
Chapter Three
The Machine Operating
System

The BBC Micro has so many unique features that it is difficult to pick
out any one for special praise. Also it is easy to overlook its broader
design philosophy because individual features capture the attention.
The MOS (Machine Operating System) is a machine code program
roughly 16K bytes in size. A program of this size rivals the BASIC in
its complexity. However, unlike the BASIC ROM, it is difficult to sum
up what the MOS actually does. It is responsible for so many different
things that it would be easy to dismiss the MOS as simply a collection
of all the 'odds and ends' that wouldn't fit into the BASIC ROM.
However, this would be an underestimation of the careful thought that
obviously went into writing the MOS. There are two approaches to
building a machine. You can design the hardware and then implement a
version of BASIC by interfacing it with the hardware directly. This can
be thought of as the 'solve the problems as they arise' approach. For
example, you would write things like printer drivers only when they
were required by a BASIC statement that listed a program to a printer.
Writing a version of BASIC with this sort of approach tends to take
short cuts to providing access to hardware features which results in a
shorter BASIC interpreter. However, it also tends to transmit any
difficulties and shortcomings in the hardware back to the programmer.
The second approach to building a machine starts in the same way with
the design of the hardware, but before implementing BASIC an extra
layer of software is installed to iron out any problems and generally
improve the hardware's appearance. In the BBC Micro this extra layer
of software is provided in the MOS. In some senses it is more accurate
to think of the BBC Micro, its hardware and the MOS providing an
environment that is suitable for running BASIC or any other high level
language. Another way of looking at this is that the MOS creates a 'soft

machine' that is easier to use and more sophisticated than the
underlying 'hard machine'. So although the MOS has to do a very wide
range of things, it has a single purpose.

The rest of this chapter looks at some of the interesting things that
you can do with the MOS. Even though the MOS has a single purpose
it is impossible to find a logical order in which to discuss it because of
the wide range of things that it does to achieve this purpose. There has
already been a number of versions of the MOS issued since the BBC
Micro was first produced. The version described in this book is Version
I. This is the first version of the MOS to include all of the intended
features. To find out which version you have simply type *FX 0. If you
have an earlier version and find that you lack facilities that you wish to
use, then contact your dealer for a new ROM.
In general, it is true to say that the MOS provides software to handle
the following I/O devices:
• The graphics display and VDU drivers.
• Printer and serial I/O.
• Cassette filing system.
• Keyboard.
• A to D convertor.
• Sound generator.
• The tube.
It also makes extensive use of interrupts to improve the overall
performance of the machine.

There are three ways that the MOS is used by the programmer.
First, many BASIC commands are implemented directly by the MOS.
Secondly, there is a range of MOS commands such as *FX and *KEY
which cause the MOS to carry out certain tasks. Finally, there are
machine code routines within the MOS that the assembly language
programmer can use. It is difficult to avoid considering the use of the
MOS from assembly language programs here even though assembly
language is not discussed until Chapter Seven. The MOS is useful to a
BASIC programmer but it is fascinating from the point of view of
assembly language! Any sections that make reference to assembly
language should be read without worrying too much about
understanding the material completely. You will only find this chapter
completely comprehensible after you have made the acquaintance of
assembly language in Chapters Seven and Eight. If you have no desire
to learn assembly language then don't worry - there is still much to be
gained by using the MOS from BASIC.

44 The BBC Micro

Indirection and MOS subroutines

One important feature of the MOS is that all its important subroutines
are available for use by the assembly language programmer. In
addition, the assembly language programmer can actually replace any
of the important subroutines by user-defined routines. The way that
this works is particularly simple. All external MOS subroutines are
used by a CALL to the region &FF00 to &FFFF. For example, the
'print a character on the screen' subroutine, OSWRCH, is positioned at
&FFEE. However, at this high memory location there is very little of
the code for each of the subroutines. In fact, all that happens is a jump
to the true location of the subroutine inside the main part of the MOS
ROM. The address of the true location of the subroutine is obtained
from RAM in the region &200-&2FF which is known as the
indirection area. For example, the true address of the OSWRCH
subroutine is contained in &20F. You can find a table of MOS
subroutines, their fixed addresses and their indirection routines on page
452 of the User Guide. The advantage of this roundabout method of
getting to the MOS subroutines is two-fold. First, the true locations of
the MOS subroutines can be changed in later versions without
invalidating user programs. Secondly, by changing the address stored
in the indirection area of RAM the user can intercept MOS calls and
supply alternative versions.

The MOS subroutines that are available to the user fall into three
categories - tape I/O routines, screen and keyboard I/O routines and
three miscellaneous routines. The tape 1/O routines OSFIND,
OSGBPB, OSBPUT, 0SARGS and OS FILE are used by BASIC to
manipulate cassette files and may be used by the assembly language
programmer for the same purpose. They are all adequately described in
the User Guide and it is unlikely that a programmer would ever want to
replace them with special versions.

The keyboard and screen I/O routines are OSRDCH, OSASCI,
OSNEWL and OSWRCH. These form the basic way of handling text
from BASIC and assembly language programs. Once again, they are
well described in the User Guide and no further comment is necessary.

The three miscellaneous subroutines are quite another matter,
however! Between them they carry out so many different functions that
it is worth highlighting some of the possible ways that they could be

45The Machine Operating System

used. The three subroutines are OSBYTE, OSWORD and OSCLI.
OSBYTE and OS WORD are general purpose subroutines that can be
used to configure the BBC Micro or control I/O devices. The OSCLI
subroutine is a command line interpreter that allows the BASIC
programmer direct access to the OSBYTE subroutine. Any command
line that starts with an asterisk, such as *MOTOR I, is not processed
by the BASIC interpreter; instead it is passed to the OSCLI subroutine
for processing. The OSCLI decodes the command and then calls the
OSBYTE subroutine to carry out the correct action. Most of operating
system commands are of the form *FX 'parameters' but some are used
so often that they are given names all of their own, for example,
*MOTOR, "TAPE etc. Thus, OS BYTE calls that do not need to return
any results are available to the BASIC programmer as operating,
system commands. The OSBYTE calls that return results can only be
used from BASIC via the USR function. The OSBYTE subroutine
deals with everything that can be specified using only three bytes
(these are held in the A,X and Y registers). Anything that needs more
than three bytes is handled by the OSWORD subroutine. As there is no
simple way of passing more than three bytes to an assembly language
subroutine, OSWORD calls can really only be used by assembly
language programs.

Although the User Guide describes all the OSBYTE and
OSWORD calls in some detail it doesn't always make clear what they
might be used for. 1n order to avoid repeating the details given in the
User Guide, a complete list of calls will not be given here. Instead, the
sort of thing that the less obvious calls might be used for will be briefly
described.

The first *FX call that is worthy of further discussion is *FX 4.
Following *FX 4,1 the five cursor keys return ASCII codes just like
the other keys on the keyboard. The normal condition is for the cursor
keys not to return ASCII codes but move the cursor round the screen.
This condition can be restored by *FX 4,0. There are two reasons why
you might want the cursor keys to return ASCII codes. First, you may
simply want to disable the cursor editing facility in an applications
program to stop inexperienced users from getting out of their depth.
Secondly, if you want to use the four arrow keys to control the
movement of a graphics character in a game, then the only way that
this can be done is for the cursor keys to return ASCII codes.

The *FX 11 call sets the time that a key has to be held down
before it starts to auto repeat. The required time delay in centi-seconds

46 The BBC Micro

is the only parameter in the call, and if you specify a time of zero then
the auto repeat is disabled. *FX 12 sets the rate at which keys auto
repeat. Once again there is a single parameter that sets the time
between repeats in centi-seconds. These two calls are often used
together to change the response of the keyboard. For example, it is a
good idea to turn the auto repeat facility off in applications programs.
However, in games programs where a quick response is required, the
keyboard can be set to auto repeat after only 1 centi-second and
produce characters at the same rate. By using *FX 11 and *FX 12, the
BBC Micro's keyboard's response can be adjusted to suit any situation.

One *FX call that seems particularly puzzling is *FX 138 which
inserts a character into the keyboard buffer. The format of the call is
*FX 138,0 'ASCII code' which inserts the character whose code is
'ASCII code' into the keyboard buffer. Any characters placed in the
keyboard buffer in this way are treated in exactly the same way as if
they had been typed in. The BBC Micro doesn't care where the
characters in the keyboard buffer come from, only what they are. This
means that a running program can place a string of characters in the
keyboard buffer and when the program ends the string will be obeyed
as if it had been typed in. For example, if the string 'LIST' followed by
a carriage return is placed in the keyboard buffer by a running
program, then the program effectively lists itself as soon as it stops! To
see this in action try:

 10 *FX 138,0,76
 20 *FX 138,0,73
 30 *FX 138,0,83
 40 *FX 138,0,84
 50 *FX 138,0,13

This ability for a running program to 'type on the keyboard' is
something to be kept in mind when all else fails. It can be used to good
advantage to provide default answers to questions asked by an
applications program. For example, if you remove line 50 from the
above program, the keyboard buffer is filled with LIST but without the
carriage return. If you also add 60 INPUT A$ to the end of the program
you will see that the word LIST appears after the usual'?' prompt
printed by the INPUT statement. To accept it, all you have to do is
press RETURN; to reject it you backspace and type whatever you
want.

The final "FX code that deserves special mention is *FX 229. The
call *FX 229,1 disables the action of the ESCAPE key and makes it

47The Machine Operating System

return the ASCII code 27. In other words, following *FX 229,1 the
ESCAPE key no longer interrupts the running of a BASIC program. To
restore its normal action use *FX 229,0. Using this call and the
definition of *KEY 10 as OLD|M RUN|M makes a BASIC program
completely unstoppable. The call disables the ESCAPE key and the
definition of key 10 (the BREAK key) effectively disables the BREAK
key. The only way to stop the program is to switch the machine off.

Adding commands

The OSCLI subroutine provides a simple method of adding new
commands to the MOS or to BASIC. Any line that starts with an
asterisk, be it a direct command or in a BASIC program, is handled by
the OSCLI subroutine at &FFF7. As mentioned earlier, all the MOS
subroutines indirect through RAM locations and OSCLI is no
exception. The address of the actual OSCLI subroutine is stored in
&0208 and L0209. To add new commands, we could intercept the
OSCLI call by changing the address stored in &0208 to point to a
specially written assembly language routine. Although assembly
language isn't discussed until Chapter Seven, it is worth including an
example here.

Consider the following short program:

 10 DIM CODE% 10
 20 ?&208=CODE% AND &00FF
 30 ?&209=(CODE% AND &FF00)/&FF
 40 P%=CODE%
 50 [LDA #65
 60 JSR &FFEE
 70 RTS
 80]
 90 FOR I=1 TO 10
 100 *
 110 NEXT

Lines 50 to 80 form an assembly language program that simply prints
the letter A on the screen. Lines 20 and 30 change the address of
OSCLI to the address of the 'print letter A' routine. Lines 90 to I 10
form a perfectly simple FOR loop apart from the fact that line 100 is
nothing but an asterisk! If you run the program you will find that the
letter A is printed on the screen ten times, thus proving that the asterisk
now means 'print the letter A'.

In any real application, the address of the OSCLI subroutine

48 The BBC Micro

would be saved within the new assembly language routine. The new
routine would check to see that what followed the asterisk was a
command that was its concern. For example, we might decide to call
the 'print A' routine by the command *PRINTA and the first job that
the routine would do would be to check that the word 'PRINTA'
followed the asterisk. If this was not the case then the OSCLI proper
would be called using the address that was originally stored in the
RAM locations. In this way new commands can be added to the
existing set of commands rather than replacing them.

The video display

The hardware and software that makes up the video display is
discussed fully in the next chapter. However, it is worth pointing out
that the MOS is entirely responsible for the software that drives the
video hardware. In particular, the MOS contains the VDU drivers and
the character generator table. The method of communication with the
video section of the MOS is not via a long list of subroutine calls.
Instead, the OSWRCH subroutine detects and acts upon an extended
set of ASCII control codes. These control codes are sent to the
OSWRCH subroutine in exactly the same way as a printable character,
but their effects can be very extensive. In BASIC the command VDU
appears to be the fundamental graphics command. In fact, all it does is
to transmit the necessary control codes to the VDU drivers via the
OSWRCH subroutine. So the following are equivalent:

VDU 8
PRINT CHR$(08);

[LDA #8
 JSR &FFEE
]

and each sends a backspace command to the VDU drivers. In practice,
many of the control codes are followed by a number of parameters.

Interrupts

The BBC Micro makes extensive use of interrupts to improve its
overall performance. An interrupt is simply a wav of switching the

49The Machine Operating System

'attention' of the 6502 processor inside the machine from one task to
another and back again. For example, if a BASIC program is running,
then the 6502 is giving its full attention to this task. If, however, a key
is pressed on the keyboard this causes an interrupt which makes the
6502 stop what it is doing and start running the keyboard service
routine in the MOS. This finds out which key was pressed and stores
the correct ASCII value in the keyboard buffer. Once the keyboard is
dealt with, the 6502 returns to the original task of running your BASIC
program, starting from the point where it was interrupted. This idea is
not a difficult one - after all, humans respond to interrupts. If you are
reading a book and the telephone rings then you process this interrupt
by marking your place in the book, answering the telephone and then
returning to your reading at the point where you were interrupted.
However, even though the idea of an interrupt is simple in theory, in
practice things are often difficult to handle. The trouble is that an
interrupt may happen at any time and may be caused by any number of
devices. For example, as well as the keyboard interrupt the 6502 has to
service an interrupt from a timer in VIA - A every one hundredth of a
second. On receiving this timer interrupt, all the 6502 does is to
increment the value stored in the variable TIME but how does it know
where the interrupt came from? Was it from the keyboard or was it
from the timer? In fact, there are many sources of interrupts that we
haven't yet considered. The key to finding out which device has caused
an interrupt is contained in the hardware causing the interrupt. Each I/
O device that can cause an interrupt has an a bit known as an interrupt
flag somewhere in its status register. This flag is normally set to zero
but if the device has caused an interrupt then it is set to one. The
method of finding which device has caused an interrupt is simply to
examine each of the I/O devices' interrupt flags to find which are set to
one.

As already mentioned, the BBC Micro makes extensive use of
interrupts. However, if you do not intend to become involved with
writing assembly language programs that make use of interrupts then
you can ignore this fact. The only unexpected consequence it has is
that you cannot use delay loops for exact timing simply because you
cannot always guarantee that the 6502 is executing your program - it
might be off servicing an interrupt for some part of the time! Apart
from this, interrupts simply alter the general way that the BBC Micro
behaves. For example, the fact that the keyboard is serviced by an
interrupt as described in the last paragraph means that anything that

50 The BBC Micro

you type on the keyboard goes into the keyboard buffer even if the
computer appears to be busy doing something else - i.e. it provides
type-ahead. The overall effect of interrupts on the BBC Micro is to
give it the appearance of being able to do more than one thing at a
time!

If you are interested in making use of interrupts in assembly
language programs, then you will certainly need to know a little more
than outlined above. The 6502 recognises three distinct types of
interrupt - NMI or Non-Maskable Interrupts, IRQ or Interrupt ReQuest
and BRK or Break. The first type, NMI, is strictly reserved for use by
the disc operating system and need not concern us further. All the other
I/O devices that can cause interrupts use the IRQ interrupt. The BRK
interrupt is a little different in that it is a software interrupt. A software
interrupt is exactly the same as a normal interrupt except for the fact
that it originates internally rather than being caused by an external
device. In fact, 6502 assembly language includes the mnemonic BRK
which causes a BRK interrupt to occur.

When the machine detects an IRQ interrupt it immediately passes
control to a routine whose address is stored in &0204 (IRQV1). In
other words, it indirects through this location in the same way as the
MOS subroutines indirect through their own particular locations. The
standard MOS routine to handle interrupts looks at the interrupt flags
of all the devices that it knows about to discover the source of the
interrupt. If it finds it then the appropriate action is carried out. For
example, if it finds that the timer is responsible for the interrupt it will
increment TIME and then return control to the program that was
interrupted. However, it is possible that some I/O device that the MOS
doesn't know anything about has caused the interrupt. In this case the
standard interrupt service routine will not locate the cause of the
interrupt. When this happens, control is passed to the routine whose
address is stored in &0206 (IRQV2). Of course, this routine has to be
supplied by the user to handle the interrupt in the appropriate way.
When the user interrupt handler has finished it should return control to
the MOS interrupt handler (by RTS) which will finish the interrupt
procedure and return control to the program that was interrupted. Thus,
adding routines is fairly straightforward. If you cannot afford to wait
while the MOS checks all its possible sources of interrupts then you
could intercept the IRQ interrupt at IRQV1 instead of IRQV2. In this
case, of course, you should check, and possibly deal with, your source
of interrupts and then pass control to the MOS interrupt service routine

51The Machine Operating System

(whose address was originally in IRQV1).
The BRK interrupt is used by BASIC to report errors. How this is

done is well-described in the User Guide and so will not be repeated
here. As BRK indirects through &0202, it, too can be intercepted and
handled by a user-supplied routine as required.

Interrupts that the MOS can handle might still be of interest to the
user. For example, it may be that a user program needs to know when
any key has been pressed although it is quite happy for the MOS to
handle the interrupt. To deal with this requirement the M OS
recognises a number of events. An event is either an interrupt or
something that is detected during an interrupt that the MOS can handle
perfectly well on its own. However, the MOS will inform the user of
the event's occurrence on request. The normal state of affairs is for all
events to be disabled. If an enabled event occurs, however, then control
is passed to the routine whose address is stored in @0220. The events
are enabled using "FX 14, 'code' where 'code' is one of the following:

Code Event

0 A buffer is empty X=buffer identity
1 A buffer is full X=buffer identity

Y=character that couldn't be
stored

2 A key has been pressed
3 ADC conversion complete
4 Start of TV field pulse
5 Interval timer crossing zero
6 Escape condition detected

To disable an event, the same codes should be used in *FX 13,code.
Notice that any normal interrupt handling happens before an enabled
event indirects through A0220.

As a demonstration of how events work, type in and run the
following program:

 10 DIM CODE% 20
 20 ?&220=CODE% AND &00FF
 30 ?&221=(CODE% AND &FF00)/&FF
 40 P%=CODE%
 50 [LDA #65
 60 JSR &FFEE
 70 RTS
 80]

52 The BBC Micro

You might recognise the 'print an A' assembly language subroutine,
that has been used in earlier examples, in lines 50 to 80. However, in
this case its address is placed in &0220 and k0221. This means that
following this program, any enabled event will cause a letter A to be
printed on the screen every time it happens. To see this in action
simply use *FX 14,code to enable the event of your choice. For
example, following *FX 14,2 you will see a letter A printed following
every character you type on the keyboard! Following "FX 14,4 you
will see the letter A appear on the screen almost continuously - a field
pulse event occurs every fiftieth of a second! To recover from most of
the above examples it is easier to press BREAK and then type OLD
and run the program again rather than try to disable the event with *FX
13,code - the A's appearing on the screen make typing difficult!
Although this is not a very useful example, it does show how events
can be used. A typical real example would be to synchronise the
running of a program to the start of a TV frame display. Dealing with
characters typed on the keyboard as soon as they are typed is another
practical example.

Conclusion

The MOS is a very complex piece of software. Many of its functions
are concerned with important I/O devices such as the graphics display,
the sound generator and the A to D convertor, and these are discussed
in the next three chapters. In this chapter, some of the less obvious
features of the MOS have been described so that the BASIC
programmer and assembly language programmer can both begin to
make good use of the range of facilities available. It should also have
made apparent just how clever the BBC Micro's MOS is.

53The Machine Operating System

