THE BBC MICRO
REVEALED

Jeremy Ruston

Published by INTERFACE

INTRODUCTION

There are some difficult, but rewarding, hours ahead of you now that
you've bought this book.

I hope that by the time you've finished reading it you'll know a great deal
more about your computer than you do at the moment, and will have
gained a degree of skill to improve your programming.

Although I've made certain assumptions as to things you already know -
such as how to use ? (PEEK and POKE) and ! - nearly all of the book is
self-explanatory, so long as you read it carefully in the order in which it is
presented, and so long as you enter and run the 50 or so programs given.
So, even if you're a bit hazy as to the meaning of terms such as "byte" or
"register”, you'll find you should be able to follow the discussions and
understand the conclusions | reach.

Don't worry, it's not really that difficult overall, even though some sections
may be more difficult to understand than others. You'll need a computer
with 32K on board (model A or B) to get the most out of the book, but
apart from that, all the facilities you need are in your hands.

Jeremy Ruston,
London, 1982.

Published in Great Britain by:

INTERFACE,
44—46 Earl's Court Road,
LONDON W8 6EJ.

ISBN 0 907563 15 5

Copyright © J Ruston, 1982.
First printing June, 1982.

DIGITALLY REMASTERED ON ACORN RISC OS COMPUTERS, APRIL 2006.

Any enquiries regarding the contents of this book should be directed by
mail to the address above.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, electronic,
mechanical or photocopying, recording or otherwise, except for the sole use
of the purchaser of this book, without the prior written permission of the
copyright owner. No warranty in respect of the contents of this book, and
their suitability for any purpose, is expressed or implied.

This book is dedicated to Philip and Penny O’Rorke, Nick Ruston, Annabelle

Ruston, Emma Lyndon-Stanford, Juliet Horsman, Arabella Stuart, Sue
Cammack, Neda Said and the inmates of Sheriff House, Rugby School.

PRINTED BY J W DUNN (PRINTERS) LTD - CHEAM - SURREY

Section one: the 6845
CRTC

The television section of the BBC micro is based around a special chip, the
6845, running in conjunction with the ULA. There are other bits and bobs,
but we are not concerned with them for the moment. Both of these chips
rival the 6502 as far as complexity is concerned, but the 6845 is
considerably easier to use. This chapter describes the hardware used, and
how to program the 6845 yourself.

Before discussing the Beeb way of doing things, it is important that you
understand how the video section of a typical, old fashioned, micro works.
The following account is based on the old PET’s video section.

An area of 1000 bytes of memory is used by both the computer and the
video circuitry. To the computer this area appears as a normal block of
memory, starting at address 32768 and continuing to 33767, assuming the
screen format is 25 lines of 40 characters. The video circuitry translates
data stored in the memory to the pictures you see on the screen. It does
so by accessing each character position of the block in turn, and then
displaying the correct character at the correct point on the screen. A
description follows the circuit diagram.

Simplified 'PET' VDU circuitry

0 Address
1 F Misc. TTL bits and pieces
10
2
3
4
5 Bytes of
6 screen Row /[3 Video
memory Screen
1
8
996 8
597 f Character 1 Serializer
Data generator Data
998
999

This circuit is simplified —some of the important points and features have
been left out. Each character on the PET screen is made up out of an 8
by 8 matrix, the same as the BBC micro in modes 0 to 6. Thus, there are
64 bits needed to make up each character. These bits are stored in the
‘character generator’ like this:

ADDRESS BINARY DATA
0000 00000000
0001 00111100
0002 00100100
0003 00100100
0004 00100100
0005 00100100
0006 00111100
0007 00000000

And so on with the rest of the characters. The character shown above is a
‘box’ shape. As you can see, eight bytes of storage are required for each
character. The type of ROM used for a character generator can hold 2048
bytes, which means that its address bus is 11 bits wide. If you divide 2048
by eight you get 256, which is the total number of displayable characters
on the PET screen. 256 characters need eight bits to be represented
uniquely. So, the 11 address lines of the character generator are used as
follows:

Low order 3 bits — character row (0 to 7)
High order 8 bits — character select (0 to 255)

So to access the data stored in the 5th row of the 45th character, we
need to put the following data on the character generator’'s address lines:

AOto A2 —5
A3 to A10 — 45.

You can see the 11 lines going in to the character generator in the
diagram. The data bus of the character generator is connected to a
serializer, which is a simple chip which accepts eight bits, and then clocks
the bits out at a pre-determined rate, one at a time. This chip is typically a
74165.

Thus, to display the fifth row of the 45th character, the above procedure
should be carried out, and the required byte will be clocked to the TV by
the serializer.

You can also see from the diagram where the eight ‘character select’ inputs
to the character generator come from —they are simply the contents of the
memory location currently being accessed in the VDU RAM. The ‘row
select’ signal comes from the TTL bits and pieces. These pieces access the
VDU RAM at the right time, with the right row output to the character
generator, eight times, once for each row of each character.

The point of that explanation was to show you how the character generator
works. This arrangement is similar to that used in the teletext mode of the
BBC computer, except a special character generator is used, the SA5050,
and the matrix for each character is much larger, 16 by 16.

The other modes are dot resolution modes. Before discussing these modes,
we have to make another comparison, this time with the Atom. The Atom’s
highest resolution screen is mapped like this, with reference to the start of
VDU RAM, which is again 32768:

Atom high resolution screen mapping

0 1 2 |3 |— > 29 |30 |31
32 [33 [34|35 | —— > 61 |62 | 63
64

96 ——

128
etc. ..

Contrast this to the BBC's arrangement:

The Beeb's mode 4 RAM arrangement

0 8 312
1 9 313
2 10 314
3 1 315
4 12 316
5 13 317
6 14 318
7 15 319
320 | 328 632
321 | 329 633
322 | 330 634
323 | 331 635
324 | 332 636
325 | 333 637
326 | 334 638
327 | 335 639
ETC

N.B. The shaded portion shows where the first character on the
screen will lie

It looks a little odd compared to the Atom arrangement, but we shall see
that it is logical.

To put off the moment when we have to start on the rest of the
hardware, here are the details of how the individual bits map on to the
display.

In all modes with two possible colours, the arrangement is as follows:

Pixels: ol0] pl p2 p3 p4 p5 p6 p7
Bits: b7 b6 b5 b4 b3 b2 bl b0

In this table, p0O is the leftmost pixel of a group of eight, and b0 is the
low order bit. Therefore, a byte with 128 in it will appear as ‘XOOO00OO0O’,
where an ‘X' represents a white spot, and ‘O’ represents a black spot.

In modes with 4 colours, each byte only accounts for four pixels. The
arrangement is like this:

Pixel po pl p2 p3
Bits: b0/b4 b1/b5 b2/b6 b3/b7

This arrangement is a bit odd, but will only really concern the machine
code programmer.

Mode 2 is mapped like this:

Pixels: po pl
Bits: b0/b2/b4/b6 b1/b3/b5/b7

The best way of experimenting to see these arrangements is to move to
the required mode, press ‘return’ a few times and then type CLG. The top
left of the screen will now be blank. You can put any byte you like into
the top left position using ‘?H.=X’, (‘H." is the abbreviation for HIMEM).
When doing this, do not scroll the screen.

Back to the BBC computer’s circuits:

| have chosen mode 4 as an example, but all modes work roughly the
same, except mode 7.

The 6845 is a clever piece of equipment, which basically acts as the TTL
bits and pieces in the PET. There are some more sophisticated things it can
do. It generates the cursor, scrolls the screen and deals with the light pen.

Take a look at the circuit diagram:
Simplified BBC Mode 4. VDU circuitry
[|

High
Add | \
bits 11

‘Add.
<< 6845 |

N0 | N ONO A W — O

Low ‘

v

addres
bits 3

10235

Row

10236

8 bata

10237

10238

10239

(Dotted lines indicate approximate position of ULA.)

Serializer

Screen

The first important point to note is the absence of a character generator.
The second difference between this diagram and the first is that the PET
VDU takes 1000 bytes of RAM, but the BBC computer takes a vast 10K to
generate a picture.

The same process is carried out to generate a picture as on the PET,
except that the character generator row address makes up the lowest three
bits of the VDU RAM address. Thus, rather than the code for a particular
character being held in VDU RAM, the dot pattern for the entire character
is held, byte by byte in VDU RAM.

Each VDU RAM location is only accessed once, but if you forget about the
low order three bits for the moment, each group of eight VDU RAM
locations is accessed eight times, once for each row of each character.

In the case of graphics, because each screen location is in effect its own
character generator, VDU RAM can be written bit (as in byte) by bit.

The role of the ULA is to deal with the scrolling mechanism, the colours,
and the addressing mechanism, because the character generator is only
used in mode 7.

All communications between you and the 6845 are carried out via 18
‘ports’. These ports are like variables, except that some may only be
written to, and some others may only be read and two can be both written
to and read from. These ports are referred to as ‘register’.

There are ways to get a number into a register. You can either use the
command ‘VDU 23, 0, reg, val, 0;0;0;’ to copy the number ‘val’ into register
number ‘reg’ (the registers are numbered 0 to 17), or you can execute the
statements “?&FE00=reg: ?&FEO1=val'. The second way is usually best to
use in machine language, and the first is the neater way in BASIC.

There is only one way to read the number held in a register. Execute
‘?&FEQ0=reg: val=?&FEOQ1’ to copy the value in register ‘reg’ to variable
‘val'.

If you have your machine turned on, you will find it helpful to enter the
following procedure and function, used to read and write to the registers,
so you can experiment with the registers discussed in the next few pages.

900 REM dhkkkkkkhkkhkkhkkhkkkhrkdrkdhhx

910 REM This procedure loads register
920 REM 'reg' with 'val'.

930 REM khkkkhkkhkkhkkhkhhkkhkhhkhkhhkhkhhkhkhhkhkhxx*%
1000 DEF PROCLOAD(reg,val)

1010 vDU 23,0,reg,val,0,0,0,0,0,0

1020 ENDPROC

10

1030 REM khkkkkkhkhkkhkhkkhkkhkkkhrkdhkkk

1910 REM This function returns the
1920 REM value in register 'reg'.
1930 REM khkkkkhkkkkhkkhkhkhkkhkkhkkhkhkhkhhkkhkhhkkkhkx*%
2000 DEF FNREAD(reg)

2010 ?&FEO00O=reg

2020=?&FEO01

2030 REM kkkkkkkhkkkhkhkhkhkhkhkhhhhkhhkhkkhkkkkxkx

There follows a description of each of the 18 registers.
The first few registers are not very interesting, in that altering them serves

no useful purpose, except sometimes collapsing your display, so I'll skate
over them quickly.

11

Register 0 —
‘Horizontal total’.
(Write only).

The contents of this register determine the total time allocated to each
scan line in terms of character clocks. In other words it contains the total
number of displayed and undisplayed characters on the screen, minus one,
per horizontal line. Thus it determines the horizontal SYNC frequency. Its
contents in the various modes are as follows:

Mode — 0 1 2 3 4 5 6 7
Contents — 127 127 127 127 63 63 63 63

The numbers are larger than the number of characters per line, to allow for
a border. This leads on to an important point, namely that from the above
table, it looks as though modes 0 to 3 have the same number of
characters, as do modes 4 to 7. This is in fact so.

It transpires that modes 0 to 3 have 80 characters to a line, and the others
have 40. The reason why modes 1,2, and 5 do not appear to have the
right number of characters per line is that they allow more than two
colours. The range of values for register 0 is 0 to 255.

12

Register 1 —
‘Characters per line’.
(Write only).

This register determines the number of characters to be displayed on each
horizontal line. This register is loaded with the number of characters actually
displayed per line. Thus, the difference between this register and register O
are the borders on the sides of the display.

The contents of this register in each of the modes are as follows:

Mode — 0 1 2 3 4 5 6 7
Contents 80 80 80 80 40 40 40 40

This table reinforces the comments | made about the number of characters
per line in the discussion of register 0.

You can put anything you like in this register and see the effect, but if you
make the contents of this register larger than the contents of register O,
the display collapses. This is because the border will be a negative number
of characters, which confuses the 6845.

If you just increment or decrement this register from its normal value, you
get a slanted display, which can be quite dramatic. This program uses
register 1 in a number of ways.

10 MODE 5

20 vDU 19,3,4,0,0,0,19,0,7,0,0,0,19,
2,0,0,0,0

30 FOR T=0TO 14

40 COLOUR RND(3)

50 PRINT "Interface..."

60 NEXT T

61 TIME=0

62 REPEAT UNTIL TIME>100

70 TIME=0

80 REPEAT

90 FOR T=1TO 40

100 PROCLOAD(1,T)

110 G=TIME

120 REPEAT UNTIL (TIME-G)>20

130 NEXT T

13

135 G=TIME

136 REPEAT UNTIL (TIME-G)>50
140 FOR T=39 TO 2 STEP -1
150 PROCLOAD(1,T)

160 G=TIME

170 REPEAT UNTIL (TIME-G)>20
180 NEXT T

190 UNTIL TIME>1000

200 TIME=0

210 REPEAT UNTIL TIME>100
220 MODE 2

230 PROCLOAD(1,79)

240 TIME=0

250 REPEAT

260 COLOUR RND(7)

270 vDU 8,8,42

280 UNTIL TIME>1000

290 REPEAT UNTIL FALSE

999 REM kkkkkkkhkkhkhkkhhkhkhkhkhkhkhkhkhkkhkkkkkrkkx
1000 DEF PROCLOAD(reg,val)
1010 vbuU 23,0,reg,val,0,0,0,0,0,0
1020 ENDPROC

2000 DEF FNREAD(reg)

2010 ?&FEO0O=reg

2020=?&FEO1

The range of values for register 1 is 0 to 255 —but more realistically the
upper limit is the contents of register 0.

14

Register 2 —
‘Horizontal SYNC
position’. (Write only).

This register establishes the point where the horizontal SYNC signal
switches. It is specified in terms of characters. The reference point is the
left most character position displayed on the screen.

What this means is that this register determines the displacement from the
left-hand side of the screen of the left most character in the display. The
contents of this register in each of the 8 modes are as follows:

Mode — 0 1 2 3 4 5 6 7
Contents — 98 98 98 98 49 49 49 51

If you increase the number given in the above table the whole display will
move to the left, if you decrease it, the display moves to the right. Some
characters may be lost at the edges of the screen. Altering the value more
than a few characters collapses the display.

The range for this register is 0 to 255.

15

Register 3 —
‘Horizontal SYNC
width’. (Write only).

This register establishes the duration of the horizontal SYNC pulse. DO NOT
ADJUST IT!!!

16

Register 4 — ‘Vertical
total’. (Write only).

This register gives the total number of displayed and undisplayed character
rows, or lines. The contents of this register in the 8 modes are as follows:

Mode — 0 1 2 3 4 5 6 7
Contents — 38 38 38 30 38 38 30 30

As a consequence of its function, this register helps determine the frame
refresh rate, 50 Hz. Thus, if you alter its value too radically, you're likely to
lose synchronisation.

There is a little point in altering this register, except that if you reduce its
value by about 1 or 2, it is possible to move the display up the screen a
bit.

The range of this register is 0 to 127.

17

Register 5 — ‘Vertical
SYNC adjust’. (Write

only).

It was stated above that register 4 helps determine the frame refresh rate.
Register 4 is a coarse adjustment, while register 5 enables more accurate,
fine, adjustments to be made. Zero is usually stored in this register, except
in mode 7, where 2 is stored.

If you alter this, you can move the vertical position of the display a little,
but numbers should be kept fairly low — some televisions are not very
tolerant of differences in the SYNC pulse, and so many cause the picture
to collapse.

The range of register 5is 0 to 31.

18

Register 6 — ‘Character
rows per frame’. (Write

only).

This register allows you to alter the number of lines displayed on the
screen. There are, however, some severe limitations. In mode 7, altering
the number of lines causes characters to be sliced up, and in other modes,
increasing the number of lines beyond the normal will lead to repetitions, ie
some lines appear twice! Also, the height of the lines is not affected, so if
you ask the computer to display 40 lines in mode O, it will, but six of
them will probably be off the display. Reducing the number of lines is quite
possible.

The range of this register is 0 to 127.

19

Register 7 — ‘Vertical
SYNC position’. (Write
only).

This register normally contains the number of lines on the screen, plus
three.

Altering this register gives you another way of moving the picture up and
down the screen. Increasing it from its normal value moves the display up,
and decreasing it moves the display down. A similar function is performed
by the *TV MOS command.

The range of this register is 0 to 127.

20

Register 8 — ‘Interlace
mode’. (Write only).

This register holds a number between 0 and 3 inclusive. The effects of the
numbers are as follows:

0 — Non-interlaced picture

1 — Interlaced SYNC picture

2 — Non-interlaced picture

3 — Interlaced SYNC and VIDEO picture

Mode 7 is interlaced with SYNC and VIDEO. All other modes are just
interlaced SYNC.

Interlaced pictures are more complete than non-interlaced pictures —if you
turn off interlace (which you can’t do in mode 7) the lines that made up
characters become visible.

There is little point in altering this register. If you do want to, you are

better off using *TV with a second argument, as described in the User
Guide.

21

Register 9 — ‘Scan
lines per row’. (Write

only).

The contents of this register determine the total number of vertical dots
that go to make up each character. Its contents in each mode are as
follows:

Mode — 0 1 2 3 4 5 6 7
Contents — 7 7 7 9 7 7 9 18

In fact, the number loaded is one less than the total, so the numbers
above tell us that there are eight vertical dots to characters in modes
0,1,2,4 and 5, which we knew already from our knowledge of the VDU 23
command for redefining characters 224 to 255. It also tells us that in
modes 3 and 6, two extra lines are inserted, to give the spacing between
lines.

You can see the size of the mode 7 matrix from the last value in the
table.

22

Register 10 — ‘Cursor
start line’. (Write only).

Each character on the display stretches over a number of ‘scan lines’. The
exact number for each mode is given in the section on register 9. The
cursor can extend between any two of these scan lines. In mode 7, for
example, the cursor starts and stops on the last scan line of the character,
giving the impression of a single bar, but in modes 3 and 6 it starts on
scan line 7, and finishes on scan line 9, which is why the cursor appears
thicker in these modes.

The contents of this register determined the first scan line on which the
cursor will appear. Thus, its contents in each of the 8 modes are as
follows:

Mode — 0 1 2 3 4 5 6 7
Contents — 7 7 7 7 7 7 7 18

In fact, the register does not contain these numbers on their own.
However, register 10 does contain numbers combined with information
about the flash rate of the cursor, and whether it is visible or not. Add
these numbers for the following attributes for the cursor:

Number to be added Attribute
0 Cursor doesn't blink
32 Cursor invisible
64 Cursor flashes quickly
96 Cursor flashes slowly

The cursor normally flashes slowly, so the actual values stored for each
mode are as follows:

Mode — 0 1 2 3 4 5 6 7
Contents — 103 103 103 103 103 103 103 114
(96+7) (96+7) (96+7) (96+7) (96+7) (96+7) (96+7) (96+18)

If you execute ‘VDU 23,0,10,64,0;0;0;", to make the cursor blink quickly and
start at the first scan line, in mode 7, you will be amazed to see that if
you type control-K a few times (so that the cursor is over some character
already on the screen) reverse field characters can be displayed. Altering the
above 64 to zero would give a solid, unblinking, cursor, which would show
the effect better. It is normally impossible to display reverse video in this
way in mode 7.

One application of this register is to alter the cursor's appearance in a

program to show which mode you’re in (I don’t mean screen mode). | will
give some examples of cursors after the discussion of the next register.

23

The range of the first part of this register is 0 to 31.

Register 11 ‘Cursor
stop line’. (Write only).

This register gives the last scan line on which the cursor will appear. Its
contents in all the modes are as follows:

Mode — 0 1 2 3 4 5 6 7
Contents — 7 7 7 9 7 7 9 19

(This table gives the impression that the mode 7 cursor is two scan lines
deep —it is, but because of the way the SAS5050 character generator
operates, only one scan line appears to be used).

All of the following examples are to be tried in any mode but mode 7.

Start scan line Stop scan line Effect

0 0 Underlines the
character above the
cursor

4 4 Gives a narrow,
centralized, dash
cursor

3 6 Gives a thick dash as
a cursor

4 7 Gives a cursor

occupying half the
space allocated to it.

You can probably quite easily make up your own cursors —but remember,

contrary to popular belief, you cannot make the cursor any ASCII character
you want.

24

Registers 12 &13 —
‘Top of page’. (Write

only).
MSB LSB

These two registers behave differently in modes 0 to 6 from mode 7. Il
discuss them first in modes 0 to 6, then go on to talk about mode 7.

MODES 0 TO 6:

In these modes, registers 12 and 13 indicate the lowest memory address
that is being used by the current screen mode. For this purpose the least
significant byte of the address is stored in register 13, and the most
significant is stored in register 12. However, you don’t store the actual
address in these registers —you have to use the address divided by 8. So
this procedure will, in combination with the one you've already got in
memory, make the current screen mode start at any address you choose:
30 REM This procedure makes

40 REM VDU RAM set any address
50 REM (modes 0 to 6 only)
800 DEF PROCSTART (address)
805 address=address DIV 8
810 PROCLOAD(12,address DIV 256)
820 PROCLOAD(13,address MOD 256)
830 ENDPROC
999 REM khkkkhkkhkhkkhkhhkkhkkhhkhkhkkhkhhkhkhkkhkkhhx*%
1000 DEF PROCLOAD(reg,val)
1010 vDU 23,0,reg,val,0,0,0,0,0,0
1020 ENDPROC
2000 DEF FNREAD(reg)
2010 ?&FEO0O=reg
2020=?&FEO1

One interesting thing you can do with this procedure is to set the display
to start at address 0. If you do, you can see all the lower memory
locations being changed very rapidly. Run through the following examples:

Execute MODE 0/VDU 28,0,10,79,0/PROCSTART(0) to put you in mode O,
with screen memory starting at 0. The VDU 28 command defines a text

25

window which keeps the cursor in the visible part of the screen. (MODE 0
takes up 20K, if you make it start at address O the screen will overlap the
old mode 0 —ie you can see what you type, which you can't do if you do
all this in mode 4.) The screen should look something like this:

| have annotated the diagram to show where various things are stored. Try
the following, and watch the relevant areas of the screen as you do so.
Insert some extra lines (REM statements, perhaps) in your program. You will
see the area labelled ‘PROGRAM’ expand. If you then delete some lines ,
you can see the same area contracting, as less memory is used up.

Execute ‘FOR T%=TOP TO HIMEM:?T%=0:NEXT'. This will clear the unused
area of memory.

Define a user defined key. The area labelled ‘KEYS’ will expand slightly.

Type a SOUND statement and you will see the ‘SOUND QUEUE’ area
become active. Similarly, type an ENVELOPE and you will see the
ENVELOPE storage area, labelled ‘ENVELOPES’, pop into life.

Try redefining the letter ‘A’, using VDU 23,65,1,2,3,4,5,6,7,8. The area
labelled ‘CHARS 64 TO 95’ will get filled with the dot patterns of the
aforementioned characters.

Similarly defining any character will bring that labelled area of memory into
life. If you've got a long program in memory, though, you are likely to
overwrite it — so be careful!

Watch the area labelled ‘KEYBOARD BUFFER’ as you type text in at the
keyboard.

Then execute a loop such as ‘TIME=0:REPEAT UNTIL TIME=100100". While
the loop is executing, watch the area labelled ‘RUN TIME BUFFER’ as you
type text in. When the loop is finished, the ‘KEYBOARD BUFFER’ will get
filled up.

Watch the area called ‘COPY’ when you use the copy key to copy
characters. If you are a little confused at this stage, no need to worry as
all the things you are watching will be explained in subsequent chapters.

Back now to more serious matters:

If you make screen memory start at an address before its normal address
(ie lower than HIMEM), you will see that only a part of the normal screen
will be shown, if any, but if you make the start address larger than normal,
the screen ‘wraps around'. This means that instead of starting to display
characters above the place where memory should stop, it goes back to the
start of official screen RAM, and displays that instead. This is how the
scrolling of memory is done so fast on the computer —it doesn’t have to
alter anything to scroll the screen, except these registers.

26

This program uses the scrolling principle outlined above to print in mode 4,
and then allows you to ‘roll’ the screen in any direction, using the cursor
control keys.

Just type RUN, then manipulate the cursor keys. Various games using this
principle spring to mind. (INKEY is used with a negative argument, so you
can press combinations of keys for diagonal movement).

10 REM Movement

20 REM For modes 4 and 5.

30 REM Modes 0,1 & 2 - see below.

40 REM (C) Jeremy Ruston.

50 REM khkkhkkkkhkkhkkkkhkkhkkhkkhkkhkk*k

60 MODE 4

70 PRINT TAB(7,16);"The BBC Micro Rev
ealed..."

80 PROCASSEMBLE

90 START=HIMEM/8

100 X=0

110 Y=0

120 REM kkkkkhkkkhkkhkhkhhkhkhkhkhkkkxx

130 REPEAT

140 IF INKEY(-42) THEN Y=(Y+31) MOD 32

150 IF INKEY(-58) THEN Y=(Y+1) MOD 32

160 IF INKEY(-26) THEN X=(X+1) MOD 40

170 IF INKEY(-122) THEN X=(X+39) MOD 40

180 S=START+X+Y*40

190 ?&D00=S DIV 256

200 ?&D01=S MOD 256

210 CALL &D10

220 UNTIL FALSE

230 REM khkkkkkhkkkkhkkhkkhkkhkhkkhkkhkkkk

240 REM Machine code routine to load

250 REM register 12 with the contents

260 REM of &D00 and 13 with that of

270 REM &DO01. Has to be in MC for

280 REM high speed.

290 DEF PROCASSEMBLE

300 P%=&D10

310 [OPT O

320 LDA #12:STA &FEO0O0

27

330 LDA &DO0O0:STA &FEO1

340 LDA #13:STA &FEOO

350 LDA &DO01:STA &FEO1

360 RTS:]

370 ENDPROC

380 REM EE S S SRS SRS E SRS SR TS S

390 For modes 0,1 and 2, make these

400 changes:

410

420 Line 180 becomes :

430 IF INKEY(-26) THEN X=(X+1) MOD 80
440 Line 190 becomes :

450 IF INKEY(-122) THEN X=(X+79) MOD 8
460 Line 200 becomes :

470 S=START+X+Y*80

Before scrolling takes place in any of these modes, the value in register 13
is always zero. So you can do a certain amount of work just using register
13 for scrolling from side to side. For example:

10 MODE 2

20 vDU 29,640;512;

30 VDU 24,-639;-511;639;511;
40 GCOL 0,132

50 CLG

60 VDU 24,-499;-399;499;399;
70 GCOL 0,128

80 CLG

90 FOR T=1 TO 100

100 X=RND(640)-1

110 Y=RND(512)-1

120 GCOL 0,RND(7)

130 FOR ones=-1 TO 1 STEP 2
140 FOR twos=-1 TO 1 STEP 2
150 MOVE 0,0

160 PLOT 1,0ones*X,twos*Y
170 NEXT twos

180 NEXT ones

190 NEXT T

28

200 DELAY=0

210 FOR T=1 TO 79 STEP 2
220 FOR A=1TO T

230 PROCLOAD(13,A)

240 PROCDELAY(DELAY)
250 NEXT A

260 FOR A=T-1 TO 2 STEP -1
270 PROCLOAD(13,A)

280 PROCDELAY(DELAY)
290 NEXT A

300 NEXT T

310 PROCLOAD(13,0)

320 END

330 DEF PROCLOAD(reg,val)
340 vDbU 23,0,reg,val,0,0,0,0,0,0
350 ENDPROC

360 DEF PROCDELAY(TIM)
370 TIME=0

380 REPEAT UNTIL TIME>TIM
390 ENDPROC

29

Notice that the scrolling from side to side used here is not the same as

the rolling you can achieve with register 2, since with register 2 you often

lose characters off the edge of the screen. With register 13 you get full
g - ¥ o L e

1. PROGRAM 2.KEYS 3. SOUND QUEUE 4. ENVELOPES
5. CHARS 64-95 6. CHARS 32-64 7. CHARS 96-127
8. KEYBOARD BUFFER 9. RUN TIME BUFFER 10. COPY

wrap around, to stop you losing any characters.

You should now be able to see why these two registers are called ‘TOP of
page’, and not ‘Screen memory start’.

MODE 7:

Things work similarly in mode 7 —except that the address loaded does not
have to be divided by 8. The complication is that the start of mode 7 is
not quite where you would expect it to be —try it and see. Also, if you
decrease the top of page value, to below the normal value, you will not
move back by a few bytes —you will move forward by 6700 bytes. This is
complex and only amounts to making these registers rather trickier to use.
Messing about with register 13 is easy in mode 7, however.

30

Register 14 & 15 —
‘Cursor address’. (Read
and write).

MSB LSB

These two registers hold the address of the cursor. The address is held as
it should be in mode 7, but in all other modes, the address stored is the
actual address divided by 8.

Thus, at a CLS or mode change (under program control, to stop the prompt

appearing), the address in these two registers is the same as the address
in registers 12 & 13.

31

Registers 16 & 17 —
‘Light pen position’.

(Read only).
MSB LSB

This register gives the position of the light pen, as an absolute address. In
modes 0 to 6 this address is 8 times too small, but in mode 7 you get
the actual address. Not having a light pen, | can’t give a very helpful
description of these two registers. However, it would appear to make more

sense to use *FX136, as described in the manual.

That completes the description of the 6845's internal registers.

For completeness, here is a table showing the contents of the various

registers in each of the modes:

Mode —

0 Register

1
2

O OVWoo~NOO O~

1
11

Notice that, to the 6845, there is no difference between modes 0,1 and 2,

0

127
80
98

38
0
32
35
1

7
103
7

1

127
80
98

38
0
32
35
1

7
103
7

127
80
98

38
0
32
35
1

7
103
7

127

80
98

30
0
25
28
1
9

103

nor is there between modes 4 and 5.

32

9

4

63
40
49

38
0
32
35
1

7
103
7

5

63
40
49

38
0
32
35
1

7
103
7

6

63
40
49

30
0
25
28
1

9
103
9

7

63
40
51

30
0
25
28
3
18
114
19

Designing your own
modes.

To test our understanding of the registers, let's see if we can use them to
make up a screen mode to our own specifications. The only way we can
do this is by altering the number of lines and number of characters
displayed in an existing mode.

I'll work slowly through the way | managed to get a mode of 16 lines of
32 characters, then it would be instructive for you to see if you can go on
to make other modes, of different numbers of characters.

Before we start, make sure you've got PROCLOAD defined at the top of
memory, say at line 1000, and then type an END statement at about line
500. This will ensure that as we add extra lines to our program, when we
execute it, we won't go charging through the procedure definition, which
could cause problems.

Our first choice is to choose an existing mode with which to start work. |
chose mode 4, since it is slightly bigger than the format we are aiming at.
So, the first line of our program is:

10 MODE 4

We're aiming for a mode with 16 lines. At the moment there are 32, so
we've got to get rid of 16 of them. Looking back at our tour of 6845
registers, we can see that the relevant one to change is register 6. So by
setting the contents of register 6 to 16 we will instruct the 6845 to display
16 lines of characters. To do this, add the following to your program.

20 PROCLOAD(6,16)

Now run the program. The screen will probably give a little kick, and then
settle down to look like a normal mode 4 screen. If you execute ‘VDU
19,1,0,0,0,0,19,0,7,0,0,0’ you will see that this is not the case. Now that
you've got a white background, you can see that only the top half of the
screen is being used. That's all very well, but it would be nicer if the 16
lines could be spaced out a little, to fill up all the available screen area.
We'll do it in the same way as the extra spaces are inserted into modes 3
and 6. To achieve this spacing, we allow for 16 scan lines per line of text,
instead of the normal 8. If you look back a few pages, you will see why
this line is the one to be added:

40 PROCLOAD(9,15)

This display should now appear to be spaced out correctly, but there will
probably be a good deal of flicker on the screen, and the first line of text

33

will not start at its accustomed place at the top of the screen.

The reason for the display being half way down the screen is that the
vertical total register, register 18, has not been informed of the reduction in
the number of screen lines, and so is pumping out a vast border at the top
of the screen, which shifts everything else on the screen down a few
lines. So we update the vertical total register with:

50 PROCLOAD(4,18)

The display should now start at the right place, but you may find that the
picture rolls rather a lot. After much experimentation, it transpires that all
we have to do to remove the rolling is to adjust the position of the vertical
SYNC pulse. Actually the experimentation consisted of looking at the table
of register contents under various modes, seeing which registers held some
connection with the number of lines displayed and ensuring that all those
had been adjusted. Register 7 was the only one which hadn’t. From the
table, | expected this register to hold two more than the number of screen
lines, but | get steadier picture with 17 in this register. So the line we can
finally add is:

60 PROCLOAD(7,17)

We should now have a perfect display of 16 lines by 40 characters. So
now all we have to do is remove 8 characters from the end of each line.
Before we do so, you may like to add:

70 PROCLOAD(11,15)

which gives an odd cursor.

To adjust the number of characters in the line, we use:

80 PROCLOAD(1,32)

We now have a screen of 16 lines of 32 characters —but the computer is
still treating it as a screen of 32 lines of 40 characters, and so printing will
not work as you want.

Finally in this section, here is a table of the 6845 registers:

6845 REGISTERS:

Register Namef/function

Horizontal total

Characters/row

HSYNC position

HSYNC width

Vertical total
VSYNC adjust

abhwWwNEFLO

34

Character rows/frame

VSYNC position

Interlace mode

Scan lines/row

Cursor start scan line

Cursor stop scan line

MSB Start address (top of page)
LSB Start address (top of page)
MSB Cursor position

LSB Cursor position

MSB Light pen position

LSB Light pen position

35

36

Section two: Memory
locations

This section is mainly concerned with exploring the area of memory
known as ‘page three’. This area extends from location &300 to &3FF. It
is used for storage by the VDU drivers. Some other locations are
discussed where necessary.

Before | started to investigate the uses of each location, | made a list of
the sort of information | expected to find:

1)
2)

3
4)

5)
6)
7)
8)
9)

10)

11)
12)
13)
14)

15)
16)
17)
18)
19)

20)
21)
22)

The lowest address used by the current screen mode.

The address of the top-left corner of the screen, since
scrolling will alter this address.

The coordinates of the cursor.

The size of the current screen mode, in terms of characters
per line and lines per page.

The graphics resolution of the current mode.

The number of available colours in the current mode.
Whether the current mode allows graphics as well as text.
The text background and foreground colours.

The graphics foreground and background colours, and the
GCOL modifier.

The printer enable flag. (It is worth pointing out that this flag
will probably occupy a single bit, and there are 2048 bits in
page three. You can see that the task ahead is not easy!)
The separate/joined text and graphics cursor flag.

The page mode on/off flag.

VDU drivers enable/disable flag.

Flags for whether to use the character generator in ROM or
RAM, for user-defined characters.

The extent of the graphics window.

The current screen mode.

The current and last position of the graphics cursor.

The extent of the current text window.

Whether scrolling should take place over the whole screen,
using the 6845, or locally, area by area.

The number of bytes scrolled.

The actual colour of each logical colour.

The edit mode on/off flag.

The following list of memory locations is in numerical order of address,
rather than the order in which I found out their uses. Most sections also
detail how | discovered the use of each location, information which could
be useful to you in the future, as well as being interesting in its own

36

right.

| would suggest that you read the chapter on VDU drivers in the Users
Guide thoroughly before progressing with this section.

Before we start, | should explain the difference between the two
methods of scrolling the screen and of clearing it.

When no text window is defined, CLS clears the screen by using a nifty
bit of circuitry in the ULA to do it in hardware very quickly. However,
when there is a text window active, it clears the screen by copying the
background colour into every screen location in the window. This is much
more time consuming, but it carries the advantage that it doesn’t move
the screen RAM so that HIMEM Points to the first screen location, as
does a normal CLS. CLG works by copying a value into every location, by
software. In addition, all the GCOL modifier rules have to be followed,
which is why it is so slow.

Text is normally scrolled by altering the 6845's registers 12 and 13. This
is very quick, but carries the disadvantage of moving VDU RAM around
with reference to the first location on the screen. When a text window is
in operation, even if it occupies the whole screen, scrolling takes place
by copying each location ‘backwards’. Again, although this is slow, it
doesn't interfere with registers 12 and 13, which can often be extremely
useful.

37

Locations &320 and &321
— Screen memory start.
(16 bits).

LSB MSB

In the same way as | presented the contents of the 6845 registers under
various modes, here are the contents of locations &320 and &321 in
each mode:

Mode —0 1 2 3 4 5 6 7
Contents — 12288 12288 12288 16384 22528 22528 24576 31744

These values should be instantly recognizable as the value of HIMEM in
each of the modes. So it would be safe to assume that this location
contains the lowest memory address used for the current screen mode.
But look at the program | used to get these values.

10 DIM A%(255,7)

20 FOR T%=0 TO 7

30 MODE T%

40 VDU 28,1,20,17,3

50 VDU 24,60;50;532;432;
60 COLOUR 3

70 COLOUR 2+128

80 GCOL 1,4

90 GCOL 4,128+5

100 MOVE 123,345

110 MOVE 234,421

120 VDU 29,500;490;

130 FOR M%=0 TO 255
140 A%(M%,T%)=2(&300+M%)
150 NEXT M%

160 NEXT T%

170 @%=4

180 VDU 2

190 MODE 0

200 FOR M%=0 TO 255

210 PRINT "|";~M%+&300;" |";

220 FOR T%=0 TO 7

38

230 PRINT A%(M%,T%);

240 NEXT T%

250 PRINT " |""™|";TAB(39);"|""'STRINGS$
(40,"—")

260 NEXT M%

270 vDU 3

As you can see, the section from lines 40 to 120 set up various
parameters, to give something distinctive to look for in each mode. For
example, if we later find a byte holding 17, we could be right in
assuming that it has something to do with the text window in line 40
(the complete printout from this program appears at the end of the
chapter). The problem is that none of those statements make the screen
scroll, so the value in &320 could be the top of page address. Both are
the same before scrolling takes place. So, to see which it is, scroll the
screen a few times, and then investigate the contents of these locations
again. You will see they haven't changed so this location must store the
lowest address used by the current screen mode.

Having discovered that, the next step is to see what happens when we
alter this location. Try putting the machine in mode 4, and then typing
‘?&321=&F'. This is telling the computer that video RAM starts at location
&F00. But nothing happens after you do this. Try typing ‘CLS’. After you
do this the screen will do anything but clear. You'll probably see a lot of
garbage on it. Ignore all the rubbish for the moment, and type ‘CLG’. The
rubbish will disappear. The trouble is, the CLS mechanism is carried out
by the ULA, and it has not been told that VDU RAM has moved so at
every CLS, it will clear the wrong area of memory. The 6845 will now
have moved VDU RAM to start at location &F00. The other problem is
that the ULA will scroll the screen wrongly, so returning you to the ‘real’
mode 4 screen after you scroll into the start of it. The upshot of this is
that you can select other pages of memory for display, but don’t scroll
the screen. It is alright if you define a text window to occupy the whole
new page, since scrolling in a window does not move the VDU RAM
around, but it is rather slow.

The application for having more than one page of screen memory that
first occured to me was to construct an animation program, which could
switch rapidly between two images on different pages, to give the
illusion of movement.

You will find that getting mode 7 to display in other pages is often very
confusing, and does not work out exactly as planned. | would advise you
to steer clear of this activity. The other danger spot occurs when you
overwrite your program and a new screen page. Typing CLG will destroy
your program.

39

Locations &322 and &323
— Address of top left of
screen. (16 bits).

LSB MSB

The contents of these two locations in each of the screen modes are as
follows:

Mode —0 1 2 3 4 5 6 7
Contents — 12288 12288 12288 16384 22528 22528 24576 31744

The contents are the same as in locations &320 and &321. However, as
we've already found the start of VDU RAM location, it would be safe to
assume that this location contains the address of the top left of the
screen. If you scroll the screen a little, and then print the value in these
locations, you will find that it has changed, reinforcing this view.

Machine language programmers will find the contents of this location
useful, since without it, they would have severe problems POKEing data
directly to the screen. For BASIC programmers, any use of this location
has been removed by the existing system software.

Altering this location does nothing useful, but is a fairly harmless
occupation.

40

Locations &324 to &325
— Bytes per line. (16
bits).

LSB MSB

The contents of these two locations in each of the eight screen modes
are as follows:

Mode —0 1 2 3 4 5 6 7
Contents — 640 640 640 640 320 320 320 40

From the values given for modes 0 and 4, you would expect these
locations to hold the horizontal graphics resolution in the current screen
mode. Form the value given for mode 7, you would be forgiven for
thinking that these locations hold the number of characters per line. But
if you remember from the last chapter when | said that modes 0 to 3
have 80 characters per line, and modes 4,5 and 6 have 40 characters per
line, you should see some pattern in the above values. Also, 20K divided
by 32 lines gives 640, and 10K divided by 32 lines gives 320. You may
now be able to see why this location contains the number of bytes per
line of text. These locations are used, in conjunction with some others,
to decide what the graphics resolution of the current screen mode is.

Altering the contents of these locations alters the number of bytes
scrolled. Thus, if you execute ‘?&324=20’, while in mode 7, and then try
to scroll, you will get some very odd effects. Similarly, in any of the
graphics modes, altering the value in these locations gives the computer
a funny idea of the resolution of the current mode, and so all plotting
looks a little odd. The application of this is that you can alter the number
of characters per line, by a method similar to that outlined at the end of
the last chapter. These locations go some of the way towards telling the
MOS that you have made the alteration. As an example, try this program:

10 REM Order out of chaos

20 REM Copyright (C) 1982

30 REM Jeremy Ruston

40 MODE 4

50 REM Kid the system about the

60 REM graphics resolution...

70 ?&324=32

80 REM There are now 288 bytes/line
90 REM Or 288/8=36 chars/line

41

100
110
120
130
140
150
160
170
180
190
200
210
220
230

FOR T=0 TO 100

DRAW RND(1280)-1,RND(1024)-1
NEXT T

COLOUR O

COLOUR 129

PRINT ""Press the space bar"
REPEAT

REPEAT UNTIL GET=32

REM Give the screen 36 chars/line
vbu 23,0,1,36,0,0,0,0,0,0,0
REPEAT UNTIL GET=32

REM And take it back

vbu 23,0,1,40,0,0,0,0,0,0,0,0
UNTIL FALSE

42

Locations &326 and &327
— Screen memory length.
(16 bits.)
LSB MSB

The contents are as follows:

Mode —0 1 2 3 4 5 6 7
Contents — 20480 20480 20480 16384 10240 10240 8192 1024

This one is a bit of a cinch. The 1024 for mode 7 and the 20480 for
mode 0 give away this as the length of the screen memory.

The value stored here is used when the 6845 is used for scrolling. It

contains the number of bytes that can be scrolled before registers 12
and 13 will have to be reset to their starting variables.

43

Location &328 — Top
right y-coordinate of text
window. (8 bits).

This location will always contain zero, unless a text window has been
defined, in which case it will contain the last parameter of the VDU 28

statement.

Altering the contents of this location will serve no useful purpose, except
save you the trouble of a VDU 28 statement. This is not advisable —
remember the golden rule: only use the indirection operators (?) when
you have no other choice.

44

Location &329 — Top
right x-coordinate of text
window. (8 bits).

This location normally contains one less than the number of characters
per line in each mode:

Mode —0 1 2 3 4 5 6 7
Contents — 79 39 19 79 39 19 39 39

If a text window has been defined, it contains the third parameter of the
VDU 28 statement.

45

Location &32A — Bottom
left y co-ordinate of text
window. (8 bits).

This location normally contains the number of lines minus one in the
current screen.

Mode —0 1 2 3 4 5 6 7
Contents — 31 31 31 24 31 31 24 24

If a text window has been defined, this location contains the second
parameter of the VDU 28 statement.

46

Location &32B — Bottom
left x-coordinate of text
window (8 bits).

This location normally contains zero, but after a text window has been
defined, it contains the first parameter of the VDU 28 statement.

47

Location &32C — Cursor
X-coordinate. (8 bits).

This location contains the X—coordinate of the text cursor, from the top
left of the screen. Thus, after a CLS or a cursor home, it is initialized to
the contents of location &32B. Reading the variable POS gives the value
stored here, minus the value stored in location &32B.

Altering this value gives you one way of altering the cursor’s position, but
there are more elegant ways.

48

Location &32D — Cursor
Y-coordinate (8 bits)

This location holds the Y-coordinate of the cursor, with reference to the
top left of the screen. Thus after a CLS or cursor home it is initialized to
the contents of location &328. Reading VPOS gives the value stored
here, minus the value in &328.

49

Locations &32E and &32F
— Cursor address. (16
bits).

LSB MSB

Initially, the contents of this location are:

Mode —0 1 2 3 4 5 6 7
Contents — 12288 12288 12288 16384 22528 22528 24576 31744

But, with the program given earlier to list out the contents of memory
locations after various windows had been defined, different results were
obtained:

Mode —0 1 2 3 4 5 6 7
Contents — 14216 14224 14240 18312 23496 23504 25544 31865

So, | was faced with a number which was the top left-hand address of
VDU RAM before any text windows were in force, and altered in the
presence of a window. | concluded that this was the address of the
cursor. Some experimentation proved me right for example, if you
execute the statements ‘?(?&32E+(?&32F)*256)=33" in mode 7, you will
be rewarded by seeing an exclamation mark appear on the screen under
the line you typed, to be rapidly replaced with the prompt. You can stop
the prompt obscuring things by appending the statement ‘VDU30’ to the
end of the instructions. This will return the cursor to the top left-hand
corner of the screen, after the initial statement has been executed.

50

Locations &330 and &331
— Top right y-coordinate
of graphics window. (16
bits).

MSB LSB

The contents of this location in all eight modes are as follows:

Mode —0 1 2 3 4 5 6 7
Contents — 108 108 108 108 108 108 108

These two locations first interested me when | was looking for the place
where the last argument of the VDU 24 statement was stored. In the
program | used to get these figures, given earlier in the chapter, you will
recall that the last parameter was the number 432. Thus, | was looking
for two locations which collectively contained 432. | was not in luck, so |
turned my mind to seeing how else the required information could be
stored.

All graphics statements operate on a grid of 1280 by 1024. So the
vertical scaling factor was four, since 256 (the vertical resolution in all
modes) into 1024 goes four times. So maybe | should look for a location
containing 432/4 (108) instead. This | did, and before long came up with
these locations. To test this, | checked that these locations contained 255
before a graphics window was created.

The primary use of a location such as this is to be able to see what the
size of the current graphics window is, without having to save the
required information in variables. | would not recommend altering this
location by any other means than the VDU 24 statement, simply to aid
readability in your programs. If you ever read this location in a program, |
would suggest you use a function like this, for the same reasons:

10REM A function to read the vertical
20REM dimensions of the current
30REM graphics window.

40REM Copyright (C) Jeremy Ruston
50MODE 4

60PRINT 'FNvert

70PRINT ""The answer is given as
80PRINT '"1020 since it has been "

51

90PRINT '""scaled by four."
100END
1000DEF FNvert=?(&331)*4

52

Locations &332 and &333
— Top right X-coordinate
of graphics window. (16
bits). MSB LSB

Using the same program as before, the results obtained were:

Mode —0 1 2 3 4 5 6 7
Contents — 266 133 66 66 133 66 33 66

Remember the order in which the bytes describing the text window are
presented, | was expecting to find the top right X-coordinate of the
graphics window at these locations. The VDU 24 statement in the
program gave this as 532. The horizontal scaling factors for each of the
eight modes are as follows:

Mode —0 1 2 3 4 5 6 7
Scaling factor — 2 4 8 X 4 8 XX
(X =don’t care)

So, 532/2=266,532/4=133 and 532/8=66 (whole number part only). So this
location does indeed hold that information, but only in terms of the actual
graphics grid of 640 by 256, 320 by 256 or whatever, and not the normal
grid of 1280 by 1024.

The same points | made after the last location hold true for this one,
with regard to interrogation and alteration.

53

Locations &334 and &335
— Bottom right Y-
coordinate of graphics
window. (16 Dbits).

MSB LSB

This one was very predictable. The values | found were all 12 (12*4=48,
is the nearest number to 50 divisible by four, and 50 is the second
parameter in the VDU statement). So this location contains the bottom
right Y-coordinate of the current graphics coordinate, in terms of vertical
resolution of 256, rather than 1024. The same points about altering and
interrogation as made in the discussion of location &330 hold true.

54

Locations &336 and &337
— Bottom right X-
coordinate of graphics
window. (16 bits).

MSB LSB

With the same provisos as mentioned for location &332, this location
holds the first parameter of the VDU 24 statement, the bottom right X-
coordinate of the current graphics window.

Don’t forget about the scaling factors in all the modes.

55

Locations &338 and &339
— Y-coordinate of
graphics origin. (16 bits).
MSB LSB

In all modes, the program gave the contents of these locations as 490,
which | gave as the Y-coordinate of the graphics origin in the VDU 29
statement. Normally this location contains zero, because the origin is at
the bottom left-hand corner of the screen.

Altering this location is again pretty pointless, but interrogating it can

often be useful. Do remember to use a special function, rather than
using the indirection operators directly, if only for reasons of elegance.

56

Locations &33A and &33B
— X-coordinate of
graphics origin. (16 bits).
MSB LSB

These locations contain 500 in all modes, which | gave as the first
parameter of the VDU 29 statement in the program. So it contains the X-
coordinate of the graphics origin, but without scaling, ie it contains the X-
coordinate directly in all modes, not divided by two in mode 0, and 4 in
modes 1 and 4.

57

Locations &33C and
&33D — Current Y-
coordinate of graphics
cursor. (16 bits).

MSB LSB

These locations contain 421 in all graphics modes, and 50 in the text
only modes. The 421 is instantly recognizable as the second coordinate
given in the MOVE statement in the program.

I had only found the most recently visited point, | still had to find the
point visited before last, which is used by the PLOT 85 routines.

Altering this quantity is easily done by using the MOVE statement, or any

other of the PLOT statements. It is often useful to read the current
coordinates though, so | suggest you use a function to do this.

58

Locations &33E and &33F
— Current X-coordinate of
graphics cursor. (16 bits).
MSB LSB

In graphics modes, this location contains 234 according to the program
given earlier, and 60 in the non-graphics modes. 234 is, of course, the
first parameter of the second MOVE statement in the program. As with
the previous location, it is initialized to zero at a mode change or CLG.

The points about interrogation and alteration made in the discussion of
the previous location hold true for this one as well.

59

Location &367 — Current
screen mode. (8 bits).

The contents of this location are:

Mode —0 1 2 3 4 5 6 7
Contents — 0 1 2 3 4 5 6 7

| need hardly say more.

The location does not seem to affect anything if you alter it, but reading
it can be useful, since it is then possible to write a graphics program
which the user can start running in whatever mode he or she likes, and
the program can see what mode is being used, and scale its output
accordingly.

60

Location &36B — Flags
one. (8 hits).

This location was a pest to work out. It normally contains zero, but when
running the program, | found it contained 8. | started looking for
something in the program which involved the figure 8, to see what this
location was doing. | found nothing, so | resorted to the old and tested
method of randomly placing values in the location. | started out by
putting the machine in mode 4, and then executing ‘?&36B=1". No
sooner had | done that then the printer | was using, and had de-selected
with CTRL-C, popped into life. It then became obvious that the location
contained eight flags, so | began working out what the other flags were
for.

The next step was to put two in the location, to test the second bit, and
see what happens. This | did, and found out only that the screen refused
to scroll, as if it was in VDU 5 mode. It wasn’'tin VDU 5 mode, because
the cursor was still present, and the text colour was still selectable by
means of the COLOUR statement. So bit 1 determined whether scrolling
was to take place.

Bit 2 was a little easier to discover. | put the computer in page mode,
and looked at the contents of the location. | was rewarded by seeing it
contained the figure 4.

Bit 3 was difficult, so | just placed the number 8 in &36B, and saw what
happened. The screen started scrolling by moving the contents of
memory locations. So this was the ‘kind of scroll flag’ | mentioned at the
beginning of the chapter. Try it and see.

Bit 4 does not do anything in the present operating system.

Bit 5 is the joined/separate text/graphics cursor flag. When set to true,
VDU 5 mode is active.

Bit 6 appears to be the edit mode on/off flag.

Bit 7 is the VDU driver’s disable/enable flag. When set, the VDU drivers
are inactive, and will remain so until a VDU 6 instruction is executed, or
until the flag is set to zero.

Except for bits 1 and 3, it is easier to set these flags by executing the
appropriate VDU commands. However, reading them is feasible and often

useful.

Setting bit 1 is useful if you want to print on the bottom line of the
screen, since normally the screen has a tendency to scroll if you do this,

61

especially with the bottom right-hand character position.

Setting bit 3 to a full scroll when you have a text window in operation is
interesting. Try setting up a text window of just the top left character
position, by executing ‘VDU 28,0,0,0,0’, and then type ‘?&36B=0'. Then,
every time you press a key, the whole screen will roll up, unless you hit
CTRL-H, delete or CTRL-K, in which case it will roll down. This is an
easier way of rolling than using the 6845's registers and 12 and 13
directly, but does have the disadvantage of leaving a trail of characters up
the left most column of the screen. If you just use ‘PRINT’ to roll the
screen, under program control, the problem is moved, except that now,
all the text in the left most column of the screen will be cleared.

62

Location &36D — CLS/
scroll filler byte. (8 bits).

The contents of this location in the eight modes are as follows:

Mode —0 1 2 3 4 5 6 7
Contents — 0 0 0 0 0 0 0 32

Go into mode 7, and try typing ‘?&36D=42’, then clear the screen.

This location holds the byte that will be put into every memory location
as it is scrolled or cleared. Thus in mode 7, the code for a space, 32, is
used, but in other modes, 0 is used since 0 corresponds to a byte
completely made up of colour 0, presuming colour O is the current
background colour.

In one of the modes 0 to 6, try ‘?&36D=&AA’, and then clearing the
screen. You should get some sort of stripy background, since the binary
of &AA is 10101010. If you alter the background character, the edit keys
do not work correctly, or rather the copy key does not. The technique is
still useful, for shading if nothing else. In mode 7, you could try typing in
response to a program like this:

10 REM Copyright (C) Jeremy Ruston
20 REPEAT

30 ?&36D=GET

40 CLS

50 UNTIL FALSE

60 REM Line 30 could also be :

70 PRINT TAB(0,24)

63

Location &36E — Graphics
foreground colour mask.

(8 bits).

The program | used to list the content of various memory locations
contained the line GCOL 1,4, so when | started to look for the location
that held the current graphics colour, | first looked for a location that
contained 4 in all modes. But there aren’t four colours in all modes.
Colour 4 in modes 0 and 4 is in fact the same as colour 0, and in
modes 1 and 5 it is the same as colour zero, for a slightly different
reason. | therefore started looking for a location containing something like
this in all the graphics modes:

Mode —0 1 2 4 5
Contents — 0 0 4 0 0

However, if you look, there is no such location. The alternatives for
storing the colour directly are few —namely a ‘colour mask’ can be used,
as is employed in the Acorn Atom.

A colour mask is a byte equivalent to a byte of the display memory
containing just the current colour. Refer back to the description of byte
mapping in the previous chapter, and working from those tables, make up
a byte of the colour the new graphics foreground colour is to be. You
will then have a colour mask for that colour.

For example, in the two colour modes, a mask for colour O is a byte
containing zero, and the mask for colour one is a byte containing 255.
The best way to see this is to examine masks that the computer makes
up for you. You do this by changing the graphics foreground colour to
the desired colour, and then the contents of &36E is the mask for that
colour.

A little bit of experimentation (ie making up colour masks by hand and
then looking for them) showed that the graphics foreground mask is
stored at address &36E.

The computer uses the mask in combination with some boolean
operations to speed up the plotting operation, the exact process of which
is irrelevant.

Reading the current foreground colour from this location is a tiresome
business, but here are some routines to do it:

10 REM GCOL 0,X read function
20 REM Use the one appropriate to

64

30 REM your current mode.
1000 DEF FNtwo_colour_modes=?&36E AND 1
2000 DEF FNfour_colour_modes=(?&36E AND
1)+(?&36E AND 16)/8
3000 DEF FNmode_two LOCAL T,B
3010 FOR T=0 TO 6 STEP 2
3020 IF (2T AND ?&36E)=2~T THEN B=B+2"
(T/2)
3030 NEXT T
3040=B

Altering this location is great fun. For example, this program gives you
striped text, by setting the graphics foreground mask, and then printing
under the influence of VDU 5.

10 MODE 5

20 ?&36E=&5A

30 VDU 5

40 PRINT"'"There's a lady who's sure
all that glit-ters is gold"'

50 PRINT "And she's buying a stairwa
y to heaven.."”

60 VDU 4

70 END

65

Location &36F — Graphics
background colour mask.
(8 bits).

This location is the exact opposite of location &36E, in that it determines
the current graphics background colour, rather than the current foreground
colour. The format of the location is exactly the same, and it can be read
from using the same routines as location &36E, except you'll have to
change every occurence of &36E to &36F.

The application of this location is to enable you to fill whole areas of the
screen with a striped pattern. In the same way as you fill in rectangles
at the moment, using VDU 24, followed by GCOL. Just set the
background colour mask beforehand to a striped pattern, and you’ll have a
striped rectangle.

66

Location &370 — Graphics
foreground modifier. (8
bits).

This location contains the first parameter of the most recent GCOL
statement setting the graphics foreground colour. There’s not much you
can usefully do with it, except possible read it. If you set it to an out-of-
range value, ie 5 or above, you get some pretty weird results with your
next plot, but there again, why not just make the first parameter of the
GCOL statement out of range?

67

Location &371 — Graphics
background modifier. (8
bits).

When George Mikas wrote his definitive ‘How to be an Alien’, which
describes in great detail the shortcomings of the British, through the eyes
of a foreigner, the chapter entitled ‘Sex’ contained just the following
words: "On the continent they have sex; the British have hot water
bottles." The chapter has come in for a little criticism since then.

The point of all this is that | can find as little to write about with

reference to this location as George Mikas could about the Great British
sex life.

68

Location &375 — Colours
available. (8 bits).

This location contains one less than the number of colours available in
the current mode, except for mode 7, where it contains zero. Thus its
contents in the eight modes are as follows:

Mode —0 1 2 3 4 5 6 7
Contents — 1 3 15 1 1 3 1 0

The effect of altering this register is dramatic. If you increase it to the
maximum of 15 in any mode other than 2 and 7, you'll get rather big
writing. This technique is not perfect, since the letters overlap. I'll show
you a better program in a few pages.

An odd thing is that after altering this register, to get VDU 19 working

correctly, you'll find you have to alter the colour of two of the logical
colours to get any proper change in colour of a single actual colour.

69

Location &376 — Bytes
per character. (8 bits).

This location holds the number of bytes that separate the top of one
character from the bottom of the next. Its contents in the eight modes
are as follows:

Mode —0 1 2 3 4 5 6 7
Contents — 8 16 32 8 8 16 8 1

In mode 7, typing ‘?&376=2" will space out the text you type across the
line by a factor of two. The trouble is, when the computer reaches the
end of a screen line, it doesn’t quite know where to go next, since it is
sure there are 40 characters to every line, but it's only managed to fit 20
on. So the remedy is to tell it that there are now only 20 characters on
the each screen line. Rather than setting up a text window, try using
‘?&329=19' to set the right-hand margin to 19. This will ensure that
normal 6845 scrolling is carried out, even though there is a screen
window. In other modes, you can get pretty overlapping text by reducing
the number normally held in this location. Not altogether useful.

Here is the ‘funny writing’ program, properly debugged:

10 REM Funny writing

20 REM Copyright (C) 1982

30 REM Jeremy Ruston

40 MODE 0

50 ?&375=15

60 ?&376=32

70 ?&377=1

80 ?&329=19

90 PRINT TAB(0,13);

100 PROCCENTRE("T H E")
110 PRINT

120 PROCCENTRE("B B C")
130 PRINT

140 PROCCENTRE("M I C R O")
150 PRINT

160 PROCCENTRE("REV EAL ED")
170 PRINT

180 END

190 DEF PROCCENTRE(AS)

70

200 PRINT TAB(10-LEN(A$)/2):A$
210 ENDPROC

71

Location &377 — Pixels
per byte. (8 bits).

This location contains zero in the non graphics modes, and the number of
pixels per byte minus one in the other modes. Thus its contents in the
eight modes are as follows:

Mode —0 1 2 3 4 5 6 7
Contents — 7 3 1 0 7 3 0 0

The data stored here is used only in graphics commands. Altering it just
causes some bizarre effects without doing anything useful.

It is possible to use this location in conjunction with a couple of those
we've already discussed to work out the graphics resolution of the
current mode, bearing in mind that the vertical resolution is constant at
256 for all modes.

72

Location &37E —
Perma-edit. (8 bits).

This location normally contains 13, but | found that if you load 127 into
it, you can stop the computer dropping you out of edit mode at every
carriage return. | use this feature when | am copying a number of lines
from the top of the screen to the bottom, since it allows me to dispense
with moving the cursor back up the screen to start copying each new
line.

73

Location &382 — Define
flags. (8 bits).

These flags affect whether a RAM-based, or ROM-based character
generator shall be used for a particular set of characters. If any of the
bits indicated below are set to ‘1’, the corresponding region of the
character set will be read from RAM, else from ROM.

The bits control the following section of the set:

Bit ROM location RAM location Character

range

0 — &CO00 to &CFF 224255
1 — &1000 to &10FF 192—223
2 — &1100 to &11FF 160—191
3 — &1200 to &12FF 128—159
4 &C200 to &C2FF &1300 to &13FF 96—127
5 &C100 to &C1FF &1400 to &14FF 64— 95

6 &CO000 to &COFF &1500 to &15FF 32— 63

If the later portion of the character set, ie that from 128 to 255, is set
to a ROM-based character generator, it takes the normal ASCII set as its
starting point, but displaced by 128.

The advantage of this location is that by setting it to zero you can undo
all the re-defining you have done, which is just not possible with the
present ROM revision normally.

On the subject of the character generator, here is a routine to print out
the entire character set, eight times the normal size.

10 MODE 7

20 FOR T%=&C000 TO &C2FF

30 IF (T%-&C000) MOD 8=0 THEN
PRINT "--ccee-- "

40 FOR A%=7 TO 0 STEP -1

50 IF (2°A% AND ?T%)=2"A%
THEN VDU 255 ELSE VDU 32

60 NEXT A%

70 PRINT

80 NEXT T%

74

Location &D8 — Caps
lock/shift lock. (8 bits).

This location contains 32 when caps lock is active, 16 when shift lock is
active and 48 when neither are active. It is also possible to set the
location from BASIC to simulate the pressing of the required key, but for
some weird reason a character 13 has to be printed before the relevant
lights are lit.

The application of this would be to ensure that the user of a program
only typed in upper or lower case by setting the contents of &D8 before
the INPUT statement is executed.

Under some more peculiar conditions, this location can be used to sense

whether control or shift are active, but | would recommend using INKEY
with a negative argument to achieve the same result.

75

Locations &38A to &399
— Current palette. (16
bytes).

These locations hold the actual colour of each of the 16 logical colours.
Thus the actual of colour zero is stored in address &38A, the actual
colour of colour 1 in address &38B and so on up to the actual colour of
logical colour 15 being stored in location &399. Obviously only mode 2
uses all the locations. The sample run shows the default settings of this
table, but remember that only the first two or four numbers are
significant in the majority of modes. The contents of the table can be
altered with VDU 19, which also changes the colours on the screen.

Altering this table has no effect at all. Reading from it can be useful in a
lot of cases. For example, this routine calls up mode 4, and then
chooses random background and foreground colours, but uses this table
to ensure that the colours are never the same.

10 MODE 4

20 VDU 19,0,RND(8)-1,0,0,0
30 REPEAT

40 VDU 19,1,RND(8)-1,0,0,0
50 UNTIL ?&38B<>?&38A

You can get a similar effect by using one of the MOS calls detailed in
the User Guide.

76

The remaining two areas
of interest are buffers:

Buffers are used to store data between being processed by some
peripheral and being read by the computer, or the other way round. For
example, most printers print characters at around 100 characters per
second. The computer can print characters at a far greater sped, however.
To stop the computer being constantly tied up with sending characters to
the printer, it stores characters in a temporary storage area, the buffer, if
the printer is not ready to accept the characters. They can be sent to the
printer when the computer receives word that it is ready. If the buffer
does ever get filled up, the computer’'s operation is suspended, until it
can empty the buffer.

The keyboard buffer is used to stored characters issued when the
computer is to busy to process them, so it, in effect, operates as the
exact complement of the Centronics buffer.

The Centronics (R) buffer starts at address &3A0 and extends to address
&3DF

The run time keyboard buffer starts at address &3EO and finishes at
address &3FF. The contents of address &23C hold the next free location
in the buffer, minus &300. When the pointer gets past 255, it reverts to
224, the decimal equivalent of &EO. Thus to insert a character into the
buffer, you need only put the character in the address given by &300
plus the contents of &23C then increment the contents of &23c,
remembering to reset it to 224, if it passes 255.

This program shows how to do it:

10 DIM START 200
20 REM This program dumped itself on
30 REM the printer.
40 PROCKEY(0,"WIDTH 40 [M |B LIST |M
|[C WIDTH 0 |[M")
50 PROCADD(CHR$(144))
60 END
1000 DEF PROCADD(AS%)
1010 LOCAL BS$,T,A
1020 IF LEN(A$)>32 THEN ENDPROC
1030 FOR T=1 TO LEN(A%)
1040 B$=MID$(AS$,T,1)
1050 A=?&23C
1060 ?(&300+A)=ASC(B$%)

77

1070 A=A+1
1080 IF A>255 THEN A=224

1090 ?&23C=A

1100 NEXT T

1110 ENDPROC

2000 DEF PROCKEY(N,A$)

2010 $START="*KEY "+STR$(N)+CHR$(34)+A$
+CHR$(34)

2020 X%=START MOD 256

2030 Y%=START DIV 256

2040 CALL &FFF7

2050 ENDPROC

PROCADD will add the characters in A$ to the buffer. When a program
returns to an INPUT statement, or ends the characters in the buffer will
be used as input, as if they had been typed in at the keyboard. The
example program uses this feature to list itself out on the printer.

The disadvantage of PROCADD is that it only works with 32 characters,
which is a little restrictive, so | have defined a procedure to define a key
with a BASIC string, to make up for *KEY 0 A$ being illegal. Then the
code for function key 0 can be put into the buffer, and it only takes up a
single character. The function keys have codes from 144 to 154. The
cursor control keys and the copy keys are stored in the buffer using the
same codes as they generate under *FX4,1.

Try replacing the text in line 40 with anything else, and see what
happens. Don't forget that you'll lose any previous text stored under key
zero.

At the beginning of the chapter, | listed the current text colour as
something to find the region &300 to &3FF. After research, you'll find
that the current text colour is not stored in this area —this can be
verified by using this program.

10 MODE 5

20 COLOUR 2

30 COLOUR 128+1

40 PRINT "COLOUR 2"
50 DIM M% 255

60 FOR T%=0 TO 255
70 M%?T%=T%?&300
80 NEXT T%

90 MODE 5

78

100 PRINT "COLOUR 2 ?"
110 FOR T%=0 TO 255
120 T%?&300=T%?M%
130 NEXT T%

The program takes you into mode 5, sets the text background and
foreground colours and then takes you back into mode 5. After the text
colour is set, the contents of memory from &300 to &3FF is stored, and
then these values are written back after the mode is changed back to
five. You will find that even though the contents of &300 to &3FF are
identical in both cases, the text colour is different.

Having established that | had to look elsewhere | used the routine given
in section one to make mode 0 VDU RAM start at address zero. Then |
made various changes to the text background and foreground colours, and
looked around for the locations affected. Having a video monitor, | could
locate these locations easily. They were &CD and &CE. As they are zero
page locations, they are quick to access in machine code, so it shows
how much Acorn wanted to optimize the speed of text printing. It might
have been a good idea to have stored the graphics background and
foreground colours in page zero as well, since it is just as important to
speed up the graphics routines as the text.

The next stage was to work out how these locations held the colours.

| used this program to list out the contents of these locations under
various colour combinations, in a four colour mode, mode 5:

10 MODE 5

20 FOR FRONT=0 TO 3

30 FOR BACK=0 TO 3

40 COLOUR FRONT

50 COLOUR BACK+128

60 PRINT "FRONT=";FRONT,"BACK=";BACK;
70 PRINT ?&CD,?&CE

80 NEXT BACK

90 NEXT FRONT

100 END

RUN
FRONT=0 BACK=0 255 255
FRONT=0 BACK=1 240 255
FRONT=0 BACK=2 15 255
FRONT=0 BACK=3 0 255
FRONT=1 BACK=0 240 240

79

FRONT=1 BACK=1 255 240

FRONT=1 BACK=2 0 240
FRONT=1 BACK=3 15 240
FRONT=2 BACK=0 15 15
FRONT=2 BACK=1 0 15

FRONT=2 BACK=2 255 15
FRONT=2 BACK=3 240 15
FRONT=3 BACK=0 255 0

The program will only work if you've got a printer, because it involves
printing in colour 1 on a colour 129 background, which is, of course,
unreadable.

You might have been expecting the two locations to be colour masks for
the background and foreground colours. The above table will tell you that
that is not the case. In addition, altering location &CE alters both the
foreground and background colours, as you can easily verify.

There does not appear to be any recognizable pattern in the values, so |
resorted to an old trick of displaying everything in binary. The program
and printout appear as:

10 MODE 5

20 FOR BACK=0 TO 3

30 FOR FRONT=0 TO 3

40 COLOUR FRONT

50 COLOUR BACK+128

60 PRINT "BACK=";FNB2(BACK),"FRONT=";
FNB2(FRONT);

70 PRINT ,FNBIN(?&CD),FNBIN(?&CE)

80 NEXT FRONT

90 NEXT BACK

100 END

110 DEF FNB2(A)

120 LOCAL T,B$

130 FOR T=1 TO 0 STEP -1

140 IF (27T AND A)=2°T THEN B$=B$+"1"
ELSE B$=B$+"0"

150 NEXT T

160 =B$

170 DEF FNBIN(A)

180 LOCAL BS$,T

80

190 FOR T=7 TO 0 STEP -1
200 IF (2°T AND A)=2"T THEN B$=B$+"1"
ELSE B$=B$+"0"

210 NEXT T

220 =B$
>RUN
BACK=00 FRONT=00 11111111 11111111
BACK=00 FRONT=01 11110000 11110000
BACK=00 FRONT=10 00001111 00001111
BACK=00 FRONT=11 00000000 00000000
BACK=01 FRONT=00 11110000 11111111
BACK=01 FRONT=01 11111111 11110010
BACK=01 FRONT=10 00000000 00001111
BACK=01 FRONT=11 00001111 00000000
BACK=10 FRONT=00 00001111 11111111
BACK=10 FRONT=01 11111111 00001111
BACK=10 FRONT=10 00000000 11110000
BACK=10 FRONT=11 11110000 00000000
BACK=11 FRONT=00 00000000 11111111
BACK=11 FRONT=01 00001111 11110000
BACK=11 FRONT=10 11110000 00001111
BACK=11 FRONT=11 11111111 00000000

Again, this program does not run too well if you don’t have a printer. You
could, however, store all results in an array, and then display them in
mode 7 to make up for this deficiency.

The third column of the printout is the contents of &CD, and the next is
the contents of &CE. At this point, it would be helpful to reproduce the
colour masks of colours 0 to 3 (these are for the four colour modes):

COLOUR O
COLOUR 1
COLOUR 2
COLOUR 3

00000000
00001111
11110000
11111111

You will notice that the contents of location &CE is the inverse of the
foreground colour mask. After a little thought, you may notice that the
contents of location &CD is NOT (foreground mask EOR background
mask). This may sound a complicated arrangement, but it only means that
where a bit of the foreground is ‘1’ and the same bit of the background
mask is ‘0’, the same bit in &CD is ‘0’. If, however, the two bits of the
mask are the same (ie both ‘1l’s or both ‘0’s), the same bit in &CD will
be a‘l’.

81

Thus, the computer is free to use the foreground mask almost as it
stands, but to get the background mask, it has to use the contents of
&CD (EOR) and the contents of &CE’.

The same is true for the two and 16 colour modes, except of course the
number of pixels controlled by each byte is different.

If you use this location to get striped text, without recourse to VDU 5
mode, remember that you'll also have to alter location &36D, to be the
background colour mask, to ensure that when you scroll the screen, or
clear it, it clears to whatever pattern you chose.

Whilst trying to design envelopes, you may find that your best one has
been lost, by being scrolled off the screen as you type the SOUND
statements to test it. This program allows you to recall from memory any
of the four envelopes.

10 REM Envelope recall

20 REM (C) Jeremy Ruston 1982

30 REM ----mmmmmmmeee oo

40 INPUT "Enter the number of the ENV
ELOPE "NUM

50 @%=0

60 PRINT "The envelope is:"

70 PRINT "ENVELOPE ";NUM;

80 FOR T=0 TO 12

90 PRINT ",";?(&800+NUM*16+T);

100 NEXT T

110 PRINT

120 @%=10

82

[300 | 255 255 255 255 255 255 255 255 |

|301 | 255 255 255 255 255 255 255 255 |

[302 | 255 255 255 255 255 255 255 255 |

[303 | 255 255 255 255 255 255 255 255 |

|304 | 255 255 255 255 255 255 255 255 |

[305 | 255 255 255 255 255 255 255 255 |

[306 | 255 255 255 255 255 255 255 255 |

|311 | 255 255 255 255 255 255 255 255 |

83

|312 | 255 255 255 255 255 255 255 255 |

[313 | 255 255 255 255 255 255 255 255 |

[314 | 255 255 255 255 255 255 255 255 |

|315 | 255 255 255 255 255 255 255 255 |

[316 | 255 255 255 255 255 255 255 255 |

[317 | 255 255 255 255 255 255 255 255 |

|318 | 255 255 255 255 255 255 255 255 |

[319 | 255 255 255 255 255 255 255 255 |

[31A | 255 255 255 255 255 255 255 255 |

|31B | 255 255 255 255 255 255 255 255 |

|31C | 255 255 255 255 255 255 255 255 |

[31D | 255 255 255 255 255 255 255 255 |

[31E | 255 255 255 255 255 255 255 255 |

|31F | 255 255 255 255 255 255 255 255 |

[320] 0 0 O O O O O O]
| LSB Screen memory start

[321 | 48 48 48 64 88 88 96 124 |
| MSB Screen memory start

[322] 0 0 O O O O O O]
| LSB Address of top left of screen

84

[323 | 48 48 48 64 88 88 96 124 |
| MSB Address of top left of screen

[324 | 128 128 128 128 64 64 64 40 |
| LSB Bytes per line (whole screen)

325 2 2 2 2 1 1 1 O]
| MSB Bytes per line (whole screen)

[326] 0 0 O O O O O O]
| LSB Screen memory length

[327 | 80 80 80 64 40 40 32 4|
| LSB Screen memory start

[328] 3 3 3 3 3 3 3 3]
| Y-coord of top right of text window

[329 | 17 17 17 17 17 17 17 17|
| X-coord of top right of text window

[32A] 20 20 20 20 20 20 20 20 |
| Y-coord of bottom left of text window

[32B| 1 1 1 1 1 1 1 1|
| X-coord of bottom left of text screen

[32Cc| 1 1 1 1 1 1 1 1|
| Cursor X displacement from top left

[32D| 3 3 3 3 3 3 3 3|
| Cursor Y displacement from top left

|[32E | 136 144 160 136 200 208 200 121 |
| LSB Cursor address |

[32F | 55 55 55 71 91 91 99 124 |
| MSB Cursor address |

[330] 0 0 0 O O O O O]
| MSB Top right y-coord of graphics window

[331 | 108 108 108 108 108 108 108 108 |
| LSB Top right y-coord of graphics window

[332] 1. 0 0 0O O O O O]
| MSB Graphics window top right x-coord

[333] 10 133 66 66 133 66 33 66 |
| LSB Graphics window top right x-coord

85

[334] 0 0 0 O O O O O]
| MSB Graph. wind. bot. right y-coord

[335 | 12 12 12 12 12 12 12 12|
| LSB Graph. wind. bot. right y-coord

[336] 0 0 0O O O O O O]
| MSB Graph. wind. bot. right. x-coord

[337] 30 15 7 7 15 7 3 7|
| LSB Graph. wind. bot. right x-coord

338 1 1 1 1 1 1 1 1|
| MSB Y-coord of graphics origin

[339 | 234 234 234 234 234 234 234 234 |
| LSB Y-coord of graphics origin

[33A] 1 1 1 1 1 1 1 1|
| MSB X-coord of graphics origin

|33B | 244 244 244 244 244 244 244 244 |
| LSB X-coord of graphics origin

[33C|] 1 1 1 0 1 1 0 O]
| MSB Current y-coord graphics cursor

|33D | 165 165 165 50 165 165 50 50 |
| LSB Current y-coord graphics cursor

[33E| 0 0O O O O O O O]
| MSB Current x-coord graphics cursor

[33f | 234 234 234 60 234 234 60 60 |
| LSB Current x-coord graphics cursor

86

|345 | 234 234 234 234 234 234 234 234 |

|354 | 40 40 40 40 40 40 40 40 |

355/ 0 0 0 0 O O O O]

356 | 0 0 0 0 O O O O]

87

I365] 0 0 0 0 O O O O]

I366| 0 0 0 0 O O O O]

[367] 0 1 2 3 4 5 6 7|
| Current screen mode

88

|I36B| 8 8 8 8 8 8 8 8|
| See text |

[36D | 0240 12 0 0240 0 32|
| CLS/scroll filler byte

[I36E| O O 48 0 O O O 255
| Graphics foreground mask

|36F | 255 15 51 255 255 15 255 0 |
| Graphics background mask

370] 1 1 1 1 1 1 1 1|
| Graphics foreground mofidier

I375] 1 3 15 1 1 3 1 0]
| Colours availabke

[376 | 8 16 32 8 8 16 8 1|
| Bytes per character

[377] 7 3 1 0 7 3 0 O]
| Pixels per byte [

I378] 0 0 0 0 O O O O]

89

[379 | 128 136 170 128 128 136 128 128 |

I37B] 0 0 0 0 0 0O O O]

90

[37C | 48

I

|37D | 27

I

[37E | 13

| Edit mode

[37F | 127

I

[380 | 127

I

[381 | 197

I

[382 | 15 15 15
| See text

[383 | 21 21 21
I

[384 | 20 20 20
I

[385 | 19 19 19
I

|[386 | 18 18 18
I

[387 | 17 17 17
I

|[388 | 16 16 16
I

[389 | 12 12 12
I

[38A] 0 O O
| Start of pallette
[38B] 7 1 1
I

[38C | 3 3 2
I

[38D| 7 7 3

91

48 48 48 48 48 48 48 |

15 |
I

21 |
20 |
19 |
18 |
17 |

16 |

12 |

|394 | 10 10 10 10 10 10 10 10 |

305 | 11 11 11 11 11 11 11 11|

[396 | 12 12 12 12 12 12 12 12|

[397 | 13 13 13 13 13 13 13 13|

1398 | 14 14 14 14 14 14 14 14 |

[399 | 15 15 15 15 15 15 15 15|
| End of pallette [

|39E | 255 255 255 255 255 255 255 255 |
I I

92

|[SAO0 | 45 45 45 45 45 45 45 45 |

| Start of printer buffer
I-é:&-l“|";,-5-"£-1-5;--42-5-"4,%";1-5;“4-1%-"4;% 45 |
I'él{'z"{'Z{é"A's'"éé"?ié"h's'"&'ls"ié 45 |
I’é}{é‘]"2{5"‘AE“AE’Z&%"Z&%"A"&"&% 45 |
ié)ill"fl{é"éfs"lié"Zé“&’é“&%“&é 45 |
I’é’AE]"2{5"'AE"AE'Zé"Zs'"le"'Xs 45 |
i’é}{é‘]"Z{é"2{5'"423"141%"2{;;"41"5"4% 45 |
ié}{%"fl{é"lfs'"ié"Zé“&’é“&’i{'ié 45 |
I'él{é"{'Z{é"AE"AE;"Zé"Xé"Zlé"Xs 45 |
i’él{'g"{"1'3?"i's'"ié"'ié"i'é"i'ls"'ié 13 |
I'éX'A"|"1"2£'i'2'£1"1'2'2{'i'zli'i'z'll'l'él{ 124 124 |
I'él{is"{"éi"E-,'i"é'l'"éi"'s'i"é'li"é'l 51 |
i’él{'c"['Zé"l{é"i{s'"Aé"'4é"21'|é"4'8 48 |
I’é‘AB‘["5:-1---5-i---5_1_"é-l-us-i";j-li"gl 51 |
I_é_A"E"[_-3_{__3_2"5-2"_:;._2"_35"5'2"_;2 32 |
ISAF | 124 124 124 124 124 142 124 124 |

93

32 |

50 |

53 |

53 |

32 |

50 |

53 |

53 |

32 |

50 |

53 |

53 |

32 |

50 |

53 |

53 |

13 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

45 |

|3D3 | 45 45 45 45 45 45 45 45 |

|[3D4 | 45 45 45 45 45 45 45 45|

|[3D5 | 45 45 45 45 45 45 45 45|

|3D6 | 45 45 45 45 45 45 45 45 |

|3D7 | 45 45 45 45 45 45 45 45 |

|[3D8 | 45 45 45 45 45 45 45 45|

|[3D9 | 45 45 45 45 45 45 45 45 |

I3DA | 45 45 45 45 45 45 45 45 |

|3DB | 45 45 45 45 45 45 45 45 |

|[3DB | 45 45 45 45 45 45 45 45 |

|3DC | 45 45 45 45 45 45 45 45 |

|3DD | 45 45 45 45 45 45 45 45 |

|SDE | 45 45 45 45 45 45 45 45 |

|3DF | 45 45 45 45 45 45 45 45 |
| End of printer buffer |

|[3EO0 | 135 135 135 135 135 135 135 135 |
| Start of run time keyboard buffer

96

135 135 135 135 135 |

135 |

|I3E9 | 13

|ISEA | 82

|I3EB | 85

|ISEC | 78

|I3ED | 13

|I3F2 | 51

I3F3 | 57

|3F4 | 135

135 |

135 |

135 |

135 |

82 |

85 |

78 |

13 |

135 135 135 135 135 135 135 |

97

|[3FF | 135 135 135 135 135 135
| End of run time keyboard buffer

98

135 |

135 |

135 |

135 |

135 |

135 |

135 |

135 |

135 |

135 |

135 |

99

Section three: BASIC
program storage

The format in which BASIC programs are stored is as follows:

PAGE &D — ‘return’

PAGE +1 LSB of line number
PAGE + 2 MSB of line number
PAGE + 3 Length of line

....... Text of line

PAGE + N &D — ‘return’

PAGE + N+ 1 LSB of line number
PAGE + N + 2 MSB of line number
PAGE + N + 3 Length of line

PAGE + N + 4 Start of text of next line
etc. . .

Each line of text is preceded by the sequence ‘return’/line
number/length of line. The end of the program is indicated by a line
number whose first byte is &FF.

The text of the lines is stored in normal ASCII codes, except for a few
special cases:

— All keywords are stored as tokens. These are single byte
abbreviations.

— The line numbers in GOSUB/GOTO/RESTORE/ON. . . GOTO/ON . . .
GOSUB are stored in special binary format.

The tokens used are listed in the User Guide. A point to watch is that
certain keywords are not totally tokenised. For example, TOP is tokenised
as the keyword ‘TO’, as in FOR, followed by the ASCII letter ‘P’.

The format used following a GOTO or GOSUB is particularly involved:
The line number is replaced by a byte 141, followed by three bytes of
code:

Bits— 7 6 5 4 3 2 10
Bytel O 1 128s 64s 0 16384s 0 0
Byte2 0 1 32s 16s 8s 4s 2s 1s
Byte3 0 1 8192s 4096s 2048s 1024s 512s 256s

to represent the line number.

Those bits with a bar across their values are one if the line number does
not contain the value, and zero if it does. The format is thus basically

102

binary, except that the order of the bits has been altered.

As an example, the line GOTO 12345 will be ‘hand tokenised': the code
of GOTO is &EB, so this will be the first byte of the line.

A space follows, so the next byte is &20.

Then we get the code 141, or &8D (oddly enough, the double height
code in teletext graphics).

The number 12345 in binary is "0011000000111001".
This can be better expressed as:

1 unit

0 twos

0 fours

1 eight

1 sixteen

1 thirty-two

0 sixty-fours

0 one-hundred-and-twenty-eights

0 two-hundred-and-fifty-sixes

0 five-hundred-and-twelves

0 one-thousand-and-twenty-fours

0 two-thousand-and-forty-eights

1 four-thousand-and-ninety-six

1 eight-thousand-and-one-hundred-and-ninety-two
0 sixteen-thousand-three-hundred-and-eighty-fours

Thus the binary format for the next three bytes is as follows:

Byte 1 0 1 0 1 0 1 0 0
Byte 2 0 1 1 1 1 0 0 1
Byte 3 0 1 1 1 0 0 0 0

In hexadecimal, this is:

Byte 1 &54
Byte 2 &79
Byte 3 &70

To check this, try this program. | have included a printout sample run to
reassure you!

10 GOTO 12345
12345 FOR T%=PAGE TO PAGE+20
12346 PRINT ~T%,~?T%
12347 NEXT T%
RUN
EOO D

103

EO1 0

EOQ2 A
EO3 20
EO05 ES5
EO06 20
EOQ7 8D
EO08 54
EO09 79
EOA 70
EOB D
EOC 30
EOD 39
EOE 12
EOF 20
E10 E3
Ell 20
E12 54
E13 25
El4 3D

The bytes | have described start at &E05.

The idea of using this peculiar code is to increase the speed of various
operations concerning statements like GOTO/GOSUB/RESTORE/ON. .
.GOTO. The most obvious advantage of this approach is that GOTO 1
occupies the same space as GOTO 32767. Thus, the command
RENUMBER need only alter these three bytes, and the two bytes
containing each line number to renumber the whole program. Actually, it
renumbers the lines, and then looks for any byte 141s. When it finds
one, the three bytes following it are renumbered. On other computers,
the whole program text may need to be moved about, to accommodate
the differing lengths of program lines as the GOTO and GOSUB
destinations are altered.

The other advantage occurs when the line is being interpreted — the
computer need not convert a string of ASCII digits into binary before
acting on the command — it has them in a form of binary already.

It should be noted that the only part of this of use to a good
programmer is the RESTORE statements option when it is included with
a line number.

There is a table starting at address &806D in the BASIC ROM which
contains all the keywords in ASCII, followed by their tokens. The table
ends at address &8358.

The format of the table is: ASCII Characters/token/spare byte and so on.

104

The end of the ASCII characters is gauged by when the next character is
greater than 127, since all tokens are &80 or greater. The spare byte is
used to show certain things about the keyword, which need not concern
us here.

The program which follows prints out all legal keywords and their tokens,
by accessing the table. | have included a sample run:

10 VDU 14

20 T%=&806D:REM &8071 for Basic 2

30 REPEAT

40 REPEAT

50 PRINT CHR$(?T%);

60 T%=T%+1

70 UNTIL ?2T%>127

80 PRINT STRING$(20-P0OS,".");~?T%

90 T%=T%+2

100 UNTIL T%>&8358:REM &8366 for Basic

2

110 vDU 15

RUN
AND................. 80
ABS.............. 94
ACS..........ee. 95
ADVAL............... 96
ASC........oooeiii. 97
ASN........eni, 98
ATN.........e 99
AUTO.........evene C6
BGET................ 9A
BPUT................ D5
COLOUR.............. FB
CALL............eet. D6
CHAIN............... D7
CHRS................ BD
CLEAR............... D8
CLOSE............... D9
CLG.......c DA
CLS.......ooiinnn. DB
COS....oiiiiiies 9B
COUNT.........oettts 9C
DATA................ DC
DEG................. 9D
DEF................. DD

105

DIV.ieviiiiiiiinn, 81
DIM.oovieinennnn, DE
DRAW......oevvn.... DF
ENDPROC............. E1l
END..ooovvveennnn, EO
ENVELOPE............ E2
ELSE..cciivvviinn, 8B
EVAL...ooviviiii, AO
ERL.covveeieennnnn, 9E
ERROR.....ccvvvvinn 85
EOF..iiiiieiiiin, Cs5
EOR..ccvviviviiinn, 82
ERR...oevveeennnnn. oF
EXP.oiiiiiiinnnnn, Al
EXT i, A2
FOR...ovvvveenin E3
FALSE............... A3
N, A4
GOTO.ovvveiiiiiinn, E5
GETS..ovvvveinn, BE
GET.ovviiiein, A5
GOSUB.......ven... E4
GCOL...ovvvviinn, E6
HIMEM............... 93
INPUT.....oovvii ES
I, E7
INKEY$.....veennn BF
INKEY...ovvvneenn, AB
INT .o, A8
INSTR(.evvvneennnn. A7
LIST . ieiieinnn, o]
LINE...oveveeennnn, 86
LOAD.....cvvveennn.. cs
LOMEM......oovvnn... 92
LOCAL.....ovvenn... EA
LEFTS(oevvvennnnn.. co
LEN.covvieeeeennnn, A9
(I =5 T E9
LOG...oieveeennn.n, AB
LN AA
MIDS(oevveevvnnnnn c1
MODE.........eev.... EB

106

MOVE........c....... EC
NEXT...cooveennn... ED
NEW....ooovveennnn. CA
NOT.....oovveeennn AC
OLD...covvveeinn. CB
ON..oeveeiei EE
OFF. it 87
OR..evveeiiiii 84
OPENIN.............. 8E
OPENOUT............. AE
OPENUP.............. AD
OSCLIl..ccvvveenn... FF
PRINT........ceen.. F1
PAGE................ 90
PTR..coovveeennnn.. 8F
Pl AF
PLOT...oviveeennn. FO
POINT(..uoivvnn, BO
PROC................ F2
POS..coiiveeeinn. B1
RETURN.............. F8
REPEAT.............. F5
REPORT.............. F6
READ................ F3
REM........evvvnn.. Fa
RUN....oveiiieninn, F9
RAD.......coeevin.. B2
RESTORE............. F7
RIGHTS (... c2
RND....ovevvvaninn B3
RENUMBER............ cc
STEP....oevivn... 88
SAVE................ CD
SGN..ooveiiieeiin B4
SIN. oo, B5
SQR....cecevviiin, B6
SPC..oviiiieiin, 89
STRS...coiiveeiinn c3
STRINGS$(..coovnn.. c4
SOUND......vvenn... D4
STOP.......eein. FA

TO. .o B8
TAB(. i, 8A
TRACE............... FC
TIME.......oeeen. 91
TRUE................ B9
UNTIL...ooovennn. FD
USR...coviviennn... BA
VDU ..o EF
VAL....cooiieiinn, BB
VPOS.....coovi. BC
WIDTH.....oovenn. FE
PAGE.............. DO
PTR...ooivviiii, CF
TIME.....coovvn. D1
LOMEM............... D2
HIMEM............... D3

Notice how only those functions which take two or more arguments
include the bracket in the token. This is because arguments taking a
single argument may have the brackets omitted. At the end of the table,
the pseudo variables appear again. Their tokens here are used when the
variable appears on the right-hand side of an assignment statement. You
can see how this works in the list of keywords in the manual.

On the subject of pseudo variables, here is a list of the locations where
TOP, HIMEM, PAGE, and LOMEM can be found:

Name LSB MSB
TOP &12 &13
PAGE &1D
HIMEM &6 &7
LOMEM &0 &l

Knowing these locations should only be useful to the machine language
programmer, since BASIC programmers are already provided with the
tools to alter and interrogate these locations. If you ever need to alter a
BASIC program from within a BASIC program, | would be inclined to add
the changes to the keyboard buffer, using programs given in the last
section, rather than using the indirection operators. If you do this,
remember that BASIC will accept lines of input which are still tokenised.

108

Section four: BASIC
variables storage

This chapter is intended to lead you through an exploration of the ways
the BBC computer stores variables, arrays, functions and procedures.

In the last section, | gave the locations where TOP, PAGE, HIMEM and
LOMEM are stored. There is one important location missing from that list,
however, The User Guide tells us that the variables are stored just above
the text of the current program, and then grow upwards. Thus, there
should be a pointer to the top of the variables, or the next free location
after the variables.

The first step in our exploration is thus to find where that pointer is
stored. | reasoned that when no variables existed, the free space pointer
should be the same as LOMEM. Thus, | used this program to find all the
locations which contained the same number as LOMEM:

10 FOR T%=&00 TO &FF
20 IF (!T% AND &FFFF)=LOMEM THEN PRIN
T~-T%
30 NEXT T%
40 END
RUN
0
2
12
17

Then | declared a variable, to see which locations remained:

5 ASD=234
RUN
0
12
PRINT (!2 AND &FFFF)
3786
PRINT (117 AND &FFFF)
49407
PRINT LOMEM
3776

109

After running the program again, it became apparent that the free space
pointer must be stored at either location 2, or location &17. So | tested
the values in these two locations, and concluded that the free space
pointer must be stored at address 2, since location 17 contained a
number that was far too big.

The next step was to construct a program to list out the contents of
memory between TOP and the free space pointer, since this is the area
where variables are stored. The program | used was:

1000 @%=4

1010 FOR T%=TOP TO (!12 AND &FFFF)

1020 PRINT ~T%,~?T%;

1030 A%=?T% MOD 128

1040 IF A%>31 THEN PRINT "--->";CHR$(A%

);
1050 PRINT
1060 NEXT T%

(I should mention why | am continually using single character integer
variables. As you know, these variables are not cleared by RUN or
CLEAR. It turns out that they are stored in a special area of memory,
from &400 to &46C. These addresses were found by looking at the
lower portion of memory while defining some integer variables. Thus, as
they are stored in a special area of memory, they do not affect the free
space pointer. This is useful where, as in this case, we are looking at a
few variables. Another point to notice about the storage of the integer
variables is that they are stored at fixed locations, and thus may be
located very quickly. @% is stored first, followed by A% to Z%. A four
byte binary format is used for storage).

The program prints out all addresses in hex, and the number stored
there. If the contents of the location is not a control code, the ASCII
representation is displayed too.

Having designed the program | had to give it a variable to work on:

10 LET A=23

RUN E83 38--->8
E7F 17 E84 O

E80 O E85 O

E81 O E86 O

E82 85 E87 3E

As you can see from the sample run, the letter ‘A’ does not appear in

110

the variable storage area. This was a little odd. | tried with a longer
variable name:

10 LET ASDFGHJKL=3.1415926535897
E94 D

E95 O

E96 53--->S
EQ97 44--->D
E98 46--->F
EQ9 47--->G
E9A 48--->H
E9B 4A--->]
E9C 4B--->K
E9D 4C--->L

E9E O
E9F 82
EAO0 49--->|
EA1l F
EA2 DA--->Z
EA3 A2--->"
EA4 O

Now you can see the entire name of the variable, except for the first
letter. You can also see the five byte floating point representation of Pl
starting at address &E9F. This format should be explained.

For this explanation, | quote from Toni Baker's ‘Mastering machine code
on your ZX81 or ZX80', published by Interface:

"Here is a list of the first few integers as five byte floating point
numbers:

Decimal Floating point representation
00 00 00 00 00
81 00 00 00 00
82 00 00 00 00
82 40 00 00 00
83 00 00 00 00
83 20 00 00 00
83 40 00 00 00
83 60 00 00 00
8 00 00 00 00
8 10 00 00 00

0 8 20 00 00 00

POoO~NOOOWNEO

111

"There is a kind of pattern, but it's not instantly recognisable. Take a look
at the negative numbers:

Decimal Floating point representation

-1 81 80 00 00 00
2 82 80 00 00 00
-3 82 CO 00 00 00
4 83 80 00 00 00
5 83 A0 00 00 00
6 83 CO 00 00 00
-7 83 EO 00 00 00
-8 8 80 00 00 00

"As you can see, you can instantly change a number from positive to
negative just by adding 80 to the second byte. This doesn’t apply to zero
by the way —zero is represented uniquely to help speed arithmetic a
little.

"Knowing how the floating point representation is built up will slightly
help your understanding of the arithmetic processes, so | will give here a
brief explanation of how to turn decimal numbers into a floating point
representation numbers. It only takes a few simple steps.

"STEP ONE: If the number is zero, then its floating point representation is
00 00 00 00 00.

"STEP TWO: Ignoring the sign of the number, write it in binary (but
without any leading zeros). For example:

7 m

-10 1010
-4.25 100.01
0.325 0.011

"Notice that the binary form has a binary point, not a decimal point!
100.01 means one four plus no 2s plus no 1s (here we reach the binary
point) plus no halves plus one quarter. The next column would have been
an eighth.

"STEP THREE: Is to work out a quantity called the EXPONENT. This is
done as follows: if the part of the number to the left of the binary point
is not zero then the exponent is the number of digits to the left of the
point. If the number to the left of the point is zero and the first digit
after the decimal point is one, then the exponent is zero. If the part of
the number to the number to the left of the point is zero and the first
digit after the point is zero, then count the number of zeros to the right
of the point up to the first 1 —the exponent is minus this number. The
first byte is &80 plus the exponent.

112

Decimal Binary Exponent First byte

7 11 3 83

-10 1010 4 84
-4.25 100.01 3 83
0.325 0.011 -1 7F

"STEP FOUR: Now we can ignore the point —that is what the exponent
is for —to tell the computer where the point is supposed to be. So
ignoring the point, write the binary form starting with the first one and
then add sufficient zeros to the right make the whole thing thirty two
bits long.

7 1110 0000 0000 0000 0000 0000 0000 0000

-10 1010 0000 0000 0000 0000 0000 0000 0000
-4.25 1000 1000 0000 0000 0000 0000 0000 0000
-0.325 1100 0000 0000 0000 0000 0000 0000 0000

"STEP FIVE: It is here that we consider the sign of the original number. If
the sign was negative, then we do nothing. If it was positive then
replace the first one by zero. Thus:

7 0110 0000 0000 0000 0000 0000 0000 0000

-10 1010 0000 0000 0000 0000 0000 0000 0000
-4.25 1000 1000 0000 0000 0000 0000 0000 0000
0.325 0100 0000 0000 0000 0000 0000 0000 0000

"STEP SIX: Now just convert these numbers into hex, like so,
remembering to add the exponent byte in at the start:

7 83 60 00 00 00

-10 84 A0 00 00 00
-4.25 83 88 00 00 00
0.325 7F 40 00 00 00

Going back to the prinout ASDFGHJKL, you can see that the name is
terminated by a zero, which is followed by the five byte floating point
representation of PI.

But where is the first letter of the name? And what are the first two
bytes for? (The last byte, &17, is present because the free space pointer
points to the next free location, and so the program includes the first
free location in the printout.)

| reckoned that the first letter was stored somewhere else in memory, so
| tried the following:

CLEAR
MODE 4
vbuU 28,0,0,0,0

113

VDU 23,0,12,0;0;0;0;0;
LET ZXC=23

LET X=234

LET Y=234

LET A=235

LET fdghfg=23

If you look at the third line down the screen, towards the right, as you
type in the assignment statements, you should see some alteration in the
byte patterns appearing. Try CLEARIng, and then creating variables starting
with each letter of the alphabet. You should see an area changing from
black to apparently random bytes, growing to the right. If you have a
very clear TV you should see that each assignment adds two bytes to
the list. The other thing to notice is that each letter of the alphabet
(upper and lower case) has two locations dedicated to it. It turns out that
the location assigned to A has address &482. One can then derive the
formula (&400+ASC(A$)*2) to give the address of the two bytes
associated with the letter in A$.

Now return to mode 7, and try the following:

MODE 7
CLEAR

10 LET A=23

RUN

E7F F1l--->q

E80 O

E81 O

E82 85

E83 38--->8

E84 0

E85 0

E86 O

E87 20--->

PRINT ~(!&482 AND &FFFF)
E7F

Does the number &E7F, given in the contents of the locations assigned
to the letter ‘A’, ring any bells? It's the first address used by the storage
of the variable.

Thus, the computer keeps a table of two bytes per initial letter of each

variable, starting at &482 for the letter ‘A’, and the address in this table
gives the start of the variable with this starting letter. Zero in this table

114

means that no variable starts with that letter. But, what happens if two
or more variables start with the same letter?

The only thing to do is to create another variable starting with the same
letter, and see how it is stored:

20 LET AF=23

RUN

E8B 93
E8C E

E8D O

E8BE 85

E8F 38--->8
E90 O

E91 O

E92 O

E93 FF--->
E94 O

E95 46--->F
E96 O

EQ97 85

E98 38--->8
E99 O

E9A O

E9B O

E9C O

We can assume that the contents of locations &482 and &483 are &E8B.
The storage of the first variable is the same as before, apart from some
new values in the previously redundant initial two bytes. You may notice
that the address in these two bytes is the start address of the block
describing the second variable. So a useful new hypothesis would be that
(in addition to the points outlined above), if the contents of the first two
bytes of the block are less than 256, the current block is the last variable
starting with that letter, and if the two bytes contain a number greater
than 255, that the number is the address of the next variable with the
same initial letter.

This arrangement is a great deal more powerful than that commonly
employed in computers of this type. Most microcomputers employ a free
space pointer, and just place each new variable onto the end of the list.
Thus when the computer has to find the value of a variable, it has to
search all the way through the list until it finds the one it wants. The
BBC computer only has to search through those that share the same
starting letter. You may like to see if you can get a speed reduction in

115

the running of the program by making all the variables used start with
different letters. It is possible to get a 10% reduction in speed by doing
this. But, real variables are only a small part of the story. We have to
investigate strings, multi-character integer variables, and all the different
types of array. We’'ll start with integer variables with long names.

| added these two lines to the original program, and obtained these
results:

DELETE 10,20
10 LET AA%=23
20 LET AB%=24

RUN

E8BE 97

E8F E

E90 41--->A
E91 25--->%
E92 O

E93 17

E94 O

E95 O

E96 O

E95 O

E96 O

E97 85

E98 O

E99 42--->B
E9A 25--->%
E9B O

E9C 18

E9D O

E9E O

E9F O

EAO0 O
PRINT ~(!&482 AND &FFFF)
E8E

The first point to notice is that not only is the name of the variable
minus the first character stored, but the percentage sign is stored too.
The sequence is, as before, terminated by zero, preceding the four byte
binary representation of the integer. These four bytes may be interrogated
with the word indirection operator, (!).

You will also notice that the table is used in the same way as the real

116

variables, and that the link bytes are used in the same way. We can now
progress onto string variable storage. | added these two lines to the
program, with the following results:

DELETE 10,20
10 LET AB$="JJ3"
20 LET AC$="HH"
RUN

E92 9D

E93 E

E94 24--->B
E95 24--->%
E96 O

E97 9B

E98 E

EQ99 2

E9A 2

E9B 4A--->J
E9C 4A--->J
EOD O

E9A 2

E9B 4A--->J
E9C 4A--->J
E9D O

E9E O

E9F 43--->C
EAO0 24--->%
EA1 O

EA2 A6--->&
EA3 E

EA4 2

EAS 2

EA6 48--->H
EA7 48--->H
EA8 O

The two bytes at &E92 point to the next string variable, seeing though
they both begin with ‘A’, so the linking appears to be the same as used
in integer and real variables. The next two bytes are, again, the name of
the variable, minus the first letter, which is stored in the table at &482.
Next comes the zero, to mark the end of the name. The next two bytes
form an address which points to the contents of the variable, in this case

117

the two ‘J’s at &E9B. The two 2 s would appear to be the length of the
string, but why is it there twice? The tree is again terminated by the two
zero bytes for the address of the next variable starting with ‘A’.

A little experiment was called for to see which of the two bytes (which
apparently held the length of the string) were used by the LEN function.

PRINT LEN(AB$)
2

2&E99=1

PRINT LEN(AB$)
2

2&E9A=1

PRINT LEN(AB$)
1

2&E99=12

PRINT LEN(AB$)
1

The first thing | did was check that the length of the variable was indeed
two, and as you can see, it was.

Next, | tried altering the byte in &E99, and printed the length of the
string. It remained at two, indicating that the LEN function was not
getting its data from the first byte of the two holding the length. The
second byte was then altered, and the length printed. It had now
changed, so | knew that the length of the string was stored in the
second of the two bytes. (The section in The User Guide on CALL
reveals that the first length byte gives the number of bytes allocated.)

Before going on to arrays, here is a short re-cap of the points so far
mentioned. To store the value of a variable, the computer goes through
the following steps:

STEP ONE: Take the ASCII code of the first letter of the name. Work out
the address associated with it from the formula
‘address=&400+ascii_code*2'.

STEP TWO: Extract the address stored in that location.

STEP THREE: If the address is zero, store the value of the free space
pointer in the location. Then go to step six.

STEP FOUR: Go to the address.

STEP FIVE: Go to step two.

118

STEP SIX: Place the block describing the variable starting at the address
in the free space pointer, using zero for the first two bytes, since this is
the last variable with that starting letter. Update the free space pointer
with the next free location.

You may have to read through that a number times before it is clear. The
blocks for each type of variables are:

119

REAL VARIABLES

» Two bytes, for the address of the next variable of any type with the
same starting letter.

* Any remaining letters of the name, besides the first one.

* A zero-byte.

« Five bytes for the value of the variable.

120

INTEGER VARIABLES

* Two bytes, for the address of the next variable with the same starting
letter.

* Any remaining letters of the name, including the percentage sign.

* Zero byte.

 Four byte value of the variable.

121

STRING VARIABLES

» Two bytes, pointing to any other variables with the same initial letter.
* Any other letters of the name, including the $ sign.

* A zero byte.

» Two bytes, containing the address of the contents of the variable.

* The number of bytes allocated to the string.

 Length of string.

« String data.

But, looking back at the printout, what happens if we adjust AB$ to have
three letters in it? There isn’t room to put the three letters in place of
the two ‘J’s. So let's see what happens:

30 LET AB$="123"

RUN

EA2 AD--->-
EA3 E

EA4 42--->B
EA5 24--->%
EA6 O

EA7 B8--->8
EA8 E

EA9 3

EAA 3

EAB 4A--->J
EAC 4A--->]
EAD O

EAE O

EAF 43--->C
EBO 24--->%
EB1 O

EB2 B6--->6
EB3 E

EB4 2

EB5 2

EB6 48--->H
EB7 48--->H
EB8 31--->1
EB9 32--->2
EBA 33--->3
EBB 66--->f

122

As you can see, the new value of AB$ has been placed at the top of
the variable area, with the two ‘J’'s now being redundant. The two
address bytes have been updated to cope with the contents of the
variable moving around.

Having done that, let's see what happens if a string is made to have
different contents of the same length, or a shorter length.

40 LET AB$="#$%"

RUN

EB2 BD--->=
EB3 E

EB4 42--->B
EB5 24--->%
EB6 O

EB7 C8--->H
EB8 E

EB9 3

EBA 3

EBB 4A--->J
EBC 4A--->]
EBD O

EBE O

EBF 43--->C
ECO 24--->%
EC1 O

EC2 C6--->F
EC3 E

EC4 2

EC5 2

EC6 48--->H
EC7 48--->H

EC8 23--->#
EC9 24--->%
ECA 25--->%
ECB O

As you can see, the previous contents are overwritten.

A conclusion to be drawn from this is that if you make all string variables
as long as you are ever likely to need right at the start of each program
using the function STRING$, you will find the computer never needs to

123

find extra storage space for its contents as it increases. This is equivalent
to dimensioning strings on other computers.

ARRAY S

Now we can look at arrays. | started by looking at a single dimension
string array.

DELETE 10,40
10 DIM A$(2)

10 DIM ASDF$(2)
RUN

E83 Fl--->q

E84 0

E85 53--->S
E86 44--->D
E87 46--->F
E88 24--->%

E89 28--->(

ESA 0

ESB
E8C
E8D
ESE
ESF
E90
E91
E92
E93
E94
E95
E96
E97
E98
E99
E9A 24--->%

The first bytes are, as we would expect, pointers to the next variable
starting with the letter ‘A’.

OO0 0000000000 O W W

Then we get the rest of the letters of the name, including the dollar
symbol and the opening bracket of the array.

124

This zero byte signifies the end of the sequence.

The rest of the sequence is hard to work out, so | fill up the array, and
then re-ran the program. (I unfortunately forgot the name of the array in
mid-type, as the printout testifies!)

20 LET A$(0)="A"
30 LET A$(1)="B"
40 LET A$(2)="C"

LIST,999
10 DIM ASDF$(20
20 LET A$(0)="A"
30 LET A$(1)="B"
40 LET A$(2)="C"
20 LET ASDF$(0)="A"
30 LET ASDF$(1)="B"
40 LET ASDF$(2)="C"
REM WHOOPS !
RUN
EBC 4
EBD O
EBE 53--->S
EBF 44--->D

ECO 46--->F
EC1 24--->%
EC2 28--->(
EC3 0
EC4 3
EC5 3
EC6 0
EC7 D3--->S
EC8 E
EC9 1
ECA 1
ECB D4--->T
ECC E
ECD 1
ECE 1

ECF D5--->U

125

EDO E

ED1 1
ED2 1
ED3 41--->A
ED4 42--->B
ED5 43--->C
ED6 O

The two threes are the number of elements of the array. There does not,
however, appear to be any indicator of the number of dimensions.

Next comes three blocks containing the address of each element, and its
length, again written twice. It is safe to assume that the second length
indicator is the one used by the LEN function, and the first is the
number of bytes allocated.

The next step was to look at a real array.

DELETE 10,40
10 DIM ASD(2)
20 LET ASD(0)=PI
30 LET ASD(1)=PI
40 LET ASD(2)=P
40 LET ASD(2)=PI
RUN

EAE 1A

EAF 0

EBO 53--->S

EB1 44--->D

EB2 28--->(

EB3 0

EB4 3

EB5 3

EB6 O

EB7 82

EBS 49--->

EB9 F

EBA DA--->Z
EBB A2--->"

EBC 82

EBD 49--->|

EBE F

126

ECO A2--->"

EC1 82

EC2 49--->|

EC3 F

EC4 DA--->Z
EC5 A2--->"
EC6 O

The format would appear to be similar to the string array, except that the
five bytes describing each element appear instead of the blocks of
address and length data about each element. The data starts at address
&EB7 in the example.

There still is no noticeable way of telling the number of dimensions.
| next turned to integer, two dimensional arrays.

DELETE 10,40
10 DIM ASD%(1,1)

20 ASD%(0,0)=123

30 ASD%(1,1)=&7FFFFFFF
40 ASD%(1,0)=1

50 ASD%(1,1)=&01020304

RUN
ED6 1A
ED7 O

ED8 53--->S
ED9 44--->D
EDA 25--->%
EDB 28--->(

EDC O
EDD 5
EDE 2
EDF O
EEO0 2
EE1 O
EE2 7B--->{0 EE4 O
EE5 O
EE6 FF--->
EE7 FF--->
EE8 FF--->
EE9 7F--->

127

EEA
EEB
EEC
EED
EEE
EEF
EFO
EF1

P NWwWNOOOFR

The general format appears familiar, except the block between the data
and zero byte indicating the end of the name. What has previously been
a three, has changed to a five. After some experimentation | concluded
that this byte contains 2*n+1, where n is the number of dimensions of
the array. This holds true for any type of array. The next four bytes are
the number of elements in each of the two dimensions. Then we get
the familiar four byte data for each element.

The program | used to test my hypothesis about the 2*n+1 formula was
this one:
DELETE 10,50

10 DIM KJ%(1,1,1,1,1)
RUN

E87 3B--->;

E88 0

E89 4A--->J

E8A 25--->%

ESB 28--->(

ESC 0

ESD
ESE
ESF
E90
E91
E92
E93
E94
E95
E96
E97
E98
E99
E9A

O O O O OONOMNONODNO

128

E9B
E9C
E9D
E9E
E9F
EAO
EC9
ECA
ECB
ECC
ECD
ECE
ECF
EDO
ED1
ED2
ED3
ED4
ED5
ED6 1A

OO0 0000000000090 oo

As you can see, for reasons of space conservation, | have left out a
large chunk in the middle of the prinout.

The array has four dimensions, and the byte is 9, which measures up
nicely with the formula.

While musing on the speed of the BBC Computer | ran the following
series of experiments.

10 GOTO 100
20 DEF PROCHELLO
30 PRINT "HELLO"
40 ENDPROC
100 PROCHELLO
RUN
HELLO
200 PROCHELLO

The program above calls a procedure to print the word ‘HELLO’ twice.

The next step was to find the address of the word ‘HELLO’ in line 20.

129

FOR T%=PAGE TO PAGE+19:P. ?T%:N.

13 3584
0 3585
10 3586
11 3587
32 3588
229 3589
32 3590
141 3591
68 3592
100 3593
64 3594
13 3595
0 3596
20 3597
13 3598
32 3599
221 3600
32 3601
242 3602
72 3603
PRINT ASC("H")
72
PRINT ~3603
E13

Given that the ASCII code for ‘H’ is 72, the start of the word is address
3603 or &E13.

To test this, | placed the code for ‘A’ into the start of the word, and
printed out the program:

?&E13=65
LIST
10 GOTO 100
20 DEF PROCAELLO
30 PRINT "HELLO"
40 ENDPROC
100 PROCHELLO
200 PROCHELLO
?&E13=72

130

101 ?&E13=65
RUN

HELLO

HELLO

The ‘A’ was then replaced with an ‘H'.

A line was inserted between the two calls to the procedure, to change
the ‘H’ to an ‘A’. The program ran perfectly, even though at the second
call, PROCHELLO did not exist!

Listing the program confirmed this:

10 GOTO 100
20 DEF PROCHELLO
30 PRINT "HELLO"
40 ENDPROC
100 PROCHELLO
101 ?&E13=65
200 PROCHELLO
?&E13=72
LIST
10 GOTO 100
20 DEF PROCHELLO
30 PRINT "HELLO"
40 ENDPROC
100 PROCHELLO
101 ?&E13=65
200 PROCHELLO

The next step was to replace the ‘A’ again with an ‘H’.

There are many conclusions that can be drawn from the above points.
The first is that after the first call has been made to a procedure, the
name of the procedure in the DEF statement does not matter. Thus the
computer is storing the address of PROCHELLO, together with its name
in some place in its memory. It was a safe bet that this area was the
variable storage area, so after | had dissected the variable storage,
discussed earlier, | started to explore the storage of procedures, and
functions, presuming that the function mechanism is the same as the
procedure mechanism.

| used the program | presented before to list out the variable area, but
added a procedure definition:

131

2000 DEF PROCHELLO
2010 PRINT "HELLO"
2020 ENDPROC

10 PROCHELLO
1070 END
LIST
10 PROCHELLO
1000 @%=4
1010 FOR T%=TOP TO (!2 AND &FFFF)
1020 PRINT ~T%,~?T%;
1030 A%=?T% MOD 128
1040 IF A%>31 THEN PRINT "--->";CHR$(A%

1050 PRINT

1060 NEXT T%

1070 END

2000 DEF PROCHELLO
2010 PRINT "HELLO"
2020 ENDPROC

RUN

HELLO

EA6 29--->)
EA7 0

EA8 48--->H

EA9 45--->E
EAA 4C--->L
EAB 4C--->L
EAC 4F--->0
EAD O
EAE 90
EAF E
EBO O

When the program is run, the variable list area suprisingly holds the
whole name of the procedure, starting at &EA8. Perhaps the initial letter
table is not used for procedures?

However, the initial two bytes of the block are still there, so some form

of linking is employed in the storage of procedures. The procedure name
is terminated by a zero byte.

132

Then we get what appears to be a 16 bit address. &E90 will probably be
the address of the first byte of the proceudre. Judicious use of the
indirection operator will confirm this.

Using the same methods as outlined previously, examining the starting
pages of memory while calling procedures, it turns out that procedures
have a dedicated address in the table at &482. The relevant address is
&4F6. If you check, you will find that after the program has been run,
the address contained is &EA®6.

PROCHELLO

HELLO

PRINT ~!(&4F6 AND &FFFF)
EAG6

Next, | checked to see if functions were organised in the same way:

DELETE 2000,2020
10 PRINT FNHELLO
2000 DEF FNHELLO="HELLO"

RUN

HELLO

E9C 20--->
E9D O

E9E 48--->H
E9F 45--->E

EAO 4C--->L
EA1 4C--->L
EA2 4F--->0

EA3 0
EA4 92

EA5 E

EA6 29--->)

PRINT ~(!&4F8 AND &FFFF)
E9C

As you can see, things are similar. It turns out that locations &4F8 is
used as the function pointer. To recap, functions and procedures are
linked together via their first two bytes, and the address &4F6 and &4F8.
The block contains the name and the start address of the function/
procedure. After doing all this, the final program looked like this:

10 PRINT FNHELLO

133

1000 @%=4

1010 FOR T%=TOP TO (!2 AND &FFFF)

1020 PRINT ~T%,~T%:;

1030 A%=?T% MOD 128

1040 IF A%>31 THEN PRINT "--->":CHR$(A%
):
1050 PRINT

1060 NEXT T%

1070 END

2000 DEF FNHELLO="HELLO"

Using some of the information contained in this chapter, here is an
application program to list out all the variables which are active when it
is run.

10 REM Copyright (c) Jeremy Ruston

20 REM eg :

30 ZXC%=234

40 H=23.345

50 GFHJTRJ_SEG=PI

60 ASD$="A STRING"

70 D$="ANOTHER"

80 DIM R(10)

90 DIM RF(3,4)

100 DIM A%(23)

110 DIM WER%(1,3,2)

120 DIM K$(23)

130 DIM HJE$(2,4,1)

1000 REM khkkkhkhkhkkhkkhkhkkhhkhkdhhkhkdhkhkhhkkhkhhhk
1010 REM Variable list...

1020 REM Lists integer, real and
1030 REM string variables.

1035 REM (1777 bytes long !)

1040 REM khkkhkkhkkhkhhkhkhkhkhkhkhkkhkkkkkkkkkhkhhhhkk
1050 @%=0

1060 DIM E% 255

1070 FOR T%=&482 TO &4F4 STEP 2
1080 IF FNDD(T%)<>0 THEN PROCfollow(FND
D(T%),(T%-&400)/2)

1090 NEXT T%

1100 END

134

1110
1120
1130
1140
1150
1160
1170
1180

R E M dhkkhkkkhkkhrkkdhkkhhkkhkkdrkhkrx

DEF PROCTfollow(T%,S%)
$E%=CHR$(S%)

R%=T%+1

PRINT CHR$(S%);

REPEAT

R%=R%+1

IF 2R%>64 THEN PRINT CHR$(?R%);:$E

%=$E%+CHR$(?R%)

1190 UNTIL ?R%<64

1200 IF ?R%=&25 THEN PROCinteger

1210 IF ?R%=&24 THEN PROCSstring

1220 IF ?R%=&00 THEN PROCreal

1230 IF ?R%=&28 THEN PROCreal_array
1240 IF FNDD(T%)>255 THEN PROCfollow(FN
DD(T%),S%)

1250 ENDPROC

1260 REM khkkhkkhkhkhkhkhkhkhkhkhkkhkhkhkdhkhkhhkhkhkhkhrhhhkd

1270 DEF PROCinteger

1280 IF R%?1=0 THEN PRINT "%=";EVAL($E%
+"%"):ENDPROC

1290 PRINT "%(";

1300 FOR D%=1 TO ((R%?3)-1)/2

1310 IF D%<>1 THEN PRINT ",";

1320 PRINT FNDD(D%*2+R%+2)-1;

1330 NEXT D%

1340 PRINT ")"

1350 ENDPROC

1360 REM khkkkhkkkhkkhkkhkkhkkhkkhhkhkkhkhkhkhkhkkkhkhxkkhkkx%

1370 DEF PROCstring

1380 IF R%?1=0 THEN PROCnormal_string E
LSE PROCstring_array

1390 ENDPROC

1400 REM khkkhkkhkkkhkkkhkkhkkhkkhkhkhkkhhkhkhkhkhkhkhkkhkhhk*k

1410 DEF PROCnormal_string

1420 PRINT "$=";

1430 PRINT CHR$(34);

1440 IF R%?5=0 THEN PRINT CHR$(34):ENDP
ROC

1450

FOR L%=1 TO R%?5

135

1460 PRINT CHR$(?(L%-1+FNDD(R%+2)));
1470 NEXT L%

1480 PRINT CHR$(34)

1490 ENDPROC

1500 REM khkkkhkkkkhkkkhkkhkkkhkhhhkkhkhkhkkhkhkkkhkhkkkhkx%
1510 DEF PROCstring_array

1520 PRINT "$(";

1530 FOR D%=1 TO ((R%?3)-1)/2
1540 IF D%<>1 THEN PRINT ",";
1550 PRINT FNDD(D%*2+R%+2)-1;
1560 NEXT D%

1570 PRINT ")"

1580 ENDPROC

1590 REM khkkhkkhkhkkhkkhkkhkkhkkhkkhkhkhkhhkhkhhkhkhkhkkhkkhhkk
1600 DEF PROCreal

1610 PRINT "=";EVAL($E%)

1620 ENDPROC

1630 REM khkkhkkhkhkhkhkhkhkhkhkhkkhhkhkdhkhkdhkhkhhkhhhhkd
1640 DEF PROCreal_array

1650 PRINT "(";

1660 FOR D%=1 TO ((R%?2)-1)/2
1670 IF D%<>1 THEN PRINT ",";
1680 PRINT FNDD(D%*2+R%+1)-1;
1690 NEXT D%

1700 PRINT ")"

1710 ENDPROC

1720 REM khkkhkkhkkkkhkkkhkkhhkhkkhhhkkhkhkhkkhkhhkkkhkxhkkhkx%
1730 DEF FNDD(A%)=!'A% AND &FFFF
RUN

ASD$="A STRING"

A% (23)

D$="ANOTHER"
GFHJTRJ_SEG=3.141592653
H=23.345

HJE$(2,4,1)

K$(23)

R(10)

RF(3,4)

WER%(1,3,2)

ZXC%=234

136

The idea was for a routine which could be placed in an unused section
of memory and then called whenever a record of variable contents was
required during program development.

The program as presented here uses a set of dummy variables, lines 30
to 130 as a demonstration. To use the program, you would omit these
lines, and situate it near the top of memory. Then, when you have run
the program from which you wish to dump variables, return PAGE to the
variable list program, and type RUN. Remember the CTRL-B if you want
printer output.

If you RUN the program as it stands, you should notice a number of
things about its output.

First, the variables are printed in alphabetical order of first letters. This
may give you an idea of how the program operates.

Second, in the case of arrays, the computer just prints out the
dimensions of the array, rather than wasting space with its contents.

Because the program must not upset any of the variables used by the
original program, it uses integer variables throughout. This also means
that the single string used must be created rather deviously.

1050 Sets the field width to zero. This is because of the need for the
array dimensions to be printed next to each other.

1060 This line dimensions the string used in the program. It allows for
variable names up to 255 characters long in this version. You may
like to restrict the length to 30 or so!

1070 Starts a loop through all of the initial variable name letters io that
table.

1080 If any variables exist starting with that letter, call PROCFOLLOW,
which will follow the tree and print out the variables as it comes
across them.

1090 Ends the loop through all the letters.

1100 Ends the program.

1120 Starts the definition of PROCFOLLOW. This procedure is called
with the address of where it can find a variable, and the initial
letter of the variable. It will carry on calling itself recursively until
this address is less than 256, which indicates the end of the
tree.

1130 $E% will hold the name of the variable, so it is started off with

137

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1270

1280

1290

the letter PROCFOLLOW was called with.

R% is used to point to the next letter of the name in the list. It
is set to the second link byte here, to allow for variables which
are only a single character long.

PRINTS the first letter of the name.

Starts a REPEAT loop, which will continue until all the letters of
the name have been printed.

Increments R%, to point to the next letter. You can now see why
R% was first set to be a ‘byte too low’.

If the next letter is a legal one, prints it, and adds the letter to
$E%.

Ends the loop when an invalid letter came up.

This line starts a section of code which calls various procedures,
depending on the nature of the variable being processed. If the
next character in the name was a percentage sign, for example,
this line sends the program off to the integer variable handling
procedure.

If it was a dollar sign, the string procedure is called.
If the next byte was the zero byte, there is no modifier on the
end of the variable name, so it must be a real variable, so the

REAL procedure is called.

If the next character was a bracket, there is no symbol between
the end of the name and the bracket, so it must be a real array.

If the link bytes for this variable are legal, recursively calls
PROCFOLLOW to follow the link bytes.

Or else, end the procedure. If this procedure has been called a
number of times all the ENDPROCSs will fall through each other,
so neatly ending the whole program.

Starts the definition of PROCINTEGER. This proceudre processes
integer variables and integer arrays.

If the next byte after the percentage sign is zero, it is not an
array, so prints out its contents, using EVAL in a way never
intended by its designers, and exists.

Otherwise, it must be an array, so print the opening bracket.

138

1300

1310

1320

1330

1340

1350

1370

1380

1390

1410

1420

1430

1440

1450

1460

1470

1480

1490

1510

1520

1530

1540

Starts a loop through all the dimensions of the array. The last
parameter of the FOR statement is a derivation of the 2*n+1
formula.

If this is not the first dimension, prints the separating comma.
Prints the number of elements in the current dimension.

Ends the loop

Prints the closing bracket.

Ends PROCINTEGER

Starts the definition of PROCSTRING

If it is an array, call PROCSTRING_ARRAY, else call
PROCNORMAL_STRING. The test is made by seeing if there is
an opening bracket in the name of the variable.

Ends PROCSTRING.

Starts the definition of PROCNORMAL_STRING.

Prints the equals sign, and subscripts the variable.

Prints the opening quote of the contents of the string.

If the string is null, prints the closing quote, and returns.
For each of the characters in the string,

Prints the character,

Ends the loop.

Prints the closing quote.

Ends PROCNORMAL_STRING.

Starts the definition of PROCSTRING_ARRAY
Prints the subscript and the opening bracket of the array.
Starts a loop through all of the dimensions of the string array.

If this is not the first dimension, prints the separating comma.

139

1550

1560

1570

1580

1600

1610

1620

1640

1650

1730

Prints the number of elements in the current dimension.
Ends the loop

Prints the closing bracket of the array.

Ends PROCSTRING_ARRAY

Starts the definition of PROCREAL.

Prints the equals sign, and the value of the variable.
Ends PROCREAL.

Starts the definition of PROCREAL_ARRAY.

This section of code is almost identical to that in lines 1520 to
1570.

Defines a double byte interrogation function.

For easy reference, this table lists the locations of all the single letter
integer variables:

@ %
A%
B%
C%
D%
E%
F%
G%
H%
19 i

is stored at &400
is stored at &404
is stored at &408
is stored at &40C
is stored at &410
is stored at &414
is stored at &418
is stored at &41C
is stored at &420
s stored at &424

J% is stored at &428

K%

is stored at &42C

L% is stored at &430

M%
N %
0%
P%
Q%
R%

is stored at &434
is stored at &438
is stored at &43C
is stored at &440
is stored at &444
is stored at &448

140

S% is stored at &44C
T% is stored at &450
U% is stored at &454
V% is stored at &458
W% is stored at &45C
X% is stored at &460
Y% is stored at &464
Z% is stored at &468

And similarly, here is a table of locations for the first letter of other
variables:

"‘A'---> &482 'K'---> &496
'‘B'---> &484 "L'---> &498
'C'---> &488 'M'---> &49A
'D'---> &48A 'N'---> &49C
'E'---> &48A '0'---> &49E
'F'---> &48C 'P'---> &4A0
'G'---> &A48E '‘Q'---> &4A4
'H'---> &490 'S'---> &4AB
N'---> &492 "T'---> &4AS8
'U'---> &4AA 'h'---> &4DO0
"V'---> &4AC i'---> &4D2
"W'---> &A4AE 'j'---> &4D6
'X'---> &4B0 'k'---> &4DS8
'"Y'---> &4B2 I'---> &4DA
'Z'---> &4B4 'm'---> &4DC
'['---> &4B6 'n'---> &4DC
"\'---> &4B8 '‘0o'---> &4DE
'7'---> &4BA '‘p'---> &4EO
'"no_.> &4BC 'q'---> &4E2
' '..> &4BE r'---> &4E4
“l> &4CO0 's'---> &4E6
'‘a'---> &4C2 "t'---> &A4ES8
'b'---> &4C4 u'---> &4EA
'c'---> &4C6 'v'---> &4EC
'd'---> &4C8 'w'---> &A4EE
'e'---> &4CA 'X'---> &A4FO0
'f'---> &4CC 'y'---> &4F2
'g'---> &4CE 'z'---> &4F4

141

This program is not the most useful you'll find in this book:

20 LET A=PI
30 FOR T%=&484 TO &4F4 STEP 2
40 ?T%=7&482
50 T%?1=?&483
60 NEXT T%
RUN
PRINT Q
3.14159265
PRINT W
3.14159265
PRINT R
3.14159265
PRINT JK
3.14159265
PRINT |
3.14159265
PRINT P
3.14159265
PRINT B
3.14159265
PRINT M
3.14159265
PRINT V
3.14159265
PRINT X
3.14159265
PRINT F
3.14159265
PRINT H
3.14159265
PRINT Y
3.14159265
PRINT HII
No such variable
REM Etc, etc...

142

It creates a variable ‘A’ and then directs all the other variable pointers to
the same variable. The net effect is that every variable you later create
will be treated as if it started with the letter ‘A’. This is demonstrated
after the listing by printing a whole lot of single character variables, and
amazingly, they are all the same as ‘A’!

Can you think of any more useful applications for having two routes or
more to a single variable?

| thought not, but later | was faced with passing an array to a procedure
(the same technique is applicable to user definable functions). The
solution | cam up with is demonstrated in this program:

10 REM hhkhkhkhkhhhhhhdhhdhhhhhhhhhkhhkhhhix*x

20 REM Passing arrays to procedures.
30 REM Copyright (C) Jeremy Ruston
40 REM khkkkhkkkkhkkhkkhkhkkhkhhkkhkhhkkhkhkkhkhkkhkkhhx%
50 DIM N$(2),M$(2)
60 N$(1)="LED"
70 N$(2)="ZEPPELIN"
80 M$(1)="ARE"
90 M$(2)="GREAT"
100 PROCexample("N$")
110 PROCexample("M$")
120 END
130 REM khkkkhkkhkkhkkhkkhkkhhkhkhhkhkhhkhhkkhkkhkhhkhkkkx
1000 DEF FNfind(A$)
1010 LOCAL B$,ad,add,first
1020 first=ASC(A$)
1030 ad=!(first*2+&400) AND &FFFF
1040 REPEAT
1050 IF ad<255 THEN PRINT '""No such arr
ay at PROCfind":END
1060 add=ad
1070 B$=""
1080 REPEAT
1090 ad=ad+1
1100 B$=B$+CHR$(ad?1)
1110 UNTIL ad?1=0
1120 ad=!add AND &FFFF
1130 UNTIL B$=MID$(AS$,2)+"("+CHR$(0)
1140=add

143

1150 REM dhkkhkkkhkkdhkdhkkhhkkhkkdrkhrx

2000 DEF PROCexample(array_name$)
2010 LOCAL

2020 add=FNfind(array_name$)

2030 ?&4BE=add MOD 256

2040 ?&4BF=add DIV 256

2050 FOR T=1TO 2

2060 PRINT _$(T)

2070 NEXT T

2080 ENDPROC

2090 REM khkkkkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkkhkhkkxhkhkkx*k
RUN

LED

ZEPPELIN

ARE

GREAT

The only general part of the program is PROCfind(A$). This procedure
finds the address of the first link byte of the array of name A$. A$
should not contain the opening bracket of the name, but it should contain
the modifier ($ or %).

PROCfind is based on some of the routines in the variable program, so it
should not need a detailed explanation.

The routine is based on the assumption that you will not have any arrays
in your program called ‘_’ (underscore). If you do, the array will be lost.

Having entered PROCIind, all you have to do to include an array in the
parameters of your functions or procedures is:

)] Everywhere you want to have an array as a parameter, use a
suitably named string — as in line 2000 of the example
program.

ii) Then use PROC(ind to work out the start address of the

array of this name (line 2020).

iii) Then substitute this address for the pointer for a character
not often used to start variable names, such as the
underscore character.

iv) Then use the underscore character, or whatever you chose,
as the name of the array you used as the parameter.
Remember to put the correct modifiers after it.

144

If more than one array has to be passed, | would be inclined to use

(At b

different names for them, such as ‘p’, ‘q’, ‘'r and ‘s’.

This program is a derivation of the movement program | gave in chapter
one.

If you have the movement program on cassette, it would be quicker to
modify that than to type this whole program in.

10 REM Copyright (C) Jeremy Ruston

20 REM MCCMLXXXII

30 MODE 1

40 vDU 19,3,4,0,0,0

50 VDU 5

60 PROCASSEMBLE

70 START%=HIMEM/8

80 X%=0

90 Y%=0

100 B%=20

110 A%=1

120 REPEAT

130 B%=B%-1

140 IF B%=0 THEN B%=RND(20)+10:A%=RND(
64)-1:GCOL 0,RND(3)

150 IF A% AND 1 THEN Y%=(Y%+31) MOD 32

160 IF A% AND 2 THEN Y%=(Y%+1) MOD 32

170 IF A% AND 4 THEN X%=(X%+1) MOD 80

180 IF A% AND 8 THEN X%=(X%+79) MOD 80

190 IF A% AND 16 THEN X%=(X%+1) MOD 80

200 IF A% AND 32 THEN X%=(X%+79) MOD 8

210 S%=START%+X%+Y%*80
220 ?&D00=S% DIV 256

230 ?&D01=S% MOD 2566
240 CALL &D10

250 R%=S%*8

260 ?&322=R% MOD 256

270 ?&323=R% DIV 256

280 vDU 30,42

290 UNTIL FALSE

300 DEF PROCASSEMBLE

145

310 P%=&D10
320[OPT 0

330 LDA #12:STA &FE00
340 LDA &D00:STA &FEO01
350 LDA #13:STA &FE00
360 LDA &D01 STA &FEO01
370 RTS:]

380 ENDPROC

146

ADDENDUM to Section
2 — Updated
references for OS 1.2.

Location
0S°?0.1

&320/&321

&322/&323
&324/&325
&326/&327

&328
&329
&32A
&32B
&32C
&32D
&330/&331
&332/&333
&334/&335

&336/&337

&338/&339

&33A/&33B
&33C/&33D
&33E/&33F
&367

&36B

&36D

&36E
&36F
&370
&371
&375
&376
&377
&37E

&382

Location
0Ss1.2

&34E

&350/&351
&352/&353
&354

&30B
&30A
&309
&308
&318
&319
&306/&307
&304/&305
&302/&303

&300/&301

&30E/&30F

&30C/&30D
&312/&313

&310/&311

&355

&D0

&358

&359
&35A
&35B
&36C
&360
&34F
&361
&366*

&367
&368

Comments

Screen memory start. High byte only in
0S1.2.

Address of top left of screen.

Bytes per line.

Screen memory length. High byte only in
OSs 1.2

Top right y-coordinate of text window.

Top right x-coordinate of text window.
Bottom left y-coordinate of text window.
Bottom left x-coordinate of text window.
Cursor X-coordinate.

Cursor Y-coordinate.

Top right Y-coordinate of graphics window.
Top right X-coordinate of graphics window.
Bottom right Y-coordinate of graphics
window.

Bottom right X-coordinate of graphics
window.

Y-coordinate of graphics origin.
X-coordinate of graphics origin.

Current Y-coordinate of graphics cursor.
Current X-coordinate of graphics cursor.
Current screen mode.

Flags one. [VDU status byte.]

CLS/scroll filler byte (actually text
background in 0S1.2)

Graphics foreground colour mask.

Graphics background colour mask.
Graphics foreground modifier.

Graphics background modifier.

Colours available.

Bytes per character.

Pixels per byte.

*Seems to be no equivalent in OS1.2 but
location &366 always contains 127.

Define [font] flags.

RAM location of characters 224—255,
if bit 1 of &367 is set.

145

— &369 RAM location of characters 192—223,
if bit 2 of &367 is set.

— &36A RAM location of characters 160 —191,
if bit 3 of &367 is set.

— &36B RAM location of characters 128—159,
if bit 4 of &367 is set.

— &36C RAM location of characters 96—127,
if bit 5 of &367 is set.

— &36D RAM location of characters 64— 95,
if bit 6 of &367 is set.

— &36E RAM location of characters 32—63,

if bit 7 of &367 is set.

&D8 &25A Caps lock/shift lock
&38A-&399 &36F-&37E Current palette.

&CDI&CE &D2/&D3 Foreground/background colour masks.

Christopher Dewhurst,
Chelmsford, 2005.

146

