4. USING SPRITES

4.1 OVERVIEW

When using this sprite package to create a computer game
the first stage is to define a number of sprites using the
special character definer supplied. Once defined, each
sprite is individually stored away on cassette or disc.

The next step is to incorporate selected sprites into the
machine code sprite handling routine. In fact there are two
alternative handling routines, one for ordinary sprites, and
one for super sprites. Super sprites are treated in section
5.5 of this manual. The handling routine containing your own
sprites is then re-saved.

You may then proceed to write your game in Basic. This
will access the sprite handling routine, which will need to
be co-resident in the machine whenever the Basic program is
run.

In practice the machine code sprite routines supplied,
already contain 7 pre-defined sprites. We suggest that in
the first instance vyou experiment with these Dbefore
attempting to define and load your own sprites. The sprites
supplied are as follows:

Sprite number Description
Pacman shape
Man

Laser base
Two cherries
Monster
Monster
Monster

~ o U b w N

It is very easy to display and move sprites around the
screen, and the next sections deal with the precise way in
which this is achieved.

BEEBUGSOFT



In preparation for experiments with the various sprite
calls you should first load in the sprite handler, complete
with default sprite definitions. To do this type:

*RUN M/CODE

This is the same for cassette or disc, but cassette users
should not that M/CODE is the second file on the tape. It 1is
also repeated a number of times later in the tape.

4.2 MEMORY USAGE

One of the first things that your Basic program should do
is to enter mode 2 - the sprites only function in mode 2 -
and reserve memory for the machine code sprite routine
already loaded. It resides Dbetween &2800 and &3000, and is
protected by setting HIMEM to &2800 after any mode change.

Early in vyour program a line similar to the following
should therefore appear:

100 MODE 2:HIMEM=&2800 (42500 for super sprites, see
section 5.5)

HIMEM should be reset in this way after every mode change in
your program. Failure to do this could cause corruption of
the machine code routines.

4.3 INITIALISATION

One other essential is to initialise the sprite handler.
This achieved by a call to P%. Thus all sprite programs
should contain the following two lines at an early stage:

100 MODE 2:HIMEM=&2800 (&2500 for super sprites)
110 CALL P%

BEEBUGSOFT



4.4 USE OF VARIABLES

The sprite routines use the static integer variables to
pass to and from Basic (ie. A% to Z%). Your Basic program
should not use these for purposes other than those outlined
below; and they should not be directly used as a loop
parameter in FOR NEXT loops. Of course any other integer
variables (eg. AA%, a% and so on) may be freely used.

4.5 REFERENCING A SPRITE

Each of the seven individual sprites have separate integer
variables reserved for the x and y co-ordinates of their
location on the screen. These are as follows:

Sprite number X co-ord Y co-ord

1 A% B%
2 C% D%
3 E% FS
4 G% HS%
5 I% %
6 K% L%
7 M% N%

The x coordinate may vary between 2 and 151, and the vy
coordinate between 2 and 139. There is an automatic wrap-
around if wvalues are out of these ranges. The wrap-around
parameters may also be altered by the wuser; see section
4.11.

4.6 DRAWING A SPRITE ON THE SCREEN

This is very easy to do. W% is used to tell the computer
which sprite you wish to draw, and S% 1is used to call the
sprite plotting routine.

eg 40 Ws = 2
50 C% = 30:D% = 40
60 CALL S%

would plot sprite 2 at (30,40)

BEEBUGSOFT



10

If the sprite was already on the screen at some other
location, plotting it in a new position (as in the above
code) automatically erases the first image. Hence you do not
need to worry about deleting old images as you cause
movement, it is all done for you.

If you wish to try this, *RUN M/CODE as described in
section 4.2, then run the following program:

0 REM PROG1
10 REM USES S% TO POSITION
20 REM SPRITE NO 2
100 MODE2:HIMEM=&2800
110 CALLP%
120 wWs=2
130 C%=30:D%=40
140 CALLSS%

4.7 MOVING A SPRITE

There are 2 ways of doing this:

A.Plot the sprite on the screen, update the integer
variables controlling its location, and simply plot it on
the screen elsewhere - as described in section 4.6 above.

The program below uses this principle in conjunction with
a FOR NEXT loop to move a sprite across the screen. If you
wish to try it, *RUN M/CODE before running the program, as
described in 4.2 above.

0 REM PROG2

10 REM USES S% TO MOVE
20 REM SPRITE NO 2
100 MODE2:HIMEM=&2800
110 CALL P%:?&2EBE = 8
120 wWs=2
130 D%=100
140 FOR AA%=2 TO 50
145 C%=AA%
150 CALLS%

BEEBUGSOFT



11

160 NEXT

B. Use the special programmable directions, and CALL T%. This
is achieved as follows:

W% = Sprite Number
Z2% = Direction Number
CALL T%

o° o

€g

50 W% 4
60 2% =5
70 CALL T%

would move sprite 4 in direction 5. This call assumes that

the starting coordinates of the particular sprite are
already defined. If this is not the case a statement of

previous position should be made before the call; eg.
$=50:H%=100.

The directions for the call to T% are initially defined as
follows, but may be reprogrammed as required:

\ I /
1 2 3
—4 * 5—
6 7 8
/ I \

Note that moving the sprites wusing this method will
automatically update the relevant position vectors. Thus in
the above example with sprite 4, G% and H%, would have been
automatically updated to reflect the sprite's new position.

As an example the following program uses this call to move
a sprite randomly around the screen.

0 REM PROG3
10 REM USES T% TO MOVE

BEEBUGSOFT



12

20 REM SPRITE NUMBER 2
100 MODEZ2:HIMEM=&2800
110 CALLP%
120 C%=30:D%=40
130 REPEAT:PROCRAND:UNTIL FALSE
1000 DEF PROCRAND
1010 wW%=2
1020 Z%=RND (8)
1030 CALLTS%
1040 ENDPROC

4.8 REDEFINING A PROGRAMMABLE DIRECTION

As mentioned above, it is possible to move a sprite using
the special programmable directions and the wvariable T%.
Initially these are defined to move one unit in each of the
8 possible directions, but these may also be reprogrammed as
required. This is done as follows:

7% = Number of direction to be reprogrammed
X% = desired positive movement on the x axis
Y% = desired positive movement on the y axis
CALL R%

So to alter direction 2, to move the sprite up 3 units,
rather than the default wvalue of 1, use:

2% = 2
X =0
Ys = 3
CALL R%

Note that negative values of X% and Y% used in this way,
will cause negative movements; that is right to left or top
to bottom, respectively.

BEEBUGSOFT



13

4.9 DELETING A SPRITE

As already mentioned the old image of a sprite is
automatically deleted, when the sprite is redrawn elsewhere.
However, you may wish to totally remove a sprite from the
screen, and to do this simply set W% to the wvalue of the
sprite plus 256, and call S%.

For example, to delete sprite 3, use:

50 W% = 259
60 CALL S%

4.10 DELAY ROUTINES

Because of the high speed of movement provided by the
sprites, you may need to slow them down a little to prevent
them from shooting across the screen too quickly. This is
fairly easy to do in Basic with simple REPEAT loops, however
a machine code routine to do this is also included for your
use.

SET X% to the required delay (from 1 to 255)
CALL O% (ie the letter O - not =zero)

4.11 BOUNDARY DEFINITIONS

If an attempt 1is made to plot a sprite outside a given
boundary on the screen, the program will automatically sense
this and plot the sprite on the other side of the screen,
producing a 'wrap around' effect. These Dboundaries are
normally set to the edges of the screen, but may be reset
using the following:

Boundary Instruction Range of Value
left side ?7&85=value (2 - 151)
right side ?&86=value (2 - 151)
bottom side ?&87=value (2 = 239)
top side ?7&88=value (2 = 239)

BEEBUGSOFT



14

Thus for example, the following line:

100 ?&85 = 50
will reset the left boundary to 50.
The default values for these parameters are 2, 151, 2, and
239 respectively. To reset the four parameters to the
default values, use:

CALL V%

Any call to P% will also reset them; though this will also
reset other variables.

BEEBUGSOFT



