
Chapter 3

STRUCTURED PROGRAMMING
FACILITIES

3.1 INTRODUCTION

3.1.1 Structure charts (top-down design)

The BBC microcomputer has a wide range of facilities that offer the
programmer the opportunity to write clear and easily followed programs. To
make the best use of this potential it is worth spending some time in careful
analysis of the problem that is to be programmed in order to organize the
program in the most appropriate way. This analysis should be done before any
of the BASIC code is written. It will be time well spent and if the decisions
reached are recorded they will be useful in making modifications to the
program at a later date. There are two main techniques for recording the
decisions about the form of the program: the flow chart, and the structure
chart produced in top-down design.

It is now accepted that top-down design is a method of structured
programming that can lead to good programs. The name comes from the idea
of considering a problem as a whole, then breaking it down into a small
number of main sections, and then progressively breaking each section down
into smaller sub-sections until each sub-section can readily be coded in the
programming language to be used. The sections specified are recorded in a
structure chart (not to be confused with a flow chart), which should show the
overall structure of a program in diagrammatic form. The structure chart
should be easily understood and so should not contain complex flow lines that
belong in flow charts.

There are three main logic structures which may be represented in a
structure chart: sequence, iteration and selection. It is appropriate to consider
each of these in turn.

Sequence

The first stage in the analysis of a problem that is to be programmed is to
break it down into a small number of identifiable sections. At this stage of
analysis the natural sequence of different processes provides an obvious

22

division of the problem. Each of these is identified by a rectangular box called
a sequence box. Figure 3.1 illustrates the use of sequence boxes.

Process A Process B Process C Process D

Figure 3.1 The use of sequence boxes in a structure chart.

The boxes should be read from left to right; the line links them to show they
form the subdivided parts of a whole unit. Thus process A is followed by
process B which in turn is followed by process C and last comes process D.

Iteration

An iteration is a process which involves repetition (possibly of a number of
sequence events). A process which is repeated is represented in a structure
chart by a rectangular box with an asterisk in the top right hand corner (see
Figure 3.2). The number of times that the process is repeated is not necessarily
indicated.

✭

Process A

Figure 3.2 Sequence box for a repeated process.

Selection

If only one process is to be chosen from two or more possible processes a
selection construction is used. The processes may be regarded as a number of
options. The selection construction is represented by a series of rectangular
boxes each with a small circle in the top right hand corner. The group from
amongst which the choice is made is connected by a line but in this case only
one process is executed. Figure 3.3 illustrates such a selection group.

Process A Process B Process C

Figure 3.3 Representation of a selection group.

23

A structure chart is built up using the three key structures. It starts with a
single box indicating the whole program. Examine the program to sum the
first 10 prime numbers (Example 2.6) and its structure chart in Figure 3.4.

Initialize
sum

variable

Form
summation

Present
result

Summation
of first

10 primes

Obtain
data

Add to
previous

summation

✭

Figure 3.4 Structure chart for summation of primes.

The structure chart in Figure 3.5 is for Example 2.11 in which an array is
used to solve the same program requirement. Note how much easier it is to
follow and consequently the case for the use structure charts can be seen. It is
worth pointing out that these programs are really too simple to need a
structure chart.

Initialize
sum

variable

Read
primes

into
array

Form
summation

Present
result

Summation
of first 10
primes

using array

✭ ✭

Figure 3.5 Structure chart for summation of primes using an array.

24

3.1.2 Good programming style

It is important that even the relative newcomer to programming seeks to adopt
a systematic, coherent and professional approach to the design and
implementation of computer programs.

There are general rules which can be applied by the BASIC programmer
which will reduce the chances of error and confusion. Their importance will
become more apparent as the sophistication of the problems tackled increases.

1. First analyse the problem systematically (before you start typing!) Decide
on the best strategy to solve the problem.

2. Break the problem down into a series of simpler parts (modules). Each
module might well correspond to one sequence box of the structure chart.
Wherever possible, particularly in an extensive program, write each
substantial module as a procedure. One of the great advantages of BBC
BASIC is the provision of proper procedures and functions, in addition to
the standard subroutines. Each procedure, function and subroutine should
be separately tested and verified.

3. As an aid to clarity, use variable names which will remind anyone reading
the program of the actual quantities to which they refer. Lower case can
be used for variable, procedure and function names and this helps in
distinguishing them from keywords. However, it makes typing more
difficult, with the need to keep operating the CAPS LOCK key. (In this
book, a convention has been used of lower case for procedure and
function names, but upper case for variable names).

4. For the same reason, use REM statements to explain the function of any
potentially unclear lines or parts of the program.

5. Try to avoid using GOTO instructions unnecessarily. This is one of the
more unfortunate features of BASIC where some thought will often
reveal a better way to write the program without them. Extensive use of
GOTO leads to programs which are very difficult to check and
underStand. Consider it as a challenge to keep GOTOs out of your
programs.

6. In the case of extensive programs, the analysis of stages (1) and (2)
should be separately documented.

3.2 FUNCTIONS

BASIC has many built-in functions, such as SIN(X), COS(X), RND(X),
INT(X) and LOG(X). In addition, it is possible for the user to define his own
functions, each consisting of a separate section of program which returns a
single value to the calling statement in the main program. Functions created

25

by the user are used in exactly the same way as the built-in functions, but they
are preceded (without any intervening spaces) by the letters FN. For example,
function ‘ round2’ would be called by

10 MONEY=FN_r ound(X)

The underline character is used here, and throughout this book, to give a
visiual impression of a space between FN and its name since the space
character cannot be used. (The same convention is followed for procedures.)

Functions may be defined outside the main body of the program and it is
conventional to collect all the functions (and procedures) at the end of a
program, after the final END statement. In any case they must not be in a part
of the program where the lines comprising the function would be executed
other than due to a function call.

A function is defined by a section of program that starts with a line such

100 DEF FN_r ound2(R)

and ends with a line such as

140 =X

In BBC BASIC a function may contain several statements and can be as long
as necessary. The variable R used in the definition of a function is called the
formal parameter. The value or expression used when the function is used is
called the actual parameter and has no relationship to the formal parameter.
The value of a variable used as an actual parameter is unchanged after use of
the function even if the value of the formal parameter is reassigned within the
function. Functions may have more than one parameter, separated by commas.

Example 3.1

This program uses a function FN_round2 which rounds a given number to two
decimal places. This might be a useful function in a program involving
monetary calculations or for rounding off average or scaled exam marks. The
function is called at line 50 and the rounding to two decimal places is done by
multiplying by 100 and then taking the integer part of the result with the
INT(X) function. The integer result is then divided by 100 to get the required
two decimal place form of the number.

 10 REM TO I LLUSTRATE THE USE OF DEF FN
 20 MODE 7
 30 REPEAT
 40 I NPUT " Gi ve a number t o mor e t han 2 deci mal pl aces " , R
 50 MONEY=FN_r ound?(R)
 60 PRI NT " To t he near est penny £" ; MONEY
 70 PRI NT " Do you wi sh t o do a nw r oundi ng?" ' " Answer Y or N. "

26

 80 UNTI L NOT (GET$=" Y")
 90 END
100 DEF FN r ound2(R)
110 REM ROUND A GI VEN NUMBER TO 2 DECI MAL PLACES
120 X=I NT(R* 100+0. 5) / 100
130 =X

The function definition is spread over several lines for clarity, but if necessary
this particular definition could be in one line as

100 DEF FN_r ound2(R) =I NT (R* 100+0. 5) / 100

(There is another way of achieving this presentation with @%, which is the
print format control parameter - see Chapter 11.)

In BBC BASIC a function can have several parameters so that the
distinction between procedures and functions is blurred. However, only the
function can return a value without the need for a common variable. (To return
more than a single variable you would clearly have to use a procedure.)

Example 3.2

The following program uses a function closely related to FN_round2, together
with two of our other structures, IF...THEN...ELSE and REPEAT...UNTIL.

 10 REM TO I LLUSTRATE VARI OUS PROGRAMMI NG STRUCTURES
 20 MODE7
 30 REPEAT
 40 FLAG=0: REM USED TO I NDI CATE ROUNDI NG CAN BE DONE (FLAG=0)
 50 I NPUT " Gi ve a number t o mor e t han 2 deci mal pLaces " , R
 60 I NPUT " Hem many deci mal pl aces " , NDP
 70 I F (NDP=2) THEN MONEY=FN_r ound(R, 2) ELSE I F NDP=3 THEN
 MONEY=FN_r ound (R , 3) ELSE FLAG=1
 80 I F FLAG=0 THEN PRI NT " To " ; NDP; " deci mal pl aces " ; MONEY
 ELSE I F NDP=I NT(NDP) THEN PRI NT " Out of r ange of avai l abl e
 f unct i ons. " ELSE PRI NT " The number of deci mal pl aces
 r equi r ed" ' " must be gi ven as a posi t i ve i nt eger . "
 90 PRI NT " Do you wi sh t o do a new r oundi ng?" ' " Answer Y or N. "
100 UNTI L NOT(GET$=" Y")
110 END
120 DEF FN_r ound(R, N)
130 REM ROUND A GI VEN NUMBER TO N DECI MAL PLACES
140 X=I NT(R* 10ˆ N+0. 5) / 10ˆ N
150 =X

In this program a variable FLAG is used to indicate whether rounding can be
done. A value of zero for FLAG means that the function can be used, and at
line 70 FLAG is set to 1 if FN_round can not be used. Try running the
program with a range of values for R and NDP including non-integer values

27

for NDP. The program should cope with this unreasonable data. Note that
FN_round allows rounding to any number of decimal places specified by
NDP. The IF...THEN statement at line 70 limits the use FN round in this
program. This restriction has been introduced deliberately to illustrate the use
of a function within an IF...THEN statement.

Exercise 3.1

Write a program to define functions for the hyperbolic sine and cosine and
test, for a range of values of x, the quantity

FN_hcs(X)*FN_hcs(X) - FN_hsn(X)*FN_hsn(X)

where functions FN_hcs and FN_hsn are defined by

FN_hcs(X) = (EXP(X)+EXP(-X))/2
FN_hsn(X) = (EXP(X)-EXP(-X))/2

Exercise 3.2

Given that 0°C corresponds to 32°F and that 100°C corresponds to 212°F,
devise a function to convert centigrade to Fahrenheit and another one to
convert Fahrenheit into centigrade.

3.3 LOCAL PARAMETERS

It is possible to define variables used in a function to be LOCAL to that
function so that variables in the main part of the program are not corrupted by
use of the same variable name in a function. Such variables must be declared
as local by a line such as

110 LOCAL IPART,DPART

Any variable not declared as LOCAL is ‘common’ or ‘global’ ; that is, it takes
the value assigned in the function when next used in the main program; or
when used on the right hand side of an assignment in the function it retains
any previously set value.

The use of functions is not restricted solely to where a value is to be
returned to the calling program. The value returned can be ignored or given to
a variable such as DUMMY which is not used elsewhere in the program.

Example 3.3

This program uses two functions FN_delay and FN_response. FN_delay
produces a random delay up to a maximum value by using the standard RND
function and the pseudo-variable TIME. The function FN response is used to
measure the time between the random display of a random character and the

28

user response by pressing the selected key. The FN response also uses the
RND function. Functions can be nested 26 deep. Examine the program and
note that the variable START is used in both functions but is declared to be
LOCAL. Try printing START in immediate mode after the program has been
run.

 10 REM FN response
 15 MODE 7
 20 REPEAT
 30 CLS
 40 PRINT "Press the letter given below as quickty as possible
 after it is dispLayed"
 50 REACTION-TIME=FN_response(A$)
 60 PRINT: PRINT "You took ";REACTION-TIME;" seconds to press
 ";A$
 70 PRINT "For another trial press Y "
 80 A$=GET$
 90 UNTIL A$<>"Y"
100 END
110 DEF FN_delay(CENTISEC)
120 LOCAL START
130 START=TIME
140 REPEAT
150 UNTIL (CENTISEC+START)<TIME
160 =CENTISIC
170 DEF FN_response(A$)
180 LOCAL D,START,B$,X,Y
190 DUMMY=FN_delay(RND(150))
200 A$=CHR$(64+RND(26))
210 START = TIME
220 X=RND(39)
230 Y=3+RND(15)
240 REPEAT
250 PRINT TAB(X,Y);A$
260 B$=GET$
270 UNTIL B$=A$
280 =(TIME-START)/100

Try the effect of adding the line

215 FN_delay(100)

This has the effect of using the LOCAL variable START in each function at
the same time so that it has different values in each function. This is permitted
since START is LOCAL in both functions. This alteration will mean that the
minimum response time will now be one second.

29

3.4 PROCEDURES (DEF PROC)

Procedures are similar in some respects to functions. They do not, however,
appear at the right hand side of expressions and do not return values to the
calling program as functions can do. There are two important restrictions on
the use of procedures in BBC BASIC. Firstly, only common variables can be
used to transfer values back to the main program. Secondly, whole arrays can
not be used as parameters, although array elements may be used as actual
parameters when a procedure is called. Procedures are defined by lines such
as

150 END
200 DEF PROC_nice_one(FRED,JIM,ETC)
 ...
 ...
 ...
240 ENDPROC

They are used within a program by a ‘call’ of the form

70 PROC_nice_one(ALICE,JOAN,ANON)

Procedure definitions should be outside the main program and are usually
placed after END along with the function definitions. As with functions,
variables used in procedures are held to be the common variables in the main
program unless they are specifically declared as LOCAL. The procedure may
have any number of formal parameters or none at all. The actual parameters
are unchanged after the procedure has been called.

Exercise 3.3

The program in Example 3.3 uses a function, FN_delay, which does not return
a value to the calling program. It is thus appropriate to rewrite this program to
use a procedure to give the required delay. After you have made and tested
this modification alter the procedure to give a one second delay without the
need for a formal parameter.

Example 3.4

 10 REM DEF PROC DEMONSTRATION PROGRAM
 20 CLS: PRINT
 30 READ FRED,JIM,ETC
 40 INPUT "Three ages in years < 70 ",ALICE,JOAN,ANON
 50 SUM=FRED+JIM+ETC
 60 PRINT "Sum of men's ages = ";SUM
 70 PROC_nice_one(ALICE,JOAN,ANON)
 80 PRINT "Return to main program "
 90 PRINT "FRED = ";FRED

30

100 PRINT "JIM = ":JIM
110 PRINT "ETC = ";ETC
120 PRINT "Sum of women's ages = ";SUM
130 PROC nice_one(RND(70),RND(70),RND(70))
140 PRINT "Sum of 3 random ages = ";SUM
150 END 200 DEF PROC_nice_one(FRED,JIM,ETC)
210 PRINT "Procedure NICE_ONE entered"
220 PRINT "INITIAL VALUES ";FRED,JIM,ETC
230 SUM=FRED+JIM+ETC
240 ENDPROC
250 DATA 27,23,30

In this example FRED, JIM and ETC are the formal parameters of the
procedure, and all formal parameters of a procedure are LOCAL to it even if
FRED, JIM and ETC are also in the main program. One rather serious
restriction, as already mentioned, is that it is not possible to return values
through the formal parameters as is the case in languages such as Pascal and
FORTRAN. Values to be used subsequently in the main program must be
passed through common variables such as SUM. These features of procedures
are illustrated by this trivial example. At line 30 FRED, JIM and ETC are
given values in the READ statement. Lines 90 to 110 demonstrate that these
values are retained even when the procedure is called, as the formal
parameters are automatically LOCAL. The variable SUM is calculated at line
50 and printed at line 60. The variable SUM is common to the main program
and the procedure so that at line 120 when it is printed again it will have a
value determined by the procedure. The formal arguments of the procedure
may be variables, as at line 70, or arithmetic or other valid statements as at
line 130 where the RND function is used.

Example 3.5

The procedure in this example is used to solve the quadratic equation
ax2+bx+c=0. It shows a more useful application of a procedure within an
IF...THEN...ELSE, where GOTOs would otherwise have been needed. It
would of course be possible to include the IF...THEN statement within the
PROCedure, but the point here is to illustrate the use of a procedure call in an
IF...THEN statement.

 10 REM SOLUTION OF QUADRATIC EQUATIONS
 20 MODE 7
 30 PRINT
 40 PRINT "SoLution of quadratic of the form:"'"A*X*X + B*X +
 C = 0"
 50 REPEAT
 60 PRINT
 70 INPUT "Coefficients of quadratic A,B and C separated by
 ','.",A,B,C
 80 REM USE OF CONDITIONAL TEST TO PREVENT PROGRAM FAILURE ON

31

 EVALUATION OF NEGATIVE ROOT
 90 IF B*B<4*A*C THEN PRINT "No simple roots": PRINT ELSE
 PR0C_quad(A,B,C)
 100 PRINT "Do you wish to give new data? ";
110 A$=GET$
120 PRINT
130 UNTIL A$<>"Y"
140 END
150 DEF PR0C_quad(AQ,BQ,CQ)
160 ROOT=SQR (BQ*BQ-4*AQ*CQ)
170 PRINT "Roots are ";(-BQ+ROOT)/(2*AQ);" AND ";
 (-BQ-ROOT)/(2*AQ)
180 ENDPROC

Exercise 3.4

Write a procedure to examine a list of 10 numbers stored in an array, find the
largest and the smallest, and return them in common variables LOW and
HIGH. Test the procedure in a simple program.

Exercise 3.5

Write a procedure to evaluate the first N prime numbers and store them in an
array PRIME(J) of dimension N. Incorporate the procedure in a program to
calculate the sum of the first N prime numbers, where N is an integer supplied
by the user. (Hint: write and test the procedure for the prime numbers then
look at Chapter 2 for the summation program using an array.)

3.5 OTHER PROGRAM STRUCTURES

3.5.1 Subroutines (GOSUB)

It is usually preferable to use procedures rather than GOSUB in BBC BASIC,
since they are available. However, the BBC BASIC supports subroutines so
that programs taken from listings for other computers can still be run.

The GOSUB facility has some attractions in that the routine can be
entered at any point. However, subroutines do not have the possibility of
LOCAL variables or formal parameters.

3.5.2 Computed GOTO and GOSUB (ON...GOTO and ON...GOSUB)

The usual numerical sequence in which the BASIC program statements are
executed may be modified not only by REPEAT...UNTIL and GOTO, but by
the statement

10 ON <value> GOTO XX,YY,ZZ

where XX, YY and ZZ are line numbers. If the <value> is 1 then the effect is
tn GOTO XX. If the <value> is 2 then the program goes to YY. Finally if the

32

<value> is 3 then the effect is to GOTO ZZ. If the <value> is less than 1 or
exceeds 3 then an error occurs. Strictly the values for 1, 2 and 3 can lie in the
range

0.9999999999 to 1.99999999975
1.99999999976 to 2.99999999953
2.99999999954 to 3.99999999952

respectively on input of data. It is left as an exercise for the reader to
determine the range for higher switches.

Example 3.6

The program structure chart in Figure 3.6 illustrates the program below, which
demonstrates a simple ON...GOTO statement. The user is asked to supply a
number at line 20. This should be 1, 2 or 3. The program then prints ONE,
TWO or THREE as appropriate by use of the ON...GOTO statement at line
30. Examine the program and run it.

 10 REPEAT
 20 INPUT "Choose a value for I ",I
 30 ON I GOTO 40,60,80
 40 PRINT "Value of I = ONE"
 50 GOTO 90
 60 PRINT "Value of I = TWO"
 70 GOTO 90
 80 PRINT "Value of I = THREE"
 90 UNTIL FALSE
100 END

Figure 3.6 Structure chart for the ON...GOTO demonstration program.

33

✭

Print
'THREE'

Print
'TWO'

Print
'ONE'

Input
data

Selection
process

Test
false

End
message

ON...GOTO
switch

ON...GOTO
demo

program

Try values for I of 1, 2, 3, non-integer values less than 4 and then a value
greater than 4. In the latter case you will get the error message

ON range at Line 30

This can be overcome by modifying line 30 to be

30 ON I GOTO 40,60,80 ELSE 90

Note: the use of ELSE with ON.. .GOTO upsets the return from functions and
procedures in the first version of BASIC (BASIC I), and so must not be used
with a function or procedure. An alternative which overcomes the problem on
BASIC I is to use the ON ERROR GOTO statement by adding the line

25 ON ERROR GOTO 20

and leaving line 30 as

30 ON I GOTO 40,60,80

Remember to turn the error trapping off with ON ERROR OFF when the
range of this REPEAT sequence is ended. Note that ON ERROR GOTO 90
will not work since you cannot return into a FOR...NEXT or
REPEAT...UNTIL loop, (in fact this generates error 43, No REPEAT) but note
that it is permissible to add the line

5 ON ERROR GOTO 10

Exercise 3.6

Write a program that asks the user the time (on a 24 hour clock) and then
responds with the appropriate message from the list GOOD MORNING,
GOOD DAY, GOOD AFTERNOON, GOOD EVENING or GOOD NIGHT
(in sequence through the 24 hours).

Exercise 3.7

Write a program to calculate the time in hours, minutes and seconds from the
psuedo-variable TIME.

Exercise 3.8

Write a program to produce a calendar for any year since the year 1800 given
that the first of January in that year was on a Wednesday.

3.6 RECURSIVE USE OF PROCEDURES AND FUNCTIONS

The BBC microcomputer permits the recursive calling of procedures and
functions. This is valuable for the evaluation of a mathematical recursion
formula in which successive terms of a series can be expressed in terms of

34

previous terms, and for other problems of this type. For example, the set of
natural numbers, the integers, may be defined recursively in the following
way.

1. 1 is a natural number.

2. The successor of a natural number is a natural number, where the
successor of a number is obtained by adding one to that number.

The power of the recursive definition is its ability to define a set consisting of
an infinite number of elements using only two statements. In a similar way a
recursive procedure or function can specify an infinite number of
computations using a few program statements and without looping. Using
recursion in solving a problem often leads to a new problem which is similar
to the original but smaller in scope.

Example 3.7

A simple example of a recursive solution is the computation of the factorial of
a non-negative integer N. The non-recursive solution is given in the program
below. This program uses a FOR...NEXT loop to evaluate N!

10 REM FACTORIAL EVALUATION
20 MODE 7
30 PRINT "Evaluation of the factorial for integers Give a
 positive number less than 33 and a NEGATIVE number to finish."
40 PRINT: INPUT "Remember to give a POSITIVE No. < 33 ";X
50 IF X>0 THEN FAC=1: FOR I=1 TO X:FAC=I*FAC: NEXT ELSE END
60 PRINT "FACTORIAL ";X;" IS ";FAC
70 GOTO 40
80 END

Now consider the recursive solution. The stopping or end state is considered
first.

1. If N is zero, the factorial is 1.

Next, the recursion step is considered.
2. For N>1, the solution is N times the factorial of (N— 1).

Thus the recursion step has reduced the problem to that of finding the factorial
of the next smaller number and multiplying that result by N. Obviously, N-1 is
closer to the stopping state of zero than N is. Repeated applications of the
recursion step will eventually lead to the stopping state.

Example 3.8

The implementation of this in BBC BASIC is shown in the following
program.

 10 REM FACTORIAL EVALUATION
 20 MODE 7

35

 30 PRINT "Evaluation of the Factorial. for integers"'"Give
 positive number less than 33 and a NEGATIVE number to
 finish."
 40 PRINT: INPUT "Remember to give a POSITIVE No. < 33 ";X
 50 IF X>0 THEN FAC=FN_fac(X) ELSE END
 60 PRINT "FACTORIAL ";X;" IS ";FAC
 70 GOTO 40
 80 END
 90 DEF FN_fac(I)
100 LOCAL F
110 IF I<>0 THEN F=I*FN_fac(I-1) ELSE F=1
120 =F

The function FN_fac returns a value of 1 if its argument is zero. If the
argument is non-zero then the value returned is determined by the expression
N*FN_fac(N-1). This calling of FN_fac from within itself is what is termed
recursion.

In evaluating factorial N each new call of FN fac increases the level of
recursion. The BASIC interpreter saves the values of the function’s parameter
N and of any local variables just before each new call. At the time of the call,
the N-1 is calculated and becomes the parameter N for the next call of
FN_fac. Clearly the value of N will be zero for the last call of the function. As
the interpreter returns through each level of recursion, it evaluates the value
returned by multiplying the parameter saved at this level, by the result just
returned from the level below. Each return reduces the level of recursion by
one. When the level of recursion is back to zero the value returned represents
the value of the initial function call.

Figure 3.7 shows the case of 6! (factorial 6). There are 7 levels of
recursion (0 to 6) and 6 recursive calls of FN_fac plus the initial call. The
arrows indicate the flow of the calculation.

Level of What is What is
recursion required actually

calculated

0 6! 720
↓ ↑

1 6×5! 6*120
↓ ↑

2 5×4! 5*24
↓ ↑

3 4×3! 4*6
↓ ↑

4 3×2! 3*2
↓ ↑

5 2×1! 2*1
↓ ↑

6 1×0! → |

Figure 3.7 Action of a recursive function

36

Example 3.9

Consider the problem of obtaining the digits of a number printed in reverse
order. The recursive solution is as follows

1. Output the last digit of the number.

2. If further digits remain then ‘reverse’ remaining digits, otherwise print the
remaining digit.

The recursive step reduces the number of digits that must be reversed by one
each time until just one remains which needs no reversal. The procedure is
used to generate the PRINT statements which give the reversed number. This
example has been written as a recursive procedure since the number of levels
of recursion is not of great interest and thus there is no need to return a result
to the calling program.

 10 REM Number reversal example
 20 REPEAT
 30 PRINT: PRINT "To finish type a negative number"
 40 INPUT "Number to be reversed "N
 50 PRINT ;N;" reversed is ";
 60 PROC_reverse(N)
 70 PRINT
 80 UNTIL N<=0
 90 END
100 DEF PR0C_reverse(N)
110 IF N DIV 10 = 0 THEN PRINT ;N;:F=1 ELSE PRINT ; N MOD 10;:
 PROC_reverse(N DIV 10)
120 ENDPROC

Example 3.10

Suppose that it is desired to obtain a number of permutations of the integers 1
to 4. The function RND(N) can be used to select the order but each time a
fitimber is chosen there is one less to choose from next time, until there is no
Choice. The program below shows a non-recursive solution.

 10 REM for Linda Leech
 20 PRINT"RANDOM PERMUTATIONS OF NUMBERS 1 TO 4"
 30 DIM N(4),M(4)
 40 FOR L=1 TO 20
 50 FOR 1=1 TO 4:N(I)=I: NEXT
 60 FOR I=4 TO 2 STEP -1
 70 J=RND(I)
 80 M(I)=N(J)
 90 N(J)=N(I)
100 NEXT I
110 M(1)=N(1)
120 PRINT M(1);" ";M(2);" ";M(3);" ";M(4)
130 NEXT L

37

Two arrays M and N are used in this program. The first FOR...NEXT loop
allows 20 permutations to be selected. The FOR...NEXT loop at line 30 fills
the N (I) array with the numbers 1 to 4 in initial order. The permutation loop
begins at line 40 and at line 50 a random number between the count variable I
and 1 is chosen by the RND(N) function. This number is used to choose the
first number of the permutation which is stored in the Ith element of the M
array. At line 70 the N array is changed to take account of the number that has
been selected in the first permutation, and then I is decremented and the next
number selected. This process continues until just one number remains. The
last number is transferred to the M array at line 90 and at line 100 the array is
printed for the permutation. This process in lines 30 to 100 is repeated 20
times.

Example 3.11

The recursive solution is shown in the solution below. In this example of
recursion a procedure is used rather than a function. The arrays M and N are
common to the main program and the procedure.

The recursive solution is as follows

1. Find the next integer for the permutation.

2. If only one integer remains then this is the last integer for the
permutation.

This procedure is called at line 40. The two arrays are used in the same way as
before.

10 REM RECURSIVE PERMUTATIONS
20 PRINT"RANDOM PERMUTATIONS OF NUMBERS 1 TO 4"
30 DIM N(4),M(4)
40 FOR L=1 TO 20
50 FOR I=1 TO 4:N(I)=I: NEXT
60 PROC_comb(4)
70 PRINT L;" ";M(1);" ";M(2);" ";M(3);" ";M(4)
80 NEXT L
90 END
100 DEF PROC_comb(I)
110 IF I<>1 THEN J=RND(I):M(I)=N(J):N(J)=N(I): PROC_comb(I-1)
 ELSE M(I)=N(1)
120 ENDPROC

Exercise 3.9

Write a program using a recursive procedure to select combinations of 3
integers from 6.

38

