
Chapter Six
Interfacing

In the context of computing, the term interfacing is taken to mean
connecting any type of external equipment - including printers, disc
drives and tape recorders. In this chapter, however, the subject is
restricted to considering the BBC Micro's A to D convertor and the
user port. The presence of these two facilities within the BBC Micro
make it suited for a wide range of 'serious' tasks such as controlling
experiments and other machinery, and making measurements
automatically. The BBC Micro is ideally for this sort of application; its
graphics capabilities can be put to good use displaying results or the
current state of the equipment being controlled; the high speed
calculating power of the BASIC can be used to process the
measurements, and even the sound generator can be used to process
measurements, and even the sound generator can be used to draw
attention to an abnormal condition! This more serious side of the BBC
Micro isn't entirely devoid of lighthearted applications. The A to D
convertor can be used to connect a pair of joysticks or 'paddles' that
bring a whole new dimension to playing games! Both the user interface
and the A to D convertor are fitted only to the Model B machine.

In the first part of this chapter we consider the A to D convertor.
This is a fairly straightforward device from the programmer's point of
view in that the MOS and BASIC provide commands to handle the
device and it is fairly easy to use even from assembly language. The
difficulty with the A to D convertor lies in the electronics that you
connect it to rather than the programs that you write afterwards. Unless
you know a little about practical electronics, that is, can use a soldering
iron and recognise a resistor from a diode, then you would be well-
advised to connect only off-the-shelf extras such as games paddles
made by Acorn to the A to D convertor. The same is true for the user
port, which also presents another level of difficulty in that the VIA
which provides the user port is a very complex device. And to make
matters worse, the BASIC and the MOS provide nothing to control it.

96 The BBC Micro

However, the effort spent in mastering it is certainly well worth it
because it is extremely versatile.

The A to D convertor

Most of the things that we measure are analog in the sense that the
results of the measurements range over a scale that is for all practical
purposes continuous. Another way of thinking about this is to imagine
the graph of the measurement with time. The graph of an analog
quantity would be free to wander up and down without any
restrictions. By contrast, the graph a digital quantity is restricted to a
finite number of values and is, therefore, always subject to some
limitation that causes it to progress in jumps. For example, the graph of
the number of computers manufactured per month cannot go up by a
fractional amount! Digital quantities are normally easy to measure
using a computer. For example, in the case of the number of computers
produced per month, all you would have to do is arrange for the
computer to add one to a variable every time a computer was
produced. The exact details of how the BBC Micro would be informed
that another computer had been produced is part of the subject studied
in the second half of this chapter - digital interfacing. Measuring
analog quantities using a computer is slightly more difficult and really
requires a special piece of hardware called an A to D convertor
(Analog to Digital convertor). This takes an electrical signal and turns
it into a number that can be read by the computer. Of course, to use an
A to D convertor to measure any quantity, it must be first converted to
an electrical signal that is proportional to the quantity. A device that
carries out such a conversion is called a transducer. For example, a

Input
signal

Transducer A to D
converter Computer

Data

BBC computer

Voltage
signal

Fig. 6.1. Computer measuring system

97Interfacing

photo cell, or a photo diode, is a transducer that converts light intensity
to a voltage. Thus, a complete analog measuring system consists of
three components - the computer, an A to D convertor and a transducer
(see Figure 6.1). As the BBC Micro (Model B) comes equipped with
an A to D convertor you can guess that most of our problems lie in the
transducer. However, before considering transducers it is necessary to
look at the capabilities and limitations of the BBC Micro's A to D
convertor.

The A to D convertor used in the BBC Micro (a µPD7002) is a
four channel 12-bit convertor. This means that it can select any one of
four inputs to convert. However, it is important to notice that it can be
engaged in converting only one of the four inputs at any one time! The
'12-bit' part of the specification tells us how accurately the conversion
is carried out. A 12-bit number lies in the range 0 to 4095 and this
indicates how finely the A to D convertor divides up its input range. If
the largest voltage that can be input to the A to D is Vmax then it is not
difficult to see that the entire input range is divided into 4095 parts.
This means that the smallest voltage change that can be detected is
Vmax/4095 or roughly .02% of the maximum reading. When you
compare this to the normal accuracy of 3% of maximum reading of
conventional 'moving needle' meters you will realise that 12 bits of
accuracy is very acceptable. Unfortunately, you cannot suppose that
just because the A to D convertor returns results accurate to 12 bits that
all of them reflect the quantity being measured. Allowing for noise
etc., 10 bits of accuracy is all you can expect unless you take special
care. Even so, 10 bits gives a range of 0 to 1024 which is an accuracy
of roughly .1% of the maximum reading. This is still very good.

Apart from the number of channels and their accuracy, A to D
convertors also differ in how fast they can produce a result. The A to D
convertor in the BBC Micro takes 10 ms per conversion. This is not
very fast and limits the sort of application that the BBC Micro can be
used for. If an input signal varies during this conversion time the final
result will not adequately reflect the input signal. In other words, any
important variations in the signal must occur over a time that is
roughly twice as long as the conversion time. (To be precise a signal
can only be digitised accurately by the BBC Micro if its highest
frequency component is less than 50 Hz.) If all four channels are in use
then the situation is even worse. As each channel takes 10 ms for a
conversion and each channel is treated in turn, any one channel is read
only once every 40 ms. Although the speed on conversion limits the

98 The BBC Micro

range of signals that can be converted accurately, it is perfectly fast
enough for joystick signals, position measurement, temperature
measurement etc.

A to D software

There are three commands that can be used to control the operation of
the A to D convertor, ADVAL, *FX 16 and *FX 17. ADVAL is a
BASIC function that can be used to find out the last reading from any
of the A to D channels. For example:

X=ADVAL(2)

will store the most recent result from channel 2 (the channels are
numbered from 1 to 4) in the variable X. The value that ADVAL
actually returns is in fact the A to D value multiplied by 16. The reason
for this strange action is that it allows for future improvement in A to D
convertors to 16 bits accuracy. Thus the value returned by ADVAL
varies over the range 0 to 65520 and changes in steps of 16. The reason
why ADVAL returns the most recent value rather than the current value
from the channel concerned is that in normal operation the A to D
convertor is continually converting each channel in turn. At the end of
each 10 ms conversion period the result is stored in memory ready for
later use. Thus, whenever the ADVAL function is used it is the last
value stored in memory that is returned as the result. This is a very
sensible arrangement as it saves having to wait for the requested
channel to have its turn in the sequence of conversion but it is as well
to be aware of the fact that the value returned can be as much as 40 ms
old. If you are using less than four channels then, obviously, converting
all four in turn could be a waste of much-needed time. The MOS
command *FX 16 can be used to remove any of the channels from the
sequence of conversion.

*FX16,0no channel is converted
*FX16,1only channel 1 is converted
*FX16,2channels 1 and 2 are converted alternately
*FX16,3channels 1,2 and 3 are converted in turn
*FX16,4each channel is converted in turn
Notice that if you want to cut down the number of channels

involved in conversion you must use the lower numbered channels

99Interfacing

first. If you want an up-to-date reading from any channel then you can
use *FX 17,'channel number' which will start a conversion on the
channel corresponding to 'channel number'. Of course, following this
command you will have to wait for 10 ms until the conversion is
complete but it is the only way to get a completely up-to-date
measurement. The function ADVAL (or the MOS OSBYTE call with
A=&80 which is equivalent) can be used to find out when a channel
has completed conversion. ADVAL(0) DIV 256 will give the number
of the last channel to complete conversion. If no channel has
completed conversion, then 0 is returned. So, if you initiate conversion
on a particular channel, you should wait until its number is returned by
ADVAL(0) 256. To see this in action try:

10 *FX 17,1
20 PRINT ADVAL(0) DIV 256
30 GOTO 20

You should see two zeros printed by line 20 indicating that channel 1 is
still converting and then the sequence 1,2,3,4 over and over again as
the normal sequence of conversion carries on.

This is all there is to the software to control the A to D convertor.
Even from machine code it is simpler to use the OSBYTE equivalent
of ADVAL, *FX 16 and *FX 17 rather than try to write your own
subroutines. However, the ADVAL function does a little more than just
deal with the A to D convertor. There are two fire button inputs
provided on the analog input connector at the back of the BBC Micro
and, as these are intended to be used with joysticks, they are also
handled by the ADVAL function. The fire button inputs are digital
inputs and so would be better described in the second half of this
chapter. However, as they are handled by ADVAL it is worth saying
that they can be used to detect whether or not a switch (usually a push
button) is open or closed. The switch should be connected between the
fire button input and a 0 V line provided on the same connector. (See
the next section for more hardware information.) The state of the
switches can be read by using:

X=ADVAL(0) AND 3
which returns a number with the following meaning:

X= 0 no switch closed
1 left switch closed
2 right switch closed
3 both switches closed

The other uses of ADVAL (i.e. with a negative parameter) are very
useful but have nothing to do with the A to D convertor.

100 The BBC Micro

Hardware for the A to D convertor

So far the discussion has been about using the A to D convertor from
the software point of view. Before you can get to this stage, however,
you have to have solved the problem of connecting a suitable
transducer to the channel of your choice. The easiest way to do this is
to buy an off-the-shelf transducer such as a pair of joysticks from
Acorn. If you want to try something a little more adventurous then it is
not difficult to connect your own transducers. The only thing that you
need to know is that the voltage input to the A to D convertor must lie
in the range 0 to 1.8 V. It is very important to keep within these limits
because the A to D convertor chip itself is very easily damaged by
input voltages outside this range. This warning sounds a little
frightening but there is an output available from the analog connector -
Vref (pins 11 to 14) - which is 1.8 V and if you use this to supply any
transducers that you are using then you cannot possibly exceed the
maximum input voltage. The voltage Vref is used by the A to D
convertor as a calibration voltage. In other words, an input equal to
Vref will give the maximum reading from the A to D convertor. Thus,
to change the reading of the A to D into Volts, you need to measure the
actual value of Vref (using a meter) accurately. Once you know Vref
then the reading in volts is given by:

Volts=ADVAL(N)*Vref/65520

It is important to notice the accuracy of the A to D convertor depends
on the accuracy and stability of Vref - which is not very good. If you
are trying to make accurate measurement then it is better to connect a
good calibration voltage to one of the channels and compare the
reading on all the other channels with it.

The most simple and most common transducer is a variable
resistor (potentiometer) used to convert the position of its spindle to a
voltage. This is the principle behind most joysticks and paddles. You
can see the circuit for a joystick or games paddle in Figure 6.2. The
potentiometers are connected between Vref and analog ground. The
voltage from the slider depends on its position and this is fed to the A
to D convertor input. (10K potentiometers are used because they are
large enough not to take too much current from Vref and yet small

101Interfacing

enough not to be affected by the connection of the A to D convertor
input, which has an input impedance of approximately 10 MW.) The
small capacitors are simply to remove any spurious signals and their
exact value is unimportant. To make a pair of joysticks you would have
to make up two copies of the circuit and connect the first to the analog

Pin no
Right
14

Left
11

Vref

15(CH1) 12(CH3)

7(CH2) 4(CH4)

8 5

~ 100nF

10K
1in

10K
1in

~ 100nF

Ana. grid

(Button 1) (Button 2)
13 10

6 3 0 V Fire button

Fig. 6.2. Games paddles

input pin numbers shown under the heading 'right' and the other to the
pin numbers listed under 'left'.

The major problem encountered when connecting transducers to
an A to D convertor is getting the voltage range of the output of the
transducer into the range that the A to D convertor requires. The
problem of reducing a larger range of voltages is easily solved using a
voltage divider (Figure 6.3). If a maximum voltage input is Vin then

V in

R1

R2

~ 100nF

V out to A to D

Analog ground

Fig. 6.3. A voltage divider.

102 The BBC Micro

the maximum voltage output (Vout) to the A to D is given by:

Vout=R2*Vin/(R1+R2)

Obviously, R1 and R2 should be chosen to keep the maximum input
voltage to the A to D lower than Vref to avoid any damage. Also, the
value of R1+R2 should be kept large to avoid taking too much current
from the transducer. The definition of too much depends on the
transducer, of course, but R1+R2 should be large compared to the
output impedence of the transducer to avoid distortion. The opposite
problem of increasing the size of small signals can be solved only by
use of an amplifier, a topic which is beyond the scope of this book. For
more information, see any book on practical operational amplifiers.

There are so many light sensors, either light sensitive diodes,
transistors or resistors (including ones capable of detecting infra red),
that is impossible to recommend any particular one for experimental
purposes. You should, however, have no trouble finding one to suit
your application. Other sensors that might prove interesting are the
FGS7712 flammable gas detector, the RS304-431 liquid flow sensor
and the 590KH temperature sensor (all available from RS Components
Ltd.).

B input/output

A input/output (1)

Direction reg B

Direction reg A

Timer 1 LSB latch/counter

Timer 1 MSB latch/counter

Timer 1 LSB latch

Timer 1 MSB latch

Timer 2 LSB latch/counter

Timer 2 MSB counter

Shift register

Auxiliary (timer/shift reg) control

Peripheral (handshake) control

Interrupt status

Interrupt control

A Input/Output (2) 6F

6E

6D

6C

6B

6A

69

68

67

66

65

64

63

62

61

FE 60
VIA-B

4F

4E

4D

4C

4B

4A

49

48

47

46

45

44

43

42

41

40FE
VIA-A

Fig. 6.4. The VIA registers.

103Interfacing

The user interface and the 6522 VIA

As explained in Chapter One, there are two 6522 VIAs inside the BBC
Micro Model B. VIA-A is used for internal functions apart from the
two fire button inputs on the analog connector. VIA-B is only fitted to
the Model B. It provides the parallel printer interface and the user port.
The 6522 VIA is a complex device that is controlled by a set of sixteen
different registers (Figure 6.4). Instead of dealing with each register in
turn it makes more sense to describe the three basic functions of the
VIA - input/output, timing and the shift register - and give BASIC
procedures to control each. If more speed is required in any application
then the procedures are easy to convert into assembly language
subroutines. For reference purposes, the pin connections for the user
port are given below:

Table 6.1. Pin connections for the user port connector.

Pin Function Pin Function

1 +5V 2 CB1
3 +5V 4 CB2
5 ground 6 PB0
7 . . 8 PB1
9 . . 10 PB2

11 . . 12 PB3
13 . . 14 PB4
15 . . 16 PB6
17 ground 18 PB7

Input/output lines

Every VIA has twenty input/output lines grouped into an A side and a
B side of ten lines each. These ten lines are further divided into a group
of eight data lines and two special handshake lines. Most of the
complications lie in the use of the handshake lines so consideration of
these is left until later. The eight data lines are called PA0 to PA7 on
the A side of the port and PB0 to PB7 on the B side. In principle, any
of the data lines can be set to an input or an output line using the
appropriate data direction register (registers 2 and 3). However, the

104 The BBC Micro

BBC Micro uses the A side of VIA-B as a buffered output to drive the
printer port so only the B side data lines can be used as inputs. To use a
line as an output you have to store a one in the correct place in the
appropriate data direction register. For example, to use PB3 as an
output you must store a one in the b3 (bit 3) of the B data direction
register. If you want to use a line as an output then you must store a
zero in the same place. For example, the command ?&FE62=&F0
would set up PB0 to PB3 as inputs and PB4 to PB7 as outputs. The
lines PA0 to PA7 are set up as outputs automatically by the MOS when
the machine is switched on. The following BASIC procedures can be
used to set any of the B side lines to outputs or inputs as desired.

100 DEF PROCIOSET(S$)
110 LOCAL I,S%
120 S%=0
130 FOR I=1 TO LEN(S$)
140 S%=S%+2^EVAL(MID$(S$,I,1))
150 NEXT I
160 ?&FE62=S%
170 ENDPROC

To set a line to an output, simply include its number in the string
S$. For example, to set lines 3,5 and 7 to outputs, use
PROCIOSET("357"). Lines 0,1,2,4 and 6 will be set to inputs by
default.

To state of the output lines is controlled by writing to the A or B
input/output registers. An output line can either by high i.e. 5 V, or low
i.e. 0 V, and these states correspond to writing one and zero
respectively to the same number bit in the input/output register. For
example, ?&FE60=&01 sets PB0 high and PB7 low, because the
assignment sets bit 0 of the B input/output register to one and all the
other bits to zero. This method of controlling output lines is not too
difficult to use but it would be easier to have a command that would set
a particular line high or low without affecting any of the others. The
following two BASIC procedures do just this:

200 DEF PROCON(N%)
210 IF N%<0 OR N%>7 THEN ENDPROC
220 N%=2^N%
230 ?&FE60=?&FE60 OR N%
240 ENDPROC

300 DEF PROCOFF(N%)
310 IF N%<0 OR N%>7 THEN ENDPROC
320 N%=2^N%
330 ?&FE60=?&FE60 AND (NOT N%)

105Interfacing

340 ENDPROC

The procedure PROCON will turn any line on, i.e. high, without
affecting the state of any other line. For example, PROCON(5) will set
line 5 high and leave everything else as it was. PROCOFF does the
opposite and sets the selected line low, again without affecting any of
the other lines. The only lines in the above procedures that might need
any explanation are lines 230 and 330. You will notice that the address
of the input/output register occurs on both sides of the expression. This
is because you can not only write to the input/output register, you can
also read it to discover what the output lines are currently set to.

Using lines set to inputs is just as easy. If you read from the input/
output register then the current state of any input line is reflected in the
state of the bits with the same number. If the input line is high i.e. set
to 5 V, then the bit will be set to one and if the line is low then the bit
will be set to zero. For example, if line PB2 is set to input and it has 5
V applied to it, then bit 2 in the input/output register is a one. The only
problem is what happens if the voltage on the input line is between 0 V
and 5 V. The answer is that the corresponding bit may or may not be
set depending on the exact value of the voltage on the line. In general,
reading the input/output register is unreliable if the input lines are not
set either at 0 V or 5 V. If you have some lines set to output and some
set to input then you can write to the input/output register without fear
of affecting the input line and you can read the input/output register to
obtain the current state of the output and input lines. The function
FNIN(N%) will return the state, zero or one of any line PB0 or PB7
irrespective of the line being being an input or an input.

400 DEF FNIN(N%)
410 LOCAL S%
420 IF N%<0 OR N%>7 THEN =-1
430 S%=?&FE60
440 S%=(S% DIV 2^N%) AND &01
450 =S%

For example, FNIN(3) returns the state, zero or one line PB3.
This completes the discussion of using the data lines PB0 to PB7

as inputs or outputs. The data lines PA0 to PA7 are permanently set as
outputs to the printer port but this doesn't mean that you cannot use
them as extra output lines to supplement the user port. Any of the
procedures or functions given above can be rewritten to use the A
input/output register. Finally, it is worth pointing out that the output
lines cannot be used to provide very much in the way of power to

106 The BBC Micro

+ 5 V

Any of PA0 to PA7

LED is ON
WHEN PA is low

LED

330 ohms

Fig. 6.6. LED output

control things. You will almost certainly have to use a transistor or a
reed relay to switch any real equipment on and off. The 6522 can only
sink 1.5 mA of current and provide about .5 mA and this is very little.
However, you can drive an LED directly from the printer port, as
shown in Figure 6.5, and this can be very useful while you are testing
software or just learning about the user port. Similarly, Figure 6.6
shows a simple input circuit using a switch.

+ 5 V

Any input line

0 V

1K ohms

Switch

Fig. 6.6. Simple switch input

The handshake lines

As mentioned in the previous section, there are two additional lines on
the VIA. On the A side these are called CA1 and CA2 and on the B
side they are called CB1 and CB2. Once again the A side lines are
involved in the printer interface. However, CB1 and CB2 are available
for use by the user and are brought out on the user port connector. CA1
and CB2 are both inputs and CA2 and CB2 can be set as either inputs
or outputs. There are so many ways that the handshake lines can be

107Interfacing

used that it is only possible to give a summary here. In practice, the
handshake lines are only required for applications where the BBC
Micro is being connected to another computer or piece of equipment
that is as complicated as a computer. For simple applications the
handshake lines are best ignored.

The handshake lines are controlled by the peripheral control
register. Which bits of the register control which handshake line can be
seen in Figure 6.7. The CA1 and CB1 inputs can each set bits in

7 6 5 4 3 2 1 0

CB2 Control
CB1

control CA2 control CA1
control

Fig. 6.7. The peripheral control register.

another VIA register - the interrupt status register. The corresponding
CA1 and CB1 control bits govern when the bits are set. If the control
bit is set to zero then the bit in the interrupt status register will be set to
one when the voltage on the input line goes from high to low. If the
control bit is a one then the bit in the interrupt status register is set
when the voltage on the input line goes from low to high. Notice that
his is different from the data lines in that the condition in which sets
the bit isn't a voltage level but a change in voltage levels. Such inputs
are known as edge triggered inputs. Notice also that there is no
mention of how the bits in the interrupt status register are set back to
zero. This will be discussed in connection with the interrupt status
register.

The CA2 and CB2 control bits have the following effects:

Table 6.2. Effects of CA2 and CB2 control bits.

Bits Effect
3 2 1 (CA2)
7 6 5 (CB2)

0 0 0 Input mode - set CA/B interrupt flag on negative
transition of the input signal.
The interrupt flag is cleared by a read or write of the

A/B input/output register respectively.

0 0 1 Input mode - set CA/B interrupt flag on negative

108 The BBC Micro

transition of the input signal.
The flag is not cleared by reading or writing the input/

output register.
The flag can only be cleared by writing a one to the

interrupt status register (see later).

0 1 0 Input mode - as for 0,0,0 but flag set on positive
transitions of input signal.

0 1 1 Input mode - as for 0,1,0 but flag set on positive
transitions of input signal.

1 0 0 Output mode - CA/B 2 is set high by an active
transition of CA/B 1 input. Reset by reading or writing
A/B input/output register.

1 0 1 Output mode - CA/B 2 goes low for one cycle (of the
1 MHz clock) following a read or write of the A/B
input/output register.

1 1 0 Output mode - CA/B 2 always low.

1 1 1 Output mode - CA/B 2 always high.

The Timers

The 6522 VIA contains two timers. This sounds a little like over-
provision - with two VIAs the Model B machine has four different
timers at its disposal. However, each of the timers within a VIA has a
different set of features designed to suit it to a particular application.
Because of this difference between the timers it is worth dealing with
them in turn. Both timers are controlled by bits within the auxiliary
control register (see Figure 6.8).

Timer 1 consists of two main components. A sixteen bit latch and
a sixteen bit counter. The latch is used to store a number that can be

T1 control
T2

control Shift register control PB latch PA latch

7 6 5 4 3 2 1 0

Fig. 6.8. The auxiliary control register.

109Interfacing

loaded into the counter which is continuously being decremented at the
system clock rate i.e. 1 MHz. The latches can be written to and read
directly at addresses &FE66 and &FE67 (on VIA-B). However, they
are also used whenever the counter is loaded at addresses &FE64 or
&FE65. If the low order byte of the counter was loaded directly then
its value would have changed by the time the high order byte was
loaded (remember the counter is continuously decrementing). To get
round this problem, data that is written to the low order byte of the
counter is in fact stored in the low order byte of the latch. Writing data
to the high order byte of the counter not only loads the high order byte
of the latch as a side effect but also causes the low order byte of the
latch to be loaded into the low order byte of the counter. Using this
method, the high and low order bytes of the counter are loaded at the
same time. The latch holds any value stored until it is changed.

Timer 1 has two distinct operating modes - single shot and free
running. In addition, it can also cause an output on PB7 every time the
counter reaches zero. The function of the bits in the auxiliary control
register are as shown below:

Table 6.3. Timer 1 control bits.

Bits Effect
7 6

0 0 Set the T1 interrupt flag after the counter has reached
zero after being loaded (single shot mode).

0 1 Set T1 interrupt flag after the counter has reached zero
after having been loaded.
Automatically reload the counter from the latch each
time it reaches zero (free running mode).

1 0 Single shot mode but PB7 goes low when the high order
counter/latch is loaded and returns high after when the
T1 interrupt flag is set.

1 1 Free running mode but the output of PB7 is inverted each
time the T1 interrupt flag is set.

The best way to explain the working of the two modes is by
example. If we want to wait for a fixed time interval in a program then
we need to use T1 in its single shot mode. After setting the appropriate
bits in the auxiliary register to place T1 in single shot mode, the low

110 The BBC Micro

order byte of the count is loaded into the latch/counter at &FE64. To
start the countdown for the time interval all you have to do is load the
high order byte of the count into the latch/counter at &FE65. To detect
the end of the time interval, i.e. when the counter reaches zero, you can
either examine bit 6 in the interrupt status register at &FE6D until it
becomes a 1 or you can enable the T1 interrupt and write an interrupt
service routine (as described in Chapter Three). To repeat the time
interval, all you have to do is load the high byte latch/counter. The
number that has to be loaded into the counter to produce any given
time interval is easy to determine. If the counter is loaded with n then
the flag will be set after n+1.5 ms. If the PB7 output is enabled, then
you will also get a single pulse out of the PB7 line lasting for the same
time interval. When the counter reaches zero it continues to decrement
so the counter registers can be used by the processor to find out how
long ago the counter reached zero.

The free running mode is very similar to the single shot mode
except for the fact that the counter, both high and low order bytes, are
reloaded from the latch each time the counter reaches zero. This allows
a series of interrupts and, if the output of PB7 is enabled, a series of
pulses to be produced. You can change the values stored in the latches
by writing to the latch registers at &FE66 and &FE67 while the count
is being decremented. The new value will be loaded into the counter
the next time it reaches zero. Using this method you can produce
pulses of varying length in a continuous stream.

Timer 2 operates as a timer in the single shot mode only and as a
counter. As a timer it is more limited than timer 1, not only because it
cannot be used in a free running mode, but because there is no way of
reading or writing to the latches directly. Setting timer 2's counters
follows the same pattern as for timer 1 in single shot mode. First the
low order byte is loaded into the low order latch at &FE68, then the
high order byte is loaded into the counter at &FE69 which also
transfers the contents of the low order counter. The counter then
decrements until it reaches zero when it sets the T2 interrupt flag in the
interrupt status register. No output pulse can be produced with timer 2.
The second mode in which timer 2 can be operated is a pulse-counting
mode. In this mode a number can be loaded into the counter registers
in the same way as in single shot mode. However, the counter now
decrements each time a (negative going) pulse is applied to PB6. The
T2 interrupt flag is set when the counter reaches zero but the counter
still decrements with each input pulse. The T2 control bit (bit 5 in the

111Interfacing

auxiliary control register) selects the operating mode of timer 2. If it is
zero then the timer operates in a single shot mode. If it is one then the
timer operates as a counter.

As a practical example of using the timers requires assembly
language, it is postponed until Chapter Eight.

The shift register

The 6522 VIA contains an eight bit re-cycling shift register. It can be
used either in an input or output mode. In an input mode bits are
shifted into the register from CB2. In an output mode, bits are shifted
out to the same CB2 line. Apart from this choice of input or output
mode the only other variation in the way that the shift register works is
the selection of the source or speed of the clock that causes a bit to be
shifted into or out of the register. When the shift clock is derived
internally it is available on the CB1 line and when it is derived
externally it is supplied through CB1. The shift register's operating
mode is controlled by bits 2 to 4 in the auxiliary control register as
follows:

Table 6.4. Shift register control bits.

Bits Effects
4 3 2

0 0 0 Shift register disabled.
0 0 1 Shift in controlled by timer 2.
0 1 0 Shift in controlled by system clock (1 MHz).
0 1 1 Shift in controlled by external pulses on CB1.
1 0 0 Free running output controlled by timer 2.
1 0 1 Shift out controlled by timer 2.
1 1 0 Shift out controlled by the system clock (1 MHz).
1 1 1 Shift out controlled by external pulses on CB1.

In each of the modes apart from the free running mode the shift
out or in is initiated by writing or reading the shift register and after
eight shift pulses the shift register interrupt flag is set to one in the
interrupt register. If the shift clock is derived internally this stops after
eight pulses. However, in free running mode the shift clock is applied
continuously. As the shift register recycles, the same eight bits are sent

112 The BBC Micro

out over CB2 repeatedly.
The shift register is a fairly specialised device in that is generally

used to transfer information from one computer to another. However,
the free-running mode can be used to generate short irregular pulse
trains by loading the shift register with the correct pattern of ones and
zeros.

The interrupt control and status register

While discussing the various functions of the VIA, the setting of a bit
in the interrupt register has often been used as a way of indicating that
something has happened. In fact, the interrupt status register works as a
pair with the interrupt control register (see Figure 6.9). The meaning of
all of the bits in the interrupt status register has already been explained
apart from bit 7 or IRQ. The 6522 VIA can cause an IRQ interrupt (see
Chapter Three) if so desired when any selected bits in the interrupt
status register are first set to one. Bit 7 is one if the VIA has caused an

IRQ

Set/
clear

T1 T2 CB1 CB2 SR CA1 CA2

T1 T2 CB1 CB2 SR CA1 CA2

Interrupt
flags

Interrupt
control

7 6 5 4 3 2 1 0

Fig. 6.9 Interrupt status/control registers.

IRQ interrupt and zero otherwise. Whether the setting of a bit in the
interrupt status register actually causes an interrupt or not depends on
the setting of the corresponding bit in the interrupt control register. For
example, if T2 is 1 in the interrupt control register when the VIA will
cause an IRQ interrupt as soon as the T2 bit in the interrupt status
register is set to one. The bits in the interrupt register can be cleared
either indirectly by the methods described in the previous sections (for
example, bit T2 is cleared by reading the T2 low order counter) or
directly by writing to the register with the corresponding bit set to one.
For example, to clear bit 3, i.e. CB2, but leaves all the others
unaffected you would write &08 to the interrupt status register. Setting
a bit to one or zero in the interrupt control register also uses an odd
method. To alter a given bit you must write to the interrupt control
register a value with a one in the same bit position. If bit 7 of the value

113Interfacing

is a 1 then the selected bit (or bits) will be set to one. If bit 7 of the
value is 0 then the selected bit (or bits) will be set to zero. In other
words, the selected bits are set to the same state as bit 7. An interrupt
flag that is not enabled will not cause an IRQ interrupt but can still be
set and cleared in the same way as normal.

Data latching

There are two bits left in the auxiliary control register that haven't been
discussed so far - the PB and PA latch bits. If either of these bits are set
to one then the input data to the A and B sides will be latched when the
CA1 and CB1 interrupt flags are set to one respectively. In this mode
reading the input/output registers returns the data values most recently
latched rather than the current state of the input lines. The advantage of
this is that fast changing data can be held automatically for the
processor to read at a later date.

Conclusion

This chapter began with a warning that the 6522 VIA was a
complicated device. By the end of this chapter you should be
convinced that it is indeed complicated but you should be beginning to
see how versatile it really is - living up to its name of Versatile
Interface Adaptor. The only way you can become familiar with any
area of interfacing is to make use of the information in a practical
problem. Using the BBC Micro's A to D convertor and its VIA is no
exception to this rule.

114 The BBC Micro

