
Chapter Eight
Assembly Language II

In this chapter the BBC Micro's assembler is examined in a little more
detail. Some of its less obvious features will be discussed and
illustrated by a number of short projects. These projects are complete
in themselves but they are also intended to form the basis for your own
experiments.

Labels and P%

Almost the whole story behind assembly language labels is contained
in the statement that labels are just BASIC variables that are used to
hold an address. However, the wider meanings of this observation are
worth spelling out. There are two ways to set a variable equal to an
address. You can use it to label a position in a program by writing its
name preceded by a full stop (as described in the last chapter) or you
can assign a value to it just like any other variable. Assigning an
address to a label can be used to make assembly language programs
easier to read and write. For example, instead of writing JSR &FFF4 to
call OSBYTE (see Chapter Three) you can write

10 OSBYTE%=&FFF4
20 [JSR OSBYTE%
...

While on the subject of storing addresses in variables, it is worth
pointing out that you can use either real or integer variables to hold
addresses but, of course, integer variables will make the assembler
work slightly faster and will save storage space in the variables area of
memory.

It is a fundamental principle of BASIC that anywhere that you
can use a variable or constant you can use an expression. For example,
wherever you can write PRINT A, you can also write things like
PRINT A*2+4. Unfortunately, not all versions of BASIC keep to this

rule in all situations. BBC BASIC sticks to it almost without exception.
(You cannot use expressions in place of the constants in *FX
commands but these are implemented by the MOS, not by BASIC).
Labels are no exception to this general rule and so anywhere you can
use a label you can use an expression. For example,

LDA #ASC("A") Loads the A register with the ASCII code for
the letter A.

STA DATA+2 Store the contents of the A register in the
memory location whose address is the result
of DATA+2

If you want to load a 16-bit value then it has to be split into two bytes,
an MSB and a LSB. This can be done very easily using the MOD and
DIV functions. For example:

LDX (DATA% MOD 256) loads X with the LSB

and

LDY (DATA% DIV 256) loads Y with the MSB

The ability to use expressions to work out addresses in the assembler is
very useful. It should be remembered, however, that the expressions
are evaluated when the assembly language is being assembled into
machine code, and not when the machine code program is run.

The resident integer variable P% has already been discussed in
the previous chapter in the context of setting the start address of the
memory into which the machine code is loaded. However, P% can be
used for much more than just this. The value stored in P% is
continually changing during the assembly so as to always hold the
address of the memory location that the next byte of machine code will
be stored in. Thus, at the end of a successful assembly, P% points to
the first memory location after the machine code program. You should
now be able to see that the definition of a label using a full stop is the
same as setting it equal to the value of P%. In other words:

100 [
110 LDA DATR
120 .LABEL STR DATA+1
130 JMP LOOP

138 The BBC Micro

is the same as

100 [
110 LDA DATA]
120 LABEL=P%
130 [
140 STA DATA+1
150 JMP LOOP]

Notice that it is necessary to leave the assembler to set the variable
'LABEL' equal to 'P%'. (This idea of leaving assembler in the middle
of a program, using some BASIC and returning to the program is
useful in itself and will be discussed later.) Not only can the value of
P% be assigned to other variables, it can also be altered. For example,
if you want to use a few memory locations in the middle of a program
to store data then you can leave assembler, increase the value of P% by
the number of bytes you require and then return to assembler. If you
want to refer to the memory locations by name then all you have to do
is set up labels equal to intermediate values of P%. For example, if you
want to use three memory locations for data storage and call them
DATA1, DATA2 and DATA3 all you have to do is:

 assembly language
]
 DATA1=P%
 DATA2=P%+1
 DATA3=P%+2
 P%=P%+3
 [
assembly language continued

The line numbers have been left out for clarity. You can use indirection
operators to set initial values in memory locations used for data. You
could add ?DATA1=33 to the last example if you wanted the memory
locations whose address we stored in DATA1 to be initialised to 33.

Getting results to and from assembly language subroutines

The idea of passing values to assembly language subroutine using the
resident integer variables was discussed in the previous chapter. The
USR function caters for the need to return a few simple values but it
can involve the use of messy expressions with AND and DIV to
separate the different parts of the result. A cleaner, though non-standard

139Assembly Language II

method, is to use the information presented in Chapter Two concerning
the locations of the resident integer variables to store results into them
directly. You can see an example of this method in Project 2.

For more complicated situations there is really no choice but to
use the parameter-passing facility of the CALL statement. Following a
CALL with parameters, information is stored starting at &600 as to the
type and location of each parameter. This information can be used by
assembly language programs to 'collect' data from or store results in
BASIC variables. The details of this are straightforward and as there is
an example given in the User Guide the subject will not be discussed
further.

Using memory

Reserving memory for assembly language subroutines and data seems
to be no problem on the BBC Micro. However, there are two instances
where the usual DIM statement method of reserving memory is
inadequate. The first case is when you want to 'hide' a machine code
program in RAM so that other programs can be written without having
to worry about the machine code while still having it available for use.
An example of this problem will be found in Project 1 where a screen
dump program is written. Ideally this program should be stored in an
area of memory that isn't used by a BASIC program and one of the
function keys set to produce the string CALL'address'|M where
'address' is the start of the screen dump program. This would allow the
screen dump program to be loaded before any other BASIC program
and be called into action by pressing the function key. There are
several places where machine code can be 'tucked away' but none of
them is particularly satisfactory. For example, you can lower the value
of HIMEM and stored the machine code just below the screen memory.
The trouble is that changing modes changes the value of HIMEM,
possibly destroying the machine code. However, if you can ensure that
a MODE statement will not be used, then altering HIMEM is a
possibility. A much better way of hiding machine code is to alter PAGE
but this is more difficult because the program that creates the machine
code must be loaded and RUN AFTER the PAGE has been altered. For
more details see Project 1.

The second situation where DIM is insufficient concerns the
allocation of memory for data storage. Locations in page zero are

140 The BBC Micro

particularly important to the 6502. For example, the only way that you
can specify a variable 16-bit address is by using:

LDY #0
LDA (ADDRESS),Y

where ADDRESS holds the address of the first of two page zero
locations. The effect of this pair of instructions is to load the A register
from the location whose address is stored in the two page zero memory
locations. In this way pairs of memory locations in page zero can be
used as '16-bit pointers' to other memory locations. For this reason the
BBC Micro sets aside page zero locations from &70 to &8F for user
routines. Page zero locations are in short supply so use somewhere else
unless you really need page zero.

Conditional assembly and macros

One of the great advantages of having a 6502 assembler as part of
BASIC is that you can make use of all the BASIC statements in the
translation of a program to machine code. For example, if you wanted
to write a machine code subroutine that was to be used for a number of
purposes and each purpose required a slightly different version, then
you could use an IF statement to select which version was actually
assembled. To illustrate this, consider the problem of setting the
transmission speed of a communications program (see Project 2.) You
could use something like:

IF FAST=1 THEN [LDA 600:] ELSE [LDA #300:]

where FAST is a normal BASIC variable that controls which of the
two assembly language statements is translated into the machine code
program. Notice that the IF is only carried out when the assembly
language is being converted to machine code. It is not part of the
resulting machine code program. (The colon before the] can be used
instead of a carriage return to end an assembly language statement. In
fact the colon can be used to put multiple statements on one line just as
in BASIC!)

This selective assembly is a powerful tool and makes the BBC
Micro's simple assembler look more like a complex macro assembler.
As another example, suppose you needed to carry out the same

141Assembly Language II

operation ROR A a number of times. Instead of writing it out each
time, why not use:

FOR I=1 TO 4
[ROR A
]
NEXT I

which will include four ROR A instructions in any assembly language
program that it is part of. The best way to understand what each of
these examples does is to type them in with some other assembly
language and see what appears on the listing.

Finally, it is worth pointing out the BBC assembler coupled with
BBC BASIC provides a full macro facility! A macro is like a
subroutine except that it produces the necessary assembly language
each time it is called. Once again, it is easier to understand this idea by
means of an example. It is often necessary to add the contents of two
memory locations together and store the answer in a third. The
following 'macro' generates assembly language to do just this:

DEF PROCADD(N1,N2,ANS)
[CLC
 LDA N1
 ADC N2
 STA ANS
]
ENDPROC

To add the two numbers in DATA1 and DATA2 and store the answer in
DATA3 you would simply write:

PROCADD(DATA1,DATA2,DATA3)

This would generate the correct assembly language at the position at
which it was used. You can use PROCADD as many times as you like
in a program. A new copy of the assembly language will be produced
each time. You can even use local labels within a macro simply by
naming them in a LOCAL statement! The possibilities are endless!

Project 1 - a text screen dump program

The object of this project is to write a screen dump program. A general
screen dump program would be capable of printing whatever was

142 The BBC Micro

displayed on the screen in any mode. This includes attempting to give
a representation of the colours used as a grey scale! This is not an easy
task and it is not possible to tackle the problem in general because the
solution depends on which of the many graphics printers is available.
To make the problem a little easier and as a starting point for more
advanced programs we will only try to dump mode 7 text screens.

There are many ways of approaching the problem of writing a
mode 7 screen dump program. At first thought it might seem like a
good idea to use the screen memory map to retrieve the ASCII code
stored in each screen location and send them to the printer in turn.
However, this method becomes very difficult if the screen has scrolled
because of the increased complexity of the memory map. Rather than
have to live with a 'no scroll' restriction it is better to use the MOS
subroutine OSBYTE called with A=135. This returns the ASCII code
of the character under the text cursor position. Once we have decided
to use this OSBYTE call, the other problems within the program are:

1. Sending characters to the printer only.
2. 'Scanning' the text cursor across the screen.
3. Sending carriage returns at the end of each line full of the screen.

Each of these problems is also solved with the help of an MOS call.
The resulting program is:

 10 DIM MACH% 150
 20 OSBYTE%=&FFF4
 30 OSWRCH%=&FFEE
 40 OSASCI%=&FFE3
 50 XCORD%=MACH%
 60 YCORD%=MACH%+1
 70 CODE%=MACH%+2
 80 PROCASMB
 90 CLS
 100 FOR I=1 TO 24
 110 PRINT "TEST OUTPUT ",I
 120 NEXT I
 130 CALL CODE%
 140 STOP

 150 DEF PROCASMB
 160 FOR PASS=0 TO 3 STEP 3
 170 P%=CODE%
 180 [OPT PASS

 190 LDA #5
 200 LDX #1
 210 JSR OSBYTE%
 220 LDX #0

143Assembly Language II

 230 STX XCORD%
 240 STY YCORD%
 250 .SCAN% LDA #31
 260 JSR OSWRCH%
 270 LDA XCORD%
 280 JSR OSWRCH%
 290 LDA YCORD%
 300 JSR OSWRCH%
 310 JSR DUMP
 320 LDX XCORD%
 330 INX
 340 STX XCORD%
 350 CPX #32
 360 BNE SCAN%
 370 LDX #0
 380 STX XCORD%
 390 LDX #&0D
 400 JSR PRN
 410 LDX YCORD%
 420 INX
 430 STX YCORD%
 440 CPX #25
 450 BNE SCAN%
 460 RTS
 470 .DUMP LDA #135
 480 JSR OSBYTE%
 490 JSR PRN
 500 RTS

 510 .PRN LDA #2
 520 JSR OSWRCH%
 530 LDA #21
 540 JSR OSWRCH%
 550 TXA
 560 JSR OSWRCH%
 570 LDA #6
 580 JSR OSWRCH%
 590 LDA #3
 600 JSR OSWRCH%
 610 RTS
 620]

 630 NEXT PASS
 640 ENDPROC

The first few lines (10 to 70) set up the area of memory that the
machine code will be stored in and the values of some labels that will
be used later. Notice the way that two memory locations are reserved
for data storage by lines 50,60 and 70 - the start of the machine code is
stored is stored in CODE%. The main program calls PROCASMB to
assemble the dump subroutine to machine code and then prints some
test lines on the screen before calling it in line 130. The assembly
language dump routine can be seen in line 190 to 620. The rest of
PROCASMB implements two passes over the assembly language as
described in Chapter Seven. The first part of the machine code 190 to

144 The BBC Micro

210 sets up a parallel printer as described in the User Guide using the
OSBYTE equivalent of *FX5,1. Lines 220 and 240 initialise the data
locations XCORD% and YCORD% to zero to start the scan of every
location on the screen. XCORD% is used to hold the x co-ordinate and
YCORD% is used to hold the y co-ordinate of the text cursor. Lines
250 to 300 use the VDU drivers via OSWRCH to set the cursor to the
position stored in XCORD% and YCORD%. Line 300 calls a machine
code subroutine DUMP which sends the character under the cursor to
the printer (details given later). The rest of the program, from 320 to
460, is concerned with moving the cursor over the screen by updating
XCORD% and YCORD%. After each character is dumped to the
printer, XCORD% has one added to it (lines 320 to 340) and it is then
compared with 32 to see if we have reached the end of a screen line. If
we have, then XCORD% is set to zero (lines 370 and 380), a carriage
return is sent to the printer to start a new line (lines 390 and 400) and
YCORD% has one added to it to take the cursor down one line (lines
410 to 430). At this point YCORD% is compared to 25 (line 440). If it
is equal to 25 then all the lines have been dumped and the subroutine
ends (line 500). The only things left to explain are the two subroutines
DUMP and PRN. DUMP uses the OSBYTE call discussed earlier to
get the ASCII code of the character under the cursor into the X register
(lines 470 to 480). It then calls subroutine PRN which sends the
character in the X register to the printer only. Subroutine PRN starts by
turning the printer on with the equivalent of a VDU 2 command (lines
510 and 520). It then disables the VDU drivers so that the character
only goes to the printer using the equivalent of VDU 21 (lines 530 and
550). The character is then sent to the printer using OSWRCH (line
550 and 560). The remainder of the subroutine enables the VDU
drivers (lines 570 and 580) and then disables the printer (lines 590 and
600).

There is one last part to this project. The dump subroutine is only
really useful if it can be in memory at the same time as any BASIC
program - not just the one that produces it. This can be done by first
saving the whole dump on tape. Then type NEW and type PRINT
~PAGE and write down the answer. Then alter PAGE by typing
PAGE=PAGE+&100. This moves the start of any BASIC program
&100 memory locations higher up and leaves space for the machine
code. Now load the dump program from tape and alter line 10 to read
MACH%= 'the old value of PAGE' (which you wrote down earlier).
Also delete the test section of the main program, lines 90-130. RUN

145Assembly Language II

the program and then delete it using NEW. You can now load and run
any other BASIC program you like and obtain a screen dump program
by typing CALL 'the old value of PAGE+2'. You can even program a
function key to produce the same command and hence dump the screen
with a single key stroke!

This program can be easily adapted to dump text from any mode
screen by simply changing the values to which XCORD% and
YCORD% are compared to detect the end of line and the end of screen
respectively. You can even go on to expand the program to dump
graphics by using the OSWORD call that returns the value of a single
point on the screen but this is more complicated!!

Project 2 - a VDU program

The next project is likely to be of interest only to people with access to
another computer because it turns the BBC micro into a VDU. The
principle behind this is straightforward and is based on the description
of the RS423 interface given in Chapter One. This project is a good
example of how BASIC and assembly language can be used together.
The program is split into a number of small subroutines. INIT%
initialises the ACIA and the serial controller. CHAROUT% sends a
character stored in the X register to the ACIA transmit register.
CHAREADY checks to see if there is a character in the receive
register. It returns its result by storing the A register in the first byte of
the resident integer variable A% at &0404. CHARGET% retrieves the
character in the receive register. It, too, returns its result through A%.
Using these three subroutines and a little BASIC, the entire VDU
program can be written:

 10 DIM INIT% 20
 20 DIM CHAROUT% 20
 30 DIM CHAREADY% 20
 40 DIM CHARGET% 20
 50 SERCON%=&FE10
 60 ACIACON%=&FE08
 70 ACIASTAT%=&FE08
 80 ACIATRAN%=&FE09
 90 ACIAREC%=&FE09
 100 GOSUB 130
 110 CALL INIT%
 120 GOSUB 490
 130 FOR S=0 TO 3 STEP 3
 140 P%=INIT%
 150 [OPT S

146 The BBC Micro

 160 LDA #&13
 170 STA ACIACON%
 180 LDA #&56
 190 STA ACIACON%
 200 LDA #&49
 210 STA SERCON%
 220 RTS
 230]
 240 P%=CHAROUT%
 250 [OPT S
 260 .OUT1 LDA ACIASTAT%
 270 AND #&0A
 280 BEQ OUT1
 290 STX ACIATRAN%
 300 RTS
 310]
 320 P%=CHAREADY%
 330 [OPT S
 340 LDA ACIACON%
 350 AND #&01
 360 STA &404
 370 RTS
 380]
 390 P%=CHARGET%
 400 [OPT S
 410 LDA ACIAREC%
 420 AND #&7F
 430 STA &0404
 440 RTS
 450]
 460 NEXT S
 470 RETURN
 480 REM VDU LOOP
 490 X%=INKEY(0)
 500 IF X%=-1 THEN GOTO 520
 510 CALL CHAROUT%
 520 CALL CHAREADY%
 530 IF A%=0 THEN GOTO 490
 540 CALL CHARGET%
 550 PRINT CHR$(A%);
 560 GOTO 4900

The machine subroutines that make up this program have already
been described briefly and should cause no trouble. INIT% sets the
baud rate to 1200 but this can easily be changed using the information
given in Chapter One. However, notice the alternative way of writing a
set of assembly language subroutines using a separate area for each.
The main program starts at 490 and forms and infinite loop that can
only be broken by pressing ESCAPE or BREAK. Line 490 reads the
keyboard to see if a key is being pressed. If one is, then the ASCII code
in X% is sent to CHAROUT%. If no key is pressed, CHAREADY% is
called to see if there is a character in the receive register. If there is, it
is retrieved by CHARGET% (line 540) and printed by line 550.

This program is really only the basis for a full VDU program. It

147Assembly Language II

should give the user the option of selecting any baud rate, parity etc.,
in an extended initialisation section. However, the program given here
does illustrate how assembly language and BASIC and be used
together and how the resident integer variables can be used to transfer
information.

Project 3 - a moving graphics program

This book would not be complete without a moving graphics program
and Project 3 is just that. It forms the basis for a 'squash'-type program.
A square graphics character CHR$(224) is bounced around the screen.
Because it is written in assembly language this program gives you an
idea of just how fast graphics can be on the BBC Micro.

 10 MODE 4
 20 DIM MACH% 300
 30 VDU 23,224,&FF,&FF,&FF,&FF,&FF,&FF,&FF,&FF
 40 PROCASMB
 50 PROCPLAY
 60 STOP

 70 DEF PROCASMB
 80 OSWRCH%=&FFEE
 90 OSBYTE%=&FFF4
 100 XCORD%=MACH%
 110 YCORD%=MACH%+1
 120 XVEL%=MACH%+2
 130 YVEL%=MACH%+3
 140 CODE%=MACH%+4
 150 ?XVEL%=1
 160 ?YVEL%=-1
 170 FOR PASS=0 TO 3 STEP 3
 180 P%=CODE%
 190 [OPT PASS

 200 STX XCORD%
 210 STY YCORD%
 220 .LOOP JSR SHOW%
 230 JSR MOV%
 240 JSR BOUNCE%
 250 JSR DELAY%
 260 JMP LOOP

 270 .SHOW% LDA #8
 280 JSR OSWRCH%
 290 LDA #32
 300 JSR OSWRCH%
 310 LDA #31
 320 JSR OSWRCH%
 330 LDA XCORD%
 340 JSR OSWRCH%
 350 LDA YCORD%

148 The BBC Micro

 360 JSR OSWRCH%
 370 LDA #224
 380 JSR OSWRCH%
 390 RTS

 400 .MOV% LDA XCORD%
 410 CLC
 420 ADC XVEL%
 430 STA XCORD%
 440 LDA YCORD%
 450 CLC
 460 ADC YVEL%
 470 STA YCORD%
 480 RTS

 490 .BOUNCE% LDA XCORD%
 500 CMP #1
 510 BEQ FLIPX%
 520 CMP #39
 530 BNE YBON%
 540 .FLIPX% LDA #0
 550 SEC
 560 SBC XVEL%
 570 STA XVEL%
 580 .YBON% LDA YCORD%
 590 CMP #1
 600 BEQ FLIPY%
 610 CMP #31
 620 BNE FIN%
 630 .FLIPY% LDA #0
 640 SEC
 650 SBC YVEL%
 660 STA YVEL%
 670 .FIN% RTS

 680 .DELAY% LDA #19
 690 JSR OSBYTE%
 700 RTS

 710]
 720 NEXT PASS
 730 ENDPROC

 740 DEF PROCPLAY
 750 CLS
 760 VDU 23,1,0;0;0;0;
 770 X%=RND(15)
 780 Y%=RND(5)+10
 790 CALL CODE%
 800 ENDPROC

The main program calls PROCASMB to produce the machine
code used by PROCPLAY to bounce the ball around the screen. There
are four assembly language subroutines within PROCASMB -
MOVE% moves the ball, BOUNCE% makes sure that the ball doesn't
go off the screen, SHOW% updates the ball's position on the screen
and DELAY% slows things down so that the ball can be seen!

149Assembly Language II

PROCPLAY turns off the cursor (line 760) and sets the starting
position for the ball at random (lines 770 and 780) before calling the
machine code (line 790). The first thing the machine code does is to
use X and Y to initialise XCORD% and YCORD% to the starting
position. The main loop within the program calls SHOW%, MOV%,
BOUNCE% and DELAY% repeatedly (lines 220 to 260). SHOW% is
straightforward and uses the equivalent of VDU 31 to move the cursor
to the new position (lines 290 to 360). It then prints the ball character
using OSWRCH (lines 370 to 390). The only difficult part of the
subroutine occurs at the start, where lines 270 to 300 move the cursor
back one place and print a blank (ASCII code 32) to remove the old
ball's position. The MOV% subroutine updates the X and Y
coordinates in XCORD% and YCORD% by adding the contents of
XVEL% and YVEL% respectively. Notice how these data bytes are
initialised in lines 150 to 160. BOUNCE% is the most complicated
subroutine, but all it does is to check to see if the new co-ordinates are
on the edge of the screen or not. If they are it reverses one of the
velocities contained in XVEL% or YVEL%. Reversing a velocity is
done by subtracting it from zero (lines 540 to 570 and 630 to 660).
DELAY% is a very simple subroutine and merely carries out the
equivalent of an *FX 19. This halts the program until the start of the
NEXT TV frame. This means that the ball can only move every fiftieth
of a second. If you want to see how fast the ball can really move just
remove line 250!

You should be able to add a bat to the ball bouncing routine
without too much trouble and have one of the fastest squash games
ever!

Project 4 - a pulse generator

The final project is more hardware-oriented than the previous three.
The BBC Micro contains so many timers that an obvious technical
application is to use it as a general purpose pulse generator. Project 4 is
a simple pulse generator that can produce a square wave out of PB7. A
second purpose behind this project is to illustrate some of the
information given about the timers in Chapter Six.

The program consists of three parts - an assembly language
subroutine that sets the registers in VIA-B to the appropriate values, a
BASIC procedure PROCPULSE that uses the machine code to

150 The BBC Micro

program the VIA, and a main program. The main program first
assembles the assembly language by calling PROCASMB and then
reads in PL% and calls PROCPULSE to set the period and start the
train of square waves coming out of PB7.

 10 DIM CODE% 100
 20 PROCASMB
 30 INPUT PL%
 40 PROCPULSE(PL%)
 50 GOTO 30
 60 STOP

 70 DEF PROCASMB
 80 AUXC%=&FE6B
 90 T1CLL%=&FE64
 100 T1CH%=&FE65
 110 IRQC%=&FE6E
 120 P%=CODE%
 130 FOR PASS=0 TO 3 STEP 3
 140 [OPT PASS

 150 LDA #&40
 160 STA IRQC%
 170 LDA AUXC%
 180 ORA #&C0
 190 STA AUXC%
 200 STX T1CLL%
 210 STY T1CH%
 220 RTS
 230]

 240 NEXT PASS
 250 ENDPROC

 260 DEF PROCPULSE(PERIOD%)
 270 X%=PERIOD% MOD 256
 280 Y%=PERIOD% DIV 256
 290 CALL CODE%
 300 ENDPROC

Notice once again the different way of forming the machine code
by calling PROCASMB which contains the definitions of all the labels
used by the machine code. It is a good idea, however, to leave the DIM
statement that reserves memory at the start of the program so that it is
easy to find. The machine code subroutine first disables any interrupts
the timer 1 might try to produce (lines 150 to 160). It then sets up timer
1 in the free running mode with PB7 enabled by storing the correct
control bits in the auxiliary control register (line 170 to 190). Finally, it
stores the X register into the low order latch and the Y register into the
high order counter/latch which starts the counter off. The procedure
PROCPULSE(PERIOD%) simply divides the value in PERIOD% into

151Assembly Language II

a low byte and a high byte and stores them in X% and Y%
respectively. When you run the program, the value that you give to
PL% will determine the width of each pulse in the square wave in
microseconds. Once a pulse train is started it may be altered by
entering a different value of PL%. You might be surprised, however, to
discover that the pulses carry on after the program has been stopped by
pressing ESCAPE!

Conclusion

This second chapter on the BBC Micro's assembly language builds on
the information presented in Chapter Seven. It contains four projects
which between them cover many aspects of machine code
programming. The BBC Micro's facility for combining BASIC and
assembly language is an attractive feature which is explored via two of
these practical examples. A useful philosophy for writing software on
the BBC Micro is to use BASIC wherever possible and resort to
assembly language when necessary to speed things up or to add
commands to the system.

152 The BBC Micro

