Chapter 7

PROGRAMMING ERRORS

The errors that occur in programming divide broadly into four types

1. Syntax errors.

2. Semantic errors.

3. Execution or ‘run-time’ errors.
4. Logicd errors.

The errors that are associated with the operating system and the disc errors are
not discussed extensively. The operating system does not generate error
messages since the operating system calls are not error trapped. This presents
no problem to anyone who only uses the standard BASIC festures, but the
wide range of non-standard facilities are too valuable to omit from many
programs. Once any of the operating system commands are used it is
necessary to be exact and correct since no safety-net to trap errorsis provided.

Example 7.1

The incorrectly written and poorly structured program fragment below does
not give an error message when the incomplete VDU 23 statement that needs
9 arguments is executed. The arguments required are obtained from the
following INPUT statement, which consequently gives an incorrect prompt!

10 MODE 4

20 PRINT " CHOOSE A LETTER'

30 VDU23, 234, 129, 255, 129,

40 I NPUT "NEVER G VE A VOUEL", A$

50 IF (AS="A") OR (AS="E') OR (A$="I") R (A$="0") QR (A$="U')
THEN 20

60 PRINT " CHARACTER 234 "; CHR$(234)

70 PRINT "TH'S |'S THE END!"

80 END

The only protection against this type of error is careful and precise
programming followed by thorough tests of al possible running conditions.

7.1 SYNTAX ERRORS

This type of error occurs whenever the computer cannot make sense of the
commands that you have issued. There may be a variety of reasons for this. A
typing error may result in an incorrectly spelt keyword which the computer
will interpret as a variable. For example

10 I MPUT X
will generate the error message

M stake at line 10

when itisrun. Thisline may be inadvertently corrected to

10 I MPUT-X

if the spelling error is not noticed. Thiswill generate the error message

No such variable at line 10

when it isrun. The line may next be corrected to

10 I NPUT=X

which, when it is run, will generate the error message

Syntax error at line 10

The correct form of thelineis

10 INPUT X

It is important to realize that the error message needs to be interpreted as it
may not be sufficiently specific to identify directly the error in the line. Any
line containing an error should be read thoroughly to check that each character
is correct. It should not be thought that all error messages are obscure; for
instance the line

20 PTR=0

will generate the error message
Mssing # at line 20

The error message is helpful if a program involving the use of the file pointer
PTR#<channel number> is under development, but confusing if you want to

95

have avariable PTR to which you are assigning the value zero. However, once
it is remembered that PTR# is a BASIC keyword and that these can not be
used as variable names, it will be clear that PTR is not available as a variable
name. It is, of course, perfectly in order to use ptr or Ptr as BASIC variable
names.

Another way in which a syntax error may be generated is by an
incorrectly inserted or omitted bracket which may confuse the computer.
Another common error to watch out for is confusion between the letter O and
zero. Apart from errors of typing you may have got the form of instructions
confused, asfor instance

FOR J=10 STEP 2 TO 20

These errors are usually easy to correct, since the computer always reports the
line number in which the error occurred, so that this line can be LISTed and
examined for faulty construction. Certain syntax errors will generate specific
error messages, such as

Mssing) at Line 30

which would arise if the following lines formed part of a program which was
then run.

10 DI M D(6)
20 FOR |=1 TO 6: NEXT
30 PRINT D(5

Ancther helpful syntax error message is ‘Type mismatch’ which will be
generated by statements such as

10 A$=1

or

20 A="HELLO'

when a program containing them is run.

In the first case an attempt has been made to assign a numeric value to a
string variable. In the second case an attempt to assign the string "HELLO" to
a numeric variable has been made. Clearly the correction of errors such as
these will depend upon what was originally intended.

The error ‘No such variable’ will occur if a variable appears on the right
hand side of an equation or in a‘PRINT’ statement before it has been given a
value in aprogram statement such as

10 LATEST=0

Remember, however, that a statement in which a variable appears on both |eft
and right hand side of the equal's assignment such as

96

10 NUMENUMEL

is allowed and will set NUM=1 the first time it is executed. The second and
subsequent times that it is executed the value of NUM will be incremented as
expected. The resident integer variables @% and A% to Z% may be used in
PRINT statements and on the right hand side of equate statements without
restriction and will have the values left over from use in previous programs.
They will, however, need to be initidlized if their previous values are not
required. An attempt to use an array element in a statement such as

10 Q3)=7

without declaring the array by the statement
5 DM Q 10)

will generate the error message
Array at line 10

But many syntax errors will just result in the message ‘ Syntax error’ or even
‘Mistake' if the computer cannot make head or tail of what you meant. It is
then necessary to read the line of program concerned to check that intended
statements have been correctly formed. If the cause of the error is not
identified in the line at which it is reported, then the variables in the line
should be traced in earlier lines of the program to check them.

7.2 SEMANTIC ERRORS

It is not always possible to make a hard and fast distinction between semantic
and execution errors, but generally speaking semantic errors arise when
commands which have correct syntax are incompatible in some way. For
instance, if you accidentally cross a pair of FOR loops, or jump into a FOR
loop, you will get the message

No FOR
or
Can't match FOR

Example 7.2
The program below contains a deliberate semantic error

10 DI M A(9)

20 1=0

30 GOTO 50

40 FOR =1 TO 9
50 PRINT A(l)
60 NEXT

97

Whenitisrunit will generate the message
No FOR at line 60

In this case line 60 is a valid line. The mistake has been made at line 30,
which causes the program to jump into a FOR...NEXT loop. This mistake is
clearly indicated by the error message. If line 20 is omitted the error message
that occurs when the programisrunis

No such variable at Line 50

which is not so helpful. Thisis an example of an error message for which it is
necessary to follow the program through to track down the cause.

The error message may not occur the first time a section of program is
executed. The Example 7 .3 contains crossed FOR...NEXT loops.
Example 7.3

10 FR I=1 TO 10
20 FOR J=1 TO 10
30 PRINT 1*J

40 NEXT

50 NEXT J

When this example is run on the computer it will generate the error message

Can't match FOR at line 50

after the first 10 numbers have been printed. This occurs because the BASIC
interpreter has assumed that the NEXT at line 40 belongs with the FOR at line
20. The program can be corrected in two ways, either- by changing line 50 to

50 NEXT
or by changing line 40 to

40 NEXT J, 1

and omitting line 50. The latter saves aline of program.
In fact, al the messages of the form

No. ..

indicate semantic errors. Another example of asemantic error is
Argunent s

which occurs when too many or too few arguments are given in a function or
procedure call.

98

Most semantic error messages are self-explanatory. A list of al the
possible error messages is given in Appendix J and the precise meaning of
each is given in Section 46 of the BBC User Guide. The combination of an
explicit error message with a line number makes semantic errors simple to
track down in most cases.

7.3 EXECUTION ERRORS

These errors usually occur when the program itself makes complete sense to
the computer, but, at least in certain circumstances, something goes wrong
when the program is RUN.

In some cases these execution errors may be due to insufficient protection
for unlikely data values which are not worth catering for, but very often they
arise from afault in the logic used to draw up the program.

Error messages usually associated with execution are relatively few, and
would include

Accuracy Lost
Bad DI M (this could also be due to a semantic error)
Division by zero
Eof

Exp range

Log range

-ve root

ON range

Qut of DATA
String too long
Subscri pt

Too big

Errors such as ‘No such variable’ may also be errors of execution caused by
the program taking an unplanned route and reaching a statement which uses
the variable before it has been assigned.

By their very nature, execution errors are much the most difficult to
locate, and may be due to the values which variables happen to have on one
occasion. For instance

S=SQR(B*B-4*A*Q)

is fine unlessit happens that 4AC>B2, or B is greater than about 1020, and the
quadratic equation

AX2+Bx+C=0
has the perfectly good solution x=-C/B when A=0, but use of the formula
(-BxS)/(2A)

will cause a‘Division by zero’ error.

99

In association with the line number reported aong with the error, an
nvaluable aid in tracking down these errors is the fact that all variables and
may elements (including the control variables of FOR loops) retain their
values after the execution of a program is halted due to an error. They are also
retained if a program locked in an infinite loop is stopped by <ESCAPE> (but
not <BREAK>).

When the source of an execution error is not obvious, therefore, the first
thing to try, which will usually solve the problem, is to PRINT, in immediate
mode, the variables on the offending line (and possibly some of the other
program variables also, particularly the control variable of any FOR loop if
the program stopped inside it). The values obtained should then be compared
with those expected. Any discrepancy should be investigated as a possible
source of error in the program. Alternatively an extra PRINT statement may
be inserted in the program, inside the loop. This can be removed later when
the error has been located and corrected.

7.4 RERUNNING THE PROGRAM

It may be that the values of the variables obtained, after the execution of a
program has been stopped by an error, are themselves inexplicable. For
instance, in the earlier example of a‘Division by zero’ error, it might well be
that the variable A should not have had the value zero because the program
contained steps to cater for this eventuality.

The TRACE ON command causes the line numbers to be displayed as the
program is executed each time a different line is reached. This enables you to
trace the route taken through the program, and may for instance reveal that the
A=0 trap was accidentally bypassed. TRACE ON can be inserted at any point
in a program, to avoid an excessive listing of line numbers, and can aso be
switched off again with TRACE OFF, so you can just trace sect-ions of your
program if you wish. The TRACE ON facility is aso turned off by the use of
the <ESCAPE> and <BREAK> keys. There is a third form of the TRACE
command, TRACE <line number>, which traces only lines with numbers
greater than <line number>. This facility is provided in case you wish to avoid
tracing through tried and tested procedures called earlier in the program.

It may be possible to correct a mistake in a program temporarily by
reassigning variable values in immediate mode. It is then possible to continue
execution by the command

GOTO <line nunber>

where <line number> is the faulty line which you have ‘corrected’. Unlike
RUN, GOTO does not clear the values of variables, so these are retained and
the program may continue successfully. (This tip may even be of value in
other circumstances, say where you missed reading some answers in the
program before they rolled off the screen, or if you want to reprocess some
numbers which took along while to calculate or to typein.)

100

The STOP command can be useful in tracking down the cause of errorsin
aprogram. If it isinserted before a section of program that is suspected as the
source of the error the values of variables can be checked, by PRINT
statements in immediate mode, to see that they are as expected before this
section is executed. The GOTO <line number> statement can then be used to
show conclusively whether or not the error isin the section of program that is
suspect.

Exercise 7.1

The program below which is available on the supplementary disc, contains a
variety of errors of different sorts. RUN the program to track them down and
try to correct them, and use the technique of PRINTing in immediate mode to
help with any execution errors.

10 REM I NI TI ALI ZATI ON OF VARI ABLES

20 DIMW(2)

30 V(1)=70: V(2)=99: V(3)=140

40 REM G=9. 81

50 REM DI STANCE OF TARGET

60 D=RND(1500)

70 REPEAT

80 REM DI SPLAY

90 CLS

100 PRINT TAB(10);"Target at ";D;" metres"
110 PRINT ' TAB(14); " MAXI MUM RANGE"

120 PRINT ""Mssite 1 Mssile 2 M ssile3"
130 PRINT * 500m 1000m 2000nt
140 INPUT" "Select missile to fire (1,2,3) ", M
150 I F M1 OR M>3 THEN GOTO 80

160 | F I NT(M<>M THEN GOTO 80

170 INPUT "El evation (degrees) ", A

180 PRINT '

190 REM SELECT SPEED OF M SSILE

200 V=V(-M

210 REM CALCULATI ONS

220 H=(V*SIN(RAD(A))) "2/ (2* G REM MAX. HEI GHT
230 T$=2*V*SIN(RAD(A))/ G REM TIME OF FLIGHT
240 R=V"2*SIN(RAD(2*A))/ G REM RANGE

250 REM PRI NTOUT

260 PRINT "Time of flight: ";INT(T);" sec"
270 PRI NT" Maxi num hei ght: " INT(H);" netres"
280 PRINT"Range:"; INT(R);" metres"'

290 REM RESULT OF FIRE
300 E=INT(R)-D
310 | FABS(E) <10 THEN GOTO 360
320 PRINT "Shot ";ABS(E);" metres ";
330 | F E>0 THEN PRINT "behind target" ELSE PRINT “short of

target"

101

340 PRINT '"Press any key to continue:";

350 A$=GET$

360 UNTI LABS(E) <10

370 PRINT "DIRECT H T! TARGET DESTROYED'

380 INPUT' ' "Woul d you |ike another go (Y/N)? "YN$
390 | F LEFT$(YNS, 1) ="Y" THEN GOTO 20

7.5 ERROR TRAPPING

In some programs it may be convenient to suppress error messages and to
effect recovery from situations which would otherwise halt execution of the
program. The command ON ERROR will accomplish this. It has four forms

ON ERROR GOTO <l i ne nunber>
ON ERROR GOSUB <line nunber>
ON ERRCR <st at enent s>

ON ERROR OFF

The first three commands cause any subsequent error messages that would
otherwise occur during the running of a program to be suppressed, and in th.e
first two cases the program jumps to <line number> rather than having its
execution stopped. <line number> would normally be the start of some error
handling section. If GOSUB is used with ON ERROR then a RETURN must
be executed at the end of the error handling section to allow the program to
continue from the ON ERROR statement. There may be several ON ERROR
statements in a program; the line number to which execution jumps In the case
of an error is the one indicated by the last ON ERROR passed in mrmal
execution of the program.

The last form, ON ERROR OFF, is used to cancel the error trapping,
when you want normal error reporting to resume.

In Example 7.4, ON ERROR GOTO is used to trap two ‘events’

1. The input of IMIN>IMAX which will lead to failure at line 110 in the
square root function.

2. At line 180 a deliberate divide by zero is used to cause the request of the
required Y ES or NO response.

In both cases the program will go to line 140. Try this example without line 10
first; thiswill enable you to find program mistakes rather than user mistakes.

Example 7.4

10 ON ERROR GOTO 140

20 REM TEST OF ON ERROR GOTO XX

30 CLS

40 PRINT "Fringe visibility calculation"
60 INPUT "Imax and Imin ", 11,12

102

70 V=(11-12)/(11+12)

80 IF V<=0 THEN PRINT '"Imin nust be Less than | max"
100 PRINT ""Fringe visibility =" ;V

110 ROOT=SQR(V)

130 PRINT ' "Root of V =";ROOT

140 INPUT '"Do you nt to do another calcul ation", A$
160 | F LEFT$(AS$, 1)="Y" THEN GOTO 60

170 | F LEFT$(AS$, 1)="N' THEN GOTO 190

180 V=V/ 0

190 END

Try the data 2,1 then 1,2 and responses other than Y ES or NO to line 140.

Exercise 7.2

Sometimes it is desirable to correct an error in some way and then alow the
program to continue. This can be done if the GOSUB form of the ON ERROR
statement is used.

Modify Example 7 .4 as follows to illustrate the effects of ON ERROR
GOSUB.

10

20 REM TEST OF ON ERROR GOSUB XX
65 ON ERROR GOSUB 200: GOTO ERL

175 U=0

180 V=VIU

185 PRINT "RETURNed with U =";U

188 GOTO 140

200 U=U+0.1: Vv=1: RETURN

Note that the RETURN is to the point immediately after the GOSUB on the
ON ERROR line, rather than the point where the error occurs, which is what
you would probably assume. This can be circumvented by the inclusion of
GOTO ERL at the end of the ON ERROR line, which jumps back to the
offending line. (Check that this is the case by leaving out GOTO ERL.)
Actualy this feature renders the use of GOSUB pointless - it would be
simpler to use ON ERROR GOTO 200 and end line 200 with GOTO ERL
instead of RETURN.

If the error is not corrected before RETURNIng to the main program you
can get into an infinite loop. Modify the program further by

200 U=U+0.1: PRINT "E";: RETURN

and use the data 1,2 in response to line 60. Press <BREAK> to get out of the
infinite loop.

7.5.1 Error codes

When an error occurs in a program, the computer stores the code number of
the error, and the line number on which it occurred, in the system variables

103

ERR and ERL respectively. In this way you can check in the error handling
section which error occurred, and possibly deal with those you can anticipate
and end the program with the rest. The error number of every error message is
given in Appendix J, and you can look up the codes for the ones that you
anticipate may occur.

For instance, the error numbers for ‘-ve root’ and ‘Division by zero' are
21 and 18 respectively, so we could further modify the program of Exercise
7.2 asfollows

Exercise 7.3

200 U=U+0.1: v=1

210 | F ERR=18 OR ERR=21 THEN RETURN

220 PRINT "Error nunber ";ERR" occurred at |ine nunber ";ERL:
END

An interesting possiblility arisesin that pressing the <ESCAPE> key is treated
as generating an ‘Escape’ error with code number 17. Thus it is possible to
protect your programs from users breaking out of them (whether by accident
or on purpose) by trapping error number 17. To give further security you can
also prevent users getting out of a program with <BREAK>, by issuing the
command

*KEY 10 OLD| M RUN| M

This gives limited protection unfortunately, as one can always get out of any
program with <CTRL-BREAK>, which does not allow the <BREAK> key to
behave as a function key.

Example 7.5

This program illustrates the redefinition of the <BREAK> key (function key
10) to provide limited protection for a program.

5 ON ERROR GOTO 60

6 *KEY10 OLD|M RUN|M

10 INPUT "Type a nunber from1 to 10", A

20 X=1/A

25 X=SQR(A)

30 X=SQR(10. 1- A)

40 PRINT "good, ";A " is between 1 and 10"

50 GOTO 10

60 | F ERR=17 THEN PRINT: PRINT "Ha Ha, you can't ESCAPE t hat
easily": GOTO 10

70 PRINT "Error nunber ";ERR" occurred at |ine number ";ERL

80 GOTO 10

Try this program out with correct and incorrect responses, including letters,
and try and get out of the program with <ESCAPE> and <BREAK>.

104

Finaly, when reporting the error on line 70, the error number is not very
illuminating. There is a command, REPORT, which will report what the last
error to occur was.

Try adding to the above program the extraline

75 REPORT: PRI NT

7.5.2 ON ERROR limitations

It is not possible to resume a program part of the way through a FOR...NEXT
loop, a REPEAT...UNTIL loop, a procedure, function or subroutine. Instead,
you will have to restart the loop, procedure or whatever. This is necessary
since system pointers are changed by the operation of the ON ERROR
GOSUB statement when an error occurs. |f after an error an attempt is made
to GOTO ERL to within a FOR loop, for instance, then a‘No FOR’ error will
occur.

Since this error will again be trapped with another jump into the error
handling subroutine, the computer will get stuck in an infinite loop and the
system will be effectively ‘hung’. You will need to press <BREAK> or
<CTRL-BREAK?> to regain control.

105

