Chapter Four
The Video Display

A large part of the BBC Micro's hardware and software is concerned
with producing an excellent and extremely versatile video display.
Indeed it is so good that many people are buying BBC Micros to use as
colour video terminals to other computers! In this chapter we will
examine both the hardware and the software aspects of the video
display.

As with all practical arrangements of hardware and software there
is a price to be paid for every advantage gained. In the case of the
video display the biggest disadvantage is the large amount of memory
used for the high resolution screens. As much as 20K of RAM can be
used by the video display leaving only 16K of RAM for user programs
and system use. As the system can use 3-4K, an applications program
can find itself left with as little as 12K of RAM. Because of this need
for large amounts of memory, not all modes are available on a Model A
machine. If you have a Model A machine then upgrade as soon as you
can because you are missing a lot! In the rest of this chapter all modes
of the video display will be discussed, including those present only on
the Model B.

Not all of the display modes take so much memory. Mode 7
teletext graphics take a remarkably small 1K and can produce some
very good graphics in eight colours. However, the way mode 7 works
is distinctly different from all the other modes so it is given a section at
the end of the chapter all to itself. Whatever mode you are using there
is no doubt that the best quality display is produced by a colour
monitor driven by the RGB connector. However, you can still use the
highest resolution graphics on a standard colour TV set. The BBC
Micro working in black and white is useful but not nearly so much fun!

The Video Display 55
The video hardware

A brief description of the video hardware was given in Chapter One
but without really explaining the way that the video information was
stored in memory. The BBC Micro, like many others, uses memory-
mapped graphics but it uses it in a way that is very different. Most
machines that generate their own video output set aside an area of
memory where the ASCII (or similar) codes of the characters to be
displayed are stored. As each character's code can fit into eight bits,
one memory location is used for every possible display position on the
screen. For example, if you have a screen of 40 characters by 20 lines
then you need 40 times 20 (i.e. 800) memory locations. The way in
which these memory locations are made to correspond to positions on
the screen varies from machine to machine. One possible arrangement
is that the first memory location corresponds to the character displayed
in the top left-hand corner of the screen, subsequent memory locations
corresponding to screen locations to the left of the first until the end of
the line is reached, with a new line starting at the far left-hand side
again (see Figure 4.1). The way that the memory is associated with the
different display positions on the screen is known as the screen
memory map. Obviously, if you know the screen memory map for a

N EACH MEMORY LOCATION
HOLDS ONE CHARACTER CODE

1[2[3[4 3940
43 BEE
42
e EACH SCREEN
POSITION DISPLAYS
40 ONE CHARACTER
39
DISPLAY SCREEN
NOT ALL CHARACTER

OSITIONS ARE SHOWN)

START OF
VIDEO RAM

Fig. 4.1. The screen memory map for a 40 column screen. (Reprinted by
permission of Computing Today.)

56 The BBC Micro

particular machine then you can write programs that can change the
screen display by going straight to the correct memory location instead
of using a PRINT or PLOT statement. This can be the quickest and
sometimes simplest way of changing the screen and is often the only
way of producing good moving graphics.

As mentioned earlier, the BBC Micro, in all but mode 7, uses a
very different method of producing a memory-mapped screen, Instead
of storing the ASCII code of the character to be displayed, the BBC
Micro stores a bit pattern corresponding to the shape of the character.
To make this clear it is worth considering the way other micros convert
the ASCII code stored at each memory location into a character
displayed on the screen.

A TV picture is built up from a series of lines and each row of
characters takes a number of lines. Each character is formed from a
number of dots which may be turned on or off. In this respect, the BBC
Micro is no different from the rest and uses eight lines of eight dots for
each character (see Figure 4.2). However, other micros produce this
pattern of dots on the screen by using an extra chunk of memory that is

e =BRIGHT DOT
o =DARKDOT

Fig. 4.2. An eight by eight dot matrix showing the character '1". (Reprinted by
permission of Computing Today .)

accessible only to the video display electronics. This extra chunk of
memory is normally called a character generator but it is nothing
more than a ROM containing the information about which dots should
be off, and which on, to form the image of a particular character. It is
because this ROM memory is available only to the display electronics

The Video Display 57

that it is normally not counted as part of the computer's memory. If you
want to know how much memory is involved in a character generator
all you have to do is multiply the total number of dots used to make up
a character by the total number of possible characters and divide by
eight. This is because the ROM has to store the dot pattern of every
character that can be displayed and each dot requires one bit. For the 8
by 8 array of dots used by the BBC Micro, a ROM to generate the
character set would have to be 2K bytes in size. The usual method of
displaying characters on a screen using a character generator is simply
to use the ASCII code stored in the computer's memory as an address
to select the location in the ROM that stores the dot pattern for that
character (see Figure 4.3). Instead of using this classical approach to
video display, the BBC Micro (except in mode 7) dispenses with a

CPU DATS VIDEO ROM ADDRESS
USED TO SELECT WHICH
CHARACTER WILL BE DISPLAYED
i VIDEO OUT
> > o
DATA - DISPLAY
SCREEN VIDEO & R ACTER ELECT.
RAM ROM DOT" ROW'
TRONICS

A

16 ADDRESS LINES
A

CPU ADDRESS
O

Fig. 4.3. A" classical' video circuit design. (Reprinted by permission of
Computing Today.)

character generator ROM and stores the dot pattern of the character to
be displayed in RAM. The disadvantage of this method is that each
screen location needs enough RAM to store all the dots for a single
character - in the case of the BBC Micro this amounts to eight bytes
per screen location. This means that in mode 4, for example, with 32
lines of 40 characters the total RAM required is 32 times 40 times 8
i.e. IOK bytes, and all this RAM is taken from the user RAM that you
use to store programs and data. In other words, for a given screen size,
the BBC Micro uses eight times the amount of screen RAM that the
classical display method would require. This is because it stores the
entire dot pattern for each character where the classical method stores
an eight-bit code instead. The method that the BBC Micro uses is often

58 The BBC Micro

called a bir-mapped display because every bit in the screen RAM
corresponds to a dot on the video screen. We can still ask for the screen
memory map in this case but now it will tell us how dots on the screen
correspond to bits in memory locations rather than how whole
characters correspond to codes stored in memory locations.

Given the extra memory that the BBC Micro has to use to
produce its display, you might be wondering what the advantages are.
The main advantage is that you can produce high resolution graphics
and text characters using the same hardware. Every dot on the screen
corresponds to a bit in the memory location so instead of storing the
dot pattern corresponding to a character, you can change individual bits
in the memory to produce lines and other shapes. Also, because the
same basic method is used to display characters and to produce high
resolution graphics you can mix both anywhere on the screen. A
second advantage is that the character set is not restricted to whatever
is stored in the character generator ROM and you can therefore define
new characters. These two advantages give the BBC Micro a freedom
in handling both graphics and characters that is difficult to match using
any other method. For comparison, the Apple uses a bit-mapped
display for its high resolution graphics but uses a standard character
generator for its text modes and so has difficulties in freely mixing text
and graphics without extra software (shape tables). On the other hand,
the PET uses a character generator for both text and graphics and so
can mix them freely but the range of graphics is limited to the graphics
characters already defined in its ROM.

Colour

The above discussion of the BBC video generator ignores the fact that
each dot displayed on the screen can be any of up to sixteen colours.
So far we have assumed that each bit in the video memory produces a
dot on the screen. This is true in a two-colour mode such as mode 4. As
each bit can be either a zero or a one, its value can select one of two
colours. The colour produced by a zero bit is called the background
colour and the one produced by a one is known as the foreground
colour. The reason for this is that the shapes on the screen are normally
formed by patterns of ones against a background of zeros. However, if
you select a four- or sixteen-colour mode then one bit per dot on the
screen is clearly not enough. To select one of four colours you need

The Video Display 59

two bits, and to select one of sixteen colours you need four bits. Thus,
in a four-colour mode (modes 1 and 5) the value of two bits in the
video memory determine the colour of one dot on the screen. In the
only sixteen-colour mode, mode 2, it takes the values of four bits
stored in video memory to determine the colour of one dot on the
screen. As a memory location can hold eight bits, a single memory
location can hold the colour values of eight dots in a two-colour mode,
four dots in a four-colour mode and two dots in a sixteen-colour mode.
How to find the bits that correspond to a single dot is discussed in the
next section on memory maps but you should now be able to see why
each display mode takes the amount of memory that it does.

The screen memory map for mode 4

What the use of a bit-mapped display means for the programmer is
that, unlike machines such as the PET where storing a byte in a
memory location causes a complete character to appear on the screen,
storing a byte in the BBC Micro' «lisplay memory causes a pattern of
dots on a single line to appear. All that we need to know now is how
each memory location corresponds to a screen position - in other
words, the screen memory map for each mode.

For simplicity it is better to start by considering a two-colour mode
such as mode 4. The best way to discover the memory map for mode 4
is via a small test program. If we start at the lowest screen address and
store a byte consisting of all ones then a short line of dots will appear
somewhere on the screen. If the BBC Micro uses a fairly normal
screen memory map, the line should appear in either the top left or
bottom right corner. If you run the following program:

10 MODE 4
20 ?HIMEM=&FF
30 STOP

then you should see a short horizontal line in the top far left-hand
corner. If you don' then it' gossible that it' gust off the part of the
screen that your TV displays and a slight adjustment of the controls
should make the line visible. If this fails then try *TV 254. This will
move the whole display down by two lines. The program works by
first selecting mode 4 and then (in line 20) storing the hex value FF in
the memory location whose address is stored in HIMEM. The variable

60 The BBC Micro

HIMEM stores the address of the first screen location in any mode, and
FF in binary is eight ones and so produces a row of eight dots. We now
know that the first (lowest) screen address corresponds to the top left-
hand corner.

To find out how the rest of the screen memory map is arranged
try the following program:

10 MODE 4

20 FOR I=0 TO 7
30 ? (HIMEM+I)=&FF
40 NEXT I

50 GOTO 50

This stores the hex value FF in eight consecutive memory locations.
What is surprising about the result of this program is that, instead of
producing a thin line eight characters long across the top of the screen,
it displays a solid block about the .same size as a normal character. The
screen memory map for the BBC Micro is such that the first eight
memory locations form the dot matrix for the first character. The next
eight form the dot matrix for the character to the right of the first and
so on to the end of a line. To see the screen memory map in action try
the following:

10 MODE 4

20 I=0

30 ? (HIMEM+1I)=&FF
40 I=I+1

50 FOR J=1 TO 50
60 NEXT J

70 GOTO 30

You should see the screen fill up, character position by character
position. You can use this program to explore the possibilities of
storing graphics data directly into the screen. In most other versions of
BASIC, access to memory locations is via the command POKE, which
stores values in memory locations, and the function PEEK, which
returns the value stored in a memory location. For this reason storing
data directly to screen location is usually called POKEing the screen
and, similarly, finding out what is stored in a screen location is usually
called PEEKing the screen. To see that things other than solid lines can
be POKEd to the screen try altering line 30 to:

30 ? (HIMEM+I)=RND(255)

The Video Display 61

and removing the delay loop formed by 50 and 60.

Using the information obtained from the above programs, we can
work out a simple equation that will give the address of any screen
location:

address=HIMEM+ (X+Y*40) *8+N

which gives the address of the Nth line making up the character at the
screen location X, Y. (N,X and Y all start from zero in the top left-hand
corner,)

The screen memory map - for other modes

The memory map for any two-colour mode is easy to deduce from that
of mode 4. For example, mode 3 has eighty characters to a line and 25
lines so the address of any screen location is given by:

address=HIMEM+ (X+Y*80) *8+N

The corresponding expression for mode 6 with 40 characters on each
of 25 lines is:

address=HIMEM+ (X+Y*40) *8+N
Finally, that for mode O with 80 characters and 32 lines is:
address=HIMEM+ (X+Y*80) *8+N

Notice that the only thing that affects the expression is the number of
characters to a line. The number of lines on the screen affects the
largest value of Y that can be used, of course. Modes 3 and 6 are
different from the other two-colour mode in that they are text only
displays. The only reason that they cannot handle graphics is that there
is dead space between each line of text that cannot be affected in any
way. In mode 4 a full 32 lines of character locations fill the screen
completely. However, there are only 25 lines of character locations in
modes 3 and 6 and these are also spread out to fill the screen. This is
done by leaving a little space between each line and this is the origin of
the dead space seen in each of these modes. To see this dead space try
the following program:

62 The BBC Micro

10 MODE 6
20 vbUu 19,0,4,0,0,0

The way that VDU 19 works will be discussed later but meanwhile
notice that line 20 sets the background colour to blue. The dead space
then shows clearly as black lines.

The complication that arises with four- and sixteen-colour modes
is due to the need for more than one bit to represent each dot on the
screen. How are the extra bits organised in the memory map of the
other modes? The answer to this question is that the fundamental
memory map outlined for mode 4 is used for all the other modes
except of course that each point on the screen is now determined by a
small group of bits in each memory location. For example, in mode 4 a
memory location holding eight bits gives rise to eight dots but in mode
5 (a four-colour mode) the same memory location only gives rise to
Sfour dots. In this case each group of two bits determines which of the
four colours a point will be (see Figure 4.4).

ol1]1]o|o|1]|1]1 |Mode4

NN

N\

‘0‘1‘1‘0‘0‘1‘1‘0‘M0de5

Fig. 4.4. The correspondence between memory and screen for Mode 4 and
Mode 5.
The best way to investigate the memory maps of the other

graphics modes is to use the programs given in the last section but
change line 10 to give the required mode. In mode 5, as each block of
eight memory locations now corresponds to only eight rows of four
dots and each character still needs eight rows of eight dots to be
displayed, it should be obvious that the storage of a single character

The Video Display 63

involves two such blocks - one for the left-hand side and one for the
right-hand side. Thus, the expression for the memory location
corresponding to a row of dots in mode 5 (with 20 characters to a line)
is:

address=HIMEM+ (R+2*X+Y*40) *8+N
and in mode 1 (with 40 characters to a line):
address=HIMEM+ (R+2*X+Y*80) *8+N

where X and Y are the column and line numbers of the character
location, N is the number of the row of dots making up the character
and R is set to 1 if it is in the right half of the character and to zero
otherwise.

In the sixteen-colour mode 2 each memory location produces
only two dots but the same overall pattern is maintained. Each set of
eight memory locations produces a block two dots wide by eight high.
Once again, a character needs an eight by eight block of dots so four of
these smaller blocks are used to produce each character. If we number
these smaller blocks as 0 to 3 starting at the left then the address of the
memory location holding the Nth row of block B at character location
X, Y is given by:

address=HIMEM+ (4*X+B+Y*80) *8+N

The only question still left unanswered concerns the organisation
of the bits within each memory location. In a two-colour mode, the
contents of each memory location produces a row of eight dots, with
the most significant bit corresponding to the left-most bit on the
screen. This can be seen in Figure 4.5. In a four-colour mode the

MSB L.S.B.
bit 7 6 5 4 3 2 1 0
1 2 3 4 5 6 7 8 | Dot number

Fig. 4.5. Bits to dots in a two-colour mode.
contents of a memory location control the colour of a row of four dots.
The way that the bits pair to produce this row of four dots can be seen
in Figure 4.6. (Notice that this is not the most obvious way to pair bits
in a memory location.) Finally, the way that the eight bits in each
memory location group to control the colour of two dots in a sixteen-

64 The BBC Micro

il 7 o 9 “+ 9 < 1 v

1 2 3 4 1 2 3 4 | Dot number

Fig. 4.6. Bits to dots in a four-colour mode.

colour mode can be seen in Figure 4.7.

All this may seem a little complicated. Compared to the way
other computers work it is, but if you want to have the sort of freedom
of action that the BBC Micro allows there is no other way of doing it!
In practice, the use of direct memory-mapped graphics is limited to
either mode 4 where it is easy, or involving assembler where every-
thing is more difficult! Seriously though, POKEing the screen is
something that is not as useful on the BBC Micro as on other machines
- partly because it is more difficult except in two-colour modes and
partly because the BASIC provides all sorts of features that make it
unnecessary. What is more important is that a knowledge of the screen
memory map allows you to find out quickly what is stored at any
screen location.

MSB L.S.B.
bit 7 6 5 4 3 2 1 0
1 2 1 2 1 2 1 2 Dot number

Fig. 4.7. Bits to dots in sixteen-colour mode.

PEEKing the screen

This brings us to the topic of PEEKing the screen to see what character
is stored at a particular location. This is easy in machines such as the
PET - all you have to do is to PEEK the screen location and this
returns the ASCII code of the character stored at that position. For the
BBC Micro things are not quite as easy. The first problem is that
PEEKing a screen location in a two-colour mode returns the dot
pattern of a row of the characters stored at the location. This is not as
useful as the ASCII code because, in general, it is not enough to
identify the character - for example, it is possible for two characters to
have the same dot pattern in every row except one! The second
problem is that for the modes that use more than two colours, even a
single row of dots from a character is difficult to obtain without a
number of PEEKSs and quite a bit of logic.

This might make you think that screen PEEKs are not worth the

The Video Display 65

trouble on the BBC machine. However, for mode 4 things are easier
than they look. The general problem of deciding what character is
stored at a screen location is difficult even in mode 4 but in most
graphics-based applications this is more than we want to do. Instead of
identifying what character from the set of all possible characters is
present, it is usually enough to decide which of two or three characters
is there. For example, if you are using ' Oto represent one type of
player and ' Xto represent another then you only have to discover if the
character stored at a location is one of blank, O or X. This is a much
easier problem as it should be possible to find a row of dots that is
different in each character. If this is possible then you can tell the three
characters apart by PEEKing that one row! In the case of blank, X and
0, any row will distinguish them. For example, row three corresponds
to 0, 24 and 102 respectively. As we know the screen memory map for
mode 4, we can write a function that will return the add."ess of a
particular row of a screen location:

100 DEF FNS(X,Y,N)=HIMEM+ (X+40*Y) *8+N

FNS will return the address of the screen location corresponding to the
character position X,Y and the Nth row of the character.

As an example of how to use FNS the program below prints a
character on the screen at 20,10 and then prints the value of the dot
pattern that makes up each row of the character.

10 INPUT AS

20 MODE 4

30 PRINT TAB(20,10);AS$

40 FOR N=0 TO 7

50 PRINT N, ?FNS(20,10,N)

60 NEXT N

70 END

100 DEF FNS(X,Y,N)=HIMEM+ (X+40*Y) *8+N

This program can also be used to discover how any character is made
up - it was used to find out the values of the third row of blank, X and
0, for example. In practice, the function FNS would typically be used
in IF statements to decide what action a program should take according
to what is stored at a particular location.

The character table and using the MOS to PEEK the screen

Although the BBC Micro doesn' tise an external character generator

66 The BBC Micro

ROM, it still has to have a table of what dot patterns should be used to
make each character somewhere in ROM. This character table can be
found at the start of the MOS ROM, that is at address &C000. The dot
pattern for each printable ASCII character is stored in this table as
eight memory locations, each location corresponding to a row of dots.
The first eight locations store the pattern for the ASCII blank, the next
eight store the pattern for! which is the next ASCII character and this
sequence continues to the last printable ASCII character, . A short
program to print the patterns stored in the character table is given
below.

10 X=&CO0O0O

20 A=?X

30 PRINT ~X;TAB(15);FNB(A)

40 X=X+1

50 IF X=8*INT(X/8) THEN PRINT
60 GOTO 20

100 DEF FNB (X)

110 LOCAL I,AS

120 Ag=""

130 FOR I=7 TO 0 STEP -1

140 A$=STRS (X-2*INT (X/2))+AS
150 X=INT(X/2)

160 NEXT I

170 =AS

The function FNB might be useful in other programs. It converts a
number to a binary number and returns the result as a string. Whenever
a character is to be printed on the screen the MOS looks up the dot
pattern in the table and then stores it in the correct location in the
screen memory. In two-colour modes this is straight-forward and only
involves transferring the bit pattern as stored in the table. There is quite
a lot more work to be done in four- and sixteen-colour modes. The bit
pattern stored in the table has to be used to set groups of bits in as
many as 32 memory locations to the current foreground colour. This is
so complicated that it is better left to the MOS! However, knowledge
of where the character table is located can be used to plot dots or print
other letters in the correct pattern to form very large letter displays.
Apart from this application the character table could be used in reverse
to discover what character was displayed at any location on the screen.
This would involve comparing each of the eight memory locations that
make up the character on the screen with each block of eight locations
of the character table that define a character until a match is found.
This is a slow and fairly difficult procedure but fortunately the MOS

The Video Display 67

contains a subroutine that will carry out the search for us.

The OSBYTE call (see Chapter Three) with A=&87 will return
the ASCII code of the character currently under the text cursor. The
following function FNASC(X, Y) will return the ASCII code at screen
location X,Y and CHR$(FNASC(X,Y)) will supply the character itself:

100 DEF FNASC(X,Y)
110 LOCAL C

120 X%=X

130 Y$=Y

140 A%=135

150 C=USR(&FFF4)
160 C=C AND &FFFF
170 C=C DIV &100
180 =cC

Finding the dot pattern corresponding to an ASCII code is fast
because the table is organised so that the ASCII code leads straight to
the correct pattern by a simple calculation. However, going back from
the pattern to the ASCII code is slower because it involves finding a
match for eight bytes somewhere in the table! Even so, the User Guide
claims an average time of only 120 micro-seconds to find the
character!

The 6845 video generator and the ULA video processor

Now that we have a fairly full picture of the way that information is
stored in the video RAM it is time to reconsider the two major
components of the video circuit - the 6845 video generator and the
ULA video processor. If you recall the discussion in Chapter One, you
will be aware that the 6845 is responsible for supplying the correct
address of the memory location that contains the bit p"ttern of the row
of dots that has to be displayed on the screen. For example, in mode 4
the first visible line of the TV frame is composed of the dot pattern in
the first, eighth, sixteenth, etc. screen memory locations. In addition to
generating these addresses it also produces the signals that provide the
timing for the TV picture and a signal that is used to produce the
cursor. The operation of the 6845 is controlled by the values stored in
18 internal registers. However, these internal registers cannot be
accessed directly. Instead, the 6845 has a single address register and a
single data register. To write a value to any of the internal registers you
have to store the number of the register in the address register and then

68 The BBC Micro

store the value in the data register. To read a value from any register,
the same procedure is followed except of course that the data register is
read. In the BBC Micro, the 6845' sddress register is at &FEQO and its
data register is at 8cFEOL. The MOS provides a way of storing
information in the 6845' snternal register using the statement VDU
23,0,R,X,0,0,0,0,0,0 where R is the register number and X is the value
to be stored in it. To read the value stored in a register there is no
choice but to use ?&FE00=reg and ?&FE(Q1=value. You could use the
18 registers to change the mode of operation of the 6845 to produce
different screen formats but because the BASIC and MOS expect to
work with the particular formats corresponding to modes 0 to 7 there
are lots of problems unless you intend to handle every screen function
yourself. A table of 6845 registers with brief comments is given below
just to give you some idea of the sort of things that can be changed. If
you are really interested in using the 6845 in ' oddways then my
advice is to get hold of a full data sheet.

Table 4.1 6845 registers

Register ~ Comments

RO The total time taken for each horizontal scan line i.e. the horizontal
sync frequency.

R1 The number of characters on a line.

R2 Position of horizontal sync pulse.

R3 Width of horizontal sync pulse.

R4 Vertical sync frequency.

RS Vertical sync frequency.

R6 Number of character lines displayed.

R7 Vertical sync position.

R8 Interlace mode.

R9 No. of vertical dots per character.

R10 Cursor start line.

R11 Cursor stop line.

R12 (LSB) used with register 13 to specify the memory location
corresponding to the first character location.

R13 (MSB) see R12.

R14 With R15 holds the address of the cursor.

R15 See R14.

R16 Light pen register.

R17 Light pen register.

The Video Display 69

The few registers that are useful to the user are made available via the
MOS. For example, R14 and R15 are used by the OSBYTE call with
A=86 to read the current cursor position. The cursor control registers
10 and 11 are used by VDU 23,1,0;0;0;0 which turns the cursor off and
VDU 23,1,1;0;0;0;0 which restores it.

The 6845 is responsible for providing the address of the memory
locations in the correct order but it is the ULA video processor that is
responsible for taking the contents of the memory and converting them
to dots of the correct colour. As always, it is easier to consider the two-
colour case of mode 4 first. At each access a memory location provides
eight bits but the TV display requires these eight bits one at a time in
the correct order as the scan builds up a line across the screen. The
ULA takes the eight bits from memory and feeds them out one after the
other. In other words, it serialises the bits. If this was all the ULA did
the BBC Micro' graphics facility would be severely limited. The video
output of the video processor consists of the three signals R (Red), G
(Green) and B (Blue). The colour displayed on the screen depends on
which of the outputs are' on'For example, R on and G on produces a
yellow output. All three being on produces white. You should be able
to see that by taking all combinations of G and B you can produce
eight different colours.

Table 4.2 Three-bit colour codes
(N.B. 1 =on).

CODE BGR Colour

0 000 Black

1 001 Red

2 010 Green

3 011 Yellow

4 100 Blue

5 101 Magenta
6 110 Cyan

7 111 White

Now consider the problem of determining the colour of a dot
displayed on the screen. In a two-colour mode each bit coming out of
the serialiser could be used to select one of the eight possible colours.
The only sensible way to do this is to have an extra small memory,
called the palette, that is used to store a code for the colour to be

70 The BBC Micro

produced when the bit is a one and another code for when the bit is a
zero. The easiest code to use is a three-bit representation of which of
RGB are on and which are off, as shown in Table 4.2.

Suppose, for example, that the palette has just two memory
locations whose addresses are zero and one and that the code 011 is
stored in zero and 101 is stored in one. Then if the output of the
serialiser is fed to the palette as an address, a zero bit will produce a
colour code of 011 and a one bit will produce 101. In other words, a
yellow background with magenta dots will be displayed. By changing
the colour codes stored in the palette any two of the eight colours can
be used in a two-colour mode.

This idea extends quite easily to the four- and sixteen-colour
modes. In the four-colour case we need a palette memory with four
locations addressed as 00, 01, 10 and 11, each location again being
capable of storing three bits of information. Now each dot on the
screen is determined by two bits and this is reflected in the workings of
the serialiser. Instead of changing each byte into a single stream of bits
it changes each byte into two streams of bits. This is done in such a
way that at any moment the two bits coming out of the serialiser are
the correct two bits to determine the colour of a single dot. These two
bits are used to address the palette and hence are converted into the
colour codes. Obviously the four colours that appear on the screen can
be selected from any of the eight available colours.

The sixteen-colour mode works in exactly the same way, the only
problem being that there are only eight colours! The solution is that the
extra eight colours are not really colours at all. They are just
combinations of the original eight colours flashing. The palette can in
fact store four bits not just the three RGB bits. The fourth bit is a flash
bit in the sense that if it is 1 then the colour displayed on the screen
alternates between its code value as stored in the palette and colour
corresponding to its code value with all bits inverted. For example, if
the palette held 1101, the flash bit would be set and the colour
displayed would alternate between 101, magenta, and 010, green. In a
sixteen-colour mode the serialiser feeds four streams of bits to be used
as an address to a palette with sixteen memory locations.

After all this description it is worth summarising the details of the
palette and the serialiser. The palette is a small area of memory within
the video processor. Each location within the palette can store four bits
which correspond to flash, B, G and R and whose state determines
which of the sixteen colours is produced on the screen. The serialiser

The Video Display 71

changes each byte retrieved from the video memory into either one,
two or four streams of bits depending on whether the mode is a two-,
four- or sixteen-colour mode. The bits forming these streams are used
to address the palette RAM and so the colour codes stored in the video
RAM are converted to actual colours. The relationship between the
serialiser and the palette is shown in Figure 4.8.

8 bits from
memory Palette RAM Data from
b7 > | Address to palette RAM
palette RAM I3 Flash
> A3
—_—)
8 A2 16 locations |92 . Blue
5 P
— = Al
Q 4 bits 1B o Green
> A0 stored in each
N
- b0 >~ Red
S »2 or Output
b0 4 bits to video circuits

depending on mode

Fig. 4.8. The serialiser and palette RAM.

This changing of the colour codes stored in the video RAM to the
actual colour codes produced by the palette is represented in the BBC
Micro' software by the idea of logical and actual colour. Within each
mode the same logical colour codes are always used. In a two-colour
mode these are 0 and1, in a four-colour mode they are 0,1,2,3 and in a
sixteen-colour mode they are 0 to 15. In each case these codes are
simply the result of the number of bits used to control the colour of a
dot in each mode; at this stage they have nothing to do with colour.
They are associated with actual colours by the contents of the palette
RAM. For example, if in a four-colour mode the third location of the
palette RAM contained 0110, then the logical code 3 (1 I in binary)
would produce a cyan dot. The contents of the palette RAM can be
changed by the VDU 19 command, The form of this command is:

VDU 19,logical colour,actual colour,0,0,0

which causes ' logicakolour' to produce ' actuaktolour' on the screen.
Another way of looking at this command is that it stores the code for
the actual colour in the location in the palette RAM with the address
given by the code for the logical colour. For example, VDU
19,1,2,0,0,0 sets logical colour I to actual colour 2, i.e. green, or it
stores the code 0010 in the palette RAM location 01 depending on how
you look at it!

To read the current contents of the palette RAM you can use an

72 The BBC Micro

OSWORD call with A=&0B. This is described on page 462 of the User
Guide and needs no further comment.

Hardware scrolling

There is one feature of the BBC Micro that is very surprising and can
make use of the screen address map very difficult. When you carry out
a MODE command the screen address map is set up as we have
discussed and remains unaltered during the running of a program
unless that program prints something that causes the screen to scroll.
The action of scrolling is such a common sight on VDUs and
computers that it is rare to give it a second thought. However, if you
try to write a program from first principles that will scroll an entire
screen you will realise what a time-consuming manoeuvre it is. Each
text line of the screen must be moved up by one line. The bottom line
is cleared and the top line is lost. In the BBC Micro' gase, this screen
shift for mode 4, if done by software, would need 10K bytes of storage
to be rearranged. This would be slow, to say the least. To overcome this
speed problem, scrolling is carried out by hardware which, in effect,
alters the screen memory map so that the memory locations correspond
to screen positions one higher. The memory corresponding to the old
top line is cleared and is made to correspond to the new bottom line. In
other words, following a single scroll, POKEing data into memory that
was the top line produces output on the bottom line. Of course this re-
mapping of the screen makes a non-sense of the screen mapping
functions given earlier! The solution is simple - either avoid scrolling
the screen following a MODE command or adjust the functions to take
account of any scrolling.

To take account of scrolling it is necessary to keep a count of the
number of times the screen has scrolled since the last MODE
command. If the scroll count is kept in SC then the following version
of FNS will work (for mode 4):

100 DEF FNS(X,Y,N)

110 YT=Y+SC

120 YT=YT-INT (ABS(YT)/32)*32
130 =HIMEM+ (X+Y*40) *8+N

Notice that YT and SC are global variables and are accessible to the
main program. Luckily, it is not often that the need to scroll the screen

The Video Display 73

occurs in the same situation as the need to use POKE or PEEK
graphics.

The way that the scrolling hardware works is quite simple. The
6845 video generator chip contains two registers, R12 and R13, which
hold the address (divided by 8) of the start of the video RAM. These
registers are set to the normal start of the screen following a MODE
statement. However, when a scroll occurs the starting address held in
the registers is increased so as to point to the start of the second line of
the screen. This now becomes the new top line and every other line is
moved up one. But what about the bottom line? It is now below the
start of the area of memory that is displayed and so will not appear on
the screen? The BBC Micro has some special electronics to overcome
this problem. No matter where it starts from, the video generator
always tries to display the same amount of RAM. As the highest video
RAM address is always the same in any mode (&7FFF in a 32K
machine and &3FFF in a 16K machine) an address produced by the
video generator above the top of the video RAM area can easily be
detected. When the screen display is in its initial state the video
generator addresses memory from the start of the video RAM right up
to the top. However, following even a single scroll, it will overshoot
the top of the video RAM by exactly the amount that it has moved up.
This is detected by the BBC Micro and a number is added to any such
address to bring it back to the start of the video RAM. In other words,
the address is made to wrap round the video RAM. This means that the
previous top line isn' tost; it is now displayed (after being cleared) as
.the new bottom line. The number to be added to such out-of-range
addresses is different for each mode and is set by the state of the two
lines C1 and C2 from VIA - A (see Chapter One).

The consequences of this hardware scrolling method are that you
can set the starting point of the screen display lower by changing the
values stored in R12 and R13 without any trouble but trying to
increase it causes the screen to scroll. Only in this case the scroll is
really a screen roll because the lines that appear at the bottom are not
cleared first! By changing the contents of R12 and R13 by less than a
whole line you can implement horizontal screen rolls. Try

experimenting with the following program:

10 MODE 4

20 CLs

30 PRINT TAB(15,10);"HI THERE"

40 S%$=HIMEM/8

50 vbu 23,0,13,I%+S% AND &O0OFF,0,0,0,0,0,0
60 I%$=I%+1

74 The BBC Micro

70 IF I%$>39 THEN I%=0
80 FOR J%=1 TO 1000:NEXT J%
90 GOTO 50

There is an easy way of disabling hardware scrolling and that is
to define a text window using VDU 28. If a text window is defined
then it is possible that not all of the screen will have to be scrolled.
Because of this the hardware cannot be used and each line must be
moved up by a software transfer. If you try this you will realise how
valuable hardware scrolling is in speeding things up!

Mode 7 teletext graphics

A Mode 7 display works in a completely different way from any of the
other modes. Instead of storing the bit pattern corresponding to the
shape of each character to be displayed, only the ASCII code is stored.
The actual bit pattern for each character is stored in an extra ROM in
the video circuitry. You should recognise this as the ' classicalvideo
circuit described at the beginning of this chapter. The only difference is
that the ROM, an SAA 5050 teletext generator, produces three output
signals R (Red), G (Green) and B (Blue) for an eight-colour display
(with certain limitations). The advantage of using this classical
arrangement is that it provides a 40 character by 25 line dispLay using
only 1K of RAM. Even though only 1K of RAM is used, mode 7
provides a full upper and lower case character set and a low resolution
(80 by 75) in colour! However, even though mode 7 can solve many
graphics problems in less space than the other modes, it isn' tised as
often as it could be. The main reason for this is that the colour control
in mode 7 is by the use of control codes and the graphics take the form
of block graphics characters. These are both more difficult and more
restrictive than the methods used in the other modes. However, with a
little understanding and practice mode 7 can be used to produce very
good effects. To see the sort of results that can be achieved just look at
any of the broadcast teletext pages.

As already mentioned, only the ASCII codes of the characters on the
screen are stored in RAM in mode 7. This means that changing the
contents of a single memory location will change the dot pattern for an
entire character location. The memory map in mode 7 is:

memory location = HIMEM+X+Y*40

The Video Display 75

which is the address of the memory location corresponding to the
character at X, Y. To see this in action try the following:

10 FOR X=0 TO 39

20 FOR ¥Y=0 TO 24

30 ?FNS (X,Y)=ASC("A")

40 NEXT Y

50 NEXT X

60 STOP

70 DEF FNS (X,Y)=HIMEM+X+40*Y

Notice the use of the ASC function to store the ASCII code for the
letter A in the memory location. You can use the FNS function to
examine and change screen locations in mode 7 but OSBYTE call with
A=k87 (see earlier) is likely to be just as fast in this case.

The colour of teletext graphics is set by the use of control codes
rather than COLOUR or GCOL statements. These codes are easy to
use in that they set the colour of all the teletext characters that follow
until another code or a new line removes their effect. However, there is
one problem in that they are not invisible on the screen. Every control
code shows on the screen as a blank character the same colour as the
current background. This makes changing colours in mid-line
impossible without leaving a space between the two coloured zones the
same colour as the current background. In other words, two areas of
different foreground colours cannot meet on a line. There is, however,
nothing stopping two lines of different foreground colours ' touching' .
Even with this restriction it is still possible to draw very good teletext
pictures. As mentioned earlier, the best way to discover more is to
study the transmitted teletext pictures on the BBC (television!).

Conclusion

This chapter has tried to explore some of the hardware and software
aspects of the BBC Micro' sgraphics capabilities. It has, however,
barely scratched the surface of this vast topic. In particular, no mention
has been made of the standard BASIC and MOS commands, such as
PLOT and VDU. These are well described in the User Guide, although,
of course, there is a lot to be learned through experimentation and
general experience. The practical value of the information presented in
this chapter about graphics memory maps for the different modes will
be considered in Chapter Eight where we consider the problem of
writing a screen dump program.

76 The BBC Micro

