
Chapter Five
The Sound Generator

One of the attractions of the BBC Micro as a machine to have fun with
is the presence of a sound generator chip with one noise channel and
three tone channels. Just this hardware alone would lead you to expect
to be able to produce three note chords and a range of simple sound
effects. However, the software that is built into the MOS and the
BASIC to handle it makes it a lot more powerful than the hardware
specification might lead you to believe. By the clever use of interrupts
and a system of queues the BBC Micro can make sounds and move
things around the screen, etc. at the same time! In addition, the
ENVELOPE command gives the BASIC programmer an amazingly
high degree of control over the nature of the sound produced. Once
again, the combination of good hardware enhanced by well thought out
software makes the BBC Micro remarkable!
In this chapter we will take a closer look at the sound generator and the
sound generating software inside the BBC Micro. Some of the
discussion will be about the sound generator hardware itself and this
will be of particular interest to the assembly language programmer.
However, the first part of the chapter deals with the software - the
SOUND and ENVELOPE commands - how they work and what they
can be used for.

An overview

Before becoming too deeply involved in the details of using the sound
generator it is worth taking an overview of the facilities it provides.
There are three tone generators that can be used to produce either
single notes or up to three-note chords. There is, in addition, a single
noise channel that can produce eight different effects. This fairly
simple hardware is controlled using two extensions to BASIC -
SOUND and ENVELOPE. The SOUND command is the only one of
the pair that actually causes anything to come out of the tiny speaker

just above the keyboard. Among other things, it controls the pitch,
amplitude and duration of the notes produced. The ENVELOPE
command is used to change the characteristics of the notes produced
by the SOUND command. Used without the ENVELOPE command,
SOUND produces a more or less pure tone with a given frequency,
which is fine for most applications, e.g. beeps during games or playing
simple tunes. However, if you want to try to produce more complicated
sounds then you have to use the ENVELOPE command to alter the
basic sound produced. There are two general reasons for wanting to
produce more complex noises - either you are interested in music and
making your BBC Micro sound like a piano, a flute, an organ, a guitar .
. . or you want to make especially convincing sound effects such as a
police siren, a gun shot, etc.

The study of the BBC Micro's sound capabilities, therefore, falls
into these two categories - music and sound effects.

There are three levels of difficulty involved in making music with
the BBC Micro;

1. Playing simple tunes.
2. Playing music with three-part harmony.
3. Synthesising the sound of other instruments.

The first two involve the use of only the SOUND command but the last
one also needs a mastery of the ENVELOPE command. To get very far
with any of the three you also need a reasonable understanding of
music but if you feel a little unsure about this then programming sound
is a very enjoyable way to learn.

The subject of sound effects is much more limited because all that
we are trying to do is to compile a catalogue of 'recipes' to make a few
standard noises. However, there are two ways of approaching sound
effects. You can either use the SOUND command to control the noise
channel or you can use the ENVELOPE command to define basic
sounds. With the latter you can produce quite remarkable effects but
there's still a great deal of scope for producing a wide variety of noises
using the SOUND command, and it can fill the requirements of most
games playing applications alone.

The SOUND command

77The Sound Generator

The SOUND command has the general form

SOUND C,A,P,D

where C controls which channel - 0 (the noise channel), 1, 2 or 3 -
produces the sound; A controls the volume and ranges from 0 (silence)
to -15 (loudest); P controls the pitch of the note and ranges from 0
(lowest pitch) to 255 (highest); and D controls the duration of the note
and ranges from 1 to 255 in twentieths of a second. (However, it is
worth noticing that if D is set to -1 then the note produced will
continue to sound until you take steps to stop it!) There are various
extra meanings associated with the parameters C and A. Positive
values of A in the range 1 to 4 cause the pitch and volume of the note
to be controlled by the parameters of an ENVELOPE command. The
channel parameter C is in fact quite complicated and is best thought of
as a four-digit hexadecimal number

&HSFN

where each of the letters stands for a digit that controls a different
aspect of sound production. What exactly each of them does is better
left until later except to say that N is the channel number as described
earlier.

Programming tunes is simply a matter of converting notes into
numbers. This is easy once you know that middle C corresponds to a
value of 53 and going up or down by a whole tone corresponds to
adding or subtracting 8. The only thing that you have to be careful to
remember is that there isn't always a whole tone between two notes.
For example, between the notes of C and D there is a whole tone but
between E and F there is only a semi-tone. The pattern of tones and
semi-tones from C to C an octave above is

C - D - E - F - G - A - B - C
 T T S T T T S

which is easy to remember because it's the same as the pattern of white
and black notes on the piano. Obviously, sharps and flats can be
produced by adding or subtracting 4. So you can produce the full
chromatic scale by

 10 FOR P=53 TO 97 STEP 4
 20 SOUND 1,-15,P,10
 30 NEXT P

78 The BBC Micro

This short program can also be used to demonstrate a unique feature of
the BBC Micro. If you add line 15:

 15 PRINT P

you will discover that the numbers are printed on the screen and even
though the program finishes, the sound keeps on coming. The reason
for this remarkable behaviour is that the BBC Micro maintains a queue
of sounds that are produced one after the other as soon as the current
sound is completed. The sound queue is processed independently of
any BASIC program that is running and each SOUND statement
simply adds a note to the end of the queue. This means that a BASIC
program isn't held up for the duration of each note. The only time that
this fails is when the queue becomes full and a SOUND statement tries
to add another note to it. The result is that the program then has to wait
until the end of the currently sounding note when the queue is reduced
by one and the SOUND statement can add its note. There is a separate
queue for each channel and each can hold up to four notes.

Programming tunes

To make a tune recognisable, not only must it have each note at the
right pitcn, each note must also last for the correct time, The normal
system of musical notation is based on repeatedly dividing a time
interval by two to obtain shorter notes so it is a good idea to include a
variable in all music programs that sets the length of the fundamental
unit of time. As an example of programming a simple tune consider the
first few notes of Hearts of Oak (see Figure 5.1). Translating each note
to its pitch and duration value for the SOUND statement gives the two
rows of numbers under the music in Figure 5.1. The best way to
convert these numbers to sound is to use a DATA statement thus:

 5 C=5
 10 DATA 69,1,89,1,89,.75,89,.25,89,1,105,.75,
 97,.25,89,1,85.75,77.25,69,.75,99,99
 20 READ P,D
 30 IF P=99 THEN STOP
 40 SOUND 1,-15,P,D*C
 50 SOUND 1,1,P,2
 60 GOTO 20

Line 50 has the effect of leaving short silences between each of

79The Sound Generator

the notes. Without this line all the notes run together. Try deleting it
and re-running the program to appreciate the effect - it is one that you'd
want to use to 'slur' notes. You can program any tunes that you have
music for in the same way.

Fig. 5.1. The first few notes of Hearts of Oak and their digital values for the
SOUND command. (Reprinted by permission of Computing Today.)

D= 4 2 1
1 41 2 1 8

A • FOLLOWING A NOTE INCREASES D BY 50%

F
D
B
G
E
_

E
C
A
F
D
C E A A A A C# B A G# F# E

P= 69 89 89 89 89 105 97 89 85 77 69

D= 1 1 3 4 1 4 3 41 1 4 1 3 4 1 4 3 2

G #
F #

C#

Three note chords

Most home computers with a sound generator could manage the simple
tune given in the last section. What is special about the BBC Micro is
that it is possible to generate three notes at the same time. To see how
this sounds, try the following:

 10 DIM N(13)
 20 DATA 53,61,69,73,81,89,88,101,109,117,
 121,129,137
 30 FOR I=1 TO 13
 40 READ N(I)
 50 NEXT I
 60 A$=INKEY$(0)
 70 IF A$="" THEN GOTO 60
 80 A=VAL(A$)
 90 SOUND 1,-15,N(A),20
 100 SOUND 2,-15,N(A+2),20
 110 SOUND 3,-15,N(A+4),20
 120 GOTO 60

If you RUN this program, by pressing each of the keys l to 8 you will
be able to hear the eight chords produced by adding a third and a fifth
to each of the notes of the scale of C. (A third is a musical interval
corresponding to playing a note two notes higher up the scale and a

80 The BBC Micro

fifth corresponds to playing a note four notes higher up.) This is the
simplest kind of chord, called a triad, and is very pleasing to the ear.
Typing in almost any combination of the number keys 1 to 9 will
produce something tuneful and it is easy to sit at your BBC Micro and
produce music. For example, if you want to hear a snatch of tune that
is almost recognisable try typing in the following sequence.

5 5 6 6 4 5 7 7 8 7 6 5

No prizes for guessing this one! The array N is used to hold the pitch
values for the notes of the scale of C and enough notes higher up to
form the triad on B. You can write a program to play a piece of music
with up to three-note chords using the same method as given for the
single melody in the last section.

There is one thing wrong with the previous program and that is
that each note of the chord starts at a slightly different time. In other
words, each of the SOUND commands starts off its note in the chord
as soon as it is reached. As they are executed one after another, the
note on channel 1 starts a little before that on channel 2, which starts a
little before that on channel 3. The solution to this problem would be to
tell the sound generator to wait for two other notes after the one
initiated by line 90 before making any noise at all. This is the purpose
of the S part of the channel parameter introduced in the section about
the form of the SOUND command. If you use a non-zero value for S,
the sound generator will wait for other notes before it starts playing.
The number of notes that it waits for is given by the value of S and the
SOUND commands that produce them must also use the same value of
S. For example, in the case of the triads played by the previous
program the SOUND commands would be replaced by

 90 SOUND &0201,-15,N(A),20
 100 SOUND &0202,-15,N(A),20
 110 SOUND &0203,-15,N(A+4),20

The first SOUND command has a value of S equal to 2 so the sound
generator waits for two more SOUND commands with S set to 2
before producing a chord made up of all three notes.

The other parts of the channel parameter are also concerned with
the timing of notes. The H part of the parameter can either be a 0 or a l.
If it is a 1, it adds a dummy note to the sound queue that allows any
previous notes to continue without being cut short by another note.

81The Sound Generator

This really only makes any sense when used with the ENVELOPE
command. The F part can be either 0 or 1 and if it is 1 it causes any
notes stored in the channel's queue to be removed or 'flushed' and the
note specified by the current SOUND command to be produced
immediately. This is useful for cutting short sound effects and starting
new ones, synchronised with external effects. For example, in a
graphics game you might want to stop the noise of a fire gun and
replace it by an explosion.

Simple sound effects

The only sound channel that we haven't discussed as yet is the noise
channel - Channel 0. The noise produced by this channel depends on
the value of the pitch parameter P in the SOUND command:

Value of P Noise

0 High frequency periodic.
1 Medium frequency periodic.
2 Low frequency periodic.
3 Periodic of a frequency set by channel 1.
4 High frequency 'white' noise.
5 Medium frequency 'white' noise.
6 Low frequency 'white' noise.
7 Noise of frequency set by channel 1.

The first three noises (P=0 to 2) are rasping noises that come in very
handy for 'losing' noises in games! Values of P between 4 and 6
produce hissing noises of various frequencies. White noise is a special
sort of hissing noise that is made up by mixing a note of every pitch in
much the same way that white light is made up by mixing light of
every colour.

There isn't very much that you can do to change the nature of the
sounds produced when P has a value of 0,1,2,4,5 or 6 apart from
altering the volume and duration. However, by changing only these
two parameters and combining noises you can still produce a useful
range of effects. For example, if you make any noise very short it
begins to sound percussive (like something being hit) and if you

82 The BBC Micro

combine a very short burst of white noise with a very short high
pitched tone you produce a noise like a metallic click. Try:

 10 SOUND 0,-15,4,1:SOUND 1,-15,200,1

Similarly, mixing two noise-like sounds produces new effects. So, for
example:

 10 SOUND 0,-15,4,1:SOUND 0,-15,3,1
 20 GOTO 10

produces a sound like a machine gun. Notice that as this example uses
the same channel twice, the two sounds follow each other to give a
rhythmical pulsing sound. Using this idea with two different pitches of
'white' noise produces a sound very like a helicopter:

 10 SOUND 0,-15,4,2
 20 SOUND 0,-15,5,1
 30 GOTO 10

Notice that one of the sounds has to be twice as long to give the
pulsating beat of a helicopter's rotor blades. You can go on
experimenting like this indefinitely! The range of sounds that can be
produced using channel 0 alone is so great that discovering new sounds
is easy. Putting a name to them is,quite a different problem!

The pitch values 3 and 7 are special because they produce noises
on channel 0 that are controlled by the pitch on channel 1. This opens
the door to sound effects that involve noises that change in pitch. For
example.

 10 SOUND 0,-15,7,55
 20 FOR I=200 TO 255
 30 SOUND 1,0,I,1
 40 NEXT I

produces a noise like a space ship taking off. The pitch of the noise on
channel 0 started by line 10 is continuously changed by line 30. Notice
that using a volume of 0 means that the notes produced by line 30 are
silent! Finally, try:

 10 SOUND 0,-15,7,55
 20 SOUND 1,0,200,1
 30 SOUND 1,0,255,1
 40 GOTO 20

which produces a sound like a car engine being started (or rather

83The Sound Generator

failing to start!)

The ENVELOPE command

The ENVELOPE command is a very sophisticated way of controlling
the output of the sound generator. Without it there would be no way of
producing really complicated sounds without resorting to assembly
language. Part of the trouble with under-standing the way an
ENVELOPE command produces a sound is that it is always used in
conjunction with a SOUND command and it is these two commands
together that determine the actual sound produced.

The ENVELOPE command is fairly difficult to use because it has
so many different parameters and because it is difficult to see how
these parameters are used to produce any desired sound. The User
Guide goes into some detail about what each of the parameters actually
does but it is still worth pointing out the general principle behind the
operation of the ENVELOPE command.

PN1 steps PN2 steps PN3 steps

Initial pitch value

PI1*PN1

Section 1 Section 2 Section 3

PI1*PN3
= Final
pitch value

PI2*PN2

Time

P
itc

h
va

lu
e

Fig 5.2. Pitch graph.

Using the notation defined on page 245 of the User Guide, the
format of an ENVELOPE command is:

84 The BBC Micro

ENVELOPE N, T,PII,PI2,PI3,PN1,PN2,PN3,
AA,AD,AS,AR,ALA,ALD

Broadly speaking, there are two types of parameter in an ENVELOPE
command - pitch parameters and amplitude parameters. The pitch
parameters control the variation in pitch (if any) that occur and the
amplitude parameters control any variation in volume that occurs. You
can think of these two sets of parameters as defining two graphs - a
graph of pitch with time and a graph of amplitude with time. The way
that the pitch parameters determine the pitch graph can be seen in
Figure 5.2. The three parts of the pitch graph are each controlled by
two parameters. PN1 to PN3 set the number of steps in each section
and PI1 to PI3 set the change in the pitch value for each step in each of
the sections. There are two pieces of information missing from this
graph. We also need to know how long each step lasts for and the
starting pitch value. The first requirement is met by the parameter T,
which specifies the duration of each step in hundredths of a second.
The initial pitch value is set by the pitch value in the SOUND
command that refers to the envelope. It is possible that the total time
specified for the pitch graph, i.e. (PN1+PN2+PN3)×step duration, is
shorter than the time that the note sounds for. In this case one of two
things can happen. If bit 7 of the T parameter is a one, then the pitch
value remains at the final value specified by the graph for the rest of
the sound. However, if bit 7 of T is zero then the pitch value returns to
the initial value and the whole pitch graph is used repeatedly until the
sound ends. Thus the parameter T conveys two pieces of information,
the duration of a step and whether the pitch graph should 'auto repeat'.

The way that the amplitude parameters specify the amplitude
graph can be seen in Figure 5.3. The amplitude graph is a little more
difficult to follow than the pitch graph because the time that each
section lasts isn't explicitly stated. The attack section comes to an end
when the amplitude reaches the specified attack level, ALA. During
this period the amplitude, which always starts at zero unless continuing
a previous note, increases or decreases by an amount given in AA at
each step. The attack section is followed by the decay section. During
this period the amplitude increases or decreases by an amount
specified by AS at each step until it reaches the final decay level
specified in ALD. Notice that the times of the attack and decay
sections are not specified directly. Instead, each section lasts until the

85The Sound Generator

amplitude reaches the specified final value. However, it is easy to work
out how long each lasts:

Attack period = ALA/AA × step duration

Decay period = ALD/AD × step duration

Duration set by sound command

ALA

AL

ALA - AS*S

ALA
AA
steps

AL
AD
steps

S
steps

R
steps

Attack
section

Decay Sustain Release
section section section

Notes S = D - ALA - ALD
AA AD

steps

R = (ALA - AS*S)
AR

R may be cut short by the start
of another note.

A
m

pl
itu

de

Fig 5.3. Amplitude graph.

The time that the third section - the sustain section - lasts isn't set by
the ENVELOPE command. The overall time that the note lasts is set
by the duration specified in the SOUND command that makes use ' of
the envelope. The sustain section lasts for however much time the note
has left to sound after the attack and decay sections. During this period
the amplitude decreases by an amount specified in AS at each step. The
final section of the graph - the release section - is the strangest of all in
that it happens after the 'official' end of the note as set by the duration

86 The BBC Micro

in the SOUND command. If the note isn't followed immediately by
another then the amplitude continues to fall by an amount specified in
AR at each step. The note finally terminates because the amplitude
reaches zero or because another note starts.

Experimenting with ENVELOPE

The above description of how the ENVELOPE command works is all
very well but how do you specify the values of the parameters to
produce a sound of your choice? There is no easy answer to this
question. Sounds have to be constructed by trial and error. To aid in
this process the following program allows the parameters of an
ENVELOPE command to be changed one at a time and the result
heard.

 10 MODE 4
 20 PROCINIT
 30 PROCPRINT
 40 PROCCHANGE
 50 GOTO 40
 60 STOP

 70 DEF PROCPRINT
 80 CLS
 90 @%=&00020205:PRINT TAB(10);
 "(T) Time unit=";T/100;" s"
 100 PRINT:PRINT TAB(10);"Frequency Section"
 110 PRINT:@%=10
 120 PRINT "(P1) Repeat =";R$
 130 PRINT "(P2) Change in pitch section 1
 =";PI1
 140 PRINT "(P3) Number of steps in section 1
 =";PN1
 150 PRINT "(P4) Change in pitch section 2
 =";PI2
 160 PRINT "(P5) Number of steps in section 2
 =";PN2
 170 PRINT "(P6) Change in pitch section 3
 =";PI3
 180 PRINT "(P7) Number of steps in section 3
 =";PN3
 190 PRINT "(P8) Initial Pitch ";P
 200 PRINT
 210 PRINT TAB(10);"Amplitude Section"
 220 PRINT
 230 PRINT "(A1) Attack rate of change = ";AA;
 "per step"
 240 PRINT "(A2) Attack target level = ";ALA
 250 PRINT "(A3) Decay rate of change = ";AD;
 "per step"
 260 PRINT "(A4) Decay target level = ";ALD

87The Sound Generator

 270 PRINT "(A5) Sustain rate of change=";AS;
 "per step"
 280 PRINT "(A6) Release rate of change=";AR
 290 PRINT
 300 PRINT "(D) Total Duration =";D/20;
 "s (=";D/20/T*100;" steps)"

 310 PRINT TAB(5,28);"Press S to hear sound"

 320 ENDPROC

 330 DEF PROCINIT
 340 T=1
 350 R$="OFF":R=1
 360 PI1=0
 370 PI2=0
 380 PI3=0
 390 PN1=0
 400 PN2=0
 410 PN3=0
 420 P=128
 430 AA=10
 440 AD=-10
 450 AS=-20
 460 AR=-10
 470 ALA=100
 480 ALD=10
 490 D=5
 500 ENDPROC

 510 DEF PROCSOUND
 520 ENVELOPE 1,T+128*R,PI1,PI2,PI3,PN1,PN2,
 PN3,AA,AD,AS,AR,ALA,ALD
 530 SOUND 1,1,P,D
 540 ENDPROC

 550 DEF PROCCHANGE
 560 A$=INKEY$(0)
 570 IF A$="" THEN GOTO 560
 580 IF A$="S" THEN PROCSOUND:GOTO 560
 590 IF A$="T" THEN PRINT TAB(2,30);
 "Time unit (in secs)= ";:INPUT T:T=T*100
 600 IF A$="D" THEN PRINT TAB(2,30);
 "Total Duration (in secs)= ";:INPUT D:D=D*20
 610 IF A$="P" THEN PROCPITCH:GOTO 560
 620 IF A$="A" THEN PROCAMP:GOTO 560
 630 PROCPRINT
 640 GOTO 560

 650 DEF PROCPITCH
 660 A$=INKEY$(0)
 670 IF A$<"0" OR A$>"9" THEN GOTO 660
 680 A=EVAL(A$)
 690 IF A=1 THEN GOTO 790
 700 PRINT TAB(2,30);"Pitch parameter ";A;
 " = ";:INPUT PP
 710 IF A=2 THEN PI1=PP
 720 IF A=3 THEN PN1=PP
 730 IF A=4 THEN PI2=PP
 740 IF A=5 THEN PN2=PP

88 The BBC Micro

 750 IF A=6 THEN PI3=PP
 760 IF A=7 THEN PN3=PP
 770 IF A=8 THEN P=PP
 780 GOTO 810
 790 PRINT TAB(2,30);"Repeat ON or OFF";:INPUT R$
 800 IF R$="ON" THEN R=0 ELSE R=1
 810 PROCPRINT
 820 ENDPROC

 830 DEF PROCAMP
 840 A$=INKEY$(0)
 850 IF A$<"0" OR A$>"9" THEN GOTO 840
 860 A=EVAL(A$)
 870 PRINT TAB(2,30);"Amplitude parameter ";A;" = ";:INPUT
PP
 880 IF A=1 THEN AA=PP
 890 IF A=2 THEN ALA=PP
 900 IF A=3 THEN AD=PP
 910 IF A=4 THEN ALD=PP
 920 IF A=5 THEN AS=PP
 930 IF A=6 THEN AR=PP
 940 PROCPRINT
 950 ENDPROC

The procedure PROCINIT sets initial values to all the
ENVELOPE and SOUND parameters. PROCPRINT prints a list of all
the parameters, their meaning and their current value. PROCCHANGE
can be used to change the value of any of the parameters by typing the
parameter's code (written in brackets on the left by PROCPRINT). To
hear the sound, simply press S. Using this program you can construct
and adjust sound effects very easily. Once you have the sound that you
want, write down the final values for all the parameters and use them
in ENVELOPE and SOUND commands in your own programs.

The sound generator hardware

The sound generator chip used in the BBC Micro is a SN 76489 bus-
controlled sound generator. This chip was designed to be used directly
with microprocessors. However, if you recall the discussion in Chapter
One of the way that VIA-A is used as a slow data bus to various
peripherals including the sound generator chip you will realise that it is
not interfaced directly to the 6502's data or address bus. The SN 76489
has eight data inputs, two control inputs and one control output. The
eight data lines are directly connected to the A side of VIA-A. Only
one of the control lines is actually used and this is the WE (write
enable) line. This is connected to output 0 of the 74LS259 addressable
latch. The WE line must be low (i.e. logic zero) before any data is

89The Sound Generator

transferred to the sound generator. Thus the sequence to write a single
byte of information to the chip is:

1. Set the A side of VIA-A to outputs and store the data in the data
register,

2. Set the WE line to logic zero, As WE is connected to output zero
of the addressable latch this is achieved by setting bits 0 to 3 of
the B side of VIA-A to zero, taking care not to alter the state of
any of the other bits in the B side data register.

3. After 32 clock pulses the data will have been read in to the chip
and the WE line must be returned to one. This is done by setting
bit 4 of the B side of VIA-A to one. After this, the sound
generator chip is ready for the next byte.

This procedure may seem complicated but it is very easy to write a
BASIC procedure to transfer bytes to the sound generator:

 1000 DEF PROCSOUND(BYTE%)
 1010 LOCAL VIA%,TEMP%
 1020 VIA%=&FE40
 1030 VIA%?3=&FF
 1040 VIA%?&F=BYTE%
 1050 TEMP%=?VIA%
 1060 ?VIA%=(TEMP% AND &F0)
 1090 ?VIA%=(TEMP% AND &F8)
 1100 ?VIA%=TEMP%
 1110 ENDPROC

Line 1020 sets VIA% to the address of VIA-A. Line 1030 sets VIA-A's
A side to outputs (see Chapter Six for more explanation of the VIA's
control registers). Line 1040 stores the data in the data register and
lines 1060 and 1 090 change the WE line to zero and then back to one.
Notice the use of line 1050 and the variable TEMP% to avoid altering
the state of any other of the outputs. The only part of the procedure that
is left to chance is the time between setting the WE line to zero and
then back again to one. As BASIC is slow compared to the 4 MHz
clock rate fed to the sound generator chip it is safe to assume that at
least 32 clock pulses occur between line 1060 and 1090. If you convert
this procedure into an assembly language routine then it would be
necessary to add a pause while the 32 clock pulses happened.

The only extra information necessary to control the sound
generator is the format of the data bytes. This is easier to understand
after looking a little more at how the sound generator chip works.

90 The BBC Micro

Each of the tone generators takes the form of a 10-bit counter
connected to a four-stage attenuator. The output of each attenuator is
summed together to produce the audio signal(see Figure 5.4). The

ControlVIA - A
PA0

PA7

Output 0

from latch

WE

Tone gen. Attenuators

Noise gen.

Audio
output

1

2

3

1

2

3

4

Fig. 5.4. Block diagram of SN76489AN sound generator

counter is decremented once every 16 clock pulses and whenever it
reaches zero its output to the attenuator changes state, i.e. if it was a
high it will go low and vice versa. To set the frequency of the output
signal the counter can be loaded with a 10-bit binary number which is
reloaded automatically each time the counter reaches zero. Thus, the
frequency of the square wave that is fed to the attenuator is given by:

f = N/32n

where N is the input clock frequency in Hz and n is the 10-bit binary
number. (On the BBC Micro, N=4 MHz.) Each stage of the four-stage
attenuator can be switched on and off individually. The stages give
2dB, 4dB, 8dB and 16dB attenuation and selecting all four stages turns
the output of the tone generator off. Obviously, specifying the
attenuation requires four bits, one for each stage. The noise generator
is also connected to the audio output via a four-stage attenuator. The

91The Sound Generator

noise generator itself takes the form of a shift register with a feedback
loop that can either be configured to produce a roughly periodic signal
or a sequence of pseudo-random bits. The pseudo-random sequence
when fed into the audio signal is a good approximation to white noise -
a sound that should contain all frequencies at the same time! In
addition the rate at which the shift register is clocked can be set to one
of three preset frequencies or the output of tone generator three can be
used.

The sound generator chip has eight internal registers which
control the three tone generators and their associated attenuators and
the noise generator and its attenuator. Each byte of information sent to
the sound generator chip contains a three-bit address used to select
which register the information is destined for. The only complication is
the frequency information for the tone generators. Obviously, to send a
10-bit number to a tone generator will need two bytes and hence two
calls to the procedure PROCSOUND given above. The first byte
contains the register address and four bits of the 10-bit number. The
Update tone register
MSB LSB

MSB LSB

MSB LSB

Update attenuator

Update noise source

First byte Second byte

1 Reg add.
R2 R1 R0 D3 D2 D1 D0

Data 0 X D9 D8 D7 D6 D5 D4
Data

1 R2 R1 R0 A3 A2 A1 A0
DataReg. add

1 R2 R1 R0 X FB Shift freq
NF1 NF0

(X = don't care)

Fig. 5.5. Data formats for sound generator.

second byte carries the remaining six bits of the number and is
distinguished from all the others by having its most significant bit set
to zero. The data formats used to write to each type of register can be
seen in Figure 5.5. The appropriate register address bits select the
register as follows:

92 The BBC Micro

R2 R1 R0 Register

0 0 0 Tone 1 frequency.
0 0 1 Tone 1 attenuation.
0 1 0 Tone 2 frequency.
0 1 1 Tone 2 attenuation.
1 0 0 Tone 3 frequency.
1 0 1 Tone 3 attenuation.
1 1 0 Noise control.
1 1 1 Noise attenuation.

If an attenuation register is selected then the format of the attenuation
bits is:

A3 A2 A1 A0 Attenuation

0 0 0 0 0dB
0 0 0 1 2dB
0 0 1 0 4dB
0 1 0 1 8dB
1 0 0 0 16dB
1 1 1 1 OFF

If the noise control register is selected, then, if FB=0, the result is
periodic noise and, if FB=1, the result is white noise. The two bits
NFO and NF1 control the frequency of the shift register's clock as
indicated below:

NF1 NF0 Shift rate

0 0 N/512
0 1 N/1024
1 0 N/2048
1 1 Tone generator 3's output

As an example, consider the problem of using PROCSOUND to
produce a white noise at full volume. This implies sending two bytes to
the sound generator - the first setting the noise attenuator to 0dB and
the second setting the noise control register to white noise. Thus the

93The Sound Generator

format of the first byte is 11110000. The first l is always present before
a register address, the next three bits form the register address and the
last four bits form the desired attenuation. Changing this to hex gives
&F0 as the first byte to be sent using PROCSOUND. By similar
reasoning the second byte works out to 11100100 or &E4. Thus the
final program is:

 10 PROCSOUND(&F0)
 20 PROCSOUND(&E4)
 30 STOP

(To which should be added PROCSOUND, of course.) As a final
example, consider the following program:

 10 PROCSOUND(&90)
 20 PROCSOUND(&80)
 30 PROCSOUND(RND AND &DF)
 40 GOTO 30

The first byte sets the attenuation on tone generator 1 to OdB. The
second byte sets the first four bits of the 10-bit number sent to tone
generator 1 to zero. The third byte sent by line 30 supplies the final six
bits of the number at random. (RND AND 8r.DF) generates a six-bit
number. Lines 30 and 40 form a loop that repeatedly sends new
random values for the six bits. It is a feature of the sound generator
chip that any values that begin with zero will update the six bits of the
last tone register selected. The result of this is that short random tones
are generated until you press ESCAPE.

This description of the sound generator hardware within the BBC
Micro should convince you how clever and convenient the SOUND
and ENVELOPE commands are. For example, the sound generator
chip has no facility for specifying the duration of a note. A note
continues to sound until software turns it off using the attenuator
setting. The BBC Micro uses the regular timer interrupt as an
opportunity to see if the duration of a note specified in a SOUND
command has been completed. If it has not the sound generator is left
alone; if it has then the tone is switched off. By using interrupts in this
way the BBC Micro can appear to be getting on with something else
while the sound generator produces sounds! The action of the
ENVELOPE command is also based on interrupts. Each envelope
specifies a time unit after which the sound generator is updated. For
example, if an envelope specifies a step size of one hundredth of a

94 The BBC Micro

second then the attenuation and frequency of the selected tone
generator is updated at each timer interrupt.

Conclusion

There is enough material concerning the BBC Micro's sound generator
and sound generating software for a book dealing with nothing else! In
this brief introduction there should be sufficient information to suggest
many interesting and enjoyable uses of this remarkable facility.
Whether you are interested in making music or programming
impressive sound effects you will find enough scope for
experimentation.

95The Sound Generator

