
Appendix A

SPECIAL FEATURES OF THE BBC
MICROCOMPUTER

In this appendix we shall briefly review all the features particular to the BBC
microcomputer which have not been specifically dealt with elsewhere.

THE KEYBOARD

The BBC microcomputer keyboard includes a full 96 character ASCII
keyboard, including lower case letters, although one symbol (ASCII code 96)
is used as the pound sign instead of the grave accent (`), which is the standard
symbol. It has both CAPS LOCK and SHIFT LOCK keys, the former giving
upper-case letters but the lower-case option on all the special symbol keys.
This is the default option when the computer is switched on, because it is most
appropriate for programming, where upper case must be used for all BASIC
keywords. Both CAPS LOCK and SHIFT LOCK are toggle switches rather
than press and release keys as on a normal typewriter. When either key is
engaged, this is shown by an illuminated LED below the key. (N.B. When
both LEDs are illuminated together, this is quite a separate function,
indicating that computer output is suspended. This can happen either when
listing to the screen in paged mode, or during output to a printer which has a
full buffer.)

A number of the keys have the standard ASCII control code functions

CTRL RETURN ESCAPE DELETE TAB

The BREAK key is the most powerful key on the computer. Unless disabled,
it will interrupt and destroy the operation of any program, no matter in what
state, and will clear the computer of most hung states. It clears the program,
although it can normally be recovered with the command OLD, and puts the
computer back into Mode 7 restoring many defaults. An even more powerful
<BREAK> is obtained when the CTRL key is depressed in conjunction with
the BREAK key, and this combination cannot be easily disabled. <BREAK>
has yet other effects in combination with other keys, in particular the SHIFT
key; <SHIFT-BREAK> is used to auto-boot the disc or Econet filing system.

214

When <BREAK> is pressed in conjunction with any other key, such as
<SHIFT> or <CTRL>, it is necessary to keep the other key pressed while the
BREAK key is released first. The reason for this is that while <BREAK> is
pressed, the microcomputer is completely disabled. When <BREAK> is
released, the microcomputer reads the keyboard to see whether another key is
being pressed, and acts according to which key it is, if any.

The five cursor control keys (the four arrow keys plus the COPY key) on
the right hand side of the keyboard are used for screen editing. Pressing any
one of the arrow keys invokes a second cursor, the copy cursor, which can
then be moved anywhere on the screen (with wrap-round) by the arrow keys.
Wherever the copy cursor is on the screen, the COPY key can be used to ‘pick
up’ the character at that point and build it into the current line of input. Thus a
program line with minor errors can easily be edited without complete re-entry,
by copying the old line in this way, while making any necessary corrections
by typing in or deletion as necessary.

OPERATING SYSTEM COMMANDS

It is important from the start to distinguish two types of commands that can be
issued to the BBC computer. Most commands, such as PRINT, MODE, VDU
and CLS, are BASIC commands and are handled by the BASIC interpreter.

There is another set of commands that is handled directly by the Machine
Operating System (MOS for short, or just OS). All of these commands begin
with a star, and this tells the BASIC interpreter that the command that follows
is to be passed directly to the OS. If the OS does not recognize the command
it is passed on to any paged ROMs present in the computer, starting at the
right-hand end of the bank of ROMs. Most such commands are likely to be
intended for the filing system ROM. If none of the ROMs claim the
command, it is treated as an abbreviation of the *RUN command, and any file
in the filing system having the same name as that following the star will be
executed as a machine code program. To further emphasize the difference
between BASIC and Operating System commands, note that the latter can be
handled even if] the computer does not possess a BASIC ROM, or is currently
operating in a different language, such as Wordwise or Pascal.

Two points should be noted about Operating System commands. First,
because the command is passed on to the Operating System, no BASIC
commands can follow an OS command on the same line.

Second, OS commands can be issued either in upper case, like BASIC
commands, or lower case. This includes filenames used for any of the filing
Systems; the name will appear in any listing in the form that was used when
the file was created, but it will be recognized subsequently whether in upper
or lower case.

THE USER-DEFINED FUNCTION KEYS

The most eye-catching keys on the keyboard are the set of 10 red keys along
the top, marked f0 to f9. These are called the user-defined function keys,

215

because they can be programmed by the user to carry out any function he
wishes. When a function key is pressed, the contents programmed into the key
are issued to the computer just as if they had been typed in at the keyboard.
This can be very usefully employed to issue frequently used commands, or
even that part of a command which does not alter. The command to program
the key marked fn (where n=0 to 9) is

*KEY n <any text you wish to be issued> <RETURN>

For instance, you could set up key 0 to issue the word RENUMBER at a
single keystroke, after which you could add the starting line number and
increment and press <RETURN>. The command needed would be

*KEY 0 RENUMBE R <RETURN>

Suppose, however, that you are happy with the default values for
RENUMBER. It still requires two keystrokes to complete the command
because you have to press the <RETURN> key. This key cannot be directly
programmed into the function key, because it is already used to terminate the
programming line for the key. However, there is a way of including a
<RETURN> key code, or any other control code, into the function keys. You
must type the symbol ll (the one over the backslash at the top right of the
keyboard), followed by the key whose control version is what you want. For
<RETURN>, which is actually the same as CTRL-M, you therefore use \\M.
Thus you could program key f0 to save you even having to press <RETURN>
when renumbering, by

*KEY 0 RENUMBER |M <RETURN>

Other control codes could be printed the same way. For instance, to switch
into paged mode, LIST, and switch paged mode off automatically so that you
do not accidentally forget, you could issue

*KEY 1 |N LIST |M |O <RETURN>

Other commands frequently programmed into the function keys include RUN,
LIST, OLD and mode changes. Although LIST, for example, has a two
character abbreviation, programming a function key still reduces three
keystrokes to one, counting the <RETURN> as well.

It is also possible to program the BREAK key to act as a function key
(key number 10, which is logical, lying next to f9 as it does), although this
does not alter its normal BREAK function which is carried out before issuing
the programmed responses. It is quite common to use this feature to prevent
users breaking out of a program, by programming the BREAK key to rerun
the program with the following definition

*KEY 10 OLD |M RUN |M

216

Finally, if you need so many, the five cursor keys can be disabled and treated
instead as yet more function keys, numbered 11 to 15, by the command

*FX 4,2

THE *TV COMMAND

The *TV command has two parameters and two purposes. The first use is to
move the display up or down the screen. The default is *TV 0, but you can
move the display up n lines by

*TV n

(there is a second parameter but this can be omitted unless you also want to
switch off the interlace), or down n lines by

*TV 256-n

The command would be most useful to move the picture up if the current line
of input is off the bottom of the screen. Note that you will not see the effect
until after a mode change. Also, startling effects will be obtained if too large a
value of n is used.

The second parameter to *TV determines whether the interlace is turned
on or not. Interlace is the effect whereby a TV or monitor picture is built up of
two interlaced halves containing alternate lines of the 625 line display.
Although necessary on a TV set to display the complete picture, when
displaying computer output it can give an unpleasant slight flickering effect.
You can turn it off by the command

*TV 0,1

The two halves of the display will then be superimposed, giving a rock-steady
picture. Note that the effect again only comes into operation after the next
mode change (which could of course be into the same mode as before), and
that interlace cannot be turned off in this way in Mode 7 (but see Section 6.4).

SOUND

Like graphics, the sound facilities on the BBC computer are very versatile, but
the complex uses of sound, particularly the ENVELOPE command, are
beyond the scope of this book.

The SOUND command by itself can be used to produce pure tones of any
frequency, volume and length, and to mix up to three tones into chords. The
command has the from

SOUND <channel>,<amplitude>,<pitch>,<duration>

We can briefly consider each of the parameters to SOUND in turn.

217

1. The first parameter, <channel>, can take four possible values, 0 to 3, but
channel 0 is a special ‘noise’ channel. If a series of SOUND commands
for different channels are issued in succession, this will produce the effect
of chords.

2. The second parameter, <amplitude>, must be a number between 0 (zero
amplitude) and − 15 (maximum loudness).

3. The third parameter, <pitch>, determines the pitch, or frequency, of the
tone. It is a number from 0 to 255, each step corresponding to a change in
pitch of a quarter of a semitone. Since there are 12 semitones to an
octave, an increase in the pitch number of 48 gives a one octave change in
pitch. Middle C has a pitch value of 53, so C in the octave below is 5, and
in the octave above is 101.

4. The final parameter, <duration>, is a number which can take a value from
1 to 255, and is in units of twentieths of a second.

Try the following sequence of SOUND commands

FOR J=1 TO 8: SOUND 1,-15,57+4*J,6: NEXT J

VDU COMMANDS

VDU commands are so called because they all govern display (on the VDU)
in some way or other. Many are related to graphics and are dealt with in
Chapter 6, but others are of more general application, and these are described
below. All the VDU commands are summarized in Appendix C.

VDU 1 can be used to send a character to the printer but not to the screen.
This is useful where a special code needs to be sent to a printer to switch on
underlining or perform other functions of a similar type.

VDU 2 and VDU 3 are used before sending output to a printer and to
terminate the output respectively. In immediate mode, the control-codes
<CTRL-B> and <CTRL-C> are more convenient.

VDU 14 (CTRL-N) is very useful when listing programs or trying to
examine large amounts of program output on the screen. About twenty lines of
output at a time are displayed, then the computer pauses until the SHIFT key
is pressed (no other key will do). Note that it remains in effect even when a
program is subsequently running, and it can cause the computer to appear to
‘hang’ , without reason. VDU 15 (CTRL-O) cancels the effect of VDU 14, but
does not come into effect until the current listing or program run is ended.

VDU 21 (CTRL-U) has two different effects. If issued from the keyboard,
it deletes the whole of the current line. From within a program, it has the
effect of stopping all subsequent output (both text and graphics) from reaching
the screen. This effect is cancelled by VDU 6.

218

Appendix B

SELECTED *FX COMMANDS

FX is short for ‘effects’, and is the command used for a range of special
facilities or effects on the BBC microcomputer. The *FX commands can also
be invoked by a call to OSBYTE, address &FFF4, with the *FX number in the
accumulator (or A %). Certain calls return ‘answers’ in the X and Y index
registers, and OSBYTE calls are the only way to use these particular effects. A
very full list of the *FX calls is given in the Advanced User Guide by Bray,
Dickens and Holmes, published by the Cambridge Microcomputer Centre.
Below is given a selection of the *FX calls which are most useful to the
BASIC programmer.

*FX 0

Reports the version number of the operating system. (At the time of
publication, the current operating system is 1.2, with earlier versions being 0.1
and (briefly) 1.0.)

*FX2,n

Selects the source of input, which can be either the keyboard or the RS423
port.

n=0 selects the keyboard (default)
n=1 selects the RS423 port
n=2 selects both keyboard and RS423 port

*FX3,n

Selects which output streams receive future output. The first three bits of I!
control: the RS423 output (bit 0, set to enable output), the screen (bit 1, clear
to enable output) and the printer port (bit 2, clear to enable Output). Thus
*FX3,1 enables all three streams, *FX3,6 disables all streams. The default is
n=0 (screen and printer enabled). The printer must still be selected by VDU 2,
(or CTRL-B) but setting bit 3 will both enable and select the printer regardless
of whether a VDU 2 has been issued.

219

*FX4,n

Controls the action of the cursor control keys and the COPY key. n=0 gives
normal editing (default), n=1 makes the keys act as normal keys with ASCII
codes 135 to 139, while n=2 makes them act as extra programmable function
keys, 11 to 15 (see Section 11.2.2 for further details).

*FX5,n

Selects the printer type. n=1 selects the parallel printer port (default), n=2
selects the RS423 port, n=4 selects the Econet output. See Appendix K also.

*FX6,n

Selects the character (ASCII code n) to be suppressed for printer output. See
Appendix K for the use of this call.

*FX7,n and *FX8,n

These calls set the baud rate for the RS 423 port for input (*FX7) and output
(*FX8) according to the following table

n=1 75 baud
n=2 150 baud
n=3 300 baud
n=4 1200 baud
n=5 2400 baud
n=6 4800 baud
n=7 9600 baud
n=8 19200 baud

*FX9,n and *FX10,n

Set the duration of the first (*FX9) and second (*FX10) flashing colours. n is
the duration in fiftieths of a second (default n=25).

*FX11,n

Sets the delay time before keys start to auto-repeat. n is the delay in
centiseconds, n=0 disables auto-repeat (default n=32).

*FX12,n

Sets the auto-repeat period to n centiseconds. A small value of n thus gives
rapid repetition. n=0 restores the default value (8 centiseconds) and also the
default for the auto-repeat delay.

*FX15,n and *FX21,n

These calls flush, or empty, various internal buffers. *FX15,0 flushes all
buffers, and *FX15,1 flushes the currently selected input buffer (see *FX2),
which will usually be the keyboard buffer. *FX21 flushes specified buffers, as

220

follows

n=0 keyboard buffer (will usually be equivalent to *FX15,1)
n=1 RS423 input buffer
n=2 RS423 output buffer
n=3 printer output buffer
n=4-7 flush SOUND channels 0 to 3 respectively
n=8 speech synthesis buffer

*FX16,n

Enables n of the ADC channels. (n=0 to 4. n=0 disables all channels.)

*FX17,n

Forces the start of a conversion on ADC channel n.

*FX18

Cancels any strings stored in the user-defined function keys.

*FX20

Used to ‘explode’ or expand the number of user-defined characters. See
Section 6.4.3.

*FX119

Closes any files open for *SPOOL output or *EXEC input.

OSBYTE call 121 (&79)

This *FX must be made as an OSBYTE call, because a value is returned in the
X register (see Section 10.8.4). If called with X=0, it scans the keyboard and
returns the value of any key pressed, or 255 (&FF) if no key is pressed. Unlike
INKEY(-X) it can be used not just to detect a particular key, but Whether any
key is pressed, and which it is. The number of the key pressed, which is
returned in the X register, is related to the INKEY number, being
ABS(INKEY number)-1. For example, SHIFT is 0, SHIFT LOCK is 80, → is
121.

OSBYTE call 131 (&83)

This OSBYTE call returns the value of the OSHWM (the OSHWM is the
default value of PAGE − see Section 10.3) in the X and Y registers (low byte
in X, high byte in Y).

OSBYTE call 132 (&84)

Returns the address of the bottom of the section of RAM being used for screen
display (default value of HIMEM).

221

OSBYTE call 135 (&87)

Returns in the X register the character value of the character at the text cursor
position, and in the Y register the graphics MODE number.

*FX138,m,n

Inserts character with ASCII code n into the input buffer specified by m (m=0
for the keyboard buffer, and m=1 for the RS423 input buffer). See Section
10.7 .2 for the way in which *FX138 can be used.

*FX200,n

This affects the action of <ESCAPE> and <:BREAK>. If bit 0 is set to I it will
disable <ESCAPE:>, and if bit 1 is set to I it will clear memory on
<BREAK>. Thus *FX200,3 will prevent users from breaking out of a
program with <ESCAPE>, and stop them getting back to the program with
OLD after a <BREAK>.

*FX201,n

*FX201,1 will disable the keyboard, *FX201,0 restores normal keyboard
action.

*FX202,n

As an OSBYTE call, this allows you to read (from the X register) the status of
the keyboard locks etc, according to the following list, but is probably most
useful as a means of controlling the SHIFT LOCK and CAPS LOCK from
within a program, to force user input into the case desired for example. Bit 4
controls CAPS LOCK (cleared to 0 to set the lock) and bit 5 controls SHIFT
LOCK (again 0 sets the lock). Thus *FX202,32 will switch on the CAPS
LOCK. The full effect of all bits is

bit 3 returns 1 if SHIFT pressed
bit 4 1 for no CAPS LOCK
bit 5 1 for no SHIFT LOCK
bit 6 returns 1 if CTRL pressed
bit 7 1 to enable SHIFT

SHIFT enable allows the SHIFT key to work in reverse when a lock is in
operation, so that you can type in lower case without disengaging CAPS
LOCK or SHIFT LOCK.

*FX212,n

Sets the amplitude for the BELL sound. The value of n should be set to 8><
(<amplitude value>+31) where <amplitude value> is the usual number 0 to -
15 as used in the SOUND command. The default value for n is 144.

222

*FX213,n

Sets the pitch of the BELL sound. n is the normal pitch parameter of the
SOUND command (default value 101).

*FX214,n

Sets the duration of the BELL. n is the usual duration parameter of the
SOUND command (default value 7).

*FX219,n

Sets the ASCII code returned by the TAB key to be n. The default value is 9
(move cursor right) but it can be set to any value, including any control-code
or soft key code. Thus *FX219,12 would turn the TAB key into a screen clear
key.

*FX225-228,n

These calls control the effect of the function keys in various combinations, as
follows

*FX225,n function keys alone (default n=1)
*FX226,n SHIFT+function keys (default n= 128)
*FX227,n CTRL+function keys (default n=144)
*FX228,n CTRL-SHIFT+function keys (default n=0)
n=0 makes the key combinations have no effect
n=1 makes them act as function keys
n>1 n acts as a base number, such that the key produces the

ASCII code n+function key number

The default values for *FX226 and *FX227 are chosen to enable teletext
colour and graphics codes to be produced readily.

*FX229,n

n=1 causes the ESCAPE key to generate its ASCII code (27) instead of
the normal ESCAPE action

n=0 restores the normal ESCAPE action

223

Appendix C

SUMMARY OF THE VDU
COMMANDS

In the following list, items marked with an asterisk (*) are ‘standard’ effects of
those particular control-codes, such as the <RETURN> character, CTRL-M.
Items marked with a plus sign (+) are equivalents of BASIC commands.

VDU Control Extra Action
number control bytes

required

0 @ 0 None
1 A 1 Next character not sent to the screen

(used to send output to the printer
only)

2 B 0 Future output sent to the printer
3 C 0 Stop output to the printer
4 D 0 Cancel the effect of VDU 5
5 E 0 Future text written at graphics cursor

position
6 F 0 Cancel the effect of VDU 21

*7 G 0 Create a short beep
*8 H 0 Backspace (move cursor left one

space)
*9 I 0 Forwardspace (move cursor right one

space)
*10 J 0 Linefeed (move cursor down one

line)
*11 K 0 Reverse linefeed (move cursor up

one line)
+*12 L 0 Clear text screen (new page, CLS)

*13 M 0 <RETURN> (carriage return)
14 N 0 Switch on page mode for output
15 O 0 Switch off page mode

+16 P 0 Clear graphics screen (CLG)
+17 Q 1 COLOUR command

224

VDU Control Extra Action
number character bytes

required

+18 R 2 GCOL command
19 S 5 Reassign logical colour
20 T 0 Cancel all VDU 19 assignments
21 U 0 Immediate mode: cancel line

Program mode: switch off future
output

22 V 1 Changes display mode but does not
reset HIMEM

23 W 9 Specify user-defined character
24 X 5 Set graphics window

+25 Y 5 PLOT command
26 Z 0 Cancel VDU 24 and VDU 28 and

home text and graphics cursors
*27 [0 ESCAPE character. When issued by

a program, does nothing
28 \ 4 Set text window
29] 0 Set a new graphics origin
3 0 ^ 0Home text cursor to top left of

screen
31 _ 0 TAB(X,Y)

+127 0 DELETE character

225

Appendix D

BUGS AND UNEXPECTED
EFFECTS IN BBC BASIC

Inevitably there are some bugs in the BBC microcomputer software. A
comprehensive list is published by the MEP Software Unit. The MEP list
includes bugs in the assembler, network filing system and quirks as well as
bugs. In this appendix the most serious bugs in those parts of the system
covered by this book are reported.

1 Renumbering on BREAK and OLD

When BREAK is pressed, the first byte of the program in memory is set to
&FF to clear the program. This byte normally represents the high byte of the
first line number. When the OLD command is issued, it simply sets the first
byte of the program to zero to remove the end of program marker. If the line
number was originally greater than 255, it will be reduced to the low byte of
the number − e.g. 300 will become 44, 1000 will become 232.

2 DIM statement

The BASIC interpreter should trap DIM statements which require more
memory than is available, and report a ‘Bad DIM’ error. Occasionally the
interpreter misses the error; this occurs when at least the lower six bits of
every dimension are set − e.g. DIM A(63,127 ,255). Other dimensions such as
DIM A(64,126,255) will be trapped correctly. The result can be disastrous,
because the interpreter clears all the memory set aside for the array, and may
even overwrite crucial areas of memory used by the system. The only solution
then will be to switch off the computer.

3 DATA statement

A DATA statement must be the first statement on a line, or it will be ignored.
This is not perhaps a bug, but certainly a limitation of which you should be
aware.

More seriously, if the special BBC feature of adding a line number to
RESTORE is used to set the DATA pointer to that line instead of back to the
very start of the program, data will be read from that line even if it is not a

226

DATA statement. In this case, data is assumed to start after the first comma on
the line.

4 RENUMBER command

If, on RENUMBER, line numbers would exceed 32767, they are treated MOD
32768, that is they ‘wrap round’ instead of generating an error.

5 Undefined variables

A useful safety feature of BBC BASIC is that variables must be assigned a
value before they can be used. There is an exception to this when the variable
appears on both sides of an assignment statement. The initial value of the
variable is taken as zero, so the statement

J=J+10

will result in J taking the value 10 if it has not previously been assigned a
value.

6 INKEY statement

If INKEY(X) is used with a value of X greater than 255, then the first time
that the statement is executed, the effective value of X is reduced by 256. The
solution is to issue a previous INKEY with an argument of 1.

7 CLEAR statement

Users should be aware that the CLEAR statement does not merely clear
variables, it also empties the BASIC stack and clears the data pointer and
LOMEM. The BASIC stack contains addresses of the start of loops and return
addresses of subroutines, procedures and functions, so CLEAR should never
be issued from within a FOR or REPEAT loop or sub-program.

8 Variable names

Variable names can include underline symbols and pound signs as well as
letters and numbers. The former is particularly useful to give an impression of
a space, as in New_X.

9 Double-height characters

When using double-height characters in Mode 7, the line immediately below a
line containing the double-height character 141 becomes a special line.
Characters following another character 141 generate lower halves of the
characters, thus enabling the double-height characters to be completed, but
‘normal’ characters, before the 141 or after a character 140, do not show up.
This is not really a bug, but can be a restriction in certain circumstances. A
consequent effect is that, when the upper of a pair of double height character
lines scrolls off the top of the screen, the second line acts as an upper half and
suppresses normal characters on the next line.

227

10 Incorrect catalogue

When discs are in use, the latest catalogue information is stored in the
computer on pages 14 and 15 (&E and &F). Under certain circumstances,
particularly if the disc drive has not stopped spinning since the last disc
access, the DFS assumes that it still knows what the disc contains and does
not read the catalogue again. If you have swapped discs in the meantime, the
catalogue information would be incorrect, and any writing process using the
incorrect catalogue could be a disaster.

Try loading a program, and before the disc drive has stopped spinning,
open the drive door and remove the disc. The drive will keep running, and
while it is empty type *CAT. The old catalogue list will appear even though
the drive is empty.

The key point to remember is always to let the drive stop spinning before
issuing any command that writes to a disc.

11 Limitations on *SPOOL

Text produced by the DFS cannot be written into an ASCII file.

The following bugs occur in BASIC I, but have been corrected in BASIC II.

12 ABS function

In BASIC I, ABS may not be preceded by the unary minus operator (i.e. a
minus sign to invert the sign of the function, rather than to subtract it from
another value). Thus

PRINT -ABS(-1)

is not allowed, although

PRINT 3-ABS (-1)

is permissible.

13 COUNT function

In BASIC I, the value returned by COUNT is not zeroed after a mode change,
so that after a mode change in the middle of a line of output COUNT would
include the old line in its total.

14 ON...ELSE

The structure of combining ELSE with ON...GOTO and ON...GOSUB is not
allowed within procedures and functions in BASIC I.

15 EVAL function

In BASIC I, the EVAL function will not correctly evaluate pseudo-variables.
Instead it treats them as ordinary variables, and reports ‘no such variable’.

228

16 INSTR command

In BASIC I, this command contains a serious bug whereby the stack is
corrupted if the search string is larger than the original string. This bug is
explained more fully in Section 4.4.

17 ON ERROR trap

Certain line numbers cannot be used with ON ERROR GOTO in BASIC I.
Line numbers such as 9999 cause the machine to hang up completely if an
error occurs.

229

Appendix E

DIFFERENCES BETWEEN BASIC I
AND BASIC ll

The second release of BASIC on the BBC microcomputer has a number of
improvements over the original version, and these are listed below. In
addition, a number of the bugs have been corrected. These bugs are described
in Appendix D, and are simply listed below in brief.

The first release of BASIC is now commonly referred to as BASIC I, and
the revision is called BASIC II. The easiest way to determine which version of
BASIC you have is to press <BREAK>, and then type the command
REPORT. The computer replies with a copyright message, which includes the
dates 1981 and 1982 for BASIC I and BASIC II respectively. The following
bugs have been corrected in BASIC II

• ABS can now be used with a preceding minus sign.

• COUNT is now properly reset on a mode change.

• ELSE may now be used with ON...GOTO and ON...GOSUB within
procedures and functions.

• EVAL will now handle pseudo-variables.

• INSTR can now handle a search string longer than the source string.

• ON ERROR will now handle all line numbers correctly.

The following improvements have been made in BASIC II

INPUT

This will now accept the semicolon as a separator for all items, as well as the
comma. This brings it into line with other implementations of BASIC, where
the command has the form

INPUT "Leading string";A,B,C

OPENUP

The command OPENUP is introduced for opening data files for reading and
writing (i.e. updating), and OPENIN is reserved for reading only. This feature
is fully discussed in Section 9.3.1.

230

OSCLI

The command OSCLI followed by a string or string variable passes the string
to the command line interpreter. In BASIC I it was necessary to load the string
into memory, set a pointer to the string via X% and Y% and CALL &FFF7.
Use of the CLI is discussed in detail in Section 10.7.1.

LN, LOG, SIN, COS

These functions have all been increased in accuracy. The effect will be most
noticeable near the limits of range of the functions.

PRINT (and STR$)

Numbers are printed with slightly greater precision.

EQUB, EQUW, EQUD, EQUS

Four new assembler pseudo-operations are provided, to transfer values to
bytes within machine code. The operations respectively define a single byte,
word (double-byte), double-word (four bytes) and string. The instructions are
used in statements such as

.values EQUB &0D
 EQUW &1234
 EQUD &01020304
 EQUS "END OF MESSAGE"

which store the specified values in memory starting at the address specified by
the label ‘values’.

231

Appendix F

THE RESIDENT VARIABLE @%

The detailed features of the layout of numbers output by the PRINT command
are governed by the resident integer variable @%. Like all integer variables it
is a four byte number, and each byte serves a separate function. It is most
conveniently specified in hexadecimal (that is, with a leading &) since then
each pair of digits represents one byte. If the four bytes have values B4, B3,
B2 and B1, then for the number

@%=&12345678

we would have B4=&12, B3=&34, B2=&56 and B1=&78.
Alternatively, if B1 and B4 are treated as variables with separate values,

then @% can be denoted by

@%=B1+&100*(B2+&100*(B3+&100*B4))

or

@%=B1+256*(B2+256*(B3+256*B4))

which will be the best way to set up @% if you want to vary it from time to
time.

B4

B4 has a rather marginal effect − it determines whether the format of a string
created by STR$ is controlled by @)%. If B4=01, @% is used in determining
the format, if B4=00, @J% is ignored. The default value for B4 is zero and
this is why, as pointed out in Section 4.4.2, STR$ may not always produce
quite what you would expect.

B3

B3 selects from 3 types of format as follows

232

B3=00 General format (or G format)
B3=01 Exponent format (or E format)
B3=02 Fixed format (or F format)

G format is the default state, in which a number is printed as a straightforward
fixed point number (for example 123.45) if it is neither too large for the
specified range, nor less than 0.1. Outside these limits it is printed in exponent
form or scientific notation as a floating point number, with a mantissa (a fixed
point number between I and 10) and an exponent or power of 10. Thus 0.0123
would be written as 1.23E-2 and 12 milliard would be written as 1.2E10.

In E format, numbers are always written in exponent form.
F format is the most interesting. All numbers are printed with a fixed

number of decimal places (determined by B2) unless they exceed the value
which can be stored internally as an exact number (more than nine figures) in
which case they revert to exponent form. Numbers which are too small,
however, are printed as zero. F format is designed for, and is ideal for,
tabulated columns of numbers, so that, combined with right justification,
decimal points will be aligned.

B2

B2 is the other factor affecting the format of printed numbers. It plays
different roles according to the value of B3.

In G format, it specifies the maximum number of significant figures to be
printed, and hence also the largest number which can be printed in fixed point,
before reverting to exponent form. The default value is 9, which is one figure
less than the machine accuracy, so that rounding errors are normally
suppressed.

In exponent form numbers, B2 again determines the maximum number of
significant figures of the mantissa. Including a possible leading minus sign,
the decimal point, the E, up to two digits for the power of 10 and another
possible minus sign for the power, exponent form numbers in G format
occupy up to B2+6 characters in all. One difference occurs for E format
numbers, in that the power occupies three columns, including trailing spaces,
and B2 figures are always printed in the mantissa, so numbers always occupy
B2+5 or B2+6 columns, depending on whether there is a minus sign.

In F format, B2 plays a quite different role, specifying the number of
digits to follow the decimal point. The maximum number of significant
figures is always set to nine, being governed by the machine accuracy, so that
numbers do not revert to exponent form below 109. Even integers are printed
With a decimal point and B2 trailing zeros. Note, however, that if the number
of figures printed would exceed nine, the display reverts to G format. For
example, with B2=4, 123456 would be printed as an integer, whereas with
B2=3 it would be printed as 123456.000.

The allowed range of B2 is as follows

233

G format 1 to 9
E format 1 to 9
F format 0 to 9

For numbers outside these limits, B2 reverts to the default of 9.
As an example of the use of B2, Table F .1 shows how the number

12.3456 would be printed in each of the formats, for values of B2 of 3, 6 and
9.

Table F.1 Effect of B2 on the format of numbers.

G format E format F format

B2=9 12.3456 1.23456000E1 12.3456
B2=6 12.3456 1.23456E1 12.345600
B2=3 12.3 1.23E1 12.346

Note that with B2=9, the F format display has reverted to G format.

B1

As we saw earlier, B1 sets the print field width. This is not the maximum
number of characters that will be printed, but is simply the width between
each ‘tab position’ as determined by commas in PRINT statements. It does,
however, limit the number of characters that will be printed right justified, and
hence with the decimal points aligned. Moreover, right justification will only
occur if items are separated by commas, so in principle this form of layout
would have to be in columns of equal width. In practice, the TAB(X, Y) form
overrides the left margin origin from which B1 measures, so it could be used
to set out columns of figures of different widths (but not less than B1). The
range of B1 is any value from 0 to 255. However, the practical upper limit is
probably more like 20.

Example F.1

The following program generates numbers whose magnitudes and number of
figures, as well as values, are random, and prints them in successive columns
of width 10, 13, 17, 12, 20 in Mode 0, with respectively 0, 3, 4, 2, 5 decimal
places, properly aligned.

 10 MODE 0
 20 DIM A(15)
 30 CLS
 40 FOR ROW=1 TO 20
 50 FOR COL=1 TO 5
 60 REPEAT
 70 A(COL)=FN_rannum
 80 UNTIL ABS(A(COL))<1E8

234

 90 NEXT COL
 100 @%=&2000A: PRINT TAB(0,ROW) A(1)
 110 @%=&2030D: PRINT TAB(10,ROW) A(2)
 120 @%=&20411: PRINT TAB(23,ROW) A(3)
 130 @%=&2020C: PRINT TAB(40,ROW) A(4)
 140 @%=&20514: PRINT TAB(52,ROW) A(5)
 150 NEXT ROW
 160 END
10000 DEF FN_rannum
10010 LOCAL DECPLACES, NUM
10020 DECPLACES=10+(RND(6)-1)
10030 NUM=INT((RND(1)-0.5)*10+RND(9))
10040 =NUM/DECPLACES

Note that the PRINT statements must not end with semicolons. The TAB(X,
Y) form forces all the output for one row to appear on the same line. This
cannot, of course, be used in conjunction with a printer.

Note also that the formatting still goes wrong occasionally for very large
numbers, especially in columns 3 and 5 where several decimal points are
required. This can be prevented by restricting the size of the numbers to less
than 106 (alter the last RND on line 1030 to RND(5)). It is of course a very
demanding test to format numbers of such varying type, but it does serve to
demonstrate that although the @% variable provides great flexibility, it is
difficult to use.

One final property of B1 may sometimes be useful. Provided it is set to at
least 2, numbers separated by commas will be printed with at least one space
between them. Thus if a series of variables is to be printed where alignment of
columns is immaterial, but where the normal large gaps are unnecessary,
setting B1 to 2 will be much more convenient than separating each variable by
" ".

235

Appendix G

PSEUDO-VARIABLES IN BBC
BASIC

The following are BBC BASIC pseudo-variables. They always have a value,
and may be altered by the system as well as by the user, but in other respects
they can be handled just like ordinary variables.

HIMEM Pointer to top of available RAM
LOMEM Pointer to the bottom of variable storage space
PAGE Pointer to the start of program storage (must be a multiple of

256)
PTR# Pointer to position in a data file
TIME An internal timer reading in centiseconds

The following are strictly functions, but could be thought of as read-only
pseudo-variables.

COUNT Counts the number of characters printed since the last
<RETURN>

EOF# Boolean variable which becomes true when the end of a data
file is reached

ERL Line number where the last error occurred
ERR Error number of the last error (see Appendix J)
EXT# Current size of data file
FALSE The Boolean value ‘false’ (returns a numerical value of 0)
PI The mathematical quantity π, with value 3.14159265
POS Horizontal position of the cursor (left hand side=0) Pointer

to the top of a program
TRUE The Boolean value ‘true’ (returns a numerical value of -1)
VPOS Vertical position of the cursor (top=0)

236

Appendix H

ASCII CODES

237

Character Decimal Hex

CTRL- @ 0 00
CTRL- A 1 01
CTRL- B 2 02
CTRL- C 3 03
CTRL- D 4 04
CTRL- E 5 05
CTRL- F 6 06
CTRL- G 7 07
CTRL- H 8 08
CTRL- I or TAB 9 09
CTRL- J 10 0A
CTRL- K 11 0B
CTRL- L 12 0C
CTRL- M or RETURN 13 0D
CTRL- N 14 0E
CTRL- O 15 0F
CTRL- P 16 10
CTRL- Q 17 11
CTRL- R 18 12
CTRL- S 19 13
CTRL- T 20 14
CTRL- U 21 15
CTRL- V 22 16
CTRL- W 23 17
CTRL- X 24 18
CTRL- Y 25 19
CTRL- Z 26 1A
CTRL- [27 1B
CTRL- \ 28 1C
CTRL-] 29 1D
CTRL- ˆ 30 1E
CTRL- _ 31 1F

Character Decimal Hex

SPACE 32 20
! 33 21
" 34 22
35 23
$ 36 24
% 37 25
& 38 26
' 39 27
(40 28
) 41 29
* 42 2A
+ 43 2B
, 44 2C
- 45 2D
. 46 2E
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39
: 58 3A
; 59 3B
< 60 3C
= 61 3D
> 62 3E
? 63 3F

Character Decimal Hex

@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
I 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E
O 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53
T 84 54
U 85 55
V 86 56
W 87 57
X 88 58
Y 89 59
Z 90 5A
[91 5B
\ 92 5C
] 93 5D
ˆ 94 5E
_ 95 5F

238

Character Decimal Hex

£¬£££ 96 60
a 97 61
b 98 62
c 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
j 106 6A
k 107 6B
l 108 6C
m 109 6D
n 110 6E
o 111 6F
p 112 70
q 113 71
r 114 72
s 115 73
t 116 74
u 117 75
v 118 76
w 119 77
x 120 78
y 121 79
z 122 7A
{ 123 7B
| 124 7C
} 125 7D
˜ 126 7E
DELETE 127 7F

Appendix I

INKEY CODES
When the keyboard is examined directly by using INKEY with a negative
argument, the code for the key has no relationship to the ASCII code of the
character, but is an internal code related to the structure of the keyboard. A
closely related table of codes is used by OSBYTE call 121.

239

INKEY OSBYTE symbol
code code

- 1 0 <SHI FT>
- 2 1 <CTRL>

- 17 16 Q
- 18 17 3
- 19 18 4
- 20 19 5
- 21 20 f 4
- 22 21 8
- 23 22 f 7
- 24 23 -
- 25 24 ˆ

- 26 25 ←
- 33 32 f 0
- 34 33 W
- 35 34 E
- 36 35 T
- 37 36 7
- 38 37 9
- 39 38 I
- 40 39 0
- 41 40 _
- 42 41 ¯
- 49 48 1
- 50 49 2
- 51 50 D
- 52 51 R
- 53 52 6
- 54 53 U
- 55 54 O

INKEY OSBYTE symbol
code code

- 56 55 P
- 57 56 [

- 58 57 ↑
- 65 64 <CAPS LOCK>
- 66 65 A
- 67 66 X
- 68 67 F
- 69 68 Y
- 70 69 J
- 71 70 K
- 72 71 @
- 73 72 :
- 74 73 <RETURN >
- 81 80 <SHI FT LOCK>
- 82 81 S
- 83 82 C
- 84 83 G
- 85 84 H
- 86 85 N
- 87 86 L
- 88 87 ;
- 89 88]
- 90 89 <DELETE>
- 97 96 <TAB>
- 98 97 Z
- 99 98 <SPACE>

- 100 99 V
- 101 100 B
- 102 101 M

INKEY OSBYTE symbol
code code

-103 102 ,
-104 103 .
-105 104 /
-106 105 <COPY>
-113 112 <ESCAPE>
-114 113 f1
-115 114 f2

240

INKEY OSBYTE symbol
code code

-116 115 f3
-117 116 f5
-118 117 f6
-119 118 f8
-120 119 f9
-121 120 \

-122 121 →

Appendix J

ERROR CODES

Code Error

0 No room (cannot be trapped)
0 STOP (BASIC II only)
1 Out of range (assembly language error)
2 Byte (assembly language error)
3 Index (assembly language error)
4 Mistake
5 Missing ,
6 Type mismatch
7 No FN

8 $ range (Trying to address locations less than 256 (&100) with the $
indirection operator

9 Missing "
10 Bad DIM
11 DIM spa ce
12 Not LOCAL
13 No PROC
14 Array
15 Subscript
16 Syntax error
17 Escape
18 Division by zero
19 String too Long
20 Too big
21 -ve root
22 Log range
23 Accuracy Lost
24 Exp range
25 Bad MODE
26 No such variable
27 Missing)
28 Bad hex
29 No such FN/PROC
30 Bad call

241

Code Error

31 Ar gument s
32 No FOR
33 Can' t mat ch FOR
34 FOR var i abl e

35 Too many FORs (only 10 FORs may be nested)
36 No TO

37 Too many G0SUBs (only 26 nested subroutines allowed)
38 No GOSUB
39 ON synt ax
40 ON r ange
41 No such l i ne
42 Out of DATA
43 No REPEAT
44 Too many REPEATs (onl y 20 REPEATs may be nest ed)
45 Mi ssi ng # (BASI C I I onl y)

216 Dat a? (cassette filing system error)
217 Header ? (cassette filing system error)
218 Bl ock? (cassette filing system error)
219 Fi l e? (cassette filing system error)
220 Synt ax (filing system error)
222 Channel (filing system error)
223 EOF (filing system error)
251 Bad key
253 Bad st r i ng
254 Bad command

The following errors have no error code

Bad pr ogr am (cannot be trapped)
Fai l ed at <l i ne number > (error during RENUMBERing)
LI NE space (no room in memory to insert line)
Si l l y (occurs with AUTO if a step size greater than 255 is specified)

242

