15

5. ADVANCED FEATURES

It is advised that the features covered in this section
should only be used once familiarity has been gained with
those outlined in section 4.

5.1 CLONES

Each of the 7 sprites may have up to 2 additional clones
(ie exact copies) of themselves on the screen at any time.
Hence there may be up to 21 independently moving objects on
the screen at once.

Each clone is allocated an identity, and it is with this
that it is identified, <called and moved. These are as
follows:

Primary First Second
Sprite Clone Clone X Y
Number Number Number co-ord co-ord
1 9 17 A% B%
2 10 18 C% D%
3 11 19 E% %
4 12 20 G% H%
5 13 21 I% J%
6 14 22 K% L%
7 15 23 M% N%

As you will observe, the variables used to define the
position of the clones, are the same as those wused to
control the main sprite. For example A% and B% are used to
indicate the position of sprite 1 and both of its clones
(sprites 9 and 17).

Hence, to move the sprite and both of its clones will
require care on your behalf to ensure that you do not call,
say, sprite 1 and then sprite 9, without updating the wvalues
of A% or B% to the new position of sprite 9.

BEEBUGSOFT



16

5.2 ANIMATION

If the sprite that you are moving is, say, a man walking
along, simply redrawing him in different positions will give
the appearance of him gliding along - not actually walking.
This is not important for moving shapes such as a pacman,
car or tank, but is essential for moving, say, a flying bird
or a man climbing a ladder.

The BEEBUG sprite pack takes care of this automatically.
As mentioned earlier, the x co-ordinate of a sprite's
location may vary between 2 and 151, however in actual fact
there are only half this number of different screen
locations. Consequently, a sprite will appear at the same
position on the screen, if its x co-ordinate is, say, 10 or
11. This fact is made use of to place alternate images of a
sprite at the same position so as to simulate animation.

When using the sprite definer, (as explained later in this
manual) it is possible to create 2 different versions of the
same sprite. (Do not confuse this with clones or super
sprites). If you do this, the first image of the sprite will
be displayed whenever the x co-ordinate of the sprite is an
even number, and the second image displayed on odd numbers.

5.3 CHECKING FOR A COLLISION BETWEEN SPRITES

In most games, it is essential to know when one object on
the screen hits another, for example a bullet hitting an
alien or pacman hitting a monster. The continual checking
for crashes in Basic, will tend to slow down the operation
of any but the most simple programs. The BEEBUG sprite pack
includes a special machine code routine, which is quickly
called from Basic, to do this you.

To check for a collision between sprite number m and
sprite number n, use the following:

W%S=m
Z%=n
CALL 0%

BEEBUGSOFT



17

Now simply test for the value of X%. If it is unity, then a
collision has occurred, and appropriate action can be taken.
The routine defines a crash as any overlap involving a
central area of a given sprite of 4 pixels wide by 16 pixels
high. This 1is something of a compromise in that sprites
defined by the user will be of varying size.

It is however possible to increase the area used for the
collision routine to cover the full 8 by 16 sprite size. To
do this, type the following:

?&2EBE=8

Once vyou have done this, vyou <can re-save your sprite
handling routine (whether for normal or super sprites), and
the modification will be saved along with it. To return to
the default value, use:

?&2EBE=4

The collision checking routine contains a further facility
to assist here. Once Q% has been called, Y% will return a
value depending on the accuracy of the collision. A value of
255 indicates no crash, while lower values indicate
progressively greater overlaps Dbetween the two colliding
sprites.

Note that if either of the two sprites concerned are clones,
you must ensure that their position vectors hold their
correct x and y coordinates before any collision check can
be made; and that W% or Z% holds the number of their parent
sprite (rather than the clone number).

The program below moves two sprites randomly around the
screen. When a collision 1is detected a noise 1is sounded.
There 1is a continuous printout of the wvalue of Y% on the
screen, to demonstrate the way in which this parameter can
measure the closeness of a collision.

0 REM PROG4
10 REM MOVES TWO SPRITES RANDOMLY,

BEEBUGSOFT



18

20 REM AND CHECKS FOR CRASHES
100 MODE 2:HIMEM=&2800

110 CALL P%

120 VDU 23;8202;0;0;0

130 A%=100:B%=100

140 C%=100:D%=100

150 REPEAT

160 time%=TIME + RND (600)
170 Z1%=RND (8)

180 Z2%=RND (8)

190 REPEAT

200 PROCmovel
210 PROCmove2
220 PROCcrash
230 UNTIL time%<TIME

240 UNTIL FALSE

1000 DEFPROCmovel

1010 wWs=1

1020 Z2%=Z1%

1030 CALL T%

1040 ENDPROC

1050 DEFPROCmove2

1060 W%=2

1070 Z2%=Z2%

1080 CALL T%

1090 ENDPROC

1100 DEFPROCcrash

1110 ws = 1

1120 W = 2

1130 CALL Q%

1140 IF X%<>0 THEN SOUND &10,-15,6,4:time%=0
1150 PRINT CHRS$ (30);¥Y%;" "
1160 ENDPROC

BEEBUGSOFT



19

5.4 ALLOCATING SPRITES

You may reach a point in your game, when you need to have
several versions of the same sprite moving on the screen at
the same time. As already mentioned, there are 7 available
sprites which may be defined as required, and so one method
to achieve this would obviously be to define sprites 1, 2
and 3 (say) as the same character. Another method would be
to use clones, as already explained in this manual.

However, a third method is available which is particularly
useful if your game requires all 7 sprites to be defined as
different characters, and then requires the display of, say
3 or 4 wversions of one particular sprite. Quite simply,
calling U% will enable a sprite to be displayed not as
itself but as one of the other sprites. This is known as
'allocating a sprite', and is achieved as follows:

WS Number of sprite to be allocated
Z% Number of sprite whose image is to be copied
CALL U%

For example, if sprite 1 is a monster and sprite 2 is a man;

50 Ws =1
60 2% = 2
70 CALL U%

will cause both sprites 1 and 2 to display the man.

Note that it is advisable to delete previously displayed
images of the sprite to be replaced.

Clones take on the new forms of their allocated parent
sprite. It 1is possible to allocate one sprite shape to more
than one sprite, and likewise to have a sprite shape that is
not allocated to any sprite. Merely because any sprite shape
is not allocated to any sprite number at a particular time
does not mean that it no longer exists: it will just remain
idle until required.

BEEBUGSOFT



20

5.3 SUPER SPRITES

Normal sprites may have two alternative and alternating
manifestations. This allows simple animation effects. A
super sprite has four such manifestations and is created as
a pair of normal sprites. Each normal sprite in a super
sprite 1is called a phase, and the user determines which
phase is being displayed at any given moment. As an example,
the sprite could be used to represent a running man. By
defining one phase with him facing left and the other phase
with him facing right it is possible to have him facing the
same way as he moves, all using one sprite. Furthermore it
would be easy to introduce animation into both phases using
the odd/even effect on the x co-ordinate.

It is not possible to combine the use of normal sprites
and super sprites in one program since super sprites require
a separate machine code handling routine. To access the
super sprite code on cassette or disc, use the following:

*RUN SS/CODE
CALL P% (sets default values)

Cassette users should note that SS/CODE is the eighth file
on the cassette.

To protect this code it is necessary to set HIMEM to &2500
whenever the mode is changed, rather than &2800 for normal
sprites.

Many of the commands for super sprites are similar to
those for normal sprites. However it 1s not possible to
switch sprite shapes and sprite numbers in the same way as
is possible with ordinary sprites.

When defining the sprites for use in SS/DEMO each sprite
is allocated two phases. For example sprite one has a phase
facing left, and a phase facing right. These two phases are
defined and saved quite separately, as explained in section
6 below.

It is possible to determine which phase of a given sprite

BEEBUGSOFT



21

will be drawn using a call of the following kind:

W% = Super sprite number
Z% = Phase (1 or 2)
CALL U%

For example:

10 W& = 3
20 2% = 2
30 CALL U%

This will allocate phase 2 to super sprite 3. All further
manifestations of super sprite 3 will be in phase 2 until it
is altered by another call to U%. Note that this call has a
different effect when using normal sprites.

It is advisable to delete the relevant supersprites before
changing their phase.

BEEBUGSOFT



