Chapter Seven
Introduction to Assembly
Language

There is no question that BASIC is easy to learn and easy to use. It is
also good enough for most applications. However, it has one major
drawback - it is slow. The way to get the maximum performance from
any computer is to write programs in its own language - the machine's
assembly language. Notice that it is the machine's assembly language,
because it is important to realise that there isn't a single language
called ‘'assembly language'. Each machine, or rather each
microprocessor, has its very own language. The BBC Micro uses a
6502 microprocessor, so its assembly language is more properly called
'6502 assembly language'.

There is no avoiding the fact that assembly language is more
difficult to learn than BASIC. If this were not the case everyone would
learn assembly language before BASIC! Even though assembler isn't
as easy as BASIC it is very well worth knowing and the BBC Micro
makes it as easy as possible by having a built-in assembler. Using this
facility you can mix BASIC and assembler very easily. You can write
most of any program in BASIC can use assembler whenever BASIC
proves to be too slow. This is really the best of both worlds!

This is the first of two chapters dealing with assembly language
on the BBC Micro. The main subject of this chapter is the 6502, its
assembly language and the BBC Micro's assembler. The next chapter
shows how our knowledge of assembler, together with an
understanding of the hardware, can be used to advantage. You could
say that this chapter aims to teach you assembler and the next aims to
teach you how to use assembler.

What makes assembler different?

The statement that BASIC is slow and assembler is fast may have
made you wonder why this is so? The main reason for this speed

116 The BBC Micro

difference is that BASIC is not a language that the 6502 inside the
BBC Micro can obey directly. As already mentioned, the only language
that it can obey is 6502 assembly language. The execution of your
BASIC program involves the use of another program, called an
interpreter. When you type RUN, the interpreter (in ROM 0 - see
Chapter One) looks at the first line of your program and carries out
your instructions. For example, if your first line reads GOTO 1000 the
interpreter first identifies the GOTO and as a result looks for line
number 1000. Once it finds line number 1000 (which may involve
examining a lot of line numbers) it' lookgo see what the line tells it to
do next. Notice that your BASIC program doesn' directly control what
the machine is doing. It controls what the interpreter, an assembly
language program, is doing and it is the interpreter that controls the
action of the 6502 microprocessor. This is, of course, the reason why
BASIC is slower than assembly code.

Assembly language is executed by the 6502 without any
intervening programs. If you give an assembly language command
such as JMP &2000 (JMP is short for JUMP and so the instruction
reads jump to &2000) which is the assembly language equivalent of
GOTO then the 6502 carries it out at once. Not only does it carry it out
immediately, there is no searching for the specified line number
because assembly language doesn' twork in terms of line numbers.
Whenever an assembly language instruction refers to a position in a
program it uses memory addresses. Thus JMP &2000 means jump to
(or go to) memory location &2000 (remember the & means that the
number following is in hexadecimal) and carry out the instruction that
you find stored there. This is an advantage that the 6502 doesn' have
to spend time searching for a line number. After all, memory location
&2000 is always in the same place, but it does mean that assembly
language programs can only be run in the area of memory that they are
written for. When you write a BASIC program you make no reference
as to where in memory it should ' live* in fact, it is one of the good
things about BASIC that the program' $ocation is irrelevant. Whenever
you write GOTO 2000 you don' heed to worry about where line 2000
is - the BASIC interpreter looks after you! This use of memory
locations typifies assembly language. If you want to store some
information then you have to say where you want it stored. In BASIC
you simply use a variable and let the interpreter decide where things
are stored.

Introduction to Assembly Language 117

Inside the 6502

The range of instructions that you can give the 6502 in assembly
language is very much more limited than the sort of things you can
write in BASIC. In particular, you can only handle one memory
location at a time. Things are even more restricted than this because
before you can do anything to the contents of a memory location, it
must be brought ' insidethe 6502. This idea is easier to understand
once you know that there are a number of special places inside the
6502 called registers where the contents of a memory location can be
stored. Registers are the places where all the work gets done. For
example, if you want to add the contents of two memory locations
together you first have to load a register with the contents of the first
location and then issue a command that adds the contents of the second
location to the contents of the register. If you want the answer stored in
a third memory location then you have to add yet another instruction to
store the contents of the register in the memory location. Notice that
something that would have been one instruction in BASIC, such as
LET A=B+C, has become three instructions in assembly language!

As most 6502 operations involve the use of at least one register it
is important to know what registers the 6502 has. To this end a
summary can be seen in Figure 7.1. These six registers A, X, Y, PC, S

7 0
‘ ‘ A register or Accumulator
7 0
‘ ‘ X (Index) register
7 0
‘ ‘ Y (index) register
15 PC
‘ program counter
s 7 o register
‘] ‘ ‘ SP Stack pointer
register
7 0
‘ N‘ V‘ ‘ B‘ D‘ | ‘ Z‘ C‘ P Processor status register

Fig. 7.1. The 6502 registers.

118 The BBC Micro

and P are the only registers that the 6502 has and part of the problem of
assembly language programming is finding out how to do something
useful with so few! As you might have guessed, each register has a
different role to play. For example, the A register can be used to do
things like arithmetic etc., while the X and Y registers are reserved for
other duties. To become a good assembly language programmer you
must know not only what registers are inside the 6502 but also what
they can be used for.

The only register that need concern us for the moment is the A
register. The A register is used for operations such as addition and
subtraction. Surprisingly, it is the only register in the 6502 that can be
used to carry out calculations of this sort. So if you want to do some
arithmetic it is sure to involve the A register. For example, the small
addition program that was introduced earlier involves the A register.
Coded in 6502 assembly language it is:

LDA &2000

ADC &2001

STA &2002
The first instruction means ' LoaDA from memory location &2000' .
The second instruction is ' ADdvith Carry memory location &2001 to
the A register' which, for the moment, can be taken to mean ' addhe
contents of memory location &2001 to the A register' .The final
instruction is ' STor¢he A register in memory location &2002' This is
a complete assembly language program as long as we assume that the
two numbers to be added together are already stored in memory
locations &2000 and &2001 and that the answer is actually needed in
location &2002!

From assembly language to machine code

Although the example given at the end of the last section is a complete
assembly language program it is not in a form that the 6502 can use.
Humans find instructions written in the form LDA useful because it
helps you to remember that the instruction means ' LoaDhe A register' .
However, as the 6502 cannot read letters, command such as LDA have
to be presented in the form of a numeric code. Every instruction that
the 6502 obeys can be written in two ways - as a number and as a
three-letter mnemonic code. The number form is for the 6502 and the
letter form is easier for humans to deal with. For example, LDA is the
mnemonic code for ' loadhe A register from a memory location' and its

119

code is &AD. Before any assembly language program can be carried
out by the 6502 it must be changed from mnemonic code form into a
list of numbers - machine code. This could be done manually by
looking up the machine code that corresponds to each mnemonic code
in a table of such codes. However, looking that up in such a table,
though simple, is such a time-consuming task that it is easier to get a
program to do the conversion for us. Such a program is called an
assembler.

The BBC assembler

The BBC Micro has within it a fairly standard 6502 assembler. This
means that you can type in the mnemonic codes of assembly language
and have the BBC Micro convert them to machine code. To see this try
the following:

10 P%$=&3000
20 [
30 LDA &2000
40 ADC &2001
50 STA &2002
60]

The ' [in line 20 indicates that what follows is assembler rather than
BASIC. As you might guess, the matching ' Jin line 60 marks the end
of assembler and the start of more BASIC (if any). In general, the BBC
Micro treats anything between square brackets as assembler. Lines 30
to 50 should be familiar as they formed the earlier example that added
two numbers together. The only unexplained line is line 10. You will
recognise P% as one of the resident integer variables discussed in
Chapter Two. Just like a program in any language, an assembly
language program needs to be stored somewhere in memory and the
value of P% governs where. Setting P% to &3000 means that the first
number that makes up the machine code of the program will be stored
in location &3000. If you run the program you should see:

>RUN

3000

3000 AD 00 20 LDA &2000
3003 6D 01 20 ADC &2001
3006 8D 02 20 STA &2002
>

120 The BBC Micro

If you look at the first line of the display following the 3000 you can
see AD which is the machine code for LDA. Following this the
numbers 00 20 can be recognised as the address of the memory
location that A is to be loaded from, but written in the wrong order!
Each of the subsequent lines is in the same format, i.e. 6D is the
machine code for ADC and once again the address of the memory
location follows but in the wrong order. The effect of setting P% to
3000 can also be seen in the column of numbers on the left-hand side.
The first number in the machine code, AD is stored in memory location
&3000, the second 00 is stored in &3001 and the third &20 in &3002
and so on to the end of the program. If you want to check that it is true
type in (in immediate mode):

PRINT ~?&3000
which will print the contents of location &3000 in hexadecimal so that
you can compare it with what you expect to be stored there. Try the
same command with different addresses just to confirm that the
program has been stored in the memory locations you expect.

It is important to be absolutely clear what has happened in the
above program. The opening [told the machine that what followed was
assembler and this caused the BBC Micro' sssembler to convert the
mnemonic codes to machine code and store the numbers in memory
starting at the address stored in P%. The closing | switched the
machine back to BASIC statements. In this case there were no BASIC
statements so the program stopped as you would expect. Notice that
there is no mention of ' runningthe assembly language program. All
that has happened is that it has been converted to machine code and
stored in memory starting at &3000. The result of this program can be
summarised in terms of getting the assembly language ready to run
somewhere in memory. Running the program is a separate step.

Making space

The BBC Micro' sSRAM is used for all sorts of things - temporary
memory storage for the MOS, space for BASIC variables, video
storage, and so on. To be able to store machine code safely we have to
find an area of memory that isn' going to be used to store anything
else afterwards. Storing machine code in areas of memory that are used
for other purposes can be disastrous - you can lose control of the
machine, the only cure for which is to switch the machine off and on.

121

In the addition example in the last section, the area of memory starting
at &3000 is used to store either lines of BASIC or BASIC variables
(see Chapter Two for more information). In this case, as the program is
so small and doesn' tise any variables it is a good bet that the &3000
area is unused. However, if the assembler language in the example was
part of a larger program, progress would not be so easy. We obviously
need some way of reserving an area of memory that can be used to
store machine code. The standard way of reserving memory to store
anything is to use a BASIC variable or a BASIC array. BBC BASIC
provides a special sort of array, a byte array, that can be used to
reserve memory for machine code. Try the following program:

10 DIM CODE% 10
20 P%=CODE

30 [

40 LDA &2000

50 ADC &2001

60 STA &2002

70 1

Line 10 is a special version of the DIM statement - notice that there are
no brackets around the 10. It works in roughly the same way as a
normal DIM statement in that it reserves storage in the variables area
but there are two important differences. The statement DIM CODE%
10 reserves 11 memory locations and stores the address of the first
memory location in the variable CODE%. In general the statement:

DIM numeric veriable size
will reserve size+1 memory locations and store the address of the first
in numeric variable. The variable created by this statement can be used
just like any other variable - it can be assigned to or used in arithmetic
expressions. In particular, it can be used to set P% to the address of the
reserved area of memory. This is exactly what is done in line 20. If you
run the program you will see that the assembly language is changed to
machine code as in the earlier example but now it is stored in the area
of memory reserved by the DIM statement in line 10. The actual
location of this area of memory will change as the size of the BASIC
program that the assembly language is part of changes but the most
important thing is that it will not change or be used for anything else
after you type RUN.

There is another way of reserving memory for use by assembly
language programs but this is a little more specialised and will be
introduced later.

122 The BBC Micro

A running program

At this point we know how to use the BBC assembler to translate
assembler to machine code and store it in an area of reserved memory.
Unfortunately, before we can move onto an assembly language
program that can be run we will have to abandon the addition example
that has served us so well and write something a little more useful. The
trouble with the addition example is that it added together two numbers
that were already supposed to be stored in &2000 and &2001 and then
stored the answer in &2002. This is not the best way to get information
to and from a program!

An interesting example is provided by a program that writes the
letter ' Abn the screen - over and over again. In other words we will
write the assembly language equivalent of:

10 PRINT "A";
20 GOTO 10

The first problem we have to solve is to find a way of writing
something on the screen. We could use an assembly language version
of the peek and poke graphics techniques introduced in Chapter Four
but this would be very difficult and long-winded. Instead, we can make
use of a subroutine in the MOS that writes characters on the screen.
This subroutine is a machine code subroutine that is already in ROM
so in this sense we are not cheating - our whole program is still
machine code! A description of the subroutine can be found, along
with other useful subroutines, in the User Guide. They are, however,
worth repeating here.

The OSASCI (Operating System ASCII print) subroutine begins
at memory location &FFE3. It will print the character whose ASCII
code is stored in the A register on the screen at the cursor' surrent
position and then move the cursor on one place.

To use this subroutine all we need to know is how to load the
ASCII code of the character that we want to appear on the screen and
also what the assembly language equivalent of GOSUB is. The first
problem is solved by using the 6502' §mmediate mode. If you write
LDA &02 this is taken to mean ' loadhe A register with the contents of
memory location &0002' However, if you write LDA &02 then this is
taken to mean ' loadhe A register with the number 2' In assembler a

123

number should be taken to be the address of a memory location unless
it is preceded by ' #Using this information it should be easy for you to
work out how to load the A register with the ASCII code for ' A'The
answer is LDA #65 (as 65 decimal is the ASCII code for A). The
second problem is even easier to solve by using the JSR - Jump to
SubRoutine - command, which is almost the exact assembly language
equivalent of GOSUB except that it transfers control to an address
rather than a line number. While we are on the subject, it is worth
mentioning that the assembly language equivalent of RETURN is
simply RTS - ReTurn from Subroutine.
We can now begin to write the program:

10 DIM CODES% 20
20 P%$=CODES%

30 [

40 LDA #65

50 JSR &FFE3
60 1]

Lines 10 and 20 are familiar from the previous example. The size of
the area reserved is set to 21 bytes which should be more than big
enough for the machine code generated. Line 40 is the first line of the
assembly language proper and this simply loads the A register with 65
(decimal). Line 50 is the jump to the operating system subroutine. This
chunk of program will print the letter A on the screen once. What we
want to do, however, is print the letter A repeatedly on the screen. The
easiest way to do this is to add JMP (JuMP), the assembly language
equivalent of GOTO, to the end of the program. To print the letter A
repeatedly we want to JMP back to the instruction that jumps to the
subroutine, namely JSR instruction. The problem is how to specify this
in the JMP instruction. If you recall the earlier discussion, assembly
language instructions work with memory addresses so we need to
know the address of the JSR instruction. This is something we could
find out by running the above program, noting the address at which the
machine code equivalent of JSR is stored. Unfortunately, this won' to
us any good because as soon as we add the JMP instruction to the
program the area of memory where the program is stored moves, and
with it the location of the JSR instruction.

The solution to this problem lies in the use of labels. A label is a
standard BASIC variable that is used to store the address of a memory
location. So, for example, CODE% is a label which indicates the start
of the reserved area of memory. You can define a label within an

124 The BBC Micro

assembly language program by writing a full stop and then its name.
The label then stores the address that the next instruction will be stored
in. Once defined, you can use a label anywhere that you can use an
address. Putting these two pieces of information together we can write

the program as:

10 DIM CODES% 10
20 P%=CODE%

30 [

40 LDA #65
50 .LOOP JSR &FFE3
60 JMP LOOP

70 1]
Line 50 now defines the label ' LOOP'as the address of the JSR

instruction and Line 60 can be read as ' JuMPto LOOP' and will
transfer control to the JSR instruction no matter what address it is
actually at. To prove that labels are really just BASIC variables try
PRINT LOOP after running the program - the number that is printed as
the address of the JSR instruction.

Now we have a complete program, the only thing left to do is to
run the machine code that results from the assembler. To do this we
need to use one of two BASIC statements that transfer control to
machine code, USR and CALL.

The easiest to use in this situation is CALL ' addresstwhich will
transfer control to the machine code instruction stored at ' address'If.
you add:

80 CALL CODE%
and run the program you will at last see the screen filled with letter As!
If you try to stop the program you will find that the ESCAPE key has
no effect and the only way that you can stop the program is to press
BREAK. You shouldn' tvorry. This is simply a reflection of the fact
that machine code isn' tas easy to control as BASIC! (You can type
OLD to get the program back.)

Addressing modes

Now we have written a working program all that remains to do is
expand our knowledge of 6502 instructions. Roughly speaking there
are two parts to every instruction - one that gives information about
what to do and another than gives information about what do it to. For
example, in LDA &2000, the LDA is what to do and the &2000 is
where to do it from. Technically, the ways in which you can specify
where to carry out an operation are referred to as addressing modes. It

125

is easier to learn the range of addressing modes that the 6502 has and
then look at what instructions can be used with what addressing modes
rather than to treat everything as a special case. On first reading don' t
try to remember all the addressing modes, just familiarise yourself with
their names and the ideas involved. Like most things, addressing
modes are easier to understand and remember when you actually need
to use them.

Absolute addressing

This is the simplest and most used method of addressing. The address
of the memory location that oontains the data to be operated on is
written following the operation code. For example, LDA &2000 or
STA DATA (where DATA is a label).

Zero page addressing

This is a special case of absolute addressing that is used when the
address is in the range 0 to 255. Zero page memory locations are
special because their addresses can be held in a register or a single
memory location. This is because the range 0 to 255 can be represented
using only eight bits. However, the address of any other memory
location cannot be held in a register and has to be stored using two
memory locations because it requires sixteen bits to represent it. There
are a number of other addressing modes that only work with the ' help'
of page zero memory locations - for example, LDA $05.

Immediate addressing

In this form of addressing, the value to be operated on is written,
preceded by #, after the operation code. For example, LDA #20 loads
the value 20 into the A register; LDA #DATA loads the value of the
label DATA into the A register.

Accumulator and implied addressing

Sometimes an instruction can be applied to either a memory location or
to the accumulator. To show the accumulator is the subject of the
operation you must write ' Awhere an address would normally go.
This is known as accumulator addressing. In other cases the place
where the operation is to be carried out is implied in the instruction.
For example, there is no address specified in RTS. This is known as
implied addressing. Neither are very common nor particularly difficult
to understand when they occur.

126 The BBC Micro

Relative addressing

This form of addressing tends to look like absolute addressing from the
user' point of view. If you are at a particular point in a program you
could specify a memory location by saying how many locations above
or below the current location it is. This is known as relative
addressing. The only instructions that use relative addressing are the
' branchinstructions, and the BBC assembler automatically converts
absolute addresses to relative when used with branch instructions.

Indexed addressing

This is the most complicated and versatile form of addressing that we
have looked at so far. It also involves two register that we haven' tised
until now - the X and Y registers. An example of an instruction using
indexed addressing is LDA &2312,X. The address that the A register is
loaded from is given by adding the contents of the X register to the
absolute address on the left of the comma. For example, if X contained
&S50, then A would be loaded from &2321+&50 or &2371. In general,
the address used in indexed addressing is obtained by adding the
absolute (or zero page) address to the left of the comma to the contents
of the register (X or Y) to the right - for example, LDA 34,X STA
DATA)Y etc.

The main use for indexing is in ' scanningthrough a table of
values. The absolute address is the start of the table and the index
register is set to the offset, that is the distance from the start of the table
that you wish to examine. Moving through the table is carried out
using INX (INcrement X), INY (INcrement Y), DEX (DEcrement X),
and DEY (DEcrement Y).

Indirect addressing

This is a form of addressing that often confuses beginners. However,
there is nothing complicated about it. Indirect addressing is usually
denoted by enclosing an address in brackets, e.g. (&2320) is an
indirect address. The location that an indirect address refers to isn' the
location that finally interests us; instead, it contains the address of the
location that interests us. For example, (&2320) refers to the memory
location &2320 the contents of which are then used as the address of
the memory location that will be used in the operation. You can use
indirection brackets around any other type of addressing, or indeed any
part of any type of addressing. For example, (&34,X) is an instruction

127

using indexed indirect addressing. To work out the memory location it
refers to, you have to work out the address within the brackets and then
use the contents of this memory location as the address of the memory
location that the instruction refers to. (It is a restriction of the 6502 that
this sort of indirect addressing only works if the address in the brackets
is a zero page address, i.e. is in the range O to 255).

There are restrictions on the way you can use indirection with the
6502. In particular there are only three ways that indirection brackets
can be combined with other addressing modes.

1. Absolute indirect. This is the basic form of indirection where an
absolute address is enclosed in an indirection bracket. The final
address is simply the contents of the memory location whose address is
between the brackets. There is one complication in that two memory
locations are involved in absolute indirection, the one referred to by
the absolute address and the next highest. This is because two memory
locations are required to hold an address. There is also one major
restriction in that absolute indirect addressing can only be used with
one 6502 instruction - JMP. Thus JMP (&1234) takes the contents of
memory locations &1234 and &1235 and treats them as the address to
jump to.

2. Indexed indirect addressing. This form of indirect addressing only
works using the X register and is written (&32,X). The final address is
worked out by adding the zero page absolute address to the contents of
the X register and then using the result as the address of a page zero
memory location. This page zero memory location together with the
one above it hold the address of the memory location that the
instruction will use. For example, LDA (&32,X) first adds 32 to the
contents of the X register. The resulting number is then used as a zero
page address which, together with the next highest memory location,
contains the absolute address of the memory location the A register is
loaded from.

3. Indirect indexed addressing. This form of indirection is written
(&23),Y and can only be used with the Y register. The final address is
obtained by using the contents of the zero page address in brackets
together with the next higher location as the address that is added to
the contents of the Y register. For example, STA (&43),Y takes the
contents of locations 43 and 44 and adds the resulting number to the
contents of Y to form the address of the location that A is stored in.

You may be puzzled as to what some of the above addressing
modes are used for. Don' worry too much because when you need to

128 The BBC Micro

use an addressing mode its purpose will become clear! The only
addressing modes that you need to understand at this point are:
absolute, immediate and indexed.

The 6502's registers

The A register is by now familiar to us from earlier examples and the X
and Y registers were introduced in the section above. We therefore
already known something about three of the 6502' segisters. However,
this still leaves the PC, SP and P registers unexplained. For reference
purposes, descriptions of each register in turn are given below.

The A register

This register is use for nearly all data manipulation - for example,
addition and subtraction. It is the register that does most of the work in
a program.

The X and Y registers

These registers are called index registers because of the role they play
in indexed addressing. A good way of thinking about this is that the A
register is used for handling data and the X and Y registers are
concerned with addresses. However, this is not the whole truth because
the X and Y registers can both be loaded from and stored in memory
and this sometimes makes them useful for holding temporary results
and moving data about when the A register is otherwise occupied.
Notice that the X and Y registers are not entirely identical; there are
some instructions that can use only the X register for index addressing.

The PC register

The PC or Program Counter register is almost an internal register that
is used by the 6502 itself, in that there are no instructions that
explicitly make use of the PC register. It used to hold the address of the
current machine code instruction, that is, one that the 6502 is obeying.
The only instructions which modify the PC register are things like JMP
&3432, which causes the PC register to be loaded with &3432 which
then, of course, becomes the address of the next instruction to be
carried out. It is not very often that a programmer needs to think about
the PC register - it takes care of itself.

129

The SP register

The SP or Stack Pointer is another of the 6502' sregisters that the
programmer needn' tworry about too much. The SP register holds an
address in a region of memory from 256 to 511. This region is known
as the stack, hence the name stack pointer. There are only two
operations that can be applied to the SP register - push and pull. The
SP starts with the address of the top of the stack, i.e. 511. A push
instruction stores data on the stack at the address that the SP is
' pointingit and then subtracts one from the SP register so that it is still
pointing to an unused memory location. A pull instruction works the
opposite way from a push instruction in that it adds one to the SP
register and then retrieves data from the memory location that it is
pointing at. These are the basic stack operations.

The 6502 itself uses the stack from temporary storage. For
example, the JSR instruction stores the return address on the stack and
the RTS instruction retrieves it from the stack. The stack can also be
used for temporary storage in programs using instructions like PLA -
Pull A - which pulls data off the stack and stores it in A. However,
unless you are absolutely sure what you are doing, the stack is best left
alone.

The P register

The P or Condition register is different from all the other registers in
that it is not used to hold either addresses or data. Instead, it stores
information concerning the result of the last instruction executed and
the machine in general. Each of the bits in the register can be thought
of as flags that indicate a different condition. If you look again at
Figure 7.1 you will see that each flag is given a single letter name. The
B,D and I flags are concerned with the state of the machine. The B flag
is 1 following a BRK instruction. The D flag sets the arithmetic mode
of the 6502. When it is 0, arithmetic is done in binary and when it is 1
arithmetic is done in a form of decimal known as BCD - Binary Coded
Decimal. The I flag is concerned with the servicing of interrupts. If it is
a 1, then the 6502 cannot be interrupted. Interrupts are beyond the
scope of this introduction to assembly language and my advice is to
avoid their use! The flags that are most interesting to the programmer
are the N,V,Z and C flags. These are set according to the result of the
last instruction. For example, the N flag is 1 if the result of the last
instruction was Negative. The V flag is a 1 if the result of the last
operation was too big to be stored in a single memory location, i.e. it is

130 The BBC Micro

the oVerflow flag. The Z flag is a 1 if the result of the last instruction
was exactly Zero. Finally, the C flag is 1 if there was a Carry from the
last operation.

The main use of the P register is via the branch group
instructions. For example, suppose you want to transfer control
somewhere but only when the contents of the A register are zero. This
can be done by using BEQ, meaning ' Branchf EQual to zero' which
tests the Z flag and jumps to the location only if it is equal to 1, i.e. if

the result of the last instruction was zero. Thus the loop:

.LOOP DEX
BEQ EXIT
JMP LOOP

will come to an end when the X register contains zero. There is a
simpler way to write this loop using the BNE ' Branchf Not Equal to

zero' instruction:

.LOOP DEX
BNE LOOP

which will keep on looping until the X register is zero. The P register
used in conjunction with the branch instructions is the assembly
language equivalent of the BASIC IF statement.

The 6502's instruction set

The only way to learn the instruction set of a microprocessor is to write
the programs. However, it is necessary to have a rough idea of the sort
of things a micro can do, so the full instruction set is listed with
comments in Table 7.1.

Table 7.1. The 6502 instruction set

Mnemonic

code Brief description Addressing modes

ADC Add memory to accumulator IMM ABS ZPG (ABS,X)
with carry. (ABS),Y ZPG,X ABS.X ABS,Y

AND AND memory with IMM ABS ZPG (ABS.X)
accumulator (ABS),Y ZPG,X ABS,X ABS,Y

ASL Shift left one bit (memory or ABS ZPG ACC ZPG,X ABS.X
accumulator)

BCC Branch on carry clear REL

BCS Branch on carry set. REL

BEQ Branch on result zero. REL

Mnemonic

code Brief description Addressing modes

BIT Test bits in memory with ABS ZPG
accumulator

BMI Branch on result minus. REL

BNE Branch on result not zero. REL

BPL Branch on result plus .REL

BRK Force break. IMP

BVC Branch on overflow clear. REL

BVS Branch on overflow set. REL

CLC Clear carry flag. IMP

CLD Clear decimal mode. IMP

CLI Clear interrupt disable bit. ~ IMP

CLV Clear overflow flag. IMP

CMP Compare memory and IMM ABS ZPG (ABS,X)
accumulator (ABS),Y ZPG,X ABS,X ABS,)Y

CPX Compare memory and index X.IMM ABS ZPG

CPY Compare memory and index Y.IMM ABS ZPG

DEC Decrement memory by one. ABS ZPG ZPG,X ABS.,X

DEX Decrement index X by one IMP

DEY Decrement index Y by one IMP

EOR Exclusive or memory with IMM ABS ZPG (ABS,X)
accumulator (ABS),Y ZPG,X ABS,X ABS,Y

INC Increment memory by one ~ ABS ZPG ZPG,X ABS,X

INX Increment index X by one. IMP

INY Increment index Y by one. IMP

JMP Jump to new location ABS IDR

JSR Jump to new location saving ABS
return addres.

LDA Load accumulator with IMM ABS ZPG (ABS.X)
memory. (ABS),Y ZPG,X ABS,X ABS,Y

LDX Load index X with memory. IMM ABS ZPG ABS, X ABS,Y

LDY Load index Y with memory. IMM ABS ZPG ZPG,X ABS,X

LSR Shift one bit right (memory ABS ZPG ACC ZPG,X ABS.X

or accumulator.

132 The BBC Micro

Mnemonic

code Brief description Addressing modes

NOP No operation. IMP

ORA OR memory with IMM ABS ZPG (ABS,X)
accumulator. (ABS),Y ZPG,X ABS,X ABS,Y

PHA Push accumulator on stack. IMP

PHP Push processor status on stack.IMP

PLA Pull accumulator from stack. IMP

PLP Pull processor status from IMP
stack.

ROL Rotate one bit left (memory orABS ZPG ACC ZPG,X ABS.X
accumulator).

ROR Rotate one bit right (memory ABS ZPG ACC ZPG,X ABS,X
or accumulator).

RTI Return from interrupt. IMP

RTS Return from subroutine. IMP

SBC Subtract memory from IMM ABS ZPG (ABS,X)
accumulator with borrow. (ABS),Y ZPG,X ABS,.X ABS,Y

SEC Set carry flag. IMP

SED Set decimal mode. IMP

SEI Set interrupt disable status. IMP

STA Store accumulator in memory. ABS ZPG (ABS,X) (ABS),Y

7PG,X ABS,X ABS,Y

STX Store index X in memory. ABS ZPG ZPG,Y

STY Store index Y in memory. ABS ZPG ZPG,X

TAX Transfer accumulator to IMP
index X.

TAY Transfer accumulator to IMP
index Y.

TSX Transfer stack pointer to IMP
index X.

TXA Transfer index X to IMP
accumulator.

TXS Transfer index X to stack IMP
pointer.

TYA Transfer index Y to IMP

accumulator.

133

Key to addressing modes:

MM Immediate 7PG,X Zero page, X indexed
ABS Absolute ZPG,Y Zero page, Y indexed
PG Zero page ABS.X X indexed

ACC Accumulator ABS)Y X indexed

IMP Implied REL Relative

(ABS,X) Indexed indirect
(ABS),Y Indirect indexed

Forward references - two-pass assembly
If you try the following short program

10 DIM CODES% 10
20 P%=CODES%

30 [

40 LDA #0

50 BEQ EXIT

60 LDA #0

70 .EXIT LDA #0
80]

you will get an error message. The trouble doesn' lie in the program in
the sense that there is nothing wrong with the code. It may not be very
useful but it is correct. The trouble comes from the use of the label
EXIT in line 50 before it has been defined in line 70. This is exactly
the same problem as using a variable before it has been assigned in a
BASIC program. The solution, however, is a little more difficult. You
cannot move the definition of EXIT before line 50 for obvious reasons
(it labels the position of the LDA instruction in line 70!). When you
reach line 80 the label EXIT is defined. In fact, when you reach the
closing bracket any labels used in the program are defined. If, at this
point, the assembler is directed to have another go at converting the
program to machine code, there is no longer the problem about labels
not being defined. As labels are just standard BASIC variables they
retain their definitions until the end of the BASIC program that the
assembly language is part of. This use the assembler twice is known as
two-pass assembly. To make the assembler examine the same assembly
language twice all we need is a simple FOR loop. If you add:

15 FOR P=1 TO 2
and

85 NEXT P

134 The BBC Micro

then the assembly language will be assembled twice. Unfortunately,
this simple method doesn' twork because the program still gives an
error message and stops when it reaches the first use of EXIT. What we
need is some way of saying ' ignorerrors and don' bother to produce a
listing on the first pass through the program' After all, the first pass
through the program is simply collecting definitions of all the labels so
why worry about any errors? If they are real errors they will still be
there on the second pass. The assembler contains a command for just
this purpose - OPT. There are four possible OPTions which have the
following effects:

OPT 0 Ignore errors and don' t produce a listing.
OPT 1 Ignore errors but list the program.

OPT 2 Report errors but not listing.

OPT 3 Report errors and produce a listing.

On the first pass we clearly want OPT O and on the second pass we
want OPT 3. This is easy to arrange. Change the FOR loop in the
program to read:

15 FOR P=0 TO 3 STEP 3
and change line 30 to
30 [OPT P

This will cure the problem entirely! In general it is usual to use two-
pass assembly with a listing produced on the second pass but once you
have a working program there is no need to see the listing every time it
is run so change OPT 3 to OPT 2. There are plenty of real examples of
two-pass assembly in the next chapter.

Mixing BASIC and assembler

There is no problem with mixing BASIC and assembler with the BBC
Micro. In fact we have been doing it from the very beginning of this
chapter. However, in practice, mixing BASIC and assembler involves
passing information between BASIC programs and assembly language
programs and this requires a few more details.

There are two ways of calling an assembly language subroutine

135

from BASIC - the USR function and the CALL statement.

The USR function is the best one to use if the assembly language
program needs only a small number of values passed to it and needs to
return only a small number of answers. The way that information is
passed to the assembly language program is via the resident integer
variables. The command USR(address) will transfer control to the
machine code starting at the memory location at ' address'Notice that
' addresstan be a constant or a label. For example, USR(CODE%) is
allowed. Following the USR statement and before the machine code is
actually set running, the contents of A% are stored in the A register and
likewise the contents of X% and Y% are stored in the registers of the
same name. (In fact it is only the lower byte of these memory locations
that is stored in the registers but this makes no difference as long as
their contents are in the range 0 to 255). In addition, the C flag in the P
register is set to the least significant bit in the variable C%.

This is how information is passed to the machine code. How,
then, is it passed back? The answer is that, like all functions, USR
returns a single number as its result. This single number is made up of
the contents of four of the machine' segisters. USR returns a four byte
integer and the contents of the registers are stored one to a byte in the
order C, Y, X and A. The only problem in making any sense of this
result is to separate them out. This is most easily done by using AND.
If you want the contents of the A register as the result then, for
example, use:

ANS=USR(CODE%) AND &OOFF

which blanks out all the bytes of the answer except the least significant
which contains the A register' svalue. The only thing that hasn' been
mentioned is how to get back from assembler to BASIC. Both a USR
function or a CALL statement transfer control to the machine code
using a JSR instruction, so to return to BASIC simply use an RTS.

The CALL statement is similar to the USR function in that it
transfers control back to a machine code subroutine and transfers the
contents of the resident integer variables A%,X%,Y% and C% to the
contents of the resident integer variables or bits. However, instead of
returning a single numerical answer it can return any number of
answers of any type. It can also pass any variables to the machine code
subroutine. The way that this works is rather complicated in that it
involves the setting up of a parameter block. This is simply a list of

136 The BBC Micro

machine addresses where the variables concerned are stored.
Manipulation of BASIC variables from machine code needs a
knowledge of how they are stored (see Chapter Two) and it not really
within the scope of this chapter. The rules for using CALL with
parameters are given in the User Guide and will not be repeated here.
There is an easy way to return limited information from both
USR and CALL. The addresses at which the resident integer variables
are stored were given in Chapter Two. Using this information, you can
store any registers you like in these variables before returning to
BASIC. An example of this technique will be found in Chapter Eight.

Conclusion

This chapter has been able to provide only an introduction to assembly
language on the BBC Micro. After reading it you should have grasped
the fundamental ideas of the instruction set, addressing modes, the
registers and the BBC Micro' snternal assembler. When you sit down
to write your own assembly language programs, however, you will
require further detailed information and will need to use a reference
book about 6502 assembly language. It is worth repeating that the only
way to learn assembly language is to use it. A number of examples is
given in the next chapter along with more advanced ways of using the
BBC Micro' s assembler.

