Chapter 9

FILE HANDLING

9.1 TYPES OF FILE

The tape and disc filing systems on the BBC microcomputer are not restricted
merely to storing BASIC programs. It is aso possible to create files to contain
data. The data could represent numerical information or text, and if required
both types can be stored in asingle file. This type of fileis frequently caled a
textfile or data file and since, on some other computer systems, textfile is used
to mean afile more like the ASCII file, we shall here refer to such files as data
files.

It is worth pointing out straight away that the BBC computer operating
system makes no intrinsic distinction between different types of file. They are
all stored in the filing system, be it tape, disc or ROM, in exactly the same
way.
Thus, any file can be loaded into memory (if there is room) by the
command

*LOAD <filenane> (<Load address>)

If the file happens to be a BASIC program, and the load address defaults to, or
is given as, the current setting of PAGE, then it will be loaded and can be run
just asif it had been loaded with the BASIC command LOAD "<filename>" .

Similarly, you can use the command * SAVE to save a BASIC program, if
you know the right addresses to use.

What really creates an effective distinction between different types of file
is the way that the information in the file is structured. This structuring will be
carried out by the commands used to create the information or to store the
information in the file. We can in this sense distinguish at least five separate
file types

BASIC program
machine code program
binary file

datafile

ASCII file

125



BASIC programs and machine code programs must have the information
structured as the appropriate type of program before saving to afile.

Data files and ASCII files have their information structured (differently)
by the commands which handle the respective types of file.

Binary files can contain any type of information, including the other four
file types and also otherwise incomprehensible information such as graphics
dumps.

We can dedl fairly rapidly with the types of command associated with
three of the file types.

BASIC programs

These are normally created by SAVE and loaded by LOAD or loaded and run
in a single operation by CHAIN. These three commands are BASIC
commands rather than operating system commands, so they are not preceded
by a star, and the filename must be in between inverted commas.

Machine code programs

These can only be saved and loaded with the commands * SAVE, *LOAD and
*RUN. The last command is equivalent to *LOAD followed by CALL, and
playsarole similar to CHAIN for BASIC programs.

Binary files

Any section of memory, such as the area of a graphics display, can be saved
and loaded using *SAVE and *LOAD (use of *SAVE and *LOAD are
described in detail in Section 10.8.5). Thus to save a graphics picture in Mode
0, 1 or 2, the command would be

*SAVE GRDUWP 3000 8000
The picture could be loaded back simply by

*LOAD GRDUWP

The final two filetypes require special commands, and these are dealt with in
the following sections.

Exercise 9.1
Enter avery short BASIC program such as

10 PRINT "*SAVE test"
20 PRINT "program conpt et ed"

Save it to disc using the command
*SAVE TESTPG 1900 19FF (assuming that you have a disc interface in

your computer, so that & 1900 is the normal
program start position)

126



Type NEW to clear the program, then load it back again with

*LOAD TESTPG
LIST and RUN the program.

Exercise 9.2

Switch into Mode 1 and generate a simple graphics display, by commands
such as

MODE 1

MOVE 1,1

DRAW 1000, 1
DRAW 1000, 1000
DRAW 1, 1000
DRAW L, 1

DRAW 1000, 1000
MOVE 1000, 1
DRAW 1, 1000

Use the commands given above to save the file with * SAVE, clear the screen
with CLS, and then restore the display with *LOAD. (Note, however, that an
interesting effect occurs if the screen display is scrolled between * SAVEing
and *LOADiINg.)

9.2 HANDLING DATA FILES
9.2.1 Files and buffers

In BASIC, a set of commands is provided to facilitate handling of data files.
Most of the commands can be used with cassette, single-user disc or level 2
Econet systems, and even the less common filing systems such as Prestel and
IEEE.

One important difference between the handling of, say, aBASIC program
file and a datafile is that in the former case the saving or loading of afileis
required to be carried out as far as possible as a continuous operation in the
minimum of time, whereas for a data file these operations may extend over
long periods. For example, in a data logging application, it may be necessary
to record measured values of parameters in an experiment or industrial
process at intervals of minutes or hours over a period of days. Similarly,
where afile contains a large amount of data to be processed during execution
of a BASIC program, it will be necessary to read the data in at irregular
intervals as and when required by the program.

In order to minimize the number of disc operations, which relative to
RAM operations are very slow, a section of memory is alocated for transfer
purposes. This section is known as a buffer and has a capacity of 256 bytes,
equivalent to one sector of the disc. All transfers between the computer and
the disc must go through this memory. For writing to a file, the data in the
buffer is transferred to the disc only when the buffer isfull or at the end of file
handling when the file is closed. In reading from afile, the buffer isfilled and

127



no subsequent disc operation is needed until all the data in the buffer has been
used by the program in INPUT or other statements.

The operation of setting up a buffer associated with a particular file is
commonly referred to as opening the file. When operations on the file are
completed, the buffer must be de-allocated which, not surprisingly, is called
closing thefile.

On the BBC computer, up to five files may be open at any one time; thus
up to five buffers may be in use simultaneously.

This is one reason why you should always close a file as soon as transfer
of datais finished. A much more important reason is that, when afile is being
written to, the last, part-full buffer of information is not sent to the file until it
is closed.

While afile is open, information is retrieved from or sent to the file by
special versions of the normal input and output commands.

9.2.2 The BASIC commands to open, close and handle data files

The first step in handling a data file is to open the file for reading or writing.
Thisis done by identifying and setting aside the buffer to be associated with a
particular file by means of achannel number. The channel number is alocated
by the operating system, and should be stored in a numeric variable (either
integer or real) which will be referred to as the channel variable.

The channel number appears always to take the vaues 17 to 21 for the
five files that may be open at any one time, but its actual value is immaterial
to the user. The channel variable will always alow you to specify the file you
want to work on simply and unequivocally.

OPENOUT

To open a file for writing (that is, to send output to the file), the function
OPEN OUT is used. OPEN OUT returns the channel number to be associated
with the file given as the argument to OPENOUT. The channel number should
be assigned to a channel variable by a statement of the form

<channel vari abl e>=0PENQUT( <f i | ename>)

For example, if some dataisto be written to afile called DFILE then theline
CHY%=OPENOUT( " DFI LE")

can be used to get the system to dlocate a buffer. (Note that as with most
functions, brackets are conventionally included, but are actually unnecessary.)

The channel number to be associated with the file DFILE is allocated to
the variable CH%, and CH% should be used with all subsequent file handling
operations to inform the system that DFILE isthe file to be written to.

A point to note is that with the disc filing system, the command OPEN
OUT erases any existing version of DFILE, if it exists. If it does not exist,
then a file named DFILE, 64 sectors long, is created. The filename given as
the argument to OPENOUT may be either a string, such as "DFILE", or a
string variable.

Strictly speaking a number could be used for the channel instead of a

128



variable, provided you were quite certain that you knew in advance what the
correct number was for a particular channel, but it would be pointless as well
as foolhardy since variables are actually more efficient than numbers within a
program. Again it is possible, in principle, to open a file within one program,
or even in direct mode, and use it within a subsequent program, but it is most
unlikely that you will ever have reason to do thisin practice.

PRINT#
The command to write information to afile has the form

PRI NT#<channel >, vari abl e, vari abl e, . ..

For example

PRI NT#CHY% B% C3, " DATA"

Any variable, expression or value may be sent as output, just as with the
norma PRINT command, but in other respects PRINT# differs. Items must
only be separated by commas, and some commands such as SPC() and TAB()
cannot be used.

CLOSE#

To empty and de-allocate the buffer, when writing is completed, the command
required is

CLCSE#<channel >

For example

CLOSE#CH”%

If instead of the channel variable the value 0 is used for the channel in the
CLOSE command, then al open files will be closed. This is particularly
valuable in an ON ERROR routine, to ensure that al files are closed if a
program fails during execution. If you have not included such an error trap,
the CLOSE command can aso be used in direct mode for the same purpose,
either specifying the actual file by its channel variable, or closing al files with
azero. It must be issued before the program is run again, or an error will occur
when the computer attempts to reopen the still open file.

Example 9.1

The following procedure would write to a data file the results of a program
which are stored in an array A(1) to A(20)

500 DEF PROC writedat a( F$)
510 CHY%=OPENOUT( F$)

520 FOR I=1 TO 20

530 PRI NT#CH% A(1)

540 NEXT |

550 CLOSE#CH%

560 ENDPRCC

129



A simple program to run this subroutine would be

10 DI M A(100)

20 FOR I=1 TO 20

30 A(1)=I*1: REM DATA IS FIRST 20 SQUARES
40 NEXT |

50 PROC writedata("DFILE")

60 END

The procedure could equally well handle strings or integers if A(l) were
replaced by A$(l) or A%(I).

Exercise 9.3

Write a program to store in a data file a list of the names of cars. Use the
INPUT statement to read in the number of names and the names themselves.
Run the program for, say, 5 names and use the * CAT command to verify that
the datafile has been created.

OPENIN

Once a file exists, it can be opened for reading with the OPENIN function,
which is used in the same way as OPENOUT, as follows

CHY=COPENI N( " DFI LE")

Note that if DFILE does not exist, it will not be created. CH% will be set to
zero and al will appear to be well, but when a command tries to use the
channel number, it will fail with the error message

Channel at line...

Thisis particularly confusing because it is not really that line that isin error,
but the line where the OPENIN was issued. It is useful in a situation like this
to PRINT the value of CH% in immediate mode. If the value is zero it will
wnfirm that a non-existent file is the source of error.

The fact that CH% is assigned a value of zero if the file does not exist
could be used as a safety check, when a new file is to be created, to ensure
that a file of the same name does not exist aready before issuing an
OPENOUT that would destroy an existing file.

INPUT#

Just as with output, the command to read data back from a file parallels the
INPUT command

| NPUT#CHY% A, B% C$, D§
(Obviously, input has to be directly stored into variables, whereas values and

expressions can be output to afile. Also, INPUT# s not afunction, so it could
not be used in an expression such as X=Y +INPUT#.)

130



Example 9.2

The equivalent to the procedure PROC_writedata, to read the data back,

would be

500 DEF PROC readdat a( F$)
510 CHY=OPENI N( F$)

520 FOR 1=1 TO 20

530 | NPUTHCH) A(1)

540 NEXT |

550 CLOSE#CH%

560

It could

10
20
30
40
50
60
70
80

End of

ENDPRCC

be used with a program of the form

DI M A(100)

PRINT "The first 20 squares are"
PRINT " " Nunber square"’
PRCC readdat a(" DFI LE")

FOR 1=1 TO 20

PRINT I, A(l)

NEXT |

END

File

It may well be that you do not know how many items of data there are in a
file. There is a function, EOF#, which is designed for this purpose. It has the

form

ECF

f#<channel >

and returns the value TRUE(-1) if the end of the file has been reached, and

FALSE

(0) otherwise. Thisisideally suited to REPEAT...UNTIL loops, where

it can be used asthe UNTIL test.

Example 9.3

The procedure and program of Example 9.2 could be modified as follows to

read back any number of values

20
25
30
40
50
60
70
515
520
530
540

PROC readdat a( " DFI LE")

I=l-1

PRINT "The first ";1;" squares are"
PRINT "" Nunber square"’
FOR J=1 TO |

PRINT J, A(J)

NEXT

1=1

REPEAT

I NPUTHOHYG A1) : 1=l +1

UNTI L ECF#CH%

131



Exercise 9.4

Write a program to read the names of the cars stored in the data file from
Exercise 9.3 and print out the list. Use the EOF# function to determine when
the end of the file has been reached.

9.3 FURTHER ASPECTS OF DATA FILES
9.3.1 OPENUP

There are several reasons why you might want to open a file for writing
without deleting the old version of the file. There is athird way to open afile,
using OPENUP, which opens a file for updating (including both reading and
writing) and does not delete the file first. The function is used in the usua
way, for example

CHY&=OPENUP( " DFI LE")

A serious complication occurs at this point between the two versions of
BASIC that have been released by Acorn. These two versions are generally
referred to asBASIC | (or just BASIC) and BASIC Il respectively. To find out
which version of BASIC your computer has, if you do not already know, press
<BREAK> and then type

REPORT
The computer will respond either

(C) 1981 Acorn or (C) 1982 Acorn

The former message is issued by BASIC |, and the latter by BASIC 1I, which
links the two dates very conveniently to the two versions of BASIC.

The above description of OPENOUT, OPENIN and OPENUP refers to
BASIC Il. Only OPENOUT isthe same for BASIC 1.

The other two commands are replaced by a single command, OPENIN,
but worse is to follow. OPENIN in BASIC | has the same effect as OPENUP
in BASIC Il. There is no equivalent to the effect produced by BASIC II's
OPENIN. Furthermore, a program containing OPENIN written with BASIC |
will list the command as OPENUP on BASIC Il. A program with OPENIN
written with BASIC |1 will list nothing on BASIC |, and the command will
cause an error.

If this seems totally confusing, Table 9.1 may help.

Table 9.1 Summary of commands to open filesin BASIC | and BASIC II.

BASICI BASIC I Token Action

OPENOUT OPENOUT &AE Delete existing file and
open file for writing only

N/A OPENI N 88E Open filefor reading only

OPENIN OPENUP &AD Open filefor reading,

writing or updating

132



(For the technically minded, what happens is that BASIC | and BASIC Il use
the same token — & AD — for OPENIN and OPENUP respectively. Thisis very
sensible, since the action is the same in both cases, though the BASIC nameis
different. BASIC |l uses a different token — &8E - that BASIC | does not
recognize, for OPENIN.)

To make maximum use of the difference between the commands, and to
minimize confusion, OPENUP will be used whenever a file is to be opened
for both reading and writing. BASIC | users should remember that they must
use OPENIN instead.

Programmers writing programs in BASIC |1 that may be used with either
version of BASIC should always use OPENUP, even when opening afile for
reading only.

9.3.2  Appending to afile: EXT# and PTR#

It is possible, but not very likely, that you may want to change the contents of
a simple data file. Random access files, as discussed in Section 9.4, are really
needed for this purpose. What you might well want to do, however, is to add
further information to the end of afile, or append to afile.

Two further file handling commands will enable you to achieve this. The
first of these is the function PTR#, which behaves like a pseudo-variable. As
you write to, or read from, a data file, the computer keeps track of where you
are up to by using a pointer, a variable which contains the current position in
the file, measured in terms of the number of bytes from the start. This variable
is accessible to you as PTR#<channel >, and can be both read and, if you wish,
altered.

The second command needed is EXT# (short for EXTent). EXT#
<channel> is a function that returns the current size of the file associated with
the specified channel.

We can now append to a file, by opening it with OPENUP and setting
PTR# to EXT#. (Note that appending is not possible, and the commands
EXT# and PTR# will not work, with the cassette filing system.)

Example 9.4

The following program will append the next ten square numbers to the file
DFILE, created in Example 9.1.

100 CHY%=OPENUP("DFI LE"): REM USE OPENIN W TH BASI C |
110 PTRECH&EXT#CH%

120 FOR 1=21 TO 30

130 PRINT#CHA | *1

140 NEXT |

150 CLOSE#CH%

You can test the success of this program by reading back DFILE again with
the program from Example 9.3.

133



9.3.3 Problems with data files on disc

There are two potential problems that can occur when using data files on disc,
which isin many other ways much the most satisfactory filing system.

The first is associated with the fact that OPENOUT allocates 64 sectors to
afilewhenitisfirst created. It may be that a disc has less than 64 sectors free,
but ample room for the needs of your particular data file. The program will
still not allow you to create the file, failing with a* Disc full’ error.

Thereisasimple way round this problem, associated with the fact that the
operating system does not distinguish between different types of file, as
explained in Section 9.1. You can create a ‘dummy’ file of a different type,
and then reopen it with OPENOUT and overwrite it. The 64 sector reservation
only appliesto abrand new file.

The simplest way to create adummy file isto use acommand such as

*SAVE DFILE 0 10

that will create atiny file. It will contain rubbish, but thisisimmaterial since it
is to be overwritten. (You could equally well create a small BASIC program
with SAVE.)

The second problem is more serious, and stems from the inefficient way
in which the DFS stores its files in strict sequential order on the sectors of a
disc. If, asislikely, a new file is saved to a disc following a data file, it will
butt up against it on the disc, as shown in Figure 9.1.

The problem now arises that if you wish to append to the datafile, thereis
no room to do so and the program will fail with

Can't extend
Thisis an infuriating message when you know that there is plenty of room left

on the disc, and there is no foolproof way of avoiding it, except by making the
datafile the only file on the disc.

Earlier Data New Unused
files file file sectors

Directory

Figure9.1 The problem with extending a datafile.

134



A reasonably safe, but wasteful, way of ensuring that there is enough
room is initially to create a file sufficiently large for all possibilities, by the
same * SAVE method a described before. A file of 100 sectors could be created

by
*SAVE LARGEFL 0 6400 (&64=100 decimal)

after which it should only be accessed by OPENUP or OPENIN.
However, you can no longer append to the file by the simple technique
described above, since EXT# will point to the end of the 100 sectors, not the
end of the genuine data.

Until Acorn change the DFS away from the strict sequential storage
method there will be no realy satisfactory solution to this ‘Can't extend’
problem.

9.4 RANDOM ACCESS DATA FILES

Data files can be further subdivided into two subcategories: sequential files
and random access files. Up to now we have only discussed sequential or
serial accessto datafiles.

As ever on the BBC computer, random access files are simply data files
where a very systematic method of organizing the data has been used, so that
random access becomes possible. The key to random access is the function
PTR# that has aready been discussed. Note that random access is only
possible with disc-based filing systems.

The simplest way to achieve random access is to organize the data into
records, which are single or multiple items of data occupying a fixed number
of bytes — the record length. Thus if a record length of 40 is chosen, then the
Nth record can be found by setting

PTRECHIEA0* (N- 1)

which immediately skips over the previous (N-) records.

There is a wide range of situations where data can be conveniently
subdivided into records - phone lists, names and addresses, journal
references, library catalogues, club membership lists, subscription accounts,
stock lists, patient records and many similar record-keeping requirements.
Quite clearly, anything that can be stored in a card index isidedly suited for a
random access textfile.

In most cases, including those listed above, each record will contain more
than one item, or field. These fields will be accessed sequentialy, and the
record acts in many respects like avery small sequential datafile. In principle,
each record could contain a different number of fields, though handling the
file would be very difficult unless the records had some systematic structure,
such as aternate records with the same numbers of fields.

135



9.4.1 Creating arandom access file

Random access files are handled with the usual data file commands, plus
PTR#. However, the record structure must be carefully planned. In particular,
the record length must be made sufficiently large for al eventualities.

Consider as an example a simple inventory list, to contain three fields:
item name, type and number in stock. The last field is quite simple, because it
is numeric, and the internal format used to store numbers is such that integers
occupy 5 bytes, and real numbers occupy 6 bytes. (It follows from this that
files containing only real or only integer variables could be randomly accessed
automatically, since the record length is always 6 or 5 respectively .)

String variables occupy the number of characters of the string plus 2
bytes; thus if the item name and type are considered to need up to 15 and 8
characters respectively, then assuming the stock number to be an integer, the
record length required is (15+2)+ (8+2)+5=32 bytes. The record does not need
to be full for every item; it must contain two strings and one integer but the
strings could be shorter than 15 and 8 characters.

It is the standard length of each record that makes random access simple.

Example 9.5
The following program will set up such an inventory list.

10 CH%=OPENQUT(" | NVENT")

20 RECNO=0
30 REPEAT
40 INPUT "Item name: "1 TNVB
50 I NPUT "Type: " TPE$

60 INPUT "Quantity: "QU%
70 PTRECH/%=RECNO* 32

80 PRI NT#CHY% | TNMB, TPE$, Q%
90 RECNO=RECNOt+1

100 UNTIL | TNMB=""

110 CLOSE#CHY%

The program will loop until <RETURN> is pressed with no other input in
response to the item name. (It will also be necessary to press <RETURN> in
response to the type and quantity, and this last empty record will be written
into thefile.)

The key linesare line 70, where PTR# is set to the start of the next record,
and line 90 where the record number is incremented.

Exercise 9.5

A danger with the program above is that a name and type longer than the
limits set may be entered, which will cause records to overlap. Modify the
program to check the length of the fields before writing them to thefile.

136



9.4.2 Reading arandom access file

To read records back we need a program which is effectively the mirror image
of that in Example 9.5, but it is necessary to know when to stop. As with
Example 9.3, the EOF# function can be used for this purpose.

Example 9.6
The following program will read back the inventory produced in Example 9.5

10 CHY&=OPENI N(" | NVENT")

20 RECNO=0

30 REPEAT

40 PTR#CHY%=RECNOr 32

50 | NPUT#CHY% | TNMB, TPES, QW%
60 PRINT "Item nanme: ;| TNVB

70 PRINT "Type: ", TPE$
80 PRINT "Quantity: ":QU%
90 PRINT

100 RECNO=RECNO+1
110 UNTIL ECF#CH%
120 CLOSE#CH®

However, the whole point of random access files is to be able to read an
individual record without first searching through the whole file and, even
more importantly, to be able to modify or edit a record. For instance, with an
inventory it must be possible to change the quantity, as items are drawn from
stock or reordered. All that is necessary isto set PTR# to the desired record, as
explained earlier.

Example 9.7
The following program allows the user to read, or write to, a specified record.

10 PRINT "Do you want to read or wite (RW? ";
20 INPUT " "RV
30 INPUT "Type the record number that you want: "RECNO
40 | F RW="R' THEN PRCC_read(RECNO-1): REM SI NCE RECCRDS
START AT 0
50 | F RW="W THEN PROC write( RECNO-2)
60 END
1000 DEF PROC_read( RECNO)
1010 CH%OPENI N(" | NVENT")
1020 PTR#CHY%RECNOr 32
1030 | NPUT#CHY% | TNMB, TPES$, QU%
1040 PRINT "ltem name: ";| TNV

1050 PRINT "Type: ", TPE$
1060 PRINT "Quantity: "; QW%
1070 PRINT

1080 CLOSE#CH%

137



1090 ENDPRCC

2000 DEF PROC wi t e( RECNO)

2010 CHY=OPENUP("| NVENT"): REM USE OPENIN W TH BASIC |
2020 INPUT "Item nane: "I TNVB

2030 INPUT "Type: " TPES$

2040 INPUT "Quantity: "QUW%

2050 PTRHCHYRECNOr 32

2060 PRI NT#CH% , | TNVB, TPES, QU%

2080 CLOSE#CH%

2090 ENDPROC

Exercise 9.6

Modify the above program so that when reading a record, it checks that the
end of the file has not been reached.

Exercise 9.7

Modify the program further to alow it to read a record, then change the
quantity field for that record.

9.5 SINGLE BYTE ACCESS TO A DATA FILE
9.5.1 The BGET# and BPUT# commands

For most purposes the normal data handling commands INPUT# and PRINT#
are quite adequate, but there are circumstances when single byte access to a
file is necessary. The commands to read or write a single byte are BGET# and
BPUT# respectively. Each operates on the byte pointed to by the current value
of PTR#, and PTR# is then incremented to point at the next byte in the file.
The format of BGET# and BPUT# are rather different. Bytes are written by

BPUT#<channel > , <nunber/ vari abl e>
For example

BPUT#CHY% 10
or

BPUT#CHY% A%
Note that if any value exceeds 255, then only the least significant byte will be
written. BGET# on the other hand returns a value, and must be PRINTed or
assigned to avariable

BGET# on the other hand returns a value, and must be PRINTed or
assigned to avariable

138



PRI NT BGET#CH%
or
BTY%BCET#CH%

In the case of both BPUT# and BGET#, the pseudo-variable PTR# is
incremented after the operation.

Exercise 9.8

Write a program to display the hex value of each separate byte in the data file
from the previous exercises. Run the program and observe the format. An
explanation of thisformat is given below.

9.5.2 Format of data files

Each item of data stored in a data file by the PRINT# command is preceded
by a byte which indicates the type of data. A value of &40 indicates integer
type and is followed by a further 4 bytes of data, which is the interna
representation of the integer number. A value of & FF indicates real type and is
followed by 5 bytes of data, the interna representation of a real number. A
value of O indicates string type and is followed by a byte to indicate the length
(L) of the string. A further L bytes follow which are the ASCII values of the
charactersin reverse order.

In order to position the pointer correctly in a data file containing, say,
only integer variables, it is necessary to move the pointer 5 places for each
item of data. Similarly for real variables the pointer must be moved 6 places
per item. For string variables, however, the situation is more complicated
since the lengths in general may not be the same. One solution to this problem
is to pad out the strings to the same length by means of spaces at the end of
each variable. The following instructions will pad out a string to 10 characters
by using the STRINGS$ function to generate as many spaces as required.

10 INPUT "NAME', NAVES

20 L%LEN( NAMVES)

30 |F L%10 THEN PRINT "Not nmore than 10 characters": GOTO 10
40 NAMES=NAMES$+STRI NG$(10-L% " ")

Exercise 9.9

Write a program to write a list of names of cars to a data file with each string
padded out to the same length. Use the program from Exercise 9.8 to verify
that it has worked correctly.

Exercise 9.10

Write a program to read from the data file created in the previous exercise any
specified item of data. Use an INPUT statement of the form "which car do you
require (1 2 3...)?" and use the PTR# function to locate the required item.

139



9.6 A GENERAL PROGRAM TO READ OR WRITE A
SEQUENTIAL DATA FILE

We are now in a position to write a general purpose program to read or write a
sequential datafile.

Writing is quite straightforward, using the techniques described in
Sections 9.2 and 9.3. For mixed variables, it will be necessary to specify
whether each is real, integer or string. Where all are of the same type, this
need only be ascertained once.

Reading the file is where a problem arises, because we must cater for any
type of dataitem. Thisiswhy this discussion needed to be postponed until this
point. We can now use BGET# to interrogate each starting byte of an item to
determine which type it is, so that the appropriate type of variable can be used
to collect the input. (After the BGET#, the PTR# must be decremented to
move it back to the start of the dataitem.)

Example 9.8

10 ON ERROR GOTO 5000

20 CLS

30 PRINT "Do you want to WRITE or READ a data file?"

40 INPUT "Pl ease answer Ror W "A$

50 PRINT

60 |F A$<>"R' AND A$<>"W THEN GOTO 40

70 INPUT "Please type filenane: "F$

80 | FA$="R' THEN GOTO 500

90 REM

100 REM kkkkkkkk V\RITE DATA FI LE kkkkkkkk

110 REM

120 INPUT '"Do you want to append to the file? "YN$

130 YN$=LEFTS(YN$, 1): IF YN$<>"Y" AND YN$<>"N' THEN VDU 7:
GOTO 120

140 CLS

150 PRINT"Do you want to wite:"

160 PRINT''"1) All real nunbers"

170 PRINT'"2) All integer nunbers"

180 PRINT'"3) Al strings"

190 PRINT'"4) A mixture of data types"

200 INPUT" ' "Type the nunber for your choice: "DTYPE%

210 I F DTYPE%1 OR DTYPE%4 THEN VDU 7: GOTO 200

220 MODE 7

230 PRINT CHR$(136);"TYPE <ESC> TO TERM NATE | NPUT"

240 PRINT'

250 *FX229, 1

140



260 REM CANCEL ESCAPE

270 I F YN$="Y" THEN CHY%=OPENUP(F$): PTRECHY/=EXT#CH% ELSE
CHY&=CPENQUT( F$)

275 REM *** USE OPENIN FOR BASIC | ***

280 REM APPEND | F YN$="Y"

290 DONE=0

300 REPEAT

310 | NP$=""

320 | F DTYPE%1 OR DTYPE%2 THEN PROC_nunber ( DTYPE%)

330 | F DTYPE%3 THEN PROC_string

340 | F DTYPE%4 THEN PROC_ nixture

350 UNTIL DONE

360 CLOSE#CH%

370 *FX 229,0

380 REM RESTORE ESCAPE

390 CLS

400 PRINT "Witing conpleted"

410 END

470 REM

480 REM kkkkkkkk READ DATAFI LE kkkkkkkk

490 REM

500 PRINT' "Do you want to pause after each”

510 INPUT "field? (Y/N):"YN$

520 YN$=LEFT$( YN$, 1)

530 |F YN$<>"Y" AND YN$<>"N' THEN VDU 7: GOTO 500

540 CLS

550 CH%OPEN N( F$)

560 REPEAT

570 DTYPE%BGET#CH%

580 PTR#CHY%PTR#CH% 1: REM BACK TO START OF DATA | TEM

590 | F DTYPE%0 THEN | NPUT #CH% | NP$: PRI NT | NP$

600 | F DTYPE%64 THEN | NPUT#CH% | NP% PRI NT | NP%

610 | F DTYPE%255 THEN | NPUT#CHY% | NP: PRINT | NP

620 | F YN$="Y" THEN A$=CET$: PRI NT

630 UNTIL ECF#CH%

640 PRINT''"THAT IS THE END OF THE FILE"

650 CLOSE#CH%

660 END

1000 DEFPROC number ( DTYPE%

1010 PROC i nput

1020 | F DONE THEN ENDPRCC

1030 NUMEVAL( | NP$)

1040 | F DTYPE%>2 THEN ELSE NUM/EI NT(NUM : I F STR$( NUMA <>I NP$
THEN | NP$="": VDU 7: GOTO 1010

1050 | F DTYPE%1 THEN PRI NT#CH% NUM ELSE PRI NT#CHY% NUMb

1060 ENDPROC

1500 DEFPROC_string

1510 PROC_i nput

141



1520
1530
1540
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2500
2510
2520
2530
2540
2550
2560
2570
2580
3000
3010
3020
3030
3040
3500
3510
3520
4970
4980
4990
5000
5010
5020
5030
5040

This program consists of two main parts: the WRITE section starting at line
120, and the READ section starting at line 500. When writing, four data input
options are offered: real numbers only; integers only; strings only; or a
mixture of data types. Procedures PROC number and PROC string handle the
actual input of a data item, and for the mixed option, PROC_mixture
determines which data type is wanted next and then cals either
PROC_number or PROC_string. Typing <ESCAPE> at the start of adataitem
(but not in the middle) terminates input to the file. There is also an option to

| F DONE THEN ENDPROC

PRI NT#CH% | NP$

ENDPROC

DEF PROC mixture

PRINT “Wich data type? (I-R-S): ;
DTYPE$=GET$: PRI NT DTYPE$

| F DTYPE$=CHR$(27) THEN DONE=1: ENDPRCC
REPEAT

UNTI L GET$=CHR$(13)

PRINT

|'F DTYPE$="1" THEN PROC nunber (2): ENDPROC
| F DTYPE$="R' THEN PROC_nunber (1) : ENDPROC
| FDTYPE$="S" THENPROC_st ri ng: ENDPROC

VDU7: GOTO 2010

DEF PROC i nput

CHP=GET$

| F CH=CHR$(13) THEN PRI NT: ENDPRCC

I F CH$=CHR$(127) THEN PROC_cancel : ENDPROC
| F CH=CHR$(27) THEN PROCescape: ENDPROC
PRINT CH$

| NP$=I NP$+CH$

PROC_i nput

ENDPROC

DEF PROC_cancel

I'F LEN(INP$) =0 THEN VDU 7: PROC_input: ENDPROC
PRINT CHS; : | NP$=LEFTS$( | NP$, LEN( I NP$) - 1)
PRCC i nput

ENDPRCC

DEF PROCescape

I'F LEN(I NP$) >0 THEN VDU7: PROC_i nput: ENDPRCC
DONE=1: ENDPRCC

REM

REM kkkkkkkk ERRCR RQJTI NE kkkkkkkk

REM

*FX 229,0

REM RESTORE ESCAPE

CLOSE#0

PRINT "UNEXPECTED ERROR, NUMBER "; ERR, "AT LINE "; ERL

END

142



append to an existing file, which opens the file with OPENUP (or OPENIN
for BASIC |) instead of OPENOUT, and uses EXT# to move the file pointer
to the end of an existing file (line 270).

For reading files, a single option is offered, to pause after each field, so
that a long file can be read (an alternative would be to use <CTRL-N>). The
first character of each data item is read with BGET# at line 570 to determine
the data type. The file pointer is then decremented back to the statt of the item
a line 580, and the item read into the appropriate type of variable on lines
590, 600 or 610.

9.7 ASCII FILES

A more primitive form of datafile is the ASCII file. Whereas items (basically
the contents of integer, real or string variables) are stored as distinguishable,
structured units in a proper data file, an ASCII file consists simply of a
continuous stream of characters stored by means of the ASCII codes of the
characters.

Because of the lack of structure, such files cannot be read with INPUT#.
However, they can be created and read by certain other system commands,
and even by BPUT# and BGET#.

9.7.1  Creating an ASCII file

The simplest way to create an ASCII file is by means of the *BUILD
command. This hasthe form

*BU LD <fil enane>

Items are entered one ‘line’ at atime, where line here means, aswith aBASIC
program line, the entry up to the point the <RETURN> key is pressed, not a
screen line. The computer prompts with a number for each line, but these are
not stored in the file. Entry to the file is terminated, and the file closed, by
pressing <ESCAPE>.

We shall see shortly that ASCII files are most commonly used as *EXEC
files, but in principle *BUILD can be used to produce an ASCII file for any
purpose.

An ASCII file can be read quite simply using one of three commands:
*TYPE <filename> and *LIST <filename> are amost equivalent. They list
back the ASCII file line by line, just as it was created by *BUILD, the only
difference being that *LIST adds line numbers, in the same way that *BUILD
does, whereas * TY PE does not. The third command is

*DUWP <fil enanme>

Its effect is quite different. It produces a hexadecimal dump of the file
contents, 8 bytes per line, together with the ASCI| representation of each byte.

143



*DUMP can be used with any type of file, not just ASCII files. For instance, it
could be used with a data file and would quite conveniently display the format
used to store integers, real variables and strings. A specimen *DUMP listing
of adatafileisshownin Figure9.2.

0000 00 09 53 52 4F 54 53 49 .. SROTS|
0008 53 45 52 00 04 4B 59 2E SER. . K9.
0010 33 40 00 00 00 7D 00 00 3@..}..
0018 00 00 00 00 00 00 00 00 ........
0020 00 OA 53 52 4F 54 49 43 .. SROTIC
0028 41 50 41 43 00 05 46 6E APAC..Fn
0030 30 30 32 40 00 00 00 4B 002@..K
0038 00 00 00 00 00 00 00 00 ........
0040 00 OA 53 52 4F 54 49 43 .. SROTIC
0048 41 50 41 43 00 03 46 75 APAC..Fu
0050 31 40 00 00 00 19 00 00 1@.....
0058 00 00 00 00 00 00 00 00 ........
0060 00 00 00 00 40 00 00 00 ....@..
0068 00 kk kk kk kk kk kk k& R
Figure 9.2 A specimen *DUMPIisting.

9.7.2 *EXEC

*EXEC One of the main reasons, other than applications such as word
processing, for wanting ASCII files is for use with the *EXEC command,
which again has the simple form

*EXEC <fil ename>

The action of *EXEC is to issue the contents of the specified ASCI| file to the
computer exactly asif the contents had been typed at the keyboard.
There are three common uses for * EXEC.

1 Issuing a series of commands automatically

If you find that you repeatedly issue a particular set of commands, such as
programming the red function keys, then these commands can be stored in an
ASCII file by *BUILD. Issuing *EXEC for that file will then program the
keys automatically.

Exercise 9.11

Use *BUILD to program the function keys to issue a series of commands,
such as RUN<RETURN>, LIST<RETURN>, ~AUTO<RETURN>,
RENUMBER<RETURN>, *RENAME, *DELETE. Test the file by
*EXECing it. (You should see the commands appear on the screen as they are
issued.)

Ancther example where it can be useful to issue not only commands but
program input as well, is to run an interactive program automatically. This

144



could be useful to set up afile to control a program that takes a very long time
to run, or to keep testing a program during debugging.

Exercise 9.12

Set up a file to run the program from Example 4.12 (the class list sort)
automatically. You will need to start with

CHAIN "EX4. 12"

then enter the marks one per line.

2 IBOOT files

As was discussed in Chapter 8, it is possible to make a disc into a turnkey
system by adding afile named !BOOT to the disc.
The boot option can be set to *EXEC by

*OPT 4,3

and then, when <SHIFT-BREAK> is pressed, the file IBOOT is automatically
*EXECed.

IBOOQT can as usua be created by *BUILD. Quite commonly it will only
be one or two lines long, say to CHAIN a BASIC program (unfortunately
there is no direct boot option to CHAIN a program).

3 Issuing program lines

If aline of the ASCII file starts with a number, then when it is issued by
*EXEC it will behave as it would if typed in; that is, it would be stored in
memory as a program line. This gives away of adding procedures or functions
to a program, or merging programs, because unlike LOADing a hew program
section, the existing program remains in memory.

The required program lines could, if you wish, be created by the *BUILD
command, but if you already have the program or procedure written, there is
an easier way, using * SPOOL .

9.7.3 *SPOOL

The second normal method of creating an ASCI| file is by using the * SPOOL
command. This has two forms

*SPOOL <fil enane>

creates or opens the specified file, and thereafter any output to the screen from
aBASIC command is a so written into thefile.

145



*SPOOL

with no filename closes the file or files. (The same effect can also be obtained
with CLOSE#0.) Thus to capture into an ASCI|I file a program in memory (or
part thereof), you would issue the commands

*SPOOL TXTPROG
LI ST (or LI ST 100, 200)
* SPOOL

If you subsequently issue *EXEC TXTPROG, dl the listed lines will be
reissued. Note that the ASCII file contains everything that appeared on the
screen after *SPOOL TXTPROG, including the commands and BASIC
prompts (>), so aswell asthe BASIC lines you will seethe extralines

>LIST and >* SPOOL

When *EXECed these will generate ‘Syntax error’ messages just as they
would if you typed them (complete with leading >, that is), but this will not
affect the program lines that you want.

Merging programs

The best method of merging two programs, or program sections, is by using
*SPOOL and *EXEC. The procedureis as follows.

Load the shorter program into memory and capture it into an ASCI| file
by *SPOOL. Load the longer program into memory, then *EXEC the ASCII
fileto input the first program back into memory.

Note that if there are any duplicate line numbers the * EXECed lines will
overwrite those already in memory. Interleaving lines would be dl right in
principle, but you are unlikely to want this. One or both programs should be
RENUMBERed before merging to avoid this, if necessary.

The most common reason for merging program sections is probably to
add to a program favourite procedures or functions, such as error checking or
validation procedures. These can be kept as ASCI| files and *EXECed into as
many programs as you wish.

Editing programs with a word processor

The ability to * SPOOL a program into an ASCI| file, and subsequently restore
it with *EXEC, gives the possibility of using a word processor to edit BASIC
programs. Word processors such as Wordwise operate with standard ASCI|
files, and once a program has been captured into an ASCII file it can be
accessed by the word processor. All the powerful word processing facilities
such as scrolling back and forth at will, global search and replace, and text
movement or duplication can then be used to make program editing much
easier. When editing is complete the program can be saved in ASCII form, and
then *EXECed to retrieve it asa BASIC program.

146



Capturing program output in an ASCI| file

Although *SPOOL is most widely used for capturing programs, it is not
restricted to this. Another possible use is to capture program output.

As an example, consider the way in which short machine code
subroutines are sometimes loaded into memory from within a BASIC
program, by the ? indirection operator and DATA statements (the indirection
operators are described in Section 10.4). The sort of program section required
would be

1000 FOR J=0 TO 19

1010 READ X

1020 ?( BASEADD+J) =X

1030 NEXT J

1040 DATA 1,2,3,4,5,... 19,20

The numbers in the DATA statement(s) need to be worked out from the
machine code, and if the code is already in memory, this could be done by a
program, and the resulting values could be generated as a set of BASIC lines
of DATA. *SPOOL can be issued from within a program to create an EXEC
file. The following program shows how to do this.

Example 9.9

10 INPUT "Start address of machine code: "SA$
20 INPUT "Nunmber of bytes: "NB$

30 SA=EVAL(SA$): REM SA CAN BE IN DECI MAL OR HEX
40 NB=EVAL( NB$)

50 INPUT "Line nunber for start of DATA lines: "LI%
60 DI M BTY% NB-1)

70 FOR J=0 TO (NB-1)

80 BTY J) =?( SA+))

90 NEXT J

100 *SPOOL DATALNS

110 FOR K=0 TO (NB-1)/10

120 PRINT LI%10*K; " DATA ";

130 J=0

140 REPEAT

150 PRINT ; B9 J+10%K);

160 |F J<9 AND J+10*K<(NB-1) THEN PRINT ",";
170 J=J+1

180 UNTIL J>9 OR J+10*K=NB

190 PRINT

200 NEXT K

210 *SPOOL

Note that in contrast to BASIC commands, the name of the file following
*SPOOL cannot be a string variable. This is because *SPOOL, like any

147



command starting with a star, is an operating system command which is sent
directly to the Command Line Interpreter. The CLI cannot interpret BASIC
variables, since it operates at a lower level quite independently of whether
BASIC is even fitted to the computer. There is a way round this problem,
however, as we shall seein Section 10.7.1.

9.7.4  Single byte access to ASCII files

The point has already been stressed that the only difference between different
file types on the BBC microcomputer is their interna structure. The genera
approach to handling data files and ASCII files is very similar. Both operate
through buffers, transferring information to or from the filing system a sector
at atime. The main difference lies in the specia way in which the PRINT#
command writes information to the file, so that it can only readily be
interpreted by the INPUT# command.

However, this is not true of the single character commands BPUT# and
BGET#, which simply transfer a single character to or from the filing system.
They can therefore be used to create or read an ASCII file as easily as a data
file. This is particularly relevant for reading an ASCII file, since the three
norma commands, *LIST, *TYPE and *DUMP &l have limitations. *LIST
and *TYPE may hang up if they try and read certain control characters, for
instance CTRL-B which tries to turn on a printer. *DUMP will certainly list
any type of file, but the hexadecimal dump makes it tedious to use with files
containing text that you would like to read.

Example 9.10

The following program will write an ASCII type of file, or more accurately
any file of characters that can be typed in from the keyboard, including control
characters and Mode 7 special effect codes. More importantly it will read
them back.

10 ON ERROR GOTO 900

20 CLS

30 PRINT "Do you want to WRITE or READ an ASCl|"

40 INPUT "file? Please anwver Wor R "A$

50 PRINT

60 | F A$<>"R' AND A$<>"W THEN GOTO 40

70 INPUT "Please type filenane: "F$

80 | F A$="R" THEN GOTO 500

90 REM

100 REM ***x*x*x \\RI TE ASCI| FILE **x****

110 REM

120 INPUT '"Do you want to append to the file? "YN$

130 YN$= LEFT$(YNS, 1): |F YN$<> "Y' AND YN$<>"N' THEN VDU 7:
GOro 120

140 MODE 7

150 PRINT CHR$(136);"TYPE <ESC> TO TERM NATE | NPUT"

160 PRINT'

170 *FX 229,1

148



180 REM CANCEL ESCAPE

190 I F YN$="Y" THEN CHY%OPENUP(F$): PTR#CH/EXT#CH% ELSE
CH%=OPENQUT( F$): REM USE OPENIN W TH BASIC |

200 REM APPEND | F YN$="Y"

210 REPEAT

220 CH=GET

230 | F CH<>27 AND CHk>127 THEN PRINT CHR$(CH);: BPUT#CHY% CH

240 | F CH<>127 THEN ELSE | F PTR#CH%0 THEN PRINT CHR$(CH);:
PTR#CHYFPTR#CHY% 1 ELSE VDU 7

250 | F CH=13 THEN PRINT CHR$(10);: REM CR NEEDS LF ALSO

260 UNTIL CH=27

270 CLOSE#CH%

280 *FX 229,0

290 REM RESTORE ESCAPE

300 CLS

310 PRINT "Witing conpteted"

320 END

500 REM

510 REM *****%*x READ ASCl| FILE ****x%*x

520 REM

530 CLS

540 PRINT TAB(0,4);"Option List:"

550 PRINT ''"1) Suppress high bit of each byte"

560 PRINT '"2) Suppress CONTROL codes"

570 PRINT '"3) Send output to printer"
580 PRINT '"4) Pause after each paragraph”
590 PRINT '"5) Start listing"

600 OP%0

610 REPEAT

620 INPUT "' "Type the nunber for your choice: "OP

630 | F OP=1 THEN OP%(OP% OR 1): PRINT ""H GH BITS WLL BE
SUPPRESSED'

640 | F OP=2 THEN OP%(OP% OR 2): PRINT '"CONTROL CODES WLL BE
SUPPRESSED"

650 | F OP=3 THEN OP%(OP% OR 4): PRINT '"PRINTER ENABLED'

660 | F OP=4 THEN OP%(OP% OR 8): PRINT '"PRESS A KEY AFTER
EACH PARAGRAPH'

670 | F OP<>I NT(OP) OR OP>5 THEN VDU 7

680 UNTIL OP=5

690 CLS

700 | F (OP% AND 4)=4 THEN VDU 2

710 CHY%OPENI N( F$)

720 REPEAT

730 CH$=CHRS®( BGET#CH%)

740 | F (OP% AND 1)=1 AND ASC(CH$) >128 THEN CH$=CHR$( ASC( CHS) - 128)

750 | F (OP% AND 2)=2 AND ASC(CH$) <32 AND CH$<>CHR$(13) THEN
CHg="."

760 PRINT CHS;

149



770 |F CHS=CHRS(13) THEN PRINT CHR$(10):: IF (OP% AND 8) = 8
THEN A$=CET$

780 UNTI L EOF#CH%

790 VDU 3

800 PRINT ''"THAT I'S THE END OF THE FILE"

810 CLOSE#CH%

820 END

900 REM

910 REM kkkkkkkk ERR(R RQJTI NE kkkkkkkk

920 REM

925 REPORT: PRINT " AT "; ERL: END

930 *FX 229,0

940 REM RESTCRE ESCAPE

950 CLOSE#0

960 PRINT "UNEXPECTED ERROR, NUMBER "; ERR " AT LINE "; ERL:
VDU 3

970 END

When reading a file the program offers a number of options. The first is to
suppress the high bit of any byte. Some files may contain characters in a
modified ASCII form, having 128 added to the normal code, and this option
will strip off the 128.

The second option allows you to suppress any control characters (except
the <RETURN> character), printing a full stop instead. The third and fourth
options are self-explanatory, alowing you to list to a printer or pause after
each paragraph (or more accurately, after each <RETURN>) until any key is
pressed. Note that if your printer requires setting up by commands such as
*FX 6,0 these will have to be issued before running the program.

One particular use for this program is to read word processor files if you
have access to them but do not yourself possess a word processor. Word
processor files often contain control codes as well as ssimple text, and you can
use the option to suppress these in order to read the text. The popular word
processor Wordwise in particular can create files containing CTRL-B codes
that will hang the computer unless a printer is connected.

Exercise 9.13

One problem when reading long strings, such as those from word processor
files, is that words are broken at the end of each line. Use the type of
technique introduced in Example 4.10 to modify Example 9.10 so that when
long strings are read, words too long to fit on the end of a line of screen
display are wrapped round onto the next line.

150



