The BBC Micro Machine Code
Porfolio

Other books for BBC Micro users

Introducing the BBC Micro
Ian Sinclair
000383072 1

The BBC Micro: An Expert Guide
Mike James
0246 12014 2

Discovering BBC Micro Machine Code
A. P. Stephenson
0246 12160 2

Advanced Machine Code Techniques for the BBC Micro
A. P. Stephenson and D. J. Stephenson
0246 122277

BBC Micro Graphics and Sound
Steve Money
0246 12156 4

Practical Programs for the BBC Micro

Owen Bishop and Audrey Bishop
0246 124059

21 Games for the BBC Micro
Mike James, S. M. Gee and Kay Ewbank
024612103 3

Disk Systems for the BBC Micro
lan Sinclair
0246 123257

Learning is Fun -

40 Educational Games for the BBC Micro
Vince Apps

0246 123176

Advanced Programming for the BBC Micro
Mike James and S. M. Gee
000383073 X

Take Off with the Electron and BBC Micro

Audrey Bishop and Owen Bishop
0246 12356 7

Creative Animation and Graphics for the BBC Micro
Mike James
000383007 1

Handbook of Procedures and Functions for the BBC Micro
Audrey Bishop and Owen Bishop
0245 124156

The BBC
Micro
Machine
Code
Portfolio

Bruce Smith

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Granada Publishing 1984

Distributed in the United States of America
by Sheridan House, Inc.

Copyright © 1984 Bruce Smith

British Library Cataloguing in Publication Data
Smith, Bruce The BBC Micro machine code portfolio
I . Microcomputer—Programming

I. Title

001.6424 QA76.8.B35

ISBN 0-246-12643-4

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

DIGITALLY REMASTERED ON ACORN RISC OS COMPUTERS,
JANUARY 2007

Contents

Acknowledgements

O 0 N O LK AW D

e e e e
AW = O

Introduction

Function Key Reader
Program Information
Program Formatters

The Screen

Softly, Softly

Global Variable Search and Replace
Time for Bed

Error, Pack and Autorun
The Necessary Evil

Vision On

Assembling Data and Lists
Communication

Odd One Out

Index

vii

10
20
32
41
53
61
72
78
88
108
131
165
183

210

Acknowledgements

Many thanks to Acorn User for allowing me to reproduce a couple of my
programs included in issues of the magazine, namely the function key
lister and the soft VDU character definition printer.

Thanks also to Harry Sinclair for providing two of the seventy-five
programs herein from his own library of procedures. His contributions
were Programs 11.16 and 13.9.

Finally, to Richard Miles of Granada, a thank you for seeding the idea
for the Portfolio in the first place.

Bruce Smith

Disks and cassettes of the programs in this book are available.
Apply for details to:

Dept AB

Collins Professional and Technical Books
8 Grafton Street

London W1X 3LA

Chapter One
Introduction

The BBC Micro Machine Code Portfolio is aimed at providing the
serious machine code programmer with an interesting and useful set of
assembly language routines. In all, a selection of 75 programs from my
own disk-based library are included, ranging from general purpose
utility aids to BASIC and machine code programming to specific
utilities that could form the basis of an interesting machine code
compiler. Each of the assembler routines is provided as a uniquely line
numbered procedure that can be *EXECuted back into a program any
time it is required. Although the programs are written making full use of
BASIC II's EQU functions, a solution is provided towards the end of this
chapter that will enable BASIC I users to implement these functions
with the absolute minimum of fuss.

The Portfolio is not aimed at the beginner. Many of the routines
assume a rudimentary knowledge of the manipulative techniques
involved. For this reason, the descriptive commentary of, say, a
multibyte addition program may be kept to the looping and data
manipulation means used rather than the principles of the actual addition
itself. This does not mean to say that the Portfolio is presented with
experts in mind - far from it. My own knowledge of machine code
programming was facilitated by continuous trial and error programming,
and at that time no books of this sort were available to help me along the
way. Enter the program and use it as described in the text; in using the
program and experimenting with it the real knowledge will be gained.

The contents of each chapter have been grouped together for ease of
use. Chapters 2 to 9 provide the programming utilities which can make
the programmer's life a merry one. These include function key definition
printers, program variable dumps, a global search and replace utility and
a program compacter.

Chapter 10 provides the mathematically biased routines. Four
multibyte routines handle addition, subtraction, multiplication and
division. The remaining seven routines provide square root solutions and
dual byte shifts.

Graphics are dealt with in Chapter 11, with just about every BASIC-
type graphics command covered. This includes a useful routine using the

2 The BBC Micro Machine Code Portfolio

interpreter-based *640 multiplication table to convert an X,Y screen
coordinate into an absolute screen address. The graphics routines are
particularly easy to group into a BASIC driven menu to provide a simple
graphics compiler (SGC).

All programs require data manipulation at some time and Chapter 2
supplies eleven procedures to sort, add, and delete items from a variety
of lists and arrays. Screen interaction is important in making programs
user-friendly, and Chapter 13 provides the routines to enable this to be
performed with ease. Finally, Chapter 14 has grouped a few
miscellaneous procedures together providing timing delays, counters and
interrupt polling.

The Appendix contains a number of the Portfolio programs in a new
form - as bar code listings. Using the MEP bar code reader these may be
read in directly from the pages of the book itself!

The correct procedure

As mentioned, each of the assembler routines are implemented as
PROCedures, with each having its own range of line numbers. The
procedure contains all the necessary coding to make the routine a stand-
alone one. Because a procedure must be called from a program, each
program contains several lines of BASIC to call first the PROC to
assemble the machine code it contains and then demonstrate the type of
application possible. This serves two functions; first, it assures you that
you have entered the program correctly and also shows you how it
works! If you flick through a few of the programs you'll notice that the
lines of the PROC are given high line numbers in steps of 1 while the
assemble and test routines use low line numbers. This is quite deliberate
as it keeps the two parts of the program clearly separated.

To build up a library of these programs to disk or tape, the
PROCedure can be save to tape. As the low line numbers are only, in
effect, test routines these can be deleted so that only the procedure
remains; and it is this that should be saved. I prefer to save my
PROCedures as ASCII files rather than programs as this allows them to
be added easily to other programs. The *SPOOL command is used to
perform this. Choosing a suitable filename, the syntax is simply:

*SPOOL NAME

If you are using the cassette filing system then you'll need to start the
cassette running. If you are using disks then these will already be
whirling around. So, now simply LIST the program. As the listing
appears onto the screen it will also be written to the current filing

Introduction 3

system. When the program has finished listing enter
*SPOOL

once again to complete the transfer from memory to filing medium. You
will probably have noticed that the filename used in the *SPOOL
command was not enclosed within the quotes normally associated with a
SAVE. This is acceptable as the MOS does not expect them - though
using them will have no adverse effect.

Once all programs have been treated in this way they are ready to be
used in a greater scheme of things! One point - when building up a large
library of procedures it is very important to catalogue them, in a book,
on another disk or tape, or on the front of each tape or disk. This
catalogue should depict the program's name, line numbers and function
as this will be invaluable when it comes to using them at a later date.

Once a program has been saved as a spooled file it can be loaded back
into memory using the MOS-based *EXEC command. To load the
previously spooled file you use

*EXEC NAME

Again, the quotes around the filename are not obligatory. When the
operating system encounters the file it treats each line of it as though it
had been typed in at the keyboard and as the return character at the end
of the line is reached the line is entered into memory. This is the main
reason for using unique line numbers within procedures, as it enables
several procedures to be *EXECuted into memory without fear of
overwriting any program lines already there.

A demonstration

To show the flexibility of the programs within the Portfolio and their
use, study the following demonstration. Suppose a short graphics routine
is required that will select a MODE 4 screen and draw a dotted line from
the coordinate 200,200 to 900,600. First, the three desired files to
perform a MODE, MOVE and PLOT must be loaded in (these can be
found in Chapter 13). Depending on the filenames you have chosen, this
might take the form of executing the following commands one by one:

*EXEC mode
*EXEC move
*EXEC plot

4 The BBC Micro Machine Code Portfolio

The resultant listing forms part of Program 1.1. Next, a BASIC primer
needs to be written to call each PROC and pass the relevant information
through the arguments of the procedural call. First, PROCmode:

20 PROCmode (4,&A96)

The PROCedure is called passing the mode number, 4 into the variable
‘action’ and the assembly address, &A99, into 'addr'. Next, the graphics
cursor must be moved. The problem here is that we do not really want to
have to calculate the new value to be assigned to 'addr' for the code
assembly; instead we can simply use the program counter itself in the
form of P%. Thus line 30 becomes

30 PROCmove (200,200,P%)

The move coordinates are 200,200 and the PROCmove code is
assembled from P%. Finally PROCplot can be treated in the same way
to give

40 PROCplot (21,900,600,P%)

where 21 is the plot code for an absolute dotted line, 900,600 the final
coordinates and P% the assembly address. Now each PROCedure will
assemble its code as a subroutine call. To implement the machine code, a
short procedure must be written that will call each subroutine in turn,
thus:

JSR mode \set up MODE
JSR move \'move graphics cursor
JMP plot \draw line and return

Program 1.1 lists the final program and, by way of proof of the output,
Figure 1.1 lists the assembler listing produced when RUN.

When using this modular-cum-structured assembly approach, the use
of the OPT command must be borne in mind. If the OPT command is
omitted then the default value of 3 will be assumed by the assembler. In
the case of the above example this was not too much of a problem, but
there are occasions when it will be! For example, if assembly is
performed on a conditional basis then it may be desirable to suppress it
altogether using OPT 2 lest it corrupt some vital screen detail.
Alternatively, a FOR . . . NEXT combination may be imperative to
suppress errors during a first pass to assign forward branch labels. There
is no simple way around this. A universal solution would be to include a

Introduction 5

FOR pass=0 TO 2 STEP 2

line in all procedures. I prefer to add the OPT commands as required, but
the choice is yours.

16

SARKN

YR R B R S Y

g
IO I I8 T S T O T N S I A O

o

-3 1T :‘:p o 13

0 0 0 0 (T

0 O 0 0 0

REM ##%% LUSIMNG

B PROC

DEF PROCassewmbls Cadod-

Foo=acdodr

JMF plot
1
ENDPROC

DEF FROCwods Caction, a2
Fro=aciodr
L

» Tl

LDA #action
JSR &FFEE

ErDFROC
DEF FPROCwoue O oS, uie 0, acdde 3
Fr=adc

= FMOD 25
= DIV 256
oz MOD 25

oz DIV Z5e

6 The BBC Micro Machine Code Portfolio

&

197

1
EMHOFPROC
DEF PROCE] obtdcods , wo oo g wc oo, s

Fro=acodr
C

oo PMOD 258
FEE
<ooomod DI 258
: FEE
4 o Hucoorod MOD 258
SR BFFEE

4 Hucoorod DIVESS
2FFEE

EMOFPROC

Program 1.1. Spooling procedures to form a graphics program

« Tl

3 FEE
A B LIF Haction
EE FF .1 2FFEE

Lot Lt Ll

ST T T T T
AU I Y Y I

Lt

1 Hueos FMOD 2
SR BFFEE

4 Hueos DIV 258
SR BFFEE

HES
LFFEE

Hooods

Introduction 7

SR SFFEE

MOD 258

DIy 25

MOD 258

4 Do
SROBFFEE
S e
ok AFFEE

o DIVZ25:

b o T T)
TS

* e loth

Fig. 1.1. Assembler listing produced by Program 1.1.

The BASIC solution

BASIC II provides several enhancements over its predecessor BASIC I.
The most useful of these are the EQU functions which are implemented
as pseudo-opcodes. These functions and their operations are:

EQUB : assemble specified byte

EQUW : assemble specified word (2 bytes)

EQUD : assemble specified double word (4 bytes)
EQUS : assemble specified string as ASCII characters

Numerous programs in the Portfolio take advantage of these commands,
which would therefore make them inoperable on Beebs with BASIC 1.
These commands can be simulated quite simply using the ability of the
FN command.

Program 1.2 lists the function definitions plus a suitable
demonstration. Taking each definition as it appears in the program,
FNequs (lines 500 to 530) uses the program counter variable P% as the
string argument for the ASCII character string passed into the function
via 'strings'. Before exit, P% is incremented by the length of the string.

FNequb (lines 550 to 580) takes the value 'byte%' and simply pokes it
into memory at P%. The program counter is incremented by one and
completes. FNequw (lines 600 to 640) is an extension and provides two
pokes at the position of P%. The high and low bytes are extracted from
‘word' using the MOD and DIV operators. Finally, FNequd (lines 660 to
690) uses the word indirection operator to pling its four bytes into
memory.

8 The BBC Micro Machine Code Portfolio

SIMULATIMG BREIC IT ECL ##%

FHeousdistring$, oot
w=ahr i nod

=P LEM st inoE

= ok

=k

DEF Fieogudddoubley, optl
amcogln L e

Frotd

Program 1.2. Simulating the BASIC Il EQU functions in BASIC I.

The assembler text (lines 40 to 130) shows how each procedure should
be called. The second parameter in each of the OPT FN calls (3
throughout) simply refers to the OPT selection and this should be seeded
as required by the program. To end with, Figure 1.2 shows the assembler
listing provided when running this program, while the hex dump in
Figure 1.3 shows that each FN has indeed performed the required task.

LDA #2353
OFT FHeousc"TESTY 2

Introduction 9

E Az 98 LI #E
e OFT T L
B AE T3 LDy

-
L

OFT
TE STH

OFT
fif LI
RTS

XX
L

ROk
i

T

(I}

i T
XA N
x
I

i
1,

i
LY

Fig. 1.2. Assembler listing produced by Program 1.2

SEE

P e L3O T

=
L

Oy By SO R N O x e S B T R i e

T

s,
L

e 30 -] =]
PP e 0 00

i
=1

XX
Ly

Fig. 1.3. A hex dump of the code assembled by Program 1.2, showing that
the functions have worked.

Chapter Two
Function Key Reader

Virtually all the toolbox type of commercial ROM packages around
these days include a facility for printing any resident function key
definitions. Many, though, are incomplete and only deal with keys 0
through to 10, neglecting keys 11 to 15. Writing a custom-built routine
to handle printing definitions present in all sixteen function keys is a
relatively easy task providing a working knowledge of the function key
buffer is to hand. Two programs are presented here; the first is reprinted
from the April 1984 edition of Acorn User while the second is an
improved version. The two differ in that the former, Program 2.1, is not
capable of printing multistatement single key definitions whereas the
latter, Program 2.2, is. The advantage in using the former is the saving in
memory overheads as it requires only half the memory space required by
the latter.

Key Pointer Byte

&B00
&B01
&BO02
&B03
&B04
&BO05
&B06
&BO07
&B08
&B09
10 &BOA
11 &BOB
12 &B0OC
13 &BOD
14 &BOE
15 &BOF

O 001 Nk W —O

Fig. 2.1. Function key associated bytes.

Function Key Reader 11

The function key buffer is located in page &B of block zero RAM
occupying the bytes &B99 to &BFF inclusive. With the exception of the
first seventeen bytes, all of this is used to hold the key definitions in
ASCII format; commands are not tokenised. These first seventeen bytes,
&B99 to &B 10, are the key pointer bytes and Figure 2.1 details the
bytes associated with the individual keys. Monitoring each of these
bytes as key definitions are entered, modified and deleted gives an
insight into their purpose. Figure 2.2 is a hex dump of the start of the
buffer after a hard break, either when you have switched on or the
CTRL-BREAK sequence is carried out. At this stage the buffer contains
nothing but &10 in every byte.

EE 18 48 48 16 18 18 168 18
=) 18 18 468 16 18 18 18 18
EE 18 48 48 16 18 18 168 18
BE 18 18 18 168 18 18 18 18: .
=) 18 48 48 16 18 18 16 18
=) 18 18 18 168 18 18 18 18: ..
=) 18 48 48 16 18 18 168 18
= 18 18 18 18 18 18 18 18: ..

Fig 2.2. Key buffer after switch-on.

Figure 2.3 depicts the same area of the key buffer after a short
definition has been entered into fO thus:

*KEY 0 CLS IM
EE 18 14 44 44 14 14 44 14 ..o
EE 14 14 44 44 14 14 14 14 .o evae s
BElE 14 42 40 52 6D 18 18 168 CLS. ...
BE1E 18 16 18 18 16 18 18 18::0s
BEZE 18 16 18 18 16 168 18 168
EE 18 18 18 168 18 18 168 18: .
EE 18 18 416 18 18 18 168 16
2E 18 18 18 18 18 18 18 18: ..

Fig 2.3. Key buffer after executing *KEYO CLSIM.

The dump shows that the ASCII string CLS is present but that the return
sequence 'IM' has been replaced with the more conventional ASCII
return character &0D. It is also obvious from the dump that the key
pointer bytes have altered. The first byte at &BO0O is, we know from
Figure 2.1, associated with *KEY9, and this byte still contains &10 or
16 decimal. Counting sixteen bytes from this location we arrive at the

12 The BBC Micro Machine Code Portfolio

first character in the *KEY 0 definition. The remaining key pointer bytes
now all contain &14 or 20 decimal; counting 20 bytes from the *KEY 0
pointer brings us to the last byte; of the *KEY 0 definition, the carriage
return character at &B14.

Figure 2.4 shows the buffer after a further key has been defined, thus:

*KEY 9 AUTOIM

Bk 18 49 42 42 1492 19 142 192 ...
=) P12 14 19 19 19 192 19 19 .. anes
BE 19 42 40 52 80 41 55 54 JCLE.AUT
BE 4F 80 18 18 16 18 18 168 O.......
=) 18 18 48 16 18 18 168 18
=) 18 48 416 18 18 18 168 16
=) 18 18 468 16 18 18 168 18: ..
=) 18 18 416 18 18 18 168 168

Fig. 2.4. Key buffer after executing *KEY9 AUTOIM.

The ASCII characters of the new definition are entered into the buffer
immediately after the last definition. The key pointer byte for *KEY 9 at
&BO09 still contains & 14 while the *KEY9 byte remains at &10. All the
other key pointer bytes have been updated to hold &19 or 25 decimal.
Starting from &BO00 and counting 25 bytes brings us to &B19, the last
byte defined in the buffer.

It is worth looking at what happens in the buffer if a function key is
redefined. Figure 2.5 shows the effect of placing a longer definition into
*KEY 0 than was already present, thus:

*KEY 0 VDU 7TM

What has happened now is that the previous *KEYO definition has been
deleted, the remaining definition(s) shuffled up to the front of the buffer
and the new *KEYO definition added onto the end. Each of the key
pointer bytes have been adjusted to point to the correct location.

1B 1B 1B 1B 4B 1B ... aess
ik 1B 1B 1B 1F 1B 1B ...ouues
1B 41 55 54 4F 8D 53¢ 44 .aUTOo.VD

oD OEE IV 8l 18 19 18 18 U T... ..
18 18 48 16 18 18 168 18
18 48 18 16 18 18 168 18
18 18 48 16 18 18 168 18: .
18 48 48 16 18 18 168 18

Fig. 2.5. Key buffer after redefining fO as *KEY0 VDU 7IM

Function Key Reader 13

*KEY 9 was defined as AUTO and the pointer byte at &B09 now holds
&10 giving the offset from &BO0O0 to the start of the definition. *KEY 0
which is now tacked onto the end of the *KEY 9 definition has had its
pointer offset reset to &15 or 21 decimal. The remaining pointer bytes
have also been adjusted to all give the correct offset to the last used byte
in the buffer, &1B or 27 decimal, which when added to &BO00 gives
&B1B.

The key pointer area contains an extra 'general' byte at &B10 that we
have not yet mentioned. This byte is, in fact, the TOP pointer in the
buffer and always holds the byte offset into the buffer of the last used
location. The MOS uses this byte to test if a *KEY definition is present
when a function key has been defined. If the key pointer byte and the
TOP pointer byte are the same, the MOS inserts the definition directly
after the last definition (as pointed to by the pointer and TOP bytes). If,
on the other hand, the pointer byte and TOP byte are different, the MOS
knows that a definition is already present for the function key just
defined and that it must do some reshuffling of the bytes in the buffer.

Program 2.1

Program 2.1 is the first of the function key definition printer programs.
Called PROCkeysl, it occupies 63 lines between 1000 and 1063. All
processor registers are used and the object code occupies 126 bytes
anywhere in memory as specified by the variable 'addr'.

= ErD

1 #% FUNCTION KEY PRINTER ###
= #0030 Bruce Smith & Acorn Ussrs
3 o

58 PROCkeus1

£8 ¥KEYE CALL

DEF PROCkewsdl (acdr

ERES
HOHE
maEiT 1 oo

14 The BBC Micro Machine Code Portfolio

10683
1018

Tu
ASL
Tre
JER
LD#

o DS

LIA
CiF
EED
JER
Iy
EMHE

RTE

=1

U I 1 Rt J Y=
ridmker_hakle, M
oswrch
midmks_takble+l -
oEurch

e

* eciache

Tk _ckaras her

ke, Y
1=
Care i aoeraehurn

oo

mEerh_charac her

i Trh o ey

LIY#HE

L TEehlether

LA
JER
DEY
EME
RTE

« Tidmber__takle

sl 1 _lkey, Y

Function Key Reader 15

ig8e2 MERT
18ez EMDPROC

Program 2.1. PROCkeys1 - a simple function key lister

Converting the hard facts of Function Key Buffer operation into some
suitable machine code is relatively easy and the main areas of coding are
straightforward. From this we can see the main routines of the code
which, in everyday terms, are a follows:

(a) Print the string *KEY' followed by the current key number
(therefore we need a key counter!).

(b) Obtain the key pointer and if the same as the TOP pointer move onto
the next function key.

(c) Else increment key pointer and print the definition string until the
RETURN character is found.

(d) Print IM and do a RETURN.

(e) Increment the function key counter.

(f) Repeat the whole process until all sixteen keys have been printed.

The X register is used to keep a count of the current key being
investigated so initially this is set to zero (line 1007). The register is also
used as an index into the key number look-up table (lines 1056 to 1058)
where each of the ASCII codes {key number occupies two bytes. To
ensure that the correct offset is located, the key count must be multiplied
by two using an arithmetic shift left (lines 1009 to 1011). The word
"*KEY" and the current key number are printed using the subroutine calls
of lines 1012 to 1016.

A definition present test is performed in line 1022 and 1023 and a
branch over executed (line 1024) if one is found. A simple index, extract
and print routine is used to print the definition string (lines 1036 to
1040) before the key count in the index register is updated (lines 1041 to
1047).

Program 2.2

Program 2.2 is, in essence, the same as Program 2.1 but extra coding has
been incorporated into the listing to test for multiple definitions and
control codes. The procedure is called PROCkeys2 and assumes line
numbers 1070 to 1189 inclusive. The source code generates 246 bytes of
hex assembled at 'addr'.

16 The BBC Micro Machine Code Portfolio

18 REM ®FUNCTION KEY DEFIMITIONES Va2
=8 PROCLs
#¥HEYE
EMD

DEF FRO

LTELTL oo

i b orciloey
o leesy

4 TidmbeErtakle H

R BFFEE
LA mumbertakble W

=TA ér: ol Trher
LI #aF

« besgerd

IR ATt o

BFL kewsmd
4 encholnher

1idiE
1iid
1iiz
1143 sprivhbdsf
1idi4
1115
1idie
1147

Function Key Reader

LI
JER B
LIF #Hisoe iy
JER BFFEE
FLA
AL #RTF
PEmcl ok
CHFP #2322
BCS mobocomteal
FHA
LA #azce e
JER BFFEE
FLA
oLo
ALD #ed
JER BFFEE
JEF nesbocharac ter
. Tobo ombeol
CHF
EHE
LI
JER 2
LA #/soe e
Ja=R FEE
JHFP mesboharac ter

a DT
CHPHELZS
BHE moth
HASC" | "
FEE
L BFFEE

I rEsrhoharas her
R BFFEE

ercie ol rber
et lieu

JHEF i mrbcled

miokFini shec
J=R OFFET
RTE
TibFiTiished
JRF o mainl oo
i b orclosw
LI s
- Tk et her
LI =] llemg, Y

17

18 The BBC Micro Machine Code Portfolio

JER BFFEE
nEY
EMHE meatletier
RTS
- Tidmbertakle
Bz "
EQlmng o
= A
ozt YER® ¢
o b
EQIIE &
« kswstart
EQIE &
- Tl ol Trher
EQIE &
. ofFEst
EQIE &
1
HE=T
ErHOFROC

Program 2.2. PROCkeys2 - the complete function key lister.

The definition printing routine (line 1113) begins by testing the
definition for a character code greater than 128 (entered previously with
the 'I!' sequence). If one is present this sequence is printed; either way,
control progresses to line 1124 where a control character (less than &32)
is tested for. If a control character is found, the 'I' character is printed
followed by the ASCII code of the control character representation,
obtained by adding &40 to it. Thus CTRL-L is printed as 'IL' .

The end_pointer bytes are used to keep track of the length ofthe
entered key definition as previously calculated by the key_end coding
(lines 1099 to 1112), and the print_def loop continues until the entire
function key definition is printed. The main_loop is executed sixteen
times to print all the function key definitions. The final output of this
program is shown in Figure 2.6.

#HEY
#HEY
#HEY
#HEY
#HEY
HHEY
#HEY
#HEY
#HEY
#KEY O #EASIC|M
#HEY 18 OLD|MLIST|M

ETF P PHeM. |

PN AR B R VY LY A

#HEY 11
#HEY 12
#HEY 13
#HEY 14
#HEY 15

Function Key Reader 19

Fig. 2.6. Typical output of Program 2.2.

Program fact sheets

Function key printers
Program 2.1

Proc title

Line numbers
Variables required
Length

Zero page requirements
Registers changed

Program 2.2

Procedure title

Line numbers
Variables required
Length

Zero page requirements
Registers changed

: PROCkeysl
: 1000 to 1063
: addr

: 126 bytes

: none
AXY

: PROCkeys2
: 1070 to 1189
: addr

: 246 bytes

: none
AXY

Chapter Three
Program Information

Two programming utilities are provided in this chapter. Program 3.1 lists
the status of the various BASIC pseudo-variables in addition to
displaying the length of the program currently under development and
the number of bytes remaining available for use. To complement this,
Program 3.2 when called will list every variable currently defined within
a BASIC program (except the resident integer variables A% to Z%), and
this includes assembler labels. This is particularly useful in long
programs when it is difficult to keep a mental track of the variable
names you have already chosen and thus avoids the infuriating situation
that can occur when you use the same variable name twice and wonder
why the program will just not work as it should!

REM ###% FROGRAM IMFORMATION ###
i mem=HIFER
Fimsm=hi mew-L2088
HIFEM=hi
FROZimFo (278, HIMEM?
#EYE CALL HIFEF|H
Er-I

DEF PROCIiTFo Jowrrent,adol
FOR pass=0 TO 3 STEPS

Fri= sl
C

OFT pass

LN #title MOD 25
LI #titles DIV Z
JER ik _mes

LI
Loy

" 1::1 fn} ____+_ o

MO0 232

Program Information 21

L odo B e

odo L omer

oo et Fre
LI
Loy
JER
LI
JER

ST L eF

LI SOFOD 258

22 The BBC Micro Machine Code Portfolio

o L TrE e
STH current
STY currenh+l
LI #8
. 1 P =]
LIDFA fowrrerhl .Y
BEpI =2ll_domns
JER AFFES
Iy
EBMHE 1 oo
Lall_dons
RTE
o b ot
FHA
LR

SED
oL
AL
[SIA
Lo
JER &
FLA
AHD HLS
=ED
L
ik
Al
[
JHF 2FFEE
Lhitle EQUER

P ooz
ImfFormation Serwice!

EQLz
ECiiD
ECILIE

- St

Program 3.1. PROCinfo - provides details on system pseudo-variables.

Program status

ECUISULOMEM @ &

Program Information

EQUztPAaGE ¢ &t
EQLE 255

EQUS HIMEM : &
EQUE 255

EQLE 255

EQUS"TOR § &
EGUE 255

EQUS"Proogram Size=5
ECLIE 255

EfLE " Mext Free Location=i"

ECLIE 255

EQUS"Memory Remainina=g"
EQUE 255

ECUISY bygtes"
ECiiD JAsIN
EQUE 255

EQUE &
]

MEST
EMDFPROC

23

PROCinfo is the assembler procedure to generate the source code for the
info program. I have given the name 'info' to the procedure simply
because it is more representative to the program's function. I would
suggest, however, that it is saved to tape or disk with the filename
STATUS. This is because INFO is generally recognised as a disk filing
system command and therefore the command *INFO could not be used
to load and run the program from disk whereas *STATUS would be
acceptable. When executed, the program prints the hexadecimal values

of the following:

PAGE
HIMEM
LOMEM

24 The BBC Micro Machine Code Portfolio

TOP

Program size

Next free location
Memory remaining

All the information required to calculate each of these values can be
found in zero page. Figure 3.1 lists the byte allocation for the first
couple of dozen locations.

The assembler is quite straightforward and is split into easy-to-handle
segments. The screen information title is first printed onto the screen
using the print_message subroutine (lines 1286 to 1297). The address of
the string to be printed is transferred to the subroutine via the index
registers. On return, the relevant data is extracted from zero page and
printed in hexadecimal format using a fairly standard hex to ASCII print
routine, 'hex_out' (lines 1298 and 1317).

&00 - &01 : LOMEM

&02 - &03 : VARTOP (top of variables)
&04 - &05 : Basic Stack Pointer
&06 - &07 : HIMEM

&08 - &09 :ERL

&0A : Text pointer index
&9B - &9C : Text pointer

&O0D - &11 : RND seed
&12-&13 :TOP

&16 - &17 : Error vector

&18 : PAGE byte

Fig. 3.1. Assignment of first 24 zero page bytes.

The values of PAGE, TOP, HIMEM, LOMEM and the next free location
can be obtained directly from the BASIC workspace. The other values
must be calculated, which generally involves a simple two-byte
subtraction. Program size is calculated by subtracting TOP from PAGE
and the amount of memory remaining by subtracting the top of variables
(termed VARTOP by me!) from HIMEM. The actual value of VARTOP
is not displayed by the program but could be simply added if so
required.

The 'hex_out' routine works four bits at a time. Taking the high nibble
first (as this is the first printed working left to right) and moving this into
the low nibble, the conversion is performed using decimal addition with
the decimal flag set with SED. The decimal addition of &90 converts the
binary values O to 9 into the range &90 to &99 with the carry flag set.

Program Information 25

The addition of a further &40 converts these values to the range &30 to
&39 with the carry set, which corresponds to the correct ASCII codes
for the values O to 9. If the original nibble held &A to &F, adding &90
gives values in the range &0 to &5 (remember we are working with
decimal addition). Addition of a further &40 with the carry set gives a
final result in the range &41 to &46, the ASCII codes for A to F. The
low nibble is treated in the same manner to produce the second digit
before the decimal flag is cleared. Using STATUS is straightforward:
just perform a CALL to the assembly address. The BASIC primer
generates the 372 bytes of code above a lowered HIMEM and can be
called using function key 0. Figure 3.2 shows a typical output of the
machine code.

FProgran Information Seroics

PAGE
TOR

HIMEM
L e

Frooran Size=208959 bhgates

Mext Fres Locationsi2el

Memory Femaini no=8533

Fig. 3.2. Typical of output produced by Program 3.2.

Variable lister

PROCYvars generates a useful variable lister that occupies a compact 103
bytes of memory, the cassette / RS 423 buffer in the demonstration. Five
bytes of workspace are required in addition, and two bytes of these must
be in zero page to facilitate indirect addressing.

18 REM ###% LIST ALL PROGRAM WARIABLES

B FROCwars Tl aT3,8R0E
=8 wKEY 1 CAl Rl
5 ERD
bl

DEF PROCuarsdasc wareoinberwvarster

e
£
o
b

1T, acdcd s

26 The BBC Micro Machine Code Portfolio

1482 L OPT pass

pRE s rariables
LM #iz
JER BFFEE
LM #i4

: BFFEE

HED

ST wareol mher
LI #4
ST wareoinber+l
" l s
LIy H1
LA duarpoinheri Y

ARET S =Tub ik A= N
STA warstring

BT 'y A N Tn =]
LIFA O warstringd,Y
BED end_primth
SREFFED

JEF e imb 1 oo
T ik
Loy #i1
LA o warshtrinod Y
BER wpdate

A pt=
~zhii ol

Lmciate

ware ol e
CHFP #aFE

BED Finishsd

A oar ol Trher

JEFE i TR
LFimished
LOM #1=

Program Information 27

1455 JER BFFEZ
1457 LM #15
1452 JER BFFEZ
1459 RTS

1 1

14el HE=T

1z EMHOFROC

Program 3.2. PROCvars - lists all program variables.

An understanding of variable storage is essential to follow the
program's operation. In addition to the resident integer variables there
are basically two other types of variable. One of these variables is
postfixed with a % sign to signify that it is also an integer, while a
variable without the % defines that it is a floating point variable. When a
program is run, the BASIC interpreter extracts each variable from the
program and places it in a fixed format above the main program and
below TOP. The format is as follows:

(a) A two-byte address which points to the next variable starting with the
same leiter. If none are present these bytes contain zero.

(b) The variable name in ASCII format excluding the first letter of the
variable, e.g. START is stored as TART.

(c) A zero byte to mark the end of the variable name.

(d) The binary representation of the value assigned to that variable. This
is stored in four bytes for an integer variable and five bytes for a floating
point variable.

We can see from item (a) that it is quite easy to move from one variable
to another, starting with the same letter, simply by extracting the address
pointer from each variable 'definition' in turn. However, we need to
know exactly where the first variable is located and Acorn have
provided, by design, a variable pointer table on Page 4 in block zero
RAM. Figure 3.3 details the locations holding the pointers for the
characters A to Z and a to z. If both locations for a particular character
contain zero then no variable beginning with that letter is present. 28
The BBC Micro Machine Code Portfolio

Character ~ LSB address MSB address
A &482 &483
B &484 &485
C &486 &487
D &488 &489

28 The BBC Micro Machine Code Portfolio

E &A8A &48B
F &48C &A48D
G &ASE &A4SF
H &490 &491
I &492 &493
] &494 &495
K &496 &497
L &498 &499
M &A49A &49B
N &49C &49D
o} &A49E &A49F
P &4A9 &4A1
Q &AA2 &A4A3
R &AA4 &AAS
S &A4A6 &AAT
T &4A8 &A4A9
U S4AA &A4AB
\% &4AC &4AD
w &A4AE &4AF
X &4B9 &4B1
Y &4B2 &4B3
z &4B4 &4B5
a &AC2 &AC3
b &AC4 &ACS
c &AC6 &ACT
d &ACS &AC9
e &ACA &A4CB
f &ACC &ACD
g &ACE &ACF
h &4D0 &4D1
i &A4AD2 &4D3
j &A4D4 &A4D5
k &4D6 &A4D7
1 &4D8 &A4D9
m &4DA &4DB
n &4DC &4DD
N &4DE &4DF
p &AE9 &A4E1
q &A4E2 &A4E3
r &AEA &AES
s &AE6 &AET
t &AE8 &AE9
u &AEA &4EB
v &AEC &AED

Program Information 29

w &4EE &4EF
X &4F0 &4F1
y &4F2 &4F3
z &4F4 &A4F5

Fig. 3.3. Variable start pointers

Program lowdown

Figure 3.4 flowcharts the program's operation. The first ten lines of
assembler clear the screen, place it into paged mode, save the ASCII
code for A in 'asc' and seed the variable pointer table start address,
&482, into a zero page vector.

The main program loop is entered at line 1415 and commences by
extracting the most significant byte from the pointer table. For a variable
to be present, this bye must be non-zero as no variables can be placed in
zero page. If it is zero a branch to update is performed, otherwise the
low byte address is accessed and seeded into a second vector, pointer.

Lines 1423 to 1427 print a carriage return followed by the first
character of the variable saved in asc. Using post-indexed indirect
addressing, the print_loop (lines 1429 to 1434) extract each variable
character from the program workspace, printing each until the zero
terminating byte is encountered.

The linking address from the beginning of the variable definition is
then sought. If this is zero a branch to update is performed, otherwise the
link address is placed into the pointer vector and the next variable name
printed.

30 The BBC Micro Machine Code Portfolio

PAGED MODE

SEED VECTOR
AND COUNTER

i

GET START
ADDRESS OF | <€
VARIABLE

1S

VARIABLE

PRESENT
?

PRINT < RETURN
AND

Y

VARIABLE
NAME

GET ADDRESS INCREMENT TO
OF NEXT NET VARIABLE
VARIABLE START

END

Fig. 3.4. PROCvars flowchart.

The update routine (lines 1445 to 1453) first increments the var_pointer
vector by two to move onto the next character associated bytes, and
increments the character value, asc, by one. The program terminates
when the last location in the variable pointer table is reached (line 1449
and 1450). Finally, Figure 3.5 illustrates a typical output ofthe program,
listing the variables in the program itself!

g
adcd
end_print
Finisheo

P el

w

Program Information 31

Erimh 1 ooe

Fig. 3.5. Typical output produced by Program 3.3.

Program fact sheets

Program 3.1
Procedure title : PROCinfo
Line numbers : 1200 to 1352
Variables required : current,addr
Length : 372 bytes
Zero page requirements : 2 bytes (anywhere in memory)
Registers changed AX Y
Program 3.2
Procedure title : PROCvars
Line numbers : 1400 to 1462
Length : 103 bytes

Zero page requirements : 5 bytes, four forming vectors
Registers changed AXY

Chapter Four
Program Formatters

BASIC's LISTO command allows a limited amount of control in
producing formatted listings, inserting spaces to indent loops and
structures as required. The two programs presented in this chapter
provide an extended formatting option for either BASIC or assembler
programs; indeed, the Assembler Formatter was used to produce the
clear listing within this book, inserting ten spaces between line number
and mnemonic but leaving labels un-indented and clearly separated from
the listing.

18 REM # A Basic Formatied Listing #
28 FOR looe=8 TO 186

28 PRIMT loope @ MEST looe

S8 IMPUT A rambese " MM

S8 IF Mu=18 PRIMT"Correct" ELSE PRIMT
MTaiat= A

=8 REFEST @0 IMPUT "Cods" CF
FEOFOR wait=8 TO 18688 @ MEST wait
28 UMTIL CE="EMD"

sLIST

18 FEM #%# /A Basic Forwmatbed Listinog #
1 FOR looe=8 TO 188
FRIMT oo
2 MEST looe
S8 IMPUT A rombese " MM
S8 IF Mu=18 PRIMT"Corrsct”
ELZE FPRIMT "wrorm®

=8 REFEAT
IMFUT "Cods® CF
TEOFOR wait=8 TO 1998
2 MEST wait

28 URMTIL Ce="ERDY
Fig. 4.1. A BASIC listing with and without the BASIC formatter
The BASIC formatter splits multistatement lines by issuing a carriage

return each time it encounters a colon. It also splits IF. .
.THEN. . .ELSE structures in addition to indenting them along with

Program Formatters 33

REPEAT . . . UNTIL and FOR. . .NEXT loops. Figure 4. 1 shows the
type of listing the BASIC Formatter is capable of. Now for the
programs!

The BASIC Formatter (Program 4.1)

The basic_format procedure assembles its machine code into Page 9
of block zero RAM. This area has a number of uses (in addition to
housing our machine code) and is more normally associated with
ENVELOPEs 5-16, the speech buffer, cassette and RS 423 buffer. The
routine has two entry points - &900 and &928 in this case - and function
keys I and 2 have been programmed to call these locations. These two
entries simply turn the formatter on and off respectively.

The 'on' entry point (line 1485) first prints the formatter on message
before storing the current value of LISTO, found at &1F, in a byte above
the program. Its maximum value of 7 is then inserted. The WRCHV
vector contents are extracted and saved and the WRCHYV pointed to the
*format' entry point at line 1521. The 'off' entry, line 1506, simply
reverses these procedures. Line 1518 could be changed if required to
make the formatter clear the LISTO option each time it is switched off
by replacing it with

LDA #0

FEM ##% LISTIMG FORMATTER #%#%
FROCka=sic_Fformet (2208

LI IO B X O

oty
L]

v [

EMDI

Pr=acdr

CORT pass
. 0TI

LI Haom
- TEsh_ckaras her

34 The BBC Micro Machine Code Portfolio

STA listo

LDA BFormat FOD 258
b E
LDf #format DIY 256
SEEF

. OFF

LI #2808

«Format

O #HSCo e
BHE mo_oolonm

Lo s ol om

4 bghe+
1 bngbetad

CRY Haoo

BEG carro_on

irberpreter

PR 1 ™ SR

T 0 b D3 PP 31
o
T

OO O On O O On
O b D3 P b A0 00 -]

i

- ohelt

03 =1

JER i

O OO
ARJDA RUR B R A R Bk B B (A Y R R %

i
i

EME
RTE

ey
EQLE
EQLE

o boghe

By
L address

By

izt EQUR 8

TormeE

EMIOFPROC

Program Formatters

ok _iF
D bghed 2

mrhermreher

4 HRED
: i

mrhermreher

M T T)

mrherereter
miherEreter

Formatter on!®

B =]
il

Formatter off!"

b =]
i1l

Program 4.1. PROCbasic_format - neatly formats a BASIC listing.

35

36 The BBC Micro Machine Code Portfolio

On entry into 'format' through the reset WRCHV the accumulator
contains the character to be written. This is tested to see if it is a colon.
If this test fails a branch to 'no_colon' is performed. Assuming a colon is
present, the 'output' routine at line 1556 is called to perform a line feed
and carriage return and a series of spaces printed. The output routine
uses a direct jump into the MOS to do the printing. This is necessary as
we have intercepted the normal WRCHYV address.

Incidently, disassembling from this address, &E9A4, provides an
interesting insight into how the Beeb programs the CRTC to display
characters. As a machine code programmer you must be in possession of
a suitable disassembler, so have a look! But I digress, so back to the
program description. On return from the output call (line 1526) the 'byte’
locations, which act as counters, are cleared and a forced branch to
‘not_else' is performed, which prints the character to the screen (line
1541).

Routing around the rest of the code takes place if any of the indenting
loop commands already mentioned are identified by intercepting the
count value held at &1E and used by LISTO. Special treatment of the IF
statement is required to ensure that any subsequent ELSE is generated
both on a new line and further indented - this is because ELSE is
normally ignored by LISTO. These two commands are identified by
their token values before the 'interpreter' call hands them over to the
BASIC detokenising routine for expansion. The codes and the entry
points are as follows:

IF (= &E7) entry at line 1546
ELSE (= &8B) entry at line 1550

The byte at &37 is used by the BASIC interpreter to hold the current
command token (line 1545).

The Assembler Formatter (Program 4.2)

This utility is probably the one I use most of all along with the global
search and replace utility presented in Chapter 7. I find that the neatest
way to present assembler listings is in the manner used throughout this
book; the mnemonics are indented and clearly and follow through. The
most obvious way to perform this task is simply to tap in spaces as
required at the keyboard as the program is entered, but this is boring,
time-consuming and extremely wasteful of memory which can be of a
premium in the hi-res graphics modes. Thus, Program 4.2 was
conceived.

Program Formatters 37

#HE
EMD

Y1 oAkl aC220H

DEF FPRO
oEurc=
FOR pas
Fr=acodr
C

= T

« T b

BHE mseboke
LIOFHE

ZTA
LM &
ZTA
LI
ZTE
LI
ZTH
LI
STH &
RTS

’r—*i[::ll!-_':'r" HOD 255
zembkler DIV 258
. OFF

LI #E
« T b

LDF
EME

38 The BBC Micro Machine Code Portfolio

LD#
CHP
EME
STH

« b
LI
JER
FLA
T
FLF
LI
RTS
LI
CHF
EHE
LI
STH
BED
hestor
CHF
EHE
LI
ZTAE
BED

CiF

CiF
=
LIA
EHE
LI
LA

JER
DE=
EHE
(e

STA
JHE

« kg
B
1

bghe
BEDCOLY
et
bogbe+l

kgt

cEwroh

bngthe

bbb+l
rehurT

1=
testlabel
HiE

IRk)
rEhurT

HASCO". ")

BED =i

rehurT
bgbetd
rahurT
#iE
Hoz

aEwroh

b+
et

atter OFFLY

ECLlel 28Dey

Program Formatters 39

MERT
EMDFROC

Program 4.3. PROCass_format - makes an assembler listing more readable.

Like its BASIC predecessor, the Assembler Formatter has two entry
points to turn the utility on and off. The 'on' entry point is at line 1606
which outputs the 'Assembler Formatter On' message before saving and
redirecting the contents of the WRCHYV to the 'assembler' entry point at
line 1638. The 'off' routine, entered at line 1625 performs the reverse
operation.

When the formatter is on, all output produced by the Beeb is
channelled through the 'assembler’ routine via WRCHYV. After preserving
the program status (lines 1639 to 1642) the accumulator's contents are
tested to see if they contain the '[' code to indicate the start of assembler
(line 1646). If this test succeeds, the code is stored at 'byte+1' .As you
may have noticed, the code immediately before this tested this particular
location to see if it were non-zero which would denote an already open
assembler listing. This test routine would therefore be jumped over to
the test_shut routine (line 1657). This section of code first tests to see if
the close bracket, end of assembler mark, has been found in which case
the 'byte’ values are reset and the normal oswrch output pursued.

If a carriage return is not present (lines 1664 to 1669) the 'test_label'
routine is invoked. If the label start character, a full-stop, is present the
fact is signalled in 'byte-4' and the routine completed; a delimiting colon
is treated in a similar manner. If neither of these characters is
encountered, the X register is loaded with the number of padding spaces
to be printed (line 1677). I chose to use ten though you can adjust this to
your own taste. The 'spaces' loop is entered and exited on completion of
printing the ten spaces. Mnemonics will subsequently be printed from
this ten spaces in position, while labels are printed as usual.

Program fact sheets

Program 4.1
Procedure title : PROCbasic_format
Variables required : addr
Line numbers : 1480 to 1592
Length : 227 bytes

Zero page requirements : none
Registers changed : none

40 The BBC Micro Machine Code Portfolio

Program4.2

Procedure title
Variables required

Line numbers

Length

Zero page requirements

: PROCass_format
: addr

: 1600 to 1699

: 214 bytes

: none

Program Formatters

41

Chapter Five
The Screen

If you are interested in the graphics capabilities of the BBC Micro there
will no doubt be occasions when you wish to save the graphics design
you have created so that it cal; be recalled at a later date. Programs 5.1
and 5.2 will facilitate this using the OSFILE call to perform these tasks
rapidly in machine code. The third program in this chapter, Program 5.3,
provides a printer screen dump program that will work on the Epson,
Star and compatible printers.

Save Screen NMemory (Program 5.1)

The OSFILE routine is entered in the MOS at &FFDD. Like the
majority of the operating system calls it expects to be pointed in the
direction of a parameter block via an address held within the index
registers. The parameter block needs to contain all the information
required by the call to operate. Figure 5.1 details the OSFILE parameter
block.

XY+0 to XY+1 : Filename address. Filename must be terminated by
RETURN.

XY+2 to XY+5 : File load address, stored low byte first.

XY+6 to XY+9 : Run address of file, stored low byte first.

XY+10 to XY+13 : Data start address to be saved.

XY+14 to XY+17 : Data end address.

Fig. 5.1. The OSFILE parameter block.

The OSFILE call can perform up to eight different tasks depending
upon the value in the accumulator when the call is effected and these are
detailed in Figure 5.2. The call code we are interested in here is with the
accumulator holding 0.

42 The BBC Micro Machine Code Portfolio

: Save block of memory as detailed in parameter block.

: Write information in parameter block to catalogue entry.
: Write load address only for existing file.

: Write the run address only for an existing file.

: Write file attributes only for an existing file.

: Read a file's catalogue information to parameter block.

: Delete file named in parameter block.

255 : Load the file detailed in the parameter block.

NN DLW =O

Fig. 5.2. The OSFILE call codes.

Program 5.1 is relatively straightforward, but the amount of screen
memory to be saved will vary depending on the currently selected screen
mode. For example, MODEs 0, 1 and 2 utilise a full 20K from &3000
while MODEs 4 and 5 require 10K from &5800, and the amazingly
versatile MODE 7 needs just a meagre 1K from &7C00.

46 =
58 MODE 4
&8 FOR lome=1i TO S8

W=512

FiTHD R
+inc.YHine
HeThiTc

W=y 26

BED dumed
CHPHEE
BOC dumed
CHEPHE4
BEDR dumpz

CHFHS
BED cumez
CHF HT
BED teletest
- SO
LI #8
. 1 s

LIFA mes

Finished

« Clmed

4 parark] LHEEE
O

AP osEfile
e I B

ST r:-.ss:r‘-.a.r-'s&:le:: LEE
LD
JEP osfile

+
]
ot
i
o
]
+

STA parankll
LIF #8
JRF osfils

LoEFile
LI #pasrawmell pODZ
LI #Hparambll DIV
JEFP BFFLD
Filenams
EQLS T SsaVED
T T
Saranil
EQLE Filenams POD
EQLIE Filenams DIV
LT =
ECLD 8

EQLE T
ECLIZ Mot a2 graphics Mods®

The Screen

43

44 The BBC Micro Machine Code Portfolio

ECLE 13
EQIE &
1

HE=T
EMHOFROC

Program 5.1. PROCsavescreen - saves the screen memory to tape or disk

The program acts 'intelligently' in this respect by obtaining the current
screen mode from the Y register after an *FX135 call (lines 1706 to
1708). If, after the comparison of line 1710, the carry is clear a MODE
of less than 3 is indicated and the branch to 'dumpl' performed. If a mode
value of 4 or 5 is determined, 'dump2' is sought while a branch to
‘teletext' is executed if 7 is returned. Note that the 'error' loop is entered
if the screen is in MODE 3 or MODE 6; this prints out the 'Not a
graphics Mode' message from line 1765 and the routine is exited.

Each of these sections of code simply seed the first page number of
the current graphics MODE into the correct places within the parameter
block. If the graphics MODE was MODE 1 then the branch to 'dumpl1’
would seed the value &30 into the three bytes at paramblk+3,
paramblk+7 and paramblk+&O0B, prior to loading the accumulator with
0 and jumping to 'osfile' at line 1749. Here the address of "paramblk’ is
loaded into the index registers and a JMP to OSFILE at &FFDD
performed.

The parameter block is located at the top of the calling machine code,
lines 1756 to 1762 and the EQU functions used to prime the static
contents. The filename is stored at 'filename' (line 1753) and I have
chosen to use SSAVED, but this can be changed to suit your own needs,
of course.

The BASIC test routine simply draws a succession of squares in
MODE 4 before using the machine code to save the screen's contents.

The following program, Program 5.2, can be used to reload screen
memory.

Load Screen Memory (Program 5.2)

The load screen memory program is essentially the same program as its
saving counterpart. The main difference is that the accumulator is loaded
with 255 to indicate a load operation to the MOS.

18 REM ###% LOAD SCREEM FEMORY #%#
28 PROCI cadscresn CRODE

ZE MODES

48 CAall aloes

ety

EH I

-

8 S I A

o B
M
|
1
11
a
E
fg'

FOR

Fii=aucicl
C

Vool

W20 ooyl
CHEPHES
BED dumez
CHPES
BED dumps
LS
BEDR teletewt
o SO
LI #E
sl s
LI
BER
JER 2
Iy
BHE 1ooe
Finisheo
RTS

« Sl

» ST

+
]
ot
i
o
1]
-

LoEFLle

The Screen

45

46 The BBC Micro Machine Code Portfolio

LI #Hparawmisll POD =
LIV #Hparamoll DIV 258
JeEE aFFDD

Filenams
B JEIN
EQLE 13

maramil il
EQLIE Filenams POD

OIvw 25z

TMEESa0E
EQlE 7
EQIE"Mot & arasphics PMods”
ECLE 12
ECLE &
1
HEST
ErDFROC

Program 5.2. PROCloadscreen - loads a saved graphics screen back into
screen memory.

Printer Screen Dumper

If you own or have aspirations to own a printer then you will certainly
wish to be able to dump the contents of screen to the printer at some
time to obtain that all important hard copy, be it a graphics masterpiece
or just a copy of a some neatly formatted data. Program 5.3 was
designed specifically for use with 'bit-mapped’ printers such as the
Epson and Star ranges. The program is a stand-alone version and
includes a short graphics program at the start which will be dumped
correctly if you have a suitable printer attached.

¢ PRIMTER SCREEM DUMPER #$#®#
¢ EFSOM Fii oand STAR &%

18 REM 3
=8 REM :
MODE 5

S S4B 2 YW=5412

38 incremenh=3

=8 FOR 1 =1 TO 58

TEOHOVE

28 DRAkK incremsnth, Y

SE DRFk incremsrh, Yrinoremnsnt
18 e TriTremsnh

11 ba

The Screen

SLRTE, BTLLETE,BTE, ST

wloemhisulosghid

TO 2 STER =2

« BoreeT_dume
LDm #2

« TiEEh o

—censity

checl_Ffinish
i
coheck Ffinish
LDA whi

47

48 The BBC Micro Machine Code Portfolio

CiHF#E BFF

BHE mset o
LA glo

CiF# 2FF

EBHE meet_row
LM #:
JER 2
LI
JER &
LI
J=R 2

Lol _densi

The Screen 49

. l:{ll:l
T4

= orotate
Cowhi

robate
CLC
FOR bute
BOD read_pixsl
it pattern
LM #1
o O

EMOFROC

Program 5.3. PROCscreen_dump - outputs the graphics screen to a
connected printer.

The machine code of the program assembles just below the memory
required by either of the 20K screen modes. It would be a good idea to
obtain a second source coding that will sit just below the MODE 4 and 5
memory, thus making the 'unused' screen memory available for use by
the program. A suitable value for 'addr' in this instance would be &5600.

The major part of any graphics-printer dump program is spent
preparing the pixel - in other words, converting it from its screen form
into a form that the printer can handle and translate into selecting which

50 The BBC Micro Machine Code Portfolio

of its eight dot-matrix pins it fires. (Yes, I know there are nine but we
only use eight!) The steps required to perform this conversion process
are summarised below:

(a) Read a pixel off the screen.

(b) Adjust the byte using suitable rotates.

(c) Check a counter to see if byte is complete.

(d) Adjust the value of Y and X as needed to allow for resolution
changes.

(e) Send the byte to the printer in the form of a VDU1 command.

Looking at the assembler program shows that the first section of code
from line 1904 to 1926 is responsible for issuing a series of VDUI codes
to the printer using OSWRCH. In BASIC terms the following is
performed:

VDU 2,1,27,1,65,1,8,1, 10

The VDU 2 is used to enable the printer while the intermediate codes set
the line spacing to 8/72 inches. The final VDU 10 performs a line feed.
Much of the code comprises these VDU 1 codes and they could be more
efficiently incorporated into a look-up table if required. I have
persevered with the long-winded method mainly for reasons of clarity.
Lines 1922 to 1932 initialise the variables ylo, yhi and xlo, xhi. The pair
ylo,yhi are loaded with &3FF which in decimal is 1023 and shows itself
to be the maximum on-screen value of the Y axis. The xlo,xhi
combination are set to zero. The 'dual_density' subroutine is responsible
for putting the printer in graphics geaf and performs a BASIC VDU 1,
27,1,76, 1, 128, 2 selecting 640 dots per line in bit image mode.

Before printing, the current screen pixel details must be read from the
screen. This is readily performed with OSWORD and the accumulator
holding 9 (lines 1987 to 1992). The parameter block requires five bytes
set out as follows using the declared variables:

xlo - low byte X coordinate

xhi - high byte X coordinate
ylo -low byte Y coordinate

yhi - high byte Y coordinate
xlo+4 - result after OSWORD call

As can be seen, we have neatly used the program variables to form the

parameter block of the call, a saving in coding and space when it works!
The byte to be sent to the printer is formed by rotating it through the

carry flag position into the accumulator (lines 2003 to 2013) and

The Screen 51

printing it via OSWRCH. The rest of the general housekeeping is
performed in lines up to 2033 and the whole process repeated until the
‘check_finish' (line 1943) routine indicates a completed picture. The
final succession of VDU 1 calls issue a form feed, place the printer into
its more standard printing mode and disenable it. Figure 5.3 shows a
dump produced by the program on my own printer.

One final point: always ensure that the graphics origin is set to its
normal default position prior to calling the dump. This is best done by
inserting a VDU 29,0;0; at the onset of the program. As it stands, the
program looks at every screen coordinate; if any of these have been
moved off the screen due to a redefined graphics origin then the pixel
read routine will return -1 or &FF, which will cause awful black bars
and lines to be printed as part of your dump in the offscreen areas.

Fig. 5.3. Screen dump produced by Program 5.3.

52 The BBC Micro Machine Code Portfolio

Program fact sheets
Program 5.1

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 5.2

Procedure title
Variables required

Line numbers

Zero page requirements
Registers changed

Program 5.3

Procedure title
Variables required

Line numbers

Program length

Zero page requirements
Registers changed

: PROCsavescreen
:addr

: 1700 to 1770

: 140 bytes

: none

AXY

: PROCloadscreen
:addr

: 1800 to 1870

: none

cAXY

: PROCscreen_dump

: xlo, xhi, ylo, yhi, byte, bits, addr
: 1900 to 2036

: 260 bytes

: 7 bytes

cAX)Y

53

Chapter Six
Softly, Softly

The Beeb allows the user to define characters using the VDU 23
command. This is followed by eight byte-sized numbers which represent
the bit patterns of the eight bytes that form the character.

¢ SOFT CHRE CHARACTER DEFIMITIONS #®%
ZE.leS, 12.189,224,1232,114,. 18
12,122,112,146%, 8,123 =
= l_ lt;,ll:,_

a : T, -ﬂ
A ,L:.Hl 188, 144,
_.1‘4 lll, |CX, = .
62, 8,201, 1@,

5, 7
z £,16
242 2, 25"
z43: 24,191,
244: 116,136, &,
z45: 138, 12, 55,
2461 76,167, 18,
2471 42, 42, T,
z48: 32, &7, 72,
z43: =2, &5, 22,
z5@: 69, 7E, ey
251: TS, 23, 1@,
z52: 1@, 13, 185, &,
253: 133,112,230,114,248, 96, 32,
254 255,184,184, 95, @, @, @,

Fig. 6.1. A typical output produced by PROCvduchrs.

54 The BBC Micro Machine Code Portfolio

Primarily these definable characters, 224 to 255, are used to create new
characters whether they be fancy stylised alphanumeric characters or,
more commonly, games characters. Program 6.1 provides a routine that
will display the full definitions of any of these characters that have been
defined. Figure 6.1 shows the output produced by the program.

User-definable characters are stored in the soft character definition
area on page &C between &CO00 to &CFF. Machine code programmers
will know this area better as an assembly area for their code! As
mentioned, eight bytes are associated with each character; thus,
character VDU224 is allocated the eight bytes &C90 to &CO07 inclusive;
VDU 255 the bytes &CO08 to &COF, and on up to VDU 255 which is
allocated the bytes &CF8 to &CFF. The first byte in each definition (the
top-most one) is placed in the first byte of the corresponding memory
location and so on - as Figure 6.2 illustrates.

&C00 = &18
&C01 = &3C
&C02 = &5A
&C03 = &66
&C04 = &3C
&C05 = &18
&C06 = &24
&C07 = &42

Fig. 6.2. The byte definition storage of user-defined character 224.

As Figure 6.1 showed, the program does not print out the contents of
every character - merely the characters that are or seem to be defined.
This is quite simple to determine. On a power-up or reset, the MOS
clears this area of memory with zero, so all the program needs to do is to
add up the bytes corresponding to each VDU character. If the result is
zero, no definition is present and the next character is sought. If, on the
other hand, the result is non-zero then a definition is assumed and the
contents printed. I say 'assumed' because it might not be a proper
definition - it may, of course, be machine code! Also, the last 5
characters in the buffer, VDU 250 to VDU 255, seem to be susceptible
to having garbage placed into them by the MOS.

Figure 6.3 flowcharts the program's operation. The definition test just
discussed is performed by the 'test_for_definition' routine (lines 2135 to
2147 in Program 6.1). The restult of the summing is placed in Softly,
Softly55 the 'addition' then a branch to 'print_definition' is executed
(lines 2067 to 2070).

Softly, Softly 55

STAR

X

SELECT SCREEN
AND

PRINT
HEADING

INITIALISE
PROGRAM
COUNTERS
ADD ALL VDU
DEFINITION
CHARACTERS
TOGETHER
NO
YES INCREMENT YES
PROGRAM END
COUNTERS

PRINT
CHARACTER
CODE
NUMBER

GET BYTE

FROM
DEFINITION

PRINT IF
AS A THREE
BYTE DECIMAL

INCREMENT
BYTE
POINTER

]

Fig. 6.3. The PROCvduchr flowchart.

56 The BBC Micro Machine Code Portfolio

The 'print_definition' loop (lines 2074 to 2097 in Program 6.1) begins by
printing the VDU number of the current character followed by a colon.
Each byte is then extracted in turn and printed to the screen in decimal
form followed by a comma. After the last definition byte is printed a
new line is printed and the next VDU character is sought. The 'update
routine' (lines 2166 to 2173), as its name implies, increments all
program counters and determines when every VDU character has been
processed.

18 REM #

SOFT CHRE VDU S VERZION W2 %
FEH '+' ; i Zer ¥

Erac

;—TU #['.E S HLL. .:.;4L1HH[HJ
S8 EMD

1 adddition_lute
4o acddditi om b

TEiT L oo
JER test _For_defFinition
LA addition butes
EHE primt_definition
LA additiorn_lwtes+l
EBHE primt_definition
JER
EMHE
JpiF b
itk _dsFind + iom
LA v _chisl
JER binarug_
LA #H"l" tat
JER B
LIFA
J=R
Loy

e te
W1 T';_l [o)

imal_erinh

u 1 TR
LIF CaTa .Y
JER binsrg decimal_print

Softly, Softly 57

Ik
TRy 85
EMHE 1ooe
JER upcate
LIDFsE
STA additiorn butes
STA additi or_ butes+l
TAY
LM #i1z
JER BFFER
JEF main loop
iTarg decimal_perint
LI #5
ST Flag
T =
CrPFH1868
o buncdrecds
#1068

Flaog
Frdrecds

SR oprintodecimal
= HE

A H1E
D0 mo_tens
D H1E

A tens
LT _hEnE
JER prdivi_ddecimal
oLo
AL gRzcrar
JeFE s FFEE
SiThocecimal
FHA
THA
Al
CHF
EMHE
LI
EMHE
LI

« THO__Ee™ 0

JER
FLA
RTS
Lhest_For_defFinition
LIOYHT

58 The BBC Micro Machine Code Portfolio

ool 1 oo

LA CaTFEsr, Y
coadditi o butes
aodition_butes
TS 3

coadditiorn butess+l

« THO__T B
nEY
BFL checlk 1 oo
RTS
EEt_LE_SCresn
LI H#E
- Tk _cheras her
LA takble, =
EMI dome

FFEE
* et _ckharas her

cdoms

RTE
fakble

EQLER 22

EQLE &

EQLD 28D8RA8D0S

E SOFT CHR®
EQiz® CHARACTER
EQUS"DEFIMITIONS #®®"
EQUD 28DeR808R

EQlE 250

«peciathe

Ly
s
=
=
i
4
5
(=
=

2
&
&
&
&
~
7
i
-
7
7
-
7
L
7
R
7
b
7
Rl
Fi
L
7

EMHOFROC
Program 6.1. PROCvduchrs - lists the soft character definitions.
The program incorporates a useful decimal printing routine between

lines 2098 and 2134. This itself would be useful to have as a separate
procedure. Character base conversion can seem difficult, but like most

Softly, Softly 59

things in life it is quite simple to do when you know how! As it stands,
the routine will convert an eight-bit binary number held in the
accumulator into a three-digit decimal ASCII number, or more correctly
a string of three ASCII characters. Thus, if the accumulator held
11110001 (&F1) the ASCII string "241" would be printed.

To perform this, it is first necessary to calculate how many hundreds,
tens and units there are in the byte. All that is required to do this is to
subtract 100 or 10 from the byte and increment a hundreds or tens count
each time the subtraction leaves a remainder. Using the byte &El
mentioned above this would work as follows. First, the hundreds:

241
-100

141 hundreds count=1
141
-100

41 hundreds count=2
41
-100

-59 This result is negative

The final hundreds count is therefore 2. This can be converted into
its ASCII code simply by adding ASC"0" and printing it.

Next, the tens count, and the value we use to start with is the
remainder from the hundreds count.

-10

31 tens count = 1
31
-10

21 tens count = 2
21
-10

11 tens count = 3
11
-10

1 tens count = 4

60 The BBC Micro Machine Code Portfolio

The final tens count is therefore 4, and adding ASCI"0" to this will
derive the ASCII code for 4 which can be printed. Finally, the units
count is left as the remainder, 1 in this case. Again, ASC"0" needs to be
added to this to get the character's ASCII code so that it can be printed.

Program fact sheet

Program 6.1
Procedure title : PROCvduchr
Variables Required : soft_base, vdu_character, addition_bytes,
flag, addr
Line numbers : 2050 to 2181
Length : 246 bytes

Zero page requirements : 6 bytes
Registers changed AXY

Chapter Seven
Global Variable Search
and Replace

GREPL is the longest program in this book, a massive 582 bytes when
assembled, but it is invaluable. Using it allows variable names within a
program to be replaced throughout simply and easily. This eradicates the
need to work through the program replacing them 'by hand', thus
allowing new, more meaningful, names to be assigned or, if memory is
tight, shorter names to be inserted.

Program description

Because of the long nature of the program, I have chosen to present the
program details in a line-by-line block format which if used in
conjunction with the flowchart of Figure 7.1 and the description of
variable storage in Chapter 3 should make its understanding much
easier.

Line 2195: Clear occurrence counter.

Lines 2196 to 2198: Print 'variable' prompt.

Lines 2199 to 2202: Input variable name to be replaced into buffer,
pointed to by the Index registers and save the strings length in 'olen'.
Lines 2203 to 2205: Print 'Replace with' prompt.

Lines 2206 to 2208: Input new variable name and store it in buffer
pointed to by the Index registers.

Lines 2210 to 2213: Calculate difference in variable name lengths and
save result.

Lines 2214 to 2217: Read current setting of OSHWM.

Lines 2222 to 2221: Clear registers and get first byte from program.
Lines 2222 to 2227: If byte is ASCII return, check for the TOP marker
&FF.

Lines 2228 to 2230: If TOP found perform OSNEWL and exit via
‘report’.

62 The BBC Micro Machine Code Portfolio

START

(GET VARIABLE | INCREMENT
TOBE INDEX
REPLACED
GETNEW INCREMENT
VARIABLE > e
NAME GET BYTE
FIND NO
LENGTH
DIFFERENCE
GET
PAGE
GET NEXT
BYTE
GET BYTE
T FROM
MEMORY
NO
YES
UPDATE AND
GET NEXT
BYTE
i
A NEXT BYTE
TOP?
YES
PRINT TOTAts
NUMBER OF
REPLACEMENTS MOVE OVER
LINE
HEADER
\ CLOSE UP OPEN UP
MEMORY MEMORY
TO TAKE O TAKE
A NEW NAME NEW NAME
INCREMENT
UPDATE < INSERT <

Fig. 7.1. Flowchart for PROCgrepl.

Global Variable Search and Replace

lH FEM # +HL! !EHL FEFLACE - CGREFL#%#%

jCi= I ' 1Tn—*T|—-thIHT1 =IE
S HIHEH i mET

,himars

1 FOR ea
Fro=HIMEM
= LOPT pass
24 L Global_replacs
5 LIA H#E :5TH number
e LI #H#old mromet POD 258
7 LY #Hold promet DIV 2
JER privh__strd
LI #Hold m
LI #old_mna
Tt st
= olan
LI #Hnew_eromet FOD 258
LI #Hrsw_ e oret
JER print
LI Hhsw_ma
LY #Hnew_name_sto
JER input__strinos

1 Tilen

etk

: curreTrh+ L

LTEiTl oo
LI #E
=Aos TAEY

LA Cowrrenhs Y
CHFP #13

EMHE mot_return
Iy

LA fowrremhl .Y

TP #a

LDé nunhwr
JEFP rep ot

63

CLs
LI
ST
STH
LI
[N
ZTE
Loy
EHE
- Tk pethuren

CHF

cETod_suotes

Iy
LI
CHF
BED
CHF
EHE
BED

CHF
BED
JER
BT
Emadec imal

Iry

« Tk ok

LA
i
EHE
DEY
BFL
EMI
o TRORIER O

Loy

TR
EMHE

Iry
JER

nEY
EHE

EMHE

Lalidity test

The BBC Micro Machine Code Portfolio

ek
3

limk
curreTrh+ L
i

limbe+d

H

e ted

1

iclitu_test

CourreTh Y
Hoz2

wpdatel

Hiz

imal
ariakle

matoh_nanss

Chusc kb

CourreTh Y
valicitu _test

olen

updated

coureTh .Y
olo _mame _store, Y

TROlaE 0T

TS +~___!: i
imEsrh e

e ted

TET O Leciahe

e ted

BED
. L TEerh T
THC
LI
STH
LI
STH
Loy
oLo
LI
ST
CHF
BT
T

LI
STA
LDA
EEG
EMI

JER
LI
CHF
EHE
LI
Loy
cEPuFFle e
LI
=ZTA
LI
EME
TED
Lo last
TED
LI
i
EME
LI
CHF
EMHE
o 1 e
Loy
cimEmet oo
LI
STH
Iy
EHE
LI
BED
shuafFle _doun
LI

Global Variable Search and Replace

main_l oo

Tk
curreTh
la=t
curreTrh+ L
laszt+l

HE

resalh
Climbeli v

leap_Froo
=t iTe

resalh
o 1 b

shuafFle_down

TMETO_ s te

shiifFle e
lazt+l
cureTh L
shuFFle g

HE

mEn_Tans_shore, Y
LourreTh e .Y

:0PY milen

imset _loog

HE

e tel

resdl

65

66 The BBC Micro Machine Code Portfolio

EOR #&FF
TAY
Iy
« Tk _doum
LI
STH
JER
CHF H#2FF
EMHE mesrt_cdowun
BED ouwerwrite
« TE T Lpecda e
THD currerh 9
EHE i ik
ITHD curremh+dl 8
skl iak
RTE
ool _uariable
TP H#&
BCS less
O #Rs0

SOt g

L

BCE grester than
CHFP #RzCt g

BED grester than
CRY #E

RTS
SriThoste i v
STH current
STY currenh+l
LI #8
LEriThosterineE
LA dowrremhi, Y
EMI mo_mors
JER BFFER
Ik
BHE privi_strinms
o TIO_TOE
RTE
it st inm
2T last

Global Variable Search and Replace 67

=TY last+l
Tt oo

=
3o ot

Chusic b ~iakle

1 1 =10 s A T

Iy

CRY #24

BED too lbio

EMHE gst _character
St i s

TYH

BED get_character

o ik ok

nEY
BFI direeurt_l oo
JER AFFES

JrF st _cheracter
b l:l__l::! i b
LI #Hereordl MHOD G
LIV #Hereorl DIV G
JER priviostrino
FLA sFLA

T LT

AP decimal _looe

o T AT

DE
CLC
ADC HE2

68 The BBC Micro Machine Code Portfolio

FHA

THA

AT H48

CHFP gRscrar
] o itk

LT ik

3 #linﬁr—' HOD 2
LY #Hooms DIV 258
JHFP o prirmhosteinos
e _strino
LI #Hereor2 HOD 2
LI e or
JER priviostrino
LI #2656
L SuaEp_polinhers
LA old_nams_stors,
FHA
LIFA mew _nams_shtores, R
STA old_name_store,
FLA
STA meu_nams_shtors, -
T
BFL swap_pointers
LM olen
FHA
LA milen
SZTHE olen
sPLA sFPLA

olod_mame

T _TiEams _store
EL!‘.—I : i i

o lod e ot
ECIE 132
EfIE"Yariakhle o
EQLE 255

o TES Lo orpeh

: = Witk 2"
EL'UE 255
«errord

EQUER 13

EQUS"Errd®

EQLlel 2FFe?

EL!UH L-FFH 5

 cdoTE

Global Variable Search and Replace 69

ECLIEY ococowrenoels) replaced”
ECill 2FF@D
» THATEDES EClE &
1 aHERT pass
EMOFROC

Program 7.1. PROCgrepl - a global search and replace facility

Lines 2233 to 2241: Otherwise move on past new line header bytes and
force branch to 'update4' .

Lines 2243 to 2244: Test for quotes and branch if not there.

Lines 2245 to 2249: Locate the end pair of quotes.

Lines 2250 to 2252: If ASCII return found first, branch to 'update4' .
Lines 2254 to 2255: If a hexadecimal value is indicated, branch.

Lines 2256 to 2261: Check for a valid variable character.

Lines 2263 to 2272: Compare old variable name with the string pointed
to in the program by 'current' . Exit on first unlike character.

Line 2273: If negative strings compared force a branch to 'insert_new'.
Lines 2274 to 2285: String not found so update all pointers and redo
from 'main_loop' .

Lines 2286 to 2291: Increment occurrence pointer and update pointers.
Lines 2292 to 2298: Add new line length to the '}ink' byte. If link byte is
greater than permissible value then perform 'bad_string' error. Else go to
'leap_frog' .

Lines 2299 to 2304: Calculate if space occupied by variable needs to be
altered, if so, move distal portion of program up or down memory

as required.

Lines 2305 to 2325: Open up the program at the variable name to make
way for a longer variable name.

Lines 2326 to 2334: Write new variable name over the old variable
name.

Lines 2335 to 2346: Close up variable space by desired amount to
ensure that new shorter variable name fits correctly, then overwrite it.
Lines 2347 to 2352: Update current position in program vector.

Lines 2353 to 2375: Check that 'current' contents being investigated is a
legal variable value.

Lines 2376 to 2387: Print the ASCII character string pointed to by the
address held in the Index registers. Printing is terminated on
encountering a negative byte, typically &FF.

Lines 2388 to 2415: Input an ASCII character string up to 20 characters
long and store it in the buffer pointed to by the index registers.

Lines 2416 to 2420: Perform DELETE

Lines 2421 to 2425: Execute "Too big' error.

70 The BBC Micro Machine Code Portfolio

Lines 2426 to 2429: Handle ESCAPE.

Lines 2430 to 2453: Print number of occurrences after first converting it
into an ASCII-based decimal number.

Lines 2454 to 2457: Print bad string error message.

Lines 2458 to 2473: Reset pointers to former values and exit to BASIC.
Lines 2474 to 2497: ASCII string storage area.

Using GREPL

Because of its large size, a hole must be created within the Beeb's
memory map to insert GREPL, because the normal page size areas are
not big enough. The program makes a niche by lowering HIMEM by
three pages and placing it above the new value, programming function
key O with the correct call address.

To use GREPL press fO and answer to the prompts as they appear. The
new variable name may be up to 20 characters long; variables greater
than this are not accepted. Once the replace name is entered the program
goes about its business and the number of occurrences/ replacements are
indicated on completion.

Program fact sheet

Program 7.1
Procedure title : PROCgrepl
Variables required : current, last, link, olen, nlen, result,
himem
Line numbers : 2190 to 2499
Length : 582 bytes

Zero page requirements : 9 bytes
Registers changed AXY

72 The BBC Micro Machine Code Portfolio

Chapter Eight
Time for Bed

Next to Saturday night's Match of the Day, the home computer must be
the most frequent centrepiece of the friendly matrimonial dispute. Even
four years on, my wife will often appear in the early hours of the
morning to "pull the plug out' of my latest sojourn into the land of ROM
and RAM. It is certain that most hobbyists world-wide have suffered
their mate's wrath in the small hours of the night at some time. It is
difficult to explain to the non-committed that, once in front of the
keyboard, time is meaningless.

This program was born at the specific request of my wife. It's a
background clock that sits ticking its digits away at the top right-hand
corner of the screen while the Beeb goes about its more important tasks,
stopping once every second to create the tick or tock to push the second-
hand a fraction further into the night!

The clock is based on the use of events or, more correctly, the
redirection of events. The BBC Micro is built up around events, so much
so that all the time it is switched on and being used it actually stops what
it is doing every ten milliseconds to catch up on any outstanding house-
keeping chores it needs to be. These chores take many guises and range
from reading any pressed keys into the keyboard buffer to sampling
some ofthe ADC channels. Due to the design of the BBC Micro it is
possible to intercept these events as they take place and interpret them as
we wish, and this concept forms the basis of the digital clock display.

There are several ways in which an event can be made to occur and
these are listed in Figure 8.1. The one that we are particularly interested
in is event 5 which occurs when the interval timer crosses zero. The
interval timer is a 5-byte clock that is incremented one hundred times
every second. When the timer is incremented so that it resets to zero, i.e.
goes from &FFFFFFFFFF to &0, the event is initiated. When the event
occurs, the operating system is directed through the event vector,
EVNTYV at &220, so that by redirecting this vector to our own event
handler the appropriate action can be taken. The basic component in our
clock is, of course, the second, so the interval timer must be made to
time-out every second. Being an upcounting device, the interval timer
must be loaded with -100 centiseconds. This write interval timer

Time for Bed 73

operation is performed using an OSWORD 4 call. As with all OSWORD
calls the index registers hold the address of the parameter block which
contains the 5-byte value to be written. In Program 8.1, the parameter
block is located at 'clock’ lines 2606 to 2608.

Event Cause

0 Output buffer empty

1 Input buffer full

2 Character for input buffer entering
3 ADC conversion finished
4 Vertical sync start

5 Interval timer crossing zero
6 ESCAPE detected

7 RS 423 error

8 Econet event detected

9 User event detected

Fig. 8.1. Details of operating system events
18 REM ###% Cormbinuous displaw cloclk #

S REM ### redirects EVENTY wector #

5 FFIHTI HREF141:" The Mute Clock!®
FRIMTCHRfL41:" The Mute Clocl!™!

THPUT "Howre 2 Y H
THPUT " Minute
k THPUT " Sec oru H
lﬁﬁ FROCE D e CH P
1: FRIMT'!

i PRIMT"You haue

1 FFIHT”Fr':—::.E. ke Lo =ts
158 lkew=GEET
1eE CAlLL aAB0
178 EHD

k _.:u.:l-ir 3
:Hl FOR pas: = = =

74 The BBC Micro Machine Code Portfolio

Lhick_clock

FHF

FHA
THEA s FPHA
TYA

FHMA
LR
LIYV#Hc ook DIV 258
LIOEEC Lok MOD 25&

LIOFAEE

STA =econds

D mimtbe
LA minutes
CHPHEE

EBMHE ouwer
LIDFsEE

STA minutes
TR oo
LA ko=
ChFEZ4
BHE o
LD

STA howrs

o I

LIA o=

LOA minutes
JER dizplay

iz lay
LI=HE
SEC

® 1 T

Time for Bed 7%

958 SRECHLE
55g EMI o iume
SeH T

= JEF L oo

« TIO AT

TIE =

CLC

FOCHSS

FHA

THA

AT

STE HIFEM, Y
Iy

FLA

ST HIMEM, Y
IEERY

RTS

i

]
oo

i

LIFgtick _clock MOD 258
=T

¢ DIV Z5&

ol ol

EQUD 2FFFFFFaC
EOUR &FF
Jrours EQUE ©

76 The BBC Micro Machine Code Portfolio

miTibes EQUER 8
Eeconds EQUER 8
1
HE=T
EMHOFROC

Program 8.1. PROCtime - a background digital clock

The initial program call to 'setup’ (line 2504) does a number of things.
First, it loads the hours, minutes and seconds values previously input
into their respective counters (lines 2577 to 2582). A MODE 7 screen is
then selected and a text window defined to ensure that the digital clock
cannot be scrolled off the screen. Lines 2597 to 2600 reset the EVNTV
vector to point to the 'tick_tock' routine at line 2505. The final lines
(lines 2602 and 2603) perform an *FX14,5 which balances the previous
*FX13,5 (line 30). These two calls disable and enable the interval timer
crossing zero event.

The rest of the program's operation is straightforward. Each time the
event occurs 'tick_tock' is entered and the interval timer reset to count a
further second (lines 2511 to 2514). Note that on entry to the routine all
processor registers are preserved. This is very important, otherwise the
processor would probably crash when it returned to take up the task it
was undertaking before the event occurred. Lines 25 15 to 2532 simply
update the seconds, minutes and hours counters as required. The code
between lines 2534 to 2546 stores the latest clock value at the top left-
hand corner of the screen. The display subroutine (line 2554) called by
the program performs a simple hex to decimal ASCII conversion by
continually subtracting 10 from the value to be displayed.

Finally, the processor registers are restored (lines 2547 to 2552)
before control is transferred back to the interrupted program.

Program fact sheet

Program 8.1
Procedure title : PROCtime
Variables required : gethrs, getmins, getsecs, addr
Line numbers 12500 to 2614

Zero page requirements : none
Registers changed : none

Time for Bed 77

Chapter Nine
Error, Pack and
Autorun

Error Lister (Program 9.1)

This utility can be of great help at the initial run-time debugging stage of
a program. Normally, if an error occurs, one of the Beeb's terse error
messages is issued and you are left to list the line referenced - often
scratching your head wondering just where the problem is. The most
infuriating part of debugging is when you make what amounts to a
fundamental mistake to which you remain blind, no matter how many
times you run and list the erroneous line. I speak from frequent
experience!

One way around the error problem is to incorporate an error handling
procedure in your program, starting the program off with a line such as:

10 ON ERROR GOTO 5000

At line 5000, the error message and line can be printed out. The problem
still remains that the erroneous line is not listed, nor is the source of the
error listed.

Program 9.1 solves both these problems. After being set up and
installed, errors occurring at run-time will be treated in the normal
manner except that the line containing the error will be listed starting at
the point of the error, thus highlighting the mistake. For example, the
program line

10 PRINT"HELLO" : STUPID ERROR : VDU 7
would normally result in the error:
Mistake at line 10

at run-time. With the new error lister inserted, the response would be

Error, Pack and Autorun 79

STUPID ERROR : VDU 7
Mistake at line 10

REM ###% ERROR L_I TER ###
FROCsr o K

#HEYD CALL
#HEYLD CAlL aC24H
Er-I

DEF FRO

OFT pass
L SETUR

« TeEEch ok

» ETTE

80 The BBC Micro Machine Code Portfolio

Loy #E

J2R BFFET
« TS o
LI
CHF
BED

BHE nsst s

ARt
TP bl
TMEESa0E
EQLIE" Ervor Lister Ont"
ECiE 7
ECLE 12
TEESANESE
ECLE" Ereror Lister OFFIH
EQUE T
ECLE 12
address
B pme o
= 1
i HE=T
= ErDFPROC

Program 9.1. PROCerror - lists the program line in which an error occured.

The section of line which created the mistake has been listed in addition
to the normal error message.

The assembled program occupies just 141 bytes and is completely
self-contained so that it can be tucked out of the way during debugging.
As with other programs of this type in the Portfolio, there are two entry
points - to switch the lister on (entry at line 2626) and off (entry at line
2643). The 'setup' section of code saves the normal contents of BRKV at
&202 and revectors it to point to 'entry' at line 2656.

When the interpreter causes the program to abort via BRKV the new
wedge coding is executed. It begins first at line 2657 by testing bit 7 of
location &FF. If this bit is set then the abortion was due to the ESCAPE
key being pressed and so the normal 'brkv' is jumped to. Assuming that
ESC was not pressed, the length of the current expression being
evaluated by the interpreter, and the one that caused the error to occur, is
calculated. The bytes at &1B and &39 are summed (lines 2659 to 2662)
and the result moved into the X register Location &1B contains the

Error, Pack and Autorun 81

current offset for the expression evaluation pointer while &39 contains
the actual length of the expression.

The address of the current expression is held in the vector at &19
which is known as the expression evaluation base pointer, and each byte
is in turn accessed and printed to the screen (line 2666). If a carriage
return is encountered, the end of the line has been reached and the
program jumps to the normal 'brkv' for the printing of tht error message
(lines 2667 and 2668). The comparisons of lines 2669 and 2671 ensure
that no garbage gets printed to the screen, should the program crash have
caused any to have been poked into the program inadvertently.

A compact Pack (Program 9.2)

'Pack’' is basically a simple program compacter that, when called.
removes all traces of spaces and REM statements from it, leaving behind
just the minimal program. There are two advantages in doing this. First,
the program becomes smaller, and in the case of some programs much
smaller. Second, by virtue of being smaller, they run and execute much
faster; even a single space slows a program down a fraction, so a
hundred spaces will slow a program down that much more! The saving
in memory can make the difference between a program running in a high
resolution mode and the dreaded 'Bad Mode' message being reported.

Pack searches through a program in the current text space and looks
for spaces and REM statements and the messages that follow them. Of
course, the program doesn't wipe the spaces and REMs out; rather, it just
shifts the top end of the program down a byte or bytes to write over the
offending space or REM.

Program 9.2 begins by placing the current value of PAGE into two
zero page vectors (lines 2705 to 2710). These are used to keep position
in the current program and point to the same, packed position, in the
new program. A special byte is also cleared: this is the rem_flag' and is
used to indicate if a REM statement is currently being processed. The
heavy work of the program is performed by the subroutine, 'transfer' at
lines 2784 to 2789. This moves a byte from its current position in the
program undergoing packing to the Iinal version. Postindexed
addressing is used throughout. After the subroutine call,the byte just
moved is tested for TOP, by comparing it with &FF (line 2716) in which
case the pack is complete. Note that at the start of each line an extra two
transfers are required to move the line number down (lines 2718 and
2719).

82 The BBC Micro Machine Code Portfolio

DEF PROCkEack (cwrent,nsu_position
Ao

e _Eosition
4 CurreTh

4 men_peositiontl
4 ocurrenhtl

« oiher

A aTIE R

Lransfer

. iTmeEr
LIDF dowrremhl .Y
BIT rer_+lag
EBFL Flas

- Tk e
JER transfer
BED erncl_of_lins

=ice ouobe
EMHE immer
- SRS
M cuwrrent
BHE immer
M cuwrremh+d

BHE immer

Pl P
2748

745

e _of__lins
nEY
TYH
FHA
Ry
BED
Loy
ZTE
oLo

XX
L]

N

EERENE I N X AR OO Y

|l XA

i
©
]

CiTEide _ouote

sy
o

R Lrd

e 4

B Lol o - P o
i .dll_duﬁu
B e

STTE

sy

Sl B

AT

[0 S g

e,

ey

A AN

LDF
STH
Iry
CHP
RTE

EoL=
1

HERT
EMDF

- TSN

Error, Pack and Autorun

Cren_eositions .Y

oEition
=ition

TIS L

Lo lear

AT new_poszition+l

curreTh
cureTh
b

s curreThal

b

: bransfer
IS ot

*

of_lime

icle ouothe

ins
1T

e _Eosition

B

21z

e _mositiontd
HE

L

TS

kLY
ihiomi.Y

Hiz

RO

Program 9.2. PROCpack - a space and REM remover.

83

@(—— RETURN

84 The BBC Micro Machine Code Portfolio

The space and REM tests are performed in lines 2729 and 2731
respectively and the corresponding branch made accordingly. Ifa space
is detected, the 'current' vector is incremented, no change is made to the
‘new_position' vector and the space is not transferred. Thus, effectively
the space gets lost as illustrated in Figure 9.1. The REM test looks for
the token for REM which is &F4. If the token is found &FF is placed in
the 'rem_flag' to indicate this - so that the program knows it is within a
REM statement and is, in fact, 'deleting’ items from the line rather than
transferring them. A branch to 'space' (line 2736) increments the 'current’
vector before a branch to 'inner’ is forced.

Fig. 9.1. Overwriting bytes to compact a program.

>7 ASCII STRING

€—— CLS TOKEN
«—— PRINT TOKEN

}7 LINE NUMBER
€—— SPACE
€— SPACE
€— COLON
€—— SPACE

oplooloa| les | :| femi " [s|AlR[A[H]" éi
A \ 4 \
y AR 4 Y 4 Y Y
obplooloalcLs : | " S| A|R|A|H]|" f

INCREASING MEMORY >

Figure 9.1. Overwriting bytes to compact a program

Error, Pack and Autorun 85

The relevant instruction here is in line 2722, where the 'rem_flag' is
tested with BIT. If the flag is clear, the following branch is executed,
otherwise the 'current' vector is incremented via 'space' .This entire
process continues until the end of line return character is encountered
(line 2724). The 'end_of_line' routine (line 2748) rapidly transfers the
three-byte line header, as comparing this would be an utter waste of
processor time.

Occasionally, spaces are required by programs. The most obvious
occasion is within ASCII strings where they are used for formatting text.
The 'inside_quote' coding ensures that any spaces occurring within the
boundary of quotes are not removed. This section is entered via line
2741.

Autorun (Program 9.3)

This program is interesting in that once run you cannot stop it from
automatically running the program at PAGE. No matter what
combination of keys you try, be it ESCAPE, BREAK or even CTRL-
BREAK the program runs! In fact, the only way to be rid of it is to turn
off the power to the Beeb, so this makes it an easy way to protect your
own programs from the hackers.

18 PROCzuE orum
28 EMD

8 DEF PROCE
#FHZAT, TE

CALL 2FFF4
> PH=PAGE+E
C
LDA #1382
LI #e
LDY HASCCUO")
ISR &FFF4
LDY HASCOUL" D
ISR &FFF4
LDY HASCCUD" D
JsR o8
LI
mEY

86 The BBC Micro Machine Code Portfolio

ERDFROC

Program 9.3. PROCautorun - will automatically run a program no matter
what!

The assembler is quite straightforward: an *FX 138 call is used to place
the string "OLD<RETURN> RUN<RETURN>" into the keyboard
buffer. It is not possible, however, to use this call to poke a return
character, ASCII 13, into the buffer. To get round this, the Y register is
loaded with 14 and then decremented (lines 2817 and 2826). The
machine code is assembled in a rather strange place - in fact, it
overwrites the 50 exclamation marks after the REM statement in line 0.
As you can see, P% is set to PAGE+6 in line 2807. If you run the
program then list it you will see that the !s are replaced by
gobbledygook; this is just the interpreter trying to de-tokenise the
machine code. These will have no effect when the program is run as they
are away from the program, hiding behind the REM statement. The
magic part of the program comes in lines 2801 to 2806. Here the
BREAK intercept codes controlled by *FX247, *FX248 and *FX249 are
rewritten to print the BRK handler to the code now stored at PAGE+6,
so whenever any sort of BREAK is performed the interpreter comes here
and OLDs and re-RUNs the program. Once the program has been run,
only line 0 need remain; the others can be deleted as required.

Program fact sheets

Program 9.1
Procedure title : PROCerror
Variables required : addr
Line numbers 12620 to 2692
Length : 141 bytes

Zero page requirements : none
Registers changed AXY

Error, Pack and Autorun 87

Program 9.2
Procedure title : PROCpack
Variables requircd : addr
Line numbers 12700 to 2794
Length : 149 bytes
Zero page requirements : 4 bytes
Registers changed ALX)Y
Program 9.3
Procedure title : PROCautorun
Variables required : addr
Line numbers : 2800 to 2831
Length : 53 bytes (inside program)
Zero page requirements : none
Registers changed ALX)Y

Chapter Ten
The Necessary Evil

Machine code programs of any length will often be required to
manipulate numbers. Addition, subtraction, multiplication, division are
all necessary evils in the computer world of data and figure
manipulation. This chapter presents routines that should be versatile
enough to cover most applications though often, by definition, they will
be wasteful of memory and processor time. For example, rather than
providing a procedure that will handle the multiplication of two eight-bit
numbers a multi-byte multiplication procedure is provided. There is no
reason, however, why you - the programmer - could not add a single-
byte procedure to this Portfolio.

The programs provided in this chapter are as follows:

Program 10.1 : Multi-byte addition.
Program 10.2 : Multi-byte subtraction.
Program 10.3 : Multi-byte multiplication.
Program 104 : Multi-byte division.
Program 10.5 : Single-byte square root.
Program 10.6 : Double-byte square root.
Program 10.7 : Double-byte ASL.
Program 10.8 : Double-byte LSR.
Program 10.9 : Double-byte ROR.
Program 10.10 : Double-byte ROL.
Program 10.11 : Multi-byte ASL.

Multi-byte addition (Program 10.1)

Program 10.1 uses the post-indexed indirect address capabilities of the
Beeb's 6502 to sum two sets of bytes stored anywhere in the Beeb's
memory map, depositing the result over the first number. The start
address of the two number sets is stored in the vectors 'first' and 'second'.
These variables must therefore be assigned to addresses in zero page. A
further variable, count, is required and this should contain the number of

The Necessary Evil 89

bytes to be summed which is transferred into the X register to act as the
bytes to add counter.

The program is simply an addition routine controlled by a loop
counter. After seeding the index registers (lines 5005 to 5008) the carry
flag is initially cleared. The 'first' byte is sourced and added to the
'second’ byte with the result being stored at 'first' (lines 5009 to 5012).
The index registers are adjusted and the loop reiterated until X becomes
zero (lines 5013 to 5015).

Since the index registers are only capable of holding a maximum
value of 255 the number of bytes to add together is limited to this value.

18 REM #z% MULTI-BYTE HDDITIHH EEHE
=2E PROCTUL L __aciodd BoRTl.8 I
=E 5
Els]
b1
(=]
TE
ZE ! FiE=
SE PRIMT Y S+ l23458=";
108 CALL mi i
118 PRIMT 2408008
1zZ8 EMD
R
SEEE DEF PROChulti _sddicount,First,ssco
i, Bcicle s
SEEl FOR PRE = STER =2
= Pr=ado-
= C
SEEd OFT PRES
SEES L mioacd
SEEE LI oot
SEET LI #E
SEES [
SEE9 . nest bgte
SElE LIF cFirsti,Y
=L =Y ool Y
SELE STA CFirsti,Y
SELE Iy
SEl4 T
5815 BHE newt_vate
SEle RTES
SELT]
SE1s MEST
SE1% EMDPROC

Program 10.1. PROCmulti_add - adds two multi-byte numbers together

90 The BBC Micro Machine Code Portfolio

Multi-byte Subtraction (Program 10.2)

Program 10.2 operates identically to the last one. The only difference is
that the SBC and the SEC instructions are substituted for their addition
counterparts. It is important to remember that the 'second' value is
subtracted from the 'first'.

”HETF”rTIHH EE £ 3

FEM #%% MULTI-BY TE
FPROCwALE1 =l 2

FFIHT"‘ 1ams SE="
CELl min
FRIMT &
ErHD

o
Fro=aciodr

= L
: <4 OFT PRES
SEES L mhsukn

LI ook
LI #E
SE
Tk bhe
LIF Firsti,Y
ZBEC coorid .Y
(Firstl,Y

BMHE mewt _bugte

SE47 1
EE45 MEMT
5849 EMDPROC

Program 10.2. PROCmulti_sub - subtracts one multi-byte number from
another.

Multi-byte Multiplication (Program 10.3)

Program 10.3 takes two multi-byte numbers (unsigned) stored low byte
first, multiplies the 'first' by the 'second' and stores the result over the

The Necessary Evil 91

‘first'. In addition to requiring two vectored addresses, a 256- byte work
buffer is required by the program. The TOTAL number of bytes to be
multiplied together is expected in 'totlen’ while the variable 'count' is
used as a general loop counter by the program. The multiplication
technique employed is a standard add-and-shift one. If the current bit
being tested in the multiplier is a one, the multiplicand is added to the
partial product, which is then rotated by one bit. If, on the other hand,
the multiplier bit is O only the rotate is performed.

Because of the way 'mb_mult' is implemented, only the least
significant bytes of the product are returned, i.e. the total number of
bytes in the multiplier and multiplicand. The most significant bytes are
always available in 'buffer' if required. Therefore, the user should check
the 'buffer' for any overflow if it is suspected.

B ORER ### FMULTI-BEYTE PMULTIPLICATION

HEE
=k
Eis]
SE
g
=5
=] A
1B
118
1268
SR8 DEF PROChuILi _multdFirst,sscond, to
tler, o ourh buafFer, ac ;
SEE1 = STER =
SEE52
=

LTk Talth

A mec oo+l
FoFirst

I

1 First

4 First+l
D HE

4 Firsh+l

92 The BBC Micro

LD
EEG!
STA

PR o

cEmana 1 oo
STA
DE-

oL
® 1 O

LI
drobate looe

FOR

D

EMHE

Loy

e
I K% O K8)

XX
X3

-
bl

e
g

-
(XA RN

-
L4

L a1 oo
LI
ik
ZTA
Ik
TIE =
BEHE

fx
p REEY I X B By O B Y O N B i

D T i
XA

b
oy

T sded
TED
EME

EMHE :

Machine Code Portfolio

toblen
Fimishesd
ook

i HE

ook
ook
ootk

4 cogTrh+ L
M g 1) 'y

Pl o

ST oarh+d

= bohlen
q HE

b Fer-1 #

toklen
b Fer—-1

rotate_ oo

toblen

(Firstl,Y

A

(First,y

robate

2= R0

i

oo sdod

Hi1

Hohotlen

Cmecomcdl Y
bFFer-1,%
bFFar—-1,%

addo__1 oo

ook
1 O

Hocoumh+d
2 Finished

wooourh+d

The Necessary Evil 93

JEF oo o
Fimished

RTE

1

HEST

ErOFROC

Program 10.3. PROCmulti_mult - multiplies two multi-byte numbers

The program operates as follows:

Lines 5056 to 5062: Subtract 1 from address of 'second’.

Lines 5063 to 5069: Subtract 1 from address of 'first'.

Lines 5070 to 5071 If total length is zero then end.

Lines 5072: Set number of bytes to count.

Lines 5073 to 5079: Multiply count by eight.

Lines 5080 to 5083: Add one to value of count.

Lines 5084 to 5091 : Save high product in buffer.

Lines 5092 to 5098: Shift carry bit into buffer and bit O of high product
into the carry flag.

Lines 5099 to 5104: Rotate carry into most significant bit of 'first' and
shift next bit of multiplier into the carry flag.

Line 5105: Carry clear so no addition required.

Lines 5106 to 5115: Carry flag is set so add *second' and high product
together.

Lines 5116 to 5123: Decrement bit count and exit if zero, else repeat for
the next bit.

The lines of BASIC show how the routine needs to be set up before
calling it. In a larger assembler program these introductory peeks and
pokes would be performed using assembler and the multiplication
routine called as a subroutine from the main program. Lines 30 and 40
place the two addresses of data into the zero page vectors, while lines 60
and 70 place the values to be multiplied (both 1234) into these data
buffers. Previously, in line 50, the total number of bytes to be combined,
four (1234 can be held in two bytes), is poked into location &74 which
corresponds to the variable 'totlen' in the procedure. After calling the
subroutine (line 80) the final result is displayed. Check it on a calculator
if you wish!

94 The BBC Micro Machine Code Portfolio

Multi-byte Division (Program 10.4)

Program 10.4 will divide two unsigned multi-byte number using a
standard shift and subtract procedure whereby a 1 is placed in the
quotient each time a subtraction is possible, and a 0 if not. The dividend
is located at 'first' and the divisor at 'second’; during the division the
quotient overwrites the dividend. Any remainder from the division is
placed at the address given by 'hidiv_pointer'.

16

FEH '*F'*F'*F FULTI-EY TE DIVISTION ##%

x...:"-‘!‘_;...x o IR 1'_‘--.

e
| I B 8 I

XX
L]

4
5
=k
7
=

DEF PROCrult _divifirst,second,totl
kb hidiv_pointer,poinber bufferd b
B T L [

OFT pass
STl bl odie
LI
EMHE
JEF

SEoin
ST coumt
LI #8
F’f’L ook
ooOldTY 'l:
o ondrh
S CodTrb+d
THC cooumt
BHE o
D coumb+l

[l b= 5

-] =1 -

w CH ST

i
et
i
i
i

4 b e
b Fers-1, 5

4 HkFFerl FMOD
§ bdcdive
A EkbFFeel DIV 258
F Ficdiu
4 HkF
4 podiTy
4 HbuFFers DIV
A poiTrher+d

The Necessary Evil

o obotlen
4 HE

~1,H

o lear

ol Tk

imber+l
= MO0 25s

[t

F o totlen

Ml Tt K

Lodiviicde

cEmeh oo

. Lo o

ook

. Ol

HE

Cmsconcdl Y

Dt =g

*

civicle

S e

+lem

]
=1

oy
[RA)

t
#
(First,Y

&
tFirsti,Y

1 oo

M g 1) 'y

t_s=hift

H oL

3 obiag ook

wocourh+l

I SR o A T =)
LI
ROl
ZTH

Chidiv poivbers Y
&
Chiciv _poinhbera, Y

95

96 The BBC Micro Machine Code Portfolio

Ik

TIE =

BHE shift_loos
Loy #E

LI fotlen

SED

- subbract
Chiiciv_poitberi Y
coTid .Y

CpoiTrher i,

=ubrbract

N _—_-l:_—"t___l [l ol
Ficliv_poirhber
Hohidiv_poinhee+d
§ poirrher

4 biddiv_poinber

4 poitrher+l

A hidiv poivber+l

i ke
Vopoitber+d
AP o=et 1l ooe
- olesugg ot
oL
BOC Finished
o SO
SE
Finisheo
RTE
1
FHEST
7 ERDFPROC

Program 10.4. PROCmulti_div - divides one multi-byte number by another

The total number of bytes to be referenced in the division is placed in
‘totlen' prior to the call. On exit from the routine, the carry flag bit is set
if an error occurred during the division - otherwise it returns clear. The
program operates as follows:

Lines 5156 to 5158 Get 'totlen' if zero then perform a no error finish.
Lines 5160 to 5166: Set count and then multiply by 8 to obtain total
number of bits to do.

Lines 5167 to 5171: Add one to bit counter.

Lines 5173 to 5179: Initialise the high dividend result buffer to zero.
Lines 5180 to 5187 Point vectors to buffers.

Lines 5188 to 5198: Check that the divisor, held in 'second' is not

zero!

Lines 5199 to 5200: Clear carry flag on entry into 'divide'.

The Necessary Evil 97

Lines 5201 to 5210: Move the carry flag bit into the low dividend, 'first',
to use as the next quotient bit. Then move the most significant bit of the
low dividend into the carry flag bit.

Lines 5211 to 5217: Decrement ~count' by one and branch to 'okay_out'
if all bits are done.

Lines 5218 to 5227: Transfer the carry flag bit into the least significant
bit of the high dividend.

Lines 5228 to 5237 Subtract 'second' from high dividend and save result
at 'pointer’.

Lines 5238 to 5246: If the carry flag bit is set then the trial subtraction
worked! Therefore, set the quotient bit and switch pointers to replace
remainder and dividend. If the carry flag is clear, the trial subtraction
failed; therefore skip swap over and branch direct as next quotient bit is
zZero.

Line 5247: Do next bit.

Lines 5248 to 5250 Finished with no errors detected.

Lines 5251 to 5254 : Finished with an error present.

Once again, the first few programs lines show how the procedure can be
set up, using BASIC. The procedure is assembled passing workspace,
vectors and buffer locations as parameters (line 20). The two vectors at
'first' and 'second' are poked with buffer addresses (lines 30 and 40),
which are subsequently seeded with the dividend and divisor (lines 60
and 70). The dividend is 10000 and the divisor 2, which require a total
of three bytes' storage, as indicated in line 50 which pokes the byte
count into 'totlen'.

After calling the routine the result is extracted from the buffer at
&3400 and the remainder from the buffer at &3000.

Finding the square root of a number in machine code might at first
sight seem rather difficult. However, there is a quite straightforward
solution. The method is simply this: 'the square root of an integer
number is equal to the total number of successively higher odd integer
numbers that can be subtracted from it'. Consider the number 36: first
we subtract one from it, then three, then five and so on until we have no
remainder. The total number of odd numbers subtracted is its square
root! Thus,

36-1=35 : partial root = 1
35-3=32 : partial root = 2
32-5=27 : partial root = 3
27-7=20 : partial root = 4
20-9=11 : partial root = 5
11-11=0 : final square root = 6

98 The BBC Micro Machine Code Portfolio

If the final partial root does not yield a result of O then a remainder is
available which can be 'floated' to provide the decimal portion ofthe
root.

Program 10.5 provides a suitable assembler-based procedure to
calculate the square root of any single byte number located at 'byte'. The
Y register is used to keep a count of the partial root which is
incremented each time round the 'loop'. The location at 'byte+1' is used
to hold the odd number to be subtracted. The final root is deposited in
‘byte'and any remainder at 'byte+1".

ErMD

onsbute _souare Chwhe acdde s

LDEF FRO

ST bute+d
LM bagte

" }_ s

bogbe+l
Finishesd
Cbgbesd

byt
A bgthedl
1 IS

Finisheo
bghe
4 bghe+d

MEHT
4 EMDPROC

Program 10.5. PROConebyte_square - calculates the square root of a single-
byte number.

Program 10.5 is simple but effective. On entry to 'square’ (line 5275) the
Y register is initialised ready to take the partial root count; the

The Necessary Evil 99

accumulator is loaded with the first odd number to be subtracted which
is then written to the location 'byte+1' (lines 5276 to 5279). The subtract
and count loop is embodied in lines 5280 to 5287. Line 5281 begins by
comparing the contents from byte (the current remainder) with the next
odd number, a clear carry flag denotes that the remainder is less than the
next odd number and the program branches to 'finish'. A set carry and
line 5283 subtracts the current odd number from the current remainder
(line 5283) and the Y register is incremented. Before the loop is redone
the two is added to the contents of 'byte+1' to move onto the next odd
number (lines 5285 and 5286). Note that the program passes the
immediate value through to the procedure for splitting into two bytes
and storing in 'block’ before the shift is performed. If the value is already
held in 'block’ then 'do-asl' can be called directly.

Program 10.6 is a double-byte version, Program 10.5 finding the
square root of an unsigned 16-bit integer value. The two locations at
‘byte’ hold the integer value while 'temp' counts the double-byte odd
number. The program operates virtually the same as its predecessor; but
because a two-byte value is involved a subtraction rather than a compare
must be performed initially. To ensure that the final subtraction will not
erode any remainder, its possible low order byte is preserved in the X
register. Looking further down the program listing (line 5322) it seems
at first sight that the odd number counter is only being incremented by
one. However, two is actually being added as the carry flag will be set at
this point, if it is clear where the branch to 'finish' at line 5319 would
have been performed.

FEH 1lh‘lHIb THH EYTE
__ELEE

A
o e
X8 A

e

oSSBT
FF IMT Souare rook =
FRIMDremaindse =%
EHD

AR I Y

L]

-

-3 T n:{[e

DEF FROCtuwokbute _souasrelbhute temp, s

FOR mass TO 3 BTEFR =
Fro=aciodr

YoHL

o hee

N) T i

® 1 T

100 The BBC Micro Machine Code Portfolio

Y bgthe

D hemrl
bngbe+l
s Fimished

e

s Hd

4 b

. 1!211:'_1':'

- temerl

Fimished
STY bugte
ki Pobngthedl

1
MEXT
EMOFROC

[~
=
[~
=4
=4
=4
[~
=4
=4
=4
=
=4
=
=4
=
=4
=
[~
=4
=4
=4

=
1

Program 10.6. PROCtwobyte_square - calculates the square root of a 16-bit
value.

By the left!

The final five programs in this chapter deal with double-byte shifts and
rotates. It may seem at first that these would be straightforward enough,
but this is certainly not the case with the ASL and LSR combinations, as
both of these introduce a O into bit 0 and bit 7 of the byte they are acting
on respectively. Thus, a two-byte ASL will not yield the correct result if
the sequence

ASL byte
ASL byte+1

is used.

To perform an overall ASL on two bytes, the initial ASL must be
followed by a ROL. Program 10.7 illustrates the technique while Figure
10.1 shows what is happening. The ASL of line 5359 moves bit 7 of
‘block+1" (the low byte in true 6502 back-to-frontness!) into the carry
inserting a 0 into bit 0. Line 5360 then performs a ROL which moves bit
7 in the carry into bit O of 'block’, shuffling the internal bits up one bit.
The last bit, bit 7, falls out into the carry. The two-byte value has also
been multiplied by two!

The Necessary Evil 101

FEF##®% DOUBLE BYTE ASL ##%
B FROChwo _bwte _ss1 01,878

i
S8 FETEHEIDEAT
(= 1
TE MEXT loop
= EMD
S s
5358 DEF PROCtwo bute sslinum.blockacdd

Fro=aciodr
C

LM Hram FOD 258
STA bloclk

LIDFA #Hram DI 258
STA block+ld

AEL bBloclk+l
ROL block
RTS

EMHDFROC

Program 10.7. PROCtwo_byte_asl - arithmetical shift left on a 16-bit value.

LBe | LB5 |LB4 |LB3 |[LB2 |LB1|LBo| 0

LB7 ASL block + 1

» HB7

HBs | HB5 | HBa | HB3 | HB2 | HB1 | HBo | LB7 | ROL block

Fig. 10.1. Implementing a 16-bit shift register using an ASL/ROL

102 The BBC Micro Machine Code Portfolio

Program 10.8 works in the opposite direction performing an overall LSR
using an LSR and ROR in conjunction. As the shift works in the
opposite direction the bytes are referenced in the opposite order to an
ASL. The shift is performed on the low byte in 'block’ and the rotate on
the high byte in 'block+1'. The total effect is to halve the two-byte
number.

o
Ly

18 REF##®z DOUBLE BYTE LSRR ###

; FROCtwo bute 1m0 85535 870, 84
CAllsst 1=

FOR 1o 1 To 45

FRIMT?TE ; 7
CAalldo_l=rm
MEST 1 oo
EMI

I O 8)

XX
L]

T L g]
[

8 3 KA)

X}

DEF PROCHuo bvwate lsrinum, bl ool acid

LA #Hrum DI 255
STA block
LA #Hrum MHMOD 255
ST block+d
Lo e
LER block
FOR bBloclk+l
RTE
1
EMDFROC

Program 10.8. PROCtwo_byte_lsr - logical shift right on a 16-bit value.

Programs 10.9 and 10.10 perform double-byte RORs and ROLs
respectively. The only difference to note here is the order in which the
bytes in 'block’ are rotated. In RORing a two-byte number, the low byte
is rotated first. With a ROL it is the high byte that is manipulated first.

18 REM#xx DOUBLE EBYTE ROR #%#%
28 PROCEwo beabe ror O LR
=8 CAllsst o
48 FOR looe=1l TO 15
S8 PRIMT?
=8 CAallodo_pr o
7 HE=T 1DDP
28 EMD
S s
5390 DEF PROCtwo lbwte rorinuamebl ook, acid

The Necessary Evil103

LOA #Hrum FOD 255
ST bloclk

LOA #Hrwm DIV 256
ST block+d

R D
ROR bl ook
b locl+l

1
t EMDPROC

Program 10.9. PROCtwo_byte_ror - a double-byte rotate right.

REF##%% DOUBLE BYTE ROL #

FPROCtuwo bgte ol (1 87TE, 8
CAllsst_ ol
=1 T 15
F#ZOEATRTL

MEST looe
EMD

DEF PROCtwo kbwbe ol Crumg bl ool acdd

o=z

C

=at_rol
LIDA #Hrum MOD 255
STA block
LIDA #Hrum DI 258
ST block+d

i o5 ol
FOL block
FOL blozk+d
RTE

a

== EMDFROC

Program 10.10. PROCtwo_byte_rol - a double-byte rotate left.

Finally, Program 10.11 shows how a multi-byte shift, left in this
instance, can be implemented on an unsigned value between 2 and 255
bytes in length. The start of the bytes to be shifted are located in 'start’
while the number of them is found in 'bytes'. The program commences
by placing the 'bytes' count into the Y register and performing the initial

104 The BBC Micro Machine Code Portfolio

ASL on 'start' (lines 5434 to 5436). The X register is loaded with one
and after decrementing tlne Y register the ‘next' loop is entered (lines
5436 to 5438). From here on, indexed addressing is used to facilitate the
ROL on the remaining bytes. The first handful of lines in the program
point out the sort of interesting, and perhaps useful (!) applications the
program can be used for. The test of line 50 is printed onto the MODE 6
screen before the memory is used to hold the test is shifted left twice
(lines 60 and 70). The net effect is to provide 3D text!

B OREM ### FMULTI LEFT SHIFT
REM ##% SIVES 2D EzHﬁ FTE
FPROCwAlti _l=ft g £
FODE &

FRIMT, HELLH THERE! I

=

P |

5 L «0OFT PRSZ

T LY bytes
5 Azl start
5 LI #1

5 DEY

5 Tzt

S ROL start, s
G440 TH

REENE nEY

Sz BMHE Tt
S RTE

D44 1

S48 MESET

44 EMDPROC

Program 10.11. PROCmulti_left - performs an arithmetic shift left on a
multi-byte number.

Program fact sheets

Program 10.1
Procedure title : PROCmulti_add
Variables required : count, first, second, addr
Line numbers : 5000 to 5019

Length : 16 bytes

The Necessary Evil 105

Zero page requircments: : five bytes

Registcrs changed ALX Y
Program 10.2
Procedure title : PROCmulti_sub
Variables required : count, first, second, addr
Line numbers : 5030 to 5049
Length : 16 bvtes
Zero page requiremcents : 5 bytes
Registers changed ALXY
Program 10.3
Procedure title : PROCmulti_mult
Variables required : first, sccond, totlen, count buffer, addr
Line numbers : 5050 to 5128
Length : 114 bytes
Zero page requirements: : 6 bytes
Registers changed AXY
Program 10.4
Procedure title : PROCmulti_div
Variables required : first. second, totlen, count, hidiv_pointer,
pointer, 1 buffer2, addr
Line numbers : 5150 to 5257
Length : 54 bytes
Zero page requirements : 11 bytes
Registers changed AX)Y
Program 10.5
Procedure title : PROConebyte_square
Variables required : byte, addr
Line numbers : 5270 to 5294
Length : 27 bytes
Zero page requirements : 2 bytes
Registers changed ALX)Y
Program 10.6

Procedure title : PROCtwobyte_square

Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 10.7

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 10.8

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 10.9

Procedure title
Variables required

106 The BBC Micro Machine Code Portfolio

: byte, temp, addr
: 5300 to 5332

: 39 bytes

: 4 bytes

AX Y

: PROCtwo_byte_asl
: num, block, addr

: 5350 to 5363

: 13 bytes

: 2 bytes

A

: PROCtwo_byte_lsr
: num, block, addr

: 5370 to 5383

: 13 bytes

: 2 bytes

tA

: PROCtwo_byte_ror
: num, block, addr

106 The BBC Micro Machine Code Portfolio

Line numbers

Length

Zero page requirements
Registers changed

Program 10.10

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

15390 to 5403
: 13 bytes

: 2 bytes

tA

: PROCtwo_byte_rol
: num, block, addr

: 5410 to 5423

: 13 bytes

: 2 bytes

tA

The Necessary Evil107

Program 10.11

Procedure title : PROCmulti_left
Variables required : start, bytes, addr
Line numbers : 5430 to 5446
Length : 16 bytes

Zero page requirements : 1 byte
Registers changed AXY

108 The BBC Micro Machine Code Portfolio

Chapter Eleven
Vision On

This chapter is devoted entirely to exploring the graphics capabilities of
the Beeb from machine code. Many of the procedures are based on the
VDU driver routine OSWRCH and all the graphics commands available
from BASIC are implemented here plus a few more! These extras
include two new screen modes which give scaled down versions of
MODE 2 and MODE 5, plus a routine utilising the *640 table in the
BASIC interpreter to convert an X, Y coordinate pair into the
corresponding screen address.

I use many of these routines as part of a simple graphics compiler
(SGC) which uses simple INPUT commands to call the appropriate
PROC to compile the necessary machine code but on to the routines.

Just mode about you

Program 11.1 performs a mode change in machine code. This is done by
sending the VDU value 22 to the driver followed by the mode number
which should be passed into the procedure via 'action’. The assembled
code is very short - just 11 bytes including the RTS.

FEM ###% DO MODE s
CL=

IMPUT "lhich MODE 2UF
FROCmoos OF, B00E

CALL mods
FRIMT"Thi=s i=s FODE " b
ErI

TEF PROCwods C{actiom,addd:
Fri=aciodr
= [

» Tl

JER BFFEE

Vision On 109

FHOFROC
Program 11.1. PROCmode - performs a MODE change.

Program 11.2 provides a new screen mode. As it is made out of the
MODE 2 screen I have christened it MODE 2A. This new mode still has
all the sixteen colours of a normal MODE 2 available but only requires
half the memory, 10K, for displaying them. The screen itself is
composed of 25 rows of 20 characters. The program is given in its long-
winded form so that I can try to explain its operation better! Obviously,
it would be more economical in terms of memory to implement the final
version with the VDU codes in a look-up table using an indexing routine
to pull them out one by one and send them to OSWRCH.

_F-'; SCREEM ###

FEH +++ HEH HI IDE

LOPT PASS

110 The BBC Micro Machine Code Portfolio

LDA #i2
JER &

=R

2153

Sl EE

slel J5IH

SlEs LM #E
Bl LI #E
=N

als

=N =
E1ET BHE AGATIH
Sles RTS

N R

2178 MEST

2171 EMDFPROC

Program 11.2. PROCmode2A - implements a scaled down version of MODE
2.

It might be easier to understand exactly what is going on if the
assembler is broken down into its BASIC equivalent which, incidentally,
will also produce the desired effect.

Vision On 111

Line 6104 to 6107 : MODE 2
Line 6108 to 6116 : VDU 23;6,25;0;0;0;
Line 6117 to 6125 : VDU 23;7,30,0,0;0;
Line 6126 to 6134 : VDU 23;12,8;0;0;0;
Line 6135 to 6143 : VDU 23;14,8;0;0;0;
Line 6144 to 6145 : 7&FE40=5
Line 6146 to 6147 : 7&302=56
Line 6148 to 6149 : ?7&309=24
Line 6150 to 6151 : 7&D9=40
Line 6152 to 6155 : 7&34B=40
: 7&34E=40
:7&351=40
: 7&354=40
Lines 6156 to 6159 : HIMEM=&4000

The VDU statements (lines 6108 to 6143) reprogram several registers
of the 6845 cathode ray tube controller (CRTC) which is responsible for
organising the screen memory. The BASIC equivalents show that the
first and second parameter bytes are used in programming the CRTC.
The first determines the CRTC register and the second the value to be
written into it. Taking the four VDU23 statements in turn they perform
the following tasks:

(a) Program number of lines

(b) Set position of vertical sync in number of row times
(c) Set top of screen address

(d) Set cursor position

The remaining pokes write to the VDU variables directly which, strictly
speaking, is rather naughty! The poke to &FE40 is writing to the system
VIA scroll-controlling register, while the subsequent two pokes define
the bottom row, in pixels, of the graphics window and the bottom row of
the text window. &D9 holds the high byte of the current address of the
top scan line of a character (HIMEM is being set to &4000, thus the
&40); &34B high byte of the top cursor location; &34E top+1 address of
user memory; &351 the high byte address of the top left-hand corner of
the screen; and finally &354 the high byte of the screen memory size.

Because the screen is not an official mode it is organised rather
crookedly. For example, the pixel coordinates for the Y axis do not run
from O to 1023 as one might expect but from 225 to 1023. Also, the
screen itself tends to sit in the middle of the TV rather than using it all.
To counteract the Y axis distortion, the graphics origin could be reset to
0,225 using VDU 29, thus:

112 The BBC Micro Machine Code Portfolio

VDU 29,0;225;
MOVE 0,0

This will reduce the maximum on-screen Y graphics coordinate to 798
but the range O to 798 is easier to use than 225 to 1023. Figure 11.1
provides a suitable map of MODE 2A.

798

0 X - 1023

Fig. 11.1. The MODE 2A screen map.

Program 11.3 works along similar lines in that it pokes various VDU
variables to set up a new graphics mode screen from MODE 5.
However, rather than reprogramming the CRTC, it writes to the Video
ULA using an OSBYTE call (lines 6027 to 6030). This writes, in fact, to
the Video Control Register whose layout is given in Figure 11.2. The
byte written is 224 or &EQ in hex, thus causing a large cursor two bytes
in width to be displayed.

-
Y I 8

FEH #&% MEL MO IDE SR EEE

RXRRK
L3

[I Y I L =
KAL)

f

=8 DRAR 1008, 108
TE DREAR 1888, 18605
20 DREAK 188, 1660
SE DRAR 1068, 106
i@e ErD

116

g

%X
L]

Fu=acdolr
C

LDA #HzZ2
JER BFFEE
LDA #3

SR OBFFEE

]
EMHOFROC

DEF PROCwodeSA Cador

Vision On 113

Program 11.3. PROCmode5A - implements a scaled down version of MODE

5.

114 The BBC Micro Machine Code Portfolio

7 6 5 4 3 2 1 0
T T
CURSOR CURSOR 6845 CHARACTERS TELETEXT FLASHING
SIZE WIDTH CLOCK PER LINE SELECT COLOUR
BIT BITS BIT BITS BIT BIT
| |

Fig. 11.2. The Video Control Register

This mode requires just 10K of RAM but also allows 16 colours like
MODE 2 and MODE 2A! The mode allows 16 rows of 10 characters
and HIMEM is set to &5400. The program description follows.

Lines 6023 to 6026 : Select MODE 5.

Lines 6027 to 6029 : Write to video ULA cursor control bits.
Lines 6030 to 6031 : All 16 colours available.

Lines 6032 to 6033 : Two 4-bit pixels per byte.

Lines 6034 to 6035 : 32 bytes used per character.

Lines 6036 to 6039 : Set colour details.

Lines 6040 to 6041 : 10 characters on each line (0 to 9).
Lines 6042 to 6043 : Do VDU 20 and rest default colours.
Lines 6044 to 6048 : Set HIMEM = &5400.

Moving on

The three drawing-orientated processes, MOVE, DRAW and PLOT, can
be performed using a VDU25 sequence, once again passing bytes
through OSWRCH. After issuing the VDU25 sequence, OSWRCH
expects five more bytes to be passed through to it. The first of these
determines exactly what function is to be performed, while the
remaining four bytes provide the double-byte values of first the X and
then the Y coordinates, low bytes first.

Program 11.4 lists a suitable MOVE procedure. The MOVE code is 4
(line 6186) while the X, Y coordinates are passed for immediate
addressing through the variables 'xpos' and 'ypos' .The demo uses the
procedure to move the graphics cursor to the centre of the screen at
640,512 before plotting a point there (lines 20 to 50).

5 REM #%% DO MACHIME

FODE 3

CAlL =
ORAR 48,5312
EMHD

Fro=acdodr
C

« TR

Ml M

FOFROC

Program 11.4. PROCmove - performs MOVE.

DEF PROCMOuE O oS , wisos , acdcde

= FOD Z25s
= DIV Z25c

LOA #Hueos MOD 256
JER BFFEE
LA #Huyeos DIV 25
JER BFFEE
RTE

CODE MOVE #%#%

Vision On 115

Program 11.5 uses the driver code 6 (line 6206) to execute the machine
code equivalent of a DRAW. The positions passed into the procedure are
taken to be the coordinates to draw to. The demo program draws a line
diagonally across the MODE 4 screen from 0,0 to 1000,1000. Once
again, immediate addressing is used in the program to obtain the X, Y
coordinates which must therefore be passed into the procedure at

assembly time.

AR IERX

XX

A

L]

=3O g G
UREL I KX kA

Fro=aciodr

C

Lodran lins
LI #25

B OREM ##f DD MACHIMNE CODE DREABKW LIMNE

S

DEF PROCdraw Cao oo powe oo, sl 3

116 The BBC Micro Machine Code Portfolio

S
S
S
JoR BFFEE
LIF Huoord DIV 258
R OAFFEE
2 EMDFROC

Program 11.5. PROCdraw - performs DRAW.

B RER ### Dﬂ FACHIME CODE PLOT s
FROCE] ot 025, 18860, 1068 , 20008
EFODE 4

BOFOVE 8.8

EHOWE l@@ﬂ &

A ALl plot

EMI

H DEF PROCE] ot do ode o won ool g wie oo acdcde

Fro=aciolr
L OoFT 2
S loh
LM H#25
JoR BFFEE
LM #ooods
JoR BFFEE
LIDA #H=cord MOD 258
i FEE
. r_..:‘]:‘Il] I:‘l__
: QFFEE
LDH Huo oo MOD 258
R BFFEE
Huyoorod DIV 258
JER BFFEE

1
EMOFROC

Program 11.6. PROCplot - performs PLOT.

A PLOT is performed using the driver code which is equivalent to the

Vision On 117

plot function required. Program 11.6 shows how the PLOT code is
passed into the procedure through the variable 'code’ .The demo uses
code 85 to draw and fill a triangle in a MODE 4 screen. As you may
now realise, the previous two programs were, in fact, simply using the
plot codes for move and draw.

Paint-box

The use of colour is usually desirable for graphics and both COLOUR
and GCOL can be readily performed. Program 11.7 can be used to
redefine the text colour used by PRINT. It uses the VDU17 command
with a second byte in the range O to 15 being passed to OSWRCH to
define the colour. The number associated with each physical colour is
detailed in Figure 11.3 and the chosen value should be passed to the
procedure in the 'print_colour' variable. The demo sets up printing in red
on a MODE 2 screen.

Number Colour

Black

Red

Green

Yellow

Blue

Magenta

Cyan

White

Flashing black-white
Flashing red-cyan
Flashing green-magenta
Flashing yellow-blue
Flashing blue-yellow
Flashing magenta-green
Flashing cyan-red
Flashing white-black

— = e e =
NP DR = OO0 WND = O

Fig 11.3. The physical colours.

18 REM ##% DO PRIMNT COLOUR ###
28 PROCcolowe C1,.800680

ZE MODE 2

S8 CAll ool oue

o,
G

EMD

118 The BBC Micro Machine Code Portfolio

DEF PROCcol o dprint_col owr, acdc
Fro=aciodr
C
ool o
LM #17
: BFFEE
Herimhocol o

ok AFFEE
1
EMHOFROC

Program 11.7. PROCcolour - performs COLOUR.

Program 11.8 shows how the background colour can be redefined using
VDU17 again. Essentially the program is the same as its predecessor. To
stipulate a background colour, however, the most significant bit of the
colour byte must be set. In everyday terms, this simply means adding
128 to the colour value. After passing the background colour to the VDU
driver (lines 6276 to 6277) the screen must be cleared. This is facilitated
simply by printing the equivalent of a VDU12 (lines 6278 to 6279). The

demo program initialises a red MODE 2 screen.

FEMF ###% DO BRACKGROUMD COLOUR #®#
B REM ¥

SET RED Bai DI s
FROCE b= e A 5
FODE 2
CALL bhaclbornod
EARIN

ErHDFROC

Program 11.8. PROCbackgrnd - changes the mode background colour.

Vision On 119

Performing GCOL is almost as easy, however. The GCOL statement
requires two parameters. After issuing VDU18 first, the byte depicting
the action required (i.e. AND, OR, EOR) should be passed to OSWRCH
followed by the colour. These bytes are shown in Program 11.9 as
‘action’ and 'colour’ and the associated demo program (lines 10 to 70) set
up a flashing black and white diagonal line across the MODE 2 screen.

The graphics screen can be cleared from BASIC using the command
CLG. In machine code this is simplicity it selfand only requires the vdu
driver to print the code 16 through OSWRCH. Program 11.10
demonstrates this.

XX

FEH *HHIP D!l HH! HIME CODE GOOL. %k
y G Bl :

XX

LA I O T I LN
(R B B % % kY

FODE 2
B oAkl acol
B OFOVE B.8:DRAW 18088, 1066
= EMD

DEF PROCoool factiom,ool ouwr,adode)
Fri=acor

C

a i 1_11

LOFA #i1s

JER BFFEE

LM Haction

JER BFFEE

LI #Hool our

2FFEE

7 EMDPROC

Program 11.9. PROCgcol - performs GCOL.

REM#®®CLEAR hFHFHIEE SCREEM ~CLGH#E#
FFI,IL;__}_;{ i
HODE 2
COLOURLZES
oL=
FRIMT"FRESS A KEY TO CLEARR SCREEMY

XA

XRERN

43
=)

3]
I
I
[}
M
....|

DEF PROCC g Cado
Fro=aciodr

120 The BBC Micro Machine Code Portfolio

.o e

_araphiios

co0s EMDPROC

Program 11.10. PROCclg - performs CLG.

Programming the palette is done as in BASIC using VDU 19 in the
form:

VDU 19, log, phy, 0,0,0

where 'log' and 'phy' refer to the logical and physical colours
respectively. Program 11.11 shows how this is translated into assembler.
After the 19 is printed (lines 6314 and 6315) the logical and physical
colour codes are passed to OSWRCH (lines 6316 to 6319) followed by
the three padding zeros (lines 6320 to 6323) reserved for future
expansion, whatever that is! Once again, the values passed into the
procedure for 'log' and 'phy' are interpreted as immediate values by the
assembler.

The lines 10 to 110 show how the procedure is used in this case to re-
set the current screen background logical colour to each physical colour
1n turn.

A8 REM ##% DO WDL 19 sk

28 REM%® G0 FRU ALL COLOURD &%
ZE MODE 2

48 FOR looge=1l TO 15

58 PROCCha™

[] LHLL _P P=¥

=5

S FFULuhﬁanwrsleite D I s 3 e
188 CAlL choealette
1iE EMD
128

DEF PROCcharnos_palette (log.phu,ad

%X
L]

Fro=acodr

L OFPT 2
Choealetthe
LA #12

JER BFFEE
LIF H1 oo
JER BFFEE

4
5
&
-
i

g

Vision On121

4 b
SR BFFEE
FHE
: BFFEE
FEE
2FFEE

EMDPROC

Program 11.11. PROCchange_palette - reprograms the palette using
OSWORD.

Read it write!

Occasionally it is useful to be able to know the last two sets of
coordinates visited by the graphics cursor, so Acorn have implemented
an OSWORD call to enable this feat. The call code is 13 and as with all
OSWORD calls an address held with the index registers points to a
parameter block where in this case OSWORD deposits the required
information, Figure 11.4 details the information contained in the block
after the call and Program 11.12 the technique. Lines 10 to 140
demonstrate the call by first moving the graphics cursor to a new
positions on the MODE 4 screen before calling the procedure and
reading its eight-byte result from the parameter block which in this
instant is in zero page.

XY+0 : previous X coordinate LSB
XY+1 : previous X coordinate MSB
XY+2 : previous Y coordinate LSB
XY+3 : previous Y coordinate MSB
XY+4 : current X coordinate LSB
XY+5 : current X coordinate MSB
XY+6 : current Y coordinate LSB
XY+7 : current Y coordinate MSB

Fig. 11.4. OSWORD 13 parameter block for reading last two graphics
coordinates.

B REM ##%#% READ LAST 2 GRAFPH
FEM ###% CURSOR POSITIOMS

R

I

122 The BBC Micro Machine Code Portfolio

SE
=i
TE

XX

DRER S0E
FICE
DIFEEk ¢
oL=

[
CALL
FOR looe 3=
FRIMT " looe:" ";
MEST 1 oo

EMHD

R

XX

b
-

s
ORI 8 B X O KX

i
1
i
1
i
1

i .5:]

#1 ool
2FFF1

1
MEXT
EMOFROC

Program 11.12. PROCgcursor - uses OSWORD to read the last two
graphics coordinates.

The condition of any pixel on the screen can also be read using
OSWORD with the accumulator holding 9 - in effect, mimicking
BASIC's POINT command (see Program 11.13). Before calling the
operating system routine, the obligatory parameter block (detailed in
Figure 11.5) must have some relevant details placed into it, namely the
X,Y coordinates of the byte to be tested. Each coordinate uses two bytes
ofthe parameter block and these are derived in lines 6345 to 6361 ofthe
procedure. The procedure again assumes that the actual coordinates, and
not an address containing them, are passed through the variable X and Y.
Each byte is then stored in the relevant parameter block location. After
seeding the parameter block address into the index registers (lines 6362
to 6364) thc OSWORD call is performed leaving the logical colour of
the craordinate in the fifth block of the parameter block - or &FF if the
print was off of the screen.

RFEM READ FPIEL WALUES
=] (AT, 188, 186

&
1

FRIMT "k

Pl RO

Vision On 123

EMD

DEF FROC

bR - T L

STH block

LA #- DIV 252
STH block+d
LA #Y FHOD 252
STH block
LA #Y DIV 258
STA block+3
LI #olock FOD 252
LIy #olock DIV 258
LIDE #2

JER BFFFL

MEHT

Fri=acdcd
L OFPT e
LM H13
LI #olock MOD 258
LI Hblock DIV 258
JER O BFFFL

RETS
a
MEST
EMHDFROC

Program 11.13. PROCpixel - reads the state of a screen pixel.

XY+0 : X coordinate LSB
XY+1 : X coordinate MSB
XY+2 : Y coordinate LSB
XY+3 : Y coordinate MSB
XY+4 : Logical colour of point, &FF if point off screen.

Fig. 11.5. OSWORD 9 parameter block to perform POINT.

REM ##% READ COLOUR PALETTE ##¥
5 FODE 4
VOLE, 1.2, 88,8

124 The BBC Micro Machine Code Portfolio

FROCy
CALL 5
PRIMT"Logical colow

ool o

XA

1=

=3 i e
[A X x|

1
)
a1
it
=
n
o
T

ErMD

DEF PROCresdeslette Cbhlocl, adodry,

2 STEF =
1 LM
4 bl ool
S

R < Mtk X

Bl ool
r BFFFL

1
HEST pas:
= EMDPROC

Program 11.14. PROCreadpalette - reads the physical colour associated with a
logical colour.

The colour palette can itself be read using an OSWORD 11 as shown in
Program 11.14. The logical colour to be read should be placed into the
five-byte parameter block. After the call, the physical colour currently
assigned to the logical colour is in the second byte of the parameter
block. The remaining three parameter block bytes contain zero - yes, for
future expansion! The BASIC demo uses the call to read the physical
colour assigned to logical colour 1 on the MODE 4 screen, this having
been defined prior to the call in line 30 as 3.

Program 11.15 performs the operation in the reverse direction by
writing to the palette using OSWORD 12. The parameter block is
identical to that in a read operation except that the physical colour to be
written must also be placed into the parameter block. The procedure
passes both logical and physical colours to the assembler through the
variables L% and PY%. The demo resets the MODE 4 logical colour 0,
the background colour, to physical colour yellow, thereby performing an
instant change in background colour.

FEMF ##% WRITE TO PARLETTE ##®#®
G MODE 4

(T i

S

Er-D

T
% 2 % I % I K

T
&
i

DEF PROCuritepalette dhlock LW PYs

Vision On 125

1= acdcded

3 bl l_u__L +1
4 HE
4 bl ool 2

Wl lock FOD 258
Hioloclk DIV 258
2FFFL

Tl @ O 0 0 !_'T‘s‘-:

T EMDFROC

Program 11.15. PROCwritepalette - performs VDU 19.

Co-ordinating screen addresses

The final routine in this chapter, Program 11.16, utilises the BASIC
interpreter's *640 table at &C357 to convert an XY coordinate position
on the screen (MODES 0, 1 and 2 only) into an absolute memory
address. The table is a 32 byte by 2 byte affair which, unusually, is
presented high byte first.

IHPHT”Hhat iz the H axis valus - 8

LIDAEE
STHE wector

+oo i
axi=s walus -
]
=k RESS
=3
Ex. e
e5Es . HFTI
=% L CODE
=3

126 The BBC Micro Machine Code Portfolio

I;T‘s !;,T‘r I;T‘x I;ﬁ I;T‘l I;ﬁ ‘;ﬁ I;f‘s !:Tl I;]": I:Tx !;_T‘s !;,T‘x

SO0 =] T O e D0 PR R0 D =]

)
L]

- LOOF

AElA
ROL wector+2
T
EHE LOOF
AT et o
ST wector
LIDFss
ADC wector+d
A wector+l
ETA wector+d

S5 Loy

=54 LI

SR STHY

[T 5 RETZ

[T =

S545 MERT

54 EMDPROC

Program 11.16. PROCxy_addr - converts an X,Y coordinate into a screen
address

The program begins by clearing a few bytes of memory (lines 6505 to
6509) and setting vector to the start screen address. The MOD 8 value of
the 'yaxis' is then calculated along with the DIV 8 value (lines 6510 to
6513). The actual value to be calculated is. in fact, Y DIV 8 *640.
However, since the table values are two-byte the DIV is restricted to 4
(lines 6514 to 6516). The accumulator is transferred into the Y register

Vision On 127

to get the index into the table, and is subsequently incremented to get the
second, low byte (lines 6516 to 6518). The low byte is added to give Y
axis MOD 8 (lines 6519 to 6522) and after extracting the high byte from
the table this is added to give Y axis DIV 8 *640 (lines 6523 to 6527).
Finally, the X axis value is multiplied by 8 and any bits falling off are
caught in 'vector+3' (lines 6528 to 6533). This is then added to the low
byte of the screen address to give the final address (lines 6534 to 6539).
By way of demonstration, &F is then poked into screen memory at this
point: to see this the program will need to be run in MODE 2 (lines 6540

to 6542).

Program fact sheets

Program 11.1

Procedure title : PROCmode
Variables required : action, addr
Line numbers : 6000 to 6010
Length : 11 bytes
Zero page requirements : none
Registers changed tA

Program 11.2
Procedure title : PROCmode2A
Variables required :addr
Line numbers 16100 to 6170
Length : 153 bytes
Zero page requirements : none
Registers changed tAX

Program 11.3
Procedure title : PROCmode5SA
Variables required :addr
Line numbers : 6020 to 6049
Length : 58 bytes
Zero page requirements : none
Registers changed tA

128 The BBC Micro Machine Code Portfolio

Program 114

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 11.5

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 11.6

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 11.7

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 11.8

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

: PROCmove

: Xpos, ypos, addr
16180 to 6198

: 31 bytes

: none

tA

: PROCdraw

: xcord, ycord, addr
16200 to 6218

: 31 bytes

: none

tA

: PROCplot

: code, xcord, ycord, addr
16220 to 6238

: 31 bytes

: none

tA

: PROCcolour

: print_colour, addr
1 6250 to 6260

: 11 bytes

: none

tA

: PROCbackgrnd
: back_col, addr
16270 to 6282

: 16 bytes

: none

tA

Program 11.9

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 11.10

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 11.11

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

Program 11.12

Procedure title
Variables required

Line numbers

Length

Zero pagc requirements
Registers changed

Program 11.13

Procedure title
Variables required
Line numbers
Length

: PROCgcol

: action, colour, addr
1 6285 to 6297

: 16 bytes

: none

A

: PROCclg

: addr

: 6300 to 6308
: 6 bytes

: norie

A

: PROCchange_palette
: log, phy, addr

16310 to 6326

: 27 bvtes

: none

tA

: PROCgcursor
: block, addr
16330 to 6341
: 10 bytes

: none
ALXY

: PROCpixel

: block, X, Y, addr
: 6350 to 6369

: 26 bytcs

Vision On 129

Zero page requirements
Registers changed

Program 11.14

Procedure title
Variables required

Line numbers

Length

Zero pagc requirements
Registers changed

Program 11.15

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed
Vision On129

Program 11.16

Procedure title
Variables required

Line numbers

Length

Zero page requirements
Registers changed

130 The BBC Micro Machine Code Portfolio

: none
AXY

: PROCreadpalette
: block, addr, L%

: 6380 to 6393

: 14 bytes

: none

AXY

: PROCwritepalette

: block, L%, PY %, addr
: 6400 to 6417

: 26 bytes

: none

ALX Y

: PROCxy_addr

: vector, yaxis, xaxis, addr
: 6500 to 6545

: 69 bytes

: 6 bytes

AXY

Vision On 131

Chapter Twelve
Assembling Data and
Lists

Most programs written by most advanced BASIC programmers require
the manipulation of data at some stage. Everyday life revolves around
manipulating data and lists correctly. A telephone directory or an address
book are samples of ordered lists (though a look at my address book
with its loose and sellotaped pages would make you think otherwise!)
whereby each entry is in alphabetical order. Searching through the pages
for a particular address or phone number is quite simple. Imagine the
problems if these entries were unordered.

Performing searches, adding and deleting items from lists and sorting
in machine code is not as easy as its BASIC counterparts. The
procedures in this chapter cover each of these aspects and should
provide you with the basis for most of the data handling you require.

The programs provided in this chapter are:

Program 12.1: Byte search.

Program 12.2: Add a byte to an ordered list.

Program 12.3: Delete a byte from an ordered list.

Program 12 4: Find minimum and maximum values in an unordered list.
Program 12.5: Delete a byte from an unordered list.

Program 12.6: Access a byte in a one-dimensional byte array.
Program 12.7: Access a byte in a two-dimensional byte array.
Program 12.8: Access a word from a one-dimensional word array.
Program 12.9: Four-byte signed integer sort.

Program 12.10: Form new list from an old list of every nth element.
Program 12.11: Perform quicksort on a fbur-byte integer array.

Byte search

Program 12.1 provides a single-byte binary search algorithm through an
ordered list. Just to clarify, an ordered list is a list in which its element

132 The BBC Micro Machine Code Portfolio

are arranged in an ascending order. For example,
1,2,345.6...

would be an example of an ordered list, whereas
4,9,2,6,8,12,34,2,1,0. . .

is an example of an unordered list.

Because the list is ordered, it is not necessary for the machine code to
search through the entire list. What the binary search technique does is
to divide the list into half, calculate which half the search byte is in and
divide this section in half again. This process continues until the search
byte is located by zeroing in on it.

FEM %% SIMGLE BYTE EBIMARY SEARCH

XX

XIRKA

Tl O b
(AR AR A}

XX
L]

L
XX

P b
Pl b 1
KA

M= PRIMT"MOT FOuRDe Er

XX

FRIMT"EYTE LOCATED AT +"RESULTH
F*Tu::l

o
]
G

EEF FROCKIin _=sarch dhwte, list,pos,
=T e

FOR PRZSS=0 TO 3 STER 2

Fu=aciolr

o+ T o dE
Moo e
=
T

mok _Finished

Lot Find .’:-h's =l

Assembling Data and Lists 133

B onoer

MDD o=
Clisti,Y

* g

bgbe F o
=gk iTie

P ol
b)
sl
0E et _babe

L Eojua]l

JEF et _bobe

I I

i
il
o+

JRF meet_bgtbe

=iy o=z
RTS

1

HEST
ERHDFROC

DUERUAL It S T O LY S Y

Program 12.1. PROCbin_search - performs a binary search on an ordered list.

The program searches the list looking for the 8-bit value held in 'byte’.
The list is addressed indirectly so the vector 'list' is used to hold its
address, &4000 in the demo. Note that the very first byte of the list is
not, in fact, an element but the length of the list itself. The list proper
therefore starts at (list)+1. The variable 'pos' is used to return the
position of the element in the list; if this byte contains O it means that the
element was not found. Remember that a value of 1 would be returned if
the element was the very first in the list.

The binary search begins by obtaining the length of the list from the
length of list element (lines 7005 to 7009). The search proper is then
begun by executing a logical shift right on the list length byte in 'pos’
(line 7012), thus dividing it by two. A result of zero indicates that the list
does not contain the element being searched for and the RTS of line
7015 returns back to the calling routine leaving 'pos' holding zero. If the
carry flag is set, control continues from 'over' (line 7019). The INC

134 The BBC Micro Machine Code Portfolio

instruction of line 7018 is used to round any odd numbers up to an even
one should the division have left an odd value in "pos'.

The byte comparison is nothing unusual. If the byte is found, the
branch to 'byte_found' is performed (line 7022) where the Y register's
contents art; placed in 'pos' and an RTS performed (lines 7041 to 7043).
If the byte is not located then the program needs to determine which half
of the section in which it is located contains the byte so that the program
can halve that section. Assuming that the byte is larger than the element
tested, the branch to 'sub_inc' is performed (line 7023). Here the current
'‘pos' is subtracted from the Y register, now transferred into the
accumulator (lines 7032 to 7034) resulting in the lower portion of the list
half being searched for the 'byte'. If, on the other hand, the byte is less
than the element tested the branch does not take place and the "pos' is
added to the Y register so that the search continues in the upper section
of the list half (lines 7024 to 7028).

The demo section of the program (lines 30 to 130) shows how the
data needs to be set up before calling the subroutine. The procedural call
assembles the routine at &AO0O using five locations in zero page for
variable storage, though only 'list' need be there. The FOR. . NEXT
loop then pokes an ordered list into memory from &4000 placing the
number of elements in the list, 150, into the first byte (lines 30 to 60),
before placing the address ofthe list in 'list' (line 70). The byte to be
searched for - in this case 75 - is then poked into location &70 as this
corresponds to 'byte'. After running the program, the result returned is

BYTE LOCATED AT +76

which is correct because 75+1=76.

An ordered addition

Figure 12.1 flowcharts very simply the steps required in adding an
element to a list of ordered elements. It would be easy to look through
each item in the list in turn, starting with the first element, moving onto
the next and so forth until a number less than the byte and greater 134
The BBC Micro Machine Code Portfolio than the byte to be added is
found. A space can be made for the byte by moving the distal portion of
the list up memory by a byte, and the byte is inserted. This is not
particularly efficient especially as we now have a binary search
subroutine to hand! Program 12.2 combines Program 12.1, further
illustrating the use of procedures to assemble segments of code, while
the procedure PROCordered_add uses 'bin_search' as a subroutine call

Assembling Data and Lists 135

(line 7155) to locate the desired position of the new element to be added.

START

CALCULATE
POSITION
OF NEW
ENTRY

!

MOVE DISTAL
MEMORY
UP BY ONE
BYTE

{

ADD
NEW
EN