Chapter 11

PROGRAMMING TECHNIQUES

11.1 'USER-FRIENDLY' PROGRAMMING

In designing a program it is important to ensure that it will be easy to use
effectively — ‘user-friendly’ is the word used to cover al such aspects. In
particular it is important to validate any user input and to use attractive

display.

Input

There are numerous of ways in which the programmer can make responses
easier for the user. For instance, if al responses are by means of a single key,
then it is tedious to have to press <RETURN> after every key-press.
Similarly, to move objects around the screen, it is nice to use the four arrow
keys, rather than a collection of meaningless letter keys. This means
redefining the keys. The various methods of input are described in Section
11.2.

Consistency

The most important point here is that the program should be consistent in the
Way it expects the user to respond. For instance, if GETs and INPUTs are
mixed, the user will not know whether he is expected to press the
<RETURN> key, and sometimes having to reply YES and other times Y to a
yesino question is another cause of great frustration, even to a fairly
experienced user.

Validation

Whenever the user is asked to make a response to the program, it isimportant
to check both for typing errors, and that the data returned is sensible in the
Context of the program. This s discussed fully in Section 11.3.

Display
There isagreat deal that can be done in this context, which will be covered in

detail in Section 11.4. However, at its simplest it includes such techniques as

187

putting a short message in the centre of the screen rather than in the top or
bottom left hand corner. The reaction testing program of Example 11.1
illustrates this.

Information

Within reason, it is desirable that a program should be operable with a
minimum of reference to supporting literature, whether this be course notes
for a teaching package or an operating manual. This means that the program
itself should give as much information as possible. In particular, when asking
the user to make a choice it is helpful to explain the significance of those
choices. The result may well be a program consisting more of PRINT
statements than anything else, but this is not uncommon and should not be a
deterrent.

Menu

Whenever a user has to make a choice from a series of options, this should be
presented in the form of a menu. The word menu is used in analogy to a
restaurant menu (particularly Chinese restaurants) where the list of dishesis
presented for the customer’s choice, with a number against each so that a dish
can be selected simply by quoting the number.

In the same way a computer program menu allows the user to select his
choice simply by pressing the appropriate key. The key-press will often be
detected by means of a GET, so if there are more than 9 choices, it is better to
use a letter. This can be converted to a number and then used in an
ON...GOTO statement. Another possibility isto use initial letters for selection,
even if these are not in sequence. For instance, suppose your menu has four
choices with initial letters L, S, R and E (ASCII codes 76, 83, 82 and 69) and
the code of the key pressed is stored in variable X. By using relationa
expressions avariable A could be assigned as

A=- ((X=76) +(X=83) * 2+(X=82) * 3+(X=69) *4)

and A would then be suitable for use in a statement of the form ON A GOTO...
The methods of using menu programs are described in Section 11.7.

11.2 INPUT FACILITIES OF BBC BASIC

One of the great advantages of a microcomputer is that it is ideally suited to
interactive use, since one user has sole control of the machine. Thisinteraction
may take many forms. perhaps the most exciting is the computer game, but
there are many more serious forms, ranging from simply deciding whether to
run a program again to positioning a point on a graphica display (which
might be to draw a modified character, or to label a feature on a graph, for
instance).

The first essential, whenever a user is exvected to interact with a program,
isto display a message at the appropriate time so that he knows when and how

188

to interact. The INPUT command is particularly convenient for this purpose,
since it allows a message to be printed as part of the INPUT command.

There are, however, a number of other useful ways in which to alow the
user to interact, as detailed below.

11.2.1 Joysticks and buttons

For completeness we will mention here that the analogue inputs of the BBC
microcomputer make it simple to use joysticks and buttons or similar devices
in conjunction with BASIC programs as well as with games. The function
ADVAL(N) will read the Nth analogue input channel (N=1 to 4), while
ADVAL (0) will indicate whether one or both games buttons are being pressed.
For example, X=ADVAL(1) returns into X the value corresponding to the
current reading on channel 1 of the analogue input.

Further details of the ADVAL function and use of the analogue inputs are
outside the scope of this book.

11.2.2 The GET and GET$ functions

The standard method of receiving INPUT from the user is via the INPUT
command. For input of long numbers or strings this is ideal, because it
provides editing facilities, in the form of the DELETE key, to correct mistakes
during input. For input of a single number or character, however, INPUT is
very tedious, as pointed out above.

There is an alternative way of collecting input, via the GET and GET$
functions. These differ from INPUT in that they will accept only a single
number or character. They give no new line or prompt and there is no need to
press <RETURN>. (Neither do they display the character typed, but you can
always PRINT this if required.) Both functions will accept any key, but GET
returns a number, the ASCII code of the key, while GET$ returns the single-
character string represented by the key. The commands are issued as

A=CET or A$=CET$

(Note the difference from some other microcomputers, where GET is a
Command rather than afunction.)

It is possible to use GET$ for multiple character input. Lines 220 to 260
of Example 4.10 use GETS$ to input a character string, in the form of an array,
Which might be much longer than the 255 character maximum of INPUT.

Exercise 11.1
Modify your program from Exercise 4.14(1) earlier to use GET$ instead of
INPUT.

It can on occasion be useful, as pointed out above, to be able to use the cursor
editing keys, particularly the arrow keys, for norma input. This can be
achieved with the command

189

*FX 4,1

After this command has been issued, the arrow and COPY keys can no longer
be used for screen editing. Instead, when pressed they return normal ASCII
codes, as follows

coPY 135
- 136
- 137
1 138
1 139

These keys can be picked up in the usua way with GET$, in a statement such
as

| F GET$=CHR$(135) THEN. ..

*FX 4,0 restores the keys to their normal function, and note that this must be
issued before the end of a program, as the keys will remain disabled after the
program has ended. (Note that *FX 4,2 has a second action - it enables the
five keysto act as further function keys, with numbers 11 to 15.)

Inasimilar fashionto *FX 4,1

*FX 229,1

disables the normal action of the ESCAPE key, and it returns its standard
ASCII value of 27. *FX 229,0 restores the normal action.

Exercise 11.2

Write a program to move a character around the screen by means of the four
arrow keys, and end when COPY is pressed.

11.2.3 The INKEY function

A feature of both INPUT and GET which is often necessary, but sometimes
inconvenient, is that the computer stops and waits for the input. There are
times when it is useful, or indeed essential, for the computer to continue the
program meantime. (Games are again a very obvious example, where say a
gun is occasiondly to be fired at a moving target.)

The function INKEY (and the string equivaent, INKEY$) enables the
programmer to check for input while a program is running. Whenever akey is
pressed it is stored in the keyboard input buffer. The next INKEY function can
pick the key value from the buffer when program execution reaches that point.

There are really three separate modes of operation of INKEY. INKEY (N),
where N is a positive number, will (if necessary) cause a program to pause for
a period of up to N centiseconds to see whether a key is pressed. If akey is

190

pressed during that time, or prior to the INKEY call, INKEY returns the
ASCII code of the first item in the keyboard buffer. After N centiseconds the
computer gives up and continues operation, the INKEY returning the value
-1

INKEY (N) thus performs a function rather similar to GET, except that
GET will cause the computer to wait forever if necessary. The equivaent of
GET$ isaclosely related function, INKEY $, which returns a single character
string variable instead of the ASCI| value.

If what you really want is for the program to continue execution while
checking for keyboard input, INKEY(()) will do this by checking the
keyboard buffer but without any pause. Any program loop could contain, for
example, theline

150 | F I NKEY(0)>=0 THEN GOTO 200

which would accomplish this.

However, if a key had been pressed earlier, this would be picked up the
first time round the loop. It is possible to ‘flush’ (i.e. empty) the keyboard
buffer at any time before you enter the loop by

*FX15, 1
to avoid this possibility.

Example 11.1

The following program uses the properties of INKEY((]) to give a simple
reaction time test. The keyboard buffer is flushed at line 100 just before the
loop detecting keyboard entry, to prevent cheating, then a REPEAT...UNTIL
loop at lines 140 to 160 keeps track of time while checking for a key-press.

10 S

20 PRINT "Wen a message appears on the screen”
30 PRINT '"press any key"

40 TIME=0

50 REPEAT: UNTIL TIME>400

60 CLS

70 PAUSE=I NT(1000* RND(1))

80 TI ME=0

90 REPEAT: UNTIL TI ME>PAUSE

100 *FX 15,1

110 REM CLEARS KEYBOARD BUFFER

120 PRINT TAB(15 2) ;"PRESS NOW!"

130 TIME=0

140 REPEAT

150 T=TI ME

160 UNTIL | NKEY(0)>=0

170 PRINT '"You took ";T/100;" seconds"

191

180 PRINT '"Do you want to try again? (Y/N"
190 YN$=CET$
200 | F YN$="Y" THEN GOTO 10

Since INKEY not only detects a key-press, but also returns its ASCII value,
the program could be modified to look for a particular character selected at
random. 64+RND(26) would generate the ASCII code for any capital letter, or
more ambitiously 32+RND(94) would produce the ASCIl code for any
printable character.

Exercise 11.3

Modify the program above to choose a key at random, measure the reaction
time and determine whether the user got it right.

Example 11.2

Ancther example of the use of INKEY is to temporarily freeze a display, of
either text or graphics. In the next program, a series of sine curves are
continuously plotted, but the display will be frozen by pressing any key, until
afurther key is pressed.

10 MODE 4
20 START=0
30 REPEAT
40 MOVE 0, 500+400* S| N(RAD(START))
50 FOR ANGLE=0 TO 360 STEP 5
60 DRAW 3* ANGLE , 500+400* SI N(RAD (ANGLE+START))
70 IF I NKEY(0)>=0 THEN PROC wai t
80 NEXT ANGLE
90 START=START- 20
100 UNTIL START=- 360
110 END
1000 DEF PROC wai t
1010 *FX 15,1
1020 REPEAT
1030 UNTIL | NKEY(0)>=0
1040 ENDPROC

Line 70 isthe key line, where INKEY is used within the plotting loop to check
for akey-press, and if detected, call PROC_wait.

The third use of INKEY is with a negative argument. INKEY then checks
whether a key is being pressed at that instant, returning -1 or zero according
to whether the key is pressed or not. This form of the INKEY statement
checks for a particular key, the key being determined by the value of the
negative argument. The value of the number does not correspond to the key's
ASCII code, but follows an obscure and seemingly random table which is
giveninAppendix 1.
192

The most obvious application for this mode of INKEY is for games,
where action must be taken according to which key has been pressed, but only
for as long as the key is pressed. This mode of INKEY is not applicable to
INKEY$ (it would be superfluous anyway).

All keys, including those such as CAPS LOCK, SHIFT, ESCAPE and the
function keys, have a code. However, using keys such as ESCAPE or the
arrow keys will give rise to a problem, because as soon as the INKEY
command has been completed, when the user will almost certainly still have
his finger on the key, the usual function will come into effect. It will again be
necessary to turn off their normal functions with *FX 4,1 and *FX 229,1 as
explained above.

Exercise 11.4

Modify the program of Example 11.2 so that instead of switching the plotting
off and on with successive key presses, the display is frozen while the space
bar is pressed (INKEY code -99) and plotting starts again as soon as the bar is
released.

11.3 VALIDATION
11.3.1 String validation

The first aspect of vaidation is to ensure that, if the user presses one or more
wrong keys the program does not ‘ crash’ but instead tells the user that his’her
input was wrong and re-poses the origina question. Such an approach needs
considerably more programming, but it is necessary if the program is to be
safely used, particularly by people other than the original author.

Example 11.3

As an example of a helpful friendly style, the following would be an effective
way to ask a simple yes/no question

100 REPEAT

110 PRINT "Random nunber = "; RND(1)

120 PRINT "Do you want another nunber? (Y/N)"
130 I NPUT YN$

140 IF YN$<>"Y" AND YN$<>"N' THEN PRCC_wr ongkey
150 UNTIL YN$="N'

160 END

1000 DEF PROC wrongkey

1010 REPEAT

1020 PRINT "Please press the 'Y key for "YES"
1030 PRINT "or the 'N key for 'NO"

1040 I NPUT YN$

1050 UNTIL YN$="Y" OR YN$="N'

1060 ENDPROC

193

Note that whichever key is pressed (apart from <BREAK>) the result should
be intelligible to the user and the program will not crash.

The question requiring a yeslno response is actually a very common situation,
but conventions vary as to whether the user responds with Y (N) or YES
(NO). The program can be made to accept either response, (but aso
unfortunately YABOO or NUTS) by using INPUT with the string YNS$, then
testing the first character of YN$ for aY or N. Try the following modifications
to the above program

140 | F LEFT$(YN$, 1) <>"Y" AND LEFT$(YN$, 1) <>"N' THEN
PROC_wr ongkey
150 UNTIL LEFT$(YNS, 1)="N'
1050 UNTIL LEFT$(YN$, 1)="Y" OR LEFT$(YN$, 1)="N'

11.3.2 Numerical validation

Because the number of ‘valid' input strings is usually limited it is relatively
easy to check them as above. Checking that a number is valid is more
difficult. It is, however, worth mentioning some simple general methods.

In many cases a valid input number must lie within a known range. This
can be easily tested with the <, > and = operations and a suitable warning
printed if required. Similarly it is sometimes necessary for a number to be an
integer. We can test if the number NUM is an integer as follows

100 REPEAT

110 INPUT "Type a nunber: ", NUM

120 |'F NUMK>I NT(NUM THEN PROC i nval i d
130 UNTI L NUMEI NT(NUM)

where PROC invalid prints out a suitable warning message.

On the BBC microcomputer, a value typed into a numerica variable in
response to an INPUT command acts as if it were input as a string and
converted to a numeric value by the VAL command (see Section 4.4).
Although at first sight this appears to be a user-friendly technique, it suffers
from the danger that there is no warning if a non-number key is accidentally
pressed. The particularly prevalent mistake is to type the letter O instead of
zero, for example 10 for 10, which would be converted to 1 with no warning,
or perhaps more disastrously O.1 for 0.1 which would be converted to zero.

To avoid this possibility it is advisable to adopt a somewhat indirect
approach to numerical input. You can pre-empt the operation of INPUT if the
‘number’ is initialy input as a string variable and the function VAL is then
used to convert it to an arithmetic variable (if the conversion is possible,
otherwise VAL will give the result zero). Therefore, we can test whether the

194

STRS$ of the arithmetic variable is equal to the original string and, if not, issue
awarning and reprompt for input.

Example 11.4
A suitable piece of user-friendly program for the input of a number is

100 REPEAT

110 PRINT "Input a nunber"
120 PROC val i date

130 UNTIL TEST=1

990 END

1000 DEF PROC val i date

1010 REM PROCEDURE TO VALI DATE NUMERI CAL | NPUT
1020 LOCAL ST$

1030 INPUT ST$

1040 NUMEVAL(ST$)

1060 | F ST$=STR$(NUM THEN TEST=1: ENDPROC
1070 PRINT "PLEASE DO NOT PRESS ANY NON- NUMBER KEYS'
1080 PRINT "(apart from'E for a nunber”

1090 PRINT "in exponent form"

1100 TEST=0

1110 ENDPROC

These sections of program will assign the required number to the arithmetic
variable NUM. The procedure can be used whenever a number is to be input
(though it would be necessary to assign NUM to the required variable).

Exercise 11.5

Use the section of program above to input a number directly and print out its
Value and also its square. Investigate the effect of typing in a number and also
astring including a letter (as if you had made a typing error). Delete lines 100
and 130 and replace line 120 by

120 INPUT NUM

and repeat the tests. In the latter case there will be no warning of the incorrect
input.

One limitation of this kind of validation is that it is necessary for the number
to be typed in in the same format as is adopted by the STR$ function for that
particular number (i.e. exponent form for numbers outside the range 0.1 to
109). A much more complex checking process is required in order to detect
any invalid input without imposing this restriction on the user, or alternatively

195

using INPUT directly with a number and risking incorrect input. The next
subroutine will accept amost any valid input, but trap any error.

Example 11.5

PROC_validate in the program below will validate the input of a number and
return with the number stored in the variable ZQ. This can then be assigned to
any desired variable. The program itself serves merely to give you an
opportunity to test out the procedure.

10 REPEAT

20 PRINT "I NPUT A NUMBER'

30 PROC validate

40 PRINT "YOUR NUMBER IS: "; ZQ
50 UNTIL FALSE

60 END

10000 DEF PRCC validate

10010 REM PROCEDURE TO VALI DATE THE | NPUT OF A NUMBER

10020 REM THE NUMBER | S RETURNED I N VARI ABLE ZQ

10030 REM DPTS COUNTS DECI MAL PO NTS

10040 REM EXN " EXPONENT E' S

10050 REM ST MARKS THE START OF NUMBERS

10060 REM NMI' COUNTS THE POMER OF 10 OF THE MANTI SSA

10070 REM INP$ |'S THE NUMBER

10080 REM EX$ |'S THE EXPONENT

10090 REM CH$ IS A SINGLE CHARACTER OF THE NUMBER

10100 LOCAL J, DPTS, EXN, ST, NMT, | NP$, NUMB, CH$, CANCS, LST$

10110 INP$="": NUMB="": DPTS=0: EXN=0: ST=0: NMI=0

10120 PROC i nchar

10130 PRI NT

10140 ZQ=VAL(| NP$)

10150 ENDPROC

11000 DEF PROC_inchar

11010 CH$=CET$

11020 | F CH$=CHR$(13) THEN ENDPROC

11030 | F CH$=CHR$(127) THEN PROC_cancel : ENDPROC

11040 PRINT CHS;

11050 | F ((CH$<"0" OR CHE>"9") AND CHB<>"." AND CHS<>"-" AND
CHB<>"+" AND CH$<> "E' AND CH$<>CHRS(13)) THEN
PROC i nval i d: ENDPROC

11060 |F (CH$="-" OR CH$="+") AND ST=1 THEN PROC i nvalid:
ENDPROC

11070 | F EXN>0 OR DPTS>0 OR CH$<"0" OR CH$>"9" THEN ELSE I F
NMI<=37 THEN NMT=NMT+1 ELSE PROCC_i nval i d: ENDPRCC

11080 | F EXN=0 OR CH$<"0" OR CH$>"9" THEN ELSE I F
(VAL(NUMB+CHS) +NMT) <=38 THEN NUMB=NUMB+CH$ ELSE
PROC i nval i d: ENDPROCC

196

11090 | F CH$<>"." THEN ELSE | F DPTS=0 AND EXN=0 THEN DPTS=1
ELSE PROC invalid: ENDPROC

11100 ST=1

11110 | F CH$<>"E" THEN ELSE | F EXN=0 THEN EXN=1: ST=0: ELSE
PROC i nval i d: ENDPROC

11120 | NP$=I NP$+CH$

11130 PROC i nchar

11140 ENDPROC

12000 DEF PROC invalid

12010 PRINT CHR$(7); CHR$(127);

12020 PROC i nchar

12030 ENDPROC

13000 DEF PROC_cancel

13010 | F LEN(I NP$)=0 THEN VDU 7: PROC i nchar: ENDPRCC

13020 PRINT CH$;: CANCS=RI GHTS$(| NP$, 1)

13030 | NP$=LEFTS$(| NP$, LEN(| NP$) - 1)

13040 | F LEN(INP$) =0 THEN LST$="" ELSE LST$=RI GHT$(| NP$, 1)

13050 | F LST$="E" OR LST$="" THEN ST=0 ELSE ST=1

13060 | F CANC$="." THEN DPTS=0

13070 | F CANC$="E" THEN EXN=0

13080 | F CANCS="+" OR CANC$="-" THEN ST=0

13090 | F EXN=0 AND DPTS=0 AND CANC$>="0" AND CANC$<="9" THEN
NMT=NMT- 1

13100 | F EXN>0 AND CANC$>="0" AND CANC$<="9" THEN
NUMB=LEFT$(NUMB, LEN(NUMB) - 1)

13110 PROC_i nchar

13120 ENDPROC

Note the use of recursion, and also the use of null statements between THEN
and EL SE to avoid the ambiguity of IF.. THEN...IF..THEN...ELSE.

11.4 DISPLAY LAYOUT

A well thought out and attractive presentation of text is necessary for
programs which are to be pleasant and interesting to use. BBC BASIC
includes several useful commands to control the presentation of text.

11.4.1 Layout of text

The layout of numbers is more complicated than that of text, so we will deal
with text first.

All screen character output takes place at the cursor position, and the
cursor can be positioned prior to printing in a variety of ways. The simplest is
by means of the aternative PRINT list separators, the semicolon (;), comma
(,) and apostrophe ().

The effect of the apostrophe is simplest. It generates a new line and
returns the cursor to the left of the screen. It is the one item of punctuation in

197

BBC BASIC which is not standard in other versions of BASIC. It has been
used fairly extensively in programs listed in this book, particularly to avoid
repeated PRINT statements. Thus

PRINT "' "LEAVE A SPACE"' "NEW LI NE"
isequivalent to

PRINT: PRINT: PRINT "LEAVE A SPACE": PRINT "NEW LI NE'

The effect of the semicolon is to separate items which are to be printed
consecutively, with no intervening spaces. For instance

PRINT "DI AL"; 999; " FOR POLI CE"
This appears as
DI AL999FOR POLI CE

with no spaces. In order to space it out properly, it is essential to put spaces
inside the quotation marks

PRINT "DIAL ";999;" FOR PCLI CE"
PRINT "DIAL"; 999; "FOR POLI CE' will not do

Note that very often it is unnecessary to include the semicolons. Whenever the

computer can make sense of the print list without them, it will do so.

Generally speaking, aimost anything but numbers or real variables can be

PRINTed without intervening semicolons. The problem with numbers and real

variables is that they simply merge into one another. Even string and integer

variables, on the other hand, can be distinguished by the $ or % at the end.
Thus we could put

PRINT "DIAL "999" FOR POLI CE"
Similarly

A$= "STRING NG "

B$= "THINGS "

C$= "TOGETHER "

PRINT ABC$
will produce the desired message, because the computer recognizes the dollar
signs as denoting the end of each string variable.

However, it is not always possible to leave the semicolons out. Try the

198

effect of
PRINT "STRING NG ""THI NGS "" TOGETHER'

Two consecutive quotation marks are used to generate an actual quotation
mark within a string. (They are also needed at the start of a DATA item or a
string response to INPUT, because these may optionally be enclosed in
guotation marks — for example, if acommaisto be included in the string. See
Section 4.2.3))

Generally speaking, it is best to develop the good habit of aways
including the semicolon.

One extra feature of the semicolon is that, if used at the end of a PRINT
statement, it suppresses the newline, and leaves the cursor immediately after
the printed text, which will enable you to carry on printing at a later stage if
you wish. Try

PRINT "PUTTING THI NGS";: PRINT "TOGETHER'
Also try just

PRINT "SO FAR SO GOOD';
The comma serves quite a different function. It behaves exactly like a preset
tabulator key on atypewriter, so that each comma moves the cursor to the next
available tab position across the screen. Normally the tab positions are ten
characters apart. Try

PRINT "ME","AND YOU',"AND US","."

PRINT "TOO LONG FCR ONE', "TAB PCSI TI OV
Ending a PRINT statement with a comma will not cause the next PRINT to
occur on the sameline.

The default ‘tab setting’ of 10 characters can be changed. This value

forms the first byte of the resident integer variable @2, so changing this, for
example to

@F@85
will increase the spacing to 15 characters.

Exercise 11.6

Experiment with layouts of strings while altering the value of @%.

11.4.2 TAB, SPC and POS

More elaborate layouts are possible with various combinations of the PRINT
commands TAB and SPC, and the function POS.

199

The TAB command has two forms. The simpler is TAB(X), which when
used within a PRINT statement moves the cursor along to column X in the
line. It thus acts like an adjustable tabulator, giving much better control over
layout. A few points should be noted about TAB. The range of X is 0 to 255.
Larger numbers are treated modulo 256 (as are negative numbers). Non-
integer numbers are truncated (not rounded). Numbers larger than the screen
width will cause wrap round for as many lines as necessary. Also, if column X
has been passed, wrap round will occur to column X on the next line. This last
point is a potential source of danger.

Note that the left hand column of the screen is column 0, not 1, and thus
on a 40 column display the right hand column is 39. This is actualy fairly
logical, since PRINT TAB(5);"STRING" will generate 5 spaces before
STRING.

Ancther way in which output can be controlled is with the SPC(N)
command, which must be used in the same way as TAB(X) within a PRINT
statement. SPC(N) will move the cursor on N spaces, wrapping round if
necessary. The value of N follows the same rules as for X in TAB, so the
effectiverangeis 0 to 255.

A useful function in conjunction with TAB and SPC is POS, which
returns the current column in which the cursor lies. This could be used with
TAB to check that the cursor had not passed the intended TAB position, or
with SPC to produce an effect similar to TAB. It will be appreciated that there
is alarge element of duplication in these functions, giving the programmer the
choice of his preferred technique, as is emphasized by the following exercise.

Exercise 11.7
Try the following statements which all give an equivalent layout

PRINT "OTHER, A N. (type 5 spaces)01-234-56 78(type 4 spaces)LONDON'
PRINT "OTHER, A. N."; SPQ(5) ; " 01- 234- 5678"; SPC(4) ; " LONDON'
PRINT "OTHER A. N."; TAB(15); "01- 234-5678"; TAB(30) ; " LONDON'
PRINT "OTHER A. N."; SPC(15- POS) ; " 01- 234- 5678" ; SPC(30- PCS) ;
" LONDON'

Exercise 11.8

Write a procedure, PROC _table, to print out as a table the string array A$
having DIMension A$(10,5), in the format of 10 rows of 5 columns, each 7
characters wide. The table should be headed with the string array HEAD$
(DIMension HEAD$(5)), which should be separated from the body of the
table by two blank lines. Use it in conjunction with the following program.

10 DI M A$(10,5) , HEADS(5)
20 CLS
30 FOR J=1 TO 5 : HEAD§(J)="COL" +STR§(J): NEXT J
40 FOR J=1 TO 5
50 FOR K=1 TO 10
60 A$(K, J)=STR$(K) +STR$(J)
200

70 NEXT K

80 NEXT J

90 PRCC table
100 END

11.4.3 TAB(X,Y)

The second, and much more powerful, use of TAB isin the form TAB(X,Y),
with two parameters which give the horizontal and vertical positions on the
screen to which the cursor is to be moved. As with TAB(X), the left hand
column is column zero, and the top row (not the bottom) is row zero.

TAB(X,Y) will move the cursor immediately to any point on the screen,
without printing intervening spaces as TAB(X) does. Thus TAB(X,Y) does not
overwrite the earlier part of the line, or indeed anywhere else on the screen.
The whole philosophy of output to the screen should be atered when using
TAB(X,Y), so that instead of printing lines successively down the screen,
output is directed and redirected to any point on the screen.

If either parameter of TAB (X,Y) is out of range (outside the values O to
39 for X and 0 to 24 for Y in Mode 7, for example), the command is ignored
completely, in contrast to TAB(X).

Example 11.6

As an example of the use of TAB(X,Y), the program below prints out a string
forwards and then backwards.

10 REM PROGRAM TO | LLUSTRATE TAB(X, Y)
20 CLS

30 A$="A MAN A PLAN A CANAL PANAMA'

40 L=LEN(A$)

50 LFT=I NT(19-L/2)

60 FOR J=1 TO L

70 PRINT TAB (LFT+J-1,8); M D§(A$, J, 1)

80 PRINT TAB(LFT+L-J,16) ;M D$(A$, L+1-J, 1)
90 TIME=0

100 REPEAT: UNTIL TI ME=20

110 NEXT J

120 PRINT TAB(0, 24);

If you have the supplementary disc which is available to accompany this
book, program TABDEMO shows a more sophisticated use of TAB(X,Y), for
an attractive method of input of datato set up a simple database.

Exercise 11.9

If you have the supplementary disc, program CLOCK on the disc alows you
to set a time and then provides the time as the variables HOURI, MIN1 and
SECL1. It dso provides a stopwatch function so that pressing 1 starts the
watch, 2 stops it and 3 resets it. The stopwatch time is provided in HOUR2,

201

MIN2 and SEC2. Write a procedure, PROC clock, needed for program
CLOCK, to display the time and the stopwatch readings on the centres of lines
8 and 16 respectively.

Corresponding to the function POS, which is useful in conjunction with TAB
(X) and SPC, there is a second function VPOS which returns the vertical
position of the cursor. Thus to move to the start of the current line, you might
use

PRINT TAB(0, VPOS) ;

After using TAB(X, Y) in a PRINT statement, note that TAB(X) and commas
will be reset to measure from the position of the cursor after the TAB(X,Y)
call, instead of the |eft-hand edge of the screen.

11.4.4 Output to a printer

On the BBC microcomputer, the layout of printer output is quite simple,
because the functions TAB(X), SPC and POS all work for printer as well as
screen output. TAB(X, Y) of course cannot possibly work with printers, and is
ignored. Moving printer paper backwards requires special codes particular to
each printer, so al printed output should be planned to move continuously
down the page.

There are two extra commands, WIDTH and COUNT, which affect both
screen and printer output, but are probably most relevant to the latter.

WIDTH N

Sets the page width to N characters. It can thus be used to limit the screen
display (especialy perhaps for Mode 0) , but it also generates a newline code
and so could be particularly useful to limit the width of printer output. For
example

WDTH 72

would restrict an 80 column printer to 72 columns, which would be a more
suitable width for A4 paper.

COUNT

Is a function returning the number of characters output since the last newline.
Within one screenwidth it is equivalent to POS, but POS relates only to the
cursor position on the screen. Thus COUNT should be used rather than POS
for printer output, where wrap-round may have occurred on the screen.

11.5 FORMATTING NUMERICAL OUTPUT
11.5.1 Layout of numbers

All of the previous discussion of layout of text also applies to numbers, that is,
the printing of real or integer variables. In addition, however, there are,

202

considerations of field width, significant figures, format and mode of display.

The first point to notice is that numbers are normally printed right
justified. Thusif we issue the command

PRI NT 12345, 67890
theresultis

..... 12345.....67890
(Note that the dots do not appear on the screen, but indicate the number of
spaces between the characters printed.) The effect of the semi-colon is not
only to act as a separator in the PRINT list, but also to cancel this right
justification. Try

PRINT ; 12345, 67890

The reason for the right justification is so that integer numbers of different
lengths, printed in acolumn, al have their units column aligned. Try

PRINT 1: PRINT 23: PRINT 456

However, real numbers with decimal fractions cannot be aligned this way
unless they all have the same number of decimal places. Try

PRINT 1.2 PRINT 3.4: PRINT 5.67

If you want to retain this right justification while tabulating with TAB(X) or
TAB(X, Y) rather than commas, you must omit the semicolons which good
practice would normally dictate that you should include. Try

PRINT 1 TAB(15) 23: PRINT 45 TAB(15) 678
then
PRINT 1; TAB(15);23: PRINT 45; TAB(15);678

On the other hand, if you want numbers printed with spaces in between, then
you must include the semicolons. Compare

PRINT 12" "34" "56 and PRINT 12;" ";34;" ";56

11.5.2 Controlling the format of printed numbers

It is often desirable to have a close control over the format of printed numbers.
Two very common requirements are to fix the number of decimal places
displayed, and to print decimal numbers in columns such that the decimal
points are properly aligned.

To alimited degree these features can simply be achieved with the aid of

203

the resident integer variable @%. To print al numbers with N decimal places,
in columns of width W, set

@&820000+&100* N+W

Example 11.7

The program below generates numbers whose magnitudes and number of
figures, as well as values, are random, and prints them with 2 decimal places
in 3 columns of width 10 characters. This would for instance be very suitable
for displaying columns of money in pounds.

10 CLS
20 @&8&2020A
30 FOR ROML TO 20
40 FOR Q0L=1 TO 3
50 REPEAT
60 NUM=FNrannum
70 UNTIL ABS(NUM <1E5 AND ABS(NUM >0.1
80 PRINT , NUM
90 NEXT COL
100 PRINT
110 NEXT ROW
120 END
1000 DEF_FNrannum
1010 LOCAL DECPLACES, NUM
1020 DECPLACES=10"RND(6)-1)
1030 NUM=I NT((RND(1) - 0.5)*10" RND(9))
1040 =NUM DECPLACES

It would be as well to press <BREAK> after using this program, to restore the
default value for @%.

The variable @% can do a great deal more than just produce a fixed
number of decimal places, but its use is quite complicated, and is therefore
described in Appendix F.

The biggest limitation of the example above is that all columns must be of
equal width and, moreover, the decimal places are displayed even for integers.
We might, however, want a column of 3 figure integers, two columns of
numbers of up to 7 significant figures, having two decimal places, then two
columns of numbers less than one, having just 3 decimal places. What is
needed is a way in which successive humbers can be printed in different
formats.

Example 11.8

The following procedure will make it easy to print numbers with close control
over their format. It prints the number NUM, starting from the cursor position
on the current line, with up to N decimal places and a field width of W (or
more, if the number cannot be accommodated in that number of characters).
The cursor is left a the end of the number. Numbers are justified within the

204

field width so that the decimal point is N places from theright of the field, and
only significant figures are printed. If N is set to 0, numbers are printed as
integers. (The procedure will not cope with numbers larger than 10° or smaller
than 0.1 that need to be in exponent form.)

10000 DEF PROC_f ornprint (NUM N, W

10010 REM PROCEDURE TO PRI NT NUM

10020 REM W TH A FI ELD WDTH OF W

10030 REM AND N DECI MAL PLACES.

10040 LOCAL ST1$, ST2$, ST3$, ST4$, ST5$, M J, DPPCS

10050 @=@b6 OR & 1000000

10060 ST1$=" "+STR$(NUM

10070 ST2$=" "

10080 ST3$="": ST4$=""

10090 ST5$="."

10100 |'F NUMEI NT(NUM THEN ST1$=ST1$+".": ST5$=" "

10110 MW N+(N>0): REM M IS M NI MUM NUMBER OF FI GURES BEFORE
DECI MAL POl NT

10120 DPPOS=0

10130 REPEAT

10140 DPPOS=DPPCS+1

10150 UNTIL M D$(ST1$, DPPOS, 1) ="." OR DPPOS=LEN(ST1$)

10160 | F DPPOS>M THEN ST3$=LEFT$(ST1$, DPPCS-1): GOTO 10210

10170 ST3$=LEFT$(ST1$, DPPCS-1)

10180 FOR J=DPPCS TO M

10190 ST3$=ST2$+ST3$

10200 NEXT J

10210 ST4$=RI GHT$(ST1$, LEN(ST1$) - DPPOS)

10220 FOR J=1 TON

10230 ST4$=ST4$+ST2$

10240 NEXT J

10250 PRINT ; ST3$;

10260 | F N>0 THEN PRINT ; STS$+LEFT$(ST4S$, N) ;

10270 ENDPROC

Adapt the program from Example 11.7 to generate numbers with the same
random format as before, and print them using the above procedure, by
deleting line 20 and replacing line 80 by

80 PROC_fornprint (NUM 4, 13)
Add the procedure above and test out the program. You will probably find this
procedure easier to use than @% as described in Appendix F.

Exercise 11.10

Write a program to use PROC_formprint to print numbers (generated at
random) in the format suggested earlier, that is one 3 figure integer, two 7
figure numbers and so on.

205

In genera use of this procedure, it isimportant to make W large enough for all
possible numbers that might occur (and perhaps check their size before

printing).

11.6 GENERAL PRESENTATION

There are several features that will generally add to the presentation of the
output of a program. The most obvious is that you should always clear the
screen at the start, either with CLS or, better still, a MODE command which
will also ensure that you are in the desired mode.

Another small point is that whenever you want to attract the user's
atention, for instance when prompting for input or warning of a mistake in
entering avalue, use the ‘bell’ character, either with PRINT CHR$(7) or VDU
7.

As well as using sound to attract a user’s attention, it is possible to
emphasize text in various ways, to draw attention to it or simply to make a
presentation more attractive.

When we consider the ways of producing attractive presentation we must
distinguish Mode 7, which is different from all the other modes.

11.6.1 Mode 7

The method of producing specia displays in Mode 7 is quite unlike that in
other modes. These are not produced by BASIC commands such as
COLOUR, but by ASCII codes printed (invisibly) on the screen. Only
predefined characters and shapes can be used, at a fixed set of character
positions, and colours are fixed for awhole character position at atime.

The text display consists of 25 lines of 40 characters, making 1000
character cells, and all the screen control is through the contents of these cells.
If a cell contains one of the special ASCII codes controlling the display, it
modifies the way in which the characters to the right of the code on the same
line are interpreted.

Try the following commands in Mode 7.

PRINT " ABCD"; CHR$(129) ; " ef gh" ; CHR$(130) ; "1 JKL"
ASCII codes 129 and 130 alter the colour of the rest of the line to red and
green respectively. Notice that the codes each occupy a character cell. It is not
possible to produce a continuous line of text, such as

ABCDef gh
with, say, the lower case letters of different colour to that of the capitals. The

same range of steady colours is available in Mode 7 as in Mode 2 (with the
exception of black), and the codes that produce them are shown in Table 11.1.

206

Table11.1 Special display codesfor Mode 7.

Special effects
Colour Code Code Purpose
red 129 136 flash on
green 130 137 flash off
yellow 131 141 double height characters
blue 132 140 normal characters
magenta 133 157 new background colour
cyan 134 156 black background
white 135 152 conceal display

It is possible to make the colours flash, but unlike other modes the flash is
between the single colour and the background, and the onloff periods are of
unequal duration.

As we have seen before, there are two ways to produce ASCII codes. One
way isto use CHR$() from within a PRINT statement. The second way, which
is more convenient when a string of ASCII codes i to be issued, as will
sometimes be necessary, is via the VDU command. All the values following
VDU are issued as ASCII codes. In other display modes, VDU is used as the
most convenient way to issue low value ASCII control codes which require
parameters, but in Mode 7 it will equally well issue the high values needed.

There is actually a third way to produce the display control codes.
Pressing <SHIFT> and a function key simultaneously will produce the
character with ASCII code of 128 plus the function key number. This is
primarily designed for use in direct mode, but the characters can be embedded
in PRINT strings to produce, for example, coloured text from within a
program. Try

PRI NT " ABCD<SHI FT-f 1>ef gh<SHI FT-f 2> JKL"

This method has the additionial advantage that the colours show up when the
program is listed in Mode 7, but watch out for the fact that the codes will not
be apparent in a printer listing of the program.

Just as in the other modes, it is possible to change the background from
black to a colour, or back again to black. Code 157 must be issued after the
code of the background colour you want. You will then need to issue a new
colour code for the foreground text, or it will be invisible. For example, to
print in green on ared background you would need

VDU 129, 157, 130: PRINT "TH S MAKES ME SEE RED'
Thisiswhere the VDU command becomes particularly useful.
You will see that the above line creates a complete background line in red.

You could prevent this by finishing with code 156, which causes the

207

background to revert to black. However, the leading ‘ spaces’ of the two codes
cannot be prevented from appearing in red. Try

VDU 129, 157,130: PRINT "ON AND OFF";: VDU 156: PRINT

Another special effect in Mode 7 is the production of double height (but
normal width) characters, which is initiated by code 141 (and switched off, if
necessary later in the line, by 140). An unexpected feature, but which can be
understood from the strict way that Mode 7 works with character cellsonly, is
that double height letters must be printed twice on successive lines, both lines
being identical (including code 141 at the start). Try the effect out with lines
such as

PRINT CHR$(141);"A BI G MESSAGE': PRINT CHR$(141); "A BIG
MESSAGE"

Try aso the effect of disobeying the rules, with for instance
PRINT CHR®(141);"NOT A": PRINT CHR$(141) ;" MATCH'

There are four obvious ways when using Mode 7 to emphasize a section of
text.

1. Use coloured text.
2. Usedouble height text.

3. Useflashing text. Thisis particularly eye catching, and can be used to tell
the user what to do — for example

PRINT CHR$(136);"Press space bar to continue"

In other contexts it should be used in moderation or it can become
overpowering.

4. To print text on awhite or coloured background (unlike other modes, it is
not possible to have black on a coloured backgound).

The following program illustrates all these techniques.

Example 11.9

10 MODE 7

20 OLS

30 DI M DY$(7)

40 FOR =1 TO 7. READ DY$(1): NEXT |

50 PRINT TAB(10, 6); CHRS(130) ; CHR$(141) ; " SPELLI NG TEST"
" TAB(10) ; CHRS(130) ; CHR$(141) ; " SPELLI NG TEST"

208

60 PRINT TAB(10, 9); CHR$(131); "Days of the week"

70 FOR 1=1 TO 10

80 DAY=RND(7)

90 PRINT TAB(0, 12);"Wat is the nane of day "; DAY, " of the

100
110
120

130

140
150
160
170

180
190

11.6.2

With Modes 0 to 6 amost unlimited effects are possible, but this would
generaly involve the use of graphics. With Modes 1, 2 or 5 dramatic effects
with colour are also possible. The simple commands available for graphics,
plus related commands also applying to text, are dealt with in Chapter 6. We
shall therefore deal with just one technique, which can be used in all modes -
printing in inverse, that is black on a white background. If you wished, it
should not be difficult to modify the procedure to print in one colour on a

Week? "

PRINT SPC(14);: INPUT DAY$

PRI NT TAB(0, 12) ; SPC(80)

| F DAY$=DY$(DAY) THEN PRI NT TAB(13,12); CHR$(129);

CHR$(136) ; " CORRECT": SC=SC+1: ELSE PRINT TAB(O0, 12);
CHR$(132); "Day ";DAY;" of the week is spelt:-";

CHR$(136) ; DY$(DAY)

PRI NT TAB(5, 23) ; CHR$(136); CHR$(134);"Press any key to
continue": A$=CET$

PRINT TAB(0, 23); SPC(40) ;

NEXT |

CLS

| F SC>=8 THEN PRI NT TAB(10, 10); CHR$(141);

" CONGRATULATI ONS"' TAB(10) ; CHR$(141) ; " CONGRATULATI ONS"
PRI NT TAB(7, 15); CHR$(133); " You scored ";SC " out of 10"
DATA SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRI DAY
SATURDAY

Modes 0 to 6

differently coloured background.

Example 11.10

The following procedure will print in inverse the string or string variable
TEXTS$, in any mode (even Mode 7, but here the text has to be in blue,

because you cannot print in black in this mode).

10000 DEF PROC i nver se(TEXT$)

10010 LOCAL Wl TE

10020 A%135

10030 MD=USR(&FFF4)

10040 MD=(MD AND &FFFFFF) DIV &10000

10050 | F MD=7 THEN GOTO 10130

10060 Vi TE=1 10070 | F MD=1 OR MD=5 THEN VM TE=3
10080 |F MD=2 THEN Wl TE=7

10090 COLOUR 128+WH TE: COLOLR 0

10100 PRI NT TEXTS:

209

10110 COLOUR 128: COLOUR WHI TE
10120 ENDPROC

10130 VDU 157,132: PRINT TEXTS;
10140 VDU 156, 135

10150 ENDPROCC

Exercise 11.11

Use PROC inverse above to enhance one of the earlier programs, or a program
of your own, with inverse text.

11.7 MENU DRIVEN PROGRAMS

A useful feature of a disc-based BBC microcomputer is its ability to function
as a ‘turnkey’ system — which automatically loads and runs the required
program when <SHIFT-BREAK> is pressed. The method of doing this was
explained in Section 8.5. If a turnkey system is simply required to run the
main program on the disc, then the !BOOT file will probably be a *EXEC
ASCII file containing the single command CHAIN "<main program name>".

The idea of aturnkey system is that it should make it as easy as possible
for a complete non-programmer to get the program on the disc up and
running. Very often, a disc will contain more than one program; the standard
way of alowing the user to select the particular program that he wants is by
means of amenu. A list of the available programs is presented to the user, like
a restaurant menu, and the user selects one by a single key — usually either a
number or letter. Instead of the main program on the disc, the 'BOQOT file
must CHAIN a preliminary menu program.

As an example, suppose that a disc contains 3 main programs

1. PAY - aprogram that deals with the company payroll.
2. TAX - aprogram that deals with tax liabilities.

3. BONUS - a program which deals with the company’s bonus and
incentives scheme.

Example 11.11

The program (MENU) below shows a suitable preliminary menu program for
amenu driven turnkey system.

10 REM MENU PROGRAM

20 CLS

30 DI'M P$(3)

40 P$(1)="PAY"

50 P$(2)="TAX

60 P$(3)="BONUS"

70 PRINT "The prograns avai LabLe on this disc"
80 PRINT "“deal with:"

90 PRINT '"1) The conpany payrol|"

210

100 PRINT '"2) Tax liabilities"

110 PRINT ""3) The conpany's bonus and incentive

120 PRINT "scheme"

130 PRINT """Press 1, 2 or 3 for your choice"

140 A$=GET$

150 | F VAL(A$)<1 OR VAL(A$)>3 THEN PRINT "YOU MUST PRESS KEYS
1, 2 OR 3": GOTO 140 160 CHAIN P$(VAL(AS$))

It is frequently convenient in aturnkey system for the last executed statement
of the programs on the disc (PAY, TAX and BONUS in the above example) to
bring the user directly back to the menu by rerunning the menu program. The
command

CHAIN " MENU'
will achieve this.

Example 11.12

A more elaborate menu, which is another example of the use of attractive
presentation, is given in the program below.

5 *TV0, 1

10 MODE 1

20 DI M PROGS(6)

30 PROGS(1) =" PAY"

40 PROGS(2) =" TAX"

50 PROGS(3) =" BONUS'

60 PROGS(4)="PROFIT"

70 PROGS(5) =" BALANCE"

80 PROGS(6)=" | NVESTMENT"

90 PRINT TAB(O, 3);"This disc contains progranms for the"
100 PRINT ' "conpany's financial affairs”

110 PRINT

120 STARS$=STRI NGB(40, "*")

130 PRINT STARSS;

140 GAP$="*"+STRING$(38," ")+"*"

150 PRINT GAPS;
160 PRINT "* 1) The conpany payroll *
170 PRINT GAPS;
180 PRINT "* 2) Tax liabilities *h
190 PRINT GAPS;
200 PRINT "* 3) Bonus and incentive schene *
210 PRINT GAPS;
220 PRINT "* 4) Profit and | oss account *h
230 PRINT GAPS$;
240 PRINT "* 5) Bal ance sheet *
250 PRINT GAPS;

211

260 PRINT "* 6) The conpany's investments *
270 PRINT GAPS$;
280 PRINT "* 7) END *
290 PRINT GAPS ;
300 PRINT STARS$
310 PRINT "Press: ";
320 PROC_inverse("<SPACE BAR>")
330 PRINT " to nove up and down"
340 PRINT " the list"
350 PRINT ' SPC(7);
360 PROC i nverse("<RETURN>")
370 PRINT " to run required progrant
380 VDU 23;8202;0;0;0;: REM TURN OFF CURSOR
390 VDU 19,1, 8;0;: VDU 19, 130, 143;0;
400 PROGNUME2: DI RN=-1: CURS=11
405 PROC_arrow
410 REPEAT
420 CH$=GET$
430 | F CH$=" " THEN PROC arrow
440 UNTIL CH$=CHRS$(13)
450 MODE 1: REM ALSO RESTORES CURSOR
460 | F PROGNUMK7 THEN PRINT TAB(7, 15);: PROC_i nverse
("Loading requested progrant'): B%PROGNUM C%1: CHAIN
PROGH(PROGNUM
470 END
10000 DEF PROC i nver se(TEXT$)
10010 COLOUR 129: COLOUR 0
10020 PRINT TEXTS;
10030 COLOUR 128: COLOR 1
10040 ENDPROC
20000 DEF PROC arrow
20010 PRINT TAB(2,CURS);" ";
20020 1 F PROGNUMEL OR PROGNUME7 THEN DI RN=-DI RN
20030 PROGNUMEPROGNUMHDI RN
20040 CURS=2* PROGNUMF7
20050 COLOUR 1: COLOUR 130
20060 PRINT TAB(2, CURS);"->";
20070 COLOUR 4: COLOUR 128
20080 ENDPROC

Exercise 11.12

Write a 'BOOT file and menu program so that, when <SHIFT-BREAK> is
pressed, the programs on the disc are automatically catalogued. Then the user
is asked which program is to be run, the answer is loaded into a string P$, say,
and that program is CHAINed.

212

Exercise 11.13

Write a menu driven program to carry out one of a set of possible
mathematical operations on a provided argument. The program should first
use GET to choose from the following list of operations on a number N

reciproca of N

ten to power N
factorial of N

PI to N decimal points
N random numbers

Use a second GET to request a single number argument for the operation, with
an explanatory request.

(Factorial N can be obtained from PROD=1: FOR J1 TO N: PROD=
PROD*J. NEXT J).

213

214

