Chapter Two
BBC BASIC

Not only is the BBC Micro a remarkable and interesting machine from
the hardware point of view, it also has some equally impressive
software. One of the interesting characteristics of the software is the
way that it interacts with the hardware to produce something that is
extremely versatile. For example, the sound generator chip is fairly
sophisticated in that it has three tone channels and a noise channel, but
when you add in the ENVELOPE command it behave's in a way that
seems to exceed its specification! Much of the way that the sound
generator appears to the user is entirely the invention of well-
conceived software. In this chapter we look at BBC BASIC which
forms roughly half of the resident software in the machine. (The other
half, the MOS, is considered in Chapter Three.)

Rather than going through a point-by-point discussion of the
commands that make up the BASIC, a task already accomplished by
the User Guide, the first part of this chapter looks at some of the
features and commands that either make BBC BASIC special or are in
some way difficult or unusual. In the second half of the chapter we
take a look inside and find out how the BASIC interpreter runs and
stores your BASIC programs. This sort of information is often
interesting and is worth knowing for its own sake. Also, there are many
practical reasons for delving into the interpreter. Knowing how the
BASIC is implemented can suggest the fastest and most economical
ways of doing things. It can also suggest 'short cuts' and ways of
accomplishing what would otherwise be impossible (for example,
printing a list of all the variables in use). Finally, the assembly
language programmer needs to know something of how variables are
stored in order to make use of the parameter-passing capabilities of the
CALL statement (see Chapters Seven and Eight).

BBC BASIC 23
BBC BASIC, a BASIC with structure

When Acorn were approached by the BBC to produce a computer, one
of the specifications was that its BASIC should include statements not
normally thought of as being part of the language. The reason for this
was the desire to make BASIC a more academically respectable
language and to make it able to take advantage of the method of
programming known as ' structuredporogramming’ The theory behind
this method of programming is not within the scope of this book but its
practical interpretation has come to mean the use of the commands:

IF... THEN...ELSE
REPEAT . .. UNTIL

WHILE...DO. ..
and
FOR..=..TO..

BBC BASIC doesn' include all of these statements; it lacks WHILE,
but even so it can claim to be a' structure®ASIC' If you want to treat
BBC BASIC like an ordinary BASIC, that is programming using only
IF ... THEN, GOTO and FOR, then you can. However, if you want to
write BASIC in a structured way there is more to it than just adding the
more complete form of the IF and the REPEAT... UNTIL statement to
your repertoire. It is the aim of structured programming to produce
programs that are easy to undertstand and as bug-free as possible and
this can be achieved in many ways. The most important thing is to try
and make the ' flowof control' through your program as simple and
obvious as possible. You can do this by restricting the way that you use
GOTO, by using REPEAT ... UNTIL and FOR to form loops in
preference to GOTO and by using subroutines to group statements
together into logical units. To go into any more detail about structured
programming would take us far from our subject. If this brief
introduction has whet your appetite then you can find out more about
structured programming and good programming style in general from
my other book, The Complete Programmer. However, it is worth
looking at the subject of subroutines a little more.

Subroutines, procedures and functions

One of the biggest criticisms of BASIC is that it has a very limited

24 The BBC Micro

ability to group statements together into logical units. True, you can
use GOSUB and RETURN to form subroutines but this has a number
of shortcomings, as follows:

I. You have to refer to subroutines by a line number rather than a
name that indicates the subroutine' s purpose.

2. Subroutines and the rest of the program have unrestricted access
to each other' s variables.

3. There is no way to isolate the variables that supply inputs to and
return results from a subroutine - in other words there are no
facilities for parameters.

The first problem can be overcome to a certain extent by
assigning the line number to an appropriately named variable. For
example, if you wanted to call a subroutine starting at line 2000 that
sorted an array into order, instead of:

GOSUB 2000
you could use

SORT = 2000

GOSUB SORT
However, this technique makes renumbering a program very difficult.
You may not see why the second point is a problem. Why shouldn' &
program and a subroutine share the same variables? There are a
number of valid arguments to suggest they should not. As subroutines
should be collections of statements that carry out identifiable tasks,
they are often written without reference to the rest of the program. For
example, a subroutine that sorts an array into order is generally useful
and might find its way into a number of programs. When writing such
a subroutine, what names should you give to the variables that you use
so that they don' t clashwith variables used for other purposes in the
main program and other subroutines? Variables clashing in this way is
a very common cause of BASIC programs failing to work as expected.
If you do have a way of isolating the variables in a subroutine from the
rest of the program then the third problem comes into play. If
subroutines cannot have access to the variables in the main program
how do they receive their input values and return their results? The
solution to this problem is, of course, to use parameters in the same
way as in a standard BASIC function. In fact, in many respects, the
standard BASIC function would be superior to the BASIC subroutine
if it were extended to allow more than one statement. This is indeed the

BBC BASIC 25

direction that BBC BASIC takes in improving the subroutine.
A user-defined function in BBC BASIC can take the ' ondine'
form found in most other versions of BASIC. For example.

DEF FNsum(a,b,c)=a+b +c¢
is a function that adds three numbers together. The three parameters a,b
and c are not variables in the usual sense of the word in that they do
not ' appearin the main program because they have been used in the
function. There is even no problem if the main program uses variables
with the same names. In some senses the names used for parameters
are only relevant within the function definition. In other words,
parameters are local to the function. Another thing to notice is that a
function returns a single value as a result. It is this that makes it
possible to use functions within arithmetic expressions. From the point
of view of evaluating expressions, a function behaves just like an
ordinary variable except that the value associated with its name is
produced by the function rather than just stored in memory. However,
even though this is a very useful feature there are many occasions
when a subroutine needs to return more than a single result.

BBC BASIC improves the standard BASIC function to allow
multiple statements in its definition. For example, it is possible to write
a function that finds the larger of two numbers:

100 DEF FNmax (a,b)
110 ang=a

120 IF a<b THEN ans=b
130 =ans

Line 100 states that what follows is the definition of a function called
FNmax. Lines 110 and 120 place the larger of a and b and place the
result in ans. Perhaps the oddest looking line is 130. Multi-line
functions always end with an assignment with no variable on the left-
hand side. The effect of this is to set the value returned by the function
to the result of the expression on the right of the equals sign, Once the
value of the function has been determined it is used in the evaluation of
the expression in which the function occurred in the main program.
Once again it is useful to think of this last assignment statement as
storing the result of the function in a dummy variable with the same
name as the function. The parameters a and b are, again, local to the
function. But, what about the variable ans? This is declared within the
function so you might expect it to' belonglo the function. In fact it is a

26 The BBC Micro

variable that is part of the rest of the program. The variable ans is no
different from any other variable in a standard BASIC program. This is
something of a disadvantage if there is already a variable ans in use in
the main program. If this is the case and FNmax is used then the
variable will change its value even if its use in the main program has
nothing to do with finding the maximum of two numbers. Such
changes caused by functions in innocent variables in the main program
are called the side effects of the function. If you want to write
programs that are not only easy to understand but easy to debug then
the functions used in your programs shouldn' tause any side effects.
BBC BASIC provides the LOCAL statement for just this reason. A
variable that is declared in a LOCAL statement behaves much like a
parameter in that it has nothing to do with any variables of the same
name used in the rest of the program. For example, the FNmax
function can be written as:

100 DEF FNmax (a,b)
110 LOCAL ans

120 ans=a

130 IF a<b THEN ans=b
140 =ans

Now the variable ans is declared as local by line 110 and, just as the
names a and b have nothing to do with the main program, the value of
ans may be changed without affecting any variable in the main
program. This version of FNmax has no side effects! We will consider
how parameters and local variables actually work later on in this
chapter. However, it is worth pointing out that if you use a parameter
or declare a local variabiethatdoesnothaveacounterpart with the same
name in the main program then one comes into being as soon as the
function is used. (Numeric variables are given the initial value zero
and string variables are set to the null string.)

Functions are very useful but they do have the drawback that they
can only return one result (excluding side effects). BBC BASIC
provides an additional feature - the procedure - that is supposed to get
around this problem, If you want to return anything other than a single
result you should use a procedure. Procedures are a very useful feature
of BBC BASIC but the one thing they do not solve is the problem of
returning more than one result! In fact there is no clean way of getting
any results back from a procedure. A procedure is defined in much the
same way as a function but it ends with ENDPROC. For example,

BBC BASIC 27

10 DEF PROCmaxmin (a,b)
20 IF a>b THEN max=a:min=b ELSE max=b:min=a
30 ENDPROC

Line 10 defines the procedure maxmin with two parameters a and b.
Line 20 does all the work by placing the two results correctly in the
variables max and min. The final line simply marks the end of the
procedure in the same way that RETURN ends a subroutine. The two
parameters are local in the same way that the parameters in a function
are. However, the only way that the two results can be communicated
back to the main program is by the use of two non-local variables max
and min. As these are non-local, any variables of the same name in the
main program will be altered by the use of the procedure. In this sense
the only way that a procedure can return any results is by making use
of side effects! Any variables used in a procedure that are used purely
for internal purposes should be named in a LOCAL statement in an
attempt to minimise unnecessary side effects but, unless no results are
to be returned, procedures must produce side effects.

Even though procedures have this fundamental shortcoming they
are extremely useful - so much so that they are always to be preferred
to the standard BASIC subroutine. Although there is much written in
the User Guide it is worth highlighting a number of important points
concerning functions and procedures:

l. Use a function whenever a single result is to be produced.

2. Place all the variables used in a function in a LOCAL statement
to remove all side effects.

3. All input to functions and procedures should be via parameters
whenever possible.

4. Use a procedure if no results or more than one result is to be
produced.

5. In a procedure, name all variables not used to return results in a
LOCAL statement to remove unnecessary side effects.

6. Parameters can be any of the three simple variables - real, integer
or string - but not an array. Arrays can only be passed as non-
local variables.

7. Functions can return strings as results.

8. Functions and procedures are always to be preferred to BASIC
subroutines and should be used as often as possible. One good
reason is that procedure calls are faster than subroutine calls.

9. The variables used in a procedure or function are only created

28 The BBC Micro

after the function or procedure is first used.

10. Functions and procedures work slightly faster the second time
they are used.

11. Functions and procedures can be called recursively.

The reasoning behind many of these points will become clear as
the chapter progresses. However, the final point is worth illustrating
with an example. Whenever a function or procedure is called it creates
a completely new set of local variables. This fact means that a function
or procedure can call itself, i.e. can be used recursively. Recursion is a
subject that is dealt with extensively in many an academic textbook.
Most people find it difficult to cope with and it is therefore fortunate
that it is rarely actually needed in the solution of practical problems. As
an example of recursion consider the problem of writing a function to
calculate n! (n factorial). The usual way to write a function that
calculates n! is by using a FOR loop. (n! is the product of all the
integers from 1 to n, that is:

n*(n-)*(n-2)*. *]1
from 1 to n).

100 DEF FNF (N)
110 LOCAL I,SUM
120 suM=1

130 FOR I=1 TO N
140 SUM=SUM*I
150 NEXT I

160 =SUM

The FOR loop at lines 130 to 150 calculates a running product in SUM
that is equal to N!.

There is another way to approach the problem of calculating
factorials. If you want to know what n! is you could find out by
calculating (n-1)! and multiplying it by n. In other words, n!=n*(n-1)!.
For example, 4!=4*31=4%3%21=4%3*2*]! and we know that 1! is 1.
This idea results in the following function:

100 DEF FNF (N)
110 IF N<>1 THEN =N*FNF (N-1)
120 =1

Line 110 looks very strange in that the expression to the right of the
equals sign uses the function FNF. To see how this works follow
through the calculation of FNF(3). When FNF is first called, the value

BBC BASIC 29

of N is 3 so the expression following line 110 is carried out. This
involves calling FNF once more but with the value of the parameter N
equal to 2. Remember that when FNF is called for the second time a
completely new set of variables is created. This second call to FNF
also results in FNF being called again but this time with a parameter
value of 1, which causes this third call to FNF to finish via line 120.
This results in the value I being returned as the result of the third call
which allows the evaluation of the expression in the second call to be
completed i.e. 2*1 and the result passed back to the first call to FNF.
Finally, this result allows the expression in the first call to FNF to be
completed giving the correct answer 3#2*1.

If this description has left you feeling confused then you are not
alone! It is possible to follow the execution of the function through all
its ' incarnationsbut you really need pencil and paper to do it easily.
Recursion is something that you either feel comfortable with or find
difficult. You can write recursive functions and procedures in BBC
BASIC. However, because procedures do not return results except via
non-local variables they are much more limited in the way they can be
used recursively.

Indirection and hexadecimal

The provision of REPEAT . . . UNTIL functions and procedures
certainly make BBC BASIC a ' higherlevel language than standard
BASIC. However, there are one or two extra facilities included in BBC
BASIC that makes it easier to use for lower level tasks. In particular,
there are three ' indirectiondperators that make the direct manipulation
of memory easy.

Most versions of BASIC provide the POKE command to alter a
memory location and the PEEK function to examine the contents of a
memory location. BBC BASIC replaces both of these facilities by a
single indirection operator ' ?'Writing a question mark in front of a
number or a variable causes it to be interpreted as the address of a
single memory location. So, for example, 740 is a reference to memory
location 40. To find out what is in a memory location all you have to
do is use PRINT ?address. To change the contents of a memory
location you simply write ?address=new value. If you read the question
mark as ' thememory location whose address is' then you should be
able to understand any use of the indirection operator.

30 The BBC Micro

Although it is useful to be able to handle single memory locations
the BBC Micro tends to work with more than one location at a time.
For example, it uses four memory locations to store an integer. To
make the manipulation of multiple memory locations easier two other
indirection operators, ! and $ are available. The exclamation mark
works in the same way as the question mark but it refers to four
memory locations. To be exact the statement !address refers to the four
memory locations whose addresses are address, address+1, address+2
and address+3. These four locations are treated as if they were a
standard integer value (with the most significant byte stored in
address+3). The dollar sign $ is a little more difficult to understand in
that the number of memory locations that it refers to is variable. It is
known as the string indirection operator, because it deals with memory
in terms of strings of characters. For example, $4000="ABCD" stores
the ASCII codes for A in memory location 4000, the code for B in
4001 and so on until it stores the code for D in memory location 4003.
To mark the end of the string it then stores the ASCII code for carriage
return in 4004. In the same way PRINT $4000 will print the character
corresponding to the ASCII codes stored in the memory locations
starting at 4000 and going on up to the first occurrence of the ASCII
code for carriage return.

You can specify an offset with any of the three indirection
operators. For example, 4000?10 refers to memory location 4010. In
other words, address?offset is the same as ?(address+offset). This is a
useful facility for stepping through a range of addresses but it can be
confusing for the beginner.

The indirection operators certainly provide a way of handling
memory locations but both memory addresses and memory contents
are usually specified in terms of hexadecimal rather than decimal. The
main reasons for this are that you can specify a memory address using
four hex digits and the contents of a memory location using only two
hex digits. BBC BASIC is capable of handling numbers written in hex
and printing values in hex. Writing ' &in front of a constant indicates
that it should be taken to be a hexadecimal number. For example, &F is
15 and OFF is 255. In particular, it is important not to confuse &I0
with ten (to find out what it is type PRINT 4 10). The use of & may
confuse many people because $ is the most common symbol for
hexadecimal but you soon get used to it. To print a number in hex all
you have to do is place in ~ front of it. For example, PRINT~255
produces FF. You can use both & and ~ in combination with any of the

BBC BASIC 31

indirection operators to manipulate memory directly in hex. This is a
very useful facility as we shall see in this and later chapters.

BASIC's use of memory

The memory map given in Chapter One showed the general layout of
the BBC Micro' saddress space in terms of ROM, RAM or 1/0.
However, when running BASIC, the available RAM has a fairly fixed
use that can be seen in Figure 2.1. The top-most portion of RAM is

always taken by high resolution graphics. The actual amount that is
8000 in 32K RAM

< 4000 in 16K RAM
T Hi res graphics
«_ HIMEM
\L BASIC stack
1 Variables < LOMEM
\L «— TOP
BASIC program
« PAGE
O.S. + fixed storage

Fig. 2.1. RAM as used by BASIC.

used depends on the graphics mode selected (see Chapter Four) but the
address of the first memory location below the area used for graphics
is always available in the variable HIMEM. The bottom-most portion
of memory is also used for something other than storing BASIC
programs. It is used by the MOS (see the next chapter) to store details
of how the machine is set up, i.e. what type of printer is in use etc., as
storage for buffers such as the keyboard buffer and sound buffer etc.,
and as RAM storage for any programs in ROM. All-in-all, the lower
area of memory is used foi just about everything! An important area
from the point of view of BASIC is &0400 to &0800 which is
designated as the language work area. This is used by the BASIC
ROM to store most but not all, of the information about a program as it
is running. The area of memory from &0000 to 8<0 1 00 is known as
page zero and it is particularly useful because certain machine code
instructions (see Chapters Seven and Eight) only work with page zero.
Thus, even though BASIC has a work area set aside for it, it does use

32 The BBC Micro

some zero page locations. The actual amount of memory used by the
MOS and other ROM programs varies according to what the machine
configuration is. However, the address of the first free memory
location can always be found in the variable PAGE. As a BASIC
program is typed in or loaded from tape it is stored in memory starting
at? PAGE. The ' topof the BASIC program - in fact the first free
memory location after the BASIC program - can be found by using the
function TOP. The variable LOMEM contains the address of the first
memory location above the BASIC program that can be used to store
variables that are created when the program is actually run. LOMEM
usually contains the same address as TOP but you can change
LOMEM to point to another area of memory if you want to (reasons
why you might want to are suggested in Chapter Eight). The amount of
memory that a BASIC program is using, not including any memory
needed for variable storage, can be found by typing PRINT TOP-
PAGE.

It is interesting to go through the changes in memory use that
occur as a program is loaded and run. When the machine is first
switched on all the memory pointers are set to their correct values. As
a BASIC program is typed in or loaded, the value of TOP and
LOMEM are adjusted so that they always point to the first free
location above the program. When the program is RUN, memory is
used starting from LOMEM to store variables as they are encountered
within the program.

The area of memory just below HIMEM is also used for storage
by a running BASIC program but only for temporary storage for things
such as the return address for subroutines and procedures etc. Thus, as
the program runs, memory is taken starting at LOMEM and extending
upward - this is often referred to as the BASIC heap - and growing
downward from HIMEM, which is often referred to as the BASIC
stack. Obviously, if the running program changes the display mode
then the value of HIMEM will change. If this were to happen when the
BASIC stack was in use then it would crash the program; this is the
reason why you can only change modes from the main program and
not in a subroutine or procedure.

Now that we have a picture of how BASIC puts the RAM to
work it is time to examine in detail how things are stored. First we will
look at how the lines of a BASIC program are stored and then at how
the different types of variables are stored.

BBC BASIC 33
The way BASIC is stored

Each line of BASIC that you type in has three parts - the line number,
the keyword such as GOTO PRINT or REM, and the rest of the
statement. This division also corresponds to the way that a line of
BASIC is stored internally. The ASCII code for carriage return, i.e.
820D, marks the start of every line. Then follow two bytes that hold
the line number in binary. The fourth memory location is used to store
the length of the line. Finally, we reach the actual text of the BASIC
statement. This is stored exactly as written in the form of ASCII code
but with a few changes. For example, any keywords in the line are
replaced by codes that can be stored in a single memory location. This
makes good sense because it saves storage space and the code that is
used is related to the ROM address of the machine code that
implements the BASIC operation. (For a full list of key words see the
User Guide.) This changing of keywords into codes is known as
tokenisation and the codes are known as fokens.

You can see the format of the internal storage of a BASIC line in

Figure 2.2. When there is no program in memory there is still a single
<— —> N

High byte Low byte
CR Length of N - 4 bytes
line N Text

Line number

Fig. 2.2. Internal storage of a BASIC line.

carriage return stored so PAGE and TOP never point to exactly the
same location. The end of a BASIC program is marked by a line
number that has &F stored in the high byte of the line number. BBC
BASIC line numbers must lie in the range 0 to &7FFF so using &FFxx
as an end of program marker doesn' tinterfere with the normal
numbering of a program. 1f you type NEW then all the BBC Micro
does to delete the program is to write &FF in the high byte of the first
line number and reset the pointers TOP and LOMEM. Because
deleting a program with NEW doesn' tlter anything else about the
program, it is possible for OLD to restore the program by setting what
was the high byte of the line number of the first line back to zero and
then use the length of line information to scan through the memory to
find the original end of the program and set the pointers TOP and
LOMEM accordingly.

34 The BBC Micro

An interesting point is that neither LIST nor SAVE actually take
any notice of TOP to find the end of a program. Instead they both use
the end of program marker in the high byte of the line number to stop
listing or saving a program. The sole purpose of TOP seems to be to
govern where a new line of BASIC would be added to the program. It
is also worth pointing out the amount of work that is involved in
obeying a simple GOTO or GOSUB command. The program has to be
searched for the line number used in the GOTO or GOSUB. This
involves starting at the beginning of the program and comparing line
numbers one at a time, using the length of line information to move on
to the next line number until either the search is successful or the
current line number is bigger than the one being searched for. This
long-winded process is, of course, the reason why functions and
procedures are faster than subroutines.

Handling variables - format and storage

There are two things of interest about the way BASIC handles
variables. First, it would be interesting to know how to find out where
any variable was stored. Secondly, it would then be useful to know the
format used to store information in the different types of variable.

BBC BASIC uses a very clever method of keeping track of where
it has placed a variable. When a program runs, each new variable that
is encountered is allocated some space in the BASIC heap (starting at
LOMEM). The address of the first free memory location in the heap is
stored in &0002 and &0003 which, for want of a better name we will
call ' freemem'Thus, the storage of variables starts at LOMEM and
goes up to freemem, New variables are allocated memory where
freemem is pointing and then freemem is increased to point to the next
free location. So far this is exactly what any other version of BASIC
does to allocate storage to variables. What is special about BBC
BASIC is the way that it keeps track of where each variable is.

Other versions of BASIC simply store the name of each variable
as it occurs along with its value. When a variable is required a search is
carried out of the entire BASIC heap. If you use a lot of variables this
can take a long time! BBC BASIC, in an attempt to shorten the search
time, keeps a separate list of variables for each letter of the alphabet,
upper and lower case. In other words, if the first letter of a variable' s
name is A, it joins the ' capitalA' list. If its first letter is a z, then it joins

BBC BASIC 35

the lower case z list. When BBC BASIC wants to find a variable, it has
only to search the list of variables that have the same first letter. As
long as you don' tstart all your variables with the same letter this
should be a quicker way of finding them.

The way that the separate lists are maintained is fairly simple. For
each letter of the alphabet A - Z and a - z there is a start of list pointer
which contains the address of the start of the list of variables that start
with that letter. These pointers are stored in the language work-space
area of memory from &0482 and &0483, which forms the pointer to
all the variables starting with A, to &04F4 and &04FS5, which points to
the start of the list of variables beginning with z. To work out the
address of the pointer to the list of all variables beginning with the
letter stored in AS$, use (ASC(A$)-65)*2+&0482 which gives the
address of the least significant byte of the pointer. If there are no
variables beginning with a particular letter then the corresponding
pointer is set to zero. If there are variables beginning with a particular
letter then the corresponding pointer contains the address of the first
variable. The address of the second variable in the list is stored in the
first two memory locations allocated to the first variable. Each variable
in the list contains a pointer to the next variable in the list. The end of
the list is marked by a zero address for the next variable.

The procedure for adding a variable to the BASIC heap is now a
little more complicated than for the simple storage scheme described
earlier but the increase in speed that results is well worth the trouble.
To add a variable to the list you first have to find the end of the list by
searching down its length until you find the first zero pointer. This may
sound like a chore but of course it has to be done anyway to find out if
the variable already exists! When the variable at the end of the list is
found its pointer is changed to point to the same location as freemem.
Then the space that the variable requires is allocated and freemem is
changed to point once again to the first free memory location.

Now that we know how variables are allocated space and how to
find where they are stored, the only thing left to discuss is the format
used to store each type of variable. BBC BASIC recognises three
fundamental or ' simpledata types - integer, real and string - and can
handle arrays made up of any of the three types.

The storage format used for an integer variable can be seen in
Figure 2.3. The first two locations form the pointer to the next variable
with the same initial letter, as discussed above. These two bytes are
zero if there is no next variable. The subsequent bytes are used to

36 The BBC Micro

Low address High
2 N -1 1 4 address
0 INTEGER
Pointer to next "Tail' of name End of
variable with name
same initial letter marker

Fig. 2.3 Storage of an integer variable with N characters in its name

(including the %).
record the rest of the variable' sname minus the first letter but
including the % sign to show that what follows is an integer. So, for
example, a variable called TOTAL% would have its name stored as
OTAL%. The end of the name is marked by a memory location with
zero in it. Following this are four bytes that hold the actual integer
value associated with the variable. The format that is used to store the
value is 64-bit 2s complement. You can use the ! indirection operator
to obtain its correct value.

0 E Mantissa

End of
name
marker

Fig. 2.4. Storage of a real variable

Figure 2.4 shows the format used to store real variables. To be
more precise, it shows only the part of the format that is different from
the integer format. A real variable starts off with a pointer to the next
variable and the rest of its name just like an integer variable but
following the end of name marker are five bytes used to store a real
value. A real value is stored in floating point form with a one byte
exponent and four byte mantissa.

A string variable also starts off in the same way as an integer
variable with a pointer to the next variable and the rest of the name
including the $ sign. The rest of the string format consists of four
bytes, as shown in Figure 2.5. The first two of these four bytes contain
the address of the actual string of characters that are stored in the

BBC BASIC 37

1 2 1 1

\
0 Address of Number of | Number of
start of string bytes bytes used
| allocated
End of

name marker

Fig. 2.5. Storage of a string variable.

string. The third byte is used to record the number of bytes allocated to
the string for storing its value and the fourth byte records the number
of bytes actually used (in other words, the length of the string). What is
interesting about this format is that the string of characters that forms
the string' salue is stored away from the variable itself. This will be
considered in more detail in the section on garbage collection.

Finally we come to the format used to store arrays. This initially
follows that used for the same pattern as the simple variables but the
name that is stored not only includes the $ or% sign but the (as well.
The rest of its format can be seen in Figure 2,6. The first location
following the end of name marker records the number of dimensions in

1 1 2 2
2*DIM + 1 | No. of No. of
o L elements | elements | Variable elements
in first in second
dimension | dimension

Fig. 2.6. Array storage

the array. To be precise, it is twice the number of dimensions plus one
that is stored in this location which is the number of memory locations
needed to store all of the other information about the array. Following
this byte are pairs of memory locations, one pair for each dimension,
recording the number of elements in each dimension. Following this
information are the values that form the elements of the array.

Before leaving the subject of variable storage it is worth
commenting on the way functions and procedures are handled. In the
same way that variables are formed into lists so are functions and
procedures. The memory locations &04F6 and ScO4F7 are used as a
pointer to a list of procedures. Each item in the list has roughly the
same format as a variable. The first pair of bytes point to the next

38

The BBC Micro

procedure in the list, if any. Then comes the full name of the procedure
ending with the usual zero byte. Following this are two bytes
containing the address of the start of the procedure. The same
technique is used to form a list of functions but in this case the initial
pointer is formed by locations &04F8 and &04F9.

A heap dump program

To make the above information on variable storage etc. a little more
concrete a variables, procedure and function dump program is given
below. Not only does this serve to illustrate the points made above but
it is a useful program in its own right.

9000
9010
9020
9030
9040
9050
9060
9070
9080

9090
9100
9110
9120
9130
9140
9150
9160
9170
9180
9190
9200
9210
9220
9230
9240
9250
9260
9270
9280
9290
9300
9310
9320
9330
9340
9350
9360
9370

DEF PROCdump

LOCAL X,Y

FOR X=&0482 TO &04F4 STEP 2
Y=2X+256*X?1

IF Y<>0 THEN PROCvarlist (X,Y,0)
NEXT X

PRINT

PROCother

ENDPROC

DEFPROCvarlist (X,Y,P)
LOCAL AS$,I,TYPE
A$=STRINGS (50, "X")
AS$S=CHRS$ (65+ (X-&0482)/2)
TYPE=0

PRINT TAB(0);~Y; TAB(5);
I=2

IF Y?I=0 THEN GOTO 9230
AS=AS$+CHRS (Y?21)

IF Y?I=ASC("Z
IF Y?I=ASC("$
IF Y?I=ASC (" ("
I=T+1

GOTO 9160

IF TYPE>99 THEN GOTO 9290

IF P=1 THEN PRINT "PROC";AS$:GOTO 9350

IF P=2 THEN PRINT "FN";AS$:GOTO 9350

PRINT AS$;TAB(10); TYPE; TAB(20);EVAL (AS)

IF TYPE=2 THEN PRINT TAB(20);Y?(I+3);TAB(30);Y? (I+4)
GOTO 9350

D=(Y? (I+1))-1

PRINT AS;

FOR Zz=1 TO D STEP 2

PRINT STRS$ (Y? (I+1+42)*256*Y?2 (I+2+2)-1);",";

NEXT Z

PRINT CHRS$ (08);")"

IF Y?1=0 THEN ENDPROC

Y=2Y+256*Y?1

GOTO 9120

) THEN TYPE=1
) THEN TYPE=2
) THEN TYPE=TYPE+100

BBC BASIC 39

9380 DEFPROCother

9390 LOCAL X,Y

9400 Y=2&04F6+256*2&04F7
9410 IF Y=0 THEN GOTO 9440
9420 X=0

9430 PROCvarlist(X,Y,1)
9440 Y=2&04F8+256*2&04F9
9450 IF Y=0 THEN ENDPROC
9460 X=0

9470 PROCvarlist (X,Y,2)
9480 ENDPROC

The first procedure, PROCdump, examines each of the variable
pointers in turn and calls PROCvarlist if any variables are present in
the list. Most of the work is done by PROCvarlist, which first puts
together the full name of the variable - lines 9120 to 9220. While the
full name of the variable is being constructed in A$, each character of
the name is tested against %, $ and (to determine the TYPE of the
variable. Once the full variable name is present in A$ the BASIC
statement EVAL is used to print the contents of the variable by line
9260. If the variable was a string then line 9270 also prints the amount
of storage allocated to the string and the amount of storage actually
used. If the variable is an array then no attempt is made to print out its
values; just its dimensions are printed. Line 9290 works out the
number of dimensions in the array and lines 9310 to 9340 print the size
of each dimension in turn. After all the details of the variable have
been printed, lines 9350 to 9370 work out the address of the next
variable with the same initial letter. If there is none, then control is
returned to the dump procedure. After all the different variable lists
have been processed, PROCother is called to print the active
procedures and functions. PROCother simply checks the initial
procedure and function list pointers and calls P ROCvarlist to work out
the names of each procedure or function in the list.

Notice that if you use PROCdump it will not only report any
variables etc. employed by a main program with which it is being used
in conjunction. It will also report all of its own variables, procedures
and functions.

The resident integer variables

Although we have discussed the storage and format of the variables
that can be used in BBC BASIC, we have ignored a set of very special

40 The BBC Micro

and very useful variables - the resident integer variables. The names of
the resident integer variables are @%, A% ,B% . . . Z%. Instead of
being stored in the BASIC heap, these variables have a fixed area of
the language work area set aside for them. As a result they exist
whether you use them arnot. They are not cleared or changed in any
way by NEW, CLEAR or LOAD. In fact, apart from explicit
assignment, the only thing that changes the value of a resident integer
variable is switching the machine off and on again! It is often useful to
know that the resident integer variables are stored starting with @ % at
&0400 with four bytes to each variable so that A%, for example, starts
at &0404. The resident integer variables will be mentioned again in
Chapters Seven and Eight.

Garbage collection

When a numeric variable is allocated space in the BASIC heap it is
there to stay and it never needs to change the amount of storage
allocated to it. However, string variables are very different and they
can change their size all the way through the execution of a BASIC
program. A string may start out holding only a few characters and then
grow to the maximum size a string can be, i.e. 255 characters, and then
shrink back to only a few characters again. As a string grows in size,
more memory in the heap has to be allocated to it. When it grows
smaller it would be efficient if the memory it released were returned to
the heap, and this is usually referred to as garbage collection. However,
garbage collection takes time and the BBC Micro is built for speed!
When a string variable is first used, an entry in the format given in
Figure 2.5 is created in the heap. The actual characters that make up
the string are also stored in the heap and the address of the first
character and its length are stored in the appropriate locations next to
the string variable' mame. In fact, a few more bytes than are necessary
to store the string are allocated to allow the string to grow a bit before
problems arise. If you reduce the length of the string then nothing
happens apart from its current length being updated. In particular, the
memory locations that are freed are not returned to the heap; instead,
they are left ready for the string to increase in length again. If you add
characters to the string to the point where all of its allocated space is
used up, then to increase its length still more requires, obviously, some
more memory to be allocated from the heap. This is not an easy matter

BBC BASIC 41

because other variables and strings may be located just above the string
in question. Allocating extra space, therefore, would mean moving
everything above the string up in the memory. Considering the way
that variables are linked together in separate lists, this would be no
easy operation! Instead of this difficult move, the BBC Micro simply
creates a new copy of the string' walue at the top of the heap including
some extra memory locations for future growth. If you think about this
approach to creating more space for a string value you should be able
to see that it is fast but very wasteful of memory. There can be a
considerable number of dead copies of string values occupying
valuable RAM storage because the BBC Micro fails to do any garbage
collection.
To illustrate this problem consider the following short program:

10 ag=""

20 PROCSIZE

30 AS=AS+"A"

40 PRINT LEN(AS),;
50 GOTO 20

100 DEF PROCSIZE
110 PRINT ?22+256*?3-TOP
120 ENDPROC

The procedure PROCSIZE prints the current size of the BASIC heap
by working out the difference between freemem, and TOP. The
program itself first sets up a string A$ that is initially set to the null
string. Each time through the loop formed by lines 20 to 50 a single
letter is added to the string and the size of the heap is printed. If you
run this program you might be surprised how much storage it takes to
hold 255 characters. The final line that the program prints indicates
that the heap reaches nearly 4K bytes! The solution to this waste of
storage is simple. If the string is defined to be the maximum size that it
will ever be when it is first used no extra copies of it will ever be
made. 1f you change line 10 of the above program to read:

10 A%$=STRINGS$ (255, "X") :A$=""

you will find that the final line of the program now reveals that it takes
a much more reasonable 272 bytes to store a string 255 characters
long. If you set strings equal to the maxinium length that they are
likely to reach during a program you will save a lot of memory! The
way that strings are handled by the BBC Micro might seem a little

42 The BBC Micro

crude but it really is the only way that it can be done and still achieve a
fast BASIC.

LOCAL variables and the stack

Although we now know a lot about the way variables are stored we
still do not know how local variables work. How can it be that a
variable named in a LOCAL statement can replace any variable of the
same name in the main program for the duration of the procedure or
function in which it occurs and the original value stored in the variable
still be intact at the end of the procedure? The answer to this question
is surprisingly straightforward. When a function or a procedure is
entered, any variables that are named in a LOCAL statement or that
occur as parameters are searched for in the heap. If a variable with the
same name is found then the value that is stored in it is stored on the
BASIC stack. If the variable doesn' exist then it is created with an
initial value of zero if it is numeric and the null string if it is a string.
After the original value has been safely stored away on the stack, the
variable can be used by the function or procedure without any worry
about altering anything in the main program. The action is the same if
the variable is a parameter except that after the value is stored on the
stack the local variable is initialised to the value given to the parameter
by the statement that referenced the function or procedure. Once the
function or procedure has finished, the original values stored in any
local variable are retrieved from the stack and are returned to their
original places. Any local variable without counterparts of the same
name are not destroyed; they are simply left set either to zero or the
null string.

If you follow the way that the BASIC stack is used every time
that a function or procedure is called, you should have no trouble in
following how functions and procedures can be used recursively.

Conclusion

It would be possible to write an entire book on the subject of BBC
BASIC! This chapter has dealt with some of its more interesting and
immediately useful aspects. Much of the information it contains can be
used to write programs that not only work faster and use less memory,
but are also more logical and easier to debug.

