 is high) and calls the ’cheat’
routine if it is. This latter waits until
the switch 1is released again (line 1230)
and then zeros TIME so that the random
delay in FNtime will be reset. If the
subject has stopped cheating, control will
pass to lines 810 and 820 which provide
the sound and/or light as selected. Lines
830-840 form the actual timing loop,
waiting until the switch is pressed and
then returning with the value of TIME.

1520-1640 PROCsave shows how to record
stored data onto a long-term storage
medium: cassette tape or disk. Line 1560
opens a file <called "reaction" for the
ocutputting of data (disk users are limited
to file names of seven letters only so
this 1line must be changed on a disk
system). Line 1570 sends, in the order
that they are listed, the values of the
variables giving respectively, the total
number of tests, the current subject
number and the number of tests carried out
on this subject, respectively. The J%
loop (lines 1580-1610) then saves all test
data that has been stored in the memory.
The arrays for subject number and time are
saved, 1in 1line 1590, by the 'PRINT#~
statement, and the single bytes used to
store the type of stimulus are saved by

the ‘BPUT# ~ statement. Note that
PRINT#X,N% saves the number N$% (it 1is
stored 1in four bytes) whereas the

BPUT#X,?N% saves the single byte contents
of the memory location N%. See chapter 4
for further details of filing commands.
Line 1620 closes the file now that we have
finished writing to it.

1650-1740 PROCget_data simply reads in the
information already stored in the file
created by the previous procedure. Note

56 A Science Teacher's Companion to the BBC Microcomputer

that the file is ‘opened for input’ (1670)
since we shall be reading it rather than
writing to it. Also note that the values
must be input (INPUT# for numbers or BGET#
for bytes) in the same order that they
were recorded, otherwise severe confusion
will arise! Again the file is closed as
soon as we are finished with it.

"GRAPH"

This 1is a general purpose program that should find a
use in a wide range of subjects. It enables either one
or two functions to be input in terms of the variable
X. These are then plotted on automatically scaled
axes. Comprehensive error trapping is provided, both
for errors that may be present in the function itself
(such as 'Missing’), and for other errors that appear
when the function is evaluated (such as the “-ve root’
and ‘Division by zero’ errors). With errors 1in the
function, the error is reported and the user is asked
to re-enter the function correctly. The second type of
error is ‘flagged’ during evaluaticn but not reported.
When the function is plotted the flags are checked to
avoid trying to plot any impossible points. If any
readers should discover cther errors that are not
trapped, I would be glad to hear from them!

Listing "GRAPH"

10 REM "*kxkksknkkhkhkkk

20 REM "* GRAPH *
30 REM "* *
40 REM "* (c) 1983 *
50 REM "* *

60 REM "* P. HAWTHORNE *

70 REM LEZ 22222222222 21

80 :

90 :

100 ON ERROR GOTO 1360

110 :

120 :

130 DIM Y(100,2),£$(2),Err_flag%(100,2)
140 @%=&20201

150 Error_flag%=0

160 MODE 7

170 PRINT ““"Do you want to plot 1 or 2 functions?"’
180 num_f%=FNgetkey("12")

190 PROCinputl

200 IF num_f%=2 THEN PROCinput2

210 step=(xmax-xmin)/num_points$

220 :

230 :

240 REM "Loop thru’ & evaluate funcs
250 :

260 I1%=0

270 REPEAT

280 IF Error_flag%=1 THEN Error_flag$=0:GOTO 310
290 J%=0:X=xmin

300
310
315
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

500
510
520
530
540
550
560
570
580
590

600
610
620
630
640
650
660
670
680

690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010

Simulations, Demonstrations and Tutorials

IF I%=0 THEN ymin=EVAL (f$(I%)):ymax=EVAL (£$(I%))
REPEAT

IF X>=xmax THEN 360

Y(J%,I%)=EVAL (f$(I1%))

IF Y(J%,I%)<ymin THEN ymin=Y(J%,I1%)

IF Y(J%,I%)>ymax THEN ymax=Y(J%,1%)
J$=J%+1:X=X+step

UNTIL X>=xmax

I%=I%+1

UNTIL I%=num_f$%

Xscale=1279/(xmax-xmin)

Yscale=868/(ymax-ymin)

IF ymin>=0 THEN OY=0 ELSE OY=-Yscale*ymin

IF xmin>=0 THEN OX=0 ELSE OX=-Xscale*xmin

MODE 1

vbu 19,1,2,0,0,0

VDU 29,0X;0Y;:REM "Origin for axes

PROCaxes (xmax*Xscale,xmin*Xscale,ymax*Yscale,ymin*

Yscale)

VDU 29,-Xscale*xmin;-Yscale*ymin; :REM "Origin
for plotting
PROClabels(xmin,xmax,Xscale,ymin,ymax,Yscale)

REM "Loop thru’ & plot functions

FOR F%=0 TO num_f%-1

GCOL 0,F%+1

PLOT 69,Xscale*xmin,Yscale*Y(0,F%)

FOR K%$=1 TO J%-1

IF Err_flag%(K%,F%)=1 THEN K$=K%+1:MOVE Xscale*(xm
in+step*K%),Yscale*Y(K%,F%) ELSE DRAW Xscale*(xmin
+step*K%),Y¥scale*Y(K%,F%)

NEXT K%

NEXT F%

COLOUR 1:PRINT "Y="f$(0)

IF num_£%=2 THEN COLOUR 2:PRINT "Y="f$(1)

COLOUR 3

PRINT "Do you want another plot (Y/N)2";

SOUND 2,-15,220,3:SOUND 2,0,0,3:SOUND 2,-15,220,3:
SOUND 2,0,0,3:SOUND 2,-15,220,3
A%=FNgetkey("YyNn")

IF A%=1 OR A%=2 THEN RUN

END

DEF PROCinputl

INPUT "Enter function 1" 7£$(0)
INPUT “"Minimum X value "xmin
PRINT “"Maximum X value";
xmax=FNinput(xmin,1lE32)

PRINT “"Number of points (10 to 100)";
num_points$=FNinput(10,100)
PROCclear_flags

ENDPROC

DEF PROCclear_flags

LOCAL I%,J%

FOR I%=0 TO 100

FOR J%=0 TO 1
Err_flags$(I%,J%)=0

NEXT J%

NEXT I%

ENDPROC

DEF PROCinput2

INPUT °““"Enter function 2 " “£$(1)
PROCclear_flags

ENDPROC

DEF FNinput(min,max)
LOCAL value
REPEAT

57

58

A Science Teacher's Companion to the BBC Microcomputer

1020 INPUT " "value

1030 IF value<min OR value>max THEN SOUND 1,-15,50,2

1040 UNTIL value>=min AND value<=max

1050 =value

1060 :

1070 DEF FNgetkey(valid$)

1080 LOCAL N%

1090 REPEAT

1100 N%=INSTR(valid$,GETS)

1110 UNTIL N%§

1120 =N%

1130 :

1140 DEF PROCaxes(Xhi,Xlo,Yhi,Ylo)

1150 MOVE Xlo,0:DRAW 0,0:DRAW Xhi,O0

1160 MOVE 0,Ylo:DRAW 0,0:DRAW 0,Yhi

1170 ENDPROC

1180 :

1190 DEF PROClabels(XL,XH,Xsc,YL,YH,Ysc)

1200 LOCAL X$

1210 VDU 5

1220 X$=STRS$ (XH)

1230 IF YL>=0 THEN MOVE XH*Xsc-32*LEN (X$),YL*Ysc+40
ELSE MOVE XH*Xsc-32*LEN (X$),40

1240 PRINT X$

1250 IF XL>=0 THEN MOVE XL*Xsc+40,YH*Ysc ELSE MOVE 40,Y
H*Ysc

1260 PRINT YH

1270 X$=STR$ (XL)

1280 IF YL>=0 THEN MOVE XL*Xsc,YL*Ysc+40 ELSE MOVE XL*X
sc,40

1290 PRINT X$

1300 IF XL>=0 THEN MOVE XL*Xsc+40,YL*Ysc+40 ELSE
MOVE 40,YL*Ysc+40

1310 PRINT YL

1320 VDU 4

1330 ENDPROC

1340 :

1350 :

1360 IF ERR =17 THEN MODE 7:END

1370 Error_flag%=0

1380 RESTORE

1390 REPEAT

1400 READ err_code%,err_type%

1410 UNTIL err_codel= 999 OR err_ code%=ERR

1420 REM "Err type% l1=Error in func.

1430 REM "Err_type%=2=Evaluat ‘n error

1440 REM "Err_type%=3=Other errors

1450 ON err_ type% GOTO 1460 ,1480 ,1520

1460 SOUND 1,-15,40,2:CLS :REPORT :PRINT " in:" "£$(I%)
““"pPlease check and re-enter correctly"” 7~

1470 IF I%=0 THEN GOTO 190 ELSE GOTO 200

1480 SOUND 1,-15,100,2:Err_flag%(J%,I%)=1

1490 J%=J%+1:X=X+step

1500 Error_flag%=1

1510 GOTO 270

1520 MODE 7:REPORT :PRINT " at ";ERL :END

1530 DATA 4,1,14,1,26,1,27,1

1540 DATA 18,2,20,2,21,2,22,2,23,2,24,2

1550 DATA 999,3

PROC/FN List

750 PROCinputl inputs the first function

plotting, the minimum and maximum X values

and the number of points to be plotted.
850 PROCclear_flags sets the error flags
zero.
940 PROCinput2 inputs the second function.

990 FNinput accepts an input only if it lies
between the values ‘min’ and ‘max ’

inclusive.

1070
1140
1190

Simulations, Demonstrations and Tutorials 59

FNgetkey.

PROCaxes draws the X/Y axes.

PROClabels plots the minimum and maximum
values at the correct points on the X/Y
axes.

Program Description

130

210

Set up arrays - Y(j,1i) stores the evaluated
functions fl1(Xj) and f2(Xj), £S() stores the
functions themselves and Err flag%(j,1i)
stores the error flags for each point (j) of
each function (i): 0 = OK,1 = error.

Calculate the interval to be used between X
values.

260-380 Nested REPEAT loops which evaluate and store
the Y values of the functions. If an error
occurs 1in this section, the routine at 1360
will be called and ‘Error-flag% will be set
before control is returned to line 270.

280 Check if error has occurred, clear flag if
necessary and jump to inner loop.

300 Get initial values for the function’s
minimum and maximum Y values.

330 If current Y value 1is 1less than current
minimum value set new minimum value to
current value.

340 If current Y wvalue 1is more than current
maximum value set new maximum value to
current value.

350 Next value.

370 Next function.

410-500 Set up scaling, origin and axes.

410 Calculate X scale so that range of X values
will fit on screen.

420 As above for Y values.

430-490 These lines draw appropriate axes to suit
the range of values to be plotted and then
move the graphics origin so that the minimum
and maximum values will be plotted in the
correct places. Perhaps the best way to
understand this part of the program is to
consider one or two examples, as shown in
the table below:

xmin xmax Xscale ymin ymax Yscale -Xscale -Yscale (0) oy
*xmin *ymin

90 360 4.74 -1 1 434 -426 434 0 434

-90 180 4.74 -1 1 434 426 434 426 434

60 A Science Teacher's Companion to the BBC Microcomputer

In both examples the minimum Y values are negative
so the X axis (Y = 0) is set above the minimum Y value
by a sufficient amount to ensure that both it and the
maximum Y value are visible, taking into account the
scaling. The scales are calculated to make sure the
range of X and Y values will fit the available screen
area (1279 x 868 - lines 410,420). In the first example
the minimum X value is positive so the Y axis (X = 0)
has to be drawn to the left of it (0OX = 0 - line 440).
The minimum X value is negative in the second example,
so the axis is set to the right of this point by the
appropriate distance. Once the axes are drawn, the
plotting origin is shifted, if necessary (only when the
minimum values are positive), to locate the minimum X,Y
values at the 1left/bottom edges of the screen,
respectively. If this still seems complicated let me
at least assure you that it works! Try plotting a few
different functions to see the effect.

550-610 Plotting loop - F% = function number (0 or
1), K% = point number.

560 Select a different colour for each function.

570 Plot the first point.

590 Check the error flag for this point. If it
is set then move to the next point,
otherwise draw to this point.

620-630 Print the functions, in matching colours, at

the top of the screen.
750-1330 Procedure function definitions:

There 1is nothing very difficult here
except, perhaps, the parameters in
PROClabels which are the lowest, highest
and scale values, respectively, for the X
axis, and the same for the Y axis. The X
values are converted to strings so that
their 1length can be allowed for when
deciding where to print them. The rest of
the procedure decides where the axes are,
to enable the values to be printed in the
correct place.

1360-1550 Error-handling routine. This
first checks to see if the ‘Escape’ key
has been pressed (error code, ERR = 17)

and 1if so reverts to Mode 7 and ends. If
escape was not the cause of the error the
routine checks its 1list of recognised
errors (lines 1530,1540) to see 1if the
current error code matches one of them.
It will either find a match or it will
reach the end of the data, signified by
the dummy error code 999. 1In the latter
case the error is not one of the predicted
ones, so it will be reported and the

Simulations, Demonstrations and Tutorials 61

program ends - line 1520. This has been
denoted as error type 3. If the error was
caused by a typing error in the function,
this will be matched by one of the error
codes of “type 1~ - 1line 1530. The 'ON
err_type% GOTO ~ statement (1450) will
direct control to line 1460 which reports
the error, prints the function and prompts
for a re-entry. Depending on which
function contained the error, line 1470
will Jjump to the appropriate line in the
main program. If the error occurred
during evaluation (Type 27) its code
should be matched by one in line 1540 and
the prcgram will execute lines 1480-1510.

These cause a beep, set the appropriate
error flag 1in the array (line 1480),

advance to the next point (1490) and set
the main error flag before returning to
the start of the evaluation loop at line
270.

Some interesting functions to try

function 1 function 2 xmin Xmax num. of
' points
1/(5-X) - -10 10 40
SIN(X) (SIN(X))"2 0 12.6 100
X"2 - -10 10 40
SQR(10-X) - 0 20 20

These are Jjust a few examples to get you started:
maths can suddenly become much more fun with this
program! Among the sericus uses, you can use it to
solve simultaneous equations, do curve tracing to
examine the trends in functions, find their turning
points and so on. In addition it can answer the ‘what
if” type of question when one wishes to examine the
effect on a function of varying certain constants. s
a general hint, if vyou are unsure of the function’s
behaviour, plot it first using quite a wide range of X
values: this will indicate the general shape. Details
can then be revealed by narrowing down the X values to
the region of main interest. If you are going to plot
the same function several times it can be a good idea
to program it into one of the function keys. For
example

*KEY 0 S5*X"3+7*X"2+3*X+11 |M

62 A Science Teacher's Companion to the BBC Microcomputer

When the program asks you to input your function,
just press f0 and the programmed function will be
entered for you. If preparing for a maths lesson, you
may find it useful to program all the required
functions into the keys and save them wusing *SAVE
"functions" 0B0O OBFF <return>. They can then be
loaded in, without clearing the resident "GRAPH"
program, at any time, using *LOAD"functions" <return>.

LENS AND MIRROR RAY DIAGRAMS ("RAYS")

This program allows students to draw ray diagrams for
convex and concave lenses and mirrors, without the need
to type in large numbers of numeric values to set the
object distance and size etc. The only information
that has to be entered is the type of device, chosen
from a simple menu, and the desired focal length. The
object is initially set up at about two focal 1lengths
from the device’s optical centre or pole. It can then
be moved using the Z,X keys (move object 1left and
right, respectively) and the K and M keys (move the top
of the object up and down, respectively). The values
of the object and image distances, the magnification
and the object and image sizes are continually updated
on the screen. The program can deal with all possible
object distances including “at F° and those that give a
virtual image. The prcgram is intended for "0 '-level
classes and needs a Model B computer.

Listing "Rays"

10 REM "A**kk*k kXXX ARKKRKARK KK

20 REM "**x RAYS falall
30 REM "*** *kk
40 REM "**x VERSION 1 *xx
50 REM "*** *kox
60 REM "*** (c) PDH *xx
70 REM "*** *kx

80 REM "**x 5.02.84 *kx

90 REM "**kxkkkkkkkhkkkhkkhkkkkk

110 ON ERROR GOTO 1180
120 *K.10 OLD|M

130 MODE 7

140 :

150 vpu 23,224,0,108,153,153,153,108,0,0
160 :

170 DIM name$(4)

180 FOR I%=1 TO 4

190 READ name$(I%)

200 NEXT I%

210 :

220 DATA CONVEX LENS,CONCAVE LENS, CONVEX MIRROR,CONCA
VE MIRROR

230 :

240 device=FNmenu

250 :

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

450
460

470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650

660

670
680
690
700

710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950

Simulations, Demonstrations and Tutorials 63

REPEAT

INPUT TAB(3,23)"Focal length (50 to 300) ",f
PRINT TAB(3,23);SPC (40);

IF £<50 OR f>300 THEN SOUND 1,-15,20,4

UNTIL £>=50 AND f<=300

MODE 4
GCOL 4,1
VDU 23;8202;0;0;0; :REM "Cursor off

IF device=2 OR device=3 THEN f=-f

REM "Speed up Auto-repeat

*FX12,1

*FX11,1

CLS

COLOUR 131:COLOUR 0:PRINT TAB(20-LEN (name$(device
))/2,30) ;names$ (device)

COLOUR 128:COLOUR 1:PRINT °‘TAB(12);"Focal lerngth="
iEs

COLOUR 131:COLOUR 0:PRINT TAB(2,0);"CONTROL KEYS"
COLOUR 128:COLOUR 1:PRINT TAB(l,1);"ESC gives
MENU"

PRINT TAB(1,2);"Z moves O left"

PRINT TAB(1,3);"X moves O right"

PRINT TAB(1l,4);"K moves O up"

PRINT TAB(1,5);"M moves O down"

PRINT TAB(17,1);"Object distance:"

PRINT TAB(17,2);"Image distance :"

PRINT TAB(17,3);"Magnification :"

PRINT TAB(17,4);"Object size e
PRINT TAB(17,5);"Image size <"

VDU 29,640;512;:REM "Move origin

MOVE -640,0:DRAW 640,0:REM "Draw axis

REM "Draw lens/mirror

MOVE 0,250:DRAW 0,-250

IF device=1 THEN Y%=48

IF device=2 THEN Y$%=-48

IF device=3 THEN X%=48

IF device=4 THEN X%=-48

IF device<3 THEN PLOT 1,48,Y%:PLOT 0,-96,0:
PLOT 1,48,-Y%$:MOVE 0,250:PLOT 1,48,-Y%:PLOT 0,-96,
0:PLOT 1,48,Y%

IF device>2 THEN PLOT 1,X%,-48:MOVE 0,250:

PLOT 1,X$%,48

REM "Label Principal Focus

VDU 5

MOVE -f,-16:DRAW -f,16:MOVE -f-16,-32:PRINT "F"
IF device<3 THEN MOVE f,-16:DRAW f,16:MOVE f-16,48
:PRINT "F"

VDU 4

u=ABS (f£*2.2):REM "Object distance

0Y%=100:REM "Object size

REPEAT

IF u<>f THEN v=(u*f)/(u-f) ELSE v=1E4
m=v/u

IY%$=-0Y%*m

IF device>2 THEN v=-v

REM "Choose dotted or solid line

IF m<0 THEN PL%=21 ELSE PL%=5
PROCdraw

PROCprint

*FX15,0

REPEAT

key=INSTR("ZzXxKkMm",GETS)

UNTIL key

PROCdraw

IF key<3 THEN u=u+4 ELSE IF key<5 u=u-4
IF u<4 THEN u=4

IF key>4 AND key<7 THEN OY%=0Y$+4

A Science Teacher's Companion to the BBC Microcomputer

960 IF key>6 THEN OY$%=0Y%-4
970 UNTIL FALSE
980 :
990 :
1000 DEF PROCdraw
1010 VDU 5
1020 MOVE -u-16,0Y%+40*SGN (OY%) :PRINT "O"
1030 MOVE v+16*SGN (v),IY%$+40*SGN (IY%):PRINT "I"
1040 VDU 4
1050 MOVE -u,OY3%:DRAW 0,0Y%:REM "Ray 1
1060 REM "Ray 2
1070 IF device>2 THEN DRAW -f,0 ELSE DRAW f,0
1080 IF m>0 THEN DRAW v,IY% ELSE MOVE 0,0Y%:PLOT PL%,vV,
IY$:REM "Ray 3 OR Ray 6
1090 IF device>2 THEN MOVE -u,OY%:DRAW 0,IY%:PLOT
PL%,v,IY%:REM "Rays 7 and 8
1100 IF device<3 THEN MOVE -u,OY%:DRAW 0,0:PLOT PL%,v,I
Y$:REM "Rays 4 and 5
1110 IF device=2 THEN MOVE 0,0Y%:DRAW -f,2*0Y%
1120 IF m<0 AND device<3 THEN MOVE 0,0:DRAW u,-0Y%:
MOVE f,0:DRAW -v+2*f,-IY$%
1130 IF m<0 AND device>2 THEN MOVE 0,IY$%$:DRAW -100-u,IY
$:MOVE 0,0Y%:DRAW f,2*0Y%
1140 MOVE -u,0:DRAW -u,OY$%:REM "Object
1150 MOVE v,0:PLOT PL%,v,IY%$:REM "Image
1160 ENDPROC
1170 :
1180 ON ERROR OFF
1190 REM "Tidy up computer
1200 *FX12,0

1210 @%=10

1220 IF ERR <>17 THEN MODE 7:REPORT :PRINT " at line
";ERL :END

1230 MODE 7

1240 RUN

1250

1260 DEF PROCprint

1270 PRINT TAB(33,1);INT (u);" "

1280 IF u=f THEN PRINT TAB(33,2);CHRS 224;" "
ELSE PRINT TAB(33,2);ABS (INT (v))*SGN (m);" "

1290 @%=&20204

1300 IF u=f THEN PRINT TAB(33,3);CHRS$ 224;" "
ELSE PRINT TAB(33,3);m;" "

1310 @%=&10

1320 PRINT TAB(33,4);0Y%;" "

1330 IF u=f THEN PRINT TAB(33,5);CHRS 224;" "
ELSE PRINT TAB(33,5);ABS (IY%);" "

1340 ENDPROC

1350 :

1360 DEF FNmenu

1370 CLS

1380 VDU 134,157,132,141:PRINT TAB(12);"Ray Diagrams"

1390 VDU 134,157,132,141:PRINT TAB(12);"Ray Diagrams"

1400 vDU 132,157,131,13,10

1410 vDU 130,157,131,141:PRINT TAB(14);"Menu"

1420 vDU 130,157,131,141:PRINT TAB(14);"Menu"

1430 PRINT ““'TAB(3)"(1l)....Convex Lens"

1440 PRINT 'TAB(3);"(2)....Concave Lens"

1450 PRINT ‘TAB(3);"(3)....Convex Mirror"

1460 PRINT 'TAB(3)"(4)....Concave Mirror"

1470 vDU 10,10,130,157,131,141:PRINT TAB(5);"PLEASE

SELECT 1,2,3 or 4"
1480 VDU 130,157,131,141:PRINT TAB(5);"PLEASE SELECT
1,2,3 or 4";

1490 REPEAT

1500 choice=INSTR("1234",GETS)

1510 UNTIL choice

1520 sounp 1,-15,150,2

1530 REM "Highlight choice

1540 vDU 31,0,choice*2+6,132,157,131

1550 =choice

Simulations, Demonstrations and Tutorials 65

PROC/FN List

1000

1260

1360

PROCdraw draws the rays that are wused to
construct the diagram.

PROCprint wupdates the values for the various
distances and the magnification.

FNmenu prints the menu of device types and
obtains the user s choice.

Program Description

150
180-200
240
270-300
360

420-710
430

440-500
510-550
570

580
600-660
600
610-640

650
660
770-970
780

790
800
810

830

840
850
860
880
920
930

Define a character for the “infinity symbol.
Set up a list of the device names.
Get the user s choice of device number.

Get the focal length, in the range 50 to 300
For concave devices make the focal length
negative.

Set up the screen.

Print the name of the selected device from
the list.

Print the control key instructions.

Print the values labels.
Move the graphics origin to the centre of the
screen.

Draw the principal axis.
Draw the optical device.

Draw the reflecting/refracting line.

Set up ccordinate values to enable the
drawing of the lens and mirror ‘ends’, as for
conventional ray diagrams.

Draw the end of the convex/concave lens.
Draw the end of the convex/concave mirror.
Main loop.

If the object is not at the focus then
calculate the image distance using the
lens/mirror formula. Otherwise set the
image distance to “infinite” (10000).
Calculate the magnification.

Calculate the image size.

For reflecting devices reverse the image
distance sign.

If the image is virtual (m is negative) then
use a dotted line (plot number, PL% = 21),
else use a solid line (PL% = 5).

Draw the rays.

Print the numerical values.

Flush old keys.
Wait for a control key to be pressed.

Erase the rays.

‘Z° was pressed - 1increase object distance
(move O left) - else X was pressed -
decrease object distance (move O right).

66 A Science Teacher's Companion to the BBC Microcomputer

940 Prevent O from being moved through the
lens/mirror.
950 'K~ was pressed - increase object size (move
O up).
960 ‘M”° was pressed - decrease object size (move
O down).
1000-1550 Procedure and function definitions:
The main procedure 1is ’‘draw’ which sorts
out which rays to draw: two are wused for
each diagram. Ray 1 1is drawn for all
diagrams, from the top of the object
parallel to the principal axis (1050). Ray
2 1is also drawn for all diagrams, from the
end of ray 1 to the focus. Line 1070
checks if the device is a mirror and, if
so, reverses the direction of ray 2. Line
1080 checks if the image is real (positive
magnification) or virtual. If real, ray 3
is drawn from the focus to the top of the
image, otherwise ray 6 is drawn. This ray
is a dotted ray from the end of ray 1 to
the top of the image. If the device 1is a
mirror then rays 7 and 8 will be drawn
(1090). These rays are drawn from the top
of the object through the focus to the
mirror and from the mirror back parallel to
the axis. If the device is a lens rays 4
and 5 are drawn instead. These rays pass
from the top of the object through the
optical centre of the lens to the top of
the image. The second ray may be dotted if
the image is wvirtual (1100). Line 1110
draws the deviated extension of ray 1 on
the other side of a <concave lens only.
Finally, 1lines 1120,1130 extend the real
rays from the lens/mirror, when the image
is virtual.

DAMPED HARMONIC MOTION ("SHM")

Using this program, A-level students will be able to
investigate the fundamental features of simple harmonic
motion, both wundamped and with various degrees of
damping. Not only may the degree of damping be
adjusted, but also the ‘mass’ and ‘elasticity”’.
Although the equations built into the program are based
on a mass/spring system, the results are correct for
any system that undergoes damped harmonic motion. The
screen displays a ‘mass’” which oscillates vertically
and the corresponding ’‘displacement-time” graph. Below

Simulations, Demonstrations and Tutorials 67

this the current values of mass, spring constant and

damping factor are displayed. The program also
indicates whether the displayed motion is undamped,
under-damped, critically damped or over-damped. Each

time the graph is completed, a simple menu is presented
to allow the user to alter selected parameters, clear
the screen or start the simulation.

Listing "SHM"

10 REM “"kkkkkkkkkkkkkhhkhkk

20 REM "*%x% * %k %k
30 REM "*** SHM falall
40 REM "**x%x * % %
50 REM "*** Version 1 ***
60 REM "ok ok ok * % %
70 REM Nhhkhkk kXXX XA XA Ak kkk
80 :

90 MODE 4:VDU 19,0,4;0;
100 :

110 ON ERROR MODE 7:END

120 :

130 vDU 23,224,24,60,126,255,255,126,60,24

140 vDU 28,0,31,39,23

150 VDU 24,0;300;1279;1023;

160 :

170 REM "Initial damping,spring constant and mass
values

180 R=0:K=2:M=3

190 A=20:B=10:REM "** Amplitudes **

200 :

210 REPEAT

220 :

230 PROCprint_values

240 PROCgraph

250 PROCkey_check

260 :

270 UNTIL FALSE

280 :

290 END

300 :

310 :

320 DEF PROCgraph

330 VDU 5

340 ccoL 0,3

350 MOVE 150,600:PLOT 21,440,600:DRAW 1279,600

360 MOVE 1100,560:PRINT "time"

370 MOVE 460,1000:PRINT "displacement"

380 MOVE 440,1000:DRAW 440,300

390

400 FOR t=0 TO 12 STEP .05

410 :

420 X=t*70+440

430 IF R"2/(4*M"2)>=K/M THEN Y=FNover(t) ELSE Y=
FNunder(t)

440 Y=Y*10+600

450 GCOL 0,3

460 DRAW X,Y

470 GCOL 4,0

480 *FX19

490 MOVE 100,Y+16:VDU 224

500 *FX19

510 MOVE 100,Y+16:VDU 224

520 MOVE X,Y

530 :

540 NEXT t

550 :

560 VDU 4

570 ENDPROC

580 :

590 DEF FNover(t)

68 A Science Teacher's Companion to the BBC Microcomputer

600

610
620
630

640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

890
900

910
920
930
940
950
960
970
980
990
1000
1010

1020

1030
1040

1050

=EXP -(R*t/(2*M))*(A*EXP (SQR (R"2/(4*M"2)-K/M)*t)
+B*EXP -(SQR (R"2/(4*M"2)-K/M)*t))

DEF FNunder(t)
=EXP -(R*t/(2*M))*((A+B)*(COS (SQR (K/M-R"2/(4*M"2
))*t)))

DEF PROCkey_check

LOCAL key

SOUND 1,-15,40,1

REPEAT

CLS

PRINT "Press:-"~

PRINT "M to change mass. Current value=";M
PRINT "E to change elasticity. Current value=";K
PRINT "D to change damping. Current value=";R
PRINT "C to clear the screen."

PRINT "RETURN to start the simulation."

PRINT “"Command 2";

REPEAT

*FX21,0

key=INSTR ("MmEeDdCc"+CHRS$ 13,GET$)
UNTIL key

CLS :SOUND 1,-15,150,2

IF key=9 THEN start=TRUE ELSE start=FALSE

IF key<3 THEN REPEAT :INPUT "Mass (1-20) "M:
UNTIL M>=1 AND M<=20

IF key>2 AND key<5 THEN REPEAT :INPUT "Spring
constant (1-5)"K:UNTIL K>=1 AND K<=5

IF key>4 AND key<7 THEN REPEAT :INPUT "Damping
factor (0-30)"R:UNTIL R>=0 AND R<=30

IF key>6 AND key<9 THEN CLG

UNTIL start

ENDPROC

DEF PROCprint_values

PRINT “"Mass=";M;"kg"

PRINT “"Spring constant=";K;"N/m"

PRINT “"Damping factor=";R;"kg/s"

IF R"2/(4*M"2)>K/M THEN PRINT TAB(0,7);"Over-dampe
a-"

IF R<>0 AND R"2/(4*M"2)<K/M THEN PRINT TAB(0,7);
"Under-damped"

IF R=0 THEN PRINT TAB(0,7);"Undamped "

IF ABS (R"2/(4*M"2)-K/M)<0.1 THEN PRINT TAB(0,7);
"Critical damping"

ENDPROC

PROC/FN List

320

590

620

650

PROCgraph plots the dispiacement-time graph
and displays the oscillating mass.

FNover is the equation describing the motion
when over-damped (including critical
damping).

FNunder is the equation describing the motion
when undamped or when under-damped.

PROCkey_check prints the commands menu,
obtains the user’s choice and carries out the
required action, either inputting a value for
one of the parameters or clearing the

Simulations, Demonstrations and Tutorials 69

display. Pressing <RETURN> starts the
next simulation.

970 PROCprint_values displays the current values
of all parameters and the degree of
damping of the motion being displayed.

Program Description
130 Define a ‘blob” for the oscillating mass.
140 Define a text window in the bottom half of
the screen.
150 Define a graphics window in the top half of
the screen.
180-190 Set up initial values.
210-270 Main loop.
320-1050 Procedure and function definitions:
320-570 PROCgraph. Lines 350-380 draw and
label the axes and the 1loop 1in lines
400-540 is a ‘time” 1loop. Line 420
converts the time 't to a suitable value
for plotting and line 440 does the same
for the displacement ' which 1is
calculated in the previous 1line (430).
The condition tested in this line
(R"2/4m"2>=k/m) determines whether the
motion is over- or under-damped - equality
gives critical damping. Y is then
calculated using the appropriate function.
Line 460 draws the graph and lines 470-510
display and erase (logical inverse
plotting: GCOL4) the mass. The *FX19
commands are used to synchronise the
plotting and unplotting with the start of
the next video display frame. The idea is
to minimise flickering of the mass.
590-630 FNover and FNunder. The equations
used in these functions are derived from
the general solution of the second-order
differential equation for damped harmonic
motion:

md%v/at® + RAY/dt + KY = 0

The general solution is:
Y = exp(-Rt/2m)[AexpSQR(R"2/4m"2-k/m)t
+ BexpSQR(R"2/4m"2-k/m)t]
where
R = damping factor, m = mass, k = spring
constant, t = time, A,B amplitude.

70 A Science Teacher's Companion to the BBC Microcomputer

Note that these equations are not in

BASIC! In PROCprint_values, lines
1010-1040 test the “damping term’
(R72/4M"2) and the ‘oscillation term’

(K/M) to determine the degree of damping.
If the first term is greater the motion is
over-damped (1010) whereas if the second
term is greater, and the damping factor is
not zero, the motion is under-damped

(1020). Line 1030 checks for undamped
motion (damping factor = 0) and in line
1040, if the two terms are “almost equal’

(that is, they differ by less than 0.1),
the motion is described as critically
damped.

ATOMIC ENERGY LEVELS AND SPECTRA ("H_SPECT")

This is a program for A-level chemistry/physics
students and requires a 32K machine. It will be most
suitable for use with single pupils since it adopts an
individual (CAL) approach. The program presents a
sequence of ‘frames® each of which demonstrates some
point. After a few frames the student will be given a
‘quick quiz: a short multiple choice test based on the
preceding material. A poor score requires the student
to review the previous section again. - “Once he
understands a section (or at least is able to answer
the questions: there 1is a subtle difference!) the
computer will allow him to proceed to the next section.
Altogether there are four quizzes but this could be

extended.

Listing "H_SPECT"

]_0 REM Mok kok dkok ok ok ok ok okokokkokk
20 REM "*** H SPECT ***

30 REM Wkkk * %k
40 REM "*** Vers 1.0 **x*
50 REM "ok ok ok * %k %k

60 REM "*** HYDROGEN ***
70 REM "*** SPECTRA ***
80 REM "*#*x % %k
90 REM "*** c 1984 **x*
100 REM "*** Philip ***

110 REM "*** Hawthorne***
120 REM M g de Kk gk ok ok Kk k ko kK ok kK

150 MODE 7

160 PROCcur_off

170 PRINT TAB(11,12);CHR$ 130;CHR$ 141;"Hydrogen Spect
ra";TAB(11,13);CHRS 130;CHRS 141;"Hydrogen Spectra"

180
190
200
210
220
230
240
250
260

270
280
290

300
310
320
330
340
350
360
370
380
390
400
410
420
430

450
460
470
480

490
500
510

520
530
540

550
560
570
580
590
600

610

620
630
640
650
660
670

680
690
700
710

720
730
740
750

Simulations, Demonstrations and Tutorials

PROCpause(3)

Vscale=72

h=6.63E-34

e=1.6E-19

max_N%=8

DIM Energy(10),delta_f(max_N%-2),Xco(max_N%-2)

vDbU 23,224,0,28,20,34,34,65,255,0:REM " **
‘delta” **

vpu 23,225,23,17,19,17,23,0,0,0:REM " ** s’scri
pt 13 **

vpu 23,226,33,35,37,47,33,0,0,0:REM " ** s’ scri
pt 14 **

vbu 23,227,23,20,23,17,23,0,0,0:REM " ** s5’scri
pt 15 *x

RESTORE

FOR N%$=1 TO max_N%

READ Energy(N%)

NEXT N%

DATA 13.58,3.39,1.51,0.85,0.54,0.38,0.26,0.19

REPEAT

MODE 4

PROCcur_off

score%=10

CLS

PRINT TAB(0,15)"When a spectroscope is used to
study" ""the light from a hydrogen-filled"
PRINT "discharge tube it is found that the "~
"light emitted consists of separate" ""lines of
different colour." ""This type of spectrum is
called a " “"LINE EMISSION SPECTRUM."

PROCwait

PROCwipe(0,15,36,7)

PROCspectrum(2,8)

PRINT TAB(0,15)"The lines in the visible region"’

"of the spectrum are shown above." ""This set of
lines is known as the " ""BALMER SERIES."
PROCwait

PROCwipe(0,15,36,4)

PRINT TAB(0,15)"Note that the lines converge at"’
"higher frequencies."

PROCwait

CLS

PRINT TAB(0,15)"A similar pattern is seen in the"’
"ultraviolet spectrum: the Lyman Series."

PROCspectrum(l,8)

PROCwait

MODE 7

PROCcur_off

PROCquiz(3,1)

IF score%<7 THEN CLS :PRINT “~’~’“"You must review
the preceding material again."

IF score%<7 THEN PRINT TAB(8,20);"Press any key
to review":A=GET

UNTIL score%>=7

REPEAT

MODE 4:PROCcur_off

score%=10

PRINT TAB(0,12)"To explain these spectra we must"’
"assume that the electrons in" ""an atom can exist
only at" ""certain energy levels."

PROCwait

CLS

PROCdraw_levels

PRINT TAB(0,12)"This diagram represents the"’
"allowed electron energies of"

PRINT "a Hydrogen atom."

PROCwait

PROCwipe(0,12,29,3)

PRINT TAB(0,12)"The numbers to the left are the"~
"Principal QUANTUM NUMBERS (n) for each" ""ENERGY
LEVEL."

71

72 A Science Teacher’'s Companion to the BBC Microcomputer

760

770
780
790
800
810
820
830
840
850
860

870

880
890

900

910
920
930

940
950
960

970
980
990
1000

1010

1020
1030
1040

1050
1060
1070
1080
1090

1100
1110
1120
1130
1140
1150
1160

1170
1180
1190
1200
1210
1220
1230
1240
1250

1260
1270

PRINT “"The lowest energy level" ""corresponds
to n=1 and"

PRINT "is called the GROUND STATE."

PROCpause (1)

VDU 5

MOVE 200,48 :PRINT "GROUND STATE";

SOUND 1,-15,150,1

VDU 4

PROCpause(1)

PROCwait

PROCwipe(0,12,39,7)

PRINT TAB(0,12)"Electrons normally occupy" "“the
lowest energy levels" ""first. 1In hydrogen the
single"

PRINT "electron will be in the n=1"""level. The
atom is said to be" ""in its GROUND STATE."

PROCwait:PROCwipe(0,12,39,6)

PRINT TAB(0,12)"If the atom is supplied" ""with
sufficient energy the" “"electron can be EXCITED
to" “"a higher energy level"

PRINT “"The arrow shows an electron" ""excited
from the ground" “"state to the first excited
state" "™ (n=1 to n=2)"

PROCflash(2,1)

PROCwait:PROCwipe(0,12,39,10)

PRINT TAB(0,12)"Electrons lose energy by" "“droppin

g from a higher to"

PRINT "a lower energy level."

PROCpause(2)

PRINT ~“"For example the arrow" ""shows a transitio

n from"

PRINT "the n=2 to the n=1 level."

PROCflash(1,2)

PROCwipe(0,17,29,3)

PRINT TAB(0,17)"This transition is from" ""the
n=3 to the n=2 level"

PRINT “"The energy difference is" ""less than the
previous example"

PROCflash(2,3)

PROCwipe(0,12,39,12)

PRINT TAB(0,12)"The energy difference for" ""the
n=3 to n=2 transition is" “""E(3)-E(2) = -1.51-(-3

.39) eV" 'TAB(11)"=-1.51+3.39 eV" 'TAB(11)"=+1.88
v

PRINT ““"(NB leV = 1.6x10-19 J)"

PROCwait :PROCwipe(0,12,39,9)

MODE 7:PROCcur_off

PROCquiz(4,2)

IF score%<7 THEN CLS :PRINT °~~“"You must review
the preceding material again."TAB(8,20);"Press
any key to review":A=GET

UNTIL score%$>=7

REPEAT

MODE 4:PROCcur_off

score%=10

PROCdraw_levels

PRINT TAB(0,10)"The excess energy given up" ""durin

g an electron transition" ""is emitted as a" "’

"QUANTUM of ELECTROMAGNETIC RADIATION."

PRINT ““"The energy of the quantum" ""determines
the frequency of" “"the emitted radiation"

PROCwait

PROCwipe(0,10,39,10)

PRINT TAB(0,10)"The relationship between energy,
E" “"and frequency,f is:"

PRINT " E=hf" " “"where h=Planck s constant=6.6

3x10-34 Js"

PROCwait

PROCwipe(0,10,39,6)

PRINT TAB(0,12)"Thus each transition produces"’

"a quantum of one particular" “"frequency or ’‘colou

r’ proportional"

PRINT "to the difference in energy" “"between the
two levels."

PROCpause(8)

PRINT ““"Listen to the pitch of" ""the tones. These
are analogous” “"to the frequency of the quantum.”

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

1410
1420
1430
1440
1450
1460
1470

1480
1490
1500

1510
1520

1530
1540
1550
1560
1570

1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690

1700
1710
1720

1730
1740
1750
1760

1770

1780
1790

1800
1810
1820
1830
1840
1850

Simulations, Demonstrations and Tutorials 73

FOR L%=1 TO 3:REM "Lower level

FOR H%=L%+1 TO max_N%:REM "Higher

SOUND 1,-15,-19* (Energy(H%)-Energy(L%)),2

PROCtransition(L%,H%)

PROCpause(2)

PROCtransition(L%,H%)

NEXT H$%

NEXT L%

PROCwipe(0,12,39,10)

PROCseries

MODE 7:PROCcur_off

PROCquiz(4,3)

IF score%<7 THEN CLS :PRINT “"You must review
the preceding material again."TAB(8,20);"Press
any key to review":A=GET

UNTIL score%$>=7

REPEAT

MODE 4:PROCcur_off

score%=10

PROCspectrum(1l,max_N$%)

PRINT TAB(0,15)"We have noted that the spectral
lines" ""converge and will eventually meet at
oneparticular frequency. This frequency is called
the CONVERGENCE LIMIT."

PROCwait :CLS

PROCdraw_levels

PRINT TAB(0,12)"The energy levels also converge"’

"and meet. The energy needed to" ""just cause
an electron to escape" ""is called the IONISATION
ENERGY."

PROCpause(4)

PRINT "It is the amount of energy" “"needed to
raise an electron”" ""from the ground state to"~
"just above the highest level."

PROCflash(max_N%,1)

PROCwait:PROCwipe(0,12,39,9)

CLS

PROCspectrum(l,max_N$%)

PRINT TAB(0,14)"Clearly the difference ";CHR$ 224;

"f between the frequencies of consecutive lines"
‘"decreases to zero at the convergence limit."

PROCpause(4)

GCOL 4,3

VDU 5

fmin=FNfreq(1l,2)

FOR I%=2 TO max_N%-1

fl1=FNfreq(1l,I%)

f2=FNfreq(1l,I%+1)

X1=(f1-fmin)*100E-14+100

X2=(f2-fmin)*100E-14+100

SOUND 1,-15,(X2-X1)/2,2

MOVE X1,800:DRAW X2,800

IF I%<5 THEN MOVE X1-24+(X2-X1)/2,832:PRINT

CHRS 224;"f"

PROCpause(2)

MOVE X1,800:DRAW X2,800

IF 1I%<5 THEN MOVE X1-24+(X2-X1)/2,832:PRINT

CHRS 224;"f"

NEXT I%

VDU 4

GCOL 0,3

PRINT “"If we determine the frequency at which

";CHRS 224;"f becomes zero this will enable
us to " “"calculate the corresponding energy."

PRINT "This is the highest possible energy ie"~

"the ionisation energy of the hydrogen" ""atom."

PROCwait:PROCwipe(0,14,39,12)

PRINT TAB(0,14)"If we plot ";CHRS 224;"f for each
pair of lines" ""versus the frequency,f, of the
lower" ""line we can find the frequency,f’, "~

"when ";CHR$ 224;"f becomes 0."

PROCwait:PROCwipe(0,14,39,4)

PROCgraph

PROCpause(5)

PROCwait

MODE 7:PROCcur_off

PROCquiz(4,4)

74

A Science Teacher's Companion to the BBC Microcomputer

1860

1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980

1990
2000
2010
2020
2030
2040
2050
2060
2070
2080

2090

2100
2110
2120
2130
2140
2150

2160
2170

2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510

IF score%<7 THEN CLS :PRINT “"You must review
the preceding material again.";TAB(8,20);"Press
any key to review":A=GET

UNTIL score%>=7

VDU 26:CLS

vbu 31,14,12,133,141:PRINT "The End!"

vDU 31,14,13,132,141:PRINT "The End!"

END

DEF PROCspectrum(N1%,N%)

REM "** Nlg=quantum number of lowest level

REM "** N$=number of transitions to this level
LOCAL I%,Xco,f,fmin

vDU 31,14,0

IF N1%=1 THEN PRINT "Lyman Series"ELSE IF N1%=2
THEN PRINT "Balmer Series"ELSE IF N1%=3 THEN
PRINT “"Paschen Series"

MOVE 0,700:DRAW 1200,700

MOVE 0,900:DRAW 1200,900

VDU 5

MOVE 800,640:PRINT "Frequency ->"
fmin=FNfreq(N1%,N1%+1)

FOR I%=N1%+1 TO N%

f=FNfreq(N1%,I%)

Xco=(f-fmin)*100E-14+100

MOVE Xco,700:DRAW Xco,900

IF f=fmin THEN MOVE Xco-16,680:PRINT """:MOVE Xco-
100,640:PRINT "fmin=";LEFT$(STR$ (fmin),5);"x10";
IF f=fmin THEN PRINT CHR$ (212+VAL (RIGHTS (
STR$ (fmin),2)));" Hz"

NEXT I%

VDU 4

ENDPROC

DEF PROCtransition(levell$,level2s)

GCOL 4,3

MOVE 70*ABS (level2%-levell$), (Energy(1l)-Energy(le
vel2%))*Vscale

DRAW 70*ABS (level2%-levell%), (Energy(l)-Energy(le
vells))*Vscale

IF levell%<level2% THEN PLOT 1,-16,16:PLOT 0,32,0:
PLOT 1,-16,-16 ELSE PLOT 1,-16,-16:PLOT 0,32,0:
PLOT 1,-16,16

GCOL 0,3

ENDPROC

DEF PROCpause(t)

T=TIME

REPEAT UNTIL TIME >=T+t*100

ENDPROC

DEF PROCwipe(column%,row$,spaces%,lines%)
LOCAL I%

VDU 31,columng,row$

FOR I%=1 TO lines%

PRINT SPC (spaces%)

NEXT I%

ENDPROC

DEF PROCwait

LOCAL key$

PRINT TAB(10,25)"Press C to continue";

REPEAT

*FX15,0

key%=INSTR("Cc",GETS$)

UNTIL key$

SOUND 1,-15,200,1

PRINT TAB(0,25);SPC (39);

ENDPROC

DEF FNask(correct$%,num_poss_ans$)
key$=LEFT$("12345" ,num_poss_anss$)

REPEAT

G$=INSTR(key$,GETS$)

UNTIL G%

vpu 31,0,5+2*G%,130,157,131

IF G%$=correct% THEN =TRUE ELSE =FALSE

DEF PROCcur_off

REM "** Also changes Bgd. colour

VDU 23;8202;0;0;0;19,0,4,0,0,0

ENDPROC

2520
2530

2540
2550

2560
2570

2580
2590

2600

2610
2620

2630
2640

2650

2660
2670

2680
2690

2700

2710
2720

2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960

2970

2980
2990

3000
3010
3020

Simulations, Demonstrations and Tutorials 75

REM "** Data for Quiz(1l)

DATA A line emission spectrum consists of,3,a

continuous range of colours,dark lines on a bright
background,separate lines of different colour,3

DATA As the frequency increases do the lines,3,div

erge,converge, keep the same spacing,?2

DATA Lines in the visible region are called,3,the

Balmer Series,the Lyman Series,the Paschen Series,l

REM "** Data for Quiz(2)

DATA ‘n’ for the lowest energy level is,5,1,2,3,4,
5,1

DATA The lowest energy level is called,3,the stabl

e state,the earth state,the ground state,3

DATA The loss of energy is greatest for,4,a n=2

to n=1 transition,a n=3 to n=2 transition,a n=3

to n=1 transition,a n=5 to n=4 transition,3

DATA The energy difference for n=2] n=1 is,5,13.5

8 ev,3.39 ev,16.97 ev,-10.19 ev,10.19 ev,5

REM "** Data for Quiz(3)

DATA The emitted frequency is greatest for,4,a

n=2 to n=1 transition,a n=3 to n=2 transition,a

n=4 to n=3 transition,a n=5 to n=4 transition,l

DATA Transitions to n=1 give lines of the,3,Balmer

Series,Lyman Series,Paschen Series,2

DATA Lyman Series lines are in the,5,microwave

region,infra-red region,visible region,the ultravi

olet region,the X-ray region,4

DATA n=2] n=1 gives a quantum of frequency,3,4.22

2x10-14 Hz,2.459x10+15 Hz,1.537x10+34 Hz,2

REM "** Data for Quiz(4)

DATA The spectral lines meet at,3,the vanishing

point,the convergence limit,the spectral limit,2

DATA n=1]n=4 is an example of ionisation,2,TRUE,FA

LSE, 2

DATA The graph plotted was a,4,straight line with

negative slope,straight line with positive slope,a

rising curve,a falling curve,4

DATA The ionisation energy of hydrogen is,4,13.58

J,-13.58 J,135.5 J,2.17x10-17 J,4

DEF PROCquiz(num_questions$,quiz_num$)

VDU 132,157,131,141:PRINT TAB(14,0);"Quick Quiz
";quiz_num%:VDU 132,157,131,141:PRINT TAB(14,1);
"Quick Quiz ";quiz_num$

vDU 28,0,23,39,2

ON quiz_num% GOTO 2750 ,2760 ,2770 ,2780

RESTORE 2530 :GOTO 2790

RESTORE 2570 :GOTO 2790

RESTORE 2620 :GOTO 2790

RESTORE 2670 :GOTO 2790

FOR Q%=1 TO num_questions$

CLS

READ question$,num_answers

PRINT “’question$ ™’

FOR A%=1 TO num_answers

READ answer$:PRINT "TAB(3);STRS (A%);". ";answer$

NEXT A%

READ answer

vDU 10,10,131,157,129:PRINT "Press ";

FOR I%=1 TO num_answers

PRINT STRS (I%);",";

IF I%=num_answers-1 THEN PRINT " or ";
NEXT I%

PRINT "to select answer."

REPEAT

*FX15,0

correct=FNask (answer,num_answers)

IF NOT correct THEN SOUND 1,-15,20,2:PRINT
TAB(12,20)"WRONG!! TRY AGAIN":PROCpause(3):
PRINT TAB(0,20);SPC (40);

IF NOT correct THEN score$=score%-1:PRINT
TAB(0,5+2*G%) ;" "

UNTIL correct

SOUND 1,-15,150,2:PRINT TAB(16,20)"CORRECT":
PROCpause(3)

NEXT Q%

ENDPROC

DEF PROCdraw levels

76

A Science Teacher's Companion to the BBC Microcomputer

3030
3040
3050
3060
3070

3080
3090
3100

3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210

3220
3230
3240
3250
3260
3270
3280
3290
3300

3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460

3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710

LOCAL N%

VDU 29,64;32;

VDU 5

FOR N%$=1 TO max_N%

IF N%<6 THEN MOVE -32, (Energy(l)-Energy(N%))*Vscal
e+16 :PRINT STRS$ (N%);

MOVE 0, (Energy(1l)-Energy(N%))*Vscale

DRAW 800, (Energy(1l)-Energy(N%))*Vscale

IF N%<5 THEN PLOT 0,32,0:PRINT STR$ (-Energy(N%));
" ayn

NEXT N%

VDU 4

ENDPROC

DEF PROCseries

FOR H%$=2 TO max_N$%

PROCtransition(1,H%)

SOUND 1,-15,-19*(Energy(H%)~Energy(1)),2
PROCpause(.3)

NEXT H$

PROCpause(2)

PRINT TAB(0,17)"Transitions to the n=1 level"’

"give lines in the Lyman Series." “"All these lines
are in the" ""ultraviolet region."
PROCwait

CLS :PROCdraw_levels

FOR H%=3 TO max_N%

PROCtransition(2,H%)

SOUND 1,-15,-19*(Energy(H%)-Energy(2)),2
PROCpause(.3)

NEXT H%

PROCpause(2)

PRINT TAB(0,17)"Transitions to the n=2 level"~
"give lines of the Balmer Series." ""All the energy
differences are" ""smaller and the lines are in"~
"the visible region."

PROCwait

ENDPROC

DEF PROCflash(N1%,N2%)

LOCAL 1%

FOR I%=1 TO 20

PROCtransition(N1%,N2%)

PROCpause(.4)

PROCtransition(N1%,N2%)

PROCpause(.2)

NEXT I%

ENDPROC

DEF PROCgraph

VDU 5

GCOL 4,3

MOVE 0,44:DRAW 1279,44:MOVE 1150,32:PRINT "f"
MOVE 0,44:DRAW 0,580:MOVE 32,550:PRINT CHRS 224;
wgn

fmin=FNfreq(1l,2)

FOR N%=2 TO max_N%-1

fl1=FNfreq(1l,N%)

f2=FNfreq(1,N%+1)
X1=(fl-fmin)*100E-14+100
X2=(f2-fmin)*100E-14+100

MOVE X1,700:PLOT 21,X1,48

MOVE X2,700:PLOT 21,X2,48

FOR Y%$=800 TO 48 STEP -16

MOVE X1,Y%:DRAW X2,Y%

SOUND 1,-15,Y%/4,1

PROCpause(.1)

MOVE X1,Y%:DRAW X2,Y%

NEXT Y%

MOVE X1,700:PLOT 22,X1,48

MOVE X2,700:PLOT 22,X2,48
delta_f(N%-1)=FNrotate(X1l,48,X2-X1)
Xco(N%-1)=X1

NEXT N$%

PROCpause(2)

MOVE Xco(1l),delta_£f(1)

FOR N$=2 TO max_N%-2

DRAW Xco(N%),delta_f(N%)

PROCpause(1)

NEXT N$%

1930

2130

2200

2240

2310

2410

2480

2710

3020

3140

3330

3420

3760

3770

Simulations, Demonstrations and Tutorials

3720 REM "** Cheat and assume answer!! **

3730 DRAW 898,48:MOVE 898,-32:PLOT 21,898,300:PLOT 0,-1
60,32:PRINT "f =3.27x10";CHR$ 227;" Hz"

3740 VDU 4

3750 ENDPROC

3760 DEF FNfreq(L%,H%)=(Energy(L%)-Energy(H%))*e/h

3770 DEF FNrotate(Xleft%,Yleft%,radiusg)

3780 LOCAL a,Xright%,Yright%

3790 FOR a=0 TO 90 STEP 6

3800 Xright%$=Xleft%+radius%*COS RAD (a)

3810 Yright%=Yleft%+radius%$*SIN RAD (a)

3820 MOVE Xleft%,Yleft%:DRAW Xright%,Yright%

3830 SOUND 1,-15,Yright%/2,1

3840 PROCpause(.l)

3850 IF a<90 THEN MOVE Xleft%,Yleft%:DRAW Xright$%,Yrigh
t%

3860 NEXT a

3870 =Yrightg

PROC/FN LIST

PROCspectrum draws a line spectrum, given the
lower energy level and the number of
transitions.

PROCtransition draws an up or down arrow
representing an electron transition.
PROCpause.

PROCwipe enables a section of text to be
removed without disturbing the rest of the
screen.

PROCwait gives a prompt and waits for the 'C’
key to be pressed.

FNask is used by the ’‘quiz procedure and
returns a true value if the correct
answer is selected, otherwise a false value.
It also ‘knows which keys are allowed (some
items have more answers than others).

PROCcur_ off turns off the cursor and changes
to a blue background.

PROCquiz is used to set all the quizzes, the
quiz number being one of the parameters, the
other being the number of questions. Data
for the items/answers 1is contained in the
DATA statements in lines 2530-2700.
PROCdraw_levels produces the energy-level
diagram for hydrogen (data in line 350).
PROCseries displays the transitions that
produce the Lyman and Balmer series.
PROCflash produces a flashing transition
arrow.

PROCgraph explains and draws the graph of
‘“delta f~ versus ‘f° for the Lyman series.
FNfreq calculates the frequency of a spectral
line, given the energies of the two levels
involved.

FNrotate turns the ’‘delta f° line through 90
degrees to obtain the corresponding point on
the graph (run the program and you will see
what I mean!).

77

78

A Science Teacher's Companion to the BBC Microcomputer

Program Description
The program differs from most of the preceding
ones in that it does not consist of a short main
loop that calls up various procedures. Instead it
is really one long sequence, starting at line 150
and ending at line 1920. Probably the main reason
for this was that the program grew from a much
more modest original idea! There are a series of
REPEAT...UNTIL loops which present each section of
information followed by a quiz. The loops repeat
if the score attained at the end of the section is
too low (less than 70 per cent).
150-350 Setting up various variables and
user-defined characters. ‘h’ is Planck s
constant, ‘e’ the electronic charge, ‘max_N% the
maximum number of energy levels, corresponding to
the number of data items in line 350, and ‘Vscale’
a vertical scale factor used for the energy level
diagrams.
380-620 First quiz loop. The general pattern of
all these loops is to select Mode 4, set the score
to 10, present some information aided by animated
diagrams and then change to Mode 7 for a quiz.
Each wrong answer 1loses 1 mark and if the final
score is less than 7 the section will repeat.
This level can obviously be varied either way.
640-1100 Second quiz loop.
1120-1420 Third gquiz loop.
1430-1880 Fourth quiz loop.
1890-1920 End of the sequence.
1930-3870 Procedure and function definitions:
The main drawing procedures are ‘spectrum’,
“draw_levels’ and ‘transition’. In
PROCspectrum 1line 2030 works out the minimum
frequency for the series (specified by the
quantum number of its lowest level) and uses
this to position the spectrum on the screen.
Line 2060 scales the X coordinates to suit the
screen width. Lines 2080 and 2090 position
and print the “fmin’” value, the second line
producing the ’superscript’ (defined in lines

270-290). PROCdraw_levels constructs the
energy-level diagram and is fairly
straightforward. The FOR loop in lines
3060-3110 wuses the energy-level values in the
array 'Energy() together with the scale
factor ‘Vscale’ to draw a series of correctly
spaced ‘rungs’ or energy levels. Line 3070

prints the quantum number, provided that the
levels are not too close together. The two

Simulations, Demonstrations and Tutorials 79

parameters of PROCtransition specify the two
energy levels between which an arrow will be

drawn. The arrow points down if the second
energy level is lower than the first and vice
versa. The X coordinate of the arrow is also

made to depend on the energy-level difference,
so that the series of 1lines will be spread
across the diagram (see line 2150). Line 2170
takes care of drawing the arrow head, using
relative drawing (PLOT1).

The second parameter of PROCquiz specifies
which set of DATA statements 1is to be used,
selected by the ON...GOTO and RESTORE
statements in lines 2740-2780. I apologise
for the GOTOs here but at least they do not go
too far! By spacing the DATA lines
appropriately it would have been possible to
use a computed restore statement (such as
RESTORE 2500+30*quiz_num%) but this has the

disadvantage of not being renumberable. The
rest of this procedure consists of an outer
"FOR Q%... 1loop which reads the question and

the number of answers. The latter is used to
set the final value for an inner 'FOR A%...°~
loop which reads and prints the answers. The
correct answer number 1is then read and FNask
returns a TRUE result only if the correct
answer 1is selected. The loop in lines
2930-2980 repeats until the correct answer is
given. In FNask line 2420 sets up ‘key$ to
contain the allowed keys for a particular
question. Thus if a question allows three
answers, Kkey$ will be set to "123" whereas if
five answers were allowed it would contain

"12345". Lines 2430-2450 will thus accept
only one of the allowed keys and line 2460
highlights the chosen answer. Line 2470

checks if the key pressed was the correct one
and sets the result to TRUE or FALSE

accordingly.

PROCgraph is called by a section of the main
program (1610-1730) that illustrates the
difference in frequency between each pair of
spectral lines. It does this by drawing a
horizontal line between them. The X

coordinates of the 1left and right spectral
lines (X1 and X2, respectively) are calculated
in lines 1650 and 1660. The line is drawn in
line 1680 and erased by over-drawing it (1720)
in logical inverse mode. If the lines are not
too close together, line 1690 will label the

80 A Science Teacher's Companion to the BBC Microcomputer

difference frequency ‘delta f°, using the
‘"delta’” character defined earlier (260). When
the various values of ’delta f have been
shown, PROCgraph is called to draw the ’delta
f° wversus ‘f° graph. It does this by drawing
‘the difference line as before, moving this
down to the bottom of the screen and then
rotating it through 90 degrees around the
left-hand end, using FNrotate. Thus the top
of the 1line becomes the ’delta f~° value
plotted against the frequency of the lower
frequency spectral line. The ‘delta f values
returned by FNrotate are stored in the array
‘delta_f ()"~ and used in the FOR loop in lines
3680-3710 to join the points of the graph.
Line 3730 extrapolates the graph to find the
convergence limit (the frequency at which
‘delta f becomes zero).

Modifications

You can easily change the questions or increase their
number, provided that you adhere to the correct format.
This consists of the question, the number of possible
answers, each of these answers and finally the number
of the correct answer. Owing to the layout of the quiz
screen, each question and answer is really limited to
one line but you could try changing the quiz routine to
allow a longer text. See line 2820, for example, where
the extra line-feed characters (7) could be removed,
but you will need to change the highlighting in 1line
2460, otherwise the highlight codes will be printed on
the wrong line.

With more questions you could be more precise in
your diagnosis of where the student is having problems
in understanding the material, and redirect the program
to a specific section or to an extra HELP routine. The
amount of remaining memory is fairly limited so do not
attempt to add too much more, unless you have a disk
system which could be used to chain in extra routines
as needed.

PREDATOR/PREY RELATIONSHIPS ("POPULATE")

This program simulates the growth and decay of
populations of two interdependent “species’: a prey and
a predator. Graphs of the numbers of each population
are drawn, using a Mode 1 colour display. 1In the
absence of the predator it is assumed that the prey’s
growth would be able to continue unchecked, apart from
their natural death rate. 1In other words, there is an

Simulations, Demonstrations and Tutorials 81

unlimited supply of food. The predator species depends
solely for its food on the prey, so its growth rate
will depend on how many prey are available to them.
This depends on the number of prey and how “available’
they are: the predation rate. The various rate
constants that control the birth and death rates of
each species are REM'd and could be altered, if
desired. At the moment the only user control is over
the time at which the predator species 1is introduced
into the colony of prey, which have been growing
unchecked since the start of the simulation. Even this
simple control produces numerous points for discussion
but further control could be introduced, for example by
allowing the birth/death and predation rates to be
altered. These are all very sensitive though, a small
change in one of the values creating a strong effect on
the resulting graph.

Listing "POPULATE"

0 REM "*** POPULATE ***

20 MODE 1

30 :

40 ON ERROR MODE 7:END

50 :

60 N1=5000:REM "** Initial no of prey
70 N2i=200:REM "** Initial no of pred.
80 N2=0

100 REM "** Set up rate constants **

110 REM "** Are VERY sensitive so **

120 REM "** handle with care !! *x

130 :

140 K1=0.015:REM "** prey birth rate

150 K2=2E-5:REM "** predation rate

160 K3=0.009:REM "** prey death rate

170 K4=0.022:REM "** pred. birth rate

180 K5=0.025:REM "** pred. death rate

190 :

200 INPUT "Time at which predator will be inserted

(try values around 100-400) ", startg

210 CLS

220 :

230 vDU 19;4;0;19,1;0;0,19,2,11;0;0

240 VDU 23;10,32,0;0;0;0;

250 VDU 23,224,24,60,90,153,24,24,24,24

260 :

270 REM "** Draw and label axes **

280 PRINT TAB(24,0);"prey":COLOUR 1:PRINT TAB(24,1)
"pred."

290 MOVE 0,0:DRAW 1279,0

300 MOVE 0,0:DRAW 0,1023

310 VDU 5:MOVE 32,1000:PRINT "Number/100"

320 MOVE 1100,32:PRINT "Time"

330 GCOL 0,1:MOVE 32,936 :PRINT "Number"

340 VDU 4

350 :

360 X=0

370

380 :

390 REM "** Main Loop **

400 REPEAT

410 eaten=K2*N1*N2:births=K1*Nl:deaths=K3*N1l

420 N1=Nl+births-eaten-deaths

430 IF N1<1 THEN N1=0

82 A Science Teacher’'s Companion to the BBC Microcomputer

440 IF X>start$% THEN N2=N2+K4*eaten-K5*N2

450 IF X=start% THEN N2=N2i:SOUND 1,-15,150,2:
VDU 5:MOVE start%,32:PRINT CHRS$ 224;" Pred.":
VDU 4

460 IF N2<1 THEN N2=0

470 IF X MOD 4=0 THEN GCOL 0,3:PLOT 69,X,N1/100:
IF X>=start% THEN GCOL 0,1:PLOT 69,X,N2

480 COLOUR 3:PRINT TAB(30,0);INT (N1);" "
COLOUR 1:PRINT TAB(30,1);INT (N2);" "

490 X=X+1

500 UNTIL X>=1280

510 COLOUR 2

520 PRINT TAB(10,4)"Another run (Y/N) 2"

530 SOUND 1,-15,220,2

540 AS$=GETS

550 IF A$="Y" OR A$="y" THEN RUN

560 MODE 7

570 END

Program Description

There are no prccedures or functions used 1in the
program. After the rate constants are set up, in lines
140-180, the delay before inserting the predators is
input. If a short time is selected the prey may not
have reproduced in sufficient numbers to support the
initial number of predators so the prey, and
consequently the predators, may die out. Conversely if
a longer delay is selected the prey will reach a much
larger population, the predators population will grow
rapidly and large oscillations in the two population
curves will result. This predicted result is observed,
in the laboratory, with real specimens.

The main part of the program is the REPEAT loop in
lines 400 to 500. Each time around this 1loop, the
numbers of prey that are eaten, die naturally or are
born are calculated from the number that were present
from the previous iteration round the 1loop (410).
These figures are used to calculate the new number of
prey (line 420) and this will become the value for the
next iteration. Lines 440 and 450 ensure that the
predators are not introduced into the equations until
the specified time (start%). When this time has been
reached, 1line 450 introduces the initial number of
predators, N2i, set up in 1line 70. Line 440 will
calculate the number of predators each time round the
loop, in a similar way to that for the prey. When the
edge of the screen is reached you are asked whether you
want another run (520), and pressing 'Y or “y~ will
allow another simulation to be carried out.

Modifications

Some suggestions have already been made and perhaps a
technique similar to that in "SHM", PROCkey_check
(lines 650-950), could be used to manage the control of
the various variables that you want to alter. A
further suggestion, for Model A owners, is to change

Simulations, Demonstrations and Tutorials 83

the MODE 1 statement (line 20) to MODE 5 to allow the
program to run. You will need to redesign the text
layout to allow for the different row and column
arrangement of this mode.

ELECTROLYSIS OF WATER ("H20")

This Model B program provides the chemistry teacher
with an animated diagram that should help students to
understand the concepts underlying the electrolysis of
water. Once the practical work has been completed this
program will support the explanation of the results in
terms of ionic movement. There are, of course, a
number of competing theories that ‘explain’ the
electrolysis of water, but this program is based on the
electrode reactions

40H - 4e-——a-2H20 + O2 at the anode and

4H+ + 4de ——>2H2 at the cathode

Thus, when the program is run, two hydrogen ions
will be seen to travel to the cathode for every volume
of hydrogen gas released. At the anode four hydroxyl
ions will have to travel across before one volume of
oxygen 1is evolved. The movement of electrons in the
external circuit is also shown. It is intended that
the teacher will provide a running commentary as the
program runs. (The “switch’ can be opened to pause the
program if desired.)

Listing "H20"

10 REM "Program: H20

20 REM "Started: 1/6/84

30 REM "Version: 1.1

40 REM "Subject: Chemistry

50 REM "Topic : Electrolysis of Water
60 REM "Level : CSE/O

70 REM "Author : P.D.Hawthorne

80 :

90 ON ERROR IF ERR =17 THEN MODE 7:END ELSE MODE 7:

REPORT :PRINT " at Line ";ERL :END

100 :

110 MODE 1

120 vDU 19,2,4;0;

130 :

140 PROCcharacters

150 PROCinit

160 PROCdiagram

170 :

180 REPEAT

190 :
200 REPEAT

210 switch%=INKEY (-83)
220 UNTIL switch%<>0

84 A Science Teacher's Companion to the BBC Microcomputer

230 :

240 REM " ‘Close switch’

250 GCOL 0,0:MOVE 510,200:DRAW 540,240

260 GCOL 0,3:MOVE 510,200:DRAW 540,200

270 :

280 REPEAT

290

300 PROCmove_ions

310 :

320 IF Hlevel<835 AND Hlevel>830 AND NOT labelled
THEN labelled=TRUE :GCOL 0,3:MOVE 900,900:
PRINT "<--HYDROGEN":MOVE 100,960:PRINT "OXYGEN-->"

330 :

340 switch%=INKEY (-55)

350 :

360 UNTIL Hlevel<612 OR switchg
370 :

380 REM " ‘Open switch’

390 GCOL 0,0:MOVE 510,200:DRAW 540,200
400 GCOL 0,3:MOVE 510,200:DRAW 540,240
410 :

420 IF switch% THEN UNTIL FALSE

430 :

440 rerun=FNanother

450 IF rerun THEN RUN ELSE MODE 7:END
460 :

470 END

480 :

490 :

500 DEF PROCcharacters

510 VDU 23,224,28,62,127,127,127,62,28,0
520 vpu 23,225,0,0,24,24,0,0,0,0

530 H$S=CHRS$ 18+CHRS$ 0+CHR$ 1+CHRS$ 224
540 OX$=CHRS$ 18+CHR$ 0+CHRS$ 3+CHR$ 224+CHR$ 225
550 ENDPROC

560 :

570 DEF PROCinit

580 Hlevel=960:0level=960

590 XH%=646:X0%=614

600 XL%$=430:YL%=400

610 XR%$=690:YR%=190

620 Hion%=1:0Hion%=1

630 labelled=FALSE

640 ENDPROC

650 :

660 DEF PROCdiagram

670 :

680 VDU 5

690 GCOL 0,3

700 :

710 MOVE 300,600

720 DRAW 300,300:DRAW 1000,300:DRAW 1000,600
730 GCOL 0,2

740 :

750 FOR Y$%=550 TO 300 STEP -4

760 PLOT 77,640,Y%

770 NEXT Y%

780 :

790 PROCtube(400,500)

800 PROCtube(750,500)

810 GCOL 0,3

820 MOVE 475,600:DRAW 475,200

830 DRAW 510,200:DRAW 540,240

840 MOVE 540,200:DRAW 630,200

850 MOVE 630,240:DRAW 630,160

860 MOVE 825,600:DRAW 825,200

870 DRAW 670,200:MOVE 670,220:DRAW 670,180
880 :

890 MOVE XO%,400:PRINT OX$:MOVE XO%,368:PRINT HS
900 MOVE XH%,400:PRINT HS$

910 :

920 GCoOL 0,3

930 PROClabels

940 MOVE 0,896:VDU 225

950 MOVE 0,832:PRINT OX$:MOVE 0,800:PRINT HS$
960 MOVE 0,736:PRINT HS$

970 GCOL 0,3:MOVE 0,672:PRINT "O"

980 GCOL 0,1:MOVE 0,608 :PRINT "O"

990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270

1280
1290

1300
1310
1320
1330
1340
1350

1360
1370
1380
1390
1400
1410

1420

1430
1440
1450

1460

1470
1480
1490
1500
1510
1520
1530
1540
1550

1560

1570
1580
1590
1600
1610
1620
1630
1640
1650
1660

Simulations, Demonstrations and Tutorials

ENDPROC

DEF PROCtube(X%,Y%)

len%=475:width%=150

GCOL 0,3

MOVE X%,Y%:DRAW X%,Y%+len%

DRAW X%+width%,Y%+len%:DRAW X%+width%,Y$
GCOL 0,2

top=Y%+leng

FOR H%=top TO Y% STEP -4
PLOT 77,X%+width%/2,H%
NEXT H%

ENDPROC

DEF PROClabels
RESTORE 1270

REPEAT

READ label$,X%,Y%

MOVE X%,Y%:PRINT label$
UNTIL label$=""

ENDPROC

DATA Cell,600,140,+,590,240,Anode----— >,120,500,<-
----Cathode, 840,500

DATA <---Water,900,350,"Press C to Close, O to
Open switch",160,64

DATA "e-",60,896,"OH-",60,800,"H+",60,736,"0 atom"
,60,672,"H atom",60,608,"",0,0

DEF PROCmove_ions

GCOL 0,2

MOVE XH%,400:VDU 224

MOVE XO0%,400:VDU 224 :MOVE X0%,368:VDU 224:

MOVE X0%+32,400:VDU 225

XH$=XH%+4

X0%=X0%-4

MOVE XH%,400:PRINT HS$

MOVE X0%,400:PRINT OX$:MOVE XO%,368:PRINT HS$

*FX19

IF XH%>780 AND Hion%=1 THEN MOVE 780,432:PRINT HS$:
GCOL 0,2:MOVE 780,400:VDU 224:PROCelectron

IF XH%>780 AND Hion%=2 THEN MOVE 780,400:PRINT HS:
PROCelectron

IF OHion%=4 AND X0%<480 THEN PROCO2

IF Hion%=2 AND XH%>780 THEN PROCH2

IF XH%>780 THEN XH%=646:Hion%=Hion%+1:IF Hion%=3
THEN Hiong=1

IF X0%<480 THEN X0%=614:0Hion%=OHion%+1:IF OHion%=
5 THEN OHiong%=1

ENDPROC

DEF PROCH2

step=8

GCOL 0,2:MOVE 780,432:VDU 79

MOVE 780,400:VDU 79

FOR Y%=432 TO Hlevel STEP step

GCOoL 0,1:MOVE 780,Y%:VDU 79:MOVE 780,Y%-32:

vDU 79

GCOL 0,2:MOVE 780,Y%-step:VDU 79:MOVE 780,Y%-32-st
ep:VDU 79

NEXT Y%

MOVE 780,Y%-step:VDU 79
MOVE 780,Y%-32-step:VDU 79
GCoL 0,0

FOR Y%=top-4 TO Hlevel STEP -4
MOVE 754,Y%:DRAW 896,Y%
NEXT Y%

85

86 A Science Teacher's Companion to the BBC Microcomputer

1670 Hlevel=Hlevel-16
1680 ENDPROC

1690 :

1700 DEF PROCO2
1710 step=8
1720 :

1730 FOR Y%=432 TO Olevel STEP step

1740 GCOL 0,3:MOVE 480,Y%:VDU 79:MOVE 480,Y%-32:
vDU 79

1750 GCOL 0,2:MOVE 480,Y%-step:VDU 79:MOVE 480,Y%-32-st
ep:VDU 79

1760 NEXT Y%

1770 :

1780 MOVE 480,Y%-step:VDU 79

1790 MOVE 480,Y%-32-step:VDU 79

1800 GCOL 0,0

1810 :

1820 FOR Y%$=top-4 TO Olevel STEP -4

1830 MOVE 404,Y%:DRAW 546,Y%

1840 NEXT Y%

1850 :

1860 Olevel=0Olevel-16

1870 ENDPROC

1880 :

1890 DEF PROCelectron

1900 :

1910 IF OHion%=2 THEN GCOL 0,3 :MOVE 480,432:VDU 79

1920 GCOL 0,2:MOVE 508,400:VDU 225

1930 IF OHion%=2 THEN GCOL 0,2:MOVE 476,400:VDU 224:
MOVE 476,368:VDU 224

1940 IF OHion%=4 THEN GCOL 0,2:MOVE 476,400:VDU 224:
MOVE 476,368:VDU 224

1950 IF OHion%=4 THEN GCOL 0,3:MOVE 480,400:VDU 79

1960 :

1970 REPEAT

1980 GCOL 0,3:MOVE XL%,YL%:VDU 225

1990 IF YL%<304 THEN col$%=0 ELSE IF YL%=308 col%=3
ELSE col%=2

2000 GCOL 0,col%:MOVE XL%,YL%:VDU 225

2010 IF YL%<=190 THEN XL%=XL%+4 ELSE YL3%=YL%-4

2020 GCcoL 0,3 :MOVE XR%,YR%:VDU 225

2030 IF YR%<314 THEN col%=0 ELSE IF YR%=314 colg%=3
ELSE colg=2

2040 GCOL 0,col%:MOVE XR%,YR%:VDU 225

2050 IF XR%<=830 THEN XR%=XR%+4 ELSE YR$=YR%+4

2060 UNTIL XL%>=610

2070 :

2080 GCOL 0,col%:MOVE XL%,YL%:VDU 225

2090 XL%=430:YL%=400

2100 XR%=680:YR%=190

2110 IF Hion%=1 THEN GCOL 0,2:MOVE 780,432:VDU 224:
GCoL 0,1:MOVE 780,432:VDU 79

2120 IF Hion%=2 THEN GCOL 0,2:MOVE 780,400:VDU 224:
GCOL 0,1:MOVE 780,400:VDU 79

2130 :

2140 ENDPROC

2150 :

2160 DEF FNanother

2170 :

2180 COLOUR 130:COLOUR 3

2190 VDU 4

2200 PRINT TAB(4,31);"Do you want to re-run this (Y/N)?

",
7

2210 :

2220 REPEAT

2230 AS=GETS

2240 UNTIL AS$="Y" OR AS$="N"

2250 :

2260 IF A$="N" THEN =FALSE
2270 :

2280 VDU 5

2290 =TRUE

Simulations, Demonstrations and Tutorials 87

PROC/FN List

500

570

660

1020

1170

1310

1490

1700

1890

2160

PROCcharacters sets up the user-defined
characters and strings needed to print
the various ions and electrons.

PROCinit sets initial values for various
variables.

PROCdiagram draws the diagram of a
simplified Hofmann voltameter.

PROCtube is used to draw and fill the test
tubes that collect the evolved gases. The
parameters give the position of the
bottom left-hand corner of the tube.
PROClabels reads and prints labels for the
diagram from data statements.

PROCmove_ions animates the ionic and
electronic movement.

PROCH2 moves the hydrogen molecule from the
cathode to the top of the tube and lowers
the water level appropriately.

PROCO2 does the same for oxygen. Be
careful, when typing in the program, to
distinguish the letter "0 from the numeral
-

PROCelectron displays the movement of
electrons, received at the anode from the
cathode, via the electrical cell.

FNanother asks if you want to re-run the
program and returns a TRUE value if you
answer ‘Y’, a FALSE value otherwise.

Program Description

140-160

180-420
200-220

280-360

500-2290

Set up characters, initial variable values
and draw the diagram.
Main loop.
Inner loop to wait for 'C”° to be pressed -
close switch to start. (250 erases the
open switch and 260 redraws it 1in the
closed position.)
The animation loop which moves the ions and
checks for the 0" (off) key being pressed
(line 340). This loop ends if either 0~
is pressed or a certain volume of hydrogen
has been evolved (line 360).
Procedure/Function definitions.:
In PROCcharacters note that H$ and OXS$
include GCOL statements wusing the VDULS8
equivalent (lines 530 and 540). Thus
these strings include the colour control
commands. Most of PROCdiagram and
PROCtube just consists of move and draw
statements but note the use of the fill

88 A Science Teacher’'s Companion to the BBC Microcomputer

command: PLOT77,X,Y. This fills across
the screen either side of the point (X,Y)
until it detects a non-background colour:
in this case the ’side’ of the tube or
container. Incidentally, this command 1is
not available on the 0.1 operating system.
You may wish to modify the program to deal
with other electrolytes, though this will
be fairly difficult, so I will explain the
ion-movement procedure in some detail.
Lines 1330-1350 erase the ions from their
previous positions (the ‘water is colour
2, redefined to blue earlier). ‘XH% *~ and
‘X0%~ are the X coordinates of the
hydrogen and hydroxyl ions, so lines 1360
and 1370 calculate the new values and
lines 1380 and 1390 plot them. Lines 1410
and 1420 deal with the arrival of hydrogen
ions at the cathode and the corresponding
electron movement (‘Hion% is the number

of hydrogen ions collected - two are
required to produce one molecule of
hydrogen gas, hence line 1440). ‘OHiong%’

counts the arrival of hydroxyl ions and
line 1430 evolves oxygen when four have
reached the anode. Lines 1450 and 1460
reset the 1initial positions of the ions
(in the centre) and the values of the ion
counters. Thus for a reaction with
different stoichiometry you will need to
alter the number of ions counted before
evolution of gases, and also the reset
lines (that is, look at lines 1410-1460).

Modifications

As mentioned above, it would be possible to modify the
program to represent other reactions, though this would
require some work. In addition to the lines mentioned,
you should also note lines 1910-1950 which deal with
the anode reaction. In particular note lines 1910 and
1950 which print a white 'O° to represent one oxygen
atom produced for every two hydroxyl ions. (VDU79 is
equivalent to PRINT CHR$(79); and 79 is the ASCII code
for “0°.) One way to gain an understanding of this, or
any program, is to play around with it and observe what
happens - after saving the original version of course!

PERIODIC TABLE ("P_TABLE")

This 32K program could be wused at various levels,
perhaps by the teacher to illustrate some of the

Simulations, Demonstrations and Tutorials 89

underlying patterns of the Periodic Table, by the
students for revision purposes, and, if developed, as a
CAL package on the elements and periodicity. I
originally planned to include more illustrations of
patterns and periodicity and I would have liked to have
had included some questions. However, the constraints
imposed by the MODE 1 graphics limited this, though
there is plenty of data already included, not all of
which 1is wused. If you have a disk-based system, a
useful idea would be to use this program as the basis
of a sequence of shorter programs which could be
automatically ‘chained’” as needed. This would enable a
more thorough treatment while remaining within the
memory limitations.

Listing "P_TABLE"

10 REM "Program: P_TABLE

20 REM "Started: 26/5/84

30 REM "Subject: Chemistry

40 REM "Topic : Periodic Table

50 REM "Level 0/A

60 REM "Author P.D. Hawthorne

70 MODE 1

80 vpU 19,0,2;0;19,1,0;0;

90 : .

100 PROCset_up
110 :

120 PROCprompt("Here’s a grid for the elements....",27)
130

140 PROCdraw_grid (1) :PROCspc

150 PROCprompt ("Now we can number each square.",29)
160 GcoL 0,1

170 :

180 FOR 2%=1 TO 99

190 PROCfind_square(Z%)

200 PROCprint(STRS (2%),X%,Y%)

210 NEXT 7%

220 :

230 PROCspc:PROCcl

240 PROCprompt("Let ‘s replace each number with",27)
250 PROCprompt("the symbol of an element...",29)

260 PROCspc:PROCcl

270 COLOUR 0:COLOUR 131

280 PROCprompt("HOLD DOWN ANY KEY TO SPEED THIS UP",28)
290 GCOL 0,3

300 RESTORE 3190

310 :

320 FOR 2%=1 TO 103

330 READ S$

340 PROCfind_square(z%)

350 GCOL 0,0:PROCprint(STRS (Z%),X%,Y%)

360 GCOL 0,3:PROCprint(S$,X%,Y%)

370 A=INKEY (100)

380 NEXT 2%

390 :

400 PROCcl

410 PROCprompt("This arrangement is known as",27)

420 PROCprompt("the PERIODIC TABLE of the elements",29)
430 PROCspc:PROCcl

440 PROCprompt("You may be wondering why the",27)

450 PROCprompt("elements have been placed in",28)

460 PROCprompt("this particular order.",29)

470 PROCspc:PROCcl

480 PROCprompt("This was done so that elements",27)
490 PROCprompt("with similar properties would",28)

500 PROCprompt("come together in vertical GROUPS.",29)
510 PROCspc:PROCcl

520 PROCprompt("For example, GROUP I: the ALKALI METAL
s",27)

90 A Science Teacher's Companion to the BBC Microcomputer

530
540
550
560
570
580
590

600
610
620
630

640
650

660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960

970

980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150

1160
1170
1180
1190
1200
1210
1220
1230

PROCprompt("are all soft,silvery-white metals",28)
PROCprompt ("that are very active chemically.",29)
PROCshow(2,"1",TRUE)

PROCspc:PROCcl

PROCshow(2,"1",FALSE)

PROCprompt ("The 6 elements of Group O are",27)
PROCprompt("all gases which are very unreactive.",
28)

PROCshow(2,"8",TRUE)

PROCspc:PROCcl

PROCshow(2,"8",FALSE)

PROCprompt ("Although group members have similar",2
7)

PROCprompt ("properties there are also TRENDS",28)
PROCprompt ("in these properties within the group."
,29)

PROCspc: PROCc1

PROCprompt ("For example, the ATOMIC RADIUS",28)
RESTORE 3300 :GCOL 0,1:PROCradii

PROCspc

RESTORE 3300 :GCOL 0,0:PROCradii

GCOL 0,3

PROCc1

PROCprompt ("These GROUPS are now being",27)
PROCprompt ("shown on the Periodic Table above.",29)
FOR group=1 TO 8

PROCshow(2,STR$ (group),TRUE)

COLOUR 2

PROCprompt ("GROUP "+group$ (group),1l)

PROCspc

COLOUR 0:PROCprompt(spc$,1)

PROCshow(2,STRS (group),FALSE)

NEXT group

PROCcl

PROCprompt ("There are also trends in the",27)
PROCprompt ("properties across the rows or",28)
PROCprompt ("PERIODS of the table",29)
PROCspc:PROCc1

PROCprompt ("The plot above shows the",27)
PROCprompt ("variation of ATOMIC RADIUS across",28)
PROCprompt("Period 2.",29)

RESTORE 3310 :GCOL 0,1:PROCradii

PROCspc:PROCcl

PROCprompt ("Across a period electrons are being",2
6)

PROCprompt("added to a given shell but the nuclear
",27)

PROCprompt("charge is increasing, giving a",28)
PROCprompt ("greater attraction and a smaller radiu
s",29)

PROCspc

RESTORE 3310 :GCOL 0,0:PROCradii

PROCcl

PROCprompt ("The horizontal PERIODS are now",27)
PROCprompt ("being shown on the periodic table",29)
FOR period=1 TO 7

COLOUR 2

PROCprompt ("PERIOD "+STR$ (period),l)
PROCshow(1,STR$ (period),TRUE)

PROCspc

COLOUR 0:PROCprompt (spc$,1)

PROCshow(1,STR$ (period),FALSE)

NEXT period

PROCcl

COLOUR 3:PROCprompt ("Other groupings can also
be",27)

PROCprompt("noted, as in the examples above.",29)
COLOUR 2

PROCprompt ("METALS", 1)

PROCshow(3,"M",TRUE)

PROCspc

COLOUR 0:PROCprompt (spc$,1)
PROCshow(3,"M",FALSE)

COLOUR 2

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010

Simulations, Demonstrations and Tutorials

PROCprompt ("TRANSITION METALS",1)
PROCshow(3,"T",TRUE)
PROCspc

COLOUR 0:PROCprompt (spc$,1)
PROCshow(3,"T",FALSE)
COLOUR 2
PROCprompt ("NON-METALS", 1)
PROCshow(3,"N",TRUE)
PROCshow(3,"H",TRUE)
PROCspc

COLOUR 0:PROCprompt(spc$,1)
PROCshow(3,"N",FALSE)
PROCshow(3,"H",FALSE)
COLOUR 2

PROCprompt ("NOBLE GASES",1)
PROCshow(3,"1",TRUE)
PROCspc

COLOUR 0:PROCprompt (spc$,1)
PROCshow(3,"I1I",FALSE)
COLOUR 3

PROCC1
PROCprompt ("THAT 'S THE END",28)
END

DEF PROCset_up

spc$=STRINGS (39," ")
S$=Il** "

REM "Set Flash Rates
*FX9,15

*FX10,15

DIM group$(8)

FOR G%=1 TO 8:READ group$(G%) :NEXT G%
ENDPROC

DEF PROCspc

LOCAL key

COLOUR 0:COLOUR 131

PROCprompt ("PRESS THE SPACE BAR TO CONTINUE",31)

SOUND 1,-15,150,2
REPEAT

*FX15,1

key=GET

UNTIL key=32
COLOUR 128:COLOUR 3
PROCprompt (spc$,31)
ENDPROC

DEF PROCdraw_grid(colour)
LOCAL X%,Y%

GCOL 0,colour

MOVE 64,896 :DRAW 64,450
MOVE 128,896 :DRAW 128,450
MOVE 192,832:DRAW 192,450
MOVE 256,704 :DRAW 256,450
MOVE 256,384 :DRAW 256,256
FOR X%=320 TO 1216 STEP 64
MOVE X$%,704:DRAW X%,512
MOVE X$%,384:DRAW X%,256
NEXT X%

FOR X%=832 TO 1216 STEP 64
MOVE X$%,832:DRAW X%,704
NEXT X%

MOVE 1152,832:DRAW 1152,896
DRAW 1216,896:DRAW 1216,832
FOR Y$=512 TO 704 STEP 64
MOVE 64,Y%:DRAW 1216,Y%
NEXT Y%

FOR Y$=768 TO 832 STEP 64
MOVE 64,Y%:DRAW 192,Y%
MOVE 832,Y%:DRAW 1216,Y%
NEXT Y%

FOR Y%=256 TO 384 STEP 64
MOVE 256,Y%:DRAW 1216,Y%
NEXT Y%

MOVE 64,896 :DRAW 128,896

91

92

A Science Teacher's Companion to the BBC Microcomputer

2020
2030
2040
2050
2060

2070
2080
2090
2100

2110
2120
2130
2140
2150

2160
2170

2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370

2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710

MOVE 64,448 :DRAW 256,448
ENDPROC

DEF PROCfind_square(2%)

IF Z2%>86 AND Z2%<90 THEN row%=7:column%=2%
MOD 87+1

IF 2%>54 AND Z$<58 THEN row%=6:column%=2%
MOD 55+1

IF 2%>36 AND Z%<55 THEN row$%=5:column%=2%
MOD 37+1

IF Z%$>18 AND Z%<37 THEN row$=4:column%=2%
MOD 19+1

IF 2%>10 AND Z%<19 THEN row%=3:column%=-(2%>12)*10
+Z% MOD 11+1

IF 2%=3 OR Z%=4 THEN row%=2:column$%=Z% MOD 3+l
IF 2%>4 AND Z%<11 THEN row%=2:column%=7%+8
IF Z%=1 THEN row%=l:column%=1

IF Z2%=2 THEN row%=1l:column%=18

IF 2%>57 AND Z%<72 THEN row%=9:column%=2%
MOD 58+5

IF 72%>89 THEN row%=10:column%=2% MOD 90+5
IF 2%>71 AND Z%<87 THEN row%=6:column%=27%
MOD 72+4

X$=FNxcoord(columng)

Y$=FNycoord (row%)

ENDPROC

DEF PROCprint(text$,X%,Y%)

VDU 5

MOVE X%,Y$%

PRINT text$

VDU 4

ENDPROC

DEF FNxcoord(R%)
=68+64*(R%-1)

DEF FNycoord(C%)
=(10-C%)*64+296

DEF PROCflash(Z$,on%)

LOCAL Z,P%,J%,K%,L%,sub$

IF on%=TRUE THEN GCOL 0,2 ELSE GCOL 0,3:REM "F1l
ash ON/OFF

VDU 19,2,0;0;:REM "col2=black

L%=LEN (2Z$)

FOR P%$=1 TO L%

K$=0:subs$=""

REPEAT
sub$=sub$+MIDS(Z2$,P%+K%,1)
K$=K%+1

UNTIL MIDS(Z$,P%+K%,1)="," OR K%$>L%
REM "Find data separator (comma)
P%$=P%+K$%

Z%$=VAL (sub$)
PROCfind_square(Z%)

RESTORE 3190

FOR J%=1 TO 2%

READ S$

NEXT J%

PROCprint (S$,X%,Y%)

NEXT P%

VDU 19,2,8;0;:REM "col2=flash b/w
GCOL 0,3

ENDPROC

DEF PROCprompt (text$,lines)
LOCAL L%

L%=(40-LEN (text$))/2
PRINT TAB(L%,line%);text$;
ENDPROC

DEF PROCcl
LOCAL L%
COLOUR 128

2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840

2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080

3090
3100
3110
3120
3130
3140
3150
3160
3170

3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310

Simulations, Demonstrations and Tutorials

FOR L%=26 TO 30
PROCprompt (spc$,L%)

NEXT

L%

COLOUR 3
ENDPROC

DEF PROCshow(P%,search$,on%)
LOCAL Z,2$

Z$=STRINGS (255,"*"):28=""
RESTORE 3080

FOR Z%=1 TO 103

READ

code$

IF MID$(code$,P%,1l)=search$ THEN Z$=Z$+STR$ (Z%)+

NEXT

2%

PROCflash(Z$,on%)
ENDPROC

DEF PROCradii

READ

N%,S%

FOR J%=1 TO N%

READ

Z%,R%

PROCfind_square(Z%)
PROCcircle (X%+30,Y%-6,R%/S%)

NEXT

J%

ENDPROC

DEF PROCcircle(X%,Y%,R%)
VDU 29,X%;Y%;
FOR A=0 TO 2*PI STEP PI /16

MOVE 0,0:MOVE R%*SIN (A),R%$*COS (A)

PLOT 85,R%*SIN (A+PI /16),R%*COS (A+PI /16)
NEXT A

VDU 26

ENDPROC

DATA I,II,III,IV,V,VI,VII,O

DATA
281IP
DATA
42MS
DATA
40TD
DATA
50TD
DATA
54MP
DATA
60TF
DATA
60TF
DATA
60TD
DATA
70TF
DATA
70TF
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
60

11NS,181IP,21MS,22MS,23NP, 24NP, 25NP, 26NP, 27HP,
31MS,32MS,33MP,34NP,35NP,36NP,37HP, 381P,41MS,
40TD,40TD,40TD,40TD,40TD,40TD,40TD,40TD,40TD,
43MP,44MP,45NP,46NP,47HP,481IP,51MS,52MS,50TD,
50TD,50TD,50TD,50TD,50TD,50TD,50TD, 50TD, 53MP,
55MP,56NP,57HP,581IP,61MS,62MS,60TS, 60TF, 60TF,
60TF,60TF,60TF,60TF,60TF,60TF,60TF,60TF, 60TF,
60TF,60TD,60TD,60TD,60TD,60TD,60TD,60TD,60TD,
63MP, 64MP,65MP,66MP, 67HP,681IP,71MS, 72MS, 70TF,
70TF, 70TF, 70TF, 70TF, 70TF, 70TF, 70TF, 70TF, 70TF,

70TF, 70TF, 70TF
H,He,Li,Be,B,C,N,0,F,Ne
Na,Mg,Al,si,P,S,Cl,Ar,K,Ca
sc¢,Ti,v,Cr,Mn,Fe,Co,Ni,Cu,Zn
Ga,Ge,As,Se,Br,Kr,Rb,Sr,Y,2r
Nb,Mo,Tc,Ru,Rh,Pd,Aqg,Cd, In,Sn
Sb,Te,I,Xe,Cs,Ba,La,Ce,Pr,Nd

Pm, Sm, Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb
Lu,Hf,Ta,W,Re,0s,Ir,Pt,Au,Hg
Tl,Pb,Bi,Po,As,Rn,Fr,Ra,Ac,Th
Pa,U,Np,Pu,Am,Cm,Bk,Cf,Es,Fm
Md,No,Lr
5,9,3,152,11,185,19,231,37,246,55,262
8,6,3,152,4,112,5,88,6,77,7,71,8,60,9,60,10,1

94 A Science Teacher’'s Companion to the BBC Microcomputer
PROC/FN List

1510 PROCset_up initialises a: few strings and
reads the group symbols (I,II etc.) into the
array ‘groupS$S() .

1610 PROCspc is the "Press space to continue"
routine.

1740 PROCdraw_grid draws the outline grid for the
Periodic Table.

2050 PROCfind_square(z%) locates the row and
column positions in the grid for an element
of atomic number ‘Z%° and calculates the
corresponding graphics coordinates using the
functions that follow.

2290 FNxcoord(R%) calculates the graphical X
coordinate of a character in row ‘R%°.

2320 FNycoord calculates the graphical Y
coordinate of a character in column °C%°.

2220 PROCprint(text$,X%,Y%) links the cursors and
plots the string in “textS$S .

2350 PROCflash is used to flash the sequence of

elements whose atomic numbers, each
separated by commas, are contained in the
parameter ‘zs 7. For example

PROCflash("12,13,19",TRUE) flashes elements
12,13 and 19. The ‘on% parameter is set to
FALSE if it 1is desired to "unflash" the
elements.

2630 PROCprompt(text$,line?) is the main
text-handling procedure, anda it prints the
string “text$’ centred on row ‘line%’.

2690 PROCcl clears the bottom five lines of the

screen. This 1is normally where text is
printed.

2780 PROCshow(P%,search$,on%) provides a more
convenient way of flashing specified

elements. They are specified in terms of
the codes stored as DATA in lines 3080-3180
- see below for an explanation.

2890 PROCradii displays the atomic radii of
elements in Period 2.

2980 PROCcircle(X%,Y%,R%) draws a filled circle,
centre (X%,Y%), radius R%.

Program Description

The program is essentially a sequence running from line
120 to line 1480. This prints various descriptions and
prompts, calling the procedures as needed. In
particular note lines 180-210, a FOR...NEXT loop which
finds the X,Y coordinates of the square for each
element (1 to 99) and prints its atomic number in the

Simulations, Demonstrations and Tutorials 95

square. The loop in lines 320-380 performs a similar
function, but prints the symbol °SS$’ of each element
(read in line 330 from the data in lines 3190-3290).
Line 350 first erases the atomic number.

1510-3050 Procedure/Function definitions:

The most complex of these are PROCflash and PROCshow.
In the first of these, lines 2410-2560 set up a loop
which searches through the string Z$ for each
occurrence of an atomic number. These are separated by
commas so the REPEAT loop (lines 2430-2460) wuses the
MID$ function (see User Guide, page 298) to search for
the "," characters within ZS$. The sub-string ‘sub$’
builds up the characters preceding the comma. When the
comma 1is found or the end of Z$ is reached (line 2460)
the position in the string, P%, is changed to point to
the next character after the comma (2480) and the value
of the sub-string (that is, the atomic number) is
extracted (2490). Lines 2510-2540 find the symbol
corresponding to the decoded atomic number and line
2550 prints it.

PROCshow also utilises PROCflash but enables more
complex sequences of elements to be highlighted easily.
For example, to flash the Group I elements would
require PROCflash("1,3,11,19,37,55,87",TRUE) which is
not very elegant. However, the DATA statements in
lines 3080-3180 contain information about each element
in the following, four character, code

PGCV
where
P = Period (for example, 1)
G = Group (for example, 3)
C = Character, (for example, M = Metal, H = Halogen,
N = Non-metal, I = Inert (noble) gas)
V = Valence ‘klock’ (for example, S, P, D, F).

Thus element number 3 has the code "21MS" indicating it
is Period 2, Group 1, is a metal and that the S orbital
is being filled. To flash all Group 1 elements now
requires only PROCshow(2,"1",TRUE) - see below for
explanation.

PROCshow can be wused to wutilise the information
contained in these codes. The first parameter, P%,
indicates which of the four codes we want to search and
the second parameter holds the value that we are
looking for (for example, P% = 1 searches the first
character - for Period - and search$ = "2" would select
all elements in period 2). The third parameter selects
flash on/off if set to TRUE/FALSE, respectively. The
amount of information in these codes can easily be
extended by using more characters as needed.

96 A Science Teacher's Companion to the BBC Microcomputer

Modifications

As mentioned above, you may like to extend the range of
the program by splitting it up into a number of other
programs which each chain each other. Although this is
possible with cassette, it is obviously more practical
on a disk system. You will need to retain the main
procedures and the data statements in each program
segment. The lines between 120 and 1480 would vary in
each part but the other lines would remain as listed
here. All segments, except the 1last one, would end
with, say

1480 CHAIN "pPT2"
where "PT2" is the file name for the next section.
PERIODICITY ("PERIOD")

This and the following program provide a convenient
means of plotting a wide range of data that varies
periodically with atomic number. The program covers
the first 18 elements and enables graphs to be drawn of
melting points, boiling points, densities, heats of
fusion and vaporisation, ionisation energies and atomic
radii. The graphs are selected from a menu and can be
overlaid if desired. The teacher can use these
programs to provide a basis of evidence to support the
Periodic Table arrangement. A Model B Microcomputer is
required.

Listing "PERIOD"

10 REM "Program: PERIOD

20 REM "Started: 18/5/84

30 REM "Version: 1.0

40 REM "Subject: Chemistry

50 REM "Topic : Periodicity

60 REM "Level : A

70 REM "Author : P.D. Hawthorne

90 MODE 7
110 PROCcentre("PERIODICITY",0,130,TRUE)

120 PROCcentre("This program allows various",7,134,0)
130 PROCcentre("properties of a number of elements",9,

134,0)

140 PROCcentre("to be plotted against their",11,134,0)

150 PROCcentre("atomic number (Z).",13,134,0)

160 PROCcentre("PRESS THE SPACE BAR TO CONTINUE",16,13
0,TRUE)

170 :

180 key=FNgetkey(" ")

190 :

200 PROCset_up

210 :

220 REPEAT

230 :

240 MODE 7

250 option=FNmenu

260 :

270 REM "Press "!" (SHIFT+"1") to END

280 IF option=8 THEN MODE 7:END

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540

550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890

900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030

Simulations, Demonstrations and Tutorials

PROCget_values(option)

MODE 1

vDU 19,0,4;0;19,1,2;0;

PROCaxes (number_of_elements)

COLOUR 131

PROCprompt ("PRESS SPACE BAR TO START PLOTTING",0)
key=FNgetkey(" ")

COLOUR 128

PROCprompt (spc$,0)

COLOUR 131

REPEAT
Gscale=FNsca1e(number_of_elements)

PROCcurs_off
PROCplot(option,number_of_elements,Vscale)
COLOUR 128

PROCprompt (spc$,0)

COLOUR 131

PROCcurs_on

PROCprompt ("Overlay another graph (Y/N)2",0)
key=FNgetkey("YyNn")

COLOUR 128

PROCprompt (spc$,0)

COLOUR 131

IF key<3 THEN option=FNanother:PROCget_values(opti
on)

ﬁNTIL key>2

UNTIL FALSE

END

DEF PROCset_up

spc$=STRINGS (39," ")

C%=3:REM "Resident plot colour
READ number_of_elements

DIM symbol$ (number_of_ elements)
DIM group$ (number_of_elements)
DIM value(number_of_elements)
DIM message$(7)

FOR M$=1 TO 7

READ messages$ (M%)

NEXT M$%

FOR group=1 TO number_ of_elements
READ group$ (group)
NEXT group

FOR Z=1 TO number_of_elements
READ symbol$(2)
NEXT 2

ENDPROC
DEF FNmenu

PROCcentre("VARIABLES",0,130,TRUE)

PROCcentre("You can plot any of the following:",3,
131,FALSE)

PRINT ~~

éOR J$=1 TO 7

PRINT 7;J%;". ";message$(J%)

NEXT J%

PROCcentre("Press 1,2,3,4,5,6 or 7 (! ENDS)",22,12
9,TRUE)

opt=FNgetkey("1234567!")

=opt

DEF PROCcentre(text$,rows,fgds,dbls)

LOCAL column$
column%=(40-LEN (text$))/2-2
text$=CHRS$ (fgds)+texts$

97

98

A Science Teacher’'s Companion to the BBC Microcomputer

1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

1260
1270

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

1640

1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760

IF dbl%=TRUE THEN text$=CHR$ 1l4l+text$

PRINT TAB(column$%,row$);text$;

IF dbl% THEN PRINT TAB(column%,row%+l);text$;
ENDPROC

DEF PROCprompt(text$,line%)
LOCAL L%

L$=(40-LEN (text$))/2
PRINT TAB(L%,line%);text$;
ENDPROC

DEF PROCaxes(xsteps)

VDU 29,16;164;

MOVE 0,0:DRAW 1200,0

MOVE 0,0:DRAW 0,736

VDU 5

z2=1

FOR X=0 TO 1200 STEP INT (1200/xsteps+.5)

MOVE X+1200/xsteps,0:DRAW X+1200/xsteps,-16
Z$=STRS$ (Z)

PLOT 0,-(32*LEN (symbol$(Z)))/2,-64:PRINT symbol$ (
Z)

MOVE X+1200/xsteps,-16

IF Z MOD 5=0 THEN PLOT 0,-(32*LEN (z$))/2,-16:
PRINT Z$

Z2=Z+1

NEXT X

VDU 4

FOR Y=0 TO 730 STEP 73
MOVE 0,Y:DRAW 8,Y

NEXT Y

COLOUR 131:COLOUR 1

PRINT TAB(34,28);"At.No";
ENDPROC

DEF FNscale(num_items)
min=value(l):max=min

FOR J%=1 TO num_items

IF value(J%)<min THEN min=value(J%)
IF value(J%)>max THEN max=value(J%)
NEXT J%

scale=736/(max-min)

VDU 29,16;164-min*scale;

=scale

DEF PROCplot(data_num,num_points,scale)
PROCprompt (message$ (data_num),2)
COLOUR 128

PRINT TAB(1,4);" "

COLOUR C%

PRINT TAB(1,4);STR$ (max);

COLOUR 1

GCOL 0,C%

C%=C%+1:IF C%=4 THEN C%=1

index=1

FOR X=0 TO 1200 STEP INT (1200/num_points+.5)
PROCplot_point (X+1200/num_points,scale*value(index
))

IF index<num_points THEN MOVE X+1200/num_points,sc
ale*value(index) :DRAW (X+2400/num_points),scale*va
lue(index+1)

index=index+1

NEXT X

ENDPROC

DEF PROCplot_point(X,Y)

MOVE X,Y

PLOT 0,-8,8:PLOT 1,16,-16

PLOT 0,0,16:PLOT 1,-16,-16

ENDPROC

DEF FNgetkey(key$)

1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240

2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530

Simulations, Demonstrations and Tutorials

LOCAL pos

REPEAT :pos=INSTR(key$,GETS)

UNTIL pos<>0

=pos

DEF FNanother

LOCAL key

PROCprompt("Press > for next item, P to piot it",0)
index=option

old_index=option

REPEAT

key=FNgetkey(".>Pp")

IF key<3 THEN index=index+l
IF index=8 THEN index=1
COLOUR 128

PROCprompt (spc$,2)

COLOUR 131

PROCprompt (messages$ (index),2)
IF index=old_index THEN VDU 7

UNTIL key>2

COLOUR 128:PROCprompt (spc$,31)
COLOUR 131
PROCprompt (message$ (old_index),31)

=index

DEF PROCget_values(data_index)
RESTORE (2340+60*data index)

FOR Z=1 TO number_of_elements
READ value(z)

NEXT Z

ENDPROC

DEF PROCcurs_off:vDU 23,1,0;0;0;0;:ENDPROC
DEF PROCcurs_on:VDU 23,1,1;0;0;0; :ENDPROC

REM "Number of elements in list
DATA 18

REM "Menu option messages

DATA Melting points (K),Boiling points (K)
DATA Density (kg/m3),Heat of Fusion (kJ/mole)
DATA Heat of Vaporization (kJ/mole),First ionizati
on energy (kJ/mole)

DATA Atomic radius (pm)

REM "Groups

DATA " "

DATA 0,I,II,III,IV,V,VI,VII

DpATA O0,I,II,III,IV,V,VI,VII

DATA 0

REM "Symbols

DATA H

DATA He,Li,Be,B,C,N,O,F

DATA Ne,Na,Mg,Al,Si,P,S,Cl

DATA Ar

REM "Melting Points (K)

DATA 14.01

DATA 0.95,452,1550,2600,3830,63.3,54.7,53.5
DATA 24.5,371,924,933.2,1680,317.2,386,172.1
DATA 83.7

REM "Boiling Points (K)

DATA 20.4

DATA 4.21,1590,1910,2820,5100,77.3,90.2,85.01
DATA 27.2,1165,1380,2740,2628,552,238.5

DATA 87.4

ﬁEM "Density (kg/m3 @ 293K)
DATA .09
DATA .166,534,1800,2500,2300,1.165,1.33,1.7

100 A Sci

2540
2550

2560 :

2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710

2720
2730
2740
2750
2760
2770

2780
2790

PROC/FN Li

620
860

1000

1090
1150
1390

1510
1700

1760
1820

2060

ence Teacher's Companion to the BBC Microcomputer

DATA 0.839,970,1741,2700,2300,1800,2070,3.21
DATA 1.66

REM "Heat of Fusion (kJ/mole)

DATA 0

DATA 0,3.0,11.7,22.2,60,.36,.22,.26

DATA .33,2.60,8.95,10.75,46.4,0.63,1.41,3.20
DATA 1.18

REM "Heat of Vaporization (kJ/mole)

DATA 0

DATA 0,135,295,539,717,2.8,3.4,3.3

DATA 1.8,89.0,128.7,293.7,376.7,12.4,9.6,10.2
DATA 6.5

REM "First Ionization Energy (kJ/mole)

DATA 1312

DATA 2373.7,520.1,899.3,800.7,1086.5,1402,1314.2,
680.9

DATA 2080.7,495.9,737.8,577.6,786.5,1011.8,999.6,
251.2

DATA 1520.6

REM "Atomic Radius (pm)

DATA 46

DATA 176,152,112,88,77,71,60,60
DATA 160,185,160,142,118,165,106,91
DATA 174

st

PROCset_up dimensions and sets up the arrays
holding the various data items.

FNmenu presents the plotting options and
gets the user s choice.
PROCcentre(text$,rows,fgd%,dbls) is for use
in Mode 7. It prints the supplied text on
the specified row, wusing the text colour
code given in “fgd%’ . If the final
parameter ‘dbl%” is TRUE then the text
appears in double height. The cursor will
be 1left at the printing position following
the end of the text.

PROCprompt, see previous program.

PROCaxes draws and labels the graph axes.
FNscale finds the minimum and maximum values
of the quantity to be plotted and calculates
a suitable scaling factor. It also sets the
graphics origin to a suitable point.
PROCplot draws the graph.

PROCplot_point produces a small cross at the
plotting point.

FNgetkey, see earlier.

FNanother allcws the user to select another
set of values for plotting, to be overlaid
on a previous graph.
PROCget_values(data_index) reads the set of
data selected by the parameter into an

Simulations, Demonstrations and Tutorials 101

array, value()’. The data will be obtained
from one of the lines 2400-2790.

2150,2160 PROCcurs_off and PROCcurs_on turn the
cursor on and off, respectively.

Program Description

Lines 110-160 print a title page and then the main loop
between 1lines 220 and 580 1is entered. This first
obtains the selected option for plotting (250) and
reads the selected data into the temporary array
‘value()” (line 290). This technique saves memory over
the alternative method which would read all the data
into separate arrays or one multi-dimensional array.
The data already occupies memory in the DATA statements
so there is no point in storing it all again in arrays.
The inner loop (400-560) carries out the plotting
(440), asks 1if an overlay is required (490, 500) and
gets the new option 1if required (540). The 1loop
repeats until you answer "N" to the ‘overlay prompt.

620-2160 Procedure/Function definitions

In PROCaxes lines 1160-1180 draw the X,Y axes and lines
1220-1290 mark off the X-axis sub-divisions and print
the element symbols. The routine will adjust itself if
you want to add more elements but the symbols will
start to overlap if too many are inserted. Lines
1320-1350 sub-divide the Y-axis.

PROCplot starts by indicating which data 1is being
plotted (1520) and prints the maximum value at the
appropriate place on the Y-axis. Line 1580 selects the
plot colour (C%) which is changed for each successive
graph (1590). The FOR...NEXT loop (1620-1660) moves
across the X axis in steps, the size of which depends
on the number of points to be plotted, and plots the
current data value contained in the ‘value’ array.
Line 1630 plots the point and line 1640 draws a line
from the current point to the next point if this is not
the last point.

FNanother allows a different set of data to be
selected by pressing ">°. This causes the program to
display the data titles in sequence (for example,
"Melting points", "Boiling points" etc.). When the

required one is shown you press P to plot it. The
function sets ’“index’ to the «current data ‘option”
value and also stores this value as ‘old_index’. The

REPEAT loop (1880-1990) waits for either of the allowed
keys to be pressed (1900) and increments “index’ if ">~
is pressed (1910). Line 1920 checks that ‘index has
not gone out of bounds and 1line 1960 prints the
corresponding data title. Line 1970 beeps every time
the old title is displayed (in case you forget what the

102 A Science Teacher’'s Companion to the BBC Microcomputer

graph is). When the ’‘plot’ command is given, the old
title (for the current graph) will be displayed at the
bottom of the screen (2020), leaving the new title at
the top of the screen. The function returns the final
value of “index’.

In PROCget_values, note the computed RESTORE (2070)
and, if you make any alterations, avoid renumbering the
program unless you want to recalculate the formula.

ELECTRON SHELLS ("SHELLS")

This program follows a similar format to the preceding
one but presents graphical data which provides evidence
for “shells” of electrons. The data that can be
plotted are the 1logs of the successive ionisation
energies of sodium and potassium and the first or
second 1ionisation energies of the first 54 elements.
It is again possible to overlay graphs but only the
first pair or the second pair can be overlaid on each
other. The program is intended for teacher
demonstration though it could also form the basis, with
a suitable worksheet, of a pupil-based investigation of
the included data.

Listing "SHELLS"

10 REM "Program: SHELLS

20 REM "Started: 20/5/84

30 REM "Version: 1.0

40 REM "Subject: Chemistry

50 REM "Topic : Electron Shells

60 REM "Level : A

70 REM "Author : P.D. Hawthorne
80 :

90 MODE 7

100 :

110 PROCcentre("ELECTRON SHELLS",2,131,TRUE)

120 PROCcentre("This program provides some evidence",6
,134,0)

130 PROCcentre("for ’‘shells’ of electrons.",8,134,0)

140 PROCcentre("This is based on the variation",10,134
,0)

150 PROCcentre("of ionization energies.",12,134,0)

160 PROCcentre("You should be familiar with the",14,13
4,0)

170 PROCcentre("program “H_SPECT which shows how",16,
134,0)

180 PROCcentre("these are obtained from the",18,134,0)

190 PROCcentre("convergence limits of spectra.",20,134
,0)

200 PROCcentre("PRESS THE SPACE BAR TO CONTINUE",23,13
1,TRUE) ’

220 éROCset_up

240 key=FNgetkey(" ")
250 :

260 REPEAT

270 :

280 MCDE 7

290 option=FNmenu

300 IF option=5 THEN MODE 7:END
310 MODE 1

320
330
340

360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640

650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950

960
970
980
990
1000
1010
1020
1030
1040

Simulations, Demonstrations and Tutorials 103

vDU 19,0,4;0;19,1,2;0;
IF option<3 THEN num_points=19:label$="Number
of electrons removed"
IF option>2 THEN num_points=number_of_elements:lab
el$="ATOMIC NUMBER"

PROCget_values(option,num_points)

PROCaxes (num_points,label$)

PROCprompt ("PRESS SPACE BAR TO START PLOTTING",0)
key=FNgetkey (" ")

COLOUR 128
PROCprompt (spc$,0)
COLOUR 131

Vscale=FNscale(num_points)

PROCcurs_off
PROCplot(option,num_points,Vscale)

COLOUR 128

PROCprompt (spc$,0)

COLOUR 131

PROCcurs_on

PROCprompt("Overlay another graph (Y/N)2",0)
key=FNgetkey ("YyNn")

COLOUR 128
PROCprompt (spc$,0)
COLOUR 131

IF key<3 THEN PROCgraph2

COLOUR 131
IF key<3 THEN PROCprompt ("PRESS SPACE BAR TO RETUR
N TO MENU",0):A=FNgetkey(" ")

UNTIL FALSE

END

DEF PROCset_up

spc$=STRINGS (39," ")

line$=CHRS 149+STRINGS$(35,CHRS 172)
C%=3:REM "Resident plot colour

READ number_of_elements

DIM symbol$ (number_of_elements)
DIM value(number_of_ elements)
DIM message$(4)

FOR M%=1 TO 4
READ message$ (M%)
NEXT M$%

FOR Z=1 TO number_of elements
READ symbol$(Z)
NEXT 2

ENDPROC

DEF FNmenu

PROCcentre("VARIABLES",0,130,TRUE)
PROCcentre("You can plot any of the following:",3,
131,FALSE)

PROCcentre(line$,5,129,0)

PRINT ~~

FOR J%=1 TO 4

PRINT “;J%;". ";message$(J%)

NEXT J%

PROCcentre(line$,18,129,0)

PROCcentre("Press 1,2,3 or 4 (! ENDS)",22,129,
TRUE)

104 A Science Teacher’'s Companion to the BBC Microcomputer

1050 opt=FNgetkey("1234:!")

1060 =opt

1070 :

1080 DEF PROCcentre(text$,row$,fgds,dbls)

1090 LOCAL columng

1100 column%=(40-LEN (text$))/2-2

1110 text$=CHR$ (fgds)+text$

1120 IF dbl%=TRUE THEN text$=CHR$ 141l+text$

1130 PRINT TAB(column%,row$);text$;

1140 IF dbl% THEN PRINT TAB(column%,row$+l);text$;

1150 ENDPROC

1160 :

1170 DEF PROCprompt(text$,line%)

1180 LOCAL L%

1190 L%=(40-LEN (text$))/2

1200 PRINT TAB(L$%,line%);text$;

1210 ENDPROC

1220 :

1230 DEF PROCaxes(xsteps,xlabel$)

1240 VDU 29,16;164;

1250 MOVE 0,0:DRAW 1270,0

1260 MOVE 0,0:DRAW 0,736

1270 :

1280 VDU 5

1290 z=1

1300 :

1310 FOR X=0 TO 1200 STEP INT (1200/xsteps+.5)

1320 MOVE X+1200/xsteps,0

1330 IF 2 MOD 5=0 THEN DRAW X+1200/xsteps,-24 ELSE
DRAW X+1200/xsteps,-16

1340 Z$=STRS (Z)

1350 MOVE X+1200/xsteps,-16

1360 IF Z MOD 5=0 THEN PLOT 0,-(32*LEN (2$))/2,-16:
PRINT Z$

1370 z=z+1

1380 NEXT X

1390 :

1400 VDU 4

1410 :

1420 FOR Y=0 TO 730 STEP 73

1430 MOVE 0,Y:DRAW 8,Y

1440 NEXT Y

1450 :

1460 COLOUR 131:COLOUR 1

1470 PROCprompt(xlabel$,29)

1480 ENDPROC

1490 :

1500 DEF FNscale(num_items)

1510 LOCAL J%

1520 :

1530 :

1540 min=value(1l):max=min

1550 :

1560 FOR J%=1 TO num_items

1570 IF value(J%)<min THEN min=value(J%)

1580 IF value(J%)>max THEN max=value(J%)

1590 NEXT J%

1600 :

1610 scale=736/(max-min)

1620 VDU 29,16;164-min*scale;

1630 =scale

1640 :

1650 DEF PROCplot(data_num,num_points,scale)

1660 PROCprompt(messages$(data_num),2)

1670 COLOUR 128

1680 PRINT TAB(1,4);" "

1690 COLOUR C%

1700 max=INT (max*100)/100

1710 PRINT TAB(1,4);STR$ (max);

1720 COLOUR 1

1730 GCOL 0,C%

1740 C%=C%+1:IF C%=4 THEN C%=1

1750 index=1

1760 :

1770 FOR X=1200/num_points TO 1200 STEP INT (1200/num_p
oints+.5)

1780 IF value(index)<>0 THEN PROCplot_point(X,scale*val
ue(index))

1790
1800

1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530

Simulations, Demonstrations and Tutorials 105

IF index>=num_points THEN 1820

IF value(index+1)<>0 THEN MOVE X,scale*value(index
) :DRAW (X+1200/num_pcints),scale*value(index+1)
index=index+1

NEXT X

ENDPROC

DEF PROCplot_point(X,Y)
MOVE X,Y

PLOT 0,-8,8:PLOT 1,16,-16
PLOT 0,0,16:PLOT 1,-16,-16
ENDPROC

DEF FNgetkey(key$)

LOCAL pos

REPEAT :pos=INSTR(key$,GETS)
UNTIL pos<>0

=pos

DEF FNanother

LOCAL old_index, index, key
old_index=option

IF option=1 THEN index=2
IF option=2 THEN index=1
IF option=3 THEN index=4
IF option=4 THEN index=3

COLOUR 128

PROCprompt (spc$,2)

COLOUR 131

PROCprompt (message$ (index),2)

COLOUR 128:PROCprompt (spc$,31)

COLOUR 131
PROCprompt (message$ (old_index),31)
=index

DEF PROCget_values(data_index,num_items)
ON data_index GOTO 2200 ,2210 ,2220 ,2230
RESTORE 2740 :GOTO 2250

RESTORE 2750 :GOTO 2250

RESTORE 2580 :GOTO 2250

RESTORE 2660 :GOTO 2250

FOR J%=1 TO num_items
READ value(J%)

NEXT J%

ENDPROC

DEF PROCgraph2

option=FNanother
PROCget_values(option,num_points)
Vscale=FNscale(num_points)
PROCplot(option,num_points,Vscale)

ENDPROC
DEF PROCcurs_off:VDU 23,1,0;0;0;0; :ENDPROC
DEF PROCcurs_on:VDU 23,1,1;0;0;0;:ENDPROC

REM "Number of elements in list

DATA 54

REM "Menu option messages

DATA lg(Ionization energies) of Sodium
DATA lg(Ionization energies) of Potassium
DATA lst ionization energies of elements
CATA 2nd ionization energies of elements
REM "Symbols

DATA H

DATA He,Li,Be,B,C,N,O,F

DATA Ne,Na,Mg,Al,Si,P,S,Cl

DATA Ar,k,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,2Zn,Ga,Ge,As
,Se,Br

106 A Science Teacher’'s Companion to the BBC Microcomputer

2540 DATA Kr,Rb,Sr,Y,Z2r,Nb,Mo,Tc,Ru,Rh,Pd,Aq,Cd,In,Sn,S
b,Te,I

2550 DATA Xe

2560 :

2570 REM "First Ionization Energy (kJ/mole)

2580 DATA 1312

2590 DATA 2373.7,520.1,899.3,800.7,1086.5,1402,1314.2,1
680.9

2600 DATA 2080.7,495.9,737.8,577.6,786.5,1011.8,999.6,1
251.2

2610 DATA 1520.6,418.8,589.8,631,658,650.3,652.9,717.4,
759.4,758.4,736.7,745.5,906.4,578.8,762.2,946.6,94
1,1140

2620 DATA 1351,403,549.5,615.6,660,664,685,702,712,720,
804.7,731,868,558.3,708.6,833.8,869,1008

2630 DATA 1170

2640 :

2650 REM "Second Ionization energy

2660 DATA 0

2670 DATA 5251,7298,1757,2427,2353,2856,3388,3374

2680 DATA 3952,4563,1451,1817,1577,1903,2251,2297

2690 DATA 2666,3051.5,1145.4,1235,1310,1413.6,1592.1,15
09.1,1561.2,1646,1753,1958,1733,1979,1537.5,1798,2
044.6,2103.5

2700 DATA 2350,2632,1064,1181,1267,1382,1558,1472,1617,
1745,1875,2074,1631,1821,1412,1595,1795,1846

2710 DATA 2047

2720 :

2730 REM "log of IE’'s (1 to 11) for Sodium

2740 DATA 2.70,3.66,3.80,4.00,4.14,4.24,4.29,4.45,4.49,
5.15,5.25,0,0,0,0,0,0,0,0

2745 REM "log of IE’s (1 to 19) for Potassium

2750 DATA 2.62,3.48,3.58,3.70,3.80,3.90,3.97,4.00,4.06,
4.50,4.56,4.62,4.70,4.76,4.80,4.84,4.88,5.40,5.50

PROC/FN List and Program Description

Many of the procedures are identical to, and some have
only slight differences, from those with the same name
in the previous program, so you can save yourself some
typing! FNanother does differ in that it only makes
sense to overlay certain of the graphs so the computer
automatically selects the other set of data from the
pair (see lines 2020-2050.)

PROCgraph2 is an extra procedure which controls the
plotting of the second graph, selecting the new option
via FNanother and getting the correct values and scale
factor (lines 2320 and 2330) before calling PROCplot to
actually draw the graph.

ATOMIC STRUCTURE ("ATOM")

This Model B program should prove useful in introducing

the ideas of atomic structure. It shows both the
structure of the nucleus (protons and neutrons) and the
orbital electrons for the first 20 elements. The

electrons fill up the shells in accordance with Hund s
rule. The symbol for the required element can be
entered or the program will display the next in
sequence if you just press <RETURN>. (After Calcium
has been displayed the program repeats the sequence

Simulations, Demonstrations and Tutorials 107

again starting with Hydrogen.) This allows the teacher
to demonstrate the way the electronic structure builds
up and he could correlate this with the idea of shells
and with the arrangement of the Periodic Table. The
program displays the symbol and atomic number of the
selected element so the connection with the number of
electrons/protons can be pointed out. The program
could be used by pupils to check electronic structures
that they have worked out themselves.

Listing "ATOM"

10 REM "Program: ATOM

20 REM "Started: 29/5/84

30 REM "Version: 1.0

40 REM "Topic Atomic Structure

50 REM "Level : O

60 REM "Author : P.D. Hawthorne
70 :

80 ON ERROR MODE 7:END

90 MODE 7

100 PROCcurs_off

110 :

120 vDU 31,14,10,134,141:PRINT "ATOMIC"

130 vDU 31,14,11,131,141:PRINT "ATOMIC"

140 vDU 31,13,12,130,141:PRINT "STRUCTURE"

150 vDU 31,13,13,132,141:PRINT "STRUCTURE"

160 :

170 PROCset_up

180 MODE 1

190 VDU 19,0,4;0;

200 :

210 PROCscreen

220 :

230 REPEAT

240 :

250 REPEAT

260 :

270 COLOUR 130:COLOUR 0

280 PROCcurs_on

290 *FX21,0

300 PRINT TAB(8,29);"Enter an Element symbol"

310 INPUT TAB(2,30)"or just press RETURN for next
one ",sym$

320 sounD 1,-15,150,2

330 PROCcurs_off

340 COLOUR 128:COLOUR 3

350 PRINT TAB(0,29);SPC 39 “SPC 39;

360 IF sym$="" THEN Z%=2%+1 ELSE CLS :PROCscreen:Z%=
FNfind_Z(sym$)

370 IF Z%$>N% THEN Z%=1:CLS :PROCscreen

380 :

390 UNTIL Z%<(N%+1l)

400 :

410 COLOUR 130:COLOUR 0

420 PRINT TAB(4,6+2%);"<"

430 PRINT TAB(35,6+z%);">"

440 COLOUR 128:COLOUR 3

450 PRINT TAB(4,5+Z2%);" "

460 PRINT TAB(35,5+2%);" "

470 :

480 PROCnucleus(2%)

490 PROCorbits(z%)

500 :

510 UNTIL FALSE

520 :

530 END

540 :

550 :

560 DEF PROCcurs_off

570 vbu 23,1,0;0;0;0;

580 ENDPROC

108 A Science Teacher's Companion to the BBC Microcomputer

590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900

910

920
930
940
950
960
970

980

990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320

DEF PROCcurs_on
vDU 23,1,1;0;0;0;
ENDPROC

DEF PROCscreen

LOCAL E%

COLOUR 3:PRINT TAB(1l,1);"Electron=";CHRS 226
COLOUR 1:PRINT TAB(1l,2);"Proton=";CHRS 224
COLOUR 2:PRINT TAB(1l,3);"Neutron=";CHRS 224
COLOUR 130:COLOUR 0

PRINT TAB(0,5);"Symbol";TAB(35,5);"At No"
FOR E%=1 TO N%

PRINT TAB(0,6+E%);" ";element$(E%);" ";

IF LEN (element$(E%))=1 THEN PRINT " "
PRINT TAB(36,6+E%);" ";STRS (E%);" ";

IF LEN (STR$ (E%))=1 THEN PRINT " "

NEXT E%

COLOUR 128:COLOUR 3
ENDPROC

DEF FNfind_Z(search$)
LOCAL z%,found$

2%=0

REPEAT

IF element$(2%)=search$ THEN found%=TRUE
2%=2%+1

UNTIL found% OR Z%>N%

IF NOT found% THEN PRINT TAB(5,15);"The symbol
";search$;" is not available."

IF. NOT found% THEN VDU 7:COLOUR 131:COLOUR 0:

PRINT TAB(7,17);"Press any key to continue.":A=

GET :COLOUR 128:COLOUR 3

IF found% THEN =2%-1 ELSE =2%

DEF PROCset_up

N$=20

DIM element$(N%),neutrons(N%),Xp%(N%),Yps(N%),Xn%(
N%+4),Yn%(N%+4),Xe3(N%),Ye? (N%)

DIM S(32),C(32)

FOR A%$=0 TO 32

S(A%)=SIN (A%*PI /16):C(A%)=COS (A%*PI /16)

NEXT A%

éOR 2%=1 TO N%

READ element$(2%)

NEXT 7%

FOR Z%=1 TO N%

READ neutrons(Z%)
NEXT Z%

FOR Z%=1 TO N%

READ Xp%(2%),Yp3%(Z%)
NEXT 2%

éOR Z%=1 TO N%+2
READ Xn%(Z%),Yn%(2%)
NEXT 2%

ﬁOR 2%=1 TO N%
READ Xe%(Z%),Ye%(2%)
NEXT 7%

QDU 23,224,28,62,127,127,127,62,28,0
VDU 23,225,28,65,128,128,128,65,34,28
vpu 23,226,0,0,24,24,0,0,0,0

z2%=0
ENDPROC

DEF PROCnucleus(2z%)

1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030

2040
2050
2060
2070

2080

Simulations, Demonstrations and Tutorials

LOCAL proton$,neutron%,R%,angle

VDU 5,29,630;532;

IF Z%>18 THEN PROCerase(21):PROCerase(22)
FOR proton%=1 TO Z%

MOVE Xp$%(protong),Yp%(protong)

GCOL 0,1:VDU 224

MOVE Xp%(proton%),Yp%(protong)

GCOL 0,3:VDU 225

NEXT protong

IF 2%=1 THEN VDU 4:ENDPROC

FOR neutron%=1 TO neutrons(2%)
MOVE Xn%(neutron%),Yn%(neutrong)
GCOL 0,2:VDU 224

MOVE Xn$%(neutron%),Yn%(neutrong)
GCOL 0,1:VDU 225

NEXT neutrong

VDU 4

ENDPROC

DEF PROCerase(N$%)

GCOL 0,0

MOVE Xn%(N%),Yn%(N%):PRINT CHR$ 224
MOVE Xn%(N%),Yn%(N%):PRINT CHRS$ 225
ENDPROC

DEF PROCorbits(2%)

VDU 29,640;520;

GCOL 0,1

PROCcircle(180)

IF Z2%>2 THEN PROCcircle(300)
IF Z%>10 THEN PROCcircle(400)
IF Z%>18 THEN PROCcircle(470)

GCOL 0,3

VDU 5

FOR electron=1 TO 2%
PROCelectron(Xe%(electron),Ye%(electron))
NEXT electron

VDU 4

ENDPROC

DEF PROCcircle(R%)

FOR A%=0 TO 31

MOVE R%*S(A%),R%*C(A%)

PLOT 21,R%*S(A%+1),R%*C(A%+1)
NEXT

ENDPROC

DEF PROCelectron(X%,Y%)

MOVE X%-12,Y%+8

VDU 226

ENDPROC

DATA H,He,Li,Be,B,C,N,0,F,Ne

DATA Na,Mg,Al,Si,P,S,Cl,Ar,K,Ca
REM "Number of neutrons

DATA 0,2,4,5,6,6,7,8,10,10

DATA 12,12,14,14,16,16,18,22,20,20
REM "X,Y coords for Protons

DATA 0,0,0,-32,0,32,-32,0,32,0
DATA 64,0,32,55,-32,55,-64,0,~-33,-56,31,-56

DATA 90,32,48,83,-17,94,-74,61,-96,0,-74,-62,-17,-

95,47,-84,90,-33

REM "X,Y coords for Neutrons

DATA 22,22,-23,22,-23,-23,22,-23

DATA 55,31,0,64,-56,32,-56,-32,-1,-64,55,-33

DATA 96,0,73,61,16,94,-48,83,-91,32,-91,-33,-49,-8

4,16,-95,73,-62,110,-24
DATA 88,-36,-128,0

109

110 A Science Teacher’'s Companion to the BBC Microcomputer

2090 REM "X,Y coords for Electrons

2100 DATA 180,0,-180,0

2110 DATA -78,290,78,290

2120 pATA -290,78,-78,-290,290,-78,-290,-78,78,-290,290
,78

2130 DATA -104,386,104,386

2140 DATA -386,104,-104,-386,386,-104,-386,-104,104,-38
6,386,104

2150 DATA -122,454,122,454

PROC/FN List
560,600 PROCcurs_off, PROCcurs on are cursor off/on
routines.

640 PROCscreen sets up the screen display,
including the 1list of symbols and atomic
numbers.

810 PROCfind_Z(search$) does a sequential search
of the list of symbols for a match with
“search$”. It returns the atomic number of
the element if it finds it, otherwise it
returns a value that is one greater than the
number of elements included in the program.

940 PROCset_up DIMensions various arrays, READs
in the various data values and also sets up
sin/cos look-up tables to speed up
circle-drawing (lines 1000-1020). The
characters used to represent the elementary
particles are also defined.

1320 PROCnucleus fills the ‘nucleus’ with the
correct number of protons and neutrons.

1560 PROCerase deletes extra neutrons that are
present in argon but not in the following
elements.

1630 PROCorbits draws circular orbits and plots
the appropriate number of electrons.

1830 PROCcircle produces a dotted circle to
represent the electron orbit.

1900 PROCelectron plots an electron in the
correct place on the orbit.

Program Description

The variables are set up in line 170 and the screen in
line 210. The main 1loop then runs from 230 to 510.
Line 310 inputs either an element symbol or the null
string if RETURN only is pressed. In the latter case
the atomic number (Z%) is incremented else the entered
symbol is searched for. Lines 410-460 move <’ and ">~
characters down the lists of symbols and atomic numbers
to indicate the current values. The atom is drawn in
lines 480 and 490 and note that, when Jjust RETURN is
pressed, the previous atom is not erased first. This is
done to provide a smooth transition to the next
structure.

Simulations, Demonstrations and Tutorials 1M1

560-1930 Procedure/Function definitions

Most of these are straightforward but note the setting
up of arrays S() and C() as look-up tables for sin and
cos values, respectively (lines 1000-1020), and the
definition of user characters 224,225 and 226 in lines
1250-1270. The first two are used for the nucleons and
the last one is the electron. The printing of these
characters 1is done in PROCnucleus and PROCorbits by
linking the cursors (using the VDU5 statement) and
moving to a pre-defined position before printing the
appropriate characters (see, for example, lines
1370-1420). The. coordinates for these printing
operations are stored in the DATA statements at the end
of the program, from where they are READ into arrays

during PROCset up (lines 1120-1220). The respective
arrays are Xp%() and Yp%() for the protons, Xn%() and
Yn%() for the neutrons and Xe%() and Ye%() for the

electrons. PROCerase(N%) (1560-1600) deletes neutron
number N% by reprinting it in the background colour.

DIGESTIVE SYSTEM GAME ("DIGEST")

This game, for Model B machines, should prove useful
for revision of the essential features of the human
digestive system. In the first part of the program a
jumbled list of the names for the eight main sections
of the alimentary canal is given and the pupil has to
enter these in the correct order. Each time that the
correct name 1is typed, a diagram of that part will be
added to build up an illustration of the complete
system. At the same time the name is removed from the
jumbled list and added to a new, ordered list. When
all eight parts have been correctly entered the screen
will thus show a completed diagram and a correctly
ordered list of names. If at any time the wrong name
is entered, a suitable prompt is given and one point is
deducted from the pupil s score.

The second part of the program is intended to
reinforce the first part by showing the complete
diagram again but with one of the sections shown
flashing. The pupil must correctly identify the
flashing part without the help of a list of the correct
names. Again errors are penalised by deducting one
from the score. At the end of the program the pupil is
told his final score.

Aside from the use described here, the teacher may
find the diagram of the digestive system wuseful in
itself and I have given details in the modifications
section of how to extract the necessary procedures for
use in another program.

There are rather a 1lot of DATA statements to be
typed in so check carefully for any typing errors.

112 A Science Teacher’'s Companion to the BBC Microcomputer

Listing

"DIGEST"

210
220
230
240
250
260
270
280
290
300
310

320
330
340
350
360
370
380
390

400
410
420
430
440

450
460
470
480
490
500
510
520
530

540
550

REM "Program: DIGEST

REM "Started: 2/6/84

REM "Version: 1.0

REM "Subject: Biology

REM "Topic : Digestive System
REM "Level : CSE/O

REM "Author : P.D. Hawthorne

MODE 1

PROCinit

PROCshuffle(P%)

PRINT

PRINT "You have to arrange the various parts"’
"of the digestive system in the correct"

PRINT "order. You start with 10 points but"’
"you lose one for each mistake."

PRINT ~

PRINT "Each time your answer is correct another";
"section will be added to the diagram."

PRINT ~°

PRINT "Be careful with the spelling and press
"““TAB(8); :COLOUR 131:COLOUR 0:PRINT "RETURN";:

COLOUR 128:COLOUR 3:PRINT " to enter the word."

COLOUR 3:COLOUR 128

PROCspc

CLS

FOR J%=1 TO P%

PRINT TAB(2,8+J%);place$(pointer%(Js))
line%(pointer%(J%))=J%

NEXT J%

COLOUR 131:COLOUR 0
PRINT TAB(13,0);SPC 11;TAB(13,1);SPC 11;TAB(13,2);
SPC 11;

FOR J%=1 TO P%

REPEAT

COLOUR 131:COLOUR 0

VDU 31,13,1:PRINT " SCORE:";scoreg" "

COLOUR 128:COLOUR 3

PRINT TAB(0,29)"Please enter the correct name
";SPC 20;

PROCon

INPUT TAB(29,29)" " answer$

PROCof £

answer$=FNupper_case(answers$)

IF answer$<>place$(J%) THEN PROCwrong ELSE

PROCok (place$ (J%))

UNTIL answer$=place$(J%)

PRINT TAB(30,5);
redefined=FALSE
defined=FALSE
COLOUR 1

FOR K$=1 TO J%

IF K%<5 AND NOT defined THEN RESTORE 2150 :
PROCdefine(224,252) :defined=TRUE

IF K%$>4 AND NOT redefined THEN PROCredefine:redefi
ned=TRUE

IF K%<5 THEN PRINT diag$(K%); ELSE PRINT diag$(K%$-
4); -

NEXT K%

570
580
590
600
610
620
630
640

650
660
670
680
690
700

710
720
730
740
750
760
770
780
790

800

820

830
840
850
860
870
880
890
900
910
920

930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240

Simulations, Demonstrations and Tutorials

COLOUR 3

NEXT J%

PROCspc

CLS

PRINT TAB(0,15);"Now the digestive system will
be shown" “"with one part flashing. You must"’
"identify this part.”

PROCshuffle(P%)

PROCspc

CLS

COLOUR 131:COLOUR 0

PRINT TAB(13,0);SPC 11;TAB(13,1);SPC 11;TAB(13,2);
SPC 11;

COLOUR 128

FOR question=1 TO P$%
defined=FALSE
redefined=FALSE
PRINT TAB(20,5);

FOR J%=1 TO P%

IF J%<5 AND NOT defined THEN RESTORE 2150 :
PROCdefine(224,252) :defined=TRUE

IF J%>4 AND NOT redefined THEN PROCredefine:redefi
ned=TRUE

IF J%=pointer%(question) THEN COLOUR 2 ELSE
COLOUR 1

IF J%<5 THEN PRINT diag$(J%); ELSE PRINT diag$(J%-
4);

NEXT J%

REPEAT

COLOUR 131:COLOUR 0

VDU 31,12,1:PRINT " SCORE:";score%;" "

COLOUR 128:COLOUR 3

COLOUR 3

INPUT TAB(0,29)"What part is flashing now",answer$
PRINT TAB(0,29);SPC 39 °SPC 39;

IF answer$<>place$(pointer%(question)) THEN
PROCwrong ELSE SOUND 1,-15,150,2
answer$=FNupper_case(answers$)

UNTIL answer$=place$(pointer%(question))

NEXT question
CLS
PRINT TAB(5,16);"YOU FINISHED WITH A SCORE OF

";score%
END

DEF PROCshuffle(num_items$%)
FOR J%=1 TO num_items3%*3
K$=RND (num_items%)

L%=RND (num_items$%)
T%=pointer% (K%)
pointer%(K%)=pointer%(L%)
pointer%(L%)=T%

NEXT J%

ENDPROC

DEF PROCinit

vbu 19,0,2;0;19,1,0;0;
VDU 19,2,8;0;

éummy=RND (-TIME)
score%=10

P3=8
DIM pointer%(P%),place$(P%),line%(P%),diag$(P%)

REM "Initialize arrays,strings etc;

113

114

A Science Teacher's Companion to the BBC Microcomputer

1250 :

1260 FOR J%=1 TO P%

1270 pointer%(J%)=J%

1280 diag$(J%)=STRINGS(50,"*"):diag$(J%)=""

1290 READ place$(J%)

1300 NEXT J%

1310 :

1320 ENDPROC

1330 :

1340 DATA MOUTH, OESOPHAGUS, STOMACH, DUODENUM, ILEUM, COLON
,RECTUM, ANUS

1350 :

1360 DEF PROCwrong

1370 SOUND 1,-15,20,4

1380 score%$=scoreg-1

1390 IF score%<0 THEN score$=0

1400 COLOUR 131:COLOUR 0

1410 PRINT TAB(10,31);"WRONG!! TRY AGAIN";

1420 COLOUR 128:COLOUR 3

1430 PROCpause(2)

1440 PRINT TAB(0,31);SPC 39;

1450 ENDPROC

1460 :

1470 DEF PROCok(word$)

1480 PRINT TAB(14,8+J%);word$

1490 PRINT TAB(0,8+1line%(J%));SPC 12

1500 .sounND 1,-15,150,2:SOUND 1,0,0,2:SOUND 1,-15,150,2

1510 ENDPROC

1520 :

1530 DEF FNupper_case(text$)

1540 LOCAL K%,AS$

1550 As=""

1560 :

1570 FOR K$=1 TO LEN (text$)

1580 AS$S=AS+CHRS (ASC (MIDS(text$,K%,1)) AND 95)

1590 NEXT K%

1600 =AS

1610 :

1620 DEF PROCpause(secs)

1630 LOCAL t

1640 t=TIME

1650 REPEAT

1660 UNTIL TIME >=t+secs*100

1670 ENDPROC

1680 :

1690 DEF PROCon

1700 vDU 23,1,1;0;0;0;

1710 ENDPROC

1720 :

1730 DEF PROCoff

1740 vDU 23,1,0;0;0;0;

1750 ENDPROC

1760 :

1770 DEF PROCspc

1780 COLOUR 131:COLOUR 0

1790 PRINT TAB(8,30);"PRESS SPACE TO CONTINUE"

1800 COLOUR 128:COLOUR 3

1810 REPEAT UNTIL GET$ =" "

1820 ENDPROC

1830 :

1840 DEF PROCdefine(first%,last%)

1850 LOCAL J%,code,data

1660 :

1870 FOR code=first% TO last$

1880 VDU 23,code

1890 :

1900 FOR J%=1 TO 8

1910 READ data

1920 VDU data

1930 NEXT J%

1940 :

1950 NEXT code

1960 :

1970 FOR D%=1 TO 4

1980 diag$(D%)=""

1990 READ num_chars$

2000 :

Simulations, Demonstrations and Tutorials

2010 FOR char%=1 TO num_chars$

2020 READ asc%

2030 diag$(D%)=diag$(D%)+CHRS (asc%)

2040 NEXT char$

2050 :

2060 NEXT D%

2070 ENDPROC

2080 :

2090 DEF PROCredefine

2100 RESTORE 2590

2110 PROCdefine(224,255)

2120 ENDPROC

2130 :

2140 REM "** VDU 23 Data **

2150 para 0,0,0,1,2,4,8,8

2160 DATA 0,31,96,128,0,0,0,0

2170 DATA 16,16,16,16,16,16,16,16

2180 DATA 32,32,35,68,136,144,224,31

2190 DATA 63,192,0,0,0,0,0,0

2200 DATA 128,32,24,8,4,4,4,4

2210 DATA 16,9, 10 12 0,6,9,8

2220 DATA 255, 0 1,4,56,32,16,64

2230 DATA 68,148,82,36 148,68,36,36

2240 DATA 8,8,8,16,16,8,4,3

2250 DATA 176,72,36,56,0,0,0,224

2260 DATA 66,82,82,146,146,146,82,18

2270 DATA 18,18,18,18,18,18,18,18

2280 DATA 18,18,18,18,18,19,16,16

2290 DATA 0,0,0,0,0,224,16,8

2300 DATA

2310 DATA

2320 DATA

2330 DATA

2340 DATA

2350 DATA

2360 DATA

2370 DATA

2380 DATA

2390 DATA

2400 DATA 72,

2410 DATA 12,3

2420 DATA 255,

2430 DATA 255,

2440 :

2450 REM "** Character strings **

2460 :

2470 REM "MOUTH

2480 DATA 25,224,225,10,8,8,226,10,8,227,228,229,10,8,8
,8,230,231,232,10,8,8,8,233,234,235

2490 REM "OESOPH.

2500 DATA 9,10,8,236,10,8,236,10,8,236

2510 REM "STOMACH

2520 DATA 18,10,8,237,238,10,8,8,8,239,240,241,10,8,8,8
,242,243,244

2530 REM "DUODENUM

2540 DATA 23,11,8,8,8,8,8,246,245,10,8,8,8,247,248,10,8
,8,249,10,8,250,251,252

AN OOWOWOHO

2550 :
2560 REM "** VDU 23 Data **
2570 REM "** for *x

2580 REM "** PROCredefine **
2590 DATA 128,240,12,194,25,5,5,5
2600 paTA 0,0,0,0,0,0,3,12

2610 paTA 0,0,0,0,0,15,240,0
2620 DATA 0,0,0,0,0,255,0,255
2630 DATA 5,5,13,18,100, 136 48,192
2640 DATA 17,34,34,19, 8,4,3,0
2650 DATA 255,0,0,255,0,3,252,0
2660 DATA 0,0,0,255,0, 255 0,0
2670 DATA 0,0,0,252,3,225, 17 9
2680 DATA 0,0,0,0,3, 12 17,34
2690 DATA 0,0,0,31, 128 63,252,0
2700 DATA 0,0,127,128,31, 224 0 0
2710 DATA 9,25,225,6,248,0,0,248

2720 DATA 33,16,15,0,0,0,0,0
2730 DATA 255,0,255,0,0,0,0,3
2740 DATA 255,0,255,0,0,0,0,255

116 A Science Teacher’s Companion to the BBC Microcomputer

2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960

2970

2980
2990
3000

3010

3020
3030
3040
3050

DATA 3,1,249,225,
DATA 255,0,15,240
DATA 252,0,255,0,
DATA 0,127,0,0,0,
DATA 14,240,0,0,0, 0

DATA 33,66,66,33,33,66,66,33
DATA 51,76,192,67,65,65,33,33
DATA 204,51,1,2,194,33,33,66
DATA 98,130,1,1,206,48,0,0
DATA 33,192,129,129,66,38,24,24
DATA 102,153,0,0,216,51,0,0
DATA 130,130,130,66,68,44,36,36
DATA 0,0,131,124,0,0,0,0

DATA 67,128,0,0,0,0,0,0

DATA 3,252,48,0,0,0,0,0

DATA 29,197,5,5,29,197,5,5

REM "** Character strings **

9,9,241,1
,0,0,0,0
0,0,0,0
0,0,0
0,0

REM "** for **

REM "** PROCredefine **

éEM "ILEUM

DATA 49,224,10,8,255,10,8,8,8,8,225,226,227,228,10

,8,8,8,8,229,230,231,232

DATA 10,8,8,8,8,233,234,235,236,10,8,8,8,8,237,238
1239,240

DATA 10,8,8,8,8,241,242,243,244

REM "COLON

DATA 47,8,8,8,8,8,249,11,8,245,11,8,245,11,8,245,1
1,8,245,11,8,246,250,250,250,9

DATA 247,10,8,245,10,8,245,10,8,245,10,8,245,10,8,
245,10,8,248,8,8,250

REM "RECTUM

DATA 9,8,8,246,8,10,245,10,8,251

REM "ANUS

DATA 6,10,8,8,252,253,254

PROC/FN List

1030

1130
1360

1470

1530

1620
1690,1730

1770

1840

PROCshuffle produces a Jjumbled list of
‘pointers” (the numbers 1 to 8). These are
later used as subscripts of other arrays.
PROCinit sets up some colour palette changes
and variable and array values.

PROCwrong decrements the score and gives
audible and visual prompts.

PROCok deletes an item from the jumbled 1list
and reprints it at the end of the ordered
list.

FNupper_case(text$) converts the string of
characters in “text$’ to upper case.
PROCpause, see earlier listings.

PROCon and PROCoff are cursor on/off
routines.

PROCspc 1is a 'Press space to continue”
routine.

PROCdefine(first%,lastg) sets up the
user-defined characters with ASCII values
between those given by ‘first% and “last%’.
It also sets up the array ’‘diag$()” which
holds the strings of user and cursor control
characters needed to print each section of
the diagram.

Simulations, Demonstrations and Tutorials 117

2090 PROCredefine uses a second set of ‘VDU23~
data and PROCdefine to produce the characters
for the second half of the diagram.

Program Description

The initial section of the program (lines 90-220) sets
up the various variables and provides instructions for
the pupil. Lines 250-280 print the jumbled 1list of
‘place’” names (260) and store the line on which each is
printed in the array “line%()” (270). The FOR loop,
which runs from line 330 to 600, gets the pupil’s
answer for each successive section of the digestive
system. The REPEAT loop in lines 350-450 will exit
only when the correct answer has been given. Note that
line 430 converts all input to upper case so that it
can be compared with the correct answers in the array
‘place$() . When the correct answer has been given,
control will pass on to lines 470 onwards. Lines 480
and 490 set two logical variables to FALSE and these
are used in the following FOR loop (520-560) to control
the defining and/or redefining of the user characters.
There are eight parts to the diagram and the first four
are achieved without redefining any characters - hence
the comparisons of K% (the diagram number) in lines
530-550.

The second part of the program starts at line 630
and ends at line 1000. The pointers are shuffled again
in line 660 and the ‘question’ loop in lines 730-960
follows a similar pattern to the J% 1loop in the
previous section (330-600). Lines 780-830 print the
complete diagram, line 810 selecting a flashing colour
(COLOUR 2) for the part that corresponds to the current
‘question’. The REPEAT loop is similar to the previous

one, exiting when the correct answer 1is given (line
940). The program ends by printing the final value of
‘score% .

1030-2120 Procedure/Function definitions:

In PROCshuffle we loop around and each time pick
out two random numbers in the range between 1 and

the number of items in the 1list. The two
corresponding members of the 1list are then
swapped (lines 1070-1090). The array

‘pointer%() " originally contained the numbers 1
to 8 1in order. After executing PROCshuffle it
will contain the numbers 1 to 8 in a jumbled
order. The 1list of names, however, remains in
the correct order at all times, but if we use the

118 A Science Teacher’'s Companion to the BBC Microcomputer

values in ‘pointer%() to refer to the 1list of
names then we get a random order when the list is
printed out. To help understand this, suppose
the contents of the arrays were

J% pointer%(J%) place$(J%)

1 5 MOUTH

2 7 OESOPHAGUS
3 2 STOMACH

4 4 DUODENUM
5 1 ILEUM

6 8 COLON

7 6 RECTUM

8 3 ANUS

Note that a loop such as
FOR J%=1 TO 8:PRINT place$(J%):NEXT J%

will simply print out the ordered 1list but if we
substitute ‘place$(pointer%(J%)) for ‘place$(J%) then
the subscript values will appear in the random order of
the ’pointer%” column. Thus ‘place$(pointer%(5))” is
"MOUTH" because the value of ‘pointer%(5)” is 1. In
what order will the names appear? (See answer at the
foot of this page.)

In FNupper_case the local variable A$ 1is wused to
build up a string of characters extracted one at a time
from “text$. However the ASCII value of each
character is first ANDed with the wvalue 95 which
effectively subtracts 32 from any values greater than
95. (Lower case characters have values in the range 97
to 122 and the upper case counterparts are in the range
65 to 90 - see page 486 of the User Guide.)

(Answer: The order is ILEUM, RECTUM, OESOPHAGUS,
DUODENUM, MOUTH, ANUS, COLON, STOMACH.)

PROCdefine uses the VDU23 statement with DATA read
from lines 2150-2430 (or 2590-2900 when 'redefining).
Remember that the format of this statement is

vDU23,A,nl,n2,n3,n4,n5,n6,n7,n
where A is the ASCII value of the character being
defined and nl to n8 are the eight bytes representing
the pixel pattern of each of the eight rows of the
character. Line 1880 carries out the VDU23,A part of
this and the eight bytes are read from the DATA list
and appended to the VDU statement in 1lines 1900-1930.
Once the individual characters have been defined, it is

Simulations, Demonstrations and Tutorials 119

necessary to combine them with cursor control codes to
produce a complete string which, when printed, will
produce one complete section of the diagram. Thus one
particular row of a section might consist of the
characters 224, 225 and 226. If the next row continued
with character 227 directly wunderneath the 224
character it would be necessary, after printing the
first row, to move the cursor down one line and back
three spaces. (When a character is printed the cursor
is left at the NEXT printing position.) This is done
by adding appropriate cursor control codes to the
strings. These strings are set up by lines 2010-2040,
using ASCII code data from lines 2480-2540 and
2960-3050. Note that the first number in each DATA
line is the number of character codes 1in that 1line
(read as ‘num chars%” in line 1990). Also note that
VDU codes 8 to 11 are cursor back, forward, down and
up respectively, (see User Guide, pages 378 and 380).

Modifications

As promised earlier, I will show how to extract those
parts of the program necessary to produce the diagram
of the digestive system. Assuming that you have the
complete program, as listed, in the machine, then the
steps are as follows:

DELETE lines 120-730

DELETE lines 850-990

DELETE line 810

change line 760 to: 760 COLOUR 1.

—_— — — ~—

o~ o~~~
Sw N =

You no longer need the lines defining the following,
though you may wish to retain some or all of them
depending on your own application

PROCshuffle, PROCwrong, PROCok, FNupper_case, PROCon,
PROCoff and PROCspc

ADAPTIVE DATA BASE ("ANIMALS")

Though the version of the program as listed is intended
to be used to introduce the ideas of classification in
biology, it «can easily be adapted to a range of other
uses. The essential idea of the present program is
that the pupil will “teach” the computer various
characteristics of animals and that the computer can
then try to work out what animal the pupil is thinking
of. It can be used both with fairly young children who
will enter simple questions for the computer to ask
("Is it striped?") and with older students whose

120 A Science Teacher's Companion to the BBC Microcomputer

questions may be more technical ("Is it a carnivore?").
It may be found particularly valuable for the pupils
to work in pairs - one teaching the computer, which
then attempts to discover the other pupil’s animal. If
it succeeds the second pupil thinks of another animal
whereas if it fails the second pupil can become the
“teacher ".

The data structure used in the program is the well-
known ’‘binary tree’ structure. This starts, like any
tree, with a ‘root” which in this case 1is the first
question that the computer will ask. From this root

lead two branches - hence the term ‘binary’. The two
(1)
ROOT: "Is it a mammal?"
(6] [2]
Y N
(6) (2)
"Is it a carnivore?"——NODES — "Is it a bird?"
(71 [81 (4] [3]
Y N Y N
(7) (8) (4) (3)
tiger LEAF goat "Can it fly?" "Is it a
reptile?"
(71 [-1] (8] [-1] [-1] [5] [-1] [-1]

branches or pointers correspond to the two possible
answers to the root question: take the “left” branch if
the answer is ‘yes’, take the ’‘right’ branch if it is
‘no”. The branches each 1lead to another question,
called a ‘node”, and from each node two further yes/no
branches lead, either to other nodes or to a “leaf’. A
leaf 1is the last item in the list, identified in this
program by having its ‘yes’® branch pointing to itself.
If a branch is at present incomplete (it does not lead

Simulations, Demonstrations and Tutorials 121

to either a node or a leaf) its pointer is set to -1 to
denote this.
The animals are at the leaves and the questions are

at the nodes. Part of the initial structure of the
tree, as set up by the program, is shown in the
diagram. Compare this diagram with the preceding

description.

There are options included in the program to load a
data base from tape/disk and to save the current data
base to tape/disk.

Listing "ANIMALS"

10 REM "Program: ANIMALS

20 REM "Started: 5/6/84

30 REM "Version: 1.0

40 REM "Subject: Biology

50 REM "Topic : Classification
60 REM "Level : ALL

70 REM "Author : P.D. Hawthorne

80 :

90 MODE 7

100 :

110 *K.5F.I%=1TO next%:P.;I%;".";QS$(I%),P%(I1%,0),P%(I%
,1):N. M

120 :

130 vDU 23,1,0;0;0;0;

140 READ title$,prompts$

150 PROCdAbl(title$,12)

160 A=INKEY (350)

170 vDU 23,1,1;0;0;0;

180 PROCsoundl

190 :

200 N%=200

210 DIM Q$(N%),P%(N%,1)

220 YN$="YyNn"

230 blue_bgd$=CHR$ 132+CHR$ 157+CHR$ 131

240 red_bgd$=CHR$ 129+CHRS$ 157+CHR$ 135

250 :

260 PROCdAb1 ("LOAD DATA FROM TAPE/DISK (Y/N)2",12)

270 key=FNgetkey(YNS$)

280 CLS

290 :

300 IF key<3 THEN PROCload ELSE PROCsetup

310 :

320 CLS

330 vDU 23,1,0;0;0;0;

340 PROCAbl(blue_bgd$+prompt$+" "+CHRS 156,4)

350 time=TIME

360 REPEAT UNTIL TIME =time+350

370 vbU 23,1,1;0;0;0;

380 PROCsoundl

390 CLS

400

410 :

420 REPEAT

430 Q%=1

440 found%=FALSE

450

460 CLS

470 :

480 REPEAT

490 PROCprint (Q$(Q%))

500 answer=FNgetkey(YN$)

510 VDU 11:PRINT MIDS$ (YNS$,answer,l);

520 VDU 10,8 :PRINT MIDS$(YN$,answer,l)

530 IF P%(Q%,0)=Q% AND answer<3 THEN found%=TRUE

540 IF answer<3 AND P%(Q%,0)=-1 THEN PROCadd_leaf(0)

550 IF answer>2 AND P%(Q%,0)=Q% AND P%(Q%,1)=-1
THEN PROCadd node

122 A Science Teacher’'s Companion to the BBC Microcomputer

560

570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840

850

860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

1110
1120
1130
1140
1150
1160
1170
1180
1190

1200
1210
1220
1230
1240
1250

IF answer>2 AND P%(Q%,0)<>Q% AND P%(Q%,1)=-1
THEN PROCadd_leaf (1)

IF answer<3 THEN Q%=P%(Q%,0) ELSE Q%=P%(Q%,1)
UNTIL found%

CLS

PROCdbl ("Another go (Y/N)2",12)
answer=FNgetkey (YN$)

UNTIL answer>2

CLS

PROCdbl ("SAVE DATA TO TAPE/DISK (Y/N)2?",12)
key=FNgetkey (YN$)

IF key<3 THEN PROCsave

CLS

END

DEF PROCsetup

FOR index=1 TO 8

READ Q$(index),P3%(index,0),P%(index,1)

NEXT index

next%=9
ENDPROC

REM "title$ and prompt$
DATA "A NI M A L S",Think of an animal

DATA Is it a mammal?,6,2,Is it a bird?,4,3,Is

it a reptile?,-1,-1,Can it fly?,-1,5

DATA emu,5,-1,Is it a carnivore?,7,8,tiger,7,-1,go0
at,8,-1

DEF FNgetkey(valid$)
LOCAL key

REPEAT

*FX21,0
key=INSTR(valid$,GETS)
UNTIL key<>0 l

;key

DEF PROCadd_node

CLS

PROCdbl (blue_bgd$+"OK, I give up! What is it?
"+CHR$ 156,2)

PROCdbl (blue_bgds$+" (Type its name then press RETUR

N) "+CHR$ 156,4)

REPEAT

INPUT ‘animal$
vDU 11,13,11
UNTIL animal$<>""

animal$=FNlower_case(animal$)

CLSs

PROCdbl (red_bgd$+"What question would distinguish
"+CHR$ 156,0)

PRINT °’CHR$ 141;:PROCa_an(Q$(Q%))

PRINT ‘CHR$ 141;:PROCa_an(Q$(Q%))

PRINT

VDU 10:PRINT red bgd$;CHR$ 141;"and ";CHRS$ 156

PRINT red_bgd$;CHRS$ 141;"and ";CHRS 156~

PRINT CHRS 141;:PROCa_an(animal$):PRINT "?"

PRINT CHR$ 141;:PROCa_an(animal$):PRINT "2"

PRINT ~°

PROCdbl (blue_bgd$+" (Type question then press RETUR

N)",14)

REPEAT

INPUT ~°QS

vDU 11,13,11,11
UNTIL Q$<>""

Simulations, Demonstrations and Tutorials 123

1260 Q$=LEFTS$(Q$,1)+FNlower_case(RIGHTS(QS$,LEN Q$-1))

1270 IF RIGHTS(QS,1)<>"?" THEN Q$=QS$+"?"

1280 PROCAbl(red_bgd$+"What is the answer (Y/N) for
",19) .

1290 PRINT °‘CHRS 141; :PROCa_an(animal$):PRINT "2"

1300 PRINT CHRS$ 141;:PROCa_an(animal$) :PRINT "2?"

1310 key=FNgetkey (YNS)

1320 IF key MOD 2=0 THEN key=key-1

1330 pointer%$=((key+l) DIV 2)-1

1340 Q$(next%)=Q$(Q%):REM "Copy old animal

1350 Q$(Q%)=Q$:REM "Replace it with new question

1360 Q$(next%+1l)=animal$:REM "Save new animal

1370 REM "Set up pointers

1380 P%(next%,0)=next%

1390 P%(next%,1)=P%(Q%,1)

1400 P%(next%+1,0)=next%+1

1410 P%(next%+1,1)=-1

1420 P%(Q%,pointer%)=next%+1

1430 P%(Q%,NOT pointer%+2)=next%

1440 next%=next%+2

1450 found%=TRUE

1460 ENDPROC

1470 :

1480 DEF PROCdbl (text$,line%)

1490 L%=LEN (text$)

1500 vDU 31,19-L%/2,1line%,141:PRINT text$;

1510 vDU 31,19-L%/2,1ine%+1,141:PRINT text$;

1520 ENDPROC

1530 :

1540 DEF PROCsave

1550 LOCAL J%,ch%

1560 ch%=0OPENOUT (FNinput file_name)

1570 PRINT #ch$%,next%

1580 :

1590 FOR J%=1 TO next$%

1600 PRINT #ch%,Q$(J%),P%(J%,0),P%(J%,1)

1610 NEXT J%

1620 :

1630 CLOSE #0

1640 ENDPROC

1650 :

1660 DEF PROCload

1670 LOCAL J%,ch%,file$

1680 file$=FNinput_file_name

1690 CLS

1700 PROCdbl(CHR$ 134+"PRESS PLAY",12)

1710 ch%=OPENUP (file$)

1720 INPUT #ch$%,next%

1730 :

1740 FOR J%=1 TO next%

1750 INPUT #ch%,Q$(J%),P%(J%,0),P%(J%,1)

1760 NEXT J%

1770 :

1780 CLOSE #0

1790 ENDPROC

1800 :

1810 DEF FNinput_file_name

1820 LOCAL file$

1830 vDU 23,1,1;0;0;0;

1840 CLS

1358 PROCdbl (CHRS 130+"File name (up to 7 letters)",10)

1860 :

1870 REPEAT

1880 INPUT TAB(15,12) file$

1890 PRINT CHR$ 11;SPC (40);:VDU 13,11

1900 IF file$="" OR LEN (file$)>7 PROCsound2

1910 UNTIL file$<>"" AND LEN (file$)<8

1920 CLS :PRINT TAB(10,12);

1930 :

1940 =file$

1950 :

1960 DEF PROCsound2

1970 sounD 1,-15,30,4:SOUND 1,-15,10,4

1980 ENDPROC

1990 :

2000 DEF PROCsoundl

2010 sounD 1,-15,150,2:SOUND 1,0,0,4:SOUND 1,-15,150,4

124 A Science Teacher's Companion to the BBC Microcomputer

2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170

2180
2190
2200
2210
2220
2230
2240

2250

2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440

2450
2460
2470
2480

ENDPROC

DEF FNlower_case(text$)
LOCAL K%,AS$.
AS=""

FOR K%$=1 TO LEN (text$)

AS$=A$+CHR$ (ASC (MIDS(text$,Ks%,1)) OR 32)
NEXT K$%

=A$

DEF PROCa_an(word$)

LOCAL an$,first$

first$=LEFTS$ (words$,1)

IF INSTR("aeiou",first$)<>0 THEN an$="an "
ELSE an$="a "

PRINT an$;CHRS 134;word$;

ENDPROC

DEF PROCadd_leaf (index$)

CLs

PROCdbl (blue_bgd$+"OK, I give up! What is it?
"+CHR$ 156,2)

PROCdbl (blue_bgd$+" (Type its name then press RETUR
N) "+CHRS 156,4)

REPEAT

INPUT “‘animal$

VDU 13,11,11:PRINT SPC 39;
UNTIL animal$<>""

animal$=FNlower_case(animal$)
P%(Q%,index%)=next$

Q$ (next%)=animal$
P%$(next%,0)=next%
P%(next%,1)=-1

next%$=next%$+1l

found$=TRUE

CLsS

ENDPROC

DEF PROCprint (text$)

iF P%(Q%,0)=0% THEN PRINT blue_bgd$;CHR$ 141;
"Is it ";:PROCa_an(text$):PRINT "?":PRINT blue_bgd
$;CHR$ 141;"Is it ";:PROCa_an(text$):PRINT "?2":ENDPROC

PRINT CHRS 141;CHRS 133;text$;" "
PRINT CHRS 141;CHRS 133:text$:" ";
ENDPROC

PROC/FN List

720

870
970
1480

1540

1660
1810

1960
2000
2040

PROCsetup initialises the data base from the
DATA statements in the program.

FNgetkey, see earlier programs.

PROCadd_node adds a new node to the tree.
PROCdbl (text$,line%) prints “text$ in double
height on the line specified by “line%’.
PROCsave creates a file and saves the
data base to tape or disk.)
PROCload loads a data base from tape/disk.
FNinput_file name returns a valid file name
obtained from the user.

PROCsound2 produces an ‘error sound.
PROCsoundl produces an ‘ok’ sound.

FNlower case(text$) converts “text$ to lower
case.

Simulations, Demonstrations and Tutorials 125

2140 PROCa_an(word$) decides whether “a’” or “an’
should be printed. It then prints the
specified ‘word$ ’ preceded by the
correct indefinite article.

2210 PROCadd_leaf creates a leaf on the tree by
adding a new animal, entered by the user.

2420 PROCprint deals with printing of the tree
contents.

Program Description

Line 110 defines function key 5 so that it will print
out the contents of the data base. This is intended as
a diagnostic aid for the teacher and a hard copy of the
tree contents can be obtained, after quitting the
program, by pressing CTRL B then f5 (CTRL B turns the
printer on). Line 140 reads a title and a prompt for
the user. These are in the DATA statement in line 820
and may be changed to suit a different application. A
number of variables are initialised in lines 200-240.
The arrays 'Q$(N%) and 'P%(N%,l) store the string
data and the pointers, respectively, for the binary
tree. The ‘yes’ pointer of node N% is P%(N%,0) and the
‘no” pointer is P%(N%,1). The strings set up in lines
230 and 240 are teletext control <codes to produce
yellow text on a blue background and white text on a
red background, respectively. Lines 260-300 give the
opportunity of loading a data base from tape/disk, line
300 either getting the data from the magnetic medium or
from the built-in DATA statements, depending on the
user s choice. The prompt read earlier is printed in
line 340 - in this program the user is asked to "Think
of an animal".

The main program loop starts at line 420 and extends
to line 630. An inner loop starts at 1line 480 and
repeats until the animal has been found. Line 490
prints the next question and line 500 GETs the user’s
answer, which is printed in double height by lines 510
and 520. Line 530 checks if the current question is an
animal and if the user has answered yes. If so the
variable ‘found% ~ is set to TRUE, giving an exit from
the inner loop at line 580. Line 540 reads "if the
answer 1is ‘yes’ and the ’‘yes’ pointer is -1 then we
have reached a leaf which is not an animal so add a new

animal to the ‘yes’” branch." (Note: “answer” < 3 is
‘yves”, ‘answer® > 2 is ‘no’.) Line 560 carries out a
similar function for the ‘no” branch. The 1logic of

line 550 can be interpreted as "if the user answered
‘no” and this is an animal then we have failed so add a
new question (and the new animal) to the tree." Line
570 sets the question number (Q%) to either the value
of the ‘yes’ pointer or the ‘no” pointer, depending on
the answer given.

126 A Science Teacher’'s Companion to the BBC Microcomputer

The main 1loop will end if the user answers ‘N’ to
the "Another go" prompt in 1lines 610 and 620. On
exiting the main loop, lines 660-680 give an
opportunity to save the current data base before
finally ending at line 700.

720-2480 Procedure/Function definitions:

PROCset_up simply reads data from lines 820-850 into
the arrays explained above. If you want to use vyour
own data here, note the format (and refer to the
diagram given previously, where subscripts are given in
() brackets and pointers are in [] brackets). An entry
in the data base may be one of two kinds.

1) A guestion followed by two pointers (numbers)

(a) The first 1is the ’‘yes’ pointer. This is the
subscript of the question that will be asked next,
if the present question is answered by ‘yes’.

(b) The second pointer is the ‘no” pointer. This is
the subscript of the question that will be asked
next, if the present question is answered by ‘no’.

If the next question in either branch is not yet known,
the pointer for that branch should be -1.

2) An animal name (note there is no question mark
following it), also followed by two pointers.

The 'no” pointer is always -1 and the ‘yes’ pointer is
always the same as the subscript of the animal itself.
In this way the animal ‘points’ to itself.

Of the other procedures the most important are

PROCadd_node and PROCadd_leaf (index%). The first of
these inputs the new animal (1020-1050) and converts it
to lower case (1070). It then asks for a question (Q$)
to distinguish the new animal from the previous animal
(in 0s$(Q%)). This guestion 1is input in lines
1210-1240. Line 1260 converts all but the first

character of the question to lower case and line 1270
adds a trailing question mark if necessary. The answer
(Y/N) relevant to the new animal is obtained by line
1310. Lines 1350 and 1360 convert the ‘key value (1
or 2 for a ‘yes’ answer, 3 or 4 for ‘no’) to a
‘pointer%” value of 0 for the “yes’ pointer or 1 for
the ‘no” pointer. Lines 1340-1350 place the new
strings into the Q$() array. (The variable ‘next%’ is
the next free location in this array.) The old animal
goes into ‘next%” and is replaced by the new question.
The new animal goes into ‘next%$+1” and the various

Simulations, Demonstrations and Tutorials 127

pointers are sorted out by lines 1380-1430. You may be
puzzled by line 1430. The expression 'NOT pointer$+2~
takes the value 1 if pointer% = 0 and 0 if pointer% =1
so that lines 1420 and 1430 set up the new question’s
pointers correctly whether the new animal is on the
‘ves” branch or the ‘no’” branch of the new question.
PROCadd_leaf(index%) is basically a simplified version
of PROCadd_node which is wused when a ’‘dead-end’
(pointer = -1) has been reached. The value of index$%
controls whether the animal is added to the ‘yes’ or
the ‘no” branch.

Modifications

The value of N% in line 200 sets the size of the arrays
that store the data base, and this value <can be
increased if sufficient memory is available. The exact
size of the string array depends mainly on the length
of the questions. If these are each, say, one line
long, this is about 40 characters so 200 questions
occupy about 8K. (The average will be less in
practice.) The pointers each occupy four bytes so this
takes eight bytes per question: about 1.5K altogether.
The total memory requirements are about 10K per 200
entries and since the program occupies about 5K the
value of N% could be increased up to about 400 on a
cassette-based system and somewhat 1less on a disk
system.

The program can be very easily altered to use a
different set of initial questions by changing the DATA
statements referred to earlier. For example, an
application of interest to chemists could replace
‘animals’ with “elements as follows.

(1) Make the following changes to the DATA
statements:

820 DATA "E L EME NT S",Think of an element
840 DATA Is it a metal? ,3,2, Is it a halogen?
,4,-1,sodium ,3,-1, fluorine,4,-1
Delete line 850

(2) Change the following lines:
730 FOR index =1 TO 4

770 next%=5
2170 ans=""

3 Control and Measurement —
Interfacing

One of the most exciting features of the BBC micro
Model B is its built-in digital and analogue
interfaces. By enabling the computer to be connected
to other equipment for monitoring and control purposes,
these open up an entirely new range of applications.
The computer need no 1longer be simply an aid to
simulating complex experiments, but can become an
integral part of the student’s laboratory work. There
can be little doubt that the wuse of computer-type
technology will continue to expand and the more
familiar our students become with it, in a realistic
setting, the better for them and the industrial future
of the country. Obviously pressure of time and the
restrictions of syllabus content may not allow us to go
as far as we might along this path, but the intention
in this chapter 1is to indicate some of the
possibilities and to show how simple it is to connect
the Beeb to a wide variety of external environments.

THE USER I/0 PORT

This is a digital interface circuit that is capable of
acting both as input and output (hence the term 'I/07).
There are 1in fact eight data lines (that is, wires),
which can be programmed to act as either input
connections or output connections. You can have any
number of inputs and outputs, in any combination.
There are also two “handshake” 1lines, which can be
programmed to perform various tasks as described later.
The wuser port 1is actually one part of a very
sophisticated chip, the 6522 VIA ('Versatile Interface

Adaptor “). In addition to various programmable
registers, which control the operation of the chip, it
contains two timers, a serial port and two almost

identical parallel ports which are referred to as ’‘port
A° and ‘port B'. 1In the BBC micro, port A is used to
drive the printer interface and port B provides the
user I/0 port connections. A quick look at the data
sheet of the 6522 reveals that it is indeed a very
versatile device, and one could probably write an
entire book on it alone! However, notwithstanding

128

Control and Measurement — Interfacing 129

this, I shall +try to provide as much practical
information as possible to enable you to start
experimenting with the user port so that you can embark
on your own ‘voyage of discovery .

User Port Addresses

As far as the computer is concerned, the 6522 VIA chip
simply behaves as a series of memory locations, with
addresses ranging from &FE60 to &FE6F (65120 to 65135
decimal). Each of these addresses corresponds to one
of the 16 registers inside the chip and their contents
can be read or new contents written to them by using

the 1indirection operator “?°. (We usually read "?° as
“the contents of ".) Table 3.1 gives the details of the
addresses for the various registers. Thus, to place

the value 129 into the data direction register of port
B (DDB) we would use ?&FE62=&81, or, if vyou prefer
decimal, ?65122=129. You will probably find that it is
easier to wuse hexadecimal when dealing with the user

port so all future examples will make use of it. Much
of the information in table 3.1 is not essential for
simple applications involving the user port. As you

will see, a lot of work can be done using just the IOB
and DDB registers at &FE60 and &FE62.

Table 3.1 User VIA Addresses

NO. REGISTER MNEMONIC ADDRESS
0 Input/output B I0B FE60
1 Input/output A (1) I0Al FE61
2 Data direction B DDB FE62
3 Data direction A DDA FE63
4 Timer 1 LSB counter T1CL FE64
5 Timer 1 MSB counter T1CH FE65
6 Timer 1 LSB latch T1LL FE66
7 Timer 1 MSB latch T1LH FE67
8 Timer 2 LSB counter T2CL FE68
9 Timer 2 MSB counter T2CH FE69

10 Serial shift register SSR FE6A

11 Auxiliary control ACR FE6B

12 Peripheral control PCR FE6C

13 Interrupt status ISR FE6D

14 1Interrupt control ICR FE6E

15 Input/output A (2) I0A2 FE6F

Making the Right Connection
The user port connector is located under the machine,
beneath the keyboard. To connect to it you will need a

130 A Science Teacher’'s Companion to the BBC Microcomputer

20-way insulation displacement connector (IDC) socket -

RS part number 467-289 - and a suitable length of
20-way IDC ribbon cable. RS components also supply
this, but unfortunately only in 20 metre reels (part
number 357-867). However, you should be able to find

a supplier in the computer journals who will sell you a
smaller 1length. To connect the socket to the cable is
simplicity itself: just feed the end of the cable
through the moulded slots in the cable locating clip so
that 2-3 cm protrudes and then slide the socket housing
onto the clip with the metal tines facing towards the
cable. Place the socket between the jaws of a vice,
with some scrap wood to protect the plastic mouldings,
and tighten until the tines pierce the cable and the
housing clicks 1into the clip. Remove from the vice,
fold the end of the cable back over the top of the
socket and fit the metal-retaining clip, before
trimming off any surplus cable. After such a simple
job at the computer end of the cable, it would seem a
pity to wuse the o0ld ‘cut and strip® method of
terminating the other end, though you can do so if you
wish. A much neater solution can be achieved using an
IDC dual in line (DIL) connector, with the additional
advantage that the lead can be re-used. This provides
a solderless connection to the ribbon cable and the
connector will plug into an ordinary IC socket, a
solderless ’‘breadboard” or can be soldered to a printed
circuit board or 0.1 inch stripboard. The closest we
can get to our 20-way cable 1is to use a 24-pin
connector (RS 468-276) and to locate the cable in the
top of the plug, leaving the bottom two pins on each
side unconnected. The plug can be assembled to the
cable using the special tools available from RS or you
can manage, if you are careful, with two wooden blocks,
one with two parallel slots to receive the plug pins.
(Insert the pins into the slots of the block, place the
ribbon cable onto the connectors, ensuring they are
aligned, <click the top of the plug in place and
position the second block on top. Place the sandwich
between the jaws of a vice and squeeze gently until the
tines pierce the cable.) To make sure that the
connections from the computer to the DIL plug are
correct proceed as follows:

(a) Lay the ribbon cable in front of you with the IDC
connector on your right and the cable clip touching
the bench. 1In other words you should be able to
see the two rows of socket holes.

(b) The wire connected to pin 1 is the one furthest
from you, the next one goes to pin 2 and so on,
with the wire to pin 20 nearest you.

Control and Measurement — Interfacing 131

(c) Place the DIL plug on your left with its pins
towards the bench and pin 1 on the 1left and
furthest from vyou. Preventing the cable from
twisting, insert it into the plug housing and clamp
the cap securely into position, ensuring that all
the wires are in their correct positions.

For the experimental work that I shall be
describing, you will need a breadboard such as the RS
488-618 or the GSC ‘Experimentor 300°. These have the
advantage that circuits are easily set up and changed,
without the need to solder and desolder repeatedly.
The two boards mentioned both consist of 2 groups of 47
rows of 5 interconnected contacts arranged both sides

of a central channel. The 2 groups of contacts are
labelled B-F and G-K on the RS version (A-E and F-J on
the GSC version). The rows are numbered from 1 to 47

and there is, in addition, a power rail down each side,
labelled A and L on the RS board and X and Y on the GSC
board. To simplify giving the connection details I
will assume that you are using the RS board, but you
should be able to translate the instructions simply
enough if you are using something else. To indicate
the state of output lines we shall be using
light-emitting diodes (LEDs) but the user port as it
stands cannot drive these directly: a simple buffer is

required (figure 3.la). I shall be using a CMOS hex
N\
1 Vg + | 14
45V 2 . j 13
P 3 12
LED ¥
4 11
Input
from
port 5 10
6 9
(a)
7 Vss_ 8
(b)
(a) Typical circuit (b) 406Y Pin-out
(1 of 6) diagram

Figure 3.1 User port buffer circuit

132 A Science Teacher’'s Companion to the BBC Microcomputer

inverter/buffer IC - the 4069UB (RS number 307-216) -
each containing 6 inverting buffers. Thus we can drive
up to 6 LEDs at any one time. The buffer performs the
logical NOT function on its input: a logical ‘1~ on the
input produces a ‘0 on the output and vice versa. If
you want to drive outputs from all 8 data lines you
will require 2 of the 4069 chips, the pin connections
of which are given in figure 3.1b. Since CMOS devices
are sensitive to static damage you should avoid
touching the pins, and do not wear synthetic fabrics
while handling them. There should be no ‘danger once
the chip is plugged in and earthed via the computer.

To start our experiments, plug the 4069 IC into rows
18 to 24 (pin 1 into hole G18) and insert 6 LEDs in
holes D1 to D12, ensuring that the cathode of each
diode 1is plugged into the even-numbered holes. (The
cathode is usually the longer of the two leads.) Using
insulated single-strand tinned copper wire, link Bl to
Al and connect all the anodes together by joining the
following holes: Cl1-C3, B3-B5, C5-C7, B7-B9, C9-Cll.
Now 1link Bl8 (pin 14 of the IC) to the nearest hole in
row A (this will be our +5V supply rail) and 1link K24
(pin 7 of the IC) to any convenient hole in row L (the
0V or ground rail).

The connections between the output pins of the IC
and the cathodes of the LEDs should be made according
to table 3.2. The numbering given in the table assumes
that the LEDs are numbered from dl (nearest the edge of
the board) to dé6.

Table 3.2 IC/LED Connection List

CONNECTION LED

K19-F2 dl
J21-F4 d2
I23-F6 a3
E24-E8 d4

E22-E10 ds
C20-Cl12 de

Since it is tricky to make the connections from the
DIL plug to the IC inputs after the plug is inserted it
is necessary to insert these links now: see table 3.3.

You can now plug the DIL connector into the breadboard,
ensuring that pin 1 is inserted into hole D47. (Pin 1
is usually marked with a dot or a small arrow.) Now

Control and Measurement — Interfacing 133
Table 3.3 DIL Lead/IC Inputs Connection List

USER PORT DIL PLUG FUNCTION BREADBOARD LED

PIN NUMB. PIN NUMB. CONNECTION NO.
1 24 +5V K47-A47 -

2 1 CB1 NC -

3 23 +5V NC -

4 2 CB2 NC -

5 22 0V GROUND K45-L45 -

6 3 BO B45-H18 dl
7,9,11,13 21,20,19,18 OV GROUND NC -
8 4 Bl C44-120 d2

10 5 B2 B43-J22 a3
12 6 B3 B42-B23 d4
14 7 B4 B41-C21 das
15 17 0V GROUND NC -
16 8 B5 B40-B19 dé
17,19 16,15 0V GROUND NC -
18 9 B6 B39-G28 -
20 8 B7 B38-G31 -

NOTES: (1) NC = Not connected.
(2) The 1last 2 lines will be connected into the
circuit when required.

plug the IDC socket into the user port on the computer
and try the following test routine:

(a) Switch on the computer and ensure that the usual
start-up message and beep is obtained. I1f
anything is abnormal switch off immediately,
disconnect the cable and check all your wiring
carefully.

(b) Assuming that all is well the LEDs will probably
all be on. Enter the following as direct
commands: ?&FE62=&FF <RETURN> - the LEDs will

probably go out. Enter ?&FE60 = 0 <RETURN> and
all LEDs should go out. If they do not, switch
off and check the wiring.

(c) If step (b) was successful then ?2&FE60 = &FF
<RETURN> should turn all the LEDs on.

Using Port B

As mentioned earlier, the 8 data lines in the user port
can be programmed to act as either input or output.
Each of the data lines corresponds to one bit in the
I/0 register (IOB) and each 1is controlled by the

134 A Science Teacher’s Companion to the BBC Microcomputer

corresponding bit in the data direction register (DDB).
To set a data line to act as an output requires the
related DDB bit to be set to a 17, and to program a
line as an input requires a ‘0° in the DDB bit. Thus,
numbering the bits BO (LSB) to B7 (MSB) - see figure
3.2 - if we wish to set BO to B3 as inputs and B4 to B7
as outputs we must place the binary wvalue 1111 0000
into the DDB using ?&FE62 = &F0. Note that this does
not actually produce any output from the output lines
nor does it read information from the inputs. Having
set up the port lines as desired, we <can set a
particular output 1line to a “high” (+5V) level by
writing a ‘1 to the corresponding bit in the IOB.
Thus to set B5 and B7 high (and the other lines low) we
write ?&FE60 = &A0 (&A0 = 1010 0000 binary).

BIT VALUES: MSB=128 64 32 16 8 4 2 1=LSB
B7 B6 B5 B4 B3 B2 Bl BO

| | T T 1 T
ppB=f 1| 1} 1| 1] 0]o0]oO]oO
REGISTERS —t———
10B [op |op |oP |oP |1P |1IP |IP |IP
] ! 1 | 1]]
PORT LINES
Figure 3.2

Suppose we want to read the state of a particular
input line, say B2. The logic level on the B2 input
will be reflected by that of bit B2 in the IOB
register. However if we simply ‘peek” at the contents
of this register we will obtain a value that depends on
the 1logic 1levels on all the input lines and on levels
previously set up on the output lines. To isolate the
single bit in which we are currently interested we must
‘mask out” the logic levels of the unwanted bits. This
is done by ANDing the contents of IOB with a suitable
‘MASK~ value, 'M°, say. Make 'R’ the contents of 1IOB,
so R = ?&FE60. ‘M~ will need to have all its bits set
to zero except the bit corresponding to the input line
that we want to read (B2). Thus to read the level on
B2 the mask must contain the value 0000 0100 (decimal
4), that is, B2 = “1°, and all the other bits are zero.

Now to read the state of the B2 line into the variable
'V’ we would write

R = ?&FE60:M = 4:V = R AND M

Control and Measurement — Interfacing 135

V = R AND M

R M V
Bit B2 0 0 O
0 1 O
R=10110110 R=10110010 1 0 0
M=00000100 M=00000100 1 1 1

v=00000100=4 v=00000000=0

Bit under Bit under Logical AND
test is 17 test is 07

Figure 3.3 Use of logical masking to read an input line

Now, following the AND truth table in figure 3.3c,
we see that any given bit in V will only be set to “1°
if the corresponding bits in R AND in M are both “1°.
Thus the zeros in M will set the corresponding bits in
V to ‘07, regardless of their state in R. The value of
bit B2 in V will be the same as its value in R since 1

AND 1 = 1" and ‘0 AND 1 = 0°. Figure 3.3a,b should
help to clarify this and you should note that the
overall effect 1is that V is zero (FALSE) if B2 = "0~

and V is non-zero (TRUE) if B2 = “1°7.
Thus we could write

10 M=4

20 REPEAT

30 R=?&FE60

40 V=R AND M

50 UNTIL V:REM Loop until B2 goes high

Did you understand all that 1logic and ‘masking’
business? To test yourself try the following exercise:

(1) What mask value would you use to read the state of
the B5 line?

(2) Write a REPEAT...UNTIL loop similar to the example
above but that will wait until either B3 or B7
goes high.

(Answers: (1) Bit B5 is ‘worth” 275=32 so the mask,
M=32.

(2) We want to test both B4 and B7 so the
mask must contain “1001 0000°, that is, M
= 144 (128+16). The rest of the program
is the same as that given above.)

136 A Science Teacher’'s Companion to the BBC Microcomputer

Assuming that you have set up the breadboard circuit as
described previously, now try a few simple experiments.
First we shall set the lower 6 bits in DDB to "1 and
the upper 2 bits to “0°. This will set port 1lines BO
to BS5 as outputs and B6 and B7 as inputs. The command
?&FE62 = &3F <RETURN> will achieve this. (Add wup the
values of the bits that are to be set to 7"17:
32+16+8+4+2+1 = 63 = &3F.) Now if we want to turn on
LEDs dl to d4 we must place a 1 in the corresponding
bit positions (BO to B3) in the I/0 register. ?&FE60 =
15 <RETURN> would produce the required effect but all
this binary arithmetic is probably giving both of us a
headache by now, so why not let the computer do the
hard part? The listing of "VIA DEMO" supplied provides
a continuously updated display, in binary, of the
contents of all the registers within the VIA chip.

Listing "VIA DEMO"

10 REM "**kkkkkkhkkkkkkkkkk

20 REM "** VIA_DEMO **
30 REM "** P, Hawthorne **
40 REM "** (c) 1983 * *
50 REM Modkodkdkodk kodkdkokok dk ok ok ok ok ok ok
60 DIM reg$(15)
70 FOR I%=0 TO 15
80 READ reg$(I%)
90 NEXT I%
100 MODE 7:VDU 23;8202;0;0;0;
110 FOR I%=0 TO 7
120 PRINT TAB(0,2*I%+1); (&60+I%);CHRS 132;CHRS 157;
CHRS$ 135;TAB(14,2*I%+1);reg$(I%);" ";CHRS 156;
130 NEXT I%
140 FOR I%=0 TO 7
150 PRINT TAB(20,2*I%+1); (&68+I%);CHRS 132;CHRS 157;
CHR$ 135;TAB(34,2*I%+1);reg$(I%+8);" ";CHRS 156;
160 NEXT I%
170 PRINT TAB(7,17);CHRS 141;"All addresses are &FE__"
180 PRINT TAB(7,18);CHRS 141;"All addresses are &FE__"
190 PRINT TAB(1,20);CHR$ 130;"Press ESC to change
register contents"
200 ON ERROR GOTO 380
210 REPEAT
220 FOR I%=0 TO 7
230 VDU 31,5,2*I%+1:PROCdec_bin(?(&FE60+1%))
240 NEXT I%
250 FOR I%=7 TO 0 STEP -1
260 VDU 31,25,2*I%+1:PROCdec_bin(?(&FE68+I%))
270 NEXT I%
280 UNTIL FALSE
290 DEF PROCdec_bin(number%)
300 IF number$>255 THEN PRINT "Too large.":ENDPROC
310 LOCAL n%
320 FOR n%=7 TO 0 STEP -1
330 IF number$ DIV 2°n% =1 THEN PRINT "1";:number$=num
ber% MOD 2°n% ELSE PRINT "0";
340 NEXT n%
350 ENDPROC
360 DATA " IOB","IOAl"," DDB"," DDA","T1CL","TICH",
"TlLL","T1LH"
370 DATA "T2CL","T2CH"," SSR"," ACR"," PCR"," ISR",
" ICR","IOA2"
380 IF ERR <>17 THEN REPORT :PRINT " at line ";
ERL :END
390 SOUND 1,-15,150,2
400 REPEAT
410 INPUT TAB(9,22)"Which register (0-15) ",reg$

Control and Measurement — Interfacing 137

420 PRINT TAB(0,22);SPC (40)

430 IF reg$="" THEN 410

440 IF LEFT$(reg$,1)="&" THEN reg%=EVAL (reg$)

ELSE reg%=VAL (reg$)

450 IF LEN (reg$)=8 THEN reg%=FNbin_dec(reg$)

460 IF reg3<0 OR reg%>15 THEN SOUND 1,-15,30,5

470 UNTIL reg%>=0 AND reg%<16

480 SOUND 1,-15,150,2

490 REPEAT

500 INPUT TAB(11,22)"What value (0-255) ",vals$

510 PRINT TAB(0,22);SPC (40)

520 IF val$="" THEN 500

530 IF LEFTS$(val$,l)="&" THEN val3%=EVAL (val$)

ELSE val$=VAL (val$)

540 IF LEN (val$)=8 THEN val3%=FNbin_dec(vals$)

550 IF val$<0 OR val$>255 THEN SOUND 1,-15,30,5

560 UNTIL val%>=0 AND val$<256

570 ?(&FE60+reg%)=val$

580 GOTO 210

590 DEF FNbin_dec(B$)

600 LOCAL I%,D%

610 FOR I%=0 TO 7

620 IF MID$(BS$,8-I%,1)="1" THEN D%=D%$+2"I%

630 NEXT I%

640 =D%
The hex address and the mnemonic name of each register
are also given and you can change the contents of any
register by pressing <ESCAPE> and following the
instructions on the screen. The 'EVAL function is
used on the inputs, so you can give the register number
and value in hex if you precede your input with “&’.
You can also, if you wish, input the value as an 8-bit
binary number which will be converted to a decimal
number by the function ‘FNbin_dec’.

You may find this function and the complementary
procedure 'PROCdec_bin’ useful in other programs. The
procedure prints an 8-bit binary representation of any
decimal number in the range 0 to 255.

If you run the program you will notice that several
of the register contents are changing continuously,
though it takes a short time for changes to be updated
on the display owing to the time taken to convert and
print each register value. The registers that are
changing are the timer registers: TI1CL/TICH and
T2CL/T2CH. These particular registers are counting the
1 MHz clock pulses in the computer. The L (low byte)
registers are decrementing once every microsecond and
when they reach zero the H (high byte) register is
decremented. When the H register reaches zero it can,
if enabled, cause an INTERRUPT. (See ‘Using the Timers
in the VIA® later in this chapter.)

Feel free to experiment with the various registers -
you cannot do any harm though the computer may “hang
up’, requiring you to press <BREAK> and use 'OLD to
restore things to normal. (You could program the BREAK
key by adding 55 *KEY10 OLD|M RUN|M.) In particular
you should familiarise yourself with the operation of
the DDB and IOB registers. Set up DDB (register 2) for

all outputs by placing a value of 255 decimal (or &FF

138 A Science Teacher's Companion to the BBC Microcomputer

hex or 1111 1111 binary) in this register: press
<ESCAPE>, 2, <RETURN>, 255, <RETURN>. Now place the
value “1010 1010° in IOB (register 0). If you have
your experimental circuit connected to the wuser port
you will observe that the LEDs mimic the pattern of
‘ones” and “zeros’ in this register: 1 = ON, 0 = OFF.

Now to observe the effect of changing an input line,
set up port line B7 as an input by placing the value
0111 11117 (127 or &7F) in DDB. Connect a link on the
breadboard between I31 and the 0V rail and observe the
contents of IOB: it should be a string of 8 zeros. Now
change the ‘link over to the +5V rail: the contents
should change to 1000 0000. (In fact the value will
change as soon as you disconnect the link since a
‘floating® input appears to the VIA as a high logic
level.) There will again be a slight delay between
changing the 1logic 1level and the wupdating of the
display. To show that there is no effect when we try
to write data into an IOB bit position that is an
input, replace the 1link in OV and use the program to
place a value of &FF (1111 1111 binary) in IOB. Note
that bit 7 remains set to 0°. It will change to a
‘l1” only if you change the link to a high 1logic 1level
again. Thus an input bit is controlled by the logic
level on the port line,not by the computer.

To make this switching arrangement a 1little more
positive disconnect the link and insert a 1K resistor
in holes I31 and L31 and connect a push-to-make switch
to H31 and the +5V rail. The resistor will hold the

input low (logic “07) until the switch is pressed, when
it shculd change to a logic "1°7. Try it with the
program above. Keep the switch connected as we shall

need it shortly (see figure 3.4).

+bV O l
[] Switch

T

B7 ©

ovo

Figure 3.4 Connecting a switch to the user port

Control and Measurement — Interfacing

User Port Program Examples

The accompanying listings provide
illustrate how to
control techniques into programs.

examples

Example 1:

210
220
230
240
250

This program simply switches all LEDs on and

to

a

number

139

of simple

incorporate the port

"PORT1"
REM LRSS SRR R EEEEEEEREEEE]
REM *** PORT1 ***
REM *** USER PORT DEMO ***
REM *** TURNS ALL O/P ***
REM *** ON AND OFF ***
REM *** AT RATE INPUT ***
REM *** BY USER ***
REM KhkhkhkhkkAkk Ak khkhkhkkhkhkhkkkkk
MODE 7
INPUT " ON TIME FOR L.E.D.(IN SECONDS)",timeon
INPUT " OFF TIME FOR L.E.D.(IN SECONDS)",timeoff
CLS
?&FE62=&FF:REM SET PORT FOR ALL O/P’S
REPEAT
X=0
?&FE60=X
PROCdelay(timeoff)
X=255
?&FE60=X
PROCdelay(timeon)

UNTIL FALSE

DEF PROCdelay(T)

INIT=TIME

REPEAT UNTIL TIME >=INIT+T*100
ENDPROC

at a rate

Example 2:

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700

that is input by the user.
times can be different if desired.

"PORT2"

REM
REM
REM
REM
REM

INPUT " ON TIME FOR L.E.D.(IN SECONDS)",time

CLS

Ik kkkhkkkkkkkdkkk K

* Kk %k

PORT2 ***

% MOVING DOT *

* %k k

DISPLAY ***

Kkkkkkkkkhkhkkhkkkk*k
MODE 7

?&FE62=&FF:REM SET PORT FOR ALL O/P’S
REPEAT
X=32:REM ** X=2"(No of LEDS-1)
REPEAT

?&FE60=X

PROCdelay(time)

X=X DIV 2

UNTIL X=0

UNTIL FALSE

DEF PROCdelay(T)

INIT=TIME

REPEAT UNTIL TIME >=INIT+T*100
ENDPROC

* %

off, but

The on and off

This produces a ‘moving dot” display by turning on one
time, in sequence.

LED at a
selected.

The

on

time can be

140 A Science Teacher’'s Companion to the BBC Microcomputer

Example 3: "BINARY"

‘0 REM khkhkkkkkkhkhkhkhkkhkkkkkkkkk
15 REM *** BINARY ***

16 REM khkk hkk

20 REM *** BINARY COUNTER ***
30 REM *** O/P’S ON BO-B7 ***
35 REM **x*% *xx%

40 REM % % %k %k %k % % %k d %k J % J Jk d Jk o ok %k %k k&
50 INPUT "Delay time",d

60 ?&FE62=&FF:REM ** ALL O/P 'S**
65 PORT=&FE60

70 REPEAT

80 X%=0

90 REPEAT

100 ?PORT=X%

110 PROCdelay(d)

120 X$=X%+1

130 UNTIL X$%=256

140 UNTIL FALSE
150 END
160 DEF PROCdelay(t)
170 T=TIME

180 REPEAT UNTIL TIME >=T+t*100
190 ENDPROC

"BINARY" produces an LED display that counts up in

binary. The count rate can be varied, by choosing
different on times. For example a very slow rate can be
selected which allows the count to be followed. Note

that the value assigned to the variable ‘PORT ", in line
65, is the address of IOB.

Example 4: "RANDOM"

10 REM khkhkhkhkkkkkkhkhkhkhkhhkhhkhkhkk
20 REM *** RANDOM LIGHTS ***
30 REM *** AND SOUNDS ***
40 REM *** USE BO-B7 ***
50 REM **kkkkkkxkhxhkkohhhkkk
60 ?&FE62=&FF
70 PORT=&FE60
80 PRINT "Sound (Y/N)":A$=GET$
90 IF A$="Y" OR A$="y" THEN vol$=-15 ELSE vols=0
100 REPEAT
110 X=RND (8)-1
120 ?PORT=2"X
130 SOUND 1,vols,2"X+100,2
140 A=INKEY (20)
150 UNTIL FALSE

This program illuminates the LEDs in a random sequence,
accompanied by random computer ‘music’, if desired.
Line 110 chooses a port line (0 to 7) at random and
line 120 sets the IOB to the corresponding value.

Control and Measurement — Interfacing 141

Example 5: "TRAFLITES"

10 REM ****kkkkkkhhkhhhhhhhhik

15 REM *** TRAFLITES ***

20 REM *** TRAFFIC LIGHTS ***

30 REM *** DISPLAY ***

40 REM hhkhkhkkkkhkhkhkhkkkhkkkkdkkdkk

50 MODE 7

60 RED=4:GREEN=1:AMBER=2:RED_AMBER=6
65 REM ** RED=B2:GREEN=B0:AMBER=B1 **
70 CLS

80 ?&FE62=&FF:REM SET PORT FOR ALL O/P’S
90 REPEAT
100 ?&FE60=GREEN

110 PROCdelay(8)

120 ?&FE60=AMBER

130 PROCdelay(2)
140 ?&FE60=RED
150 PROCdelay(5)

160 ?&FE60=RED_AMBER

170 PROCdelay(2)

180 UNTIL FALSE

190 DEF PROCdelay(T)
200 INIT=TIME
210 REPEAT UNTIL TIME >=INIT+T*100
220 ENDPROC

This is, of course, the almost mandatory traffic lights
demonstration and it will prove more effective if you
replace dl with a green LED and d2 with a yellow or
orange one. Note the assigning of suitable values to
appropriately named variables for each of the different
colours and combinations - line 60 - a useful idea,
which makes the program easy to follow.

Example 6: "PELICAN"

10 REM * %%k ok ok okok ok ok ok ook e ke ke ke

20 REM *** PELICAN LIGHTS ***

30 REM *** DISPLAY ***

40 REM khkkkhkkkhkhkkhkhkhkkhhkkhkhk

50 RED=4:GREEN=1:AMBER=2:RED_AMBER=6
60 CLS

70 ?&FE62=&7F:REM ** I/P TO B7;0/P°S FROM B0-B6
80 REPEAT

90 ?&FE60=GREEN

100 REPEAT UNTIL (?&FE60 AND 128)
110 PROCdelay(2)

120 PROCchange

130 UNTIL FALSE

140 DEF PROCdelay(T)

150 INIT=TIME

160 REPEAT

170 UNTIL TIME >=INIT+T*100

180 ENDPROC
190 DEF PROCchange

200 ?&FE60=AMBER:PROCdelay(2)
210 ?&FE60=RED

220 FOR I%=1 TO 20
230 SOuUND 1,-15,200,4

240 PROCdelay(.3)

250 NEXT I%

260 FOR I%=1 TO 15

270 ?&FE60=AMBER:PROCdelay(.4)
280 ?&FE60=0:PROCdelay(.4)

290 NEXT I%

300 ENDPROC

142 A Science Teacher’'s Companion to the BBC Microcomputer

Here we have a simulation of the light-controlled
pedestrian crossing. The light remains green until the
pedestrian presses his button: the push switch that we
wired to our breadboard earlier. Line 100 waits for
port line B7 to go high (button pressed) and there is
then a 2 second delay before PROCchange 1is called.
This changes the 1lights to red and produces the
accompanying warning beeps. The final part of the
procedure flashes the amber 1light before returning
control to the main loop at line 130. Since there are
spare output lines available, you may like to add a
‘'WAIT light which illuminates when the user pushes the
button, and the green and red men which are illuminated
at the correct times.

Further Interfacing for the User Port

It would be useful if our breadboard interface could be
‘beefed up” to enable us to drive circuits requiring
somewhat more power than an LED. One of the simplest
means of switching considerable 1loads 1is to use a

To load circuit

o
+12V O
1N4002
C
From user 1K B
portvia BC182L
buffer
E
oV
Ground
Pin View

—{— T+
B CE N

Anode Cathode

Figure 3.5 Relay driving circuit

Control and Measurement — Iinterfacing 143

relay, driven by a wuser port 1line, via a suitable
interface circuit. Figure 3.5 shows a simple
transistor driver coupled to the output of one of the
4069 inverters. The relay coil 1is connected to a
suitable external 12V supply, the negative terminal of
which must be connected to the ground rail on the
breadboard. The relay will be on when the port line is
low and vice versa (remember the inverting action of
the buffer).

To connect up the circuit on the breadboard proceed as
follows:

(1) Remove LED dé6.
(2) Insert a 1K resistor in F12 and H12.

(3) Insert a BCl82L (or any similar NPN transistor)
with its emitter, E, in I14, <collector,C, in 1I13
and base, B, in 1Il2. (See Figure 3.5 for

connection details.)

(4) Link K14 to Ll4.

(5) Insert diode, D: cathode in J6, anode in J13.

(6) Connect one side of the relay coil to K13 and the
other side to Ké6.

(7) Link the negative terminal of the supply to L1 and
the positive terminal to I6.

To test the new circuit, define a couple of user keys
to switch port line B5 high and low alternately:

*KEY0 ?&FE60=32|M
*KEY1l ?&FE60=0|M

Now key fl will turn the relay on and f£0 will turn
it off. The relay can be used to switch any equipment
up to the 1limit of its contact rating. It is quite
possible to switch mains-operated equipment but make
sure you really know what you are doing - the relay
will protect the computer but poor insulation could
spell disaster for you, so be careful! An adequate
demonstration of the computer’s ability to control the
‘real” world can be achieved without recourse to mains
switching: for example, by controlling a large 12V
fractional horsepower motor or something similar.

USING THE TIMERS IN THE VIA

There are two timers contained in the VIA chip: timer 1
(T1l) and timer 2 (T2). Tl is the more versatile of the
two but both timers are 1in essence 16-bit counters
which can be loaded with data (any value from zero to
65535, that is, 2716). The counters will then
decrement (count down one step) every time that a clock

144 A Science Teacher's Companion to the BBC Microcomputer

pulse occurs. In the BBC micro the frequency of the
clock pulses supplied to the VIA is 1 MHz so the
counters will decrement every microsecond. When a
counter reaches zero it is said to have “timed-out” and
this occurrence will set a ‘flag’” - a particular bit -
in the interrupt status register (ISR). If the
corresponding bit in the interrupt control register
(ICR) is set, then interrupts from this particular
counter are enabled and the VIA chip will generate an
interrupt request (IRQ) signal (see figure 3.6b).
This causes the 6502 microprocessor (MPU) to
temporarily break off from whatever it was doing and
fetch an address from memory location &FFFE. This
action is pre-programmed into the MPU by the chip
manufacturer. Location &FFFE 1is 1in the operating
system ROM and Acorn have placed the start address of a
short routine there which first checks for a BRK
(‘Break”) instruction. A BRK is an assembly language
instruction which behaves in a similar way to an
interrupt, so the computer must check for this first.
Assuming that such an instruction was not the cause of
the interrupt, the MPU will Jjump to an address
contained in RAM locations &0204 and &0205. This
address 1is the start of the main interrupt service
routine. In assembly language terminology this is an
‘indirect jump ~ (you <can say that again!) and the
interrupt routine is said to be ‘vectored’ through
these locations. In other words, the interrupt request
vector (IRQ1lV) is &0204: location &0204 contains the
low byte and &0205 contains the high byte of the start
of the operating system’s interrupt service routine.
(note: the 0.1 0S does not support a vectored interrupt
routine - the contents of &FFFE cause a direct jump to
the service routine at &DDE4. The routine then
indirects via the RAM locations given.) The service
routine <checks all internal interrupts first and, if
the source is not found, as in the case of an interrupt
generated by the user port, it will then indirect, via
IRQ2V, to a user supplied service routine. We simply
place the start address of our own routine in &0206
(low byte) and &0207 (high byte) and an interrupt
request generated by the user port will eventually find
its way to our interrupt handling program. For
example, if we have a handling routine that starts at
location &0A52, we place the value &52 in &0206 and &0A
in &0207

Memory location Contents
&0206 &52
—»&0A52 start of interrupt
&0207 &0A routine

Control and Measurement — Interfacing 145

If we require to give our interrupts higher
priority, we can intercept the main service routine by
changing IRQlV to redirect it to our own routine. We
must, when we have completed our processing, return
control to the machine’s own routine to enable it to
function correctly.

When an interrupt occurs, the MPU will suspend
operations, save various register contents and jump to
the interrupt service routine. This will interrogate
each of several devices in turn to find which was the
source of the interrupt. Interrupts can originate from
several sources in the computer, for example, the
keyboard, the timer in the internal VIA (to give the
TIME function) and the user port VIA. You can see that
the function of the flag set by the time-out of a timer
is to inform the MPU that this was the source of the
interrupt request that it received. Once the origin of
the interrupt has been found, the appropriate action
can be taken by the service routine. In the case of a
keyboard-generated interrupt this would include testing
the keyboard to see which key had been pressed and
placing the corresponding character in the keyboard
buffer. The routine would end by clearing the
interrupt flag and restoring the MPU registers. The
MPU would then return to the task that it was handing
when the interrupt occurred.

Clearly we are going to need to handle interrupts if
we want to use the timers and this will involve using
machine code. Now do not take fright at this prospect
because it really 1is very easy, thanks to the Beeb’s
marvellous built-in assembler which allows assembly
language statements to be freely mixed with BASIC. The
BASIC can be used for the difficult bits and we need
only use the assembler when it is essential, as 1in
dealing with interrupts.

Timer Operating Modes

Each of the timers is capable of operating in various
modes, selected by a group of bits in the auxiliary
control register (ACR) - figure 3.6a. As well as
controlling the timers, this register also determines
whether input latching on the port lines is enabled or
disabled and it controls the operation of the serial
shift register (SSR) within the VIA. This latter is
mainly concerned with synchronising communications
between computers and is beyond the scope of the
present treatment. Those who want to experiment with
the SSR are referred to the 6522 data sheet and/or the
book by Birnbaum, details of which are given in
appendix A.

146

Bit (B) []

A Science Teacher's Companion to the BBC Microcomputer

e s Jelofa]:]o |

T2 SSR Control PB PA
Control Control Latch
Tl Control T2 Control
B7|B6 MODE IOB B7 Bit 5 MODE
0] O Single-shot OFF 0 Single-shot
011 Free run OFF 1 Counter
11 0 Single-shot ON (Pulse)
1] 1 Free run ON (Sqg. wave)
PB/PA latching Control:
Bit high = latching enabled
Bit low = latching disabled
Figure 3.6a Auxiliary Control Register
Interrupt Status Register (ISR)
Flag Set by Cleared by
(Bit)
7 Any enabled VIA interrupt Clearing ALL interrupts
6 Time out of T1 Read TICL/Write TICH
5 Time out of T2 Read T2CL/Write T2CH
4 Appropriate transition on CBl Read/Write IOB
3 Appropriate transition on CB2 Read/Write IOB
2 8 shifts of shift regq. Read/Write SSR
1 Appropriate transition on CAl Read/Write IOAl
0 Appropriate transition on CA2 Read/Write IOAl
Interrupt Control Register (ICR)
Bit number Function
7 Set/Clear control
6 Enable T1 interrupts
5 Enable T2 interrupts
4 Enable CBl interrupts
3 Enable CB2 interrupts
2 Enable SSR interrupts
1 Enable CAl interrupts
0 Enable CA2 interrupts

Figure 3.6b

Interrupt Status and Control Registers

Control and Measurement — Interfacing 147

Figure 3.6a shows that timer 1 has four modes of
operation, controlled by bits 6 and 7 of the ACR, and

timer 2 has two modes, controlled by bit 5. The two
basic modes of Tl are ’“single-shot’ (bit 6 = 0) and
‘“free-run’ (bit 6 = 1). In the former a single

interrupt will be generated some time after the timer
is loaded - the time will depend on the data 1loaded.
In the second mode the timer will generate a continuous
series of interrupts, the interval between interrupts
being set by the timer data. 1In addition Tl <can also
generate an output from B7 of the user por<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>