
The BBC Micro Machine Code
Porfolio

Other books for BBC Micro users

Introducing the BBC Micro
Ian Sinclair
0 00 383072 1

The BBC Micro: An Expert Guide
Mike James
0 246 12014 2

Discovering BBC Micro Machine Code
A. P. Stephenson
0 246 12160 2

Advanced Machine Code Techniques for the BBC Micro
A. P. Stephenson and D. J. Stephenson
0 246 12227 7

BBC Micro Graphics and Sound
Steve Money
0 246 12156 4

Practical Programs for the BBC Micro
Owen Bishop and Audrey Bishop
0 246 12405 9

21 Games for the BBC Micro
Mike James, S. M. Gee and Kay Ewbank
0 246 12103 3

Disk Systems for the BBC Micro
lan Sinclair
0 246 12325 7

Learning is Fun -
40 Educational Games for the BBC Micro
Vince Apps
0 246 12317 6

Advanced Programming for the BBC Micro
Mike James and S. M. Gee
0 00 383073 X

Take Off with the Electron and BBC Micro
Audrey Bishop and Owen Bishop
0 246 12356 7

Creative Animation and Graphics for the BBC Micro
Mike James
0 00 383007 1

Handbook of Procedures and Functions for the BBC Micro
Audrey Bishop and Owen Bishop
0 245 12415 6

The BBC
Micro

Machine
Code

Por t folio
Bruce Smith

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Granada Publishing 1984

Distributed in the United States of America
by Sheridan House, Inc.

Copyright © 1984 Bruce Smith

British Library Cataloguing in Publication Data
Smith, Bruce The BBC Micro machine code portfolio
I . Microcomputer–Programming
I. Title
00l.64'24 QA76.8.B35

ISBN 0-246-12643-4

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

DIGITALLY REMASTERED ON ACORN RISC OS COMPUTERS,
JANUARY 2007

Contents

Acknowledgements vii

1 Introduction 1

2 Function Key Reader 10

3 Program Information 20

4 Program Formatters 32

5 The Screen 41

6 Softly, Softly 53

7 Global Variable Search and Replace 61

8 Time for Bed 72

9 Error, Pack and Autorun 78

10 The Necessary Evil 88

11 Vision On 108

12 Assembling Data and Lists 131

13 Communication 165

14 Odd One Out 183

Index 210

Acknowledgements

Many thanks to Acorn User for allowing me to reproduce a couple of my
programs included in issues of the magazine, namely the function key
lister and the soft VDU character definition printer.

Thanks also to Harry Sinclair for providing two of the seventy-five
programs herein from his own library of procedures. His contributions
were Programs 11.16 and 13.9.

Finally, to Richard Miles of Granada, a thank you for seeding the idea
for the Portfolio in the first place.

Bruce Smith

Disks and cassettes of the programs in this book are available.
Apply for details to:

Dept AB
Collins Professional and Technical Books
8 Grafton Street
London W1X 3LA

Chapter One
Introduction

The BBC Micro Machine Code Portfolio is aimed at providing the
serious machine code programmer with an interesting and useful set of
assembly language routines. In all, a selection of 75 programs from my
own disk-based library are included, ranging from general purpose
utility aids to BASIC and machine code programming to specific
utilities that could form the basis of an interesting machine code
compiler. Each of the assembler routines is provided as a uniquely line
numbered procedure that can be *EXECuted back into a program any
time it is required. Although the programs are written making full use of
BASIC II's EQU functions, a solution is provided towards the end of this
chapter that will enable BASIC I users to implement these functions
with the absolute minimum of fuss.

The Portfolio is not aimed at the beginner. Many of the routines
assume a rudimentary knowledge of the manipulative techniques
involved. For this reason, the descriptive commentary of, say, a
multibyte addition program may be kept to the looping and data
manipulation means used rather than the principles of the actual addition
itself. This does not mean to say that the Portfolio is presented with
experts in mind - far from it. My own knowledge of machine code
programming was facilitated by continuous trial and error programming,
and at that time no books of this sort were available to help me along the
way. Enter the program and use it as described in the text; in using the
program and experimenting with it the real knowledge will be gained.

The contents of each chapter have been grouped together for ease of
use. Chapters 2 to 9 provide the programming utilities which can make
the programmer's life a merry one. These include function key definition
printers, program variable dumps, a global search and replace utility and
a program compacter.

Chapter 10 provides the mathematically biased routines. Four
multibyte routines handle addition, subtraction, multiplication and
division. The remaining seven routines provide square root solutions and
dual byte shifts.

Graphics are dealt with in Chapter 11, with just about every BASIC-
type graphics command covered. This includes a useful routine using the

interpreter-based *640 multiplication table to convert an X,Y screen
coordinate into an absolute screen address. The graphics routines are
particularly easy to group into a BASIC driven menu to provide a simple
graphics compiler (SGC).

All programs require data manipulation at some time and Chapter 2
supplies eleven procedures to sort, add, and delete items from a variety
of lists and arrays. Screen interaction is important in making programs
user-friendly, and Chapter 13 provides the routines to enable this to be
performed with ease. Finally, Chapter 14 has grouped a few
miscellaneous procedures together providing timing delays, counters and
interrupt polling.

The Appendix contains a number of the Portfolio programs in a new
form - as bar code listings. Using the MEP bar code reader these may be
read in directly from the pages of the book itself!

The correct procedure

As mentioned, each of the assembler routines are implemented as
PROCedures, with each having its own range of line numbers. The
procedure contains all the necessary coding to make the routine a stand-
alone one. Because a procedure must be called from a program, each
program contains several lines of BASIC to call first the PROC to
assemble the machine code it contains and then demonstrate the type of
application possible. This serves two functions; first, it assures you that
you have entered the program correctly and also shows you how it
works! If you flick through a few of the programs you'll notice that the
lines of the PROC are given high line numbers in steps of 1 while the
assemble and test routines use low line numbers. This is quite deliberate
as it keeps the two parts of the program clearly separated.

To build up a library of these programs to disk or tape, the
PROCedure can be save to tape. As the low line numbers are only, in
effect, test routines these can be deleted so that only the procedure
remains; and it is this that should be saved. I prefer to save my
PROCedures as ASCII files rather than programs as this allows them to
be added easily to other programs. The *SPOOL command is used to
perform this. Choosing a suitable filename, the syntax is simply:

*SPOOL NAME

If you are using the cassette filing system then you'll need to start the
cassette running. If you are using disks then these will already be
whirling around. So, now simply LIST the program. As the listing
appears onto the screen it will also be written to the current filing

2 The BBC Micro Machine Code Portfolio

system. When the program has finished listing enter

*SPOOL

once again to complete the transfer from memory to filing medium. You
will probably have noticed that the filename used in the *SPOOL
command was not enclosed within the quotes normally associated with a
SAVE. This is acceptable as the MOS does not expect them - though
using them will have no adverse effect.

Once all programs have been treated in this way they are ready to be
used in a greater scheme of things! One point - when building up a large
library of procedures it is very important to catalogue them, in a book,
on another disk or tape, or on the front of each tape or disk. This
catalogue should depict the program's name, line numbers and function
as this will be invaluable when it comes to using them at a later date.

Once a program has been saved as a spooled file it can be loaded back
into memory using the MOS-based *EXEC command. To load the
previously spooled file you use

*EXEC NAME

Again, the quotes around the filename are not obligatory. When the
operating system encounters the file it treats each line of it as though it
had been typed in at the keyboard and as the return character at the end
of the line is reached the line is entered into memory. This is the main
reason for using unique line numbers within procedures, as it enables
several procedures to be *EXECuted into memory without fear of
overwriting any program lines already there.

A demonstration

To show the flexibility of the programs within the Portfolio and their
use, study the following demonstration. Suppose a short graphics routine
is required that will select a MODE 4 screen and draw a dotted line from
the coordinate 200,200 to 900,600. First, the three desired files to
perform a MODE, MOVE and PLOT must be loaded in (these can be
found in Chapter 13). Depending on the filenames you have chosen, this
might take the form of executing the following commands one by one:

*EXEC mode
*EXEC move
*EXEC plot

3Introduction

The resultant listing forms part of Program 1.1. Next, a BASIC primer
needs to be written to call each PROC and pass the relevant information
through the arguments of the procedural call. First, PROCmode:

20 PROCmode (4,&A96)

The PROCedure is called passing the mode number, 4 into the variable
'action' and the assembly address, &A99, into 'addr'. Next, the graphics
cursor must be moved. The problem here is that we do not really want to
have to calculate the new value to be assigned to 'addr' for the code
assembly; instead we can simply use the program counter itself in the
form of P%. Thus line 30 becomes

30 PROCmove (200,200,P%)

The move coordinates are 200,200 and the PROCmove code is
assembled from P%. Finally PROCplot can be treated in the same way
to give

40 PROCplot (21,900,600,P%)

where 21 is the plot code for an absolute dotted line, 900,600 the final
coordinates and P% the assembly address. Now each PROCedure will
assemble its code as a subroutine call. To implement the machine code, a
short procedure must be written that will call each subroutine in turn,
thus:

JSR mode \ set up MODE
JSR move \ move graphics cursor
JMP plot \ draw line and return

Program 1.1 lists the final program and, by way of proof of the output,
Figure 1.1 lists the assembler listing produced when RUN.

When using this modular-cum-structured assembly approach, the use
of the OPT command must be borne in mind. If the OPT command is
omitted then the default value of 3 will be assumed by the assembler. In
the case of the above example this was not too much of a problem, but
there are occasions when it will be! For example, if assembly is
performed on a conditional basis then it may be desirable to suppress it
altogether using OPT 2 lest it corrupt some vital screen detail.
Alternatively, a FOR . . . NEXT combination may be imperative to
suppress errors during a first pass to assign forward branch labels. There
is no simple way around this. A universal solution would be to include a

4 The BBC Micro Machine Code Portfolio

FOR pass=0 TO 2 STEP 2

line in all procedures. I prefer to add the OPT commands as required, but
the choice is yours.

 10 REM ** * USING THE PORTFOLIO * * *
 20 PROCmode (4 ,&A00)
 30 PROCmove (200 ,200,P%)
 40 PROCplo t (21 ,900 ,600,P%)
 50 PROCassemble(P%)
 60 CALL tes t
 70 END
 80 :
 100 DEF PROCassemble (addr)
 110 P%=addr
 120 [
 130 . tes t
 140 JSR mode
 150 JSR move
 160 JMP p lo t
 170]
 180 ENDPROC
 200 :
6000 DEF PROCmode (ac t ion ,addr)
6001 P%=addr
6002 [
6003 .mode
6004 LDA #22
6005 JSR &FFEE
6006 LDA #ac t ion
6007 JSR &FFEE
6008 RTS
6009]
6010 ENDPROC
6180 DEF PROCmove(xpos ,ypos ,addr)
6181 P%=addr
6182 [
6183 .move
6184 LDA #25
6185 JSR &FFEE
6186 LDA #4
6187 JSR &FFEE
6188 LDA #xpos MOD 256
6189 JSR &FFEE
6190 LDA #xpos DIV 256
6191 JSR &FFEE
6192 LDA #ypos MOD 256
6193 JSR &FFEE
6194 LDA #ypos DIV 256
6195 JSR &FFEE
6196 RTS

5Introduction

6197]
6198 ENDPROC
6220 DEF PROCplo t (code,xcoord ,ycoord ,ad
dr)
6221 P%=addr
6222 [
6223 .p lo t
6224 LDA #25
6225 JSR &FFEE
6226 LDA #code
6227 JSR &FFEE
6228 LDA #xcoord MOD 256
6229 JSR &FFEE
6230 LDA #xcoord DIV 256
6231 JSR &FFEE
6232 LDA #ycoord MOD 256
6233 JSR &FFEE
6234 LDA #ycoord DIV256
6235 JSR &FFEE
6236 RTS
6237]
6238 ENDPROC

Program 1.1. Spooling procedures to form a graphics program

>RUN
0A00
0A00 .mode
0A00 A9 16 LDA #22
0A02 20 EE FF JSR &FFEE
0A05 A9 04 LDA #ac t ion
0A07 20 EE FF JSR &FFEE
0A0A 60 RTS
0A0B
0A0B .move
0A0B A9 19 LDA #25
0A0D 20 EE FF JSR &FFEE
0A10 A9 04 LDA #4
0A12 20 EE FF JSR &FFEE
0A15 A9 C8 LDA #xpos MOD 256
0A17 20 EE FF JSR &FFEE
0A1A A9 00 LDA #xpos DIV 256
0A1C 20 EE FF JSR &FFEE
0A1F A9 C8 LDA #ypos MOD 256
0A21 20 EE FF JSR &FFEE
0A24 A9 00 LDA #ypos DIV 256
0A26 20 EE FF JSR &FFEE
0A29 60 RTS
0A2A
0A2A .p lo t
0A2A A9 19 LDA #25
0A2C 20 EE FF JSR &FFEE
0A2F A9 15 LDA #code

6 The BBC Micro Machine Code Portfolio

0A31 20 EE FF JSR &FFEE
0A34 A9 84 LDA #xcoord MOD 256
0A36 20 EE FF JSR &FFEE
0A39 A9 03 LDA #xcoord DIV 256
0A3B 20 EE FF JSR &FFEE
0A3E A9 58 LDA #ycoord MOD 256
0A40 20 EE FF JSR &FFEE
0A43 A9 02 LDA #ycoord DIV256
0A45 20 EE FF JSR &FFEE
0A48 60 RTS
0A49
0A49 . tes t
0A49 20 00 0A JSR mode
0A4C 20 0B 0A JSR move
0A4F 4C 2A 0A JMP p lo t

Fig. 1.1. Assembler listing produced by Program 1.1.

The BASIC solution

BASIC II provides several enhancements over its predecessor BASIC I.
The most useful of these are the EQU functions which are implemented
as pseudo-opcodes. These functions and their operations are:

EQUB : assemble specified byte
EQUW : assemble specified word (2 bytes)
EQUD : assemble specified double word (4 bytes)
EQUS : assemble specified string as ASCII characters

Numerous programs in the Portfolio take advantage of these commands,
which would therefore make them inoperable on Beebs with BASIC I.
These commands can be simulated quite simply using the ability of the
FN command.

Program 1.2 lists the function definitions plus a suitable
demonstration. Taking each definition as it appears in the program,
FNequs (lines 500 to 530) uses the program counter variable P% as the
string argument for the ASCII character string passed into the function
via 'strings'. Before exit, P% is incremented by the length of the string.

FNequb (lines 550 to 580) takes the value 'byte%' and simply pokes it
into memory at P%. The program counter is incremented by one and
completes. FNequw (lines 600 to 640) is an extension and provides two
pokes at the position of P%. The high and low bytes are extracted from
'word' using the MOD and DIV operators. Finally, FNequd (lines 660 to
690) uses the word indirection operator to pling its four bytes into
memory.

7Introduction

 10 REM ** S IMULATING BASIC I I EQU **
 20 P%=&900
 30 [
 40 LDA #255
 50 OPT FNequs("TEST" ,3)
 60 LDX #0
 70 OPT FNequb(6 ,3)
 80 LDY #&33
 90 OPT FNequw(&FFFF,3)
100 STX &70
110 OPT FNequd(&12345678,3)
120 LDX #&AA
130 RTS
140]
150 END
160 :
500 DEF FNequs(s t r ing$,op t)
510 $P%=st r ing$
520 P%=P%+LEN(s t r ing$)
530 =opt
540 :
550 DEF FNequb(by te%,opt)
560 ?P%=byte%
570 P%=P%+1
580 =opt
590 :
600 DEF FNequw(word%,opt)
610 ?P%=word% MOD 256
620 P%?1=word% DIV 256
630 P%=P%+2
640 =opt
650 :
660 DEF FNequd(doub le%,opt)
670 !P%=doub le%
680 P%=P%+4
690 =opt

Program 1.2. Simulating the BASIC II EQU functions in BASIC I.

The assembler text (lines 40 to 130) shows how each procedure should
be called. The second parameter in each of the OPT FN calls (3
throughout) simply refers to the OPT selection and this should be seeded
as required by the program. To end with, Figure 1.2 shows the assembler
listing provided when running this program, while the hex dump in
Figure 1.3 shows that each FN has indeed performed the required task.

>RUN
0900
0900 A9 FF LDA #255
0906 OPT FNequs("TEST" ,3)

8 The BBC Micro Machine Code Portfolio

0906 A2 00 LDX #0
0909 OPT FNequb(6 ,3)
0909 A0 33 LDY #&33
090D OPT FNequw(&FFFF,3)
090D 86 70 STX &70
0913 OPT FNequd(&12345678,3)
0913 A2 AA LDX #&AA
0915 60 RTS

Fig. 1.2. Assembler listing produced by Program 1.2

900 A9
901 FF
902 54
903 45
904 53
905 54
906 A2
907 0
908 6
909 A0
90A 33
90B FF
90C FF
90D 86
90E 70
90F 78
910 56
911 34
912 12
913 A2
914 AA
915 60

Fig. 1.3. A hex dump of the code assembled by Program 1.2, showing that
the functions have worked.

9Introduction

Chapter Two
Function Key Reader

Virtually all the toolbox type of commercial ROM packages around
these days include a facility for printing any resident function key
definitions. Many, though, are incomplete and only deal with keys 0
through to 10, neglecting keys 11 to 15. Writing a custom-built routine
to handle printing definitions present in all sixteen function keys is a
relatively easy task providing a working knowledge of the function key
buffer is to hand. Two programs are presented here; the first is reprinted
from the April 1984 edition of Acorn User while the second is an
improved version. The two differ in that the former, Program 2.1, is not
capable of printing multistatement single key definitions whereas the
latter, Program 2.2, is. The advantage in using the former is the saving in
memory overheads as it requires only half the memory space required by
the latter.

Key Pointer Byte

0 &B00
1 &B01
2 &B02
3 &B03
4 &B04
5 &B05
6 &B06
7 &B07
8 &B08
9 &B09
10 &B0A
11 &B0B
12 &B0C
13 &B0D
14 &B0E
15 &B0F

Fig. 2.1. Function key associated bytes.

The function key buffer is located in page &B of block zero RAM
occupying the bytes &B99 to &BFF inclusive. With the exception of the
first seventeen bytes, all of this is used to hold the key definitions in
ASCII format; commands are not tokenised. These first seventeen bytes,
&B99 to &B 10, are the key pointer bytes and Figure 2.1 details the
bytes associated with the individual keys. Monitoring each of these
bytes as key definitions are entered, modified and deleted gives an
insight into their purpose. Figure 2.2 is a hex dump of the start of the
buffer after a hard break, either when you have switched on or the
CTRL-BREAK sequence is carried out. At this stage the buffer contains
nothing but &10 in every byte.

0B00 10 10 10 10 10 10 10 10
0B08 10 10 10 10 10 10 10 10
0B10 10 10 10 10 10 10 10 10
0B18 10 10 10 10 10 10 10 10
0B20 10 10 10 10 10 10 10 10
0B28 10 10 10 10 10 10 10 10
0B30 10 10 10 10 10 10 10 10
0038 10 10 10 10 10 10 10 10

Fig 2.2. Key buffer after switch-on.

Figure 2.3 depicts the same area of the key buffer after a short
definition has been entered into f0 thus:

*KEY 0 CLS |M

0B00 10 14 14 14 14 14 14 14
0B08 14 14 14 14 14 14 14 14
0B10 14 43 4C 53 0D 10 10 10 .CLS. . . .
0B18 10 10 10 10 10 10 10 10
0B20 10 10 10 10 10 10 10 10
0B28 10 10 10 10 10 10 10 10
0B30 10 10 10 10 10 10 10 10
0B38 10 10 10 10 10 10 10 10

Fig 2.3. Key buffer after executing *KEY0 CLS|M.

The dump shows that the ASCII string CLS is present but that the return
sequence '|M' has been replaced with the more conventional ASCII
return character &0D. It is also obvious from the dump that the key
pointer bytes have altered. The first byte at &B00 is, we know from
Figure 2.1, associated with *KEY9, and this byte still contains &10 or
16 decimal. Counting sixteen bytes from this location we arrive at the

11Function Key Reader

first character in the *KEY 0 definition. The remaining key pointer bytes
now all contain &14 or 20 decimal; counting 20 bytes from the *KEY 0
pointer brings us to the last byte; of the *KEY 0 definition, the carriage
return character at &B14.

Figure 2.4 shows the buffer after a further key has been defined, thus:

*KEY 9 AUTO|M

0B00 10 19 19 19 19 19 19 19
0B08 19 14 19 19 19 19 19 19
0B10 19 43 4C 53 0D 41 55 54 .CLS.AUT
0B18 4F 0D 10 10 10 10 10 10 O.
0B20 10 10 10 10 10 10 10 10
0B28 10 10 10 10 10 10 10 10
0B30 10 10 10 10 10 10 10 10
0B38 10 10 10 10 10 10 10 10

Fig. 2.4. Key buffer after executing *KEY9 AUTO|M.

The ASCII characters of the new definition are entered into the buffer
immediately after the last definition. The key pointer byte for *KEY 9 at
&B09 still contains & 14 while the *KEY9 byte remains at &10. All the
other key pointer bytes have been updated to hold &19 or 25 decimal.
Starting from &B00 and counting 25 bytes brings us to &B19, the last
byte defined in the buffer.

It is worth looking at what happens in the buffer if a function key is
redefined. Figure 2.5 shows the effect of placing a longer definition into
*KEY 0 than was already present, thus:

*KEY 0 VDU 7|M

What has happened now is that the previous *KEY0 definition has been
deleted, the remaining definition(s) shuffled up to the front of the buffer
and the new *KEY0 definition added onto the end. Each of the key
pointer bytes have been adjusted to point to the correct location.

0B00 15 1B 1B 1B 1B 1B 1B 1B
0B08 1B 10 1B 1B 1B 1B 1B 1B
0B10 1B 41 55 54 4F 0D 56 44 .AUTO.VD
0B18 55 20 37 0D 10 10 10 10 U 7
0B20 10 10 10 10 10 10 10 10
0B28 10 10 10 10 10 10 10 10
0B30 10 10 10 10 10 10 10 10
0B38 10 10 10 10 10 10 10 10

Fig. 2.5. Key buffer after redefining f0 as *KEY0 VDU 7|M

12 The BBC Micro Machine Code Portfolio

*KEY 9 was defined as AUTO and the pointer byte at &B09 now holds
&10 giving the offset from &B00 to the start of the definition. *KEY 0
which is now tacked onto the end of the *KEY 9 definition has had its
pointer offset reset to &15 or 21 decimal. The remaining pointer bytes
have also been adjusted to all give the correct offset to the last used byte
in the buffer, &1B or 27 decimal, which when added to &B00 gives
&B1B.

The key pointer area contains an extra 'general' byte at &B10 that we
have not yet mentioned. This byte is, in fact, the TOP pointer in the
buffer and always holds the byte offset into the buffer of the last used
location. The MOS uses this byte to test if a *KEY definition is present
when a function key has been defined. If the key pointer byte and the
TOP pointer byte are the same, the MOS inserts the definition directly
after the last definition (as pointed to by the pointer and TOP bytes). If,
on the other hand, the pointer byte and TOP byte are different, the MOS
knows that a definition is already present for the function key just
defined and that it must do some reshuffling of the bytes in the buffer.

Program 2.1

Program 2.1 is the first of the function key definition printer programs.
Called PROCkeys1, it occupies 63 lines between 1000 and 1063. All
processor registers are used and the object code occupies 126 bytes
anywhere in memory as specified by the variable 'addr'.

 10 REM ** * FUNCTION KEY PRINTER ** *
 20 REM * (C) Bruce Smi th & Acorn User*
 30 oswrch=&FFEE
 40 osasc i=&FFE3
 50 PROCkeys1 (&C00)
 60 *KEY0 CALL &C00|M
 70 END
 80 :
1000 DEF PROCkeys1(addr)
1001 LOCAL key , po in te r
1002 key=&B00
1003 po in te r=&B10
1004 FOR pass=0 TO 3 STEP3
1005 P%=addr
1006 [OPT pass
1007 LDX #0
1008 .ma in_ loop

13Function Key Reader

1009 TXA
1010 ASL A
1011 TAX
1012 JSR pr in t_word_key
1013 LDA number_ tab le ,X
1014 JSR oswrch
1015 LDA number_ tab le+1,X
1016 JSR oswrch
1017 TXA
1018 LSR A
1019 TAX
1020 LDA #&20
1021 JSR oswrch
1022 LDA key ,X
1023 CMP po in te r
1024 BNE over
1025 JMP update
1026 .over
1027 TAY
1028 INY
1029 .nex t_charac te r
1030 LDA key ,Y
1031 CMP #13
1032 BEQ car r iage_re tu rn
1033 JSR oswrch
1034 INY
1035 BNE nex t_charac te r
1036 .car r iage_re tu rn
1037 LDA #ASC" | "
1038 JSR oswrch
1039 LDA #ASC"M"
1040 JSR oswrch
1041 .update
1042 LDA#13
1043 JSR osasc i
1044 INX
1045 CPX#16
1046 BNEmain_ loop
1047 RTS
1048 .p r in t_word_key
1049 LDY#6
1050 .nex t_ le t te r
1051 LDA spe l l_key ,Y
1052 JSR oswrch
1053 DEY
1054 BNE nex t_ le t te r
1055 RTS
1056 .number_ tab le
1057 EQUS" 0 1 2 3 4 5 6 7 "
1058 EQUS"8 9101112131415"
1059 .spe l l_key
1060 EQUS " YEK* "
1061]

14 The BBC Micro Machine Code Portfolio

1062 NEXT
1063 ENDPROC

Program 2.1. PROCkeys1 - a simple function key lister

Converting the hard facts of Function Key Buffer operation into some
suitable machine code is relatively easy and the main areas of coding are
straightforward. From this we can see the main routines of the code
which, in everyday terms, are a follows:

(a) Print the string '*KEY' followed by the current key number
(therefore we need a key counter!).
(b) Obtain the key pointer and if the same as the TOP pointer move onto
the next function key.
(c) Else increment key pointer and print the definition string until the
RETURN character is found.
(d) Print |M and do a RETURN.
(e) Increment the function key counter.
(f) Repeat the whole process until all sixteen keys have been printed.

The X register is used to keep a count of the current key being
investigated so initially this is set to zero (line 1007). The register is also
used as an index into the key number look-up table (lines 1056 to 1058)
where each of the ASCII codes {key number occupies two bytes. To
ensure that the correct offset is located, the key count must be multiplied
by two using an arithmetic shift left (lines 1009 to 10ll). The word
'*KEY' and the current key number are printed using the subroutine calls
of lines 1012 to 1016.

A definition present test is performed in line 1022 and 1023 and a
branch over executed (line 1024) if one is found. A simple index, extract
and print routine is used to print the definition string (lines 1036 to
1040) before the key count in the index register is updated (lines 1041 to
1047).

Program 2.2

Program 2.2 is, in essence, the same as Program 2.1 but extra coding has
been incorporated into the listing to test for multiple definitions and
control codes. The procedure is called PROCkeys2 and assumes line
numbers 1070 to 1189 inclusive. The source code generates 246 bytes of
hex assembled at 'addr'.

15Function Key Reader

 10 REM *FUNCTION KEY DEFINIT IONS V2*
 20 PROCkeys2(&A00)
 30 *KEY0 CALL&A00|M
 40 END
 50 :
1070 DEF PROCkeys2 (addr)
1071 FOR pass=0 TO 3 STEP3
1072 P%=addr
1073 [
1074 OPT pass
1075 .en t ry
1076 LDA #0
1077 STA key
1078 STA o f fse t
1079 .ma in loop
1080 JSR &FFE7
1081 JSR pr in twordkey
1082 LDX key
1083 LDA number tab le ,X
1084 INX
1085 JSR &FFEE
1086 LDA number tab le ,X
1087 JSR &FFEE
1088 INX
1089 STX key
1090 LDA #32
1091 JSR &FFEE
1092 LDX o f fse t
1093 LDA &B00,X
1094 STA keys ta r t
1095 INC keys ta r t
1096 LDA &B10
1097 STA endpo in te r
1098 LDX #&F
1099 .keyend
1100 LDA &B00,X
1101 CMP endpo in te r
1102 BCS nex t t ry
1103 CMP keys ta r t
1104 BCC nex t t ry
1105 STA endpo in te r
1106 .nex t t ry
1107 DEX
1108 BPL keyend
1109 LDA endpo in te r
1110 CMP keys ta r t
1111 BCC nex tkey
1112 LDX keys ta r t
1113 .p r in tde f
1114 LDA &B00,X
1115 CMP #128
1116 BCC asc i i ch r
1117 PHA

16 The BBC Micro Machine Code Portfolio

1118 LDA #ASC" | "
1119 JSR &FFEE
1120 LDA #ASC" ! "
1121 JSR &FFEE
1122 PLA
1123 AND #&7F
1124 .asc i i ch r
1125 CMP #32
1126 BCS no tcon t ro l
1127 PHA
1128 LDA #ASC" | "
1129 JSR &FFEE
1130 PLA
1131 CLC
1132 ADC #64
1133 JSR &FFEE
1134 JMP nex tcharac te r
1135 .no tcon t ro l
1136 CMP #127
1137 BNE over
1138 LDA #ASC" | "
1139 JSR &FFEE
1140 LDA #ASC"?"
1141 JSR &FFEE
1142 JMP nex tcharac te r
1143 .over
1144 CMP#124
1145 BNE no t
1146 LDA #ASC" | "
1147 JSR &FFEE
1148 JSR &FFEE
1149 JMP nex tcharac te r
1150 .no t
1151 JSR &FFEE
1152 .nex tcharac te r
1153 CPX endpo in te r
1154 BEQ nex tkey
1155 INX
1156 JMP pr in tde f
1157 .nex tkey
1158 INC o f fse t
1159 LDA o f fse t
1160 CMP #16
1161 BNE no t f in ished
1162 JSR &FFE7
1163 RTS
1164 .no t f in ished
1165 JMP main loop
1166 .p r in twordkey
1167 LDY #6
1168 .nex t le t te r
1169 LDA spe l l key ,Y

17Function Key Reader

1170 JSR &FFEE
1171 DEY
1172 BNE nex t le t te r
1173 RTS
1174 .number tab le
1175 EQUS" 0 1 2 3 4 5 6 7 "
1176 EQUS"8 9101112131415"
1177 .spe l l key
1178 EQUS" YEK* "
1179 .key
1180 EQUB 0
1181 .keys ta r t
1182 EQUB 0
1183 .endpo in te r
1184 EQUB 0
1185 .o f fse t
1186 EQUB 0
1187]
1188 NEXT
1189 ENDPROC

Program 2.2. PROCkeys2 - the complete function key lister.

The definition printing routine (line 1113) begins by testing the
definition for a character code greater than 128 (entered previously with
the '|!' sequence). If one is present this sequence is printed; either way,
control progresses to line 1124 where a control character (less than &32)
is tested for. If a control character is found, the '|' character is printed
followed by the ASCII code of the control character representation,
obtained by adding &40 to it. Thus CTRL-L is printed as '|L' .

The end_pointer bytes are used to keep track of the length ofthe
entered key definition as previously calculated by the key_end coding
(lines 1099 to 1112), and the print_def loop continues until the entire
function key definition is printed. The main_loop is executed sixteen
times to print all the function key definitions. The final output of this
program is shown in Figure 2.6.

*KEY 0 CALL&A00|M
*KEY 1 CLS|M
*KEY 2 *GREPL|M
*KEY 3 L IST|M
*KEY 4 *ASSFORM|M
*KEY 5 * INSPECT
*KEY 6 *BASFORM|M
*KEY 7 FORN=&70 TO &7F:P.?N:N. |M
*KEY 8 *EXMON|M
*KEY 9 *BASIC|M
*KEY 10 OLD|MLIST|M

18 The BBC Micro Machine Code Portfolio

*KEY 11
*KEY 12
*KEY 13
*KEY 14
*KEY 15

Fig. 2.6. Typical output of Program 2.2.

Program fact sheets

Function key printers

Program 2.1

Proc title : PROCkeysl
Line numbers : 1000 to 1063
Variables required : addr
Length : 126 bytes
Zero page requirements : none
Registers changed : A, X, Y

Program 2.2

Procedure title : PROCkeys2
Line numbers : 1070 to 1189
Variables required : addr
Length : 246 bytes
Zero page requirements : none
Registers changed : A, X, Y

19Function Key Reader

Chapter Three
Program Information

Two programming utilities are provided in this chapter. Program 3.1 lists
the status of the various BASIC pseudo-variables in addition to
displaying the length of the program currently under development and
the number of bytes remaining available for use. To complement this,
Program 3.2 when called will list every variable currently defined within
a BASIC program (except the resident integer variables A% to Z%), and
this includes assembler labels. This is particularly useful in long
programs when it is difficult to keep a mental track of the variable
names you have already chosen and thus avoids the infuriating situation
that can occur when you use the same variable name twice and wonder
why the program will just not work as it should!

 10 REM ** * PROGRAM INFORMATION ** *
 20 h imem=HIMEM
 30 h imem=himem-&200
 40 HIMEM=himem
 50 PROCin fo (&70,HIMEM)
 60 *KEY0 CALL HIMEM|M
 70 END
 80 :
1200 DEF PROCin fo (cur ren t ,addr)
1201 FOR pass=0 TO 3 STEP3
1202 P%=addr
1203 [
1204 OPT pass
1205 LDX # t i t le MOD 256
1206 LDY # t i t le D IV 256
1207 JSR pr in t_message
1208 .do_page
1209 LDX #message1 MOD 256
1210 LDY #message1 DIV 256
1211 JSR pr in t_message
1212 LDA &18
1213 JSR hex_out
1214 LDA #0
1215 JSR hex_out
1216 JSR &FFE7
1217 .do_ top
1218 LDX #message4 MOD 256

1219 LDY #message4 DIV 256
1220 JSR pr in t_message
1221 LDA &13
1222 JSR hex_out
1223 LDA &12
1224 JSR hex_out
1225 JSR &FFE7
1226 .do_h imem
1227 JSR &FFE7
1228 LDX #message2 MOD 256
1229 LDY #message2 DIV 256
1230 JSR pr in t_message
1231 LDA &7
1232 JSR hex_out
1233 LDA &6
1234 JSR hex_out
1235 JSR &FFE7
1236 .do_ lomem
1237 LDX #message3 MOD 256
1238 LDY #message3 DIV 256
1239 JSR pr in t_message
1240 LDA &1
1241 JSR hex_out
1242 LDA &0
1243 JSR hex_out
1244 JSR &FFE7
1245 JSR &FFE7
1246 .do_s ize
1247 LDX #message5 MOD 256
1248 LDY #message5 DIV 256
1249 JSR pr in t_message
1250 SEC
1251 LDA &13
1252 SBC &18
1253 JSR hex_out
1254 LDA &12
1255 JSR hex_out
1256 LDX #by tes MOD 256
1257 LDY #by tes DIV 256
1258 JSR pr in t_message
1259 .do_nex t_ f ree
1260 LDX #message6 MOD 256
1261 LDY #message6 DIV 256
1262 JSR pr in t_message
1263 LDA &3
1264 JSR hex_out
1265 LDA &2
1266 JSR hex_out
1267 JSR &FFE7
1268 JSR &FFE7
1269 .memory_ le f t
1270 LDX #message7 MOD 256

21Program Information

1271 LDY #message7 DIV 256
1272 JSR pr in t_message
1273 SEC
1274 LDA &6
1275 SBC &2
1276 STA s to re
1277 LDA &7
1278 SBC &3
1279 JSR hex_out
1280 LDA s to re
1281 JSR hex_out
1282 LDX #by tes MOD256
1283 LDY #by tes DIV 256
1284 JSR pr in t_message
1285 RTS
1286 .p r in t_message
1287 STX cur ren t
1288 STY cur ren t+1
1289 LDY #0
1290 . loop
1291 LDA (cur ren t) ,Y
1292 BMI a l l_done
1293 JSR &FFE3
1294 INY
1295 BNE loop
1296 .a l l_done
1297 RTS
1298 .hex_out
1299 PHA
1300 LSR A
1301 LSR A
1302 LSR A
1303 LSR A
1304 SED
1305 CLC
1306 ADC #&90
1307 ADC #&40
1308 CLD
1309 JSR &FFEE
1310 PLA
1311 AND #15
1312 SED
1313 CLC
1314 ADC #&90
1315 ADC #&40
1316 CLD
1317 JMP &FFEE
1318 . t i t l e EQUB 12
1319 EQUS" Program"
1320 EQUS" In fo rmat ion Serv ice"
1321 EQUD &0D0D0D0D
1322 EQUB 255
1323 .message1

22 The BBC Micro Machine Code Portfolio

1324 EQUS"PAGE : &"
1325 EQUB 255
1326 .message2
1327 EQUS"HIMEM : &"
1328 EQUB 255
1329 .message3
1330 EQUS"LOMEM : &"
1331 EQUB 255
1332 .message4
1333 EQUS"TOP : &"
1334 EQUB 255
1335 .message5
1336 EQUS"Program S ize=&"
1337 EQUB 255
1338 .message6
1339 EQUS"Next F ree Loca t ion=&"
1340 EQUB 255
1341 .message7
1342 EQUS"Memory Remain ing=&"
1343 EQUB 255
1344 .by tes
1345 EQUS" by tes"
1346 EQUD &0D0D
1347 EQUB 255
1348 .s to re
1349 EQUB 0
1350]
1351 NEXT
1352 ENDPROC

Program 3.1. PROCinfo - provides details on system pseudo-variables.

Program status

PROCinfo is the assembler procedure to generate the source code for the
info program. I have given the name 'info' to the procedure simply
because it is more representative to the program's function. I would
suggest, however, that it is saved to tape or disk with the filename
STATUS. This is because INFO is generally recognised as a disk filing
system command and therefore the command *INFO could not be used
to load and run the program from disk whereas *STATUS would be
acceptable. When executed, the program prints the hexadecimal values
of the following:

PAGE
HIMEM
LOMEM

23Program Information

TOP
Program size
Next free location
Memory remaining

All the information required to calculate each of these values can be
found in zero page. Figure 3.1 lists the byte allocation for the first
couple of dozen locations.

The assembler is quite straightforward and is split into easy-to-handle
segments. The screen information title is first printed onto the screen
using the print_message subroutine (lines 1286 to 1297). The address of
the string to be printed is transferred to the subroutine via the index
registers. On return, the relevant data is extracted from zero page and
printed in hexadecimal format using a fairly standard hex to ASCII print
routine, 'hex_out' (lines 1298 and 1317).

&00 - &01 : LOMEM
&02 - &03 : VARTOP (top of variables)
&04 - &05 : Basic Stack Pointer
&06 - &07 : HIMEM
&08 - &09 : ERL
&0A : Text pointer index
&9B - &9C : Text pointer
&0D - &11 : RND seed
&12 - &13 : TOP
&16 - &17 : Error vector
&18 : PAGE byte

Fig. 3.1. Assignment of first 24 zero page bytes.

The values of PAGE, TOP, HIMEM, LOMEM and the next free location
can be obtained directly from the BASIC workspace. The other values
must be calculated, which generally involves a simple two-byte
subtraction. Program size is calculated by subtracting TOP from PAGE
and the amount of memory remaining by subtracting the top of variables
(termed VARTOP by me!) from HIMEM. The actual value of VARTOP
is not displayed by the program but could be simply added if so
required.

The 'hex_out' routine works four bits at a time. Taking the high nibble
first (as this is the first printed working left to right) and moving this into
the low nibble, the conversion is performed using decimal addition with
the decimal flag set with SED. The decimal addition of &90 converts the
binary values 0 to 9 into the range &90 to &99 with the carry flag set.

24 The BBC Micro Machine Code Portfolio

The addition of a further &40 converts these values to the range &30 to
&39 with the carry set, which corresponds to the correct ASCII codes
for the values 0 to 9. If the original nibble held &A to &F, adding &90
gives values in the range &0 to &5 (remember we are working with
decimal addition). Addition of a further &40 with the carry set gives a
final result in the range &41 to &46, the ASCII codes for A to F. The
low nibble is treated in the same manner to produce the second digit
before the decimal flag is cleared. Using STATUS is straightforward:
just perform a CALL to the assembly address. The BASIC primer
generates the 372 bytes of code above a lowered HIMEM and can be
called using function key 0. Figure 3.2 shows a typical output of the
machine code.

 P rogram In fo rmat ion Serv ice

PAGE : &1C00
TOP : &2559

HIMEM : &7A00
LOMEM : &2559

Program S ize=&0959 by tes

Next F ree Loca t ion=&26C7

Memory Remain ing=&5339 by tes

Fig. 3.2. Typical of output produced by Program 3.2.

Variable lister

PROCvars generates a useful variable lister that occupies a compact 103
bytes of memory, the cassette / RS 423 buffer in the demonstration. Five
bytes of workspace are required in addition, and two bytes of these must
be in zero page to facilitate indirect addressing.

 10 REM ** * L IST ALL PROGRAM VARIABLES

 20 PROCvars (&70,&71,&73,&A00)
 30 *KEY 1 CALL&A00|M
 40 END
 50 :
1400 DEF PROCvars (asc ,varpo in te r ,vars t r
ing ,addr)
1401 FOR pass=0 TO 3 STEP 3
1402 P%=addr

25Program Information

1403 [OPT pass
1404 .var iab les
1405 LDA #12
1406 JSR &FFEE
1407 LDA #14
1408 JSR &FFEE
1409 LDA #65
1410 STA asc
1411 LDA #&82
1412 STA varpo in te r
1413 LDA #4
1414 STA varpo in te r+1
1415 . loop
1416 LDY #1
1417 LDA (varpo in te r) ,Y
1418 BEQ update
1419 STA vars t r ing+1
1420 LDY #0
1421 LDA (varpo in te r) ,Y
1422 STA vars t r ing
1423 .nex t_var
1424 LDA #13
1425 JSR &FFE3
1426 LDA asc
1427 JSR &FFE3
1428 LDY #2
1429 .p r in t_ loop
1430 LDA (vars t r ing) ,Y
1431 BEQ end_pr in t
1432 JSR&FFE3
1433 INY
1434 JMP pr in t_ loop
1435 .end_pr in t
1436 LDY #1
1437 LDA (vars t r ing) ,Y
1438 BEQ update
1439 TAX
1440 DEY
1441 LDA (vars t r ing) ,Y
1442 STA vars t r ing
1443 STX vars t r ing+1
1444 JMP nex t_var
1445 .update
1446 LDA #2
1447 CLC
1448 ADC varpo in te r
1449 CMP #&F6
1450 BEQ f in ished
1451 STA varpo in te r
1452 INC asc
1453 JMP loop
1454 . f in ished
1455 LDA #13

26 The BBC Micro Machine Code Portfolio

1456 JSR &FFE3
1457 LDA #15
1458 JSR &FFE3
1459 RTS
1460]
1461 NEXT
1462 ENDPROC

Program 3.2. PROCvars - lists all program variables.

An understanding of variable storage is essential to follow the
program's operation. In addition to the resident integer variables there
are basically two other types of variable. One of these variables is
postfixed with a % sign to signify that it is also an integer, while a
variable without the % defines that it is a floating point variable. When a
program is run, the BASIC interpreter extracts each variable from the
program and places it in a fixed format above the main program and
below TOP. The format is as follows:

(a) A two-byte address which points to the next variable starting with the
same leiter. If none are present these bytes contain zero.
(b) The variable name in ASCII format excluding the first letter of the
variable, e.g. START is stored as TART.
(c) A zero byte to mark the end of the variable name.
(d) The binary representation of the value assigned to that variable. This
is stored in four bytes for an integer variable and five bytes for a floating
point variable.

We can see from item (a) that it is quite easy to move from one variable
to another, starting with the same letter, simply by extracting the address
pointer from each variable 'definition' in turn. However, we need to
know exactly where the first variable is located and Acorn have
provided, by design, a variable pointer table on Page 4 in block zero
RAM. Figure 3.3 details the locations holding the pointers for the
characters A to Z and a to z. If both locations for a particular character
contain zero then no variable beginning with that letter is present. 28
The BBC Micro Machine Code Portfolio

Character LSB address MSB address

A &482 &483
B &484 &485
C &486 &487
D &488 &489

27Program Information

E &48A &48B
F &48C &48D
G &48E &48F
H &490 &491
I &492 &493
J &494 &495
K &496 &497
L &498 &499
M &49A &49B
N &49C &49D
O &49E &49F
P &4A9 &4A1
Q &4A2 &4A3
R &4A4 &4A5
S &4A6 &4A7
T &4A8 &4A9
U &4AA &4AB
V &4AC &4AD
W &4AE &4AF
X &4B9 &4B1
Y &4B2 &4B3
Z &4B4 &4B5
a &4C2 &4C3
b &4C4 &4C5
c &4C6 &4C7
d &4C8 &4C9
e &4CA &4CB
f &4CC &4CD
g &4CE &4CF
h &4D0 &4D1
i &4D2 &4D3
j &4D4 &4D5
k &4D6 &4D7
1 &4D8 &4D9
m &4DA &4DB
n &4DC &4DD
o &4DE &4DF
p &4E9 &4E1
q &4E2 &4E3
r &4E4 &4E5
s &4E6 &4E7
t &4E8 &4E9
u &4EA &4EB
v &4EC &4ED

28 The BBC Micro Machine Code Portfolio

w &4EE &4EF
x &4F0 &4F1
y &4F2 &4F3
z &4F4 &4F5

Fig. 3.3. Variable start pointers

Program lowdown

Figure 3.4 flowcharts the program's operation. The first ten lines of
assembler clear the screen, place it into paged mode, save the ASCII
code for A in 'asc' and seed the variable pointer table start address,
&482, into a zero page vector.

The main program loop is entered at line 1415 and commences by
extracting the most significant byte from the pointer table. For a variable
to be present, this bye must be non-zero as no variables can be placed in
zero page. If it is zero a branch to update is performed, otherwise the
low byte address is accessed and seeded into a second vector, pointer.

Lines 1423 to 1427 print a carriage return followed by the first
character of the variable saved in asc. Using post-indexed indirect
addressing, the print_loop (lines 1429 to 1434) extract each variable
character from the program workspace, printing each until the zero
terminating byte is encountered.

The linking address from the beginning of the variable definition is
then sought. If this is zero a branch to update is performed, otherwise the
link address is placed into the pointer vector and the next variable name
printed.

29Program Information

START

IS
VARIABLE
PRESENT

?

END

YES

NO

NO

YES

NO

YES

PRINT < RETURN
AND

VARIABLE
NAME

IS
THERE

ANOTHER
?

ALL
DONE

?

PAGED MODE
ON AND

SEED VECTOR
AND COUNTER

GET START
ADDRESS OF

VARIABLE

GET ADDRESS
OF NEXT
VARIABLE

INCREMENT TO
NET VARIABLE

START

Fig. 3.4. PROCvars flowchart.

The update routine (lines 1445 to 1453) first increments the var_pointer
vector by two to move onto the next character associated bytes, and
increments the character value, asc, by one. The program terminates
when the last location in the variable pointer table is reached (line 1449
and 1450). Finally, Figure 3.5 illustrates a typical output ofthe program,
listing the variables in the program itself!

asc
addr
end_pr in t
f in ished
loop
nex t_var
pass

30 The BBC Micro Machine Code Portfolio

pr in t_ loop
update
varpo in te r
vars t r ing
var iab les

Fig. 3.5. Typical output produced by Program 3.3.

Program fact sheets

Program 3.1

Procedure title : PROCinfo
Line numbers : 1200 to 1352
Variables required : current,addr
Length : 372 bytes
Zero page requirements : 2 bytes (anywhere in memory)
Registers changed : A, X, Y

Program 3.2

Procedure title : PROCvars
Line numbers : 1400 to 1462
Length : 103 bytes
Zero page requirements : 5 bytes, four forming vectors
Registers changed : A, X, Y

31Program Information

Chapter Four
Program Formatters

BASIC's LISTO command allows a limited amount of control in
producing formatted listings, inserting spaces to indent loops and
structures as required. The two programs presented in this chapter
provide an extended formatting option for either BASIC or assembler
programs; indeed, the Assembler Formatter was used to produce the
clear listing within this book, inserting ten spaces between line number
and mnemonic but leaving labels un-indented and clearly separated from
the listing.

 10 REM * A Bas ic Format ted L is t ing *
 20 FOR loop=0 TO 100
 30 PRINT loop : NEXT loop
 40 INPUT "A number" N%
 50 IF N%=10 PRINT"Cor rec t " ELSE PRINT
"wrong"
 60 REPEAT : INPUT "Code" C$
 70 FOR wa i t=0 TO 1000 : NEXT wa i t
 80 UNTIL C$="END"

>LIST

 10 REM * A Bas ic Format ted L is t ing *
 20 FOR loop=0 TO 100
 30 PRINT loop
 : NEXT loop
 40 INPUT "A number" N%
 50 IF N%=10 PRINT"Cor rec t "
 ELSE PRINT "wrong"
 60 REPEAT
 : INPUT "Code" C$
 70 FOR wa i t=0 TO 1000
 : NEXT wa i t
 80 UNTIL C$="END"

Fig. 4.1. A BASIC listing with and without the BASIC formatter

The BASIC formatter splits multistatement lines by issuing a carriage
return each time it encounters a colon. It also splits IF. .
.THEN. . .ELSE structures in addition to indenting them along with

REPEAT . . . UNTIL and FOR. . .NEXT loops. Figure 4. 1 shows the
type of listing the BASIC Formatter is capable of. Now for the
programs!

The BASIC Formatter (Program 4.1)

The basic_format procedure assembles its machine code into Page 9
of block zero RAM. This area has a number of uses (in addition to
housing our machine code) and is more normally associated with
ENVELOPEs 5-16, the speech buffer, cassette and RS 423 buffer. The
routine has two entry points - &900 and &928 in this case - and function
keys I and 2 have been programmed to call these locations. These two
entries simply turn the formatter on and off respectively.

The 'on' entry point (line 1485) first prints the formatter on message
before storing the current value of LISTO, found at &1F, in a byte above
the program. Its maximum value of 7 is then inserted. The WRCHV
vector contents are extracted and saved and the WRCHV pointed to the
*format' entry point at line 1521. The 'off' entry, line 1506, simply
reverses these procedures. Line 1518 could be changed if required to
make the formatter clear the LISTO option each time it is switched off
by replacing it with

LDA #0

 10 REM ** * L ISTING FORMATTER ** *
 20 PROCbas ic_ fo rmat (&900)
 30 *KEY0 CALL &900|M
 40 *KEY1 CALL &928|M
 50 END
 60 :
1480 DEF PROCbas ic_ fo rmat (addr)
1481 in te rp re te r=&E0A4
1482 FOR pass=0 TO 3 STEP3
1483 P%=addr
1484 [OPT pass
1485 .on
1486 LDX #&00
1487 .nex t_charac te r
1488 LDA message,X
1489 JSR &FFE3
1490 INX
1491 CMP#13
1492 BNE nex t_charac te r
1493 LDA &1F

33Program Formatters

1494 STA l i s to
1495 LDX #&07
1496 STX &1F
1497 LDA &20E
1498 STA address
1499 LDA &20F
1500 STA address+1
1501 LDA # fo rmat MOD 256
1502 STA &20E
1503 LDA # fo rmat DIV 256
1504 STA &20F
1505 RTS
1506 .o f f
1507 LDX #&00
1508 .nex t_charac te r
1509 LDA message2,X
1510 JSR &FFE3
1511 INX
1512 CMP #13
1513 BNE nex t_charac te r
1514 LDA address
1515 STA &20E
1516 LDA address+1
1517 STA &20F
1518 LDA l i s to
1519 STA &1F
1520 RTS
1521 . fo rmat
1522 PHA
1523 CMP #ASC(" : ")
1524 BNE no_co lon
1525 JSR ou tpu t
1526 LDA #&00
1527 STA by te
1528 STA by te+1
1529 BEQ not_e lse
1530 .no_co lon
1531 LDA #&01
1532 CMP &1E
1533 BNE no t_same
1534 LDA #&00
1535 STA by te+2
1536 STA by te+3
1537 STA by te+4
1538 .no t_same
1539 CPY #&00
1540 BEQ car ry_on
1541 .no t_e lse
1542 PLA
1543 JMP in te rp re te r
1544 .car ry_on
1545 LDA &37
1546 CMP #&E7

34 The BBC Micro Machine Code Portfolio

1547 BNE no t_ i f
1548 INC by te+2
1549 .no t_ i f
1550 CMP #&8B
1551 BNE no t_e lse
1552 INC by te+3
1553 JSR ou tpu t
1554 JSR in te rp re te r
1555 JMP no t_e lse
1556 .ou tpu t
1557 LDA #&0A
1558 JSR in te rp re te r
1559 LDA #&0D
1560 JSR in te rp re te r
1561 CLC
1562 LDA &3B
1563 ADC &3C
1564 ADC by te+2
1565 TAX
1566 INX
1567 LDA #&20
1568 JSR in te rp re te r
1569 JSR in te rp re te r
1570 JSR in te rp re te r
1571 .more_spaces
1572 JSR in te rp re te r
1573 JSR in te rp re te r
1574 DEX
1575 BNE more_spaces
1576 RTS
1577 .message
1578 EQUS" Format te r on ! "
1579 EQUB 7
1580 EQUB 13
1581 .message2
1582 EQUS " Format te r o f f ! "
1583 EQUB 7
1584 EQUB 13
1585 .by te
1586 EQUS" "
1587 .address
1588 EQUS" "
1589 . l i s to EQUB 0
1590]
1591 NEXT pass
1592 ENDPROC

Program 4.1. PROCbasic_format - neatly formats a BASIC listing.

35Program Formatters

On entry into 'format' ,through the reset WRCHV the accumulator
contains the character to be written. This is tested to see if it is a colon.
If this test fails a branch to 'no_colon' is performed. Assuming a colon is
present, the 'output' routine at line 1556 is called to perform a line feed
and carriage return and a series of spaces printed. The output routine
uses a direct jump into the MOS to do the printing. This is necessary as
we have intercepted the normal WRCHV address.

Incidently, disassembling from this address, &E9A4, provides an
interesting insight into how the Beeb programs the CRTC to display
characters. As a machine code programmer you must be in possession of
a suitable disassembler, so have a look! But I digress, so back to the
program description. On return from the output call (line 1526) the 'byte'
locations, which act as counters, are cleared and a forced branch to
'not_else' is performed, which prints the character to the screen (line
1541).

Routing around the rest of the code takes place if any of the indenting
loop commands already mentioned are identified by intercepting the
count value held at &1E and used by LISTO. Special treatment of the IF
statement is required to ensure that any subsequent ELSE is generated
both on a new line and further indented - this is because ELSE is
normally ignored by LISTO. These two commands are identified by
their token values before the 'interpreter' call hands them over to the
BASIC detokenising routine for expansion. The codes and the entry
points are as follows:

IF (= &E7) entry at line 1546
ELSE (= &8B) entry at line 1550

The byte at &37 is used by the BASIC interpreter to hold the current
command token (line 1545).

The Assembler Formatter (Program 4.2)

This utility is probably the one I use most of all along with the global
search and replace utility presented in Chapter 7. I find that the neatest
way to present assembler listings is in the manner used throughout this
book; the mnemonics are indented and clearly and follow through. The
most obvious way to perform this task is simply to tap in spaces as
required at the keyboard as the program is entered, but this is boring,
time-consuming and extremely wasteful of memory which can be of a
premium in the hi-res graphics modes. Thus, Program 4.2 was
conceived.

36 The BBC Micro Machine Code Portfolio

 10 REM ** * ASSEMBLER FORMATTER ** *
 20 PROCass_format (&C00)
 30 *KEY0 CALL &C00|M
 40 *KEY1 CALL &C29|M
 50 END
 60 :
1600 DEF PROCass_format (addr)
1601 oswrch=?&20E+(?&20F*256)
1602 FOR pass=0 TO 3 STEP 3
1603 P%=addr
1604 [
1605 OPT pass
1606 .on
1607 LDX #0
1608 .nex tchr
1609 LDA message,X
1610 JSR &FFE3
1611 INX
1612 CMP #13
1613 BNE nex tchr
1614 LDA#0
1615 STA by te +1
1616 LDA &20E
1617 STA by te+2
1618 LDA &20F
1619 STA by te+3
1620 LDA #assembler MOD 256
1621 STA &20E
1622 LDA #assembler D IV 256
1623 STA &20F
1624 RTS
1625 .o f f
1626 LDX #0
1627 .nex tchr
1628 LDA message2,X
1629 JSR &FFE3
1630 INX
1631 CMP #13
1632 BNE nex tchr
1633 LDA by te+2
1634 STA &20E
1635 LDA by te+3
1636 STA &20F
1637 RTS
1638 .assembler
1639 STA by te
1640 PHP
1641 TXA
1642 PHA
1643 LDA by te+1
1644 BNE tes tshu t

37Program Formatters

1645 LDA by te
1646 CMP #ASC(" [")
1647 BNE re tu rn
1648 STA by te+1
1649 . re tu rn
1650 LDA by te
1651 JSR oswrch
1652 PLA
1653 TAX
1654 PLP
1655 LDA by te
1656 RTS
1657 . tes tshu t
1658 LDA by te
1659 CMP #93
1660 BNE tes tc r
1661 LDA #0
1662 STA by te+1
1663 BEQ re tu rn
1664 . tes tc r
1665 CMP #13
1666 BNE tes t labe l
1667 LDA #0
1668 STA by te+4
1669 BEQ re tu rn
1670 . tes t labe l
1671 CMP #ASC(" . ")
1672 BEQ s igna l
1673 CMP #ASC(" : ")
1674 BCC re tu rn
1675 LDA by te+4
1676 BNE re tu rn
1677 LDX #10
1678 LDA #32
1679 .spaces
1680 JSR oswrch
1681 DEX
1682 BNE spaces
1683 LDA #1
1684 .s igna l
1685 STA by te+4
1686 JMP re tu rn
1687 .message
1688 EQUS"Assembler "
1689 EQUS"Format te r On! "
1690 EQUW &0D07
1691 .message2
1692 EQUS"Assembler "
1693 EQUS"Format te r Of f ! "
1694 EQUW &0D07
1695 .by te
1696 EQUS" "
1697]

38 The BBC Micro Machine Code Portfolio

1698 NEXT
1699 ENDPROC

Program 4.3. PROCass_format - makes an assembler listing more readable.

Like its BASIC predecessor, the Assembler Formatter has two entry
points to turn the utility on and off. The 'on' entry point is at line 1606
which outputs the 'Assembler Formatter On' message before saving and
redirecting the contents of the WRCHV to the 'assembler' entry point at
line 1638. The 'off' routine, entered at line 1625 performs the reverse
operation.

When the formatter is on, all output produced by the Beeb is
channelled through the 'assembler' routine via WRCHV. After preserving
the program status (lines 1639 to 1642) the accumulator's contents are
tested to see if they contain the '[' code to indicate the start of assembler
(line 1646). If this test succeeds, the code is stored at 'byte+1' .As you
may have noticed, the code immediately before this tested this particular
location to see if it were non-zero which would denote an already open
assembler listing. This test routine would therefore be jumped over to
the test_shut routine (line 1657). This section of code first tests to see if
the close bracket, end of assembler mark, has been found in which case
the 'byte' values are reset and the normal oswrch output pursued.

If a carriage return is not present (lines 1664 to 1669) the 'test_label'
routine is invoked. If the label start character, a full-stop, is present the
fact is signalled in 'byte-4' and the routine completed; a delimiting colon
is treated in a similar manner. If neither of these characters is
encountered, the X register is loaded with the number of padding spaces
to be printed (line 1677). I chose to use ten though you can adjust this to
your own taste. The 'spaces' loop is entered and exited on completion of
printing the ten spaces. Mnemonics will subsequently be printed from
this ten spaces in position, while labels are printed as usual.

Program fact sheets

Program 4.1

Procedure title : PROCbasic_format
Variables required : addr
Line numbers : 1480 to 1592
Length : 227 bytes
Zero page requirements : none
Registers changed : none

39Program Formatters

Program 4.2

Procedure title : PROCass_format
Variables required : addr
Line numbers : 1600 to 1699
Length : 214 bytes
Zero page requirements : none

40 The BBC Micro Machine Code Portfolio

Program Formatters

Chapter Five
The Screen

If you are interested in the graphics capabilities of the BBC Micro there
will no doubt be occasions when you wish to save the graphics design
you have created so that it cal; be recalled at a later date. Programs 5.1
and 5.2 will facilitate this using the OSFILE call to perform these tasks
rapidly in machine code. The third program in this chapter, Program 5.3,
provides a printer screen dump program that will work on the Epson,
Star and compatible printers.

Save Screen Memory (Program 5.1)

The OSFILE routine is entered in the MOS at &FFDD. Like the
majority of the operating system calls it expects to be pointed in the
direction of a parameter block via an address held within the index
registers. The parameter block needs to contain all the information
required by the call to operate. Figure 5.1 details the OSFILE parameter
block.

XY+0 to XY+1 : Filename address. Filename must be terminated by
RETURN.

XY+2 to XY+5 : File load address, stored low byte first.
XY+6 to XY+9 : Run address of file, stored low byte first.
XY+10 to XY+13 : Data start address to be saved.
XY+14 to XY+17 : Data end address.

Fig. 5.1. The OSFILE parameter block.

The OSFILE call can perform up to eight different tasks depending
upon the value in the accumulator when the call is effected and these are
detailed in Figure 5.2. The call code we are interested in here is with the
accumulator holding 0.

41

0 : Save block of memory as detailed in parameter block.
1 : Write information in parameter block to catalogue entry.
2 : Write load address only for existing file.
3 : Write the run address only for an existing file.
4 : Write file attributes only for an existing file.
5 : Read a file's catalogue information to parameter block.
6 : Delete file named in parameter block.
255 : Load the file detailed in the parameter block.

Fig. 5.2. The OSFILE call codes.

Program 5.1 is relatively straightforward, but the amount of screen
memory to be saved will vary depending on the currently selected screen
mode. For example, MODEs 0, 1 and 2 utilise a full 20K from &3000
while MODEs 4 and 5 require 10K from &5800, and the amazingly
versatile MODE 7 needs just a meagre 1K from &7C00.

10 REM ** * SAVE SCREEN MEMORY ** *
20 PROCsavescreen (&C00)
30 inc=5
40 X=640 : Y=512
50 MODE 4
60 FOR loop=1 TO 50
70 MOVE X,Y
80 DRAW X+inc ,Y
90 DRAW X+inc ,Y+ inc
100 DRAW X,Y+ inc
110 DRAW X,Y
120 X=X-20 : Y=Y-20
130 inc= inc+40
140 NEXT
150 CALL &C00
160 END
170 :
1700 DEF PROCsavescreen (addr)
1701 FOR pass=0 TO 3 STEP 3
1702 P%=addr
1703 [
1704 OPT pass
1705 .save_screen
1706 LDA #135
1707 JSR &FFF4
1708 TYA
1709 BEQ dump1
1710 CMP#3
1711 BCC dump1
1712 CMP#4
1713 BEQ dump2

42 The BBC Micro Machine Code Portfolio

1714 CMP#5
1715 BEQ dump2
1716 CMP #7
1717 BEQ te le tex t
1718 .e r ro r
1719 LDY #0
1720 . loop
1721 LDA message,Y
1722 BEQ f in ished
1723 JSR &FFE3
1724 INY
1725 BNE loop
1726 . f in ished
1727 RTS
1728 .dump1
1729 LDA #&30
1730 STA paramblk+3
1731 STA paramblk+7
1732 STA paramblk+&0B
1733 LDA #0
1734 JMP os f i le
1735 .dump2
1736 LDA #&58
1737 STA paramblk+3
1738 STA paramblk+7
1739 STA paramblk+&0B
1740 LDA#0
1741 JMP os f i le
1742 . te le tex t
1743 LDA #&7C
1744 STA paramblk+3
1745 STA paramblk+7
1746 STA paramblk+&0B
1747 LDA #0
1748 JMP os f i le
1749 .os f i le
1750 LDX #paramblk MOD 256
1751 LDY #paramblk DIV 256
1752 JMP &FFDD
1753 . f i l ename
1754 EQUS"SSAVED"
1755 EQUB 13
1756 .paramblk
1757 EQUB f i lename MOD 256
1758 EQUB f i lename DIV 256
1759 EQUD&3000
1760 EQUD 0
1761 EQUD&3000
1762 EQUD&7FFF
1763 .message
1764 EQUB 7
1765 EQUS"Not a g raph ics Mode"

43The Screen

1766 EQUB 13
1767 EQUB 0
1768]
1769 NEXT
1770 ENDPROC

Program 5.1. PROCsavescreen - saves the screen memory to tape or disk

The program acts 'intelligently' in this respect by obtaining the current
screen mode from the Y register after an *FX135 call (lines 1706 to
1708). If, after the comparison of line 1710, the carry is clear a MODE
of less than 3 is indicated and the branch to 'dumpl' performed. If a mode
value of 4 or 5 is determined, 'dump2' is sought while a branch to
'teletext' is executed if 7 is returned. Note that the 'error' loop is entered
if the screen is in MODE 3 or MODE 6; this prints out the 'Not a
graphics Mode' message from line 1765 and the routine is exited.

Each of these sections of code simply seed the first page number of
the current graphics MODE into the correct places within the parameter
block. If the graphics MODE was MODE 1 then the branch to 'dump1'
would seed the value &30 into the three bytes at paramblk+3,
paramblk+7 and paramblk+&0B, prior to loading the accumulator with
0 and jumping to 'osfile' at line 1749. Here the address of 'paramblk' is
loaded into the index registers and a JMP to OSFILE at &FFDD
performed.

The parameter block is located at the top of the calling machine code,
lines 1756 to 1762 and the EQU functions used to prime the static
contents. The filename is stored at 'filename' (line 1753) and I have
chosen to use SSAVED, but this can be changed to suit your own needs,
of course.

The BASIC test routine simply draws a succession of squares in
MODE 4 before using the machine code to save the screen's contents.

The following program, Program 5.2, can be used to reload screen
memory.

Load Screen Memory (Program 5.2)

The load screen memory program is essentially the same program as its
saving counterpart. The main difference is that the accumulator is loaded
with 255 to indicate a load operation to the MOS.

 10 REM ** * LOAD SCREEN MEMORY ** *
 20 PROCloadscreen (&C00)
 30 MODE4
 40 CALL &C00

44 The BBC Micro Machine Code Portfolio

 50 END
 60 :
1800 DEF PROCloadscreen (addr)
1801 FOR pass=0 TO 3 STEP 3
1802 P%=addr
1803 [
1804 OPT pass
1805 . load_screen
1806 LDA #135
1807 JSR &FFF4
1808 TYA
1809 BEQ dump1
1810 CMP#3
1811 BCC dump1
1812 CMP#4
1813 BEQ dump2
1814 CMP#5
1815 BEQ dump2
1816 CMP #7
1817 BEQ te le tex t
1818 .e r ro r
1819 LDY #0
1820 . loop
1821 LDA message,Y
1822 BEQ f in ished
1823 JSR &FFE3
1824 INY
1825 BNE loop
1826 . f in ished
1827 RTS
1828 .dump1
1829 LDA #&30
1830 STA paramblk+3
1831 STA paramblk+7
1832 STA paramblk+&0B
1833 LDA #255
1834 JMP os f i le
1835 .dump2
1836 LDA #&58
1837 STA paramblk+3
1838 STA paramblk+7
1839 STA paramblk+&0B
1840 LDA #255
1841 JMP os f i le
1842 . te le tex t
1843 LDA #&7C
1844 STA paramblk+3
1845 STA paramblk+7
1846 STA paramblk+&0B
1847 LDA #255
1848 JMP os f i le
1849 .os f i le

45The Screen

1850 LDX #paramblk MOD 256
1851 LDY #paramblk DIV 256
1852 JMP &FFDD
1853 . f i l ename
1854 EQUS"SSAVED"
1855 EQUB 13
1856 .paramblk
1857 EQUB f i lename MOD 256
1858 EQUB f i lename DIV 256
1859 EQUD&3000
1860 EQUD 0
1861 EQUD&3000
1862 EQUD&7FFF
1863 .message
1864 EQUB 7
1865 EQUS"Not a g raph ics Mode"
1866 EQUB 13
1867 EQUB 0
1868]
1869 NEXT
1870 ENDPROC

Program 5.2. PROCloadscreen - loads a saved graphics screen back into
screen memory.

Printer Screen Dumper

If you own or have aspirations to own a printer then you will certainly
wish to be able to dump the contents of screen to the printer at some
time to obtain that all important hard copy, be it a graphics masterpiece
or just a copy of a some neatly formatted data. Program 5.3 was
designed specifically for use with 'bit-mapped' printers such as the
Epson and Star ranges. The program is a stand-alone version and
includes a short graphics program at the start which will be dumped
correctly if you have a suitable printer attached.

 10 REM ** * PRINTER SCREEN DUMPER ** *
 20 REM ** * EPSON FX and STAR ** *
 30 MODE 5
 40 X=640 : Y=512
 50 inc rement=5
 60 FOR loop=1 TO 50
 70 MOVE X,Y
 80 DRAW X+increment ,Y
 90 DRAW X+increment ,Y+ increment
 100 DRAW X,Y+ increment
 110 DRAW X,Y
 120 X=X-20 : Y=Y-20
 130 inc rement= inc rement+40

46 The BBC Micro Machine Code Portfolio

 140 NEXT
 150 PROCscreen_dump(&70,&71,&72,&73,&7
 5 ,&76,&2E00)
 160 CALL screen_dump
 170 END
 180 :
1900 DEFPROCscreen_dump(x lo ,xh i ,y lo ,yh i
,by te ,b i t s ,addr)
1901 FOR pass=0 TO 2 STEP 2
1902 P%=addr
1903 [OPT pass
1904 .sc reen_dump
1905 LDA #2
1906 JSR &FFEE
1907 LDA #1
1908 JSR &FFEE
1909 LDA #27
1910 JSR &FFEE
1911 LDA #1
1912 JSR &FFEE
1913 LDA #65
1914 JSR &FFEE
1915 LDA #1
1916 JSR &FFEE
1917 LDA #8
1918 JSR &FFEE
1919 LDA #1
1920 JSR &FFEE
1921 LDA #10
1922 JSR &FFEE
1923 LDA# &FF
1924 STA y lo
1925 LDA# &3
1926 STA yh i
1927 .nex t_ row
1928 LDA #&0
1929 STA x lo
1930 LDA# &0
1931 STA xh i
1932 JSR due l_dens i ty
1933 LDA# &1
1934 JSR &FFEE
1935 LDA# &D
1936 JSR &FFEE
1937 SEC
1938 LDA y lo
1939 SBC# 32
1940 STA y lo
1941 BCS check_ f in ish
1942 DEC yh i
1943 .check_ f in ish
1944 LDA yh i

47The Screen

1945 CMP# &FF
1946 BNE nex t_ row
1947 LDA y lo
1948 CMP# &FF
1949 BNE nex t_ row
1950 LDA #1
1951 JSR &FFEE
1952 LDA #12
1953 JSR &FFEE
1954 LDA #1
1955 JSR &FFEE
1956 LDA #27
1957 JSR &FFEE
1958 LDA #1
1959 JSR &FFEE
1960 LDA #64
1961 JSR &FFEE
1962 LDA #3
1963 JSR &FFEE
1964 RTS
1965 .due l_dens i ty
1966 LDA# &1
1967 JSR &FFEE
1968 LDA #27
1969 JSR &FFEE
1970 LDA #1
1971 JSR &FFEE
1972 LDA #76
1973 JSR &FFEE
1974 LDA #1
1975 JSR &FFEE
1977 JSR &FFEE
1978 LDA #1
1979 JSR &FFEE
1980 LDA #2
1981 JSR &FFEE
1982 .nex t_by te
1983 LDA #0
1984 STA b i ts
1985 LDA #128
1986 STA by te
1987 . read_p ixe l
1988 LDA #9
1989 LDX #x lo
1990 LDY #0
1991 JSR &FFF1
1992 LDA x lo+4
1993 AND #&FF
1994 BEQ s tep4
1995 LDA by te
1996 ORA b i ts
1997 STA b i ts
1998 .s tep4

48 The BBC Micro Machine Code Portfolio

1999 SEC
2000 LDA y lo
2001 SBC #4
2002 STA y lo
2003 BCS ro ta te
2004 DEC yh i
2005 . ro ta te
2006 CLC
2007 ROR by te
2008 BCC read_p ixe l
2009 .p r in t_pa t te rn
2010 LDA #1
2011 JSR &FFEE
2012 LDA b i ts
2013 JSR &FFEE
2014 CLC
2015 LDA y lo
2016 ADC #32
2017 STA y lo
2018 BCC over
2019 INC yh i
2020 .over
2021 CLC
2022 LDA x lo
2023 ADC #2
2024 STA x lo
2025 BCC leap_f rog
2026 INC xh i
2027 . leap_f rog
2028 LDA xh i
2029 CMP #5
2030 BNE do_aga in
2031 RTS
2032 .do_aga in
2033 JMP nex t_by te
2034]
2035 NEXT pass
2036 ENDPROC

Program 5.3. PROCscreen_dump - outputs the graphics screen to a
connected printer.

The machine code of the program assembles just below the memory
required by either of the 20K screen modes. It would be a good idea to
obtain a second source coding that will sit just below the MODE 4 and 5
memory, thus making the 'unused' screen memory available for use by
the program. A suitable value for 'addr' in this instance would be &5600.

The major part of any graphics-printer dump program is spent
preparing the pixel - in other words, converting it from its screen form
into a form that the printer can handle and translate into selecting which

49The Screen

of its eight dot-matrix pins it fires. (Yes, I know there are nine but we
only use eight!) The steps required to perform this conversion process
are summarised below:

(a) Read a pixel off the screen.
(b) Adjust the byte using suitable rotates.
(c) Check a counter to see if byte is complete.
(d) Adjust the value of Y and X as needed to allow for resolution
changes.
(e) Send the byte to the printer in the form of a VDU1 command.

Looking at the assembler program shows that the first section of code
from line 1904 to 1926 is responsible for issuing a series of VDU1 codes
to the printer using OSWRCH. In BASIC terms the following is
performed:

VDU 2, 1, 27, 1, 65, 1, 8, 1, 10

The VDU 2 is used to enable the printer while the intermediate codes set
the line spacing to 8/72 inches. The final VDU 10 performs a line feed.
Much of the code comprises these VDU 1 codes and they could be more
efficiently incorporated into a look-up table if required. I have
persevered with the long-winded method mainly for reasons of clarity.
Lines 1922 to 1932 initialise the variables ylo, yhi and xlo, xhi. The pair
ylo,yhi are loaded with &3FF which in decimal is 1023 and shows itself
to be the maximum on-screen value of the Y axis. The xlo,xhi
combination are set to zero. The 'dual_density' subroutine is responsible
for putting the printer in graphics geaf and performs a BASIC VDU 1,
27, 1, 76, 1, 128, 2 selecting 640 dots per line in bit image mode.

Before printing, the current screen pixel details must be read from the
screen. This is readily performed with OSWORD and the accumulator
holding 9 (lines 1987 to 1992). The parameter block requires five bytes
set out as follows using the declared variables:

xlo - low byte X coordinate
xhi - high byte X coordinate
ylo - low byte Y coordinate
yhi - high byte Y coordinate
xlo+4 - result after OSWORD call

As can be seen, we have neatly used the program variables to form the
parameter block of the call, a saving in coding and space when it works!

The byte to be sent to the printer is formed by rotating it through the
carry flag position into the accumulator (lines 2003 to 2013) and

50 The BBC Micro Machine Code Portfolio

printing it via OSWRCH. The rest of the general housekeeping is
performed in lines up to 2033 and the whole process repeated until the
'check_finish' (line 1943) routine indicates a completed picture. The
final succession of VDU 1 calls issue a form feed, place the printer into
its more standard printing mode and disenable it. Figure 5.3 shows a
dump produced by the program on my own printer.

One final point: always ensure that the graphics origin is set to its
normal default position prior to calling the dump. This is best done by
inserting a VDU 29,0;0; at the onset of the program. As it stands, the
program looks at every screen coordinate; if any of these have been
moved off the screen due to a redefined graphics origin then the pixel
read routine will return -1 or &FF, which will cause awful black bars
and lines to be printed as part of your dump in the offscreen areas.

51

Fig. 5.3. Screen dump produced by Program 5.3.

The Screen

Program fact sheets

Program 5.1

Procedure title : PROCsavescreen
Variables required : addr
Line numbers : 1700 to 1770
Length : 140 bytes
Zero page requirements : none
Registers changed : A, X, Y

Program 5.2

Procedure title : PROCloadscreen
Variables required : addr
Line numbers : 1800 to 1870
Zero page requirements : none
Registers changed : A,X,Y

Program 5.3

Procedure title : PROCscreen_dump
Variables required : xlo, xhi, ylo, yhi, byte, bits, addr
Line numbers : 1900 to 2036
Program length : 260 bytes
Zero page requirements : 7 bytes
Registers changed : A,X,Y

52 The BBC Micro Machine Code Portfolio

Chapter Six
Softly, Softly

The Beeb allows the user to define characters using the VDU 23
command. This is followed by eight byte-sized numbers which represent
the bit patterns of the eight bytes that form the character.

* * * SOFT CHR CHARACTER DEFINIT IONS ** *
224: 32 ,165 , 12 ,169 ,224,133,114,169,
225: 12 ,133 ,113,169, 0 ,133 ,112,133,
226: 115 ,208, 12 ,165 ,116,208, 12 ,165 ,
227: 115 ,208, 12 ,165 ,116,208, 8 , 32 ,
228 : 227 , 12 ,208 ,240, 76 ,239 , 12 ,165 ,
229: 114 , 32 , 89 , 12 ,169 , 58 , 32 ,238 ,
230: 255 ,169, 32 , 32 ,238 ,255,160, 0 ,
231 : 117 ,112, 32 , 89 , 12 ,169 , 44 , 32 ,
232 : 238 ,255,200,192, 8 ,208 ,241, 32 ,
233 : 227 , 12 ,169 , 0 ,133 ,115,133,116,
234: 168 ,169, 13 , 32 ,227 ,255, 76 , 20 ,
235 : 12 ,162 , 0 ,134 ,117,201,100,144,
236: 8 ,233 ,100,232,134,117, 76 , 93 ,
237 : 12 , 32 ,129 , 12 ,162 , 0 ,201 , 10 ,
238 : 144 , 6 ,233 , 10 ,232 , 76 ,110 , 12 ,
239 : 32 ,129 , 12 , 24 ,105 , 48 , 76 ,238 ,
240: 255 , 72 ,138 ,105, 48 ,201 , 48 ,208 ,
241: 6 ,166 ,117,208, 2 ,169 , 32 , 32 ,
242 : 238 ,255,104, 96 ,160 , 7 ,177 ,112,
243: 24 ,101 ,115,133,115,144, 2 ,230 ,
244: 116 ,136, 16 ,242 , 96 ,162 , 0 ,189 ,
245: 180 , 12 , 48 , 7 , 32 ,238 ,255,232,
246: 76 ,167 , 12 , 96 , 10 , 13 , 10 , 13 ,
247 : 42 , 42 , 42 , 32 , 83 , 79 , 70 , 84 ,
248 : 32 , 67 , 72 , 82 , 32 , 67 , 72 , 65 ,
249 : 82 , 65 , 67 , 84 , 69 , 82 , 32 , 68 ,
250 : 69 , 70 , 73 , 78 , 73 , 84 , 73 , 79 ,
251 : 78 , 83 , 32 , 42 , 42 , 42 , 10 , 13 ,
252 : 10 , 13 ,255 , 24 ,165 ,112,105, 8 ,
253 : 133 ,112,230,114,240, 1 , 96 , 32 ,
254 : 231 ,255,104,104, 96 , 0 , 0 , 0 ,

Fig. 6.1. A typical output produced by PROCvduchrs.

53

Primarily these definable characters, 224 to 255, are used to create new
characters whether they be fancy stylised alphanumeric characters or,
more commonly, games characters. Program 6.1 provides a routine that
will display the full definitions of any of these characters that have been
defined. Figure 6.1 shows the output produced by the program.

User-definable characters are stored in the soft character definition
area on page &C between &C00 to &CFF. Machine code programmers
will know this area better as an assembly area for their code! As
mentioned, eight bytes are associated with each character; thus,
character VDU224 is allocated the eight bytes &C90 to &C07 inclusive;
VDU 255 the bytes &C08 to &C0F, and on up to VDU 255 which is
allocated the bytes &CF8 to &CFF. The first byte in each definition (the
top-most one) is placed in the first byte of the corresponding memory
location and so on - as Figure 6.2 illustrates.

&C00 = &18
&C01 = &3C
&C02 = &5A
&C03 = &66
&C04 = &3C
&C05 = &18
&C06 = &24
&C07 = &42

Fig. 6.2. The byte definition storage of user-defined character 224.

As Figure 6.1 showed, the program does not print out the contents of
every character - merely the characters that are or seem to be defined.
This is quite simple to determine. On a power-up or reset, the MOS
clears this area of memory with zero, so all the program needs to do is to
add up the bytes corresponding to each VDU character. If the result is
zero, no definition is present and the next character is sought. If, on the
other hand, the result is non-zero then a definition is assumed and the
contents printed. I say 'assumed' because it might not be a proper
definition - it may, of course, be machine code! Also, the last 5
characters in the buffer, VDU 250 to VDU 255, seem to be susceptible
to having garbage placed into them by the MOS.

Figure 6.3 flowcharts the program's operation. The definition test just
discussed is performed by the 'test_for_definition' routine (lines 2135 to
2147 in Program 6.1). The restult of the summing is placed in Softly,
Softly55 the 'addition' then a branch to 'print_definition' is executed
(lines 2067 to 2070).

54 The BBC Micro Machine Code Portfolio

INCREMENT
BYTE

POINTER

ALL
8 BYTES

DONE
?

PRINT IF
AS A THREE

BYTE DECIMAL

GET BYTE
FROM

DEFINITION

PRINT
CHARACTER

CODE
NUMBER

TOTAL
=0?

ADD ALL VDU
DEFINITION

CHARACTERS
TOGETHER

INITIALISE
PROGRAM
COUNTERS

SELECT SCREEN
AND

PRINT
HEADING

START

INCREMENT
PROGRAM
COUNTERS

END

NO

YES

NO

NO

YES
ALL

DONE?

YES

Fig. 6.3. The PROCvduchr flowchart.

55Softly, Softly

The 'print_definition' loop (lines 2074 to 2097 in Program 6.1) begins by
printing the VDU number of the current character followed by a colon.
Each byte is then extracted in turn and printed to the screen in decimal
form followed by a comma. After the last definition byte is printed a
new line is printed and the next VDU character is sought. The 'update
routine' (lines 2166 to 2173), as its name implies, increments all
program counters and determines when every VDU character has been
processed.

10 REM * SOFT CHR VDU'S VERSION V2 *
20 REM * (c) Bruce Smi th /Acorn User *
30 PROCvdhchr (&70,&72,&73,&75,&4000)
40 *KEY0 CALL &4000|M
50 END
60 :
2050 DEF PROCvdhchr (so f t_base ,vdu_chara
c te r ,add i t ion_by tes , f lag ,addr)
2051 FOR pass=0 TO 3 STEP3
2052 P%=&4000
2053 [OPT pass
2054 .s ta r t
2055 JSR se t_up_screen
2056 LDA #224
2057 STA vdu_charac te r
2058 LDA #&C
2059 STA so f t_base+1
2060 LDA #0
2061 STA so f t_base
2062 STA add i t ion_by tes
2063 STA add i t ion_by tes+1
2064 TAY
2065 .ma in_ loop
2066 JSR tes t_ fo r_def in i t ion
2067 LDA add i t ion_by tes
2068 BNE pr in t_de f in i t ion
2069 LDA add i t ion_by tes+1
2070 BNE pr in t_de f in i t ion
2071 JSR update
2072 BNE main_ loop
2073 JMP ex i t
2074 .p r in t_de f in i t ion
2075 LDA vdu_charac te r
2076 JSR b inary_dec ima l_pr in t
2077 LDA #ASC" : "
2078 JSR &FFEE
2079 LDA #ASC" "
2080 JSR &FFEE
2081 LDY #0
2082 . loop
2083 LDA (&70) ,Y
2084 JSR b inary_dec ima l_pr in t

56 The BBC Micro Machine Code Portfolio

2085 LDA #ASC" , "
2086 JSR &FFEE
2087 INY
2088 CPY #8
2089 BNE loop
2090 JSR update
2091 LDA#0
2092 STA add i t ion_by tes
2093 STA add i t ion_by tes+1
2094 TAY
2095 LDA #13
2096 JSR &FFE3
2097 JMP main_ loop
2098 .b inary_dec ima l_pr in t
2099 LDX #0
2100 STX f lag
2101 .hundreds
2102 CMP#100
2103 BCC no_hundreds
2104 SBC #100
2105 INX
2106 STX f lag
2107 JMP hundreds
2108 .no_hundreds
2109 JSR pr in t_dec ima l
2110 LDX #0
2111 . tens
2112 CMP #10
2113 BCC no_tens
2114 SBC #10
2115 INX
2116 JMP tens
2117 .no_ tens
2118 JSR pr in t_dec ima l
2119 CLC
2120 ADC #ASC"0"
2121 JMP &FFEE
2122 .p r in t_dec ima l
2123 PHA
2124 TXA
2125 ADC #ASC"0"
2126 CMP #ASC"0"
2127 BNE no_zero
2128 LDX f lag
2129 BNE no_zero
2130 LDA #32
2131 .no_zero
2132 JSR &FFEE
2133 PLA
2134 RTS
2135 . tes t_ fo r_def in i t ion
2136 LDY#7

57Softly, Softly

2137 .check_ loop
2138 LDA (&70) ,Y
2139 CLC
2140 ADC add i t ion_by tes
2141 STA add i t ion_by tes
2142 BCC no_car ry
2143 INC add i t ion_by tes+1
2144 .no_car ry
2145 DEY
2146 BPL check_ loop
2147 RTS
2148 .se t_up_screen
2149 LDX #0
2150 .nex t_charac te r
2151 LDA tab le ,X
2152 BMI done
2153 JSR &FFEE
2154 INX
2155 JMP nex t_charac te r
2156 .done
2157 RTS
2158 . tab le
2159 EQUB 22
2160 EQUB 6
2161 EQUD &0D0A0D0A
2162 EQUS"** * SOFT CHR"
2163 EQUS" CHARACTER "
2164 EQUS"DEFINIT IONS ** * "
2165 EQUD &0D0A0D0A
2166 EQUB 255
2167 .update
2168 CLC
2169 LDA so f t_base
2170 ADC#8
2171 STA so f t_base
2172 INC vdu_charac te r
2173 BEQ ex i t
2174 RTS
2175 .ex i t
2176 JSR &FFE7
2177 PLA
2178 PLA
2179 RTS
2180]
2181 NEXT pass
2182 ENDPROC

Program 6.1. PROCvduchrs - lists the soft character definitions.

The program incorporates a useful decimal printing routine between
lines 2098 and 2134. This itself would be useful to have as a separate
procedure. Character base conversion can seem difficult, but like most

58 The BBC Micro Machine Code Portfolio

things in life it is quite simple to do when you know how! As it stands,
the routine will convert an eight-bit binary number held in the
accumulator into a three-digit decimal ASCII number, or more correctly
a string of three ASCII characters. Thus, if the accumulator held
1111000l (&F1) the ASCII string "241" would be printed.

To perform this, it is first necessary to calculate how many hundreds,
tens and units there are in the byte. All that is required to do this is to
subtract 100 or 10 from the byte and increment a hundreds or tens count
each time the subtraction leaves a remainder. Using the byte &E1
mentioned above this would work as follows. First, the hundreds:

241
-100

141 hundreds count=1
141

-100

41 hundreds count=2
41

-100

-59 This result is negative

The final hundreds count is therefore 2. This can be converted into
its ASCII code simply by adding ASC"0" and printing it.

Next, the tens count, and the value we use to start with is the
remainder from the hundreds count.

-10

31 tens count = 1
31

-10

21 tens count = 2
21

-10

11 tens count = 3
11

-10

1 tens count = 4

59Softly, Softly

The final tens count is therefore 4, and adding ASCI"0" to this will
derive the ASCII code for 4 which can be printed. Finally, the units
count is left as the remainder, 1 in this case. Again, ASC"0" needs to be
added to this to get the character's ASCII code so that it can be printed.

Program fact sheet

Program 6.1

Procedure title : PROCvduchr
Variables Required : soft_base, vdu_character, addition_bytes,

flag, addr
Line numbers : 2050 to 2181
Length : 246 bytes
Zero page requirements : 6 bytes
Registers changed : A, X, Y

60 The BBC Micro Machine Code Portfolio

Chapter Seven
Global Variable Search
and Replace

GREPL is the longest program in this book, a massive 582 bytes when
assembled, but it is invaluable. Using it allows variable names within a
program to be replaced throughout simply and easily. This eradicates the
need to work through the program replacing them 'by hand', thus
allowing new, more meaningful, names to be assigned or, if memory is
tight, shorter names to be inserted.

Program description

Because of the long nature of the program, I have chosen to present the
program details in a line-by-line block format which if used in
conjunction with the flowchart of Figure 7.1 and the description of
variable storage in Chapter 3 should make its understanding much
easier.

Line 2195: Clear occurrence counter.
Lines 2196 to 2198: Print 'variable' prompt.
Lines 2199 to 2202: Input variable name to be replaced into buffer,
pointed to by the Index registers and save the strings length in 'olen'.
Lines 2203 to 2205: Print 'Replace with' prompt.
Lines 2206 to 2208: Input new variable name and store it in buffer
pointed to by the Index registers.
Lines 2210 to 2213: Calculate difference in variable name lengths and
save result.
Lines 2214 to 2217: Read current setting of OSHWM.
Lines 2222 to 2221: Clear registers and get first byte from program.
Lines 2222 to 2227: If byte is ASCII return, check for the TOP marker
&FF.
Lines 2228 to 2230: If TOP found perform OSNEWL and exit via
'report'.

YES

MOVE OVER
LINE

HEADER

CLOSE UP
MEMORY
TO TAKE

NEW NAME

UPDATE AND
GET NEXT

BYTE

GET NEXT
BYTE

INCREMENT
INDEX &

GET BYTE

INCREMENT
INDEX

UPDATE
INDEX

INCREMENT
OCCURRENCE

COUNT

INSERT
NEW NAME

OPEN UP
MEMORY
TO TAKE

NEW NAME

ALL
DONE?

IS
NEW <
OLD?

IS
NEW >
OLD?

FIND
LENGTH

DIFFERENCE

GET
PAGE

PRINT TOTAL
NUMBER OF

REPLACEMENTS

END

START

GET BYTE
FROM

MEMORY

IS
NEXT BYTE

TOP?

IS IT
RETURN?

REPLACED
TO BE

GET VARIABLE

GET NEW
VARIABLE

NAME

IS
IT END

QUOTES?

IS
NEXT BYTE

QUOTES
?

IS
NEW >
OLD?

IS
IT SAME
AS NEW?

YES

YES

YES

YES

YES

NO

NO

YES

YESYES

NO NO

YES

Fig. 7.1. Flowchart for PROCgrepl.

62 The BBC Micro Machine Code Portfolio

10 REM ** *GLOBAL REPLACE - GREPL***
20 h imem=HIMEM
30 h imem=himem-&300
40 HIMEM=himem
50 PROCgrep l (&70,&72,&74,&76,&77,&78
,h imem)
60 *KEY0 CALL HIMEM|M
70 END
80 :
2190 DEF PROCgrep l (cur ren t , las t , l i nk ,o
len ,n len , resu l t ,h imem)
2191 FOR pass=0 TO 3 STEP 3
2192 P%=HIMEM
2193 [OPT pass
2194 .G loba l_ rep lace
2195 LDA #0 :STA number
2196 LDX #o ld_prompt MOD 256
2197 LDY #o ld_prompt DIV 256
2198 JSR pr in t_s t r ing
2199 LDX #o ld_name_store MOD 256
2200 LDY #o ld_name_store DIV 256
2201 JSR inpu t_s t r ing
2202 STA o len
2203 LDX #new_prompt MOD 256
2204 LDY #new_prompt DIV 256
2205 JSR pr in t_s t r ing
2206 LDX #new_name_store MOD 256
2207 LDY #new_name_store DIV 256
2208 JSR inpu t_s t r ing
2209 .do_aga in
2210 SEC
2211 STA n len
2212 SBC o len
2213 STA resu l t
2214 LDA #&83
2215 JSR &FFF4
2216 STX cur ren t
2217 STY cur ren t+1
2218 .ma in_ loop
2219 LDX #0
2220 TXA :TAY
2221 LDA (cur ren t) ,Y
2222 CMP #13
2223 BNE no t_re tu rn
2224 INY
2225 LDA (cur ren t) ,Y
2226 CMP #&FF
2227 BNE over
2228 JSR &FFE7
2229 LDA number
2230 JMP repor t
2231 RTS

63Global Variable Search and Replace

2232 .over
2233 CLC
2234 LDA cur ren t
2235 ADC #3
2236 STA l ink
2237 LDA cur ren t+1
2238 ADC #0
2239 STA l ink+1
2240 LDY #4
2241 BNE update4
2242 .no t_ re tu rn
2243 CMP #&22
2244 BNE va l id i t y_ tes t
2245 .end_quotes
2246 INY
2247 LDA (cur ren t) ,Y
2248 CMP #&22
2249 BEQ update3
2250 CMP #13
2251 BNE end_quotes
2252 BEQ update4
2253 .va l id i t y_ tes t
2254 CMP #ASC"&"
2255 BEQ hexadec ima l
2256 JSR check_var iab le
2257 BCC match_names
2258 .hexadec ima l
2259 INY
2260 LDA (cur ren t) ,Y
2261 JMP va l id i t y_ tes t
2262
2263 .match_names
2264 CPY o len
2265 BNE update2
2266 DEY
2267 .nex t_chr
2268 LDA (cur ren t) ,Y
2269 CMP o ld_name_store ,Y
2270 BNE move_on
2271 DEY
2272 BPL nex t_chr
2273 BMI inser t_new
2274 .move_on
2275 LDY o len
2276 .update2
2277 TYA
2278 BNE update4
2279 .update3
2280 INY
2281 .update4
2282 JSR memory_update
2283 DEY
2284 BNE update4

64 The BBC Micro Machine Code Portfolio

2285 BEQ main_ loop
2286 . inser t_new
2287 INC number
2288 LDA cur ren t
2289 STA las t
2290 LDA cur ren t+1
2291 STA las t+1
2292 LDY #0
2293 CLC
2294 LDA resu l t
2295 ADC (l ink) ,Y
2296 CMP #238
2297 BCC leap_f rog
2298 JMP bad_s t r ing
2299 . leap_f rog
2300 LDX #2
2301 STA (l ink) ,Y
2302 LDA resu l t
2303 BEQ overwr i te
2304 BMI shu f f le_down
2305 .back
2306 JMP memory_update
2307 LDA (las t) ,Y
2308 CMP #&FF
2309 BNE back
2310 LDX #0
2311 LDY resu l t
2312 .shu f f le_up
2313 LDA (las t ,X)
2314 STA (las t) ,Y
2315 LDA las t
2316 BNE low_ las t
2317 DEC las t+1
2318 . low_ las t
2319 DEC las t
2320 LDA las t
2321 CMP cur ren t
2322 BNE shuf f le_up
2323 LDA las t+1
2324 CMP cur ren t+1
2325 BNE shuf f le_up
2326 .overwr i te
2327 LDY #0
2328 . inse t_ loop
2329 LDA new_name_store ,Y
2330 STA (cur ren t) ,Y
2331 INY :CPY n len
2332 BNE inse t_ loop
2333 LDX #0
2334 BEQ update2
2335 .shu f f le_down
2336 LDA resu l t

65Global Variable Search and Replace

2337 EOR #&FF
2338 TAY
2339 INY
2340 .nex t_down
2341 LDA (las t) ,Y
2342 STA (las t -2 ,X)
2343 JSR memory_update
2344 CMP #&FF
2345 BNE nex t_down
2346 BEQ overwr i te
2347 .memory_update
2348 INC cur ren t ,X
2349 BNE sk ip_h igh
2350 INC cur ren t+1 ,X
2351 .sk ip_h igh
2352 RTS
2353 .check_var iab le
2354 CMP #ASC"z"+1
2355 BCS less_ than
2356 CMP #ASC"_"
2357 BCS grea te r_ than
2358 CMP #ASC"Z"+1
2359 BCS less_ than
2360 CMP #ASC"A"
2361 BCS grea te r_ than
2362 CMP #ASC"$"
2363 BEQ grea te r_ than
2364 CPY #0
2365 BEQ less_ than
2366 CMP #ASC"9"+1
2367 BCS less_ than
2368 CMP #ASC"0"
2369 BCS grea te r_ than
2370 CMP #ASC"%"
2371 BEQ grea te r_ than
2372 . less_ than
2373 CLC
2374 .g rea te r_ than
2375 RTS
2376 .p r in t_s t r ing
2377 STX cur ren t
2378 STY cur ren t+1
2379 LDY #0
2380 .p r in t_s t r ing2
2381 LDA (cur ren t) ,Y
2382 BMI no_more
2383 JSR &FFE3
2384 INY
2385 BNE pr in t_s t r ing2
2386 .no_more
2387 RTS
2388 . inpu t_s t r ing
2389 STX las t

66 The BBC Micro Machine Code Portfolio

2390 STY las t+1
2391 . inpu t_ loop2
2392 LDY #0
2393 .ge t_charac te r
2394 JSR &FFE0
2395 CMP #&1B
2396 BEQ escape
2397 CMP #13
2398 BEQ s t r ing_end
2399 CMP #&7F
2400 BEQ rub_out
2401 JSR check_var iab le
2402 BCC get_charac te r
2403 STA (las t) ,Y
2404 JSR &FFE3
2405 . inpu t_ loop3
2406 INY
2407 CPY #21
2408 BEQ too_b ig
2409 BNE ge t_charac te r
2410 .s t r ing_end
2411 TYA
2412 BEQ get_charac te r
2413 JSR &FFE7
2414 TYA
2415 RTS
2416 . rub_out
2417 DEY
2418 BMI inpu t_ loop3
2419 JSR &FFE3
2420 JMP ge t_charac te r
2421 . too_b ig
2422 LDX #er ro r1 MOD 256
2423 LDY #er ro r1 DIV 256
2424 JSR pr in t_s t r ing
2425 PLA :PLA :RTS
2426 .escape
2427 LDA #&7E
2428 JSR &FFF4
2429 PLA :PLA :RTS
2430 . repor t
2431 LDX #0
2432 SEC
2433 .dec ima l_ loop
2434 SBC #10
2435 BMI no_ jump
2436 INX
2437 JMP dec ima l_ loop
2438 .no_ jump
2439 DEX
2440 CLC
2441 ADC #58

67Global Variable Search and Replace

2442 PHA
2443 TXA
2444 ADC #48
2445 CMP #ASC"0"
2446 BEQ no_pr in t
2447 JSR &FFEE
2448 .no_pr in t
2449 PLA
2450 JSR &FFEE
2451 LDX #done MOD 256
2452 LDY #done DIV 256
2453 JMP pr in t_s t r ing
2454 .bad_s t r ing
2455 LDX #er ro r2 MOD 256
2456 LDY #er ro r2 DIV 256
2457 JSR pr in t_s t r ing
2458 LDX #20
2459 .swap_po in te rs
2460 LDA o ld_name_store ,X
2461 PHA
2462 LDA new_name_store ,X
2463 STA o ld_name_store ,X
2464 PLA
2465 STA new_name_store ,X
2466 DEX
2467 BPL swap_po in te rs
2468 LDA o len
2469 PHA
2470 LDA n len
2471 STA o len
2472 PLA :PLA :PLA
2473 RTS
2474 .o ld_name_store
2475 EQUS" "
2476 .new_name_store
2477 EQUS" "
2478 .o ld_prompt
2479 EQUB 13
2480 EQUS"Var iab le : "
2481 EQUB 255
2482 .new_prompt
2483 EQUB 13
2484 EQUS"Rep lace w i th : "
2485 EQUB 255
2486 .e r ro r1
2487 EQUB 13
2488 EQUS"Er r1"
2489 EQUW &FF07
2490 .e r ro r2
2491 EQUB 13
2492 EQUS"Er r2"
2493 EQUW &FF07
2494 .done

68 The BBC Micro Machine Code Portfolio

2495 EQUS" occurence(s) rep laced"
2496 EQUW &FF0D
2497 .number EQUB 0
2498] :NEXT pass
2499 ENDPROC

Program 7.1. PROCgrepl - a global search and replace facility

Lines 2233 to 2241: Otherwise move on past new line header bytes and
force branch to 'update4' .
Lines 2243 to 2244: Test for quotes and branch if not there.
Lines 2245 to 2249: Locate the end pair of quotes.
Lines 2250 to 2252: If ASCII return found first, branch to 'update4' .
Lines 2254 to 2255: If a hexadecimal value is indicated, branch.
Lines 2256 to 2261: Check for a valid variable character.
Lines 2263 to 2272: Compare old variable name with the string pointed
to in the program by 'current' . Exit on first unlike character.
Line 2273: If negative strings compared force a branch to 'insert_new'.
Lines 2274 to 2285: String not found so update all pointers and redo
from 'main_loop' .
Lines 2286 to 2291: Increment occurrence pointer and update pointers.
Lines 2292 to 2298: Add new line length to the '}ink' byte. If link byte is
greater than permissible value then perform 'bad_string' error. Else go to
'leap_frog' .
Lines 2299 to 2304: Calculate if space occupied by variable needs to be
altered, if so, move distal portion of program up or down memory
as required.
Lines 2305 to 2325: Open up the program at the variable name to make
way for a longer variable name.
Lines 2326 to 2334: Write new variable name over the old variable
name.
Lines 2335 to 2346: Close up variable space by desired amount to
ensure that new shorter variable name fits correctly, then overwrite it.
Lines 2347 to 2352: Update current position in program vector.
Lines 2353 to 2375: Check that 'current' contents being investigated is a
legal variable value.
Lines 2376 to 2387: Print the ASCII character string pointed to by the
address held in the Index registers. Printing is terminated on
encountering a negative byte, typically &FF.
Lines 2388 to 2415: Input an ASCII character string up to 20 characters
long and store it in the buffer pointed to by the index registers.
Lines 2416 to 2420: Perform DELETE
Lines 2421 to 2425: Execute 'Too big' error.

69Global Variable Search and Replace

Lines 2426 to 2429: Handle ESCAPE.
Lines 2430 to 2453: Print number of occurrences after first converting it
into an ASCII-based decimal number.
Lines 2454 to 2457: Print bad string error message.
Lines 2458 to 2473: Reset pointers to former values and exit to BASIC.
Lines 2474 to 2497: ASCII string storage area.

Using GREPL

Because of its large size, a hole must be created within the Beeb's
memory map to insert GREPL, because the normal page size areas are
not big enough. The program makes a niche by lowering HIMEM by
three pages and placing it above the new value, programming function
key 0 with the correct call address.

To use GREPL press f0 and answer to the prompts as they appear. The
new variable name may be up to 20 characters long; variables greater
than this are not accepted. Once the replace name is entered the program
goes about its business and the number of occurrences/ replacements are
indicated on completion.

Program fact sheet

Program 7.1

Procedure title : PROCgrepl
Variables required : current, last, link, olen, nlen, result,

himem
Line numbers : 2190 to 2499
Length : 582 bytes
Zero page requirements : 9 bytes
Registers changed : A, X, Y

70 The BBC Micro Machine Code Portfolio

Chapter Eight
Time for Bed

Next to Saturday night's Match of the Day, the home computer must be
the most frequent centrepiece of the friendly matrimonial dispute. Even
four years on, my wife will often appear in the early hours of the
morning to 'pull the plug out' of my latest sojourn into the land of ROM
and RAM. It is certain that most hobbyists world-wide have suffered
their mate's wrath in the small hours of the night at some time. It is
difficult to explain to the non-committed that, once in front of the
keyboard, time is meaningless.

This program was born at the specific request of my wife. It's a
background clock that sits ticking its digits away at the top right-hand
corner of the screen while the Beeb goes about its more important tasks,
stopping once every second to create the tick or tock to push the second-
hand a fraction further into the night!

The clock is based on the use of events or, more correctly, the
redirection of events. The BBC Micro is built up around events, so much
so that all the time it is switched on and being used it actually stops what
it is doing every ten milliseconds to catch up on any outstanding house-
keeping chores it needs to be. These chores take many guises and range
from reading any pressed keys into the keyboard buffer to sampling
some ofthe ADC channels. Due to the design of the BBC Micro it is
possible to intercept these events as they take place and interpret them as
we wish, and this concept forms the basis of the digital clock display.

There are several ways in which an event can be made to occur and
these are listed in Figure 8.1. The one that we are particularly interested
in is event 5 which occurs when the interval timer crosses zero. The
interval timer is a 5-byte clock that is incremented one hundred times
every second. When the timer is incremented so that it resets to zero, i.e.
goes from &FFFFFFFFFF to &0, the event is initiated. When the event
occurs, the operating system is directed through the event vector,
EVNTV at &220, so that by redirecting this vector to our own event
handler the appropriate action can be taken. The basic component in our
clock is, of course, the second, so the interval timer must be made to
time-out every second. Being an upcounting device, the interval timer
must be loaded with -100 centiseconds. This write interval timer

72 The BBC Micro Machine Code Portfolio

operation is performed using an OSWORD 4 call. As with all OSWORD
calls the index registers hold the address of the parameter block which
contains the 5-byte value to be written. In Program 8.1, the parameter
block is located at 'clock' lines 2606 to 2608.

Event Cause

0 Output buffer empty
1 Input buffer full
2 Character for input buffer entering
3 ADC conversion finished
4 Vertical sync start
5 Interval timer crossing zero
6 ESCAPE detected
7 RS 423 error
8 Econet event detected
9 User event detected

Fig. 8.1. Details of operating system events

10 REM ** * Cont inuous d isp lay c lock *
* *
20 REM ** * red i rec ts EVENTV vec to r *
* *
30 *FX13,5
40 CLS
50 PRINTCHR$141; " The Mute C lock ! "
60 PRINTCHR$141; " The Mute C lock ! " '
' '
70 INPUT"Hour : "H%
80 INPUT"Minu te : "M%
90 INPUT"Seconds : "S%
100 PROCt ime(H%,M%,S%,&A00)
110 PRINT ' '
120 PRINT"You have se t the t ime fo r : " ;
130 PRINT" " ;H%;" : " ;M%;" : " ;S%' '
140 PRINT"Press key to s ta r t c lock"
150 key=GET
160 CALL &A00
170 END
180 :
2500 DEF PROCt ime(ge th rs ,ge tmins ,ge tsec
s ,addr)
2501 FOR pass=0 TO 2 STEP 2
2502 P%=addr
2503 [OPT pass
2504 JMP se tup

73Time for Bed

2505 . t i ck_c lock
2506 PHP
2507 PHA
2508 TXA:PHA
2509 TYA
2510 PHA
2511 LDA#4
2512 LDY#c lock DIV 256
2513 LDX#c lock MOD 256
2514 JSR &FFF1
2515 INC seconds
2516 LDA seconds
2517 CMP#60
2518 BNE over
2519 LDA#0
2520 STA seconds
2521 INC minu tes
2522 LDA minu tes
2523 CMP#60
2524 BNE over
2525 LDA#0
2526 STA minu tes
2527 INC hours
2528 LDA hours
2529 CMP#24
2530 BNE over
2531 LDA#0
2532 STA hours
2533 .over
2534 LDA hours
2535 LDY#72
2536 JSR d isp lay
2537 LDA#ASC" : "
2538 STA HIMEM,Y
2539 INY
2540 LDA minu tes
2541 JSR d isp lay
2542 LDA #ASC" : "
2543 STA HIMEM,Y
2544 INY
2545 LDA seconds
2546 JSR d isp lay
2547 PLA
2548 TAY
2549 PLA
2550 TAX
2551 PLA
2552 PLP
2553 RTS
2554 .d isp lay
2555 LDX#0
2556 SEC
2557 . loop

74 The BBC Micro Machine Code Portfolio

2558 SBC#10
2559 BMI no_ jump
2560 INX
2561 JMP loop
2562 .no_ jump
2563 DEX
2564 CLC
2565 ADC#58
2566 PHA
2567 TXA
2568 ADC#48
2569 STA HIMEM,Y
2570 INY
2571 PLA
2572 STA HIMEM,Y
2573 INY
2574 RTS
2575
2576 .se tup
2577 LDA #gethrs
2578 LDX #getmins
2579 LDY #getsecs
2580 STA hours
2581 STX minu tes
2582 STY seconds
2583 LDA#22
2584 JSR &FFEE
2585 LDA#7
2586 JSR &FFEE
2587 LDA#28
2588 JSR &FFEE
2589 LDA#0
2590 JSR &FFEE
2591 LDA#24
2592 JSR &FFEE
2593 LDA#39
2594 JSR &FFEE
2595 LDA#2
2596 JSR &FFEE
2597 LDA#t ick_c lock MOD 256
2598 STA&220
2599 LDA#t ick_c lock DIV 256
2600 STA &221
2601 JSR t i ck_c lock
2602 LDA#14
2603 LDX#5
2604 JSR &FFF4
2605 RTS
2606 .c lock
2607 EQUD &FFFFFF9C
2608 EQUB &FF
2609 .hours EQUB 0

75Time for Bed

2610 .m inu tes EQUB 0
2611 .seconds EQUB 0
2612]
2613 NEXT
2614 ENDPROC

Program 8.1. PROCtime - a background digital clock

The initial program call to 'setup' (line 2504) does a number of things.
First, it loads the hours, minutes and seconds values previously input
into their respective counters (lines 2577 to 2582). A MODE 7 screen is
then selected and a text window defined to ensure that the digital clock
cannot be scrolled off the screen. Lines 2597 to 2600 reset the EVNTV
vector to point to the 'tick_tock' routine at line 2505. The final lines
(lines 2602 and 2603) perform an *FX14,5 which balances the previous
*FX13,5 (line 30). These two calls disable and enable the interval timer
crossing zero event.

The rest of the program's operation is straightforward. Each time the
event occurs 'tick_tock' is entered and the interval timer reset to count a
further second (lines 2511 to 2514). Note that on entry to the routine all
processor registers are preserved. This is very important, otherwise the
processor would probably crash when it returned to take up the task it
was undertaking before the event occurred. Lines 25 15 to 2532 simply
update the seconds, minutes and hours counters as required. The code
between lines 2534 to 2546 stores the latest clock value at the top left-
hand corner of the screen. The display subroutine (line 2554) called by
the program performs a simple hex to decimal ASCII conversion by
continually subtracting 10 from the value to be displayed.

Finally, the processor registers are restored (lines 2547 to 2552)
before control is transferred back to the interrupted program.

Program fact sheet

Program 8.1

Procedure title : PROCtime
Variables required : gethrs, getmins, getsecs, addr
Line numbers : 2500 to 2614
Zero page requirements : none
Registers changed : none

76 The BBC Micro Machine Code Portfolio

77Time for Bed

Chapter Nine
Error, Pack and
Autorun

Error Lister (Program 9.1)

This utility can be of great help at the initial run-time debugging stage of
a program. Normally, if an error occurs, one of the Beeb's terse error
messages is issued and you are left to list the line referenced - often
scratching your head wondering just where the problem is. The most
infuriating part of debugging is when you make what amounts to a
fundamental mistake to which you remain blind, no matter how many
times you run and list the erroneous line. I speak from frequent
experience!

One way around the error problem is to incorporate an error handling
procedure in your program, starting the program off with a line such as:

10 ON ERROR GOTO 5000

At line 5000, the error message and line can be printed out. The problem
still remains that the erroneous line is not listed, nor is the source of the
error listed.

Program 9.1 solves both these problems. After being set up and
installed, errors occurring at run-time will be treated in the normal
manner except that the line containing the error will be listed starting at
the point of the error, thus highlighting the mistake. For example, the
program line

10 PRINT"HELLO" : STUPID ERROR : VDU 7

would normally result in the error:

Mistake at line 10

at run-time. With the new error lister inserted, the response would be

STUPID ERROR : VDU 7
Mistake at line 10

 10 REM ** * ERROR L ISTER ** *
 20 PROCerror (&C00)
 30 *KEY0 CALL &C00|M
 40 *KEY1 CALL &C24|M
 50 END
 60 :
2620 DEF PROCerror (addr)
2621 FOR pass=0 TO 3 STEP3
2622 brkv=?&202+(?&203*256)
2623 P%=addr
2624 [
2625 OPT pass
2626 .SETUP
2627 LDX #0
2628 .nex t_chr
2629 LDA message,X
2630 JSR &FFE3
2631 INX
2632 CMP #13
2633 BNE nex t_chr
2634 LDA &202
2635 STA address
2636 LDA &203
2637 STA address+1
2638 LDA #ent ry MOD 256
2639 STA &202
2640 LDA #ent ry DIV 256
2641 STA &203
2642 RTS
2643 . res to re
2644 LDX #0
2645 .nex t_chr
2646 LDA message2,X
2647 JSR &FFE3
2648 INX
2649 CMP#13
2650 BNE nex t_chr
2651 LDA address
2652 STA &202
2653 LDA address+1
2654 STA &203
2655 RTS
2656 .en t ry
2657 BIT &FF
2658 BMI was_esc
2659 CLC
2660 LDA &1B
2661 ADC &39
2662 TAX

79Error, Pack and Autorun

2663 LDY #0
2664 JSR &FFE7
2665 .nex t_er ro r
2666 LDA (&19) ,Y
2667 CMP #13
2668 BEQ was_esc
2669 CMP #32
2670 BCC garbage
2671 CMP #&80
2672 BCS garbage
2673 JSR &FFEE
2674 .garbage
2675 INY
2676 DEX
2677 BNE nex t_er ro r
2678 .was_esc
2679 JMP brkv
2680 .message
2681 EQUS" Er ro r L is te r On! "
2682 EQUB 7
2683 EQUB 13
2684 .message2
2685 EQUS" Er ro r L is te r Of f ! "
2686 EQUB 7
2687 EQUB 13
2688 .address
2689 EQUS" "
2690]
2691 NEXT
2692 ENDPROC

Program 9.1. PROCerror - lists the program line in which an error occured.

The section of line which created the mistake has been listed in addition
to the normal error message.

The assembled program occupies just 141 bytes and is completely
self-contained so that it can be tucked out of the way during debugging.
As with other programs of this type in the Portfolio, there are two entry
points - to switch the lister on (entry at line 2626) and off (entry at line
2643). The 'setup' section of code saves the normal contents of BRKV at
&202 and revectors it to point to 'entry' at line 2656.

When the interpreter causes the program to abort via BRKV the new
wedge coding is executed. It begins first at line 2657 by testing bit 7 of
location &FF. If this bit is set then the abortion was due to the ESCAPE
key being pressed and so the normal 'brkv' is jumped to. Assuming that
ESC was not pressed, the length of the current expression being
evaluated by the interpreter, and the one that caused the error to occur, is
calculated. The bytes at &1B and &39 are summed (lines 2659 to 2662)
and the result moved into the X register Location &1B contains the

80 The BBC Micro Machine Code Portfolio

current offset for the expression evaluation pointer while &39 contains
the actual length of the expression.

The address of the current expression is held in the vector at &19
which is known as the expression evaluation base pointer, and each byte
is in turn accessed and printed to the screen (line 2666). If a carriage
return is encountered, the end of the line has been reached and the
program jumps to the normal 'brkv' for the printing of tht error message
(lines 2667 and 2668). The comparisons of lines 2669 and 2671 ensure
that no garbage gets printed to the screen, should the program crash have
caused any to have been poked into the program inadvertently.

A compact Pack (Program 9.2)

'Pack' is basically a simple program compacter that, when called.
removes all traces of spaces and REM statements from it, leaving behind
just the minimal program. There are two advantages in doing this. First,
the program becomes smaller, and in the case of some programs much
smaller. Second, by virtue of being smaller, they run and execute much
faster; even a single space slows a program down a fraction, so a
hundred spaces will slow a program down that much more! The saving
in memory can make the difference between a program running in a high
resolution mode and the dreaded 'Bad Mode' message being reported.

Pack searches through a program in the current text space and looks
for spaces and REM statements and the messages that follow them. Of
course, the program doesn't wipe the spaces and REMs out; rather, it just
shifts the top end of the program down a byte or bytes to write over the
offending space or REM.

Program 9.2 begins by placing the current value of PAGE into two
zero page vectors (lines 2705 to 2710). These are used to keep position
in the current program and point to the same, packed position, in the
new program. A special byte is also cleared: this is the 'rem_flag' and is
used to indicate if a REM statement is currently being processed. The
heavy work of the program is performed by the subroutine, 'transfer' at
lines 2784 to 2789. This moves a byte from its current position in the
program undergoing packing to the Iinal version. Postindexed
addressing is used throughout. After the subroutine call,the byte just
moved is tested for TOP, by comparing it with &FF (line 2716) in which
case the pack is complete. Note that at the start of each line an extra two
transfers are required to move the line number down (lines 2718 and
2719).

81Error, Pack and Autorun

 10 REM ** * SPACE & REM REMOVER ** *
 20 PROCpack (&70,&72,&C00)
 30 END
 40 :
2700 DEF PROCpack (cur ren t ,new_pos i t ion
,addr)
2701 FOR pass=0 TO 3 STEP3
2702 P%=addr
2703 [
2704 OPT pass
2705 LDA #0
2706 STA new_pos i t ion
2707 STA cur ren t
2708 LDA &18
2709 STA new_pos i t ion+1
2710 STA cur ren t+1
2711 .ou te r
2712 LDA #0
2713 STA rem_f lag
2714 LDY #1
2715 JSR t rans fe r
2716 CMP #&FF
2717 BEQ a l l_done
2718 JSR t rans fe r
2719 JSR t rans fe r
2720 . inner
2721 LDA (cur ren t) ,Y
2722 BIT rem_f lag
2723 BPL f lag_c lear
2724 CMP #13
2725 BNE space
2726 JSR t rans fe r
2727 BEQ end_of_ l ine
2728 . f lag_c lear
2729 CMP #ASC" "
2730 BEQ space
2731 CMP #&F4
2732 BNE no t_rem
2733 DEY
2734 LDA #&FF
2735 STA rem_f lag
2736 BNE space
2737 .no t_ rem
2738 JSR t rans fe r
2739 BEQ end_of_ l ine
2740 CMP #&22
2741 BEQ ins ide_quote
2742 BNE inner
2743 .space
2744 INC cur ren t
2745 BNE inner
2746 INC cur ren t+1
2747 BNE inner

82 The BBC Micro Machine Code Portfolio

2748 .end_of_ l ine
2749 DEY
2750 TYA
2751 PHA
2752 CPY #3
2753 BEQ c lear
2754 LDY #3
2755 STA (new_pos i t ion) ,Y
2756 CLC
2757 ADC new_pos i t ion
2758 STA new_pos i t ion
2759 BCC c lear
2760 INC new_pos i t ion+1
2761 .c lear
2762 PLA
2763 CLC
2764 ADC cur ren t
2765 STA cur ren t
2766 BCC outer
2767 INC cur ren t+1
2768 BNE ou ter
2769 . ins ide_quote
2770 JSR t rans fe r
2771 BEQ end_of_ l ine
2772 CMP #&22
2773 BNE ins ide_quote
2774 BEQ inner
2775 .a l l_done
2776 LDA new_pos i t ion
2777 CLC
2778 ADC #2
2779 STA &12
2780 LDA new_pos i t ion+1
2781 ADC #0
2782 STA &13
2783 RTS
2784 . t rans fe r
2785 LDA (cur ren t) ,Y
2786 STA (new_pos i t ion) ,Y
2787 INY
2788 CMP #13
2789 RTS
2790 . rem_f lag
2791 EQUS " "
2792]
2793 NEXT
2794 ENDPROC

Program 9.2. PROCpack - a space and REM remover.

83Error, Pack and Autorun

The space and REM tests are performed in lines 2729 and 2731
respectively and the corresponding branch made accordingly. Ifa space
is detected, the 'current' vector is incremented, no change is made to the
'new_position' vector and the space is not transferred. Thus, effectively
the space gets lost as illustrated in Figure 9.1. The REM test looks for
the token for REM which is &F4. If the token is found &FF is placed in
the 'rem_flag' to indicate this - so that the program knows it is within a
REM statement and is, in fact, 'deleting' items from the line rather than
transferring them. A branch to 'space' (line 2736) increments the 'current'
vector before a branch to 'inner' is forced.

Fig. 9.1. Overwriting bytes to compact a program.

84 The BBC Micro Machine Code Portfolio

0D 00 0A CLS : PRINT " S A R A H "

0D 00 0A CLS : PRINT " S A R A H "

INCREASING MEMORY

R
E

T
U

R
N

L
IN

E
 N

U
M

B
E

R

S
P

A
C

E

C
L

S
 T

O
K

E
N

S
P

A
C

E

C
O

L
O

N

S
P

A
C

E

P
R

IN
T

 T
O

K
E

N

A
S

C
II

S
T

R
IN

G

Figure 9.1. Overwriting bytes to compact a program

The relevant instruction here is in line 2722, where the 'rem_flag' is
tested with BIT. If the flag is clear, the following branch is executed,
otherwise the 'current' vector is incremented via 'space' .This entire
process continues until the end of line return character is encountered
(line 2724). The 'end_of_line' routine (line 2748) rapidly transfers the
three-byte line header, as comparing this would be an utter waste of
processor time.

Occasionally, spaces are required by programs. The most obvious
occasion is within ASCII strings where they are used for formatting text.
The 'inside_quote' coding ensures that any spaces occurring within the
boundary of quotes are not removed. This section is entered via line
2741.

Autorun (Program 9.3)

This program is interesting in that once run you cannot stop it from
automatically running the program at PAGE. No matter what
combination of keys you try, be it ESCAPE, BREAK or even CTRL-
BREAK the program runs! In fact, the only way to be rid of it is to turn
off the power to the Beeb, so this makes it an easy way to protect your
own programs from the hackers.

 0 REM! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
 10 PROCautorun
 20 END
 30 :
2800 DEF PROCautorun
2801 *FX247,76
2802 *FX248,6
2803 A%=249
2804 Y%=0
2805 X%=PAGE DIV 256
2806 CALL &FFF4
2807 P%=PAGE+6
2808 [
2809 LDA #138
2810 LDX #0
2811 LDY #ASC("O")
2812 JSR &FFF4
2813 LDY #ASC("L")
2814 JSR &FFF4
2815 LDY #ASC("D")
2816 JSR &FFF4
2817 LDY #14
2818 DEY

85Error, Pack and Autorun

2819 JSR &FFF4
2820 LDY #ASC("R")
2821 JSR &FFF4
2822 LDY #ASC("U")
2823 JSR &FFF4
2824 LDY #ASC("N")
2825 JSR &FFF4
2826 LDY #14
2827 DEY
2828 JSR &FFF4
2829 RTS
2830]
2831 ENDPROC

Program 9.3. PROCautorun - will automatically run a program no matter
what!

The assembler is quite straightforward: an *FX 138 call is used to place
the string "OLD<RETURN> RUN<RETURN>" into the keyboard
buffer. It is not possible, however, to use this call to poke a return
character, ASCII 13, into the buffer. To get round this, the Y register is
loaded with 14 and then decremented (lines 2817 and 2826). The
machine code is assembled in a rather strange place - in fact, it
overwrites the 50 exclamation marks after the REM statement in line 0.
As you can see, P% is set to PAGE+6 in line 2807. If you run the
program then list it you will see that the !s are replaced by
gobbledygook; this is just the interpreter trying to de-tokenise the
machine code. These will have no effect when the program is run as they
are away from the program, hiding behind the REM statement. The
magic part of the program comes in lines 2801 to 2806. Here the
BREAK intercept codes controlled by *FX247, *FX248 and *FX249 are
rewritten to print the BRK handler to the code now stored at PAGE+6,
so whenever any sort of BREAK is performed the interpreter comes here
and OLDs and re-RUNs the program. Once the program has been run,
only line 0 need remain; the others can be deleted as required.

Program fact sheets

Program 9.1

Procedure title : PROCerror
Variables required : addr
Line numbers : 2620 to 2692
Length : 141 bytes
Zero page requirements : none
Registers changed : A, X, Y

86 The BBC Micro Machine Code Portfolio

Program 9.2

Procedure title : PROCpack
Variables requircd : addr
Line numbers : 2700 to 2794
Length : 149 bytes
Zero page requirements : 4 bytes
Registers changed : A, X, Y

Program 9.3

Procedure title : PROCautorun
Variables required : addr
Line numbers : 2800 to 2831
Length : 53 bytes (inside program)
Zero page requirements : none
Registers changed : A, X, Y

87Error, Pack and Autorun

Chapter Ten
The Necessary Evil

Machine code programs of any length will often be required to
manipulate numbers. Addition, subtraction, multiplication, division are
all necessary evils in the computer world of data and figure
manipulation. This chapter presents routines that should be versatile
enough to cover most applications though often, by definition, they will
be wasteful of memory and processor time. For example, rather than
providing a procedure that will handle the multiplication of two eight-bit
numbers a multi-byte multiplication procedure is provided. There is no
reason, however, why you - the programmer - could not add a single-
byte procedure to this Portfolio.

The programs provided in this chapter are as follows:

Program 10.1 : Multi-byte addition.
Program 10.2 : Multi-byte subtraction.
Program 10.3 : Multi-byte multiplication.
Program 10.4 : Multi-byte division.
Program 10.5 : Single-byte square root.
Program 10.6 : Double-byte square root.
Program 10.7 : Double-byte ASL.
Program 10.8 : Double-byte LSR.
Program 10.9 : Double-byte ROR.
Program 10.10 : Double-byte ROL.
Program 10.11 : Multi-byte ASL.

Multi-byte addition (Program 10.1)

Program 10.1 uses the post-indexed indirect address capabilities of the
Beeb's 6502 to sum two sets of bytes stored anywhere in the Beeb's
memory map, depositing the result over the first number. The start
address of the two number sets is stored in the vectors 'first' and 'second'.
These variables must therefore be assigned to addresses in zero page. A
further variable, count, is required and this should contain the number of

bytes to be summed which is transferred into the X register to act as the
bytes to add counter.

The program is simply an addition routine controlled by a loop
counter. After seeding the index registers (lines 5005 to 5008) the carry
flag is initially cleared. The 'first' byte is sourced and added to the
'second' byte with the result being stored at 'first' (lines 5009 to 5012).
The index registers are adjusted and the loop reiterated until X becomes
zero (lines 5013 to 5015).

Since the index registers are only capable of holding a maximum
value of 255 the number of bytes to add together is limited to this value.

 10 REM ** * MULTI -BYTE ADDITION ** *
 20 PROCmul t i_add(&70,&71,&73,&C00)
 30 @%=0
 40 ?&70=4
 50 !&71=&4000
 60 !&73=&4100
 70 !&4000=123456
 80 !&4100=123456
 90 PRINT' ' ' ›123456+123456=“;
 100 CALL mbadd
 110 PRINT!&4000
 120 END
 130 :
 5000 DEF PROCmul t i_add(count , f i r s t , seco
nd,addr)
 5001 FOR PASS=0 TO 3 STEP 3
 5002 P%=addr
 5003 [
 5004 OPT PASS
 5005 .mbadd
 5006 LDX count
 5007 LDY #0
 5008 CLC
 5009 .nex t_by te
 5010 LDA (f i r s t) ,Y
 5011 ADC (second) ,Y
 5012 STA (f i r s t) ,Y
 5013 INY
 5014 DEX
 5015 BNE nex t_by te
 5016 RTS
 5017]
 5018 NEXT
 5019 ENDPROC

Program 10.1. PROCmulti_add - adds two multi-byte numbers together

89The Necessary Evil

Multi-byte Subtraction (Program 10.2)

Program 10.2 operates identically to the last one. The only difference is
that the SBC and the SEC instructions are substituted for their addition
counterparts. It is important to remember that the 'second' value is
subtracted from the 'first'.

 10 REM ** * MULTI -BYTE SUBTRACTION ** *
 20 PROCmul t i_sub(&70,&71,&73,&C00)
 30 @%=0
 40 ?&70=4
 50 !&71=&4000
 60 !&73=&4100
 70 !&4000=123456
 80 !&4100=3456
 90 PRINT' ' ' ›123456-3456=“;
 100 CALL mbsub
 110 PRINT!&4000
 120 END
 130 :
 5030 DEF PROCmul t i_sub(count , f i r s t , seco
nd,addr)
 5031 FOR PASS=0 TO 3 STEP 3
 5032 P%=addr
 5033 [
 5034 OPT PASS
 5035 .mbsub
 5036 LDX count
 5037 LDY #0
 5038 SEC
 5039 .nex t_by te
 5040 LDA (f i r s t) ,Y
 5041 SBC (second) ,Y
 5042 STA (f i r s t) ,Y
 5043 INY
 5044 DEX
 5045 BNE nex t_by te
 5046 RTS
 5047]
 5048 NEXT
 5049 ENDPROC

Program 10.2. PROCmulti_sub - subtracts one multi-byte number from
another.

Multi-byte Multiplication (Program 10.3)

Program 10.3 takes two multi-byte numbers (unsigned) stored low byte
first, multiplies the 'first' by the 'second' and stores the result over the

90 The BBC Micro Machine Code Portfolio

'first'. In addition to requiring two vectored addresses, a 256- byte work
buffer is required by the program. The TOTAL number of bytes to be
multiplied together is expected in 'totlen' while the variable 'count' is
used as a general loop counter by the program. The multiplication
technique employed is a standard add-and-shift one. If the current bit
being tested in the multiplier is a one, the multiplicand is added to the
partial product, which is then rotated by one bit. If, on the other hand,
the multiplier bit is 0 only the rotate is performed.

Because of the way 'mb_mult' is implemented, only the least
significant bytes of the product are returned, i.e. the total number of
bytes in the multiplier and multiplicand. The most significant bytes are
always available in 'buffer' if required. Therefore, the user should check
the 'buffer' for any overflow if it is suspected.

 10 REM ** * MULTI -BYTE MULTIPLICATION

 20 PROCmul t i_mul t (&70,&72,&74,&75,&4
000,&4200)
 30 !&70=&3000
 40 !&72=&3100
 50 ?&74=4
 60 !&3000=1234
 70 !&3100=1234
 80 CALL mb_mul t
 90 PRINT›Resul t o f mul t ip l icat ion : “ ;
 100 PRINT!&3000
 110 END
 120 :
5050 DEF PROCmul t i_mul t (f i r s t , second, to
t len ,count ,bu f fe r ,addr)
5051 FOR pass=0 TO 3 STEP 3
5052 P%=addr
5053 [
5054 OPT pass
5055 .mb_mul t
5056 LDA second
5057 SEC
5058 SBC #1
5059 STA second
5060 LDA second+1
5061 SBC #0
5062 STA second+1
5063 LDA f i rs t
5064 SEC
5065 SBC #1
5066 STA f i r s t
5067 LDA f i rs t+1
5068 SBC #0
5069 STA f i r s t+1

91The Necessary Evil

5070 LDA to t len
5071 BEQ f in ished
5072 STA count
5073 LDA #0
5074 ASL count
5075 ROL A
5076 ASL count
5077 ROL A
5078 ASL count
5079 ROL A
5080 STA count+1
5081 INC count
5082 BNE over
5083 INC count+1
5084 .over
5085 LDX to t len
5086 LDA #0
5087 .save_ loop
5088 STA bu f fe r -1 ,X
5089 DEX
5090 BNE save_ loop
5091 CLC
5092 . loop
5093 LDX to t len
5094 . ro ta te_ loop
5095 ROR buf fe r -1 ,X
5096 DEX
5097 BNE ro ta te_ loop
5098 LDY to t len
5099 . ro ta te_save
5100 LDA (f i r s t) ,Y
5101 ROR A
5102 STA (f i r s t) ,Y
5103 DEY
5104 BNE ro ta te_save
5105 BCC no_add
5106 LDY #1
5107 LDX to t len
5108 CLC
5109 .add_ loop
5110 LDA (second) ,Y
5111 ADC buf fe r -1 ,Y
5112 STA bu f fe r -1 ,Y
5113 INY
5114 DEX
5115 BNE add_ loop
5116 .no_add
5117 DEC count
5118 BNE loop
5119 LDX count+1
5120 BEQ f in ished
5121 DEX
5122 STX count+1

92 The BBC Micro Machine Code Portfolio

5123 JMP loop
5124 . f in ished
5125 RTS
5126]
5127 NEXT
5128 ENDPROC

Program 10.3. PROCmulti_mult - multiplies two multi-byte numbers

The program operates as follows:

Lines 5056 to 5062: Subtract 1 from address of 'second'.
Lines 5063 to 5069: Subtract 1 from address of 'first'.
Lines 5070 to 5071: If total length is zero then end.
Lines 5072: Set number of bytes to count.
Lines 5073 to 5079: Multiply count by eight.
Lines 5080 to 5083: Add one to value of count.
Lines 5084 to 5091: Save high product in buffer.
Lines 5092 to 5098: Shift carry bit into buffer and bit 0 of high product
into the carry flag.
Lines 5099 to 5104: Rotate carry into most significant bit of 'first' and
shift next bit of multiplier into the carry flag.
Line 5105: Carry clear so no addition required.
Lines 5106 to 5115: Carry flag is set so add *second' and high product
together.
Lines 5116 to 5123: Decrement bit count and exit if zero, else repeat for
the next bit.

The lines of BASIC show how the routine needs to be set up before
calling it. In a larger assembler program these introductory peeks and
pokes would be performed using assembler and the multiplication
routine called as a subroutine from the main program. Lines 30 and 40
place the two addresses of data into the zero page vectors, while lines 60
and 70 place the values to be multiplied (both 1234) into these data
buffers. Previously, in line 50, the total number of bytes to be combined,
four (1234 can be held in two bytes), is poked into location &74 which
corresponds to the variable 'totlen' in the procedure. After calling the
subroutine (line 80) the final result is displayed. Check it on a calculator
if you wish!

93The Necessary Evil

Multi-byte Division (Program 10.4)

Program 10.4 will divide two unsigned multi-byte number using a
standard shift and subtract procedure whereby a 1 is placed in the
quotient each time a subtraction is possible, and a 0 if not. The dividend
is located at 'first' and the divisor at 'second'; during the division the
quotient overwrites the dividend. Any remainder from the division is
placed at the address given by 'hidiv_pointer'.

 10 REM ** * MULTI -BYTE DIVISION ** *
 20 PROCmul t_d iv (&70,&72,&74,&75,&77,&
79,&3000,&3100,&4000)
 30 !&70=&3400
 40 !&72=&3500
 50 ?&74=3
 60 !&3400=10000
 70 !&3500=2
 80 CALL &4000
 90 PRINT ›Resul t is : “ ;
 100 PRINT!&3400
 110 PRINT›Remainder : “ ;
 120 PRINT!&3000
 130 END
 140 :
5150 DEF PROCmul t_d iv (f i r s t , second, to t l
en ,count ,h id iv_po in te r ,po in te r ,bu f fe r1 ,b
u f fe r2 ,addr)
5151 FOR pass=0 TO 3 STEP 3
5152 P%=addr
5153 [
5154 OPT pass
5155 .mu l t i_d iv
5156 LDA to t len
5157 BNE beg in
5158 JMP okay_out
5159 .beg in
5160 STA count
5161 LDA #0
5162 ASL count
5163 ROL A
5164 ASL count
5165 ROL A
5166 ASL count
5167 ROL A
5168 STA count+1
5169 INC count
5170 BNE over
5171 INC count+1
5172 .over

94 The BBC Micro Machine Code Portfolio

5173 LDX to t len
5174 LDA #0
5175 .c lear
5176 STA bu f fe r1 -1 ,X
5177 STA bu f fe r2 -1 ,X
5178 DEX
5179 BNE c lear
5180 LDA #buf fe r1 MOD 256
5181 STA h id iv_po in te r
5182 LDA #buf fe r1 DIV 256
5183 STA h id iv_po in te r+1
5184 LDA #buf fe r2 MOD 256
5185 STA po in te r
5186 LDA #buf fe r2 DIV 256
5187 STA po in te r+1
5188 LDX to t len
5189 LDY #0
5190 TYA
5191 .check
5192 ORA (second) ,Y
5193 INY
5194 DEX
5195 BNE check
5196 CMP #0
5197 BNE d iv ide
5198 JMP er ro r
5199 .d iv ide
5200 CLC
5201 .se t_ loop
5202 LDX to t len
5203 LDY #0
5204 . loop
5205 LDA (f i r s t) ,Y
5206 ROL A
5207 STA (f i r s t) ,Y
5208 INY
5209 DEX
5210 BNE loop
5211 .dec_count
5212 DEC count
5213 BNE se t_sh i f t
5214 LDX count+1
5215 BEQ okay_out
5216 DEX
5217 STX count+1
5218 .se t_sh i f t
5219 LDX to t len
5220 LDY #0
5221 .sh i f t_ loop
5222 LDA (h id iv_po in te r) ,Y
5223 ROL A
5224 STA (h id iv_po in te r) ,Y

95The Necessary Evil

5225 INY
5226 DEX
5227 BNE sh i f t_ loop
5228 LDY #0
5229 LDX to t len
5230 SEC
5231 .sub t rac t
5232 LDA (h id iv_po in te r) ,Y
5233 SBC (second) ,Y
5234 STA (po in te r) ,Y
5235 INY
5236 DEX
5237 BNE subt rac t
5238 BCC se t_ loop
5239 LDY h id iv_po in te r
5240 LDX h id iv_po in te r+1
5241 LDA po in te r
5242 STA h id iv_po in te r
5243 LDA po in te r+1
5244 STA h id iv_po in te r+1
5245 STY po in te r
5246 STX po in te r+1
5247 JMP se t_ loop
5248 .okay_out
5249 CLC
5250 BCC f in ished
5251 .e r ro r
5252 SEC
5253 . f in ished
5254 RTS
5255]
5256 NEXT
5257 ENDPROC

Program 10.4. PROCmulti_div - divides one multi-byte number by another

The total number of bytes to be referenced in the division is placed in
'totlen' prior to the call. On exit from the routine, the carry flag bit is set
if an error occurred during the division - otherwise it returns clear. The
program operates as follows:

Lines 5156 to 5158: Get 'totlen' if zero then perform a no error finish.
Lines 5160 to 5166: Set count and then multiply by 8 to obtain total
number of bits to do.
Lines 5167 to 5171: Add one to bit counter.
Lines 5173 to 5179: Initialise the high dividend result buffer to zero.
Lines 5180 to 5187: Point vectors to buffers.
Lines 5188 to 5198: Check that the divisor, held in 'second' is not
zero!
Lines 5199 to 5200: Clear carry flag on entry into 'divide'.

96 The BBC Micro Machine Code Portfolio

Lines 5201 to 5210: Move the carry flag bit into the low dividend, 'first',
to use as the next quotient bit. Then move the most significant bit of the
low dividend into the carry flag bit.
Lines 5211 to 5217: Decrement ^count' by one and branch to 'okay_out'
if all bits are done.
Lines 5218 to 5227: Transfer the carry flag bit into the least significant
bit of the high dividend.
Lines 5228 to 5237: Subtract 'second' from high dividend and save result
at 'pointer'.
Lines 5238 to 5246: If the carry flag bit is set then the trial subtraction
worked! Therefore, set the quotient bit and switch pointers to replace
remainder and dividend. If the carry flag is clear, the trial subtraction
failed; therefore skip swap over and branch direct as next quotient bit is
zero.
Line 5247: Do next bit.
Lines 5248 to 5250: Finished with no errors detected.
Lines 5251 to 5254: Finished with an error present.

Once again, the first few programs lines show how the procedure can be
set up, using BASIC. The procedure is assembled passing workspace,
vectors and buffer locations as parameters (line 20). The two vectors at
'first' and 'second' are poked with buffer addresses (lines 30 and 40),
which are subsequently seeded with the dividend and divisor (lines 60
and 70). The dividend is 10000 and the divisor 2, which require a total
of three bytes' storage, as indicated in line 50 which pokes the byte
count into 'totlen'.

After calling the routine the result is extracted from the buffer at
&3400 and the remainder from the buffer at &3000.

Finding the square root of a number in machine code might at first
sight seem rather difficult. However, there is a quite straightforward
solution. The method is simply this: 'the square root of an integer
number is equal to the total number of successively higher odd integer
numbers that can be subtracted from it'. Consider the number 36: first
we subtract one from it, then three, then five and so on until we have no
remainder. The total number of odd numbers subtracted is its square
root! Thus,

36-1=35 : partial root = 1
35-3=32 : partial root = 2
32-5=27 : partial root = 3
27-7=20 : partial root = 4
20-9=11 : partial root = 5
11-11=0 : final square root = 6

97The Necessary Evil

If the final partial root does not yield a result of 0 then a remainder is
available which can be 'floated' to provide the decimal portion ofthe
root.

Program 10.5 provides a suitable assembler-based procedure to
calculate the square root of any single byte number located at 'byte'. The
Y register is used to keep a count of the partial root which is
incremented each time round the 'loop'. The location at 'byte+1' is used
to hold the odd number to be subtracted. The final root is deposited in
'byte'and any remainder at 'byte+1'.

 10 REM ** *S INGLE BYTE SQUARE ROOT***
 20 PROConeby te_square(&70,&C00)
 30 ?&70=170
 40 CALL square
 50 PRINT›Square root =“ ;?&70
 60 PRINT›remainder =“ ;?&71
 70 END
 80 :
5270 DEF PROConeby te_square(by te ,addr)
5271 FOR pass=0 TO 3 STEP 3
5272 P%=addr
5273 [
5274 OPT pass
5275 .square
5276 LDY #0
5277 LDA #1
5278 STA by te+1
5279 LDA by te
5280 . loop
5281 CMP by te+1
5282 BCC f in ished
5283 SBC by te+1
5284 INY
5285 INC by te+1
5286 INC by te+1
5287 JMP loop
5288 . f in ished
5289 STY by te
5290 STA by te+1
5291 RTS
5292]
5293 NEXT
5294 ENDPROC

Program 10.5. PROConebyte_square - calculates the square root of a single-
byte number.

Program 10.5 is simple but effective. On entry to 'square' (line 5275) the
Y register is initialised ready to take the partial root count; the

98 The BBC Micro Machine Code Portfolio

accumulator is loaded with the first odd number to be subtracted which
is then written to the location 'byte+1' (lines 5276 to 5279). The subtract
and count loop is embodied in lines 5280 to 5287. Line 5281 begins by
comparing the contents from byte (the current remainder) with the next
odd number, a clear carry flag denotes that the remainder is less than the
next odd number and the program branches to 'finish'. A set carry and
line 5283 subtracts the current odd number from the current remainder
(line 5283) and the Y register is incremented. Before the loop is redone
the two is added to the contents of 'byte+1' to move onto the next odd
number (lines 5285 and 5286). Note that the program passes the
immediate value through to the procedure for splitting into two bytes
and storing in 'block' before the shift is performed. If the value is already
held in 'block' then 'do-asl' can be called directly.

Program 10.6 is a double-byte version, Program 10.5 finding the
square root of an unsigned 16-bit integer value. The two locations at
'byte' hold the integer value while 'temp' counts the double-byte odd
number. The program operates virtually the same as its predecessor; but
because a two-byte value is involved a subtraction rather than a compare
must be performed initially. To ensure that the final subtraction will not
erode any remainder, its possible low order byte is preserved in the X
register. Looking further down the program listing (line 5322) it seems
at first sight that the odd number counter is only being incremented by
one. However, two is actually being added as the carry flag will be set at
this point, if it is clear where the branch to 'finish' at line 5319 would
have been performed.

 10 REM ** * TWO BYTE SQUARE ROOT ** *
 20 PROCtwoby te_square(&70,&72,&C00)
 30 !&70=1234
 40 CALL two_square
 50 PRINT›Square root =“ ;?&70
 60 PRINT›remainder =“ ;?&71
 70 END
 80 :
5300 DEF PROCtwoby te_square(by te , temp,a
ddr)
5301 FOR pass=0 TO 3 STEP 3
5302 P%=addr
5303 [
5304 OPT pass
5305 . two_square
5306 LDY #1
5307 STY temp
5308 DEY
5309 STY temp+1
5310 . loop
5311 SEC

99The Necessary Evil

5312 LDA by te
5313 TAX
5314 SBC temp
5315 STA by te
5316 LDA by te+1
5317 SBC temp+1
5318 STA by te+1
5319 BCC f in ished
5320 INY
5321 LDA temp
5322 ADC #1
5323 STA temp
5324 BCC loop
5325 INC temp+1
5326 . f in ished
5327 STY by te
5328 STX by te+1
5329 RTS
5330]
5331 NEXT
5332 ENDPROC

Program 10.6. PROCtwobyte_square - calculates the square root of a 16-bit
value.

By the left!

The final five programs in this chapter deal with double-byte shifts and
rotates. It may seem at first that these would be straightforward enough,
but this is certainly not the case with the ASL and LSR combinations, as
both of these introduce a 0 into bit 0 and bit 7 of the byte they are acting
on respectively. Thus, a two-byte ASL will not yield the correct result if
the sequence

ASL byte
ASL byte+1

is used.

To perform an overall ASL on two bytes, the initial ASL must be
followed by a ROL. Program 10.7 illustrates the technique while Figure
10.1 shows what is happening. The ASL of line 5359 moves bit 7 of
'block+1' (the low byte in true 6502 back-to-frontness!) into the carry
inserting a 0 into bit 0. Line 5360 then performs a ROL which moves bit
7 in the carry into bit 0 of 'block', shuffling the internal bits up one bit.
The last bit, bit 7, falls out into the carry. The two-byte value has also
been multiplied by two!

100 The BBC Micro Machine Code Portfolio

 10 REM*** DOUBLE BYTE ASL * * *
 20 PROCtwo_by te_as l (1 ,&70,&C00)
 30 CALLset_as l
 40 FOR loop=1 TO 15
 50 PRINT?&70*256+?&71
 60 CALLdo_as l
 70 NEXT loop
 80 END
 90 :
5350 DEF PROCtwo_by te_as l (num,b lock ,add
r)
5351 P%=addr
5352 [
5353 .se t_as l
5354 LDA #num MOD 256
5355 STA b lock
5356 LDA #num DIV 256
5357 STA b lock+1
5358 .do_as l
5359 ASL b lock+1
5360 ROL b lock
5361 RTS
5362]
5363 ENDPROC

Program 10.7. PROCtwo_byte_asl - arithmetical shift left on a 16-bit value.

7LB

7HB

0LB0LB1LB2LB3LB4LB56LB

0123456HB HB HB HB HB HB HB LB7

ASL block + 1

ROL block

Fig. 10.1. Implementing a 16-bit shift register using an ASL/ROL

101The Necessary Evil

Program 10.8 works in the opposite direction performing an overall LSR
using an LSR and ROR in conjunction. As the shift works in the
opposite direction the bytes are referenced in the opposite order to an
ASL. The shift is performed on the low byte in 'block' and the rotate on
the high byte in 'block+1'. The total effect is to halve the two-byte
number.

10 REM*** DOUBLE BYTE LSR ** *
20 PROCtwo_by te_ ls r (65535,&70,&C00)
30 CALLset_ ls r
40 FOR loop=1 TO 15
50 PRINT?&70*256+?&71
60 CALLdo_ ls r
70 NEXT loop
80 END
90 :
5370 DEF PROCtwo_by te_ ls r (num,b lock ,add
r)
5371 P%=addr
5372 [
5373 .se t_ ls r
5374 LDA #num DIV 256
5375 STA b lock
5376 LDA #num MOD 256
5377 STA b lock+1
5378 .do_ ls r
5379 LSR b lock
5380 ROR b lock+1
5381 RTS
5382]
5383 ENDPROC

Program 10.8. PROCtwo_byte_lsr - logical shift right on a 16-bit value.

Programs 10.9 and 10.10 perform double-byte RORs and ROLs
respectively. The only difference to note here is the order in which the
bytes in 'block' are rotated. In RORing a two-byte number, the low byte
is rotated first. With a ROL it is the high byte that is manipulated first.

 10 REM*** DOUBLE BYTE ROR ** *
 20 PROCtwo_by te_ror (32768,&70,&C00)
 30 CALLset_ror
 40 FOR loop=1 TO 15
 50 PRINT?&70*256+?&71
 60 CALLdo_ror
 70 NEXT loop
 80 END
 90 :
5390 DEF PROCtwo_by te_ror (num,b lock ,add

102 The BBC Micro Machine Code Portfolio

r)
5391 P%=addr
5392 [
5393 .se t_ ro r
5394 LDA #num MOD 256
5395 STA b lock
5396 LDA #num DIV 256
5397 STA b lock+1
5398 .do_ror
5399 ROR b lock
5400 ROR b lock+1
5401 RTS
5402]
5403 ENDPROC

Program 10.9. PROCtwo_byte_ror - a double-byte rotate right.

 10 REM*** DOUBLE BYTE ROL * * *
 20 PROCtwo_by te_ro l (1 ,&70,&C00)
 30 CALLset_ro l
 40 FOR loop=1 TO 15
 50 PRINT?&70*256+?&71
 60 CALLdo_ro l
 70 NEXT loop
 80 END
 90 :
5410 DEF PROCtwo_by te_ro l (num,b lock ,add
r)
5411 P%=addr
5412 [
5413 .se t_ ro l
5414 LDA #num MOD 256
5415 STA b lock
5416 LDA #num DIV 256
5417 STA b lock+1
5418 .do_ro l
5419 ROL b lock
5420 ROL b lock+1
5421 RTS
5422]
5423 ENDPROC

Program 10.10. PROCtwo_byte_rol - a double-byte rotate left.

Finally, Program 10.11 shows how a multi-byte shift, left in this
instance, can be implemented on an unsigned value between 2 and 255
bytes in length. The start of the bytes to be shifted are located in 'start'
while the number of them is found in 'bytes'. The program commences
by placing the 'bytes' count into the Y register and performing the initial

103The Necessary Evil

ASL on 'start' (lines 5434 to 5436). The X register is loaded with one
and after decrementing tlne Y register the 'next' loop is entered (lines
5436 to 5438). From here on, indexed addressing is used to facilitate the
ROL on the remaining bytes. The first handful of lines in the program
point out the sort of interesting, and perhaps useful (!) applications the
program can be used for. The test of line 50 is printed onto the MODE 6
screen before the memory is used to hold the test is shifted left twice
(lines 60 and 70). The net effect is to provide 3D text!

 10 REM ** * MULTI LEFT SHIFT * * *
 20 REM ** * GIVES 3D CHARACTERS ** *
 30 PROCmul t i_ le f t (&6000,64 ,&C00)
 40 MODE 6
 50 PRINT› HELLO THERE!! “
 60 CALL&C00
 70 CALL&C00
 80 END
90 :
5430 DEF PROCmul t i_ le f t (s ta r t ,by tes ,ad
dr)
5431 FOR PASS=0 TO 3 STEP3
5432 P%=addr
5433 [:OPT PASS
5434 LDY by tes
5435 ASL s ta r t
5436 LDX #1
5437 DEY
5438 .nex t
5439 ROL s ta r t ,X
5440 INX
5441 DEY
5442 BNE nex t
5443 RTS
5444]
5445 NEXT
5446 ENDPROC

Program 10.11. PROCmulti_left - performs an arithmetic shift left on a
multi-byte number.

Program fact sheets

Program 10.1

Procedure title : PROCmulti_add
Variables required : count, first, second, addr
Line numbers : 5000 to 5019
Length : 16 bytes

104 The BBC Micro Machine Code Portfolio

Zero pagc requircments: : five bytes
Registcrs changed : A, X, Y

Program 10.2

Procedure title : PROCmulti_sub
Variables required : count, first, second, addr
Line numbers : 5030 to 5049
Length : 16 bvtes
Zero page requiremcnts : 5 bytes
Registers changed : A, X, Y

Program 10.3

Procedure title : PROCmulti_mult
Variables required : first, sccond, totlen, count buffer, addr
Line numbers : 5050 to 5128
Length : 114 bytes
Zero page requirements: : 6 bytes
Registers changed : A, X, Y

Program 10.4

Procedure title : PROCmulti_div
Variables required : first. second, totlen, count, hidiv_pointer,

pointer, 1 buffer2, addr
Line numbers : 5150 to 5257
Length : 54 bytes
Zero page requirements : 11 bytes
Registers changed : A, X, Y

Program 10.5

Procedure title : PROConebyte_square
Variables required : byte, addr
Line numbers : 5270 to 5294
Length : 27 bytes
Zero page requirements : 2 bytes
Registers changed : A, X, Y

Program 10.6

Procedure title : PROCtwobyte_square

105The Necessary Evil

Variables required : byte, temp, addr
Line numbers : 5300 to 5332
Length : 39 bytes
Zero page requirements : 4 bytes
Registers changed : A, X, Y

Program 10.7

Procedure title : PROCtwo_byte_asl
Variables required : num, block, addr
Line numbers : 5350 to 5363
Length : 13 bytes
Zero page requirements : 2 bytes
Registers changed : A

Program 10.8

Procedure title : PROCtwo_byte_lsr
Variables required : num, block, addr
Line numbers : 5370 to 5383
Length : 13 bytes
Zero page requirements : 2 bytes
Registers changed : A

Program 10.9

Procedure title : PROCtwo_byte_ror
Variables required : num, block, addr
106 The BBC Micro Machine Code Portfolio
Line numbers : 5390 to 5403
Length : 13 bytes
Zero page requirements : 2 bytes
Registers changed : A

Program 10.10

Procedure title : PROCtwo_byte_rol
Variables required : num, block, addr
Line numbers : 5410 to 5423
Length : 13 bytes
Zero page requirements : 2 bytes
Registers changed : A

106 The BBC Micro Machine Code Portfolio

Program 10.11

Procedure title : PROCmulti_left
Variables required : start, bytes, addr
Line numbers : 5430 to 5446
Length : 16 bytes
Zero page requirements : 1 byte
Registers changed : A, X, Y

107The Necessary Evil

Chapter Eleven
Vision On

This chapter is devoted entirely to exploring the graphics capabilities of
the Beeb from machine code. Many of the procedures are based on the
VDU driver routine OSWRCH and all the graphics commands available
from BASIC are implemented here plus a few more! These extras
include two new screen modes which give scaled down versions of
MODE 2 and MODE 5, plus a routine utilising the *640 table in the
BASIC interpreter to convert an X, Y coordinate pair into the
corresponding screen address.

I use many of these routines as part of a simple graphics compiler
(SGC) which uses simple INPUT commands to call the appropriate
PROC to compile the necessary machine code but on to the routines.

Just mode about you

Program 11.1 performs a mode change in machine code. This is done by
sending the VDU value 22 to the driver followed by the mode number
which should be passed into the procedure via 'action'. The assembled
code is very short - just 11 bytes including the RTS.

 10 REM ** * DO MODE ** *
 20 CLS
 30 INPUT"Which MODE ?"M%
 40 PROCmode (M%,&C00)
 50 CALL mode
 60 PRINT"Th is i s MODE " ;M%
 70 END
 80 :
6000 DEF PROCmode (ac t ion ,addr)
6001 P%=addr
6002 [
6003 .mode
6004 LDA #22
6005 JSR &FFEE
6006 LDA #ac t ion
6007 JSR &FFEE
6008 RTS

108 The BBC Micro Machine Code Portfolio

6009]
6010 ENDPROC

Program 11.1. PROCmode - performs a MODE change.

Program 11.2 provides a new screen mode. As it is made out of the
MODE 2 screen I have christened it MODE 2A. This new mode still has
all the sixteen colours of a normal MODE 2 available but only requires
half the memory, 10K, for displaying them. The screen itself is
composed of 25 rows of 20 characters. The program is given in its long-
winded form so that I can try to explain its operation better! Obviously,
it would be more economical in terms of memory to implement the final
version with the VDU codes in a look-up table using an indexing routine
to pull them out one by one and send them to OSWRCH.

 10 REM ** * NEW MODE 2A SCREEN ** *
 20 PROCmode2A (&A00)
 30 CALL &A00
 40 END
 50 :
6100 DEF PROCmode2A (addr)
6101 FOR PASS=0 TO 3 STEP3
6102 P%=addr
6103 [:OPT PASS
6104 LDA #22
6105 JSR &FFEE
6106 LDA #2
6107 JSR &FFEE
6108 LDA #23
6109 JSR &FFEE
6110 LDA #0
6111 JSR &FFEE
6112 LDA #6
6113 JSR &FFEE
6114 LDA #25
6115 JSR &FFEE
6116 JSR SIX
6117 LDA #23
6118 JSR &FFEE
6119 LDA #0
6120 JSR &FFEE
6121 LDA #7
6122 JSR &FFEE
6123 LDA #30
6124 JSR &FFEE
6125 JSR SIX
6126 LDA #23
6127 JSR &FFEE
6128 LDA #0
6129 JSR &FFEE

109Vision On

6130 LDA #12
6131 JSR &FFEE
6132 LDA #8
6133 JSR &FFEE
6134 JSR SIX
6135 LDA #23
6136 JSR &FFEE
6137 LDA #0
6138 JSR &FFEE
6139 LDA #14
6140 JSR &FFEE
6141 LDA #8
6142 JSR &FFEE
6143 JSR SIX
6144 LDA #5
6145 STA &FE40
6146 LDA #56
6147 STA &302
6148 LDA #24
6149 STA &309
6150 LDA #40
6151 STA &D9
6152 STA &34B
6153 STA &34E
6154 STA &351
6155 STA &354
6156 LDA #&40
6157 STA &7
6158 LDA #0
6159 STA &6
6160 RTS
6161 .S IX
6162 LDA #0
6163 LDX #6
6164 .AGAIN
6165 JSR &FFEE
6166 DEX
6167 BNE AGAIN
6168 RTS
6169]
6170 NEXT
6171 ENDPROC

Program 11.2. PROCmode2A - implements a scaled down version of MODE
2.

It might be easier to understand exactly what is going on if the
assembler is broken down into its BASIC equivalent which, incidentally,
will also produce the desired effect.

110 The BBC Micro Machine Code Portfolio

Line 6104 to 6107 : MODE 2
Line 6108 to 6116 : VDU 23;6,25;0;0;0;
Line 6117 to 6125 : VDU 23;7,30;0;0;0;
Line 6126 to 6134 : VDU 23;12,8;0;0;0;
Line 6135 to 6143 : VDU 23;14,8;0;0;0;
Line 6144 to 6145 : ?&FE40=5
Line 6146 to 6147 : ?&302=56
Line 6148 to 6149 : ?&309=24
Line 6150 to 6151 : ?&D9=40
Line 6152 to 6155 : ?&34B=40

: ?&34E=40
: ?&351=40
: ?&354=40

Lines 6156 to 6159 : HIMEM=&4000

The VDU statements (lines 6108 to 6143) reprogram several registers
of the 6845 cathode ray tube controller (CRTC) which is responsible for
organising the screen memory. The BASIC equivalents show that the
first and second parameter bytes are used in programming the CRTC.
The first determines the CRTC register and the second the value to be
written into it. Taking the four VDU23 statements in turn they perform
the following tasks:

(a) Program number of lines
(b) Set position of vertical sync in number of row times
(c) Set top of screen address
(d) Set cursor position

The remaining pokes write to the VDU variables directly which, strictly
speaking, is rather naughty! The poke to &FE40 is writing to the system
VIA scroll-controlling register, while the subsequent two pokes define
the bottom row, in pixels, of the graphics window and the bottom row of
the text window. &D9 holds the high byte of the current address of the
top scan line of a character (HIMEM is being set to &4000, thus the
&40); &34B high byte of the top cursor location; &34E top+1 address of
user memory; &351 the high byte address of the top left-hand corner of
the screen; and finally &354 the high byte of the screen memory size.

Because the screen is not an official mode it is organised rather
crookedly. For example, the pixel coordinates for the Y axis do not run
from 0 to 1023 as one might expect but from 225 to 1023. Also, the
screen itself tends to sit in the middle of the TV rather than using it all.
To counteract the Y axis distortion, the graphics origin could be reset to
0,225 using VDU 29, thus:

111Vision On

VDU 29,0;225;
MOVE 0,0

This will reduce the maximum on-screen Y graphics coordinate to 798
but the range 0 to 798 is easier to use than 225 to 1023. Figure 11.1
provides a suitable map of MODE 2A.

798

0
0

1023

y

x

Fig. 11.1. The MODE 2A screen map.

Program 11.3 works along similar lines in that it pokes various VDU
variables to set up a new graphics mode screen from MODE 5.
However, rather than reprogramming the CRTC, it writes to the Video
ULA using an OSBYTE call (lines 6027 to 6030). This writes, in fact, to
the Video Control Register whose layout is given in Figure 11.2. The
byte written is 224 or &E0 in hex, thus causing a large cursor two bytes
in width to be displayed.

 10 REM ** * NEW MODE 5A * * *
 20 PROCmode5A (&A00)
 30 DRAW1000,100
 40 CALL &A00
 50 MOVE 100,100

112 The BBC Micro Machine Code Portfolio

 60 DRAW 1000,100
 70 DRAW 1000,1000
 80 DRAW 100,1000
 90 DRAW 100,100
 100 END
 110 :
6020 DEF PROCmode5A (addr)
6021 P%=addr
6022 [
6023 LDA #22
6024 JSR &FFEE
6025 LDA #5
6026 JSR &FFEE
6027 LDA #154
6028 LDX #224
6029 JSR &FFF4
6030 LDA #15
6031 STA &360
6032 LDA #1
6033 STA &361
6034 LDA #32
6035 STA &34F
6036 LDA #&55
6037 STA &363
6038 LDA #&AA
6039 STA &362
6040 LDA #9
6041 STA &30A
6042 LDA #20
6043 JSR &FFEE
6044 LDA #&54
6045 STA &07
6046 LDA #0
6047 STA &6
6048 JMP &FFEE
6049]
6050 ENDPROC

Program 11.3. PROCmode5A - implements a scaled down version of MODE
5.

113Vision On

FLASHING
COLOUR

BIT

TELETEXT
SELECT

BIT

CHARACTERS
PER LINE

BITS

6845
CLOCK

BIT

CURSOR
WIDTH
BITS

CURSOR
SIZE
BIT

7 6 5 4 3 2 1 0

Fig. 11.2. The Video Control Register

This mode requires just 10K of RAM but also allows 16 colours like
MODE 2 and MODE 2A! The mode allows 16 rows of 10 characters
and HIMEM is set to &5400. The program description follows.

Lines 6023 to 6026: Select MODE 5.
Lines 6027 to 6029: Write to video ULA cursor control bits.
Lines 6030 to 6031: All 16 colours available.
Lines 6032 to 6033: Two 4-bit pixels per byte.
Lines 6034 to 6035: 32 bytes used per character.
Lines 6036 to 6039: Set colour details.
Lines 6040 to 6041: 10 characters on each line (0 to 9).
Lines 6042 to 6043: Do VDU 20 and rest default colours.
Lines 6044 to 6048: Set HIMEM = &5400.

Moving on

The three drawing-orientated processes, MOVE, DRAW and PLOT, can
be performed using a VDU25 sequence, once again passing bytes
through OSWRCH. After issuing the VDU25 sequence, OSWRCH
expects five more bytes to be passed through to it. The first of these
determines exactly what function is to be performed, while the
remaining four bytes provide the double-byte values of first the X and
then the Y coordinates, low bytes first.

Program 11.4 lists a suitable MOVE procedure. The MOVE code is 4
(line 6186) while the X, Y coordinates are passed for immediate
addressing through the variables 'xpos' and 'ypos' .The demo uses the
procedure to move the graphics cursor to the centre of the screen at
640,512 before plotting a point there (lines 20 to 50).

114 The BBC Micro Machine Code Portfolio

10 REM ** * DO MACHINE CODE MOVE ** *
20 PROCmove(640,512,&A00)
30 MODE 5
40 CALL move
50 DRAW 640,512
60 END
70 :
6180 DEF PROCmove(xpos ,ypos ,addr)
6181 P%=addr
6182 [
6183 .move
6184 LDA #25
6185 JSR &FFEE
6186 LDA #4
6187 JSR &FFEE
6188 LDA #xpos MOD 256
6189 JSR &FFEE
6190 LDA #xpos DIV 256
6191 JSR &FFEE
6192 LDA #ypos MOD 256
6193 JSR &FFEE
6194 LDA #ypos DIV 256
6195 JSR &FFEE
6196 RTS
6197]
6198 ENDPROC

Program 11.4. PROCmove - performs MOVE.

Program 11.5 uses the driver code 6 (line 6206) to execute the machine
code equivalent of a DRAW. The positions passed into the procedure are
taken to be the coordinates to draw to. The demo program draws a line
diagonally across the MODE 4 screen from 0,0 to 1000,1000. Once
again, immediate addressing is used in the program to obtain the X, Y
coordinates which must therefore be passed into the procedure at
assembly time.

 10 REM ** * DO MACHINE CODE DRAW LINE

 20 PROCdraw(1000,1000,&C00)
 30 MODE 4
 40 MOVE 0 ,0
 50 CALL &C00
 60 END
 70 :
6200 DEF PROCdraw(xcord ,ycord ,addr)
6201 P%=addr
6202 [
6203 .d raw_ l ine
6204 LDA #25

115Vision On

6205 JSR &FFEE
6206 LDA #6
6207 JSR &FFEE
6208 LDA #xcord MOD 256
6209 JSR &FFEE
6210 LDA #xcord DIV 256
6211 JSR &FFEE
6212 LDA #ycord MOD 256
6213 JSR &FFEE
6214 LDA #ycord DIV 256
6215 JSR &FFEE
6216 RTS
6217]
6218 ENDPROC

Program 11.5. PROCdraw - performs DRAW.

10 REM ** * DO MACHINE CODE PLOT ** *
20 PROCplo t (85 ,1000,1000,&C00)
30 MODE 4
40 MOVE 0 ,0
50 MOVE 1000,0
60 CALL p lo t
70 END
80 :
6220 DEF PROCplo t (code,xcord ,ycord ,addr
)
6221 P%=addr
6222 [OPT 2
6223 .p lo t
6224 LDA #25
6225 JSR &FFEE
6226 LDA #code
6227 JSR &FFEE
6228 LDA #xcord MOD 256
6229 JSR &FFEE
6230 LDA #xcord DIV 256
6231 JSR &FFEE
6232 LDA #ycord MOD 256
6233 JSR &FFEE
6234 LDA #ycord DIV 256
6235 JSR &FFEE
6236 RTS
6237]
6238 ENDPROC

Program 11.6. PROCplot - performs PLOT.

A PLOT is performed using the driver code which is equivalent to the

116 The BBC Micro Machine Code Portfolio

plot function required. Program 11.6 shows how the PLOT code is
passed into the procedure through the variable 'code' .The demo uses
code 85 to draw and fill a triangle in a MODE 4 screen. As you may
now realise, the previous two programs were, in fact, simply using the
plot codes for move and draw.

Paint-box

The use of colour is usually desirable for graphics and both COLOUR
and GCOL can be readily performed. Program 11.7 can be used to
redefine the text colour used by PRINT. It uses the VDU17 command
with a second byte in the range 0 to 15 being passed to OSWRCH to
define the colour. The number associated with each physical colour is
detailed in Figure 11.3 and the chosen value should be passed to the
procedure in the 'print_colour' variable. The demo sets up printing in red
on a MODE 2 screen.

Number Colour

0 Black
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6 Cyan
7 White
8 Flashing black-white
9 Flashing red-cyan
10 Flashing green-magenta
11 Flashing yellow-blue
12 Flashing blue-yellow
13 Flashing magenta-green
14 Flashing cyan-red
15 Flashing white-black

Fig 11.3. The physical colours.

 10 REM ** * DO PRINT COLOUR ** *
 20 PROCco lour (1 ,&C00)
 30 MODE 2
 40 CALL co lour
 50 END

117Vision On

 60 :
6250 DEF PROCco lour (p r in t_co lour ,addr)
6251 P%=addr
6252 [
6253 .co lour
6254 LDA #17
6255 JSR &FFEE
6256 LDA #pr in t_co lour
6257 JSR &FFEE
6258 RTS
6259]
6260 ENDPROC

Program 11.7. PROCcolour - performs COLOUR.

Program 11.8 shows how the background colour can be redefined using
VDU17 again. Essentially the program is the same as its predecessor. To
stipulate a background colour, however, the most significant bit of the
colour byte must be set. In everyday terms, this simply means adding
128 to the colour value. After passing the background colour to the VDU
driver (lines 6276 to 6277) the screen must be cleared. This is facilitated
simply by printing the equivalent of a VDU12 (lines 6278 to 6279). The
demo program initialises a red MODE 2 screen.

 10 REM ** * DO BACKGROUND COLOUR ** *
 20 REM ** * SET RED BACKGROUND ** *
 30 PROCbackgrnd (129 ,&C00)
 40 MODE 2
 50 CALL backgrnd
 60 END
 70 :
6270 DEF PROCbackgrnd (back_co l ,addr)
6271 P%=addr
6272 [
6273 .backgrnd
6274 LDA #17
6275 JSR &FFEE
6276 LDA #back_co l
6277 JSR &FFEE
6278 LDA #12
6279 JSR &FFEE
6280 RTS
6281]
6282 ENDPROC

Program 11.8. PROCbackgrnd - changes the mode background colour.

118 The BBC Micro Machine Code Portfolio

Performing GCOL is almost as easy, however. The GCOL statement
requires two parameters. After issuing VDU18 first, the byte depicting
the action required (i.e. AND, OR, EOR) should be passed to OSWRCH
followed by the colour. These bytes are shown in Program 11.9 as
'action' and 'colour' and the associated demo program (lines 10 to 70) set
up a flashing black and white diagonal line across the MODE 2 screen.

The graphics screen can be cleared from BASIC using the command
CLG. In machine code this is simplicity it selfand only requires the vdu
driver to print the code 16 through OSWRCH. Program 11.10
demonstrates this.

 10 REM ** * DO MACHINE CODE GCOL ** *
 20 REM ** * FLASHING B/W L INE * * *
 30 PROCgco l (0 ,8 ,&C00)
 40 MODE 2
 50 CALL gco l
 60 MOVE 0 ,0 :DRAW 1000,1000
 70 END
 80 :
6285 DEF PROCgco l (ac t ion ,co lour ,addr)
6286 P%=addr
6287 [
6288 .gco l
6289 LDA #18
6290 JSR &FFEE
6291 LDA #ac t ion
6292 JSR &FFEE
6293 LDA #co lour
6294 JSR &FFEE
6295 RTS
6296]
6297 ENDPROC

Program 11.9. PROCgcol - performs GCOL.

 10 REM**CLEAR GRAPHICS SCREEN -CLG**
 20 PROCclg (&C00)
 30 MODE 2
 40 COLOUR129
 50 CLS
 60 PRINT"PRESS A KEY TO CLEAR SCREEN"
 70 A=GET
 80 CALL &C00
 90 END
 100 :
6300 DEF PROCclg (addr)
6301 P%=addr

119Vision On

6302 [
6303 .c lear_graph ics
6304 LDA #16
6305 JSR &FFEE
6306 RTS
6307]
6308 ENDPROC

Program 11.10. PROCclg - performs CLG.

Programming the palette is done as in BASIC using VDU 19 in the
form:

VDU 19, log, phy, 0,0,0

where 'log' and 'phy' refer to the logical and physical colours
respectively. Program 11.11 shows how this is translated into assembler.
After the 19 is printed (lines 6314 and 6315) the logical and physical
colour codes are passed to OSWRCH (lines 6316 to 6319) followed by
the three padding zeros (lines 6320 to 6323) reserved for future
expansion, whatever that is! Once again, the values passed into the
procedure for 'log' and 'phy' are interpreted as immediate values by the
assembler.

The lines 10 to 110 show how the procedure is used in this case to re-
set the current screen background logical colour to each physical colour
in turn.

 10 REM ** * DO VDU 19 * * *
 20 REM** GO FRU ALL COLOURS **
 30 MODE 2
 40 FOR loop=1 TO 15
 50 PROCchange_pa le t te (0 , loop ,&C00)
 60 CALL chgpa le t te
 70 FOR N=0 TO 999:NEXT
 80 NEXT
 90 PROCchange_pa le t te (0 ,0 ,&C00)
 100 CALL chgpa le t te
 110 END
 120 :
6310 DEF PROCchange_pa le t te (log ,phy ,ad
dr)
6311 P%=addr
6312 [OPT 2
6313 .chgpa le t te
6314 LDA #19
6315 JSR &FFEE
6316 LDA # log
6317 JSR &FFEE

120 The BBC Micro Machine Code Portfolio

6318 LDA #phy
6319 JSR &FFEE
6320 LDA #0
6321 JSR &FFEE
6322 JSR &FFEE
6323 JSR &FFEE
6324 RTS
6325]
6326 ENDPROC

Program 11.11. PROCchange_palette - reprograms the palette using
OSWORD.

Read it write!

Occasionally it is useful to be able to know the last two sets of
coordinates visited by the graphics cursor, so Acorn have implemented
an OSWORD call to enable this feat. The call code is 13 and as with all
OSWORD calls an address held with the index registers points to a
parameter block where in this case OSWORD deposits the required
information, Figure 11.4 details the information contained in the block
after the call and Program 11.12 the technique. Lines 10 to 140
demonstrate the call by first moving the graphics cursor to a new
positions on the MODE 4 screen before calling the procedure and
reading its eight-byte result from the parameter block which in this
instant is in zero page.

XY+0 : previous X coordinate LSB
XY+1 : previous X coordinate MSB
XY+2 : previous Y coordinate LSB
XY+3 : previous Y coordinate MSB
XY+4 : current X coordinate LSB
XY+5 : current X coordinate MSB
XY+6 : current Y coordinate LSB
XY+7 : current Y coordinate MSB

Fig. 11.4. OSWORD 13 parameter block for reading last two graphics
coordinates.

 10 REM ** * READ LAST 2 GRAPHICS * * *
 20 REM ** * CURSOR POSITIONS ** *
 30 MODE 4
 40 MOVE 200,200

121Vision On

 50 DRAW 500,500
 60 MOVE 700,700
 70 DRAW 900,900
 80 CLS
 90 PROCgcursor (&70,&C00)
 100 CALL &C00
 110 FOR loop=&70 TO &77
 120 PRINT~loop; " " ;? loop
 130 NEXT loop
 140 END
 150 :
6330 DEF PROCgcursor (b lock ,addr%)
6331 FOR pass=0 TO 3 STEP3
6332 P%=addr%
6333 [OPT pass
6334 LDA #13
6335 LDX #b lock MOD 256
6336 LDY #b lock DIV 256
6337 JSR &FFF1
6338 RTS
6339]
6340 NEXT
6341 ENDPROC

Program 11.12. PROCgcursor - uses OSWORD to read the last two
graphics coordinates.

The condition of any pixel on the screen can also be read using
OSWORD with the accumulator holding 9 - in effect, mimicking
BASIC's POINT command (see Program 11.13). Before calling the
operating system routine, the obligatory parameter block (detailed in
Figure 11.5) must have some relevant details placed into it, namely the
X,Y coordinates of the byte to be tested. Each coordinate uses two bytes
ofthe parameter block and these are derived in lines 6345 to 6361 ofthe
procedure. The procedure again assumes that the actual coordinates, and
not an address containing them, are passed through the variable X and Y.
Each byte is then stored in the relevant parameter block location. After
seeding the parameter block address into the index registers (lines 6362
to 6364) thc OSWORD call is performed leaving the logical colour of
the craordinate in the fifth block of the parameter block - or &FF if the
print was off of the screen.

 10 REM READ PIXEL VALUES
 20 PROCpixe l (&70,100,100,&C00)
 30 MODE 2
 40 CALL&C00
 50 PRINT~b lock?4

122 The BBC Micro Machine Code Portfolio

 60 END
 70 :
6350 DEF PROCpixe l (b lock ,X ,Y ,addr)
6351 FOR pass=0 TO 3 STEP3
6352 P%=addr
6353 [OPT pass
6354 LDA #X MOD 256
6355 STA b lock
6356 LDA #X DIV 256
6357 STA b lock+1
6358 LDA #Y MOD 256
6359 STA b lock+2
6360 LDA #Y DIV 256
6361 STA b lock+3
6362 LDX #b lock MOD 256
6363 LDY #b lock DIV 256
6364 LDA #9
6365 JSR &FFF1
6366 RTS
6367]
6368 NEXT
6369 ENDPROC
6332 P%=addr%
6333 [OPT pass
6334 LDA #13
6335 LDX #b lock MOD 256
6336 LDY #b lock DIV 256
6337 JSR &FFF1
6338 RTS
6339]
6340 NEXT
6341 ENDPROC

Program 11.13. PROCpixel - reads the state of a screen pixel.

XY+0 : X coordinate LSB
XY+1 : X coordinate MSB
XY+2 : Y coordinate LSB
XY+3 : Y coordinate MSB
XY+4 : Logical colour of point, &FF if point off screen.

Fig. 11.5. OSWORD 9 parameter block to perform POINT.

 10 REM ** * READ COLOUR PALETTE ** *
 20 MODE 4
 30 VDU19,1 ,3 ,0 ,0 ,0

123Vision On

 40 PROCreadpa le t te (&70,&C00,1)
 50 CALL &C00
 60 PRINT"Log ica l co lour : " ;?&70
 70 PRINT"Phys ica l co lour : " ;?&71
 80 END
 90 :
6380 DEF PROCreadpa le t te (b lock , addr%,
L%)
6381 FOR pass=0 TO 3 STEP 3
6382 P%=addr%
6383 [OPT pass
6384 LDA #L%
6385 STA b lock
6386 LDA #11
6387 LDX #b lock MOD 256
6388 LDY #b lock DIV 256
6389 JSR &FFF1
6390 RTS
6391]
6392 NEXT pass
6393 ENDPROC

Program 11.14. PROCreadpalette - reads the physical colour associated with a
logical colour.

The colour palette can itself be read using an OSWORD 11 as shown in
Program 11.14. The logical colour to be read should be placed into the
five-byte parameter block. After the call, the physical colour currently
assigned to the logical colour is in the second byte of the parameter
block. The remaining three parameter block bytes contain zero - yes, for
future expansion! The BASIC demo uses the call to read the physical
colour assigned to logical colour 1 on the MODE 4 screen, this having
been defined prior to the call in line 30 as 3.

Program 11.15 performs the operation in the reverse direction by
writing to the palette using OSWORD 12. The parameter block is
identical to that in a read operation except that the physical colour to be
written must also be placed into the parameter block. The procedure
passes both logical and physical colours to the assembler through the
variables L% and PY%. The demo resets the MODE 4 logical colour 0,
the background colour, to physical colour yellow, thereby performing an
instant change in background colour.

 10 REM ** * WRITE TO PALETTE ** *
 20 MODE 4
 30 PROCwr i tepa le t te (&70,0 ,3 ,&C00)
 40 CALL &C00
 50 END
 60 :
6400 DEF PROCwr i tepa le t te (b lock ,L%,PY%

124 The BBC Micro Machine Code Portfolio

,addr%)
6401 P%=addr%
6402 [
6403 LDA # L%
6404 STA b lock
6405 LDA # PY%
6406 STA b lock+1
6407 LDA #0
6408 STA b lock+2
6409 STA b lock+3
6410 STA b lock+4
6411 LDA #12
6412 LDX #b lock MOD 256
6413 LDY #b lock DIV 256
6414 JSR &FFF1
6415 RTS
6416]
6417 ENDPROC

Program 11.15. PROCwritepalette - performs VDU 19.

Co-ordinating screen addresses

The final routine in this chapter, Program 11.16, utilises the BASIC
interpreter's *640 table at &C357 to convert an XY coordinate position
on the screen (MODES 0, 1 and 2 only) into an absolute memory
address. The table is a 32 byte by 2 byte affair which, unusually, is
presented high byte first.

 10 REM ** CONVERT X,Y TO ADDRESS **
 20 PROCxyaddr (&80, &72, &71,&900)
 30 REPEAT
 40 INPUT"What i s the X ax is va lue - 0
to 79 "?&71
 50 INPUT' ' "What i s the Y ax is va lue -
0 to 255 "?&72
 60 CALLCODE
 70 PRINT~?&80+?&81*256
 80 UNTIL0
 90 :
6500 DEFPROCxyaddr (vec to r , yax is , xax is
, addr)
6501 FORI%=0TO2 STEP2
6502 P%=addr
6503 [OPTI%
6504 .CODE
6505 LDA#0
6506 STA vec to r

125Vision On

6507 STA vec to r+2
6508 LDA#&30
6509 STA vec to r+1
6510 LDA yax is
6511 AND#7
6512 STA yax is +1
6513 EOR yax is
6514 LSRA
6515 LSRA
6516 TAY
6517 INY
6518 LDA&C375,Y
6519 CLC
6520 ADC vec to r
6521 ADC yax is +1
6522 STA vec to r
6523 DEY
6524 LDA&C375,Y
6525 ADC vec to r+1
6526 STA vec to r+1
6527 LDA xax is
6528 LDX#3
6529 .LOOP
6530 ASLA
6531 ROL vec to r+2
6532 DEX
6533 BNE LOOP
6534 ADC vec to r
6535 STA vec to r
6536 LDA#0
6537 ADC vec to r+2
6538 ADC vec to r+1
6539 STA vec to r+1
6540 LDY#0
6541 LDA#&FF
6542 STA(vec to r) ,Y
6543 RTS
6544]
6545 NEXT
6546 ENDPROC

Program 11.16. PROCxy_addr - converts an X,Y coordinate into a screen
address.

The program begins by clearing a few bytes of memory (lines 6505 to
6509) and setting vector to the start screen address. The MOD 8 value of
the 'yaxis' is then calculated along with the DIV 8 value (lines 6510 to
6513). The actual value to be calculated is. in fact, Y DIV 8 *640.
However, since the table values are two-byte the DIV is restricted to 4
(lines 6514 to 6516). The accumulator is transferred into the Y register

126 The BBC Micro Machine Code Portfolio

to get the index into the table, and is subsequently incremented to get the
second, low byte (lines 6516 to 6518). The low byte is added to give Y
axis MOD 8 (lines 6519 to 6522) and after extracting the high byte from
the table this is added to give Y axis DIV 8 *640 (lines 6523 to 6527).
Finally, the X axis value is multiplied by 8 and any bits falling off are
caught in 'vector+3' (lines 6528 to 6533). This is then added to the low
byte of the screen address to give the final address (lines 6534 to 6539).
By way of demonstration, &F is then poked into screen memory at this
point: to see this the program will need to be run in MODE 2 (lines 6540
to 6542).

Program fact sheets

Program 11.1

Procedure title : PROCmode
Variables required : action, addr
Line numbers : 6000 to 6010
Length : 11 bytes
Zero page requirements : none
Registers changed : A

Program 11.2

Procedure title : PROCmode2A
Variables required : addr
Line numbers : 6100 to 6170
Length : 153 bytes
Zero page requirements : none
Registers changed : A, X

Program 11.3

Procedure title : PROCmode5A
Variables required : addr
Line numbers : 6020 to 6049
Length : 58 bytes
Zero page requirements : none
Registers changed : A

127Vision On

Program 11.4

Procedure title : PROCmove
Variables required : xpos, ypos, addr
Line numbers : 6180 to 6198
Length : 31 bytes
Zero page requirements : none
Registers changed : A

Program 11.5

Procedure title : PROCdraw
Variables required : xcord, ycord, addr
Line numbers : 6200 to 6218
Length : 31 bytes
Zero page requirements : none
Registers changed : A

Program 11.6

Procedure title : PROCplot
Variables required : code, xcord, ycord, addr
Line numbers : 6220 to 6238
Length : 31 bytes
Zero page requirements : none
Registers changed : A

Program 11.7

Procedure title : PROCcolour
Variables required : print_colour, addr
Line numbers : 6250 to 6260
Length : 11 bytes
Zero page requirements : none
Registers changed : A

Program 11.8

Procedure title : PROCbackgrnd
Variables required : back_col, addr
Line numbers : 6270 to 6282
Length : 16 bytes
Zero page requirements : none
Registers changed : A

128 The BBC Micro Machine Code Portfolio

Program 11.9

Procedure title : PROCgcol
Variables required : action, colour, addr
Line numbers : 6285 to 6297
Length : 16 bytes
Zero page requirements : none
Registers changed : A

Program 11.10

Procedure title : PROCclg
Variables required : addr
Line numbers : 6300 to 6308
Length : 6 bytes
Zero page requirements : norie
Registers changed : A

Program 11.11

Procedure title : PROCchange_palette
Variables required : log, phy, addr
Line numbers : 6310 to 6326
Length : 27 bvtes
Zero page requirements : none
Registers changed : A

Program 11.12

Procedure title : PROCgcursor
Variables required : block, addr
Line numbers : 6330 to 6341
Length : 10 bytes
Zero pagc requirements : none
Registers changed : A, X, Y

Program 11.13

Procedure title : PROCpixel
Variables required : block, X, Y, addr
Line numbers : 6350 to 6369
Length : 26 bytcs

129Vision On

Zero page requirements : none
Registers changed : A, X, Y

Program 11.14

Procedure title : PROCreadpalette
Variables required : block, addr, L%
Line numbers : 6380 to 6393
Length : 14 bytes
Zero pagc requirements : none
Registers changed : A, X, Y

Program 11.15

Procedure title : PROCwritepalette
Variables required : block, L%, PY%, addr
Line numbers : 6400 to 6417
Length : 26 bytes
Zero page requirements : none
Registers changed : A, X, Y
Vision On129

Program 11.16

Procedure title : PROCxy_addr
Variables required : vector, yaxis, xaxis, addr
Line numbers : 6500 to 6545
Length : 69 bytes
Zero page requirements : 6 bytes
Registers changed : A, X, Y

130 The BBC Micro Machine Code Portfolio

131Vision On

Chapter Twelve
Assembling Data and
Lists

Most programs written by most advanced BASIC programmers require
the manipulation of data at some stage. Everyday life revolves around
manipulating data and lists correctly. A telephone directory or an address
book are samples of ordered lists (though a look at my address book
with its loose and sellotaped pages would make you think otherwise!)
whereby each entry is in alphabetical order. Searching through the pages
for a particular address or phone number is quite simple. Imagine the
problems if these entries were unordered.

Performing searches, adding and deleting items from lists and sorting
in machine code is not as easy as its BASIC counterparts. The
procedures in this chapter cover each of these aspects and should
provide you with the basis for most of the data handling you require.

The programs provided in this chapter are:

Program 12.1: Byte search.
Program 12.2: Add a byte to an ordered list.
Program 12.3: Delete a byte from an ordered list.
Program 12.4: Find minimum and maximum values in an unordered list.
Program 12.5: Delete a byte from an unordered list.
Program 12.6: Access a byte in a one-dimensional byte array.
Program 12.7: Access a byte in a two-dimensional byte array.
Program 12.8: Access a word from a one-dimensional word array.
Program 12.9: Four-byte signed integer sort.
Program 12.10: Form new list from an old list of every nth element.
Program 12.11: Perform quicksort on a fbur-byte integer array.

Byte search

Program 12.1 provides a single-byte binary search algorithm through an
ordered list. Just to clarify, an ordered list is a list in which its element

are arranged in an ascending order. For example,

1,2,3,4,5,6. . .

would be an example of an ordered list, whereas

4,9,2,6,8,12,34,2,1,0. . .

is an example of an unordered list.
Because the list is ordered, it is not necessary for the machine code to

search through the entire list. What the binary search technique does is
to divide the list into half, calculate which half the search byte is in and
divide this section in half again. This process continues until the search
byte is located by zeroing in on it.

 10 REM ** * S INGLE BYTE BINARY SEARCH

 20 PROCbin_search (&70,&71,&73,&74,&A
00)
 30 FOR loop=0 TO 150
 40 loop?&4001= loop
 50 NEXT loop
 60 ?&4000=150
 70 !&71=&4000
 80 ?&70=75
 100 CALL b in_search
 110 RESULT%=?&73
 120 IF RESULT%=0 PRINT"NOT FOUND" : EN
D
 130 PRINT"BYTE LOCATED AT +" ;RESULT%
 140 end
 150 :
7000 DEF PROCbin_search (by te , l i s t ,pos ,
temp,addr)
7001 FOR PASS=0 TO 3 STEP 3
7002 P%=addr
7003 [
7004 OPT PASS
7005 .b in_search
7006 LDY #0
7007 LDA (l i s t) ,Y
7008 STA pos
7009 STA temp
7010 INY
7011 .nex t_by te
7012 LSR pos
7013 BNE no t_ f in ished
7014 BCS over
7015 RTS
7016 .no t_ f in ished

132 The BBC Micro Machine Code Portfolio

7017 BCC over
7018 INC pos
7019 .over
7020 LDA (l i s t) ,Y
7021 CMP by te
7022 BEQ by te_ found
7023 BCS sub_ inc
7024 TYA
7025 ADC pos
7026 CMP temp
7027 BEQ equa l
7028 BCS nex t_by te
7029 .equa l
7030 TAY
7031 JMP nex t_by te
7032 .sub_ inc
7033 TYA
7034 SBC pos
7035 BEQ nex t_by te
7036 BCS se t
7037 BMI nex t_by te
7038 .se t
7039 TAY
7040 JMP nex t_by te
7041 .by te_ found
7042 STY pos
7043 RTS
7044]
7045 NEXT
7046 ENDPROC

Program 12.1. PROCbin_search - performs a binary search on an ordered list.

The program searches the list looking for the 8-bit value held in 'byte'.
The list is addressed indirectly so the vector 'list' is used to hold its
address, &4000 in the demo. Note that the very first byte of the list is
not, in fact, an element but the length of the list itself. The list proper
therefore starts at (list)+1. The variable 'pos' is used to return the
position of the element in the list; if this byte contains 0 it means that the
element was not found. Remember that a value of 1 would be returned if
the element was the very first in the list.

The binary search begins by obtaining the length of the list from the
length of list element (lines 7005 to 7009). The search proper is then
begun by executing a logical shift right on the list length byte in 'pos'
(line 7012), thus dividing it by two. A result of zero indicates that the list
does not contain the element being searched for and the RTS of line
7015 returns back to the calling routine leaving 'pos' holding zero. If the
carry flag is set, control continues from 'over' (line 7019). The INC

133Assembling Data and Lists

instruction of line 7018 is used to round any odd numbers up to an even
one should the division have left an odd value in 'pos'.

The byte comparison is nothing unusual. If the byte is found, the
branch to 'byte_found' is performed (line 7022) where the Y register's
contents art; placed in 'pos' and an RTS performed (lines 7041 to 7043).
If the byte is not located then the program needs to determine which half
of the section in which it is located contains the byte so that the program
can halve that section. Assuming that the byte is larger than the element
tested, the branch to 'sub_inc' is performed (line 7023). Here the current
'pos' is subtracted from the Y register, now transferred into the
accumulator (lines 7032 to 7034) resulting in the lower portion of the list
half being searched for the 'byte'. If, on the other hand, the byte is less
than the element tested the branch does not take place and the 'pos' is
added to the Y register so that the search continues in the upper section
of the list half (lines 7024 to 7028).

The demo section of the program (lines 30 to 130) shows how the
data needs to be set up before calling the subroutine. The procedural call
assembles the routine at &A00 using five locations in zero page for
variable storage, though only 'list' need be there. The FOR. . .NEXT
loop then pokes an ordered list into memory from &4000 placing the
number of elements in the list, 150, into the first byte (lines 30 to 60),
before placing the address ofthe list in 'list' (line 70). The byte to be
searched for - in this case 75 - is then poked into location &70 as this
corresponds to 'byte'. After running the program, the result returned is

BYTE LOCATED AT +76

which is correct because 75+1=76.

An ordered addition

Figure 12.1 flowcharts very simply the steps required in adding an
element to a list of ordered elements. It would be easy to look through
each item in the list in turn, starting with the first element, moving onto
the next and so forth until a number less than the byte and greater 134
The BBC Micro Machine Code Portfolio than the byte to be added is
found. A space can be made for the byte by moving the distal portion of
the list up memory by a byte, and the byte is inserted. This is not
particularly efficient especially as we now have a binary search
subroutine to hand! Program 12.2 combines Program 12.1, further
illustrating the use of procedures to assemble segments of code, while
the procedure PROCordered_add uses 'bin_search' as a subroutine call

134 The BBC Micro Machine Code Portfolio

(line 7155) to locate the desired position of the new element to be added.

START

END

INCREMENT
LIST

LENGTH

ADD
NEW

ENTRY TO
LIST

MOVE DISTAL
MEMORY

UP BY ONE
BYTE

CALCULATE
POSITION
OF NEW
ENTRY

Fig. 12.1. Flowchart for PROCordered_add.

 10 REM ** * ADDITION OF AN ELEMENT TO

 20 REM ** * AN ORDERED L IST

 30 PROCbin_search (&70,&71,&73,&74,&3
000)
 40 addr=P%
 50 PROCordered_add(&70,&71,&73,&74,ad
dr)
 60 FOR loop=0 TO 254 STEP2
 70 ? (&4000+(loop /2))= loop

135Assembling Data and Lists

 80 NEXT
 90 ?&4000=127
 100 !&71=&4000
 110 ?&70=221
 120 FOR N=&4000 TO (&4000+128)
 130 PRINT ~N; " " ;?N
 140 NEXT
 150 PRINT"Press a key to execu te "
 160 A=GET
 170 CALL add_e lement
 180 FOR N=&4000 TO (&4000+128)
 190 PRINT ~N; " " ;?N
 200 NEXT
 210 END
 220 :
7100 DEF PROCbin_search (by te , l i s t ,pos ,
temp,addr)
7101 FOR PASS=0 TO 3 STEP 3
7102 P%=addr
7103 [
7104 OPT PASS
7105 .b in_search
7106 LDY #0
7107 LDA (l i s t) ,Y
7108 STA pos
7109 STA temp
7110 INY
7111 .nex t_by te
7112 LSR pos
7113 BNE no t_ f in ished
7114 BCS over
7115 RTS
7116 .no t_ f in ished
7117 BCC over
7118 INC pos
7119 .over
7120 LDA (l i s t) ,Y
7121 CMP by te
7122 BEQ by te_ found
7123 BCS sub_ inc
7124 TYA
7125 ADC pos
7126 CMP temp
7127 BEQ equa l
7128 BCS nex t_by te
7129 .equa l
7130 TAY
7131 JMP nex t_by te
7132 .sub_ inc
7133 TYA
7134 SBC pos
7135 BEQ nex t_by te
7136 BCS se t

136 The BBC Micro Machine Code Portfolio

7137 BMI nex t_by te
7138 .se t
7139 TAY
7140 JMP nex t_by te
7141 .by te_ found
7142 STY pos
7143 RTS
7144]
7145 NEXT
7146 X=addr
7147 ENDPROC
7148 :
7149 DEF PROCordered_add(by te , l i s t ,pos ,
temp,addr)
7150 FOR PASS=0 TO 3 STEP 3
7151 P%=addr
7152 [
7153 OPT PASS
7154 .add_e lement
7155 JSR b in_search
7156 LDA pos
7157 BNE present
7158 STY pos
7159 SEC
7160 LDA temp
7161 SBC pos
7162 TAX
7163 LDA by te
7164 CMP (l i s t) ,Y
7165 BCS grea te r
7166 INY : INX
7167 JMP ge t_ index
7168 .g rea te r
7169 INC pos
7170 CPX #0
7171 BEQ enter_e lement
7172 .ge t_ index
7173 LDY temp
7174 .nex t_e lement
7175 LDA (l i s t) ,Y
7176 INY
7177 STA (l i s t) ,Y
7178 DEY
7179 DEY
7180 DEX
7181 BNE nex t_e lement
7182 .en te r_e lement
7183 LDA by te
7184 LDY pos
7185 STA (l i s t) ,Y
7186 INC temp
7187 LDA temp

137Assembling Data and Lists

7188 LDY #0
7189 STA (l i s t) ,Y
7190 .p resent
7191 RTS
7192]
7193 NEXT
7194 ENDPROC

Program 12.2. PROCordered_add - adds a value to an ordered list.

The PROCordered_add procedure (lines 7149 to 7194) uses the same
variables/locations as the binary search procedure. Before it is called, the
machine code assembled by the former expects to find the element to be
added to the ordered list in 'byte' ,the location ofthe list in 'list' and the
first byte ofthe list stating the number of elements in the list.

After the 'bin_search' subroutine call, the accumulator' scontents are
loaded with 'pos'. Remember, if the list did not contain the byte being
searched out, this will be zero. Ifthe byte is non-zero, the list already
contains the element and need not be added - therefore the branch to
'present' (line 7157) is performed and the program completes. If the byte
is zero the byte is not present, and the Y register holds the position of the
last element to be examined before the search was exited. As it happens,
this also corresponds to the position in the list where the binary search
routine expected to find it! The Y register is therefore saved in 'pos' (line
7158) and the position whcrc the byte to be added is to one side of this
element.

Before the routine locates exactly where the byte is to be added it
must first calculate how many elements must be moved up a byte to
make space for the new addition. This is really quite simple as it just
requires 'pos' to be subtracted from 'temp' (lines 7159 to 7161), where
'temp' is used to hold the list's length. The result is then transferred
across into the X register (line 7162) to act as a loop counter when the
move takes place.

Calculating the exact position of the byte in the list is facilitated with
a simple comparison with the element pointed to by the Y register index
(line 7164). If this sets the carry flag, the position is immediately
following the element pointed to by the index register Therefore the
branch to 'greater' is performed (line 7165) where 'pos' is incremented.
The compare X with zero instructions (lines 7170 to 7171) test to see
whether the entry position will be outside the list in which case no space
needs to be made for it. If the comparison clears the carry flag then after
incrementing the X register (line 7166) a jump is performed.

Moving the upper section of the list is straightforward. Starting with
the highest element, each byte is read, the Y register incremented and the
byte stored (lines 7172 to 7177). Subtracting two from the Y register

138 The BBC Micro Machine Code Portfolio

restores the index at the next byte, while the X register acting as counter
is decremented to signify one less element to move (lines 7178 to 7181).
Ensuring that the move is performed in the reverse order, down memory,
is important so as not to overwrite other elements in the list before they
are also transferred!

Finally, the 'enter_element' routine pokes the new element into its
correct position and the number of elements in the list is updated by
adding one to it (lines 7182 to 7189).

The BASIC demo provides details on the ordered add routine's use.
The two sections of assembler are assembled (lines 30 to 50) passing the
value of the program counter through 'addr' to ensure that the two
subroutines occupy successive bytes in memory. The FOR...NEXT loop
then pokes an ordered list into memory from &4000 which consists of
only even numbers (lines 60 to 80). Lines 90 and 100 set up the number
of elements in the list and the 'list' vector itself. The value to be inserted
into the list. 221 - an odd number - is then poked into 'byte'.

The entire contents of the list are then printed out to ensure that only
even numbers in steps of two are present (lines120 to160). After the 'add
_element' call the list is reprinted and the new element can be seen at the
top of the screen (lines 170 to 210).

An ordered delete

Deleting an element from an ordered list is performed simply by using a
slightly modified Program 12.2. All that is required is first to find the
position of the element in the list using the 'bin_search' routine and then
move all the elements distal to the byte down memory by one, thereby
overwriting the byte to be deleted. Program 12.3 lists the delete program
in its entirety while the BASIC demo is similar to the one previously
described.

 10 REM ** * DELETE AN ENTRY FROM WITHI
N * * *
 20 REM ** * AN ORDERED L IST

 30 PROCbin_search (&70,&71,&73,&74,&3
000)
 40 addr=P%
 50 PROCordered_de l (&70,&71,&73,&74,ad
dr)
 60 FOR N%=0 TO 200
 70 ? (&4001+N%)=N%
 80 NEXT

139Assembling Data and Lists

 90 ?&70=179
 100 ?&4000=200
 110 !&71=&4000
 120 CALL de l_e lement
 130 FOR N%=0 TO 200
 140 PRINT~(N%+&4001) ; " " ;? (N%+&4001)
 150 NEXT
 160 END
 170 :
7200 DEF PROCbin_search (by te , l i s t ,pos ,
temp,addr)
7201 FOR PASS=0 TO 3 STEP 3
7202 P%=addr
7203 [
7204 OPT PASS
7205 .b in_search
7206 LDY #0
7207 LDA (l i s t) ,Y
7208 STA pos
7209 STA temp
7210 INY
7211 .nex t_by te
7212 LSR pos
7213 BNE no t_ f in ished
7214 BCS over
7215 RTS
7216 .no t_ f in ished
7217 BCC over
7218 INC pos
7219 .over
7220 LDA (l i s t) ,Y
7221 CMP by te
7222 BEQ by te_ found
7223 BCS sub_ inc
7224 TYA
7225 ADC pos
7226 CMP temp
7227 BEQ equa l
7228 BCS nex t_by te
7229 .equa l
7230 TAY
7231 JMP nex t_by te
7232 .sub_ inc
7233 TYA
7234 SBC pos
7235 BEQ nex t_by te
7236 BCS se t
7237 BMI nex t_by te
7238 .se t
7239 TAY
7240 JMP nex t_by te
7241 .by te_ found
7242 STY pos

140 The BBC Micro Machine Code Portfolio

7243 RTS
7244]
7245 NEXT
7246 X=addr
7247 ENDPROC
7248 :
7249 DEF PROCordered_de l (by te , l i s t ,pos ,
temp,addr)
7250 FOR PASS=0 TO 3 STEP 3
7251 P%=addr
7252 [
7253 OPT PASS
7254 .de l_e lement
7255 JSR b in_search
7256 LDA pos
7257 BEQ a l l_done
7258 INY
7259 .nex t_e lement
7260 LDA (l i s t) ,Y
7261 DEY
7262 STA (l i s t) ,Y
7263 INY
7264 INY
7265 CPY temp
7266 BCC nex t_e lement
7267 BEQ nex t_e lement
7268 LDA temp
7269 SBC #1
7270 LDY #0
7271 STA (l i s t) ,Y
7272 .a l l_done
7273 RTS
7274]
7275 NEXT
7276 ENDPROC

Program 12.3. PROCordered_del - deletes a value from an ordered list.

A maximum minimum

The ability to be able to locate the maximum and minimum values in a
list is important for example, in processing data from the ADVAL
channels to determine a range of results. Program 12.4 performs this
task on an unordered list; in an ordered list these would be the last and
first bytes respectively in the list!

 10 REM ** * F IND MINIMUM AND MAXIMUM *
* *

141Assembling Data and Lists

 20 REM ** * VALUES IN AN UNORDERED L IS
T * * *
 30 PROCmax_min_ l i s t (&70,&71,&72,&C00)
 40 !&72=&4000
 50 FOR loop=1 TO 100
 60 loop?&4000=RND(255)
 70 NEXT
 80 ?&4000=100
 90 CALL minmax
 100 PRINT "Min imum va lue was : " ;?&70
 110 PRINT "Max imum va lue was : " ;?&71
 120 END
 130 :
7300 DEF PROCmax_min_ l i s t (m in ,max, l i s t ,
addr)
7301 FOR PASS=0 TO 3 STEP 3
7302 P%=addr
7303 [OPT PASS
7304 .m inmax
7305 LDY #0
7306 LDA (l i s t) ,Y
7307 TAX
7308 INY
7309 LDA (l i s t) ,Y
7310 STA min
7311 STA max
7312 .nex t_by te
7313 DEX
7314 BEQ a l l_done
7315 INY
7316 LDA (l i s t) ,Y
7317 CMP min
7318 BCS tes t_max
7319 STA min
7320 . tes t_max
7321 CMP max
7322 BCC nex t_by te
7323 BEQ nex t_by te
7324 STA max
7325 JMP nex t_by te
7326 .a l l_done
7327 RTS
7328]
7329 NEXT
7330 ENDPROC

Program 12.4. PROCmax_min_list - finds the maximum and minimum values
in an unordered list.

The routine finds these values by taking the first element from the list
and then using this initially as the maximum and minimum values. Then
each of the remaining elements in the list are compared in turn. If an

142 The BBC Micro Machine Code Portfolio

element is found to be larger than the present maximum value it
becomes the new maximum value. Similarly, if an element is located
that is smaller than the current minimum value it takes the current
minimum value's place. When the last element in the list has been
sampled, the maximum and minimum values have been located.

The 'minmax' routine performs this get and compare procedure. The
address of the unordered list is held within the vector 'list' while the
variables 'min' and 'max' are used as stores for the two extremes. As with
the previous list operations, the first byte in the list holds its length. The
subroutine begins by accessing this length byte and moving it across into
the X register to act as a counter after which the first element is read and
placed in the two variable stores (lines 7304 to 7311).

The main loop of the program is entered at line 7312. The X register
counter is decremented, and if zero all the elements have been shifted
through so the program exits (lines 7313 to 7314). The indexing register
is incremented and the next element in the list sought (lines 7315 to
7316). The element in the accumulator is then tested against that in 'min'.
If this clears the carry flag a smaller element is indicated so this is stored
as the new minimum value. If the carry is set by the comparison a larger
value than 'min' is indicated so a branch to 'test_max' is performed (lines
7318 to 7320). Here, a comparison against 'max' takes place. If the byte
in the accumulator is found to be greater, it is stored at 'max' ,otherwise
the next element in the list is sought out (lines 7321 to 7325).

The BASIC primer pokes 100 random single-byte values into a list
starting at &4000 (lines 50 to 70) and the maximum and minimum
values are ascertained by the 'minmax' routine.

An un-ordered delete

Program 12.5 shows how a byte can be deleted from an unordered list.
Because the list is unordered, the binary search technique employed in
the ordered lists cannot be used; instead, starting at the front of the list,
each byte must be compared in turn. Once the byte is located, all that is
required is to move all the distal elements remaining down through
memory by a single byte, thus overwriting the deleted byte.

 10 REM ** * DELETE ITEM FROM UNORDERED
LIST * * *
 20 PROCunordered_de l (&70,&71,&C00)
 30 ?&70=255
 40 !&71=&4000
 50 FOR N=1 TO 100
 60 ? (&4000+N)=N

143Assembling Data and Lists

 70 ?&4000=100
 80 NEXT
 90 ?&4050=255
 100 FOR N=&4000 TO &4064
 110 PRINT~N;" " ;?N
 120 NEXT
 130 A=GET
 140 CALL &C00
 150 FOR N=&4000 TO &4064
 160 PRINT~N;" " ;?N
 170 NEXT
 180 END
 190 :
7400 DEF PROCunordered_de l (by te , l i s t ,ad
dr)
7401 FOR PASS=0 TO 3 STEP3
7402 P%=addr
7403 [OPT PASS
7404 LDY #0
7405 LDA (l i s t) ,Y
7406 TAX
7407 LDA by te
7408 .nex t
7409 INY
7410 CMP (l i s t) ,Y
7411 BEQ de le te
7412 DEX
7413 BNE nex t
7414 RTS
7415 .de le te
7416 DEX
7417 BEQ updat
7418 INY
7419 LDA (l i s t) ,Y
7420 DEY
7421 STA (l i s t) ,Y
7422 INY
7423 JMP de le te
7424 .updat
7425 LDA (l i s t ,X)
7426 SBC #1
7427 SYA (l i s t ,X)
7428 RTS
7429]
7430 NEXT
7431 ENDPROC

Program 12.5. PROCunordered_del - deletes a byte from an unordered list.

As with the other list processing programs, the address of the list is held
in the vector 'list' while the first element in the list itself is its length. The
byte to be deleted is placed in 'byte' prior to the call. Note that only the

144 The BBC Micro Machine Code Portfolio

first occurrence of the 'byte' is deleted, not all occurrences.
The BASIC program sets up an unordered list (well, it's actually

ordered but who cares!) and then pokes the value 1155 into location
&4050 (now its unordered!). The list is displayed both prior to and after
the machine code call to show that the e]ement has indeed been deleted
from the list (lines 30 to 170).

First bytes

In many respects, a one-dimensional byte array can be thought of simply
as a list either ordered or unordered. The purpose of Program 12.6 is to
calculate the absolute address of an element in the byte array by
summing the array's base address and index, and then to extract that byte
from the array.

The assembler requires two variables to be passed into it; 'subscript' is
the index into the array while 'array' is its base address. Because
'subscript' is a single-byte value the array may only be a maximum of
256 bytes in length. The addition of 'array' and 'subscript' is performed in
lines 7506 to 7511, then using indirect addressing the element is
extracted and stored in 'subscript' (lines 7513 to 7515).

The BASIC tester sets up an ordered byte array at &4000 then
extracts the 100th element (lines 20 to 90). Note that, unlike a list, the
byte array does not need its length to be placed in the first byte of the
array, which therefore starts from the address given by 'array' rather than
this address plus one.

 10 REM **GET BYTE FROM BYTE ARRAY**
 20 PROCbyte_ar ray (&70,&71,&C00)
 30 FOR ar ray=0 TO 255
 40 ? (a r ray+&4000)=ar ray
 50 NEXT
 60 !&71=&4000
 70 ?&70=100
 80 CALL by te_ar ray
 90 PRINT"E lement in a r ray was : " ;?&70
 100 END
 110 :
7500 DEF PROCbyte_ar ray (subscr ip t ,a r ra
y ,addr)
7501 FOR pass=0 TO 3 STEP 3
7502 P%=addr
7503 [
7504 OPT pass
7505 .by te_ar ray
7506 LDA subscr ip t
7507 CLC

145Assembling Data and Lists

7508 ADC ar ray
7509 STA ar ray
7510 BCC over
7511 INC ar ray+1
7512 .over
7513 LDY #0
7514 LDA (a r ray) ,Y
7515 STA subscr ip t
7516 RTS
7517]
7518 NEXT
7519 ENDPROC

Program 12.6. PROCbyte_array - extracts a value from a one-dimensional byte
array.

Accessing a byte from a two-dimensional byte array is a little less
straightforward as there are two subscripts to take into consideration.
These two subscripts are the row length and the column length. The
resultant program is listed as Program 12.7 and basically it works by
multiplying the row subscript by the row size and then adding the
column subscript to its result. This result is then added to the base.
address of the array to give an absolute address.

 10 REM ** * ACCESSING A TWO DIMENSIONA
L * * *
 20 REM ** * BYTE ARRAY ANYWHERE IN RAM

 30 PROCtwod im_by te(&70,&72,&74,&76,&7
8,&3000)
 40 FOR count=1 TO 32
 50 ? (count+&4000)=count
 60 NEXT
 70 !&70=2
 80 !&72=4
 90 !&74=8
 100 !&78=&4000
 110 CALL twod imbyte
 120 @%=0
 130 PRINT ' ' '
 140 PRINT"Address o f e lement in a r ray :
&" ;
 150 PRINT~!&78 AND &FFFF
 160 PRINT ' ' "By te loca ted here : " ;
 170 PRINT?&70
 180 END
 190 :
7530 DEF PROCtwod im_by te (subscr ip t1 ,su
bscr ip t2 ,sub_s ize , temp,ar ray ,addr)

146 The BBC Micro Machine Code Portfolio

7531 FOR PASS=0 TO 3 STEP 3
7532 P%=addr
7533 [
7534 OPT PASS
7535 . twod imbyte
7536 LDA #0
7537 STA temp
7538 STA temp+1
7539 LDX #17
7540 CLC
7541 .mu l t ip ly
7542 ROR temp+1
7543 ROR temp
7544 ROR subscr ip t1+1
7545 ROR subscr ip t1
7546 BCC no_add
7547 CLC
7548 LDA sub_s ize
7549 ADC temp
7550 STA temp
7551 LDA sub_s ize+1
7552 ADC temp+1
7553 STA temp+1
7554 .no_add
7555 DEX
7556 BNE mul t ip ly
7557 LDA subscr ip t1
7558 CLC
7559 ADC subscr ip t2
7560 STA subscr ip t1
7561 LDA subscr ip t1+1
7562 ADC subscr ip t2+1
7563 STA subscr ip t1+1
7564 LDA ar ray
7565 CLC
7566 ADC subscr ip t1
7567 STA ar ray
7568 LDA ar ray+1
7569 ADC subscr ip t1+1
7570 STA ar ray+1
7571 LDY #1
7572 LDA (a r ray) ,Y
7573 STA subscr ip t1
7574 RTS
7575]
7576 NEXT
7577 ENDPROC

Program 12.7. PROCtwodim_byte - extracts a value from a two-dimensional
byte array.

147Assembling Data and Lists

The program commences by clearing two bytes at 'temp' which will act
as a partial product during the multiplication procedure which is based
on a standard shift and add type of affair. The X register is then
initialised as a counter, to count out the shifts required during the
multiplication (lines 7536 to 7539). The 'multiply' routine (lines 7541 to
7556) then performs the row subscript) (row length multiplication.
When this is completed, the second subscript, the column, is added to
the product of the multiplication (lines 7558 to 7563) and then to the
base address of the array itself (lines 7565 to 7570). Finally, the array
element is loaded into the accumulator and placed at 'subscript1'.

The BASIC program sets up the two-dimensional byte array using
concurrent numbers. Of course, the array is stored physically in memory
as a continuous list but is implemented as depicted in Figure 12.2,
consisting of 4 rows of 8 columns. The position of any point in the array
is given by (row,column), therefore the byte at (2,5) would be 22. The
two-byte subscripts are poked into their two-byte locations at 'subscript1'
and 'subscript2' (lines 70 and 80). Line 90 then places the row length
into the two-byte variable 'sub_size'. After calling the machine code, the
absolute address of the element is extracted from 'array'and the byte that
is located there is printed (lines 110 to 170).

1

9

17

25

2

10

18

26

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

8

16

24

32

COLUMN

ROW 0

1

2

3

0 1 2 3 4 5 6

3

11

19

27

7

Fig. 12.2. Construction of a two-dimensional byte array.

Word arrays

Program 12.8 takes the one-dimensional byte array program a step
further and implements the extraction of a two-byte word from a one-
dimensional word array. As each word entry is two bytes long, all that
the program needs to do to calculate the address of a particular element
is to multiply the subscript by two and then add this to the base address
of the array.

148 The BBC Micro Machine Code Portfolio

 10 REM ** * GET WORD FROM SINGLE WORD
ARRAY ** *
 20 PROCword_ar ray(&70,&72,&C00)
 30 FOR ar ray=0 TO 255
 40 ? (a r ray+&4000)=ar ray
 50 NEXT
 60 !&70=100
 70 !&72=&4000
 80 CALL word_ar ray
 90 PRINT"Word e lement i s : " ; !&70 AND
&FFFF
 100 END
 110 :
7600 DEF PROCword_ar ray (subscr ip t ,a r ra
y ,addr)
7601 FOR pass=0 TO 3 STEP 3
7602 P%=addr
7603 [
7604 OPT pass
7605 .word_ar ray
7606 LDA subscr ip t
7607 ASL A
7608 STA subscr ip t
7609 LDA subscr ip t+1
7610 ROL A
7611 STA subscr ip t+1
7612 CLC
7613 LDA ar ray
7614 ADC subscr ip t
7615 STA ar ray
7616 LDA ar ray+1
7617 ADC subscr ip t+1
7618 STA ar ray+1
7619 LDY #0
7620 LDA (a r ray) ,Y
7621 STA subscr ip t
7622 INY
7623 LDA (a r ray) ,Y
7624 STA subscr ip t+1
7625 RTS
7626]
7627 NEXT
7628 ENDPROC

Program 12.8. PROCword_array - extracts a value from a one-dimensional
word array.

To perform the multiplication on the two-byte subscript, a two-byte shift
left is performed using the ASL/ROL combination (lines 7606 to 7611).
The double subscript is then added to 'array' (lines 7612 to 7618) and the

149Assembling Data and Lists

two-byte word extracted and placed in 'subscript' (lines 7619 to 7624).

Integer sort

Handling single-byte sorts is relatively easy but arrays of multi-bvte
numbers are more complex to handle. Program 12.9 provides an
algorithm to sort a set of four-byte integer numbers stored consecutively
in memory. Note that it assumes signed values.

 10 REM ** * 4 BYTE SIGNED INTEGER SORT

 20 PROCsor t32 (&70,&72,&74,&76,&C00)
 30 INPUT"How many numbers to sor t ? "c
ount
 40 ?&76=count -1
 50 bu f fe r=&4000
 60 ?&74=0:?&75=&40
 70 FOR random=0 TO count -1
 80 ! (bu f fe r+4* random)=RND
 90 NEXT random
 100 CALL &C00
 110 FOR look=0 TO count -1
 120 PRINT ! (bu f fe r+4* look)
 130 NEXT
 140 END
 150 :
7700 DEF PROCsor t32 (one , two,vec to r ,cou
nt ,addr)
7701 FOR pass=0 TO 3 STEP 3
7702 P%=addr
7703 [
7704 OPT pass
7705 .en t ry
7706 LDA vec to r
7707 STA two
7708 LDA vec to r+1
7709 STA two+1
7710 LDA #0
7711 STA loop
7712 .once_more
7713 LDY #0
7714 LDA two+1
7715 STA one+1
7716 LDA two
7717 STA one
7718 CLC
7719 ADC #4
7720 STA two
7721 BCC no_ inc

150 The BBC Micro Machine Code Portfolio

7722 INC two+1
7723 .no_ inc
7724 LDX #4
7725 SEC
7726 .sub t rac t
7727 LDA (two) ,Y
7728 SBC (one) ,Y
7729 INY
7730 DEX
7731 BNE subt rac t
7732 BVC vc lear
7733 EOR #&80
7734 .vc lear
7735 EOR #0
7736 BPL no_swap
7737 DEY
7738 .swap
7739 LDA (one) ,Y
7740 STA s to re
7741 LDA (two) ,Y
7742 STA (one) ,Y
7743 LDA s to re
7744 STA (two) ,Y
7745 DEY
7746 BPL swap
7747 .no_swap
7748 INC loop
7749 LDA loop
7750 CMP count
7751 BNE once_more
7752 DEC count
7753 BNE en t ry
7754 RTS
7755 . loop
7756 EQUS" "
7757 .s to re
7758 EQUS" "
7759]
7760 NEXT
7761 ENDPROC

Program 12.9. PROCsort32 - sorts a list of four-byte values.

The procedure passes four variables used by the assembler. The
variable 'vector' is, as its name implies, a zero page vector that the
machine code expects to contain the start address ofthe array. On entry
to the code at 'entry' this address is passed into the two working vectors
'one' and 'two' (how's that for originality!), lines 7705 to 7711. The sort
routine is, in fact, a 'bubble sort' procedure. This works by working
through the numbers in the array and comparing sets of two contiguous

151Assembling Data and Lists

numbers. If the lower number is greater than the second number then
they are swapped over. This process continues through all the numbers
in the array until there are none left. The net effect is that numbers seem
to bubble up through the array, thus the terminology. The disadvantage
of a bubble sort is that it is very slow, although this is not so noticeable
in machine code. However, it is not nearly as fast as the quicksort
described later.

Let's get back to the program description. After seeding both vectors,
the address in 'two' ,which points to the second of the two integers, is
placed in 'one' (lines 7713 to 7717) and the vector 'two' is incremented
by 4 to give it the address of the next vector in the array (lines 7718 to
7722). The X register is used as a byte counter so is initialised to 4 (line
7724) whereupon the integer 'one' is subtracted from the integer at 'two'.
If on completion of the subtraction the overflow flag is set, it is
necessary to reverse the sign of the most significant bit of the result now
in the accumulator. This is performed in line 7733, and the EOR #&80
will set the negative flag to the value of the most significant bit of the
accumulator. This process is particularly important as the negative flag is
used to determine whether a swap is needed or not. If the flag is clear, no
swap is indicated and a branch to 'no_swap' performed. The swap takes
place, therefore, if the negative flag is set and is carried out by lines
7738 to 7746.

The final bytes of code (lines 7747 to 7753) test to see if the bubble
sort has been completed, i.e. when a pass through it results in no swaps
being performed after which control is passed back to BASIC. The
BASIC demo routine at the start of the program pokes a random array of
four-byte integers into a 'buffer' from &4000. After the sorting routine
has been completed the array is displayed to show each four-byte integer
in ascending order.

New lists for old

Program 12.10 uses an assembler routine to form a new list from an old
one. What actually happens is that it extracts every nth item and places
this in a list buffer elsewhere to form the list. This has many
applications. For example, a list of four-byte integer numbers could be
sorted into sub-lists of correspondingly significant bytes grouping all the
most significant bytes together and so forth, which is useful if look-up
tables are being used by another section of the program. The program is
straightforward and the assembler expects three variables. The first
'source' is the address of the main list, while 'new' is the address of the
new list. Note that these are not implemented as vectored addresses but

152 The BBC Micro Machine Code Portfolio

this could be used if desired. Finally, 'step' is the increment size
determining the elements to be extracted.

After initialising the index registers, the main program loop is entered
at 'next_byte'. The first byte of the source list is accessed and saved in
the new list (lines 7777 to 7778). The 'new' list indexing register is then
incremented and the 'source' list indexing register incremented by the
value of 'step'. As the first byte of the source list holds its length, this
byte is compared to the new index value to see if the end of the list has
been passed. If not, the loop branches to repeat again, otherwise the
contents of X are saved at 'new' to provide its length details.

 10 REM ** * FORM NEW LIST FROM OLD ** *
 20 PROCnew_l is t (&4000,&4200,5 ,&C00)
 30 FOR N=0 TO 100
 40 ? (&4001+N)=N
 50 NEXT
 60 ?&4000=100
 70 CALL &C00
 80 C=?&4200
 90 FOR N=0 TO C-1
 100 PRINT?(&4201+N)
 110 NEXT
 120 END
 130 :
7770 DEF PROCnew_l is t (source ,new,s tep ,
addr)
7771 FOR pass=0 TO 3 STEP 3
7772 P%=addr
7773 [OPT pass
7774 LDY #0
7775 LDX #0
7776 .nex t_by te
7777 LDA source+1,Y
7778 STA new+1,X
7779 INX
7780 TYA
7781 CLC
7782 ADC #s tep
7783 TAY
7784 CMP source
7785 BCC nex t_by te
7786 STX new
7787 RTS
7788]
7789 NEXT
7790 ENDPROC

Program 12.10. PROCnew_list - creates a sublist from a main list.

153Assembling Data and Lists

A fast quicksort!

The final program in this chapter, Program 12.11, provides a very fast
four-byte integer sorting routine based on the 'quicksort' algorithm, also
known in some areas of Highbury as a fastsort!

The quicksort procedure is less well known than the more illustrious
bubble sort so a brief description of its working is probably useful.
Consider the set of ten simple integers shown arranged randomly in
Figure 12.3(a). One of these numbers is selected and is called the key. In
the figure, the key is 46 and is shaded to make its position clear.
Working from right to left, the key is in turn compared with each byte
until a smaller byte is encountered. First time through, the first smaller
value encountered is the third one in, 24. The key then swaps positions
with this byte as shown in Figure 12.3(b). Next, the search process is
repeated but this time, working from left to right, the first byte
encountered that is larger than the key is swapped with the key 70 in this
instance (Figure 12.3(c)). The process repeats again until no more swaps
are possible, as Figure 12.3(d) shows.

506324487539703035

50637048753946303524

24 35 30 70 39 75 48 46 63 50

24 35 30 39 46 75 48 70 63 50

(a)

(b)

(c)

(d)

46

Fig. 12.3. (a) Assigning the key in a quickshort. (b) The array after the first
quicksort pass. (c) The array after the second quicksort pass. (d) The array

after the third quicksort pass.

154 The BBC Micro Machine Code Portfolio

Looking at Figure 12.3(d) carefully shows that it is divided into two
halves. All the numbers on the left ofthe key are smaller than the key
itself while those on the right are larger. In other words, the key has now
found its final position in the list. The two sections ofthe list can now be
sorted independently using new keys, and then the sections these
provide and so on until the quicksort is completed.

Because the number of elements to be sorted reduces each time
through the quicksort the time taken for it to complete its task is
substantially quicker than the bubble sort method described earlier
which processes the whole array each time through. In fact, to sort 1000
four-byte integers using the bubble sort would take around 50 seconds,
compared with under two seconds for the quicksort. A BASIC version of
the quicksort is only slightly slower than the assembler bubble sort!

 10 REM ** * FOUR BYTE INTEGER FASTSORT

 20 PROCquick (&3900,&70,&72,&74,&76,&7
8,&7A,&80)
 30 !&80=&5000: ! (&80+2)=20
 40 FOR N=0 TO 20 STEP4
 50 ! (&5000+N)=RND:NEXT
 60 CALL fas tsor t
 70 FOR N=0TO 20 STEP4
 80 PRINT! (&5000+N) :NEXT
 90 END
 100 :
7800 DEF PROCquick (so f ts tk , le f t , r igh t ,c
ur ren t_ le f t , cu r ren t_ r igh t ,s tack ,midd le ,d
a ta)
7801 FOR pass=0 TO 3 STEP 3
7802 P%=&4000
7803 [OPT pass
7804 . fas tsor t
7805 LDA #so f ts tk MOD 256
7806 STA s tack
7807 LDA #so f ts tk DIV 256
7808 STA s tack+1
7809 LDA da ta+2
7810 STA le f t
7811 LDA da ta+3
7812 STA le f t+1
7813 LDY #1
7814 .se tup
7815 LDA (le f t) ,Y
7816 STA cur ren t_ le f t ,Y
7817 DEY
7818 BPL se tup
7819 LDY #2
7820 .sh i f t_ two

155Assembling Data and Lists

7821 ASL cur ren t_ le f t
7822 ROL cur ren t_ le f t+1
7823 DEY
7824 BNE sh i f t_ two
7825 LDA da ta
7826 CLC
7827 ADC cur ren t_ le f t
7828 STA r igh t
7829 LDA da ta+1
7830 ADC cur ren t_ le f t+1
7831 STA r igh t+1
7832 LDA da ta
7833 SEC
7834 SBC #4
7835 STA le f t
7836 LDA da ta+1
7837 SBC #0
7838 STA le f t+1
7839 .save_va lue
7840 LDA le f t
7841 CLC
7842 ADC #4
7843 STA cur ren t_ le f t
7844 LDA le f t+1
7845 ADC #0
7846 STA cur ren t_ le f t+1
7847 LDA r igh t
7848 STA cur ren t_ r igh t
7849 SEC
7850 SBC cur ren t_ le f t
7851 BNE over
7852 LDA r igh t+1
7853 SBC cur ren t_ le f t+1
7854 BNE over
7855 JMP pu l l
7856 .over
7857 LDA r igh t+1
7858 STA cur ren t_ r igh t+1
7859 JSR swap
7860 LDY #3
7861 .back
7862 LDA (cur ren t_ le f t) ,Y
7863 STA key ,Y
7864 DEY
7865 BPL back
7866 .ad jus t_ r igh t
7867 LDA cur ren t_ r igh t
7868 SEC
7869 SBC #4
7870 STA cur ren t_ r igh t
7871 BCS compare_h i r igh t
7872 DEC cur ren t_ r igh t+1
7873 .compare_h i r igh t

156 The BBC Micro Machine Code Portfolio

7874 LDA cur ren t_ le f t+1
7875 CMP cur ren t_ r igh t+1
7876 BCC not_r igh t
7877 LDA cur ren t_ le f t
7878 CMP cur ren t_ r igh t
7879 BEQ equa l
7880 .no t_ r igh t
7881 LDX #4
7882 LDY #0
7883 SEC
7884 .compare_keyr igh t
7885 LDA (cur ren t_ r igh t) ,Y
7886 SBC key ,Y
7887 INY
7888 DEX
7889 BNE compare_keyr igh t
7890 BVC no_mask
7891 EOR #&80
7892 .no_mask
7893 AND #&FF
7894 BPL ad jus t_ r igh t
7895 DEY
7896 .exchange
7897 LDA (cur ren t_ r igh t) ,Y
7898 STA (cur ren t_ le f t) ,Y
7899 DEY
7900 BPL exchange
7901 .ad jus t_ le f t
7902 LDA cur ren t_ le f t
7903 CLC
7904 ADC #4
7905 STA cur ren t_ le f t
7906 BCC compare_ le f th igh
7907 INC cur ren t_ le f t+1
7908 .compare_ le f th igh
7909 LDA cur ren t_ le f t+1
7910 CMP cur ren t_ r igh t+1
7911 BCC not_ le f t
7912 LDA cur ren t_ le f t
7913 CMP cur ren t_ r igh t
7914 BEQ equa l
7915 .no t_ le f t
7916 LDX #4
7917 LDY #0
7918 SEC
7919 .compare_key le f t
7920 LDA key ,Y
7921 SBC (cur ren t_ le f t) ,Y
7922 INY
7923 DEX
7924 BNE compare_key le f t
7925 BVC no_mask_aga in

157Assembling Data and Lists

7926 EOR #&80
7927 .no_mask_aga in
7928 AND #&FF
7929 BPL ad jus t_ le f t
7930 DEY
7931 .exchange_over
7932 LDA (cur ren t_ le f t) ,Y
7933 STA (cur ren t_ r igh t) ,Y
7934 DEY
7935 BPL exhange_over
7936 BMI ad jus t_ r igh t
7937 .equa l
7938 LDY #3
7939 .exc_ loop
7940 LDA key ,Y
7941 STA (cur ren t_ le f t) ,Y
7942 DEY
7943 BPL exc_ loop
7944 LDA cur ren t_ le f t
7945 SEC
7946 SBC le f t
7947 STA word
7948 LDA cur ren t_ le f t+1
7949 SBC le f t+1
7950 STA word+1
7951 LDA r igh t
7952 SEC
7953 SBC cur ren t_ le f t
7954 STA temp
7955 LDA r igh t+1
7956 SBC cur ren t_ le f t+1
7957 STA temp+1
7958 LDA word
7959 SEC
7960 SBC temp
7961 LDA word+1
7962 SBC temp+1
7963 BCC save_h i
7964 .save_ lo
7965 LDY #0
7966 LDA le f t
7967 STA (s tack) ,Y
7968 INY
7969 LDA le f t+1
7970 STA (s tack) ,Y
7971 INY
7972 LDA cur ren t_ le f t
7973 STA (s tack) ,Y
7974 STA le f t
7975 INY
7976 LDA cur ren t_ le f t+1
7977 STA (s tack) ,Y
7978 STA le f t+1

158 The BBC Micro Machine Code Portfolio

7979 JMP update
7980 .save_h i
7981 LDY #2
7982 LDA r igh t
7983 STA (s tack) ,Y
7984 INY
7985 LDA r igh t+1
7986 STA (s tack) ,Y
7987 INY
7988 LDA cur ren t_ le f t
7989 STA (s tack) ,Y
7990 STA r igh t
7991 INY
7992 LDA cur ren t_ le f t+1
7993 STA (s tack) ,Y
7994 STA r igh t+1
7995 .update
7996 CLC
7997 LDA s tack
7998 ADC #4
7999 STA s tack
8000 BCC update1
8001 INC s tack+1
8002 .update1
8003 JMP save_va lue
8004 .pu l l
8005 LDA s tack
8006 SEC
8007 SBC #so f ts tk MOD 256
8008 BNE pu l l1
8009 LDA s tack+1
8010 SBC #so f ts tk DIV 256
8011 BNE pu l l1
8012 RTS
8013 .pu l l1
8014 LDA s tack
8015 SEC
8016 SBC #4
8017 STA s tack
8018 BCS pu l l2
8019 DEC s tack+1
8020 .pu l l2
8021 LDY #3
8022 .pu l l3
8023 LDA (s tack) ,Y
8024 STA le f t ,Y
8025 DEY
8026 BPL pu l l3
8027 JMP save_va lue
8028 .swap
8029 LDA cur ren t_ r igh t
8030 SEC

159Assembling Data and Lists

8031 SBC cur ren t_ le f t
8032 AND #&F8
8033 STA midd le
8034 LDA cur ren t_ r igh t+1
8035 SBC cur ren t_ le f t+1
8036 STA midd le+1
8037 LSR midd le+1
8038 ROR midd le
8039 LDA cur ren t_ le f t
8040 CLC
8041 ADC midd le
8042 STA midd le
8043 LDA cur ren t_ le f t+1
8044 ADC midd le+1
8045 STA midd le+1
8046 LDY #3
8047 .swap_ loop
8048 LDA (cur ren t_ le f t) ,Y
8049 STA word
8050 LDA (midd le) ,Y
8051 STA (cur ren t_ le f t) ,Y
8052 LDA word
8053 STA (midd le) ,Y
8054 DEY
8055 BPL swap_ loop
8056 RTS
8057 .key EQUD 0
8058 .word EQUW 0
8059 . temp EQUW 0
8060] NEXT
8061 ENDPROC

Program 12.11. PROCquick - implements a four-byte quickshort routine

The main areas operation of Program 12.11 are as follows:

Lines 7805 to 7808: Set up vector software stack which will be used to
hold pointers and data for future reference by the routine.
Lines 7809 to 7813: Save base address of the integer array in 'left'.
Lines 7814 to 7818: Seed integer into the 'current_left'position.
Lines 7819 to 7855: Seed next integer into 'current_right' position and
test to see if they are equal. If both are equal, then pull pointers and data
from stack and move onto next subsection.
Lines 7856 to 7860: If items are not equal perform the swap.
Lines 7861 to 7865: Then save key for future reference.
Lines 7866 to 7900: Compare key with integers to the right of it and
perform the swap if greater.
Lines 7901 to 7936: Compare key with integers to the left of it and

160 The BBC Micro Machine Code Portfolio

perform swap if less than.
Lines 7937 to 8043: Place key back in 'current_left'.
Lines 7944 to 7963: Now save pointers of unsorted sections of integer
array on software stack. Concentrate on smallest section first.
Lines 7964 to 8003: Routine to push pointers and data items onto
software stack.
Lines 8004 to 8027: Routine to pull all pointers and data items off
software stack.
Lines 8028 to 8055: Subroutine to perform the key integer swap.

Two sets of two variables are used by the assembler routine. The
boundaries of the current section half being sorted are held in 'left' and
'right'. The current left- and right-hand numbers being tested with the
key are held in 'current_left'and 'current_right' respectively. The BASIC
primer sets up an array of random integer values at &5000. After calling
the quickshort, the sorted array is displayed (lines 20 to 90).

Program fact sheets

Program 12.1

Procedure title : PROCbin_scarch
Variables required : bvte, list. pos, temp, addr
Line numbers : 7000 to 7046
Length : 57 bytes
Zero page requirements : 5 bytes
Registers changed : A, X, Y

Program 12.2

Procedure title : PROCordered_add (also requires
PROCbin_search)

Variables required : byte, list, pos, temp, addr
Line numbers : 7100 to 7194
Length : 115 bytes
Zero page requirements : 5 bytes
Registers changed : A, X, Y

Program 12.3

Procedure title : PROCordered_del (also requires
PROCbin_search)

Variables required : byte, list, pos, temp, addr

161Assembling Data and Lists

Line numbers : 7200 to 7276
Length : 87 bytes
Zero page requirements : 5 bytes
Registers changed : A, X, Y

Program 12.4

Procedure title : PROCmax_min_list
Variables required : min, max, list, addr
Line numbers : 7300 to 7330
Length : 36 bytes
Zero page requirements : 4 bytes
Registers changed : A, X, Y

Program 12.5

Procedure title : PROCunordered_del
Variables required : byte, list, addr
Linc numbers : 7400 to 7431
Length : 36 bytes
Zero page requirements : 3 bytes
Registers changed : A, X, Y

Program 12.6

Procedure title : PROCbyte_array
Variables required : subscript, array, addr
Line numbers : 7500 to 7519
Length : 18 bytes
Zero page requirements : 3 bytes
Registers changed : A, Y

Program 12.7

Procedure title : PROCtwodim_byte
Variables required : subscriptl, subscript2, sub_size, temp,

array, addr
Line numbers : 7530 to 7577
Length : 68 bytes
Zero page requirements : I0 bytes
Registers changed : A, X, Y

Program 12.8

162 The BBC Micro Machine Code Portfolio

Procedure title : PROCword_array
Variables required : subscript, array, addr
Line numbers : 7600 to 7628
Length : 34 bvtes
Zero page requirements : 3 byies
Registers changed : A, X, Y

Program 12.9

Procedure title : PROCsort32
Variables required : one, two, vector, count, addr
Line numbers : 7700 to 7761
Length : 86 bytes
Zero page requirements : 8 bytes
Registers changed : A, X, Y

Program 12.10

Procedure title : PROCnew_list
Variables required : source, new, step, addr
Line numbers : 7770 to 7790
Length : 25 bytes
Zero page requirements : 1 byte
Registers changed : A, X, Y

Program 12.11

Procedure title : PROCquick
Variables requircd : softstk, left, right, current_left,

current_right, stack, middle, data
Line numbers : 7800 to 8061
Length : 437 bytes
Zero page requirements : 14 bytes
Registers changed : A, X, Y

163Assembling Data and Lists

164 The BBC Micro Machine Code Portfolio

Chapter Thirteen
Communication

An important part of good software is good communication between the
program and the user. Excellent software is very often degraded because
the writer has not made any attempt to make the program user-friendly
by presenting instructions neatly onto the screen and using sensible keys
for inputting information. This chapter provides some short but
important procedures that will enable the programmer both to neaten up
screen presentation and have the program input data with minimal fuss.
Most programs are based around the excellent set of operating system
commands, thus reducing the amount of coding.

The routines included are:

Program 13.1 : Perform a CLS.
Program 13.2 : Perform VPOS and POS.
Program 13.3 : Perform SPC.
Program 13.4 : Perform STRING$.
Program 13.5 : Perform TAB (X).
Program 13.6 : Perform TAB (X,Y).
Program 13.7 : Perform GET.
Program 13.8 : Perform INKEY.
Program 13.9 : Super quick key test.
Program 13.10 : Read line.
Program 13.11 : Read a VDU definition.
Program 13.12 : Hexadecimal to ASCII.
Program 13.13 : Packed BCD to ASCII.
Program 13.14 : ASCIl to packed BCD.

Onto the screen

The first six programs presented here deal with formatting text on the
screen. Program 13.1 performs a simple CLS to clear the screen, by
printing a control code 12 through OSWRCH.

 10 REM*** CLEAR SCREEN -CLS * * *
 20 PROCcls (&C00)
 30 PRINT"PRESS A KEY TO CLEAR SCREEN"
 40 A=GET
 50 CALL &C00
 60 END
 70 :
8000 DEF PROCcls (addr)
8001 P%=addr
8002 [
8003 .c lear_screen
8004 LDA #12
8005 JSR &FFEE
8006 RTS
8007]
8008 ENDPROC

Program 13.1. PROCcls - performs CLS

Knowing where the cursor is at a particular time is another useful
function to perform. In BASIC, the POS and VPOS functions return the
horizontal (X axis) and vertical (Y axis) components of the cursor. These
two functions have a direct equivalent within the MOS, an OSBYTE
&86 call. Program 13.2 shows that the X and Y coordinates of the cursor
are returned in the respective index registers which can be saved for
evaluation.

 10 REM ** * DO POS & VPOS ** *
 20 PROCcursor (&70,71 ,&C00)
 30 CLS
 40 PRINTTAB(10,10) ;
 50 CALLcursor
 60 PRINT ' "Cursor pos i t ions were : "
 70 PRINT"POS = " ;?&70
 80 PRINT"VPOS= " ;?&71
 90 END
 100 :
8010 DEF PROCcursor (pos ,vpos ,addr)
8011 P%=&C00
8012 [OPT 2
8013 .cursor
8014 LDA #&86
8015 JSR &FFF4
8016 STX pos
8017 STY vpos
8018 RTS

166 The BBC Micro Machine Code Portfolio

8019]
8020 ENDPROC

Program 13.2. PROCcursor - returns the X,Y coordinates of the text cursor.

Program 13.3 imitates the BASIC command SPC, to print a specified
number of spaces from the current cursor position. The number of
spaces to be printed should be passed into the procedure via the variable
'spc'. At assembly time, this variable is treated as an immediate value
being loaded directly into the X register to act as a simple loop control.
Prior to entering 'loop', the accumulator is loaded with 32, the ASCIl
code of a space, and the required number is printed.

 10 REM ** * DO MACHINE CODE SPC ** *
 20 CLS
 30 INPUT"How many spaces ?"spc
 40 PROCspace (spc ,&C00)
 50 CALL space
 60 END
 70 :
8030 DEF PROCspace (spc ,addr)
8031 P%=addr
8032 [OPT 2
8033 .space
8034 LDX #spc
8035 LDA #32
8036 . loop
8037 JSR &FFEE
8038 DEX
8039 BNE loop
8040 RTS
8041]
8042 ENDPROC

Program 13.3. PROCspace - performs SPC.

STRING$ is a BASIC command that allows a specified number of the
same string to be printed. This can result in a great saving of memory
space. For example, it is much neater to print 40 asterisks using

PRINT STRING$ (40,"*")

rather than enclosing 40 asterisks inside quotes or from a machine code
point of view in an ASCII data table. Program 13.4 emulates this

167Communication

command by printing a string located at 'buffer', 'num' number of times.

 10 REM ** * DO STRING$ * * *
 20 CLS
 30 INPUT"Enter your s t r ing : "$&C50
 40 INPUT"How many t imes : "num
 50 PROCst r ing (&C50,num,&C00)
 60 CALL s t r ing
 70 END
 80 :
8050 DEF PROCst r ing (bu f fe r ,num,addr)
8051 FOR pass=0 TO 2 STEP 2
8052 P%=addr
8053 [OPT pass
8054 .s t r ing
8055 LDY #num
8056 .count
8057 LDX #0
8058 .nex t_chr
8059 LDA bu f fe r ,X
8060 JSR &FFE3
8061 INX
8062 CMP #13
8063 BNE nex t_chr
8064 DEY
8065 BNE count
8066 RTS
8067]
8068 NEXT
8069 ENDPROC

Program 13.4. PROCstring - performs STRING$

The program commences by loading the Y register with the 'num' count
(line 8055) and then setting the X register to zero (line 8057), which is
to be used as an absolute index into 'buffer'. The get and display loop is
embodied in lines 8058 to 8063. Each character is extracted from 'buffer'
and printed in turn until a carriage return has been printed. The Y
register is decremented and the 'count' loop repeated until it reaches
zero. Note that in the code the carriage return at the end of the string (put
there by BASIC's INPUT statement - line 30) is printed, so that each
string occupies a new line rather than being printed continuously across
the screen. The CMP #13 test could be performed earlier so that the
program exists before issuing a return if so required.

Positioning text on the screen is performed using the TAB function.
There are two bytes of TAB, namely TAB(X) and TAB(X,Y). The
simplest way to perform a TAB(X) is to print the move cursor right

168 The BBC Micro Machine Code Portfolio

code, ASCII 9, the required number of times. Program 13.5 details the
assembler, the required value of X passing into the procedure through
'xpos'. Once again, a simple loop is used printing the code 9 through
OSWRCH until the X register has been decremented to zero. It is worth
bearing in mind that this routine is in fact different from the one given in
Program 13.3 as it has no effect on any text the cursor passes over. Only
the cursor is moved and no spaces are output as in the former program.

 10 REM ** * DO TAB(X)* * *
 20 CLS
 30 INPUT"Number o f tabs : "xpos
 40 PROCtabx(xpos ,&C00)
 50 CLS
 60 CALL tabx
 70 PRINT"* " '
 80 PRINT"* marks the TAB pos i t ion"
 90 END
 100 :
8080 DEF PROCtabx (xpos ,addr)
8081 P%=addr
8082 [OPT 2
8083 . tabx
8084 LDA #9
8085 LDX #xpos
8086 .x tab
8087 JSR &FFEE
8088 DEX
8089 BNE x tab
8090 RTS
8091]
8092 ENDPROC

Program 13.5. PROCtabx - performs TAB(X)

TAB(X,Y) is performed through OSWRCH using the driver code 31
followed by first the X and then the Y coordinate to tab to. Program 13.6
uses immediate addressing to pass the two TAB parameters into the
assembler via 'xpos'and 'ypos'.

 10 REM ** * DO TAB(X,Y) * * *
 20 CLS
 30 INPUT"Tab X pos i t ion : "xpos
 40 INPUT"Tab Y pos i t ion : "ypos
 50 PROCtabxy (xpos ,ypos ,&C00)
 60 CLS

169Communication

 70 CALL tabxy
 80 PRINT"* " '
 90 PRINT"* marks the TAB pos i t ion"
 100 END
 110 :
8100 DEF PROCtabxy (xpos ,ypos ,addr)
8101 P%=addr
8102 [OPT 2
8103 . tabxy
8104 LDA #31
8105 JSR &FFEE
8106 LDA #xpos
8107 JSR &FFEE
8108 LDA #ypos
8109 JSR &FFEE
8110 RTS
8111]
8112 ENDPROC

Program 13.6. PROCtabxy - performs TAB(X,Y).

The key to detection

I doubt if there are many programs that do not require some sort of
interaction from the user at the keyboard, whether it be a simple 'press
key to continue' affair or more complex data input. Whatever it is, the
need to perform the task efficiently and correctly is important. A simple
GET type keyboard read can be performed by calling OSRDCH at
&FFE9 directly (see Program 13.7). This call waits for a key to be
pressed and returns with its ASCII value in the accumulator. However,
when using this call it is important to test to see if the ESCAPE key was
the key pressed. This can be performed simply by comparing the
accumulator contents with &1B (line 8126). If the key was pressed then
it must be acknowledged with an OSBYTE &7E call (lines 8128 to
8129) otherwise the MOS will hang up or do crazy things!

 10 REM ** * TEST FOR KEY **
 20 CLS
 30 PRINT"Press key to tes t fo r " ;
 40 chr$=GET$
 50 chr=ASC(chr$)
 60 PROCgetkey(chr ,&C00)
 70 PRINT ' ' "Press " ;chr$; " to end" ;
 80 CALL ge ts t r ing
 90 PRINT ' ' ' "F in ished! "
 100 END

170 The BBC Micro Machine Code Portfolio

 110 :
8120 DEF PROCgetkey (chr ,addr)
8121 FOR pass=0 TO 2 STEP 2
8122 P%=addr
8123 [OPT pass
8124 .ge ts t r ing
8125 JSR &FFE0
8126 CMP #&1B
8127 BNE no_escape
8128 LDA #&7E
8129 JSR &FFF4
8130 .no_escape
8131 CMP #chr
8132 BNE ge ts t r ing
8133 RTS
8134]
8135 NEXT
8136 ENDPROC

Program 13.7. PROCgetkey - performs GET.

Using OSBYTE &81, an INKEY timed input can be performed. The
index registers are used to hold the wait period which is specified in
centiseconds. Program 13 .8 shows how it is set up in the procedure
PROCinkey. Prior to the actual OSBYTE call an *FX15,1 is performed
to flush all input buffers (lines 8145 to 8148). The wait period is passed
into the assembler via the variable 'wait', the high and low bytes are
loaded into the respective registers usingthe MOD and DIV operators
(lines 8149 to 8152). As with the previous procedure, the ESCAPE key
should be tested for and acknowledged with the appropriate call if need
be (lines 8153 to 8156). Note that in this instance the escape code is
returned in the Y register. If a key is detected in the allotted time period
it is returned from OSBYTE in the X register and both the Y register and
carry flag are clear. If no character is detected within the time period, Y
returns containing &FF and the carry is set.

 10 REM ** * DO MACHINE CODE INKEY ** *
 20 PROCinkey (1000,&70,&C00)
 30 CLS
 40 PRINT"Press key w i th in t ime l im i t
"
 50 CALL inkey
 60 PRINT"Key pressed was : " ;CHR$(?&70
)
 70 END
 80 :
8140 DEF PROCinkey (wa i t , resu l t ,addr)

171Communication

8141 FOR pass=0 TO 2 STEP 2
8142 P%=addr
8143 [OPT pass
8144 . inkey
8145 LDA #15
8146 LDX #1
8147 LDY #0
8148 JSR &FFF4
8149 LDA #&81
8150 LDX #wa i t MOD 256
8151 LDY #wa i t D IV 256
8152 JSR &FFF4
8153 CPY #&1B
8154 BNE no_escape
8155 LDA #&7E
8156 JSR &FFF4
8157 .no_escape
8158 STX resu l t
8159 RTS
8160]
8161 NEXT
8162 ENDPROC

Program 13.8. PROCinkey - performs INKEY.

OSBYTE &81 can also be used to perform a single keyboard scan if it is
called with the Y register holding &FF and the X register the negative
INKEY value.

The demonstration program performs an INKEY(1000) equivalent,
which basically causes the MOS to look at the keyboard for 10 seconds
or until a key is pressed.

Both of the above two routines suffer from one drawback. They are
slow! Well, in machine code terms they are. Consider that the fastest
MOS-based routine, using OSBYTE &81 with X holding the negative
inkey value will take at least 300 cycles and anything up to 1200 cycles.
Program 13.9 does the whole scan in a mere 12 cycles and what's more
it can test for two keys being pressed at once! The code assembled by
PROCkeytest looks at locations &EC and &ED. If a key is pressed at
any time then the MOS places zero into &ED and &EC contains the
key's number. The actual numbers stored by the MOS are internal key
numbers +128. For almost all purposes the internal key numbers are the
negative INKEY numbers made positive and then decremented by one.
For example, C is equal to INKEY(-83) so its internal number is
calculated as ABS(-83)-1 or 83-1=82. Testing for C using 'keytest'
therefore requires a test for 82+128=210.

If two keys are pressed almost simultaneously then &ED contains the
number of the first key pressed and &EC the second key. If no keys are
detected then both these bytes are zero.

172 The BBC Micro Machine Code Portfolio

 10 REM ** * QUICK TEST FOR KEY ** *
 20 PROCkeytes t (&900)
 30 VDU15
 40 CALL s ta r t
 50 END
 60 :
8300 DEFPROCkeytes t (addr)
8301 FOR pass=0 TO 2 STEP 2
8302 P%=addr
8303 [
8304 OPT pass
8305 .s ta r t
8306 LDA&ED
8307 BEQ check_EC
8308 JSR va l id_key
8309 BEQ check_EC
8310 JSR&FFEE
8311 .check_EC
8312 LDA&EC
8313 BEQ s ta r t
8314 JSR va l id_key
8315 BEQ s ta r t
8316 JSR&FFEE
8317 JMP s ta r t
8318 .va l id_key
8319 CMP#&F0
8320 BNE nex t1
8321 PLA
8322 PLA
8323 LDA#15
8324 JSR&FFF4
8325 RTS
8326 .nex t1
8327 CMP#&E1
8328 BNE nex t2
8329 LDA#&5A
8330 RTS
8331 .nex t2
8332 CMP#&C2
8333 BNE nex t3
8334 LDA#&58
8335 RTS
8336 .nex t3
8337 CMP#&D2
8338 BNE nex t4
8339 LDA#&43
8340 RTS
8341 .nex t4
8342 CMP#&E3
8343 BNE nex t5

173Communication

8344 LDA#&56
8345 RTS
8346 .nex t5
8347 LDA#0
8348 RTS
8349]
8350 NEXT
8351 ENDPROC

Program 13.9. PROCkeytest - a 12-cycle key test.

As it stands, the routine has been set up to look for Z, X, C, V and
ESCAPE. The hex begins by peeking &ED. If this is zero then &EC can
be tested straightaway so the branch to 'check_EC' is performed (lines
8306 to 8307). The subroutine 'valid_key' tests for each of the above
keys. The first tested is ESCAPE, code &F0 (line 8319). If it is detected
then the RTS address is pulled from the stack and the MOS entered with
15 in the accumulator to handle the ESCAPE. The following bytes then
look for each key in turn. The codes for each are:

&E1 = Z
&C2 = X
&D2 = C
&E3 = V

If any of these compare, the letter is printed out. The 'check_EC' routine
works exactly the same.

If you run the program and then press either the Z, X, C, or V keys
then you'll see just how fast this key test routine is. The screen half fills
with letters before you can lift your finger off the key! Finally, I should
point out that this method is not condoned by Acorn as it is MOS-
dependent. It will work on OS 1.0 and OS 1.2 but I haven't tried it on OS
0.1 so it may not work if you are using this version of MOS. The GET
single key type routines could be employed to read in a string of
characters, placing each one into a defined buffer until a set number of
characters is reached or a return character detected. This does involve
some extra coding, though, as a loop and buffer would need to be
implemented. A neater way is to use the MOS line input routine
OSWORD &00. This is a very useful call as it allows a number of
parameters to be specified regarding the characters being input, Figure
13.1 details the parameter block. The first two bytes contain the address
ofthe input buffer, the second byte the maximum number of characters to
be placed in the buffer, while the last two bytes determine the maximum
and minimum acceptable ASCII characters that will be accepted and

174 The BBC Micro Machine Code Portfolio

placed in the buffer!
This OSWORD call does have one major disadvantage, though.

Although only characters in the specified ASCII range will be placed
into the buffer, any other characters presses will be echoed to the screen
even though they are not deposited in the buffer. Program 13.10 provides
a suitable procedure. The parameter block address for the call is defined
in 'block' while B% determines the input line buffer location; L% the
number of characters acceptable, i.e. the buffer's maximum length; and
'max', 'min' the acceptable character range.

XY+0 : LSB of input buffer address
XY+1 : MSB of input buffer address
XY+2 : Maximum number of characters
XY+3 : Minimum ASCII value of character acceptable
XY+4 : Maximum ASCII value of character acceptable

Fig. 13.1. OSWORD &00 parameter block

 10 REM ** READ L INE FROM INPUT * *
 20 PROCinput l ine(&70,&C00,10 ,ASC"A" ,A
SC"Z" ,&4000)
 30 CALL &4000
 40 PRINT$&C00
 50 END
8170 DEF PROCinput l ine(b lock ,B%,L%,max,
min ,addr)
8171 FOR pass=0 TO 3 STEP3
8172 P%=addr
8173 [OPT pass
8174 LDA #B% MOD 256
8175 STA b lock
8176 LDA #B% DIV 256
8177 STA b lock+1
8178 LDA #L%
8179 STA b lock+2
8180 LDA #max
8181 STA b lock+3
8182 LDA #min
8183 STA b lock+4
8184 LDA #0
8185 LDX #b lock MOD 256
8186 LDY #b lock DIV 256
8187 JSR &FFF1
8188 RTS
8189]

175Communication

8190 NEXT
8191 ENDPROC

Program 13.10. PROCinputline - input a line of text

Program 13.11 will read the bit map definition of any ASCII or defined
VDU character. OSWORD &9A performs the task and all that is
required prior to the read is to define a nine-byte parameter block, 'block'
in the program. The ASCII code of the character to be read should be
located in the first byte ofthe parameter block and on return the
following eight bytes contain the character's definition starting with the
top row of the character.

 10 REM **READ VDU CHR DEFINIT ION**
 20 CLS
 30 PRINT"PRESS A KEY TO DISPLAY ITS D
EFINIT ION" ;
 40 chr$=GET$
 50 chr=ASC(chr$)
 60 PROCread_chr (&70,chr ,&4000)
 70 CALL &4000
 80 CLS
 90 PRINT"THE DEFINIT ION OF " ;chr$; " I
S : "
 100 FOR N=&71 TO &78:PRINT?N:NEXT
 110 END
8200 DEF PROCread_chr (b lock ,chr ,addr%)
8201 FOR pass=0 TO 3 STEP 3
8202 P%=addr%
8203 [OPT pass
8204 LDA #chr
8205 STA b lock
8206 LDA #10
8207 LDX #b lock MOD 256
8208 LDY #b lock DIV 256
8209 JSR &FFF1
8210 RTS
8211]
8212 NEXT
8213 ENDPROC

Program 13.11. PROCread_chr - reads the eight-byte definition of any
character.

A simple change

The final three programs provide some simple conversion routines.

176 The BBC Micro Machine Code Portfolio

Program 13.12 will convert the hexadecimal value at 'byte' and print it
to the screen as two ASCII hex bytes. Thus if 'byte' held &FF then the
letters F and F will be printed. The program works as follows. After
loading the byte for conversion into the accumulator, the logical AND
ensures that only the lowest four bits are set (lines 8233 to 8234). After
setting the decimal flag, the addition of &90 to binary values 0 to 9 will
result in a value of &90 to &99 with the carry flag clear. A further
addition of &40 will convert these characters to values in the range &30
to &39 with the carry set. Remember that decimal addition is in
operation so that adding 1 to &99 will give a result of &00 rather than
&9A.

 10 REM ** * S IMPLE HEX TO ASCI I * * *
 20 PROChex_asc(&70,&71,&72,&C00)
 30 ?&70=255
 40 CALL &C00
 50 PRINT ' ' '
 60 PRINTCHR$(?&71) ;CHR$(?&72)
 70 END
 80 :
8230 DEF PROChex_asc(by te ,h igh , low,addr
)
8231 P%=addr
8232 [
8233 LDA by te
8234 AND #15
8235 SED
8236 CLC
8237 ADC #&90
8238 ADC #&40
8239 CLD
8240 STA low
8241 LDA by te
8242 LSR A
8243 LSR A
8244 LSR A
8245 LSR A
8246 SED
8247 CLC
8248 ADC #&90
8249 ADC #&40
8250 CLD
8251 STA h igh
8252 RTS
8253]
8254 ENDPROC

Program 13.12. PROChex_asc - convert a hexadecimal number into two
ASCII values.

177Communication

Adding &90 to the binary values &A to &F results in a byte in the range
&00 to &05 with the carry set. A further addition of &40 (plus the set
carry) converts this to values &41 to &46, the ASCIl codes for the letters
A to F.

The byte is then saved and the next four bits treated likewise after
shifting them into the lower nibble position with four logical shifts. Both
ASCII codes are stored at 'high' and 'low' for future reference. If you
wish not to save the two results but to print them directly then remember
that the high nibble must be treated first and then the low nibble as the
digits are printed, most significant first, on the screen.

Program 13.13 converts a packed BCD digit into its component
ASCII codes. To perform the conversion the byte must first be
transformed into its two component nibbles, which should be placed in
the low nibble position before having bit 5 forced to 1 using ORA #&30.
The high nibble is treated first. After loading the packed byte from 'bcd'
it is pushed onto the hardware stack for future reference. The high nibble
is then shifted into the low nibble position (lines 8263 to 8268). Bit 5 is
then forced and the ASCII character code placed in 'high' - it could at
this point be printed using JSR &FFEE instead. The stack is pulled and
the high nibble masked out with an AND (lines 8271 to 8272). Bit 5 is
forced and the result placed in 'low' (lines 8273 to 8274).

 10 REM ** * PACKED BCD TO ASCI I * * *
 20 PROCbcd_asc i i (&70,&71,&72,&C00)
 30 ?&70=&12
 40 CALL &C00
 45 PRINT ' '
 50 PRINT CHR$(?&72) ; CHR$(?&71)
 60 END
 70 :
8260 DEF PROCbcd_asc i i (bcd , low,h igh ,add
r)
8261 P%=addr
8262 [
8263 LDA bcd
8264 PHA
8265 LSR A
8266 LSR A
8267 LSR A
8268 LSR A
8269 ORA #&30
8270 STA h igh
8271 PLA
8272 AND #15
8273 ORA #&30
8274 STA low

178 The BBC Micro Machine Code Portfolio

8275 RTS
8276]
8277 ENDPROC

Program 13.13. PROCbcd_ascii - converts a packed BCD byte into two
ASCII values.

Performing the reverse conversion, two ASCII digits to packed BCD,
involves reversing the procedure as depicted in Program 13.14. The high
digit is extracted from 'high' shifted right so that bit 5 is lost and only the
binary bits remain. This byte is pushed onto the hardware stack. The
'low' digit is loaded into the accumulator, the low nibble preserved, and
the stack pointer copied into the X register (lines 8289 to 8291). The two
digits have now been stripped of bit 5, and all that is now required is to
merge them together. This is done by logically ORing the two together
(lines 8292). The X register is incremented and copied back into the
stack pointer thus 'popping' the byte from the stack. Finally the result is
placed at 'bcd'.

 10 REM ** * ASCI I TO PACKED BCD ** *
 20 PROCasc_bcd(&70,&71,&72,&C00)
 30 ?&70=ASC("6")
 40 ?&71=ASC("9")
 50 CALL &C00
 60 PRINT~?&72
 70 END
 80 :
8280 DEF PROCasc_bcd(h igh , low,bcd ,addr)
8281 P%=addr
8282 [
8283 LDA h igh
8284 ASL A
8285 ASL A
8286 ASL A
8287 ASL A
8288 PHA
8289 LDA low
8290 AND #15
8291 TSX
8292 ORA &101,X
8293 INX
8294 TXS
8295 STA bcd
8296 RTS
8297]
8298 ENDPROC

Program 13.14. PROCasc_bcd - converts two ACII values into a packed

179Communication

BCD byte.

Program fact sheets

Program 13.1

Procedure title : PROCcls
Variables required : addr
Line numbers : 8000 to 8008
Length : 6 bytes
Zero page requirements : none
Registers changed : A

Program 13.2

Procedure title : PROCcursor
Variables required : pos, vpos, addr
Line numbers : 8010 to 8020
Length : 10 bytes
Zero page requirements : 2 bytes
Registers changed : A, X, Y

Program 13.3

Procedure title : PROCspace
Variables required : spc, addr
Line numbers : 8030 to 8042
Length : 11 bytes
Zero page requirements : none
Registers changed : A, X

Program 13.4

Procedure title : PROCstring
Variables required : buffer, num, addr
Line numbers : 8050 to 8069
Length : 19 bytes
Zero page requirements : none
Registers changed : A, X, Y

Program 13.5

Procedure title : PROCtabx

180 The BBC Micro Machine Code Portfolio

Variables required : xpos, addr
Line numbers : 8080 to 8092
Length : 17 bytes
Zero page requirements : none
Registers changed : A, X

Program 13.6

Procedure title : PROCtabxy
Variables required : xpos, ypos, addr
Line numbers : 8100 to 8112
Length : 16 bytes
Zero page requirements : none
Registers changed : A

Program 13.7

Procedure title : PROCgetkey
Variables required : chr, addr
Line numbers : 8120 to 8136
Length : 17 bytes
Zero page requirements : none
Registers changed : A

Program 13.8

Procedure title : PROCinkey
Variables required : wait, result, addr
Line numbers : 8150 to 8162
Length : 31 bytes
Zero page requirements : 1 byte
Registers changed : A, X, Y

Program 13.9

Procedure title : PROCkeytest
Variables required : addr
Line numbers : 8300 to 8351
Length : 69 bytes
Zero page requirements : none
Registers changed : A

Program 13.10

181Communication

Procedure title : PROCinputline
Variables required : block, B%, L%, max, min, addr
Line numbers : 8170 to 8191
Length : 26 bytes
Zero page requirements : 5 bytes
Registers changed : A, X, Y

Program 13.11

Procedure title : PROCread_chr
Variables required : block, chr, addr
Line numbers : 8200 to 8213
Length : 14 bytes
Zero page requirements : 9 bytes
Registers changed : A, X, Y

Program 13.12

Procedure title : PROChex_asc
Variables required : byte, high, low, addr
Line numbers : 8230 to 8254
Length : 29 bytes
Zero page requirements : 3 bytes
Registers changed : A

Program 13.13

Procedure title : PROCbcd_ascii
Variables required : bcd, low, high, addr
Line numbers : 8260 to 8277
Length : 19 bytes
Zero page requirements : 3 bytes
Registers changed : A

Program 13.14

Procedure title : PROCasc_bcd
Variables required : high, low, bcd, addr
Line numbers : 8280 to 8289
Length : 20 bytes
Zero page requirements : 3 bytes
Registers changed : A, X

182 The BBC Micro Machine Code Portfolio

Chapter Fourteen
Odd One Out

This final chapter in the Portfolio draws together eight programs that
offer a variety of functions. The programs are:

Program 14.1 : Find highest IRQ.
Program 14.2 : Timer 1 delay.
Program 14.3 : Timer 2 delay.
Program 14.4 : One second delay.
Program 14.5 : Save all processor registers.
Program 14.6 : Restore all processor registers.
Program 14.7 : Two-byte incrementing counter.
Program 14.8 : Two-byte decrementing counter.

Interrupt polling

Program 14.1 is not a complete routine as it stands as it expects extra
code, written by the user, to be tagged onto it. Basically it is an interrupt
polling sequence for the User VIA, capable of identifying the highest
priority interrupt request on any one ofthe seven lines capable of having
an IRQ.

In order to know which interrupt servicing routine to call, the source
of the IRQ must be determined. To find this out, bit 7 ofthe Interrupt
Flag Register (IFR7) must be tested. If this bit is set then an IRQ has
been issued. The IFR is read using an OSBYTE &96 call to read Sheila.
As the IFR occupies location &6D in Sheila this value is placed in the X
register. After the call, the Y register contains the byte just read, which is
transferred into the accumulator. If bit 7 is clear the branch to
'next_device'will be executed (lines 9006 to 9010). What is required now
is to read the Interrupt Enable Register (IER) at Sheila &6E, as a set bit
in this register will give the identity of the IRQ. This is performed by
lines 9012 to 9015. For an interrupt to have occurred, the corresponding
bits in the IFR and IER must have been set; to determine the actual bit
these two bytes are logically ANDed together to preserve the set bit (line

9015 to 9016). Now all that is required is to shift the byte to condition
the negative flag. Setting the negative flag will determine that the bit just
shifted was the lineassociated bit that caused the IRQ and thus the BMI
for that test will proceed.

 10 REM ** * F IND HIGHEST IRQ ** *
 20 REM ** *needs ex t ra user cod ing** *
 30 REM ** to run sequence cor rec t l y * *
 40 :
9000 DEF PROChighes t IRQ (temp,addr)
9001 FOR pass=0 TO 3 STEP 3
9002 P%=addr
9003 [
9004 OPT pass
9005 . f ind IRQ
9006 LDA #&96
9007 LDX #&6D
9008 JSR &FFF4
9009 TYA
9010 BPL nex t_dev ice
9011 PHA
9012 LDA #&96
9013 LDX #&6E
9014 JSR &FFF4
9015 STY temp
9016 PLA
9017 AND temp
9018 ASL A
9019 BMI t imer1
9020 ASL A
9021 BMI t imer2
9022 ASL A
9023 BMI cb1
9024 ASL A
9025 BMI cb2
9026 ASL A
9027 BMI sh i f t_ reg
9028 ASL A
9029 BMI ca1
9030 ASL A
9031 BMI ca2
9032 JMP er ro r
9033 . t imer1
9034 JMP T1serv ice
9035 . t imer2
9036 JMP T2serv ice
9037 .cb1
9038 JMP cb1serv ice
9039 .cb2
9040 JMP cb2serv ice
9041 .sh i f t_ reg

184 The BBC Micro Machine Code Portfolio

9042 JMP srserv ice
9043 .ca1
9044 JMP ca1serv ice
9045 .ca2
9046 JMP ca2serv ice
9047 .e r ro r
9048 \ e r ro r serv ice rou t ine here
9049 .nex t_dev ice
9050 \ more po l l ing here
9051]
9052 NEXT
9053 ENDPROC

Program 14.1. PROChighestIRQ - locates the highest priority interrupt.

In Program 14.1 I have used a left to right priority system, so that bit 6
has a greater priority than bit 5. Therefore an interrupt on Tl interrupt
enable has a greater priority than an interrupt on T2 and so forth. You
can arrange your own priorities to suit, though the test procedure might
not be a simple shift and branch sequence, and more complex coding
might be required.

A timed delay

Both the timers in the User VIA can be used to produce delays. Program
14.2 uses Timer 1 to provide one-millisecond delay using it in its one-
shot mode of operation. To place T1 into this mode, zero must be written
to the Auxillary Control Register at Sheila &6B. Next the delay must be
loaded into the latches. One millisecond corresponds to 1000 cycles,
however, and it should be remembered that T1 has an operating
overhead of 1.5 cycles, so the actual value loaded into the latches must
be the actual value minus 2. Thus, 998 is to be deposited into the T1
latches. Lines 9070 to 9075 perform this using the hex equivalent &3E8;
writing to the msb latch starts the timer running. On timing out, the Tl
bit in the IFR will be set. To test for this, &40, is loaded into the
accumulator and the IFR tested using the BIT operation. This small loop
(lines 9077 to 9079) continues until the BEQ fails, denoting time out.
The T1 flag is then cleared by reading the latch (line 9080).

 10 REM ** * MILL ISECOND DELAY USING T1

 20 PROCt imerone_de lay (&C00)
 30 CALL mi l l i sec1
 40 END

185Odd One Out

 50 :
9060 DEF PROCt imerone_de lay (addr)
9061 FOR pass=0 TO 3 STEP 3
9062 P%=addr
9063 [
9064 OPT pass
9065 .m i l l i sec1
9066 LDA #&97
9067 LDX #&6B
9068 LDY #0
9069 JSR &FFF4
9070 LDX #&64
9071 LDY #&E8
9072 JSR &FFF4
9073 LDX #&65
9074 LDY #3
9075 JSR &FFF4
9076 LDA #&40
9077 . loop
9078 BIT &FE6D
9079 BEQ loop
9080 LDA &FE64
9081 RTS
9082]
9083 NEXT
9084 ENDPROC

Program 14.2. PROCtimerone_delay - a one millisecond delay using Timer 1.

Program 14.3 performs a similar delay using Timer 2. Only the
addresses in the program and the bit mask change.

 10 REM ** * MILL ISECOND DELAY USING T2

 20 PROCt imer two_de lay (&C00)
 30 CALL mi l l i sec
 40 END
 50 :
9100 DEF PROCt imer two_de lay (addr)
9101 FOR pass=0 TO 3 STEP 3
9102 P%=addr
9103 [
9104 OPT pass
9105 .m i l l i sec
9106 LDA #&97
9107 LDX #&6B
9108 LDY #0
9109 JSR &FFF4
9110 LDX #&68
9111 LDY #&E8
9112 JSR &FFF4

186 The BBC Micro Machine Code Portfolio

9113 LDX #&69
9114 LDY #3
9115 JSR &FFF4
9116 LDA #&20
9117 . loop
9118 BIT &FE6D
9119 BEQ loop
9120 LDA &FE6B
9121 RTS
9122]
9123 NEXT
9124 ENDPROC

Program 14.3. PROCtimertwo_delay - a one millisecond delay using Timer 2.

The timers are fine for providing very short delay loops but for
substantial delays they are not really suitable. Program 14.4 will provide
a 1-second delay. It does this by just executing a series of timed loops.
As the clock on the Beeb operates at 2MHz, the delay loop need only
count out 2000000 cycles to create the delay.

 10 REM ** * 1 .0 SECOND DELAY ** *
 20 PROCdelay (&C00)
 30 INPUT"How many seconds de lay ? : "w
 a i t
 40 T IME=0
 50 FOR loop=1 TO wa i t
 60 CALL &C00
 70 NEXT
 80 t ime%=TIME
 90 t ime%=(t ime%/100)
 100 PRINT"T ime taken was : " ; t ime%;
 110 PRINT" second(s) "
 120 END
 130 :
9130 DEF PROCdelay (addr)
9131 FOR PASS=0 TO 3 STEP 3
9132 P%=addr
9133 [OPT PASS
9134 PHP
9135 PHA
9136 TXA
9137 PHA
9138 TYA
9139 PHA
9140 LDY ou ter
9141 . loop1
9142 TYA

187Odd One Out

9143 PHA
9144 LDX inner
9145 . loop2
9146 LDY #5
9147 . loop3
9148 DEY
9149 BNE loop3
9150 DEX
9151 BNE loop2
9152 LDY #2
9153 . loop4
9154 DEY
9155 BNE loop4
9156 PLA
9157 TAY
9158 DEY
9159 BNE loop1
9160 LDY f ine
9161 . loop5
9162 DEY
9163 BNE loop5
9164 PLA
9165 TAY
9166 PLA
9167 TAX
9168 PLA
9169 PLP
9170 RTS
9171 .ou te r
9172 EQUB 251
9173 . inner
9174 EQUB 0
9175 . f ine
9176 EQUB 197
9177]
9178 NEXT
9179 ENDPROC

Program 14.4. PROCdelay - a one second delay loop.

The main loop counter is provided by 'outer' while the finer inner loop
counter is 'inner'. The program commences by pushing all processor
registers onto the stack thus preserving their status on return. This
process takes 16 cycles (lines 9134 to 9139). The Y register is then
loaded with 'outer' (4 cycles line 9140) and 'loopl' entered. This major
outer loop has a smaller loop within it between lines 9145 and 9151
which takes a total of 256*31-1 cycles or 7935 cycles to execute. As the
outer 'loop1' is controlled by the contents of the Y register, 251, the main
loop between lines 9141 and 9159 takes 251*7964-1 or 1998963 cycles

188 The BBC Micro Machine Code Portfolio

to run. In both cases, the -1 is needed because the final branch does not
take place and therefore only uses 2 cycles and not the 3 allowed in the
calculation. The final 'fine' loop plus restoring the registers add a further
30+984 (the loop in lines 9162 to 9163) cycles to the overall delay. The
total delay provided by the loop is therefore calculated as 1998963 + 16
+ 4 + 30 + 984 = 1999997 cycles. This is obviously three cycles short of
the desired delay, which doesn't really bear thinking about!

The BASIC demo asks how long a delay you would like. Because
there is an overhead in the BASIC operations, don't be too surprised if
you enter 20 in response to the prompt and get an answer of 23 seconds
back. The extra three seconds were created by the BASIC interpreter
working through the program! Now a question. Add the following line to
the program -

25 CLS

and run it. Why does it seem to work twice as quick? Don't expect the
answer; I'm still trying to fathom it out for myself!

A push me pull you

The last program showed that a subroutine call need not destroy the
contents of the processor registers if their contents are important. With
the exception of two programs in this book all the assembler procedures
alter the contents of at least the accumulator and many of the index
registers as well. Programs 14.5 and 14.6 provide suitable procedures to
save and then restore all processor registers. The main point to note here
is that the assembler is not implemented as a subroutine; in other words
it does not end with an RTS. This means that the code must be placed at
the point it is needed, with the register changing hex following straight
after. It would be possible to implement it as a subroutine if required
though1would not recommend it as it would need some jiggery pokery
with the stack to put the RTS address after the pushed register values.

 10 REM*SAVE ALL PROCESSOR REGISTERS*
 20 REM*DOES NOT HAVE RTS MUST BE *
 30 REM*USED DIRECTLY IN CODE. *
 40 :
9200 DEF PROCpush_a l l (addr)
9201 P%=addr
9202 [OPT 2
9203 .pusha l l

189Odd One Out

9204 PHP
9205 PHA
9206 TXA
9207 PHA
9208 TYA
9209 PHA
9210]
9211 ENDPROC

Program 14.5. PROCpush_all - save all processor registers on hardware
stack.

 10 REM*RESTORE ALL PROCESSOR REGISTER
S*
 20 REM*DOES NOT HAVE RTS MUST BE *
 30 REM*USED DIRECTLY IN CODE. *
 40 :
9220 DEF PROCpul l_a l l (addr)
9221 P%=addr
9222 [OPT 2
9223 .pu l la l l
9224 PLA
9225 TAY
9226 PLA
9227 TAX
9228 PLA
9229 PLP
9230]
9231 ENDPROC

Program 14.6. PROCpull_all - restore all processor registers off of the
hardware stack.

Count on it

And so to the last two of the 75 programs in this book, which1do hope
you have found informative and useful. The two programs implement
double-byte counters, useful for loop control with a count greater than
255 or for updating a two-byte memory address.

Program 14.7 is an incrementing counter. The procedure first loads
the start value of the counter, 'num' into the two bytes from 'block' (lines
9244 to 9248). The incrementing starts at 'plus_one' (line 9249) where
'block' has one added to it (line 9250). Any carry is detected by the zero
flag and if set, one is added to 'block+1' else a return via 'no_inc' is
performed.

190 The BBC Micro Machine Code Portfolio

 10 REM ** * TWO BYTE COUNTER ** *
 20 PROCinc_count (5000,&70,&C00)
 25 CALL seed_va lue
 30 REPEAT
 40 PRINT?&71*256+?&70
 50 CALL p lus_one
 60 UNTIL ?&71=0
 70 END
 80 :
9240 DEF PROCinc_count (num,b lock ,addr)
9241 FOR pass=0 TO 3 STEP 3
9242 P%=addr
9243 [OPT pass
9244 .seed_va lue
9245 LDA #num MOD 256
9246 STA b lock
9247 LDA #num DIV 256
9248 STA b lock+1
9249 .p lus_one
9250 INC b lock
9251 BNE no_ inc
9252 INC b lock+1
9253 .no_ inc
9254 RTS
9255]
9256 NEXT
9257 ENDPROC

Program 14.7. PROCinc_count - performs a double-byte increment.

 10 REM ** * DOUBLE BYTE DECREMENT ** *
 20 PROCdec_count (5000,&70,&C00)
 25 CALL seed_va lue
 30 REPEAT
 40 PRINT?&71*256+?&70
 50 CALL minus_one
 60 UNTIL ?&71=0
 70 END
 80 :
9260 DEF PROCdec_count (num,b lock ,addr)
9261 FOR pass=0 TO 3 STEP 3
9262 P%=addr
9263 [OPT pass
9264 .seed_va lue
9265 LDA #num MOD256
9266 STA b lock
9267 LDA #num DIV256
9268 STA b lock+1
9269 .m inus_one
9270 LDA b lock

191Odd One Out

9271 BNE no_dec
9272 DEC b lock+1
9273 .no_dec
9274 DEC b lock
9275 RTS
9276]
9277 NEXT
9278 ENDPROC

Program 14.8. PROCdec_count - performs a double-byte decrement.

The application program in lines 20 to 60 shows that once a count value
has been seeded only 'plus_one' should be called to increment the block.

Decrcmenting a two-byte counter is a little less straightfbrward
(Program 14.8). As before, the count start value is first secded through
'num' (lines 9264 to 9268). The decrement process begins at 'minus_one'
by first loading the low byte of the count at 'block' into thc accumulator
(line 9270). If this byte should be zero then thc decrement must take the
high page byte into consideration and decrement this (line 9272).
Finally, the low byte is decremented (line 9274).

As with the previous program, after the initial set up it is 'no_dcc' that
must be called to perform the decrement as the BASIC demo illustrates.

Program fact sheets

Program 14.1

Procedure title : PROChighestIRQ
Variables required : temp, addr
Line numbers : 9000 to >9050
Length : variable
Zero page requirements : none
Registers changed : A, X, Y

Program 14.2

Procedure title : PROCtimerone_delav
Variables required : addr
Line numbers : 9060 to 9084
Length : 34 bytes
Zero page requirements : none
Registers changed : A, X, Y

192 The BBC Micro Machine Code Portfolio

Program 14.3

Procedure title : PROCtimertwo_delay
Variables required : addr
Line numbers : 9100 to 9124
Length : 34 bytes
Zero page requirements : none
Registers changed : A, X, Y

Program 14.4

Procedure title : PROCdelay
Variables required : addr
Line numbers : 9130 to 9179
Length : 48 bytes
Zero page requirements : none
Registers changed : none

Program 14.5

Procedure title : PROCpush_all
Variables required : addr
Line numbers : 9200 to 9211
Length : 6 bytes
Zero page requirements : none
Registers changed : none

Program 14.6

Procedure title : PROCpull_all
Variables required : addr
Line numbers : 9220 to 9231
Length : 6 bytes
Zero page requirements : none
Registcrs changed : A, X, Y
Odd One Out193

Program 14.7

Procedure title : PROCinc_count
Variables required : num, block, addr
Line numbers : 9240 to 9257
Length : 15 bytes

193Odd One Out

Zero page requirements : 2 bytes
Registers changed : A

Program 14.8

Procedure title : PROCdec_count
Variables required : num, block, addr
Line numbers : 9260 to 9278
Length : 17 bytes
Zero page requirements : 2 bytes
Registers changed : A

194 The BBC Micro Machine Code Portfolio

Index

Acorn User, 10
ADC channels, 72
addition, 88
ASCII, 2
ASCII to BCD conversion, 179
ASCII to decimal conversion, 25
ASL, 88, 10l
assembler formatter, 32, 36
autorun, 85

bar code programs, 195
BASIC I, 7
BAS1C II, 1, 7
BASIC formatter, 32, 33
BCD to ASCII conversion, 178
binary search, 131
binary to Hex ASCII conversion, 177
BRKV, 80
bubble sort, 152

CLG,119
clock, 72
CLS, 166
CNTR L, 18
COLOUR, 117
compact, 81
CRTC, 36, 111,112

delay one second, 187
decrementing counter, 192
division, 88, 94
DRAW, 115

escape, 80
ELSE, 36
Epson, 41
errors, 78
error lister, 78
EQU, 7
EQUB, 7

EQUD, 7
EQUS, 7
EQUW, 7
events, 72
events, list of, 73
EVNTV, 72, 76

fastsort, 155
FN, 7
function key buffer, 11
function key listing, 19
function keys, I0
GET, 170
GCOL, 117, 118
global search and replace, 61
graphics cursor position, 121
GREPL, 61

hex to ASCII decimal conversion, 59
HIMEM, 24

IER, 185
IF, 36
IFR, 185
incrementing counter, 190
INKEY, 171, 172
integer sort, 150
interrupt polling, 183
interval timer, 72
IRQ, 183

library, 1, 2
LISTO, 32, 33, 36
load screen memory, 45
LOMEM, 24
LSR, 88, 102

maximum-minimum values, 142
memory remaining, 24
millisecond delay Tl, 185

millisecond delay T2, 186
MODE, 3, 108
MODE2A, 109
MODE2A screen map, 112
MODE5A, 113
MOS, 3, 13, 36, 54
MOVE, 3, 114
multiplication, 88

new list, 153
next free location, 24

one dimensional byte array, 146
ordered addition, 134
ordered delete, 139
OPT, 4, 7, 9
OSBYTE, 112, 170, 171, 172, 183
OSFILE, 41, 44
OSFILE call codes, 42
OSFILE parameter block, 41, 121
OSWORD, 51, 73, 121, 122, 174, 176
OSWORD parameter block,51, 123, 175
OSWRCH, 50, 51, 109, 1 14,118, 124

P%, 4
pack, 81
PAGE, 24
physical colours,117
PLOT, 3, 116
POINT, 122
pointer bytes, 10
POS, l66
printer scrcen dumper, 46
PROC, 2
PROC_screen_dump, 47
PROCasc_bcd, 179
PROCbasic_format, 33
PROCbackgrnd,118
PROCbcd_ascii, 178
PROCbin_search,132
PROCbyte_array. l46
PROCchange_palette, 120
PROCclg, 119
PROCcls, 166
PROCcolour,117
PROCcursor, 166
PROCdec_count, 191
PROCdelay, 187
PROCdraw,115
PROCerror, 79
PROCgcol,119
PROCgcursor, 121 .

PROCgetkey, 170
PROCgrepl, 63
PROChex_asc, 177
PROChighestIRQ, 184
PROCinc_count, 191
PROCinfo, 20
PROCinkey, 171
PROCinputline, 175
PROCkeysl, 13
PROCkeys2, 16
PROCkeytest,173
PROCloadscreen, 45
PROCmax_min, 142
PROCmode, 108
PROCmode2A, 109
PROCmode5A,113
PROCmove,114
PROCmultii_add, 89
PROCmulti_div, 94
PROCmulti_mult, 91
PROCmulti_sub, 90
PROCnew_list, 154
PROConebyte_square, 98
PROCordered_add, 135
PROCordered_del, 139
PROCpack, 82
PROCpixel, 122
PROCplot,116
PROCpull_all, 190
PROCpush_a}l, 189
PROCquick, 156
PROCreadchr, 176
PROCreadpalette, 123
PROCsavescreen, 42
PROCsort32, 151
PROCspace, 167
PROCstring, 168
PROCtabx, 169
PROCtabxy, 169
PROCtime, 74
PROCtimerone_delay, 185
PROCtimertwo_delay, 186
PROCtwo_asl, 10l
PROCtwobyte_square, 100
PROCtwo_byte_1sr, 102
PROCtwo_byte_ror, 103
PROCtwo_byte_rol, 104
PROCtwodim_byte, 147
PROCunordered_del, 144
PROCvars, 26
PROCvduchrs, 56
PROCword_array, 149

PROCwritepalette,124
PROCxyaddr, 125
program fact sheets,19, 31, 40, 52, 60,
71, 77, 87, 105, 106, 107, 127, 128, 129,
130, 162, 163, 164, 180, 181, 182, 192,
193, 194
program formatters, 32
program information, 20
program information service, 25
program size, 24

quicksort, 155

REM, 81, 84
ROL, 88
ROR, 88, 103

save screen memory, 41
screen dump, 52
simple graphics compiler, 2
soft character buffer, 54
spaces, 81, 84
SPC, 167
square roots, 88, 98
Star, 41
status, 20, 24
STRING$, 167

subtraction, 88, 90

TAB(X), 168
TAB(X,Y), 168
TOP, 24
top pointer, 13

unordered delete, 144
user defined characters, 53
user VIA, 183

variable storage, 27, 28
variables, 20
VARTOP, 24
video control register,113,114
VDU, 51, 54, 108, 112
VDU19, 120
VDU23, 53,111
VDU25,114
VPOS. 166

word array, 149

WRDCH: 33, 36, 39

*EXEC, 1, 3, 5
*SPOOL, 2, 3
*640 table, 125

