Chapter 6

GRAPHICS

6.1 INTRODUCTION

No book of this sort would be complete without a discussion of the superb
graphics capabilities of the BBC microcomputer. This chapter presents the
simpler aspects of using graphics. It is not possible to cover all the advanced
features here, such as use of the more complicated PLOT commands, plotting
over or under existing screen displays and special facilities for animation.

Nor shall we attempt to discuss graphics in Mode 7, which is entirely
different from that in all the other modes, and mainly suitable for logos and
thelike.

6.1.1 The graphics modes

Setting aside Mode 7, the remaining modes can be subdivided first into
graphics and non-graphics modes.

Mode 3 and Mode 6 give a two-colour, 25 line, text-only display of
respectively 80 and 40 characters per line. They cannot be used for graphics.
Graphics commands issued in these modes will have no effect, though they
will not give rise to any error message that would not have arisen in Modes O,
1, 2, 4 or 5. The reason why these modes cannot allow for graphicsis that the
displayed lines of text are separated by a small gap. This can clearly be seen if
you use commands such as

MODE 6
VDU 19,0, 4,0,0,0

Some users find this type of display more pleasing than the normal one, with a
coloured rather than black background, and the lines separated by black gaps.
Redefined characters can be used with these modes, however, and this is one
reason why they use nearly as much memory as the graphics modes (the
difference arises from the saving due to the smaller number of lines of pixels
stored).

The remaining modes: 0, 1, 2, 4 and 5, al nominaly give a 32 line text

69

display with no gaps between the lines. They vary both in the number of
characters per line and the number of colours available. Modes 0 to 2 require
20 Kbytes of memory and are only available on Model B computers, while
Modes 4 and 5 take up 10 Kbytes, and can thus be used on Model A
computers aso, athough in this case they leave rather little memory available
for the BASIC program.

Table 6.1 summarizes the properties of Modes 0 to 6.

Table6.1 Properties of the display modes

Mode Characters Colours Memory Graphics Resolution
per line available used

0 80 2 20K YES 640x256

1 40 4 20K YES 320%256
2 20 16 20K YES 160x256
3 80 2 16K NO

4 40 2 10K YES 320%256
5 20 4 10K YES 160%256
6 40 2 8K NO

Note that the colours available in a mode include black and white; thus a 2
colour mode is normally white on a black background, with no other colours
available.

6.1.2 Pixels

The fundamental principle of graphics display is that the screen is divided up
into alarge number of ‘picture elements’, or pixels. Each pixel can belitupin
any of the available colours. Thus, like a newspaper picture, a graphics display
is made up of small dots. The size of these dots determines the resolution of
the picture. Tiny dots give a high resolution picture containing fine detail,
whereas large dots give a much coarser picture in which fine detail islost. It is
common to express the resolution by the horizontal and vertical size of the
display, expressed in pixels. For example, on the BBC computer, the
resolution of Mode 1 is 320x256.

Knowing the resolution of the computer we can work out the number of
lines of text that are possible, in the following way. Text characters all occupy
character ‘cells which are made up of 8 rows of 8 pixels, with the appropriate
pixels being lit to generate the particular character being displayed (one row
and column are aways blank in order to leave a space around characters,
except for lower case letters with descenders). The way in which each

70

character is formed can be seen in the Appendix of the User Guide. All
graphics display modes are 256 pixels high which alows 32 lines of 8 pixel
high text. The horizontal resolution varies from 160 to 640 pixels, depending
on mode. The 40 character modes give a nearly square display, where the
height and width of each pixel is nearly equal. In other modes, the non-square
nature will result in horizontal and vertical plotted lines having different
widths.

In order to plot a point on the screen the nearest pixel must be lit up or
‘plotted’. Obviously, any pixel could in principle be specified by its horizontal
and vertical position on the screen. However, the same position on the screen
would then need to be specified differently in the different modes, because the
size of the pixels is different. On the BBC computer, therefore, a pixel is
specified by means of screen coordinates which are independent of the mode.

The display area is aways 1280 units wide by 1024 units high, and
positions on the screen are specified in terms of these units. The origin of the
display is at the bottom left of the screen, just as with anormal graph, and this
position has coordinates 0,0. The possible positions on the screen are thus 0 to
1279 horizontally, and 0 to 1023 verticaly, as shown in Figure 6. 1.

It will be apparent that a pixel has dimensions of several screen units, and
this will vary in the different modes. Figure 6.2 shows the size of a pixel in
terms of screen units for the different modes. When a point or line is being
plotted, a pixel is lit up if the point or line passes through any of the screen
coordinates within it.

1023

y ==

pixel at /

coordinates
X,y

0 X 1279

Figure6.1 Coordinate system for the graphics modes.

71

Mode 0 Mode 1 Mode 2
Mode 4 Mode 5

Figure6.2 Thesize of apixel in screen units for the different graphics modes.

The biggest problem with the limited resolution available on a microcomputer
is not, as might be expected, the limitation on fine detail, although this is a
consideration, but the unpleasant effect that can occur with straight lines. This
particularly affects lines that are nearly horizontal or nearly vertical. With a
slightly sloping line, the ideal line will pass successively through severa
pixelsin the same row, after which it will cross the boundary between one row
of pixels and the adjacent row, and abruptly the screen line will jump to that
row for severa more pixels. The result is that the sloping line becomes a
jagged series of horizontal or vertical lines.

The effect is not confined to microcomputers, and you can observe the
effect, for example, on television clocks. It is most easily seen on the second
hand as it reaches one second to or one second past the minute.

Example 6.1

The following commands will demonstrate the resolution limitation very
clearly.

MODE 1

MOVE 0, 496: DRAW 1279, 528
MOVE 0, 0: DRAW 1279, 1023
MOVE 628, 1023: DRAW 656, 0
MOVE 0, 1023: DRAW 1279, 0

Try these commands in other graphics modes as well, and notice the non-
sguare effect showing up in the unequal line widthsin Modes 0, 2 and 5.

6.1.3 Colour

The BBC computer provides an excellent range of facilities for colour
displays and colour pictures of very high quality, particularly when the RGB
output is used with an RGB colour monitor, rather than the UHF output and a
television set. Text and graphics colours are set by separate commands, and
both foreground and background colours may be controlled.

The number of colours available depends on the mode, and is shown in
the table earlier. For text, the text colour can be changed by the command

COLOUR n

72

where n is the number for the desired colour. If n is greater than the range of
colours available for the mode in use but less than 128, it is treated modulo
that number. For example, in afour colour mode COLOUR 6 would actually
select colour number 2, and in a two colour mode COLOUR 4 would select
colour number 0.

For graphics the same rules apply, but the command is

Gl 0,n

The first number specified can have a range of values in order to give rise to
specia effects, but in most casesit will be zero.

The colour numbers for the different modes are given in Table 6.2. In all
cases the default colours for both text and graphics, set when the mode
selection statement is executed, are white foreground and black background.

Table6.2 Coloursavailable in different modes.

Mode Colour Colour Background
number number

0,34,6 black 0 128
white 1 129

15 black 0 128
red 1 129
yellow 2 130
white 3 131

2 black 0 128
red 1 129
green 2 130
yellow 3 131
blue 4 132
magenta 5 133
cyan 6 134
white 7 135

flashing 8-15 136-143

The last eight ‘colours’ in Mode 2 are actually flashing combinations between
pairs of complementary colours: colour n+8 flashes between n and 7-n. (The
reason why only eight separate colours are provided is because these are the
only eight colours that can be generated by various combinations of the three
primary colours red, green and blue in equal intensity.)

Background colours may also be changed, and this is done by specifying
the colour number plus 128 in the above commands. Thus to set a red text or
graphics background in Mode 1 or 5, the command would be

COLOUR 129 or &L 0, 129
73

Note that this will not turn the whole screen red. It will simply provide a red
background to any subsequent characters (including spaces) that are printed.
The whole screen can be turned red by using CLS, which clears the screen to
the current background colour. Similarly the graphics screen can be cleared to
the current graphics background colour by CLG. Note that unless a text or
graphics window has been set, these two ways of changing the background
colour of the whole screen give the same result.

Exercise 6.1

Experiment with the COLOUR commands in direct mode, for different
graphics modes, including changing the background. Note that if you make
the foreground and background colours the same, subsequent text will become
invisible.

6.2 PLOTTING LINES AND CURVES
6.2.1 The MOVE and DRAW commands

A great deal can be achieved in the way of graphics displays just by use of the
two simple commands MOV E and DRAW, along with the GCOL command to
set the graphics colour. The two commands can be envisaged as moving a pen
across the screen to the position specified, starting from the position where it
last came to rest. After a graphics mode is selected the pen starts from screen
position 0,0. (Note that in OS 1.2 a CLG command does not restore the pen to
0,0, contrary to what is stated in the BBC User Guide.) The difference
between the commands MOVE and DRAW is that with DRAW the pen leaves
atrail of ‘ink’ in the foreground colour as it moves, whereas with MOVE it is
‘lifted’ from the screen and moves invisibly. The commands are followed by
the horizontal (x) and vertical (y) screen coordinates to be moved to. Thus

MOVE 0, 512
DRAW 1279, 512

will draw a horizontal line through the middle of the screen.

Although the size of the screen is 1280 units by 1024 units, it is possible
to plot outside this area, though obviously nothing will be seen. The plotting
does exist, however, at least in the sense that aline drawn from somewhere off
the screen to a position on the screen will appear to come from that
hypothetical off-screen position. The overall limits on the x and y parameters
to MOVE and DRAW are -32768 to 32767. (Larger values will not cause an
error. It is a general feature of graphics commands, as well as other VDU
commands, that they do not give rise to execution errors — they simply
produce incorrect effects. For instance, numbers between 32768 and 65535
will he. treated as neesative numbers.

74

Exercise 6.2

Experiment with these commands in direct mode. (Note that the text and
graphics may superimpose on the screen, and if the text screen scralls, it will
carry the graphics display with it.) Try commands such as

MODE 1

Goal 0,1

MOVE 0, 512: DRAW 1279, 512
MOVE 640, 0: DRAW 640, 1023
Ga 0,2

MOVE 0, 0: DRAW 1279, 1023
MOVE 0, 1023: DRAW 1279, 0

Example 6.2

On some computers, there are commands to draw a line between a pair of
specified points with a single instruction. Graphics is an ideal area for the
application of procedures, and a procedure to draw aline from XI, Y| to X2,
Y2in colour COL could take the form

1000 DEF PROC i ne(XL, Y1, X2, Y2, OQL)
1010 GoOL 0, COL

1020 MOVE X1, Y1

1030 DRAW X2, Y2

1040 ENDPROC

6.2.2 Plotting with straight fines

In view of the great variety of purposes for which simple graphics involving
the drawing of straight lines and curves can be used, it is difficult to
generalize how to tackle it, since different approaches will be needed for
different problems. The most obvious division between uses is whether
straight lines or curves are being plotted.

The most straightforward use of graphics is for plotting straight lines,
since the DRAW command is directly appropriate for drawing any straight
ling; i.e. the software is already implemented. As an example, consider how to
plot amonthly sales graph.

Example 6.3

5 DI M SALES(12)

10 REPEAT

20 MODE 1

30 PRINT "Input the monthly sales figures”
40 PRINT "one per line, for January"

50 PRINT "to Decenber."

60 MAX=0

70 FOR J=1 TO 12

75

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
2000
2010
2020
2030
2040
2050

I NPUT SALES(J)

| F SALES(J) >MAX THEN MAX=SALES(J)

REM MAX |'S THE MAXI MUM SALES FI GURE

NEXT J

CLS

MILLT=1: POA0=0

| F MAX<50 THEN GOTO 200

REPEAT

MAX=MAX/ 10

MULT=MULT*10: POWL0=POML0+1

REM MULT |'S MULTIPLE OF 10 SCALE FACTCR, |.E 10"POMO
UNTI L MAX<50

SCALE=1- (MAX>10) - 3* (MAX>20)

REM SCALE*MULT | S SCALE FACTOR PER DI VI SION

Gl 0,3

MOVE 128, 148

FOR J=148 TO 948 STEP 80

MOVE 128,J: DRAW 1184,J: REM PLOT GRID

NEXT J

MOVE 128, 144: DRAW 1184, 144: REM PLOT ORI G N DOUBLE
TH CKNESS

MOVE 124, 144: DRAW 124, 948

MOVE 128, 148

FOR J=128 TO 1184 STEP 96

MOVE J, 148: DRAWJ, 948

NEXT J

FOR J=0 TO 10 STEP 2

PRINT TAB(1, 27-2.5*J); SPC(2- LEN(STR§(SCALE*J))); SCALE*J;
NEXT J

PRINT TAB(0, 0);"x10""; POALO

PRINT TAB(3,28);"Jn Fb M Ap My Jn JI Au Sp Cc Nv Dc"
PRI NT

GCOL 0,1: PROC pltpt(1, FN_ycoord(1, SCALE, MULT))

FOR J=2 TO 12

DRAW 32+J* 96, FN_ycoor d(J, SCALE, MULT)

PROC_pl t pt (J, FN_ycoor d(J, SCALE, MULT))

NEXT J

PRINT "Press SPACE for another graph”

PRINT "or any other key to end";

UNTIL GET$<>" "

END

DEF PROC pltpt(XY)

LOCAL Y1

FOR Y1=-8 TO 8

MOVE 24+X*96, Y+Y1: DRAW 40+X*96, Y+Y1

NEXT Y1

MOVE 32+X*96, Y: REM MOVE TO CENTRE OF PO NT READY TO DRAW
LI NE

76

2060 ENDPROC
2070 DEF FN_ycoor d(J, SCALE, MLT)
2080 =148+80* SALES(J) / (SCALE* MULT)

This program plots a suitable sales graph for a set of monthly figures typed in
by the user.

From the point of view of the graphics commands required, the only
problem in the above program is in scaling the graph, since the screen is fixed
at 1024 units high by 1280 units wide. If we are plotting the graph for one
year, then a convenient horizontal scale would be 96 units per month (which
corresponds to exactly three characters in Mode 1 or 4), leaving 128 units
blank on the sides of the graph.

The choice of the vertical scale is not so simple. If the chart is to be split
up into 10 divisions, it would be convenient to use 80 units per division, with
224 units (56 pixels or 7 lines of characters) shared between the spaces at the
top and bottom.

After this choice has been made it will be necessary to find the largest
monthly sales figure, and use this to determine the vertical scale for each of
the ten divisions. If we want each division to represent a round quantity
(normally 1, 2 or 5 times some power of 10) it is also necessary to make the
scale larger still to accommodate the next higher round value.

Line 90 determines MAX, the maximum value to be plotted, which is
used to calculate the vertical scaling. Lines 150 to 190 ascertain the power of
ten needed in the scaling factor, the whole factor being stored in the variable
MULT and the power in POW10. Line 200 determines whether each division
will represent 1, 2 or 5 times MULT, using the fact that when evaluating a
Boolean test, TRUE is-1 and FALSE is zero.

Lines 340, 360 and 370 print the scale and months on the graph, using the
TAB command as described in Chapter 11.

Finally and most importantly, lines 250 and 310 respectively draw the
horizontal and vertical grid lines, PROC _pltpt at line 2000 plots each sales
‘point’ and line 410 draws the lines joining the points, calling FN ycoord at
line 3000 to calculate the screen y-coordinate from the sales values SALES(J).

6.2.3 Plotting curves

For the most accurate representation, curves should be built up by plotting
pixel by pixel, but thisis generally too slow to be practical. Curves are almost
always acceptable if plotted as short straight lines, but trial and error may be
necessary to determine how long the straight lines can be.

The only curves which can be drawn simply from within a program are
those with some definite mathematical formula. The simplest way to draw a
curveisfor functions that have the form

y=f(x)

which alows the curve to be built up by stepping along the x-axis, calculating
y from the function at every step.

7

A simple example of plotting a sine wave is shown in Example 6.4. Try
different values of the order n of the curve (which is of the form sin(nx)) and
the step length (step length here means the horizontal length of each line in
pixels) to see what step length gives an acceptable compromise between
resolution of the curve and speed of execution for different orders. Note that
some interesting effects can be obtained with the program below if very large
values are specified for n.

Example 6.4

10 MODE 1

15 REPEAT

20 PRINT TAB(O,26); "Wat order of sine curve would you"
30 INPUT "like? (1-10) "N

40 PRINT "Wat step length would you Iike?"
50 INPUT "(1-50) "STP

60 GcaL 0,3

70 X0=640: Y0=608

80 MOVE 0, YO: DRAW 1279, YO

90 MOVE X0,192: DRAW X0, 1023

100 REM PLOT AXES

110 XMAX=I NT(636/ STP) * STP

120 YMAX=400

130 MOVE X0- XMAX, YO+YMAX* SI N(- N*PI)

140 FOR J=- XMAX+4* STP TO XMAX STEP 4*STP
150 X=PI*J/ XMAX: REM SCALE ANGLES

160 Y=YMAX* SI N(N¥ X)

170 DRAW J+X0, Y+Y0

180 NEXT J

190 PRINT "Press SPACE to plot another curve"
200 PRINT "or any other key to end ";

210 UNTIL GET$<>" "

The variable STP specifies the step length, and is multiplied by 4 (since the
program is working in Mode 1) so that it directly represents the number of
pixels. Remember in your own applications that this step length always needs
to be an integral number of pixels, otherwise you may get uneven results in
your curves.

For sine curves scaling is simple since sin(nx) has a maximum value of 1,
so y values are simply multiplied by YMAX (400). Similarly, the maximum
value of angle wanted is 11 so the x values can be scaled fairly simply. The X0
and YO added to the x and y values shift the origin to the centre of the top
section of the screen (leaving room for a few lines of text at the bottom). Note
that there is an aternative way of moving the origin to the centre of the
screen, which is discussed in Section 6.3.2.

The next example plots a parabola, with a variable position for the focus,
which means that the function must be scaled horizontally so that the curve

78

makes the maximum use of the screen area. This is done by the scale factor
SCALE, calculated in line 140 and used to scale X*X in line 170.

Example 6.5

10 MODE 1

15 REPEAT

20 PRINT TAB(O0, 26)"Vhat focal |ength would you Iike?"
30 INPUT "(12-400) "A

40 PRINT "Wat step length would you Iike?"
50 INPUT "(1-50) "STP

60 GCOL 0,3

70 X0=640: Y0=192

80 MOVE X0-12, YO+2*A: DRAW X0+12, YO+2* A

90 MOVE X0, YO+2*A-12: DRAW X0, YO+2* A+12

100 REM PLOT FOCUS

110 XMAX=I NT(636/ STP) * STP

120 MOVE X0- XMAX, YO: DRAW X0+XMAX, YO

130 REM PLOT BASE LI NE

140 SCALE=(800- A) *4* A/ (XMAX* XMAX)

150 YOLD=A

160 FOR X=4*STP TO XMAX STEP 4*STP

170 Y=A+SCALE* X* X/ (4*A)

180 REM FORMULA FOR A PARABOLA IS X*X - 4A(Y-A)
190 MOVE X- 4* STP+X0, YOLD+Y0: DRAW X+X0, Y+YO0
200 MOVE - X+4* STP+X0, YOLD+YO: DRAW - X+X0, Y+Y0
210 YOLD=Y

220 NEXT X

230 PRINT "Press SPACE to plot another curve"
240 PRINT "or any other key to end ";

250 UNTIL GET$<>" "

Plotting a curve as a series of straight lines for equal steps of X is not aways
the best method. One occasion when this is not the optimum strategy is when
the curve has a vertical section. Compare the next two programs, both of
which plot acircle of variable radius. The first uses equal steps of X, whereas
the second program plots around the circle in equal steps of angle, which is
much more satisfactory in the case of a geometric form such as a circle. The
circle drawn on the screen may in practice be dightly elliptica due to
variation in the height and width gain settings on your TV or monitor.

Example 6.6

10 MOXDE 1

20 INPUT "Radius of circle? (4-400) "R
30 STP=INT(R/20): I|F STP<1 THEN STP=1
40 X0=640: Y0=512

50 MOVE X0-R YO

79

60 FOR X=-R TO R STEP STP

70 Y=SQR(R*R- X*X)

80 DRAW X+X0, Y+Y0

90 NEXT X

100 REM FORMULA FOR A CIRCLE | S X*X+Y*Y=R*R
110 FOR X=R TO -R STEP -STP

120 Y=SQR(R*R- X*X)

130 DRAW X+X0, - Y+YO

140 NEXT X

150 DRAW X0- R, YO

Here the number of steps has automatically been set to about 40, which is a
reasonable compromise between speed of drawing and smoothness of the
circle drawn.

Example 6.7

10 MODE 1

20 INPUT "Radius of circle? (4-400) "R
30 X0=640: Y0=512

40 MOVE XO-R, YO

50 FOR ANGLE=0 TO 360 STEP 5

60 Y=R*SI N(RAD(ANGLE))

70 X=- R* COS(RAD(ANGLE))

80 DRAW X+X0, Y+Y0

90 NEXT ANGLE

Thistime the step length is 5 degrees, giving 36 stepsin each semi-circle.

Exercise 6.3

Alter the program from Example 6.7 to produce an ellipse by the following
changes

15 INPUT "Seni-mgjor axis of ellipse? (4-636)"A
20 INPUT "Semi-mnor axis of ellipse? (4-400)"B

40 MOVE X0-A YO

55 R=1/ SQR(SI N RAD({ ANGLE)) ~ 2/ (B* B) +COS(RAD(ANGLE)) "2/ (A*A))

Exercise 6.4

Finally, the original circle program of Example 6.7 can aso be modified to
produce a spiral, as follows

20 R=0
50 FOR ANGLE=0 TO 3600 STEP 5
55 R=ANGLE/ 10

80

6.3 THE PLOT AND VDU GRAPHICS COMMANDS

6.3.1 The PLOT command

Although a great deal can be achieved with MOV E and DRAW, these are only
the two simplest of a large range of plotting commands. The full range is
provided by the command PLOT, which has the form

PLOT K X, Y

X and Y are the screen coordinates just as with DRAW, but K can take alarge
number of possible values, each giving a different form of plotting action. The
factor K itself can be subdivided into three components, L + M + N.

L chooses the pen colour, while M determines whether the pen movement
is relative or absolute. The choice of colours is: L=0, none (i.e. pen-up
movement); L=1, the graphics foreground colour; L=3, the graphics
background colour (thisis not exactly the same as pen up movement because
it will effectively eradicate any line already present by merging it with the
background); and L=2, the logical inverse colour. This last colour we shall not
consider further.

M=0 gives relative plotting, while M=4 gives absolute plotting. The latter
means that the X and Y values specify the actual x- and y-coordinates on the
screen, whereas when X and Y are relative, the value of X and Y specify the
distance to be moved from the present pen position. Care must be taken when
using relative plotting, as each relative movement can contribute a cumulative
error to the position of the pen.

The effect of different combinations of L and M are shown in Table 6.3.

Table 6.3 Plot codes for different plotting colours.

Plotting colour Relative movement (M=0) Absolute movement (M=4)

L+M L+M
Move only 0 4
Current graphics 1 5
foreground
Logical inverse 2 6
Current graphics 3 7
background

It can be seen from this that the commands MOVE and DRAW are
exactly equivalent to PLOT 4 and PLOT 5. They are given separate,
alternative BASIC keywords which are easier to remember and use because of

81

their specia importance, but the PLOT form can equally well be used if you
prefer.

The last part of the K parameter to PLOT gives rise to further variants,
each available in the 8 possible colourlmovement combinations set by L and
M. The values of N and their effect are summarized in Table 6.4.

Table6.4 Effects of different N valuesin PLOT.

N Action

Simple drawing
8 Omitting the last point for inverting actions
16 Drawing a dotted line
24 Combination of 8 and 16
64 Plotting asingle point only
80 Trianglefilling

N=8 and 24 are beyond the scope of this chapter. N= 16 is quite useful,
but note that the effect isto draw dots in specific screen columns, so the effect
is dlightly limited in usefulness, and will vary depending on the angle at which
thelineisdrawn.

Using N=64 to plot a single point provides an dternative to the
combination MOVE X,Y: DRAW X,Y. The simpler result is

PLOT 69, X, Y

The triangle filling option is very useful. It works on the point specified along
with the previous two pen positions. This provides a way of very rapidly
filling any desired areawith solid colour.

Example 6.8

The most likely shape that you may want to fill is a rectangle. The following
procedure will fill a rectangle in the current graphics foreground colour,
between XI and X2, and Yl and Y 2.

1000 DEF PROC rectanglLe(X1, Y1, X2, Y2)
1010 MOVE X1, Y1

1020 MOVE X1, Y2

1030 PLOT 85, X2, Y1

1040 PLOT 85, X2, Y2

1050 ENDPROC

Example 6.9

By combining the triangle filling with the program to draw a circle, we can
write a procedure to draw a solid circle of any radius and centre, in the current

82

graphics foreground colour. The procedure below will draw a solid circle of
radius R, centred at X0,YO.

1000 DEF PROC_circl e(R, X0, YO)

1010 LOCAL ANGLE

1020 MOVE X0+R YO

1030 FOR ANGLE=5 TO 360 STEP 5

1040 MOVE X0, YO

1050 PLOT 85, X0+R* COS(RAD(ANGLE)) , YO+R* SI N(RAD(ANGLE))
1060 NEXT ANGLE

1070 ENDPROC

6.3.2 The VDU command

We have aready met the VDU command as an alternative to CHRS$, and
indeed the command

VDU MN, . ..
is exactly equivalent to
PRINT CHR$(M ; CHRS(N); . ..

The most valuable use of the command is to control the screen display (or
VDU display, hence the name of the command) by the issue of control
characters. Indeed, in direct mode a third way of achieving the same result is
to type CTRL characters. For instance, CTRL-V CTRL-A would select Mode
1, as would VDU 22,1 (or MODE 1). The reason for this redundancy is
presumably simply to enable advanced users to achieve al their needs with
the VDU command, while beginners have simpler, easy to remember
commands for the functions that they will need. The VDU commands which
have an aternativ form are listed in Table 6.5, and will not be considered
further.

Table6.5 VDU commands and their equivalents.

VDU number ~ Control code Equivalent

9 CTRL-| <TAB>

12 CTRL-L cLS

13 CTRL-M <RETURN>

16 CTRL-P CLG

17 CTRL-Q COLOUR

18 CTRL-R GCOL

22 CTRL-V MODE

25 CTRL-Y PLOT

27 CTRL-[<ESCAPE>

31 CTRL-_ PRINT TAB();
127 N/A <DELETE>

83

Non-graphics VDU commands

A number of the VDU commands are really nothing directly to do with
graphics — they apply equally to text. Some of these are standard control
codes, such as CTRL-G (VDU 7) to beep the speaker. These are contained in
Table 6.6.

Table 6.6 Non-graphics VDU commands.
VDU number Control code Effect

0 CTRL-@ Does nothing
1 CTRL-A Send next character to printer only
2 CTRL-B Enable printer
3 CTRL-C Disable printer
6 CTRL-F Enable VDU drivers
7 CTRL-G Beep the speaker (bell)
8 CTRL-H Backspace cursor (but not delete)
10 CTRL-J Move cursor down
1 CTRL-K Move cursor up oneline
14 CTRL-N Switch on page mode
15 CTRL-O Switch off page mode
21 CTRL-U Disable VDU drivers or delete current line
30 CTRL-" Home text cursor to top left

VDU 1, 2, 3, 6, 14 and 21 are dealth with in Appendix A. The remainder
are self-explanatory.
The graphics-based VDU commands

The remaining VDU commands are used to control the graphics in various
ways, and some have quite complex usage that needs to be described in detail.
The commands are summarized in Table 6.7.

Table6.7 Graphics-based VDU commands.

VDU number Extrabytes Effect
4 0 Write text at text cursor
5 0 Write text at graphics cursor
19 5 Definelogical colour
20 0 Restore default logical colours
23 9 Define new character
24 8 Set graphics window
26 0 Restore default windows
28 4 Set text window
29 4 Set new graphics origin

To understand the effects of VDU 4 and VDU 5 we must first define the
meaning of the text and graphics cursors. The text cursor is the position at

84

which text is normally printed on the screen, and it is governed by the TAB
command in a PRINT statement, as well as being moved along every time a
character is printed. Its position can be determined by POS and VPOS. The
graphics cursor, on the other hand, is the position of the graphics pen as we
have called it up to now. It is moved by the MOVE, DRAW and PLOT
commands.

The two cursors are quite separate, but it is possible, by the command
VDU 5, to switch text so that it is printed at the graphics cursor position
instead of the text cursor (the text cursor remains at its old position, but no
longer controls the text output). The text must now be positioned by the
MOVE command. This has two main effects: firstly the position of text can be
more precisely defined, to within one pixel in any direction instead of the
nearest character cell. Secondly the screen will no longer scroll if output
reaches the bottom of the screen; instead the output wraps round to the top of
the screen. (If severa screenfuls of text are printed, this causes overwriting
and the text becomes unreadable)) Minor effects are that text colour and
position are governed by the graphics colour setting and window (if any), the
flashing cursor disappears, and characters do not obliterate the 8><8 sguare of
pixels that they overwrite, so that they can be superimposed on each other, or
on graphs. VDU 4 restores the effect of the text cursor.

Example 6.10

The following small program will print lines of text on the screenin one and a
half line spacing (lines should be less than 40 characters long). Use ESCAPE
to end the program. You can alter the line spacing by changing the factor 48
on line 60.

10 ON ERRCR GOTO 500
20 MODE 1

30 VDU 5

40 J=0

50 REPEAT

60 MOVE 0, 1023-48*J
70 INPUT "" A$

80 J=J+1

90 |F J>21 THEN J=0
100 UNTIL FALSE

500 VDU 4

VDU 29 dlters the position of the graphics origin. Very often, you will wish to
centre your graphs, not on the default of the bottom left corner, but elsewhere
such as at the centre of the screen. In our previous examples, this was
achieved by defining X0 and Y0 and adding these into all MOVE and DRAW
commands, but it can be more convenient to move the origin instead. VDU 29
isthefirst of these commands we have met that requires extra parameters. The
29 must be followed by two further numbers or variables, the x and y screen
coordinates of the position where you want the new origin.

85

To move the graphics origin to the centre of the screen, for example, the
command would be

VDU 29, 640; 512;

Successive parameters to the VDU command are normally separated by
commas, but note that the x- and y-coordinates for VDU 29 must be followed
by semi-colons. This tells the computer that they are two-byte numbers (since
they may be greater than 255; you can aternatively break them up into low
and high bytes, but this is very tedious). The semi-colon can be used at any
time to indicate that the preceding parameter is a two-byte number, and this
technique is sometimes used to concatenate redundant zeros, such as those at
the end of VDU 19. Be careful, if you are doing this, that you do not omit the
final semi-colon, as VDU commands do not give rise to error messages but
can nevertheless result in peculiar effects. In this case, the next character input
or issued would be seized as the last byte of the VDU command.

Exercise 6.5

Modify the programs in Examples 6.4 to 6.7 to use VDU 29 instead of X0 and
YO for the graphics origin.

If VDU 29 is issued more than once, the newly specified coordinates are
aways relative to the initial origin at the bottom left-hand corner, not to the
previously set origin.

6.4 SPECIAL GRAPHICS EFFECTS
6.4.1 Windows

It is possible to set windows for both the text and graphics displays. Initialy
either may be put anywhere on the screen, but if awindow is set then the text
or graphics, as appropriate, is restricted to the area of the screen inside the
window - it is as if the defined area were a window through which you can
look at the display behind. In the case of text, the text is restricted to the
window area and the top left-hand corner of the text window becomes the new
text origin, but graphics might well be plotted partly outside the area of the
graphics window.

Text windows

Strictly speaking, text windows are unrelated to graphics, but it is convenient
to treat them here along with the graphics window, especialy as the two will
often be used in conjunction.

A text window is defined by specifying the minimum and maximum
character positions, both horizontally and vertically, in which text may appear.
Figure 6.3 shows an example of this, in which only the top centre portion of
the screen is used for a text window.

86

(YTOP) 0

Text window

(YBOTTOM) 71~~~

5

(XLEFT) (XRIGHT)

Figure6.3 A text window as set up by the command VDU 28,5,7,34,0.
The command to set atext window is
VDU 28, XLEFT, YBOTTOM XRI GHT, YTCP

You could think of this as specifying the bottom left and top right corners of
the window. Note that for text Y is measured from the top, so YBOTTOM will
be the maximum value of Y alowed. For the case shown in Figure 6.3, the
command becomes

VDU 28,5,7,34,0

Note that the coordinates are the same as with the TAB command, and that the
allowed ranges will vary with the mode in force. In this context you must
remember that there are no error messages or error trapping for ‘faulty’ VDU
statements — the command is simply ignored.

There are several reasons why you may wish to use a text window, quite
apart from graphics windows. It would be the most convenient way of
breaking program output into columns, particularly if the length of output may
vary. A more important use is to keep a section of text permanently on the
screen while other parts scroll. Once a text window is in force that does not
encompass existing text, that text will not scroll, and so remains permanently
on display. This technique is a favourite device in commercial programs such
as word processors, where a top or bottom line showing status information
remains permanently on display.

Any text window (or graphic window) may be cancelled with the
command

87

VDU 26

The default full screen displays are aso restored by a mode change (or, of
course, a<BREAK>).

Example 6.11

The following program is a small demonstration which features the above
points. It runs in Mode 6 to show that it is not restricted to graphics modes,
but it could work equally well in any mode except Mode 2 or Mode 5, where
the line length is too short.

10 MODE 6

20 PRINT "TEXT W NDOW DEMONSTRATI ON - THE ALPHABET"
30 VDU 28,5,9,34,2

40 FOR J=1 TO 26

50 FOR K=1 TO 240

60 PRINT CHRS(J+64);

70 NEXT K

80 PRINT

90 NEXT J

Exercise 6.6
Alter Example 6.11 so that it will work in Mode 2 or Mode 5.

Graphicswindows

Graphics windows work in amost exactly the same way as text windows,
except that, as with graphics displays on the full screen, the plotting range
may run out of the window without ill effect, in which case only that part
within the window is displayed.

The only difference is that the window will of course be in graphics
screen units (with y measured from the bottom), which means that the x and y
values will be greater than single bytes. They must therefore be two-byte
parameters, and as before this is indicated by terminating them (even the last
in thelist) by semi-colons. The exact form of the command is therefore

VDU 24, XLEFT; YBOTTOM XRI GHT; YTCP;

Note that this is the same convention as for the text window, specifying
bottom left and top right corners of the window, but you must remember that
thistime YBOTTOM represents the smallest allowed value for Y.

The many conceivable uses include setting a window for a graph so that
any lines that would otherwise spill outside the grid are suppressed. Another
use could be to put a coloured border around a display.

A very useful application of windows is where text and graphics are to be
used separately, but in the same display. Independent windows for the text and

88

graphics may be set so that they do not overlap, thus avoiding the possibility
of oneinterfering with the other.

Example 6.12

The following program sets up a red graphics display area with a yellow
border, and demonstrates the window effect further by attempting to draw a
cross of full screen size.

10 MODE 1

20 GoAL 0,130

30 QG

40 VDU 24, 128; 128; 1151, 895;
50 GCOL 0, 129

60 CLG

70 MOVE 0,0: DRAW 1279, 1023
80 MOVE 0,1023: DRAW1279,0

Note that when no windows have been set, a background can be set to colour
n either by

COLOWR 128+n: CLS
or
GCAL 0, 128+n: QLG

but here CLG must be used because we wish to change the colour only within
the graphics window. However, if text is subsequently printed onto the screen
each character will have a black background unless COLOUR 128+n is also
set, or VDU 5 is used to have text printed on atransparent background.

6.4.2 Changing colours

The limitation of most modes to 4 or 2 colours is not quite as restrictive as it
may seem at first sight. Although the available colours in Mode 1, for
instance, are by default black, red, yellow and white, it is possible to change
these default colours. The command to do thisis VDU 19. The change comes
into effect immediately, changing the colour of pixels already displayed on the
screen, and the command is frequently used to switch colours on and off to
give anillusion of animation.

VDU 19 will change the colour that is associated with each of the
permissible colour numbers in a particular mode. (In the User Guide, the
colour number is called the logical colour and the colour associated with it the
actual colour.)

The format of the command is

VDU 19, <col our nunber >, <actual col our>,0,0,0

89

The <actual colour> is specified by a number which is the same as the colour
number sequence for Mode 2, as listed earlier. The trailing zeros are to allow
for possible future expansion of the system.

Thus to change colour number 2 in Mode 1 from yellow to green the
command would be

VDU 19,2,2,0,0,0

(or VDU 19,2,2;0; using the semi-colon to abbreviate the command).

The double occurrence of 2 in this particular example can be confusing,
but a little thought will show that it is quite logical. If the colour number is
outside the permitted range, then it is treated modulo the number of
permissible colours, so in Mode 1 the same effect as above would be achieved
by VDU 19,6,2,0,0,0. The command is not specifically a graphics command,
and applies both to text and graphics colour.

Redefined colour numbers can all be set back to their default colours by

VDU 20

Exercise 6.7

Try changing the background colour of any of the earlier examples from black
to blue, by using

VDU 19,0, 4; 0;

6.4.3 User-defined characters

One of the reasons why al the modes except Mode 7 take up so much
memory is that each character is made up of an 8x8 pixel display. This means
that it is possible to define new characters that will fit into an 8x8 display, or
even redefine the existing character set. There is a command, VDU 23, that
can be used to define characters.

Within the BBC microcomputer a character is specified by its ASCII
code. The normal character set has ASCII codes from 32 to 127, with codes
below 32 reserved for control codes (those that are normally issued by the
VDU command). The default position for user-defined characters is that
ASCII codes 224 to 255 can be defined by the user. The defined characters
can then be printed either by PRINT CHR$(n) or VDU n. It is possible to
change this default to a larger set, even to include redefining the standard
characters, but extra memory has to be specially allocated for this purpose.

Defining a new character

A new character is defined by specifying which of the 64 pixels making up the
8x8 character cell are to be illuminated. Each row of the cell is defined by one
number in the VDU string of parameters, made up in the following way: the
right hand pixel counts as 1 if lit; the second as 2; the third as 4; and so on up

90

to 128 for the left hand pixel. In this way al possible combinations of lit and
unlit pixels in the row can be represented by a single number between 0 and
255, which will just fit into a single byte of memory. (Readers familiar with
bits and bytes will realize that each pixel is represented by one bit of the byte,
the most significant bit representing the left-hand pixel)

The 8 rows of the cell give 8 numbers, which are issued with the VDU
command as follows

VDU 23, <char no>,a, b,c,d e f,g,h

The <char no> isthe ASCII code of the character being defined, and ato h are
the 8 numbers defining the rows of pixels, a representing the top row, b the
second, down to h for the bottom row.

Let us now see how to define anew character, the greek character pi. First
it is necessary to plan out the character on a piece of squared paper. Sinceit is
to be anormal character, there must be a line of unlit pixels along the bottom
and left hand sides, following the same convention used for normal characters
so that they are separated from one another. Figure 6.4 shows the shape to be
defined.

The values for the rows are calculated as follows: the top row has just the
right hand pixel lit, so the value is 1. The second row has pixels 2 to 6 lit, so
the value is 62 (32+16+8+4+2). The next row has a value of 84 (64+16+4),
the following two have the same value of 20 (16+4) and row f, 18 (16+2). The
seventh row has a value of 33 (32+1) and we must not forget the blank row at
the bottom, which simply has a value of 0. If this is to be the first specia
character available, 224, the required VDU command is

VDU 23, 224, 1, 62, 84, 20, 20, 18, 33,0

128 64 32 16 8 4 2 1

Figure 6.4 The shape needed for a user-defined character 1t

91

Exercise 6.8

Try out the above character by the direct mode commands

VDU 23, 224, 1, 62, 84, 20, 20, 18, 33,0
MODE 6
PRINT CHR$(224);" =";PI

Note that the character, once defined, is preserved through a mode change [or
even aBREAK).
Try to define another greek letter, such as phi.

Exercise 6.9

Try and define some symbols for the sales chart of Example 6.3, in place of
PROC pltpt. Try shapes such as asquare, atriangle and acircle, both solid and
hollow.

User-defined characters are not restricted to single character cells. You can
plan out a shape larger than 8x8 pixels, and spread it out over severa
character cells, which can be printed side by side or one above the other
(using the TAB command). The sort of shapes that you might want are
mathematical integral or summation signs, or small pictures. The latter will be
plotted much faster in the form of user defined characters than by graphics
commands. Each character can only be plotted in a single colour, but even this
is not a major restriction, because the different colour components could be
plotted as separate characters, superimposed with the aid of the VDU 5
command.

Making room for more user-defined characters

There is a *FX call, *FX 20,1, which alows the user to define as many
characters as he wishes, or even redefine the normal character set. This uses
up extra memory, at the start of the space normally used for programming. To
alow for this, the normal value of PAGE for your system must be atered to
accommodate the extra characters. (See Chapter 10 for a detailed discussion
of PAGE, and genera memory usage.) Provided that you have not aready
altered PAGE, the commands necessary to alow for extra characters are
shown in Table 6.8 (note that the default character numbers are changed to
128-159 after *FX 20,1 — the call can aso be used simply to make this
change, if you wish).

Table 6.8 Making room for new characters.

ACII Command
character required

codes

128-159 none

160-191 PAGE=PAGE+256
192-223 PAGE=PAGE+512
224-255 PAGE=PAGE+768
32-63(1t07) PAGE=PAGE+1024
64-95 (@10) PAGE=PAGE+1280

96-126 (£ t0 =)

PAGE=PAGE+1536

92

A full list of ASCII charactersisgivenin Appendix H.

Switching the cursor off

There are two specia purposes of the VDU 23 command. For the general
user, the important one of these is to switch the flashing cursor off or on.
Particularly when you have a graphics display, the flashing cursor can be an
unwanted annoyance. It can be switched off with the command

VDU 23,1,0;0;0;0;
and switched on again by

VDU 23,1,1;0;0;0;

Note however that when text is linked to the graphics cursor by VDU 5, this
also suppresses the flashing cursor, and if you are not wanting to print text at
the text cursor position this is an easier way of removing it (VDU 4 brings it
back, of course).

The second extra use of VDU 23, strictly for advanced users only, is to
program the 6845 cathode ray tube controller chip (CRTC) which handles the
screen display. We will mention only two possibilities here. First, the interlace
which gives the screen display a dightly jittery effect, especialy on some
monitors, cannot be turned off in Mode 7 by the normal command *TV 0,1. It
can be turned off, however, by

VDU 23,0, 8, 16, 128; 0; 0;: VDU 23,0,9,9,0;0; 0;
though you may think that the distorted character set that results is worse than
thejitter.

The cursor can be altered in various ways by

VDU 23,0, 10,n,0;0;0;
and

VDU 23,0, 11, n, 0; 0; O;

In particular it can be turned off by

VDU 23, 0, 10, 32, 0; 0; 0;

and turned on again in its normal form by the VDU 23,1 commands. The
above form will work even with the old 0.1 operating system.

93

