Chapter 10

DIRECT MEMORY AND SYSTEM
ACCESS

10.1 COMPUTER MEMORY

10.1.1 Hexadecimal notation

The simplest counting system is binary, in which numbers are represented in
terms of units, twos, fours, eights and so on, instead of the familiar decimal
system where successive digits represent units, tens, hundreds etc. In binary
the number nine would be represented as 1001 (1x8+0x4+0x2+1x1) and all
numbers are written in binary as a simple string of zeros and ones - two
symbols only, which is why it is the simplest, though most long-winded
system. Thisis aso why it is used in computers — the two possible values can
easily be represented by two aternative states, ON and OFF, or two different
voltage levels.

However, binary numbers are very long and inconvenient to work with.
The hexadecimal system of numbers is frequently used as a more convenient
alternative to binary numbers. This is a number system to base sixteen, or 24.
The bits (Binary digiTS) are grouped into fours and each group of four is
represented by a single hexadecimal digit. For instance, 10010011 becomes
1001 0011 which becomes 93 in hexadecima (called nine-three because
ninety-three implies nine tens and three). A problem occurs with numbers like
10011011 which splitsinto 9 and 11. We obviously cannot write this as 911 as
that represents 100100010001. Conventionally the numbers ten to fifteen are
replaced with the letters A to F, in order to represent them by a single ‘digit’.
Thus the number 10011011 is written, not 911 but 9B in hexadecimal.

Care has to be taken to distinguish between hexadecimal and decimal
numbers. 9B is fairly obviously hexadecimal, but the previous example of 93
is not. It is common to indicate that a number is hexadecima by using a
prefix. On the BBC computer the & sign is used for this. Thus our number
should be written as &93, which makes it quite clearly hexadecimal. Its
decimal equivalent can be calculated by remembering that the 9 represents the
16s column, so it is 16x9+3, or 147. Similarly, & 9B is 16x9+11, or 155.

The microprocessor used in the BBC computer is the 6502A, which is an
8-bit microprocessor; that is, it deals with 8 bits of data at a time. This

151

collection of bitsis called a byte, and can have values from 0 to 255, or &00
to & FF. Thus the hexadecimal system is a very convenient notation when
dealing with information in bytes, since any byte can be written as a two-digit
hexadecimal number.

The BBC memory stores information one byte per memory location. In
order to be able to locate an individual memory location, it is necessary for
that location to be specified by a unique address. Hexadecimal numbers are
used for addresses, and since 256 memory locations would be quite
inadequate, 2 bytes are used to specify a memory address, giving a range of
2562 or 65536. Memory addresses thus run from & 0000 to & FFFF. 65536 is
usually referred to as 64K, where 1K=1024=210, (The decimal quantities have
apparently strange values as they are the equivalents of ‘round binary
numbers.)

Computer memory can be one of two types: read only memory (ROM) or
read/write memory (RAM - from the less accurate name random access
memory). ROM, as the name states, contains data permanently stored on a
chip, which can be read but cannot be altered by the computer. The BASIC
interpreter and the Machine Operating System are stored in ROM, from
& 8000 to & FFFF. RAM, on the other hand, is memory which can be read or
atered (written to), and thisis where BASIC programs, variables and graphics
are stored.

10.1.2 Tilde and ampersand

The BBC computer can handle and print numbers in both decima and
hexadecimal form. A tilde (~) in front of a number or expression in a PRINT
statement will cause it to be printed as a hexadecimal number (but without the
& — since you put the tilde in, you presumably realize that the number is
hexadecimal). A number may be given in hexadecimal form by preceding it
with an ampersand, wherever an expression can be used. Thus you can PRINT
(in decimal) a number given in hexadecimal, or assign it to a variable. You
cannot directly INPUT a number in hexadecimal, but you can input it as a
string and use EVAL to obtain its value. Try the following example to
demonstrate this.

Example 10.1

10 REPEAT

20 I NPUT "Number: "X$

30 X=EVAL(X$)

40 PRINT "Hexadeci mal: ";"X
50 PRINT "Deci nal X
60 UNTIL X=0

Run the program first by entering decimal values in the range 1 to 65535 and

then in the form &1 to & FFFF. Predict the output for a few values such as
165, & 23 and test your expectations using the program. Input a zero to finish.

152

Note that in Mode 7, the tilde will appear on the screen as a divide sign
(remember that normal division is done with the solidus, /).

10.2 ORGANIZATION OF MEMORY IN THE BBC
MICROCOMPUTER

It can sometimes be very useful to know how the memory of the BBC
computer is organized. Figure 10.1 shows the allocation of the various parts of
memory, drawn to scale, and a more detailed diagram of the first section.

In hexadecimal the addressing range of the computer (& 0000 to & FFFF)
is sometimes regarded as being a series of pages, each & 100 (256) locations
long, so that the highest two hexadecimal digits give the page number and the
lowest two digits give the location within the page.

10.2.1 Memory usage by the system
Important and interesting areas of memory used by the system are as follows

e Zero page (&00 to &FF) A very important area for machine code
programs, and used intensively by all parts of the system. & 70 to & 8F are
reserved for the BASIC user, but note that this area may be used by other
languages such as Pascal or Wordwise.

e Page 1 (&100 to &1FF) Another important area for machine code
programmers, containing the 6502 stack.

¢ Pages 2 and 3 (& 200 to & 3FF) Used as workspace (places to store values
in) by various parts of the system.

MOS
""""""""""""""" &1900
""""""" &C000
Paged S
ROMs BASIC I OFS
P usage
rrrrrrrrrrrrrr &8000 :
Screen : : ;
display B / Workspace ig(E:gg
HIMEM B /|_User-defined characters
_____BASICstack P Soft keys &0C00
; 2 &0B0O
Various buffers
&0800
i Input buffer
R AT ,/ Workspace 40700
,,,,,,,,, ariables ________|/ / &0500
TOP, LOMEM LS Variables
Program ' &0400
PAGE [~--=--=-=-m=mmmmeeeeees / Workspace 20100
77777777777 Zero page £0000

Figure10.1 Organization of memory in the BBC microcomputer.

153

* Page 4 (&400 to &4FF) This page is used for two purposes. The first half
stores the resident integer variables, and the second half stores the
pointers to the linked chains of variables. An individual chain consists of
all those variablesthat start with a particular |etter.

» Pages 5 and 6 (&500 to & 6FF) Further workspace.

* Page 7 (&700 to & 7FF) The input buffer, used to store keyboard input
until <KRETURN> is pressed.

* Pages 8 to 10 (&800 to &AFF) Mostly used as buffer space for sound,
printer, RS423 |/0O, cassette 1/0 and speech. Pages 9 and 10 would be safe
to use except when using the RS423 output port, a cassette recorder or
speech.

* Page 11 (&BO00 to & BFF) Thisis where the text loaded into the soft keys
is stored.

» Page 12 (& C00 to & CFF) This page contains the definitions of the normal
user defined characters (224 to 255). (If extra characters are user defined,
the start of user space is raised to make room for the extra data.)

« Page 13 (&D00 to &DFF) Used for outside events and by the paged
ROMs.

» Address & EQQ isthe start of user space for the cassette filing system.

10.2.2 Memory usage by the DFS

The disc filing system normally uses up afurther 11 pages of memory

* Pages 14 and 15 (& E0O to & FFF) A copy of the current catalogue sectors
(track 0, sectors 0 and 1) are stored in these two pages. Note that as long
as a disc drive continues to run after a disc access, the DFS assumes that
these pages are valid, so if you swap over a disc while the drive is still
running, any command issued before the drive stops will use the wrong
catalogue information, with potentially disastrous results.

* Pages 16 and 17 (&1000 to &11FF) These two pages are used as DFS
workspace.

* Pages 18 to 22 (&1200 to & 16FF) These five pages are used as buffers
for the five possible files that may be open at any one time (for use with
the data file commands or *SPOOL, for example). Note that buffers are
not used for LOADing and SAVEing BASIC programs or binary files.

» Pages 23 and 24 (& 1700 to & 18FF) These two pages are used for further
workspace.

If a user is desperate for more space for his program, it is possible to recover
some of this memory by changing the value of the pseudo-variable PAGE (see
Section 10.3). Those pages in excess of the maximum number of files he may
want open simultaneously can be used, and if he is not using data or ASCII
filesat all it is possible to set PAGE as low as & 1100, and still be able to load
and save BASIC programs with reasonable safety.

The Econet filing system uses just four pages of memory, up to &1200,

154

unless a DFS is aso fitted, in which case the two systems together use
memory up to & 1B00.

10.2.3 VDU display space

The memory used for screen display depends on the mode, and is summarized
in the following list

ModesOto2 &3000 to & 7FFF (20K)

Mode 3 &4000 to & 7FFF (16K)
Modes4 and5 &5800 to & 7FFF (10K)
Mode 6 &6000 to & 7FFF (8K)
Mode 7 &7C00 to & 7FFF (1K)

The top half of memory is allocated to ROMs. & 8000 to & BFFF is used by all
the paged or ‘sideways ROMs (so called because their memory sits side by
side); this includes BASIC and the DFS ROMs. Most of & C000 to & FFFF is
used by the Machine Operating System, but & FC00 to & FEFF is allocated for
input/output. This memory is used for transferring information to or from the
computer through the user port, the printer port and so on.

10.2.4 Program usage

The start of the available memory space depends on the filing system in use,
and is referred to as the OSHWM (Operating System High Water Mark). For
cassettes it is & EOO, for discs & 1900, and for Econet it is & 1200 or &1B00 if
adisc interfaceis also fitted.

BASIC programs usually start from this point, and build up in memory as
required. Variables are stored immediately after the program itself, and
BASIC requires some additional workspace, called the BASIC stack, which is
normally situated immediately below the memory alocated to the displayed
text or graphics. The extent of this memory will depend on the mode being
used. Variables can thus build up as far as the bottom of the BASIC stack,
which will normally occupy only a small amount of space. If a program, or its
variables, tries to expand beyond this point, the error message ‘No room’ will
occur. Trouble can also occur if alarge program tries to change mode to one
which requires more memory than is available, which will result in the ‘Bad
Modge' error.

10.3 THE MEMORY POINTERS

There are four important positions in memory for BASIC programs which are
accessible from BASIC. The first, and most important, is PAGE, the position
of the start of the program. The next is TOP, the position of the end, or top, of
the program. The third is LOMEM (LOw MEMory), which is the start of the
variable storage area. Finaly, HIMEM (High MEMory) gives the last
available location in memory for program usage. The BASIC stack builds
down in memory from this point.

155

All of these pointers except TOP are pseudo-variables, and al can be
altered as well as read except for TOP.

PAGE normally points to the OSHWM which, as pointed out above, is
&EQ0 for the cassette filing system and & 1900 for the disc filing system.
However, it is possible to move PAGE either up or down. Note that PAGE
(but not the other three pointers) must always be set to a page boundary, that is
avalue which in hexadecimal has the lowest two digits zero. If you try and set
PAGE to any value other than a page boundary, the computer will ignore the
lowest two hexadecimal digits. Thus if you tried to set it to & 1B80 (7040), it
would in fact become & 1B00 (6912).

TOP aways points to the first free memory location above the program. It
is the one pointer which BASIC does not alow to be atered by the user, for
fairly obvious reasons. The length of a program can always be calculated by
(TOP-PAGE). Note that athough you cannot ater TOP by a simple
assignment, this restriction can be overridden using the indirection operators
described in the next section. If you want to set the value of TOPto NEWTOP,
then the following statements will accomplish this

?18=NEWIOP MOD 256
?19=NEWICP DIV 256

Great care should be taken in doing this, since setting TOP too low will
destroy the end of your program.

LOMEM normally has the same value as TOP, since the sensible place to
start the storage of variables is immediately above the program. It can be
altered to a different value if there is areason to do so. You may dlter it from
within a program if you wish, but only before variables have been assigned,
otherwise their values will be lost.

HIMEM points to the next address above the last memory location
availableto BASIC. It normally points to the bottom of the screen display area
of memory, but can be atered, for example to create a safe area for a machine
code program. The amount of free space above a program available for
variables and the BASIC stack can easily be caculated by (HIMEM-
LOMEM).

Exercise 10.1

Write a very short program to give the values of the four memory pointers, of
theform

10 PRINT "PAGE = "; PAGE

Also print out the size of program (TOP- PAGE) and amount of free variable
space (HIMEM-TOP). (The latter aso tells you the amount of space available
for program expansion.)

Switch into all the different modes, starting with Mode 7, and notice the
dramatic reduction in available space when switching between, say, Mode 7
and Mode 1.

156

Exercise 10.2
Try altering PAGE to a value other than a page boundary, for example

PAGE=82345

then PRINT ~PAGE to see what value has actually been assigned. Press the
<BREAK> key to reset the machine, PRINT PAGE again, which will now
give the default value, and make a note of what it is for your machine.

Note that whenever you press <BREAK>, PAGE is restored to its default
value, so if you dlter it deliberately and then load or type in a program, the
program will be temporarily lost by a <BREAK>. It can be recovered,
however, if you set PAGE once more and then type OLD.

There are two other pointers which it can be useful to read, but which are not
accessible as pseudo-variables. These are the pointers to the top of the
occupied variable space, and the bottom of the BASIC stack. The pointers are
stored in zero page at addresses & 02, & 03 and & 04, & 05 respectively. To read
them, simply type

PRINT "TOP OF VARI ABLES: "; ?2+256*?3
PRINT "BOTTOM OF STACK: "; ?4+256*?5

(The use of theindirection operator ? above is explained in Section 10.4.1.) Of
more interest than either individua pointer is the size of the gap between
them, since this is the amount of free memory available. To calculate this, type

PRINT "FREE MEMORY: "; ?4-?2+256*(?5- ?3)

10.3.1 Loading more than one program into memory

One of the uses of PAGE is to allow more than one program to reside in
memory simultaneously.

Provided that you set PAGE for a second program above the value of TOP
for the first, they will not overlap, and you can move back and forth between
them simply by altering PAGE (if the first program needs a lot of space for
variable or array storage, you will have to allow for this as well when setting
PAGE for the second program, or you could use LOMEM to force the variable
space for the first program above the second program).

Exercise 10.3

Enter a short program which prints some message such as ‘First program’ and
test that it runs correctly. Now set PAGE in immediate mode to, say, & 3000
and type NEW. Then enter a second program to print ‘ Second program’ and
test that. Restore PAGE to the value that you noted down and RUN. The first
message should be printed, since that program is still safely stored at that
location. Finally, set PAGE to & 3000 again and RUN, and the second message
should be printed.

A number of short programs can be entered in this way, but note that NEW
must be typed after PAGE is changed to a new location for the first time, to set

157

various pointers needed by the interpreter, or a‘Bad program’ error will occur.
You must also aways be careful that neither program nor variable ;torage
areas overlap, and that you do not set PAGE incorrectly to the middle of a
program.

It is aso possible to change PAGE within one program, and then to
CHAIN another program from within that program. The second program will
be loaded at the new setting of PAGE (the new value of PAGE comes into
effect when RUN, LIST or some similar command is encountered).

Exercise 10.4
Try the following series of programs

10 PAGE=&2000

20 PRINT "First progrant

30 PRINT "Now we will run the second progrant
40 RUIN

Now enter two more programs by

PAGE=&2000
NEW

10 PRINT "Second program now'

20 PAGE=&3000

30 PRINT "PAGE does not come into effect yet"
40 RUN

PAGE=&3000
NEW

10 PAGE=&1900: REM ASSUM NG YOU ARE USING A DI SC SYSTEM
20 PRINT "Now back to the beginning"
30 RUN

Having entered the three programs, return to the first one and start execution
by

PAGE=81900 (or whatever your default valueis)
RUN

If programs stacked up in memory in this fashion used substantial amounts of
variable space, you could use LOMEM to force al the programs to share the
memory space above the topmost program, to avoid the possibility of
variables from one program corrupting the one aboveit.

10.3.2 Relocating a BASIC program

It can happen that memory constraints are so tight that a program does not
have enough memory when loaded at the normal setting of PAGE. On a

158

computer fitted with a disc or Econet interface, it is possible to relocate a
program after it has been loaded and move it down in memory. To get the
maximum amount of space will mean overwriting the disc and/or Econet
workspace, but once the program has been loaded this need not matter. The
most common reason for needing to do thisisif you have a program working
on tape, that will not work when transferred to disc. With the DFS the lowest
address that you can use without interfering with program transfer is & 1100.
To retain one buffer for data transfer, you must keep above & 1300, and so on.
The lowest possible address is & EQ0, which would render the DFS unusable,
but generally it would be sensible only to lower PAGE as far as is necessary
for the program to run.

Example 10.2

The following lines, added to the beginning and end of your program, will
cause the program to relocate itself automatically when run.

0 N&8&1100: O%PAGE: REM NEW VALUE FOR PAGE. CHANGE AS
DESI RED

1 | F PAGE>N% THEN GOTO 32000

2 LOVEMETOP

31990 PAGE=O% END

32000 A% TOP- PAGE: REM LENGTH OF PROGRAM

32010 FOR BY%0 TO A% STEP 4: B% N%B% PAGE: NEXT
32020 ?19=719- (PAGE-N% DIV 256: REM RESET TCP
32030 PAGE=N%

32040 GOTO 1

The main relocation loop must be at the end of the program, because as the
program is moved down in memory, the early part will be overwritten. For
maximum speed the loop is written on a single line, and uses the resident
integer variables, as described in Section 10.6. It aso uses the ‘pling’
indirection operator, which is described in the next section. This is a case
where it is also necessary to change the value of TOP.

These program lines could very conveniently be captured into an ASCII
file with * SPOOL, and then added to any program requiring relocation with
*EXEC.

10.4 MEMORY ACCESS
10.4.1 Theindirection operators

Most versions of BASIC provide a means of directly accessing memory by a
pair of commands PEEK and POKE for reading and writing respectively. On

159

the BBC microcomputer, these have been superseded by a set of indirection
operators, ? (query), ! (pling) and $ (dollar). They act on different numbers of
bytes, but otherwise are all identical in operation. Their operation can best be
understood by interpreting them as meaning ‘the contents of memory
location(s)’, and they are used for both reading and writing. To read a byte of
memory at location M and print out the result, we can use the command

PRINT ?M
or if you want the result in hexadecimal
PRINT ~?M

To understand the meaning of this more clearly, remember the meaning to be
associated with ?, and read this command as

PRINT the contents of memory location M.

Alternatively, the contents of a memory location can be loaded into a variable.
For instance, to read the contents of location & FE61 into the variable RD, the
command needed is

RD=?&FE61

Writing to memory is just the reverse of this command; to write a & FF to
location & FE61, the command is

?8FE61=&FF

This time we can understand the purpose of ? as ‘the contents of memory
location & FE61 (becomes)=& FF'. Variables can be used for either address or
contents. For example

?MEVR

would write the value of variable WR into location M.

Thus we see that ? serves the purpose of both PEEK and POKE,
according to which side of the assignment it is on.

The ! (pling) operator works in exactly the same way, except that it
transfers not one but four bytes at atime to or from memory.

Note that the value is transferred starting from the lowest byte, and that
the split between the four bytes will be difficult to work out unless the number
isin hexadecimal, when two digitswill go into each byte.

Exercise 10.5

Try moving values to and from memory with the ? operator. Memory
locations around & 2000 would be suitable.

160

Transfer four bytes into memory locations &2000 to &2003 with the
command

1 82000=811223344

and then read them back one at atime with ?. Try the same thing with decimal
rather than hexadecimal values.

The third indirection operator is the string operator $ (dollar). This transfers a
string of up to 255 characters to or from memory. When writing to memory, a
string or string variable can be transferred. A <RETURN> character is written
at the end of the string to mark its end.

When reading from memory, al the characters up to the next occurrence
of a <RETURN> character are read back. Thus a string written by $ can be
read back in the same way.

Note that $ is used here in quite a different way from its usual purpose of
denoting a string variable. $M means the string contents of memory starting at
address M, whereas A$ is a variable which contains a string.

Exercise 10.6
What is the meaning of

1. $MEAS
2. M=$A

Exercise 10.7
Write a string into memory by

$82000="123456789"
Read it back first by
PRINT $&2000
and then using the ? operator by
FOR J=0 TO 9: PRINT ~?(&2000+J): NEXT J

In the latter case you will see the ASCII codes & 30 to & 39 corresponding to O
to 9, followed by & 0D which isthe ASCII code for the <RETURN> character.

10.4.2 Indexed addressing

Both ? and ! have a useful variation which will immediately be recognized by
machine code programmers as indexed addressing. If either indirection
operator is preceded by a variable (a number will not do in this context) and

161

followed immediately by another variable or a number, then the location
addressed is the sum of the two quantities. For example

ADDR?10
means ‘the contents of location (ADDR+ 10)'.

Example 10.3

At first sight this use seems to be confusing and pointless, but consider the
following small program

10 ADDR=&2000

20 FORJ=0 TO 9

30 PRINT "Location "; ADDR+J;" contains ";” ADDR?J
40 NEXT J

Inline 30, ADDR?Jis exactly equivalent to 7ADDR+J).

Exercise 10.8

Write a program, using indexed addressing, that prompts for a starting address
and a string, and then writes the string into memory as a series of ASCII
codes, ending with &0D for the <RETURN> character.

Test the operation of your program by reading the string back with the $
operator.

10.5 A MEMZAP AND DISCZAP PROGRAM

The indirection operators can be used in a MEMZAP program to give easy
access to memory, both for reading and modifying. There are a number of
possible uses of such a program: the study of how BASIC programs and
variable storage are carried out; loading files of any sort with *LOAD and
modifying them in memory, after which they can be *SAVEd; or examining
the low areas of memory used as buffers. Because the program is very close to
what is required for a disc editing program, the same program also provides a
DISCZAP facility. Use of this latter application is discussed in Appendix M.
Program ZAPis listed below

10 MODE 7
20 H MEME&7BO0

30 ON ERROR GOTO 30000

40 DI M BT$(40)

50 BELL$=CHRS(7)

60 DI M KEY(12), BYTES(40)

70 DATA 136, 137, 139, 138, 72, 68, 65, 73, 80, 82, 87, 86

80 REM L- ARRON R- ARROW UP- ARROW DN- ARROW H, D, A I, P, R WV
90 FQR J=1 TO 12

100 READ X

162

110 KEY(J)=X

120 NEXT J

130 *FX 4,1

140 X=0: Y=0: PG=0: M¥1

150 DRI VE=0

160 ?871=0: ?&72=&7B: ?&73=0: ?874=0: ?875=3: ?879=621
170 BA=PAGE

180 DZAP=0

190 CLS

200 HD$=CHRS$(141) +CHRS(130) + "NENZAP/ DI SCZAP PROGRAM!
210 PRINT TAB(4, 5); HD$

220 PRINT SPC(4); HDS

230 PRINT TAB(10,10);"Do you want:"

240 PRINT TAB(10,13);"1) MEMZAP'

250 PRINT TAB(10, 15);"2) DI SCZAP"

260 PRINT TAB(10, 18)

270 I NPUT "" DZAP

280 | F DZAP<1 OR DZAP>2 THEN VDU 7: GOTO 260

290 DZAP=DZAP- 1

300 CLS

310 | F DZAP THEN BA=&7B00

320 PRINT TAB(0, 21); CHR$(130) ; "Move cursor:" ; CHR$(135);

;"Type 1 or 20 ",

"[1°V(+SH FT) ":: |F DZAP=0 THEN PRINT CHR(130); "New
Page: "; CHR$(135);"P" ELSE PRI NT
330 PRINT CHR$(130); "Input:"; CHR§(135); "1 ": CHR$(131):

"I nput node:"; CHR$(135);"A H D "; CHR$(133);"Quit:";
CHRS(135) ; "ESC'

340 | F DZAP THEN PRINT CHR$(134);"Read:"; CHR$(135);
"Rt,s ";CHR$(134);"Wite:";CHR$(135);"Wt,s ";
CHR$(132); "Drive:"; CHR$(135);"Vn"

350 KEY=5: GOSUB4000

360 | F DZAP THEN TRACK=0: SECTOR=0: GOSUB 6420

370 | F DZAP=0 THEN PROC pri nt di spl ay(BA)

380 PROC.inverse(X,Y)

1000 REM *** HANDLE KEYS ***

1010 PRINT TAB(0, 20) ; " COWWAND: “; SPC(32) ;

1020 PRINT TAB(9, 20);

1030 KEY=0

1040 *FX15,1

1050 REPEAT

1060 KEY$=CET$

1070 SHI FT=0

1080 FOR J=1 TO 9+3*DZAP

1090 | F KEY(J)=ASC(KEY$) AND (DZAP=0 R J<>9) THEN KEY=J:
PRINT KEYS$; " *;

1100 |F INKEY(-1) THEN SH FT=1

1110 NEXT J

1120 | F KEY=0 THEN VDU 7

163

1130
1140
1150

1160
2000
2010
2030
2040
2050
2060
2070
3000
3010
3020
3030
3040
3050
3060
3500
3510
3520
3530
3540
3550
4000
4010
4020
4030
4040
4050
4060
4070
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140

UNTIL KEY
PRINT TAB(O0, 1); SPC(30): PRI NT TAB(11,20);
ON KEY GOSUB 2000, 2000, 3000, 3000, 4000, 4000, 4000, 5000
6000, 6400, 6600, 6800
GOTO 1000
REM *** || R ARROW KEYS ***
PROC normal (X, Y)
I F SH FT THEN X=7*KEY-7 ELSE X=X+2*KEY-3
I F X>7 THEN X=X-8: KEY=4: GOTO 3030
I F X<0 THEN X=X+8: KEY=3: GOTO 3030
PROC i nverse(X,Y)
RETURN
REM *** DN UP ARROWN KEYS ***
PROC_nor mal (X, Y)
|F SH FT THEN GOTO 3500
Y=Y+2*KEY- 7
IF Y<0 OR Y>15 THEN Y=Y-16*(2*KEY-7): GOTO 3500
PROC_i nverse(X,Y)
RETURN
REM *** CHANGE PAGE ***
PG=PG+2* KEY- 7
| F FN_newsector THEN GOTO 6430
PROC pri ntdi spl ay(BA+128* PG
PROC i nverse(X,Y)
RETURN
REM *** SET | NPUT MODE ***
MDYKEY- 4
PRINT TAB(33,0); CHR$(131);
| F MD%1 THEN PRINT"HEX "
|F MD%2 THEN PRINT"DEC ";
| F MD%3 THEN PRINT"ASCI | "
PRINT CHR$(135);
RETURN
REM *** | NPUT DATA ***
INPUT ""1 P$
CH=0: BT$=""
FOR J=1 TO LEN(| P$)
CH$=M D$(1 P$, J, 1)
| F CH§<>" " THEN BT$=BT$+CH$: | F M3 THEN GOTO 5070
| F BT$>"" THEN CH=CH+1. BT$(CH)=BT$: BT$=""'
NEXT J
| F BT$>"" THEN CH=CH+1: BT$(CH)=BT$
FOR J=1 TO CH
| F MD%3 THEN BT=ASC(BT$(J))
| F MD%2 THEN BT=VAL(BT$(J))
| F MD%1 THEN BT=EVAL("&"+BT$(J))
PROC rewrite(BT, BA+128*PG X, Y)
BT$=CHR$(46): REM DOT
164

5150
5160
5170
5180
5190
6000
6010
6020

6030
6040
6050
6055
6060
6070
6080
6090
6400
6410
6420
6430
6440

6450
6460
6470
6480
6490
6500
6510
6520
6530
6540
6550
6560
6600
6610
6620

6630
6640
6650
6660
6670
6680
6690
6700
6710

|'F BT MOD 128>31 THEN BT$=CHRS$(BT)

PRINT TAB(32+X, Y+3); BT$;

KEY=2: GOSUB 2000

NEXT J

RETURN

REM *** NEW PAGE ***

| F DZAP THEN VDU 7: RETURN

| F MD%2 THEN PRINT BELL$; CHR$(129) ;" WRONG MODE";
TIME=0: REPEAT: UNTIL TIME=500: RETURN

INPUT ""1P$

PRCC normal (X, Y)

I F MD%2 THEN BA=VAL(| P$)*256 ELSE BA=EVAL("&"+l P$)*256
| F BA>&FFFF THEN PRINT BELLS$; TAB(11, 20);: GOTO 6020
PG=0: X=0: Y=0

PROC pri nt di spl ay(BA+128* PG

PROC i nverse(X,Y)

RETURN

REM *** READ SECTCR ***

I NPUT """ TRACK, SECTOR

PROC_nor mal (X, Y)

IF PG0 OR PG>1 THEN PG=PG 2*SGN(PG) ELSE PG=0: X=0: Y=0
| F FN_val i dat e(TRACK, SECTOR) THEN PROC i nverse(X, Y):
RETURN

?&70=DRI VE: ?&76=853: ?&77=TRACK: ?&78=SECTOR. ?&79=&21
TRI ES=0

REPEAT

TRI ES=TRI ES+1

A%&TF: XY%&T70: Y%0

CALL &FFF1

UNTI L ?&7A=0 OR TRI ES=10

| F ?&7A>0 THEN PROC discerror: RETURN

PROC _pri ntsecno

PROC_pri nt di spl ay(BA+128* PG

PROC i nverse(X,Y)

RETURN

REM *** \\RI TE SECTOR ***

I NPUT """ TRACK, SECTCR

PRINT TAB(17, 20); BELL$; CHR$(129); "ARE YOQU SURE
(YIN)?"; CHR$(135);

YN$=CET$

IF YN§<>"Y" AND YN$<>"N' THEN VDU 7: GOTO 6630

I'F YN§="N" THEN RETURN

PRINT YN$

| F FN_val i dat e(TRACK, SECTOR) THEN RETURN
?&70=DRI VE: ?8&76=848: ?&77=TRACK: ?&78=SECTOR ?&79=821
TRI ES=0

REPEAT

TRI ES=TRI ES+1

165

6720 A%&TF: X%&70: Y%O0

6730 CALL &FFF1

6740 UNTIL ?&?A=0 OR TRIES=10

6750 | F ?&7A>0 THEN PROCC_di scerror: RETURN

6760 PROC printsecno

6770 RETURN

6800 REM *** CHANGE DRI VE ***

6810 INPUT ""DRI VE

6820 PRI NT TAB(18, 0); CHR$(132);"DRI VE "; DRI VE

6830 $&AE0="DRI VE " +STR$(DRI VE)

6840 X% &EQ: Y% E&OA

6850 CALL &FFF7: REM CALL CLI

6860 RETURN

7000 DEF PROC rewrite(BT, BASEADD, X, Y)

7010 BASEADD?(X+8*Y) =BT

7020 PRINT TAB(3*X+7, Y+3);

7030 I F BT<16 THEN PRINT ;0;

7040 PRINT ;"BT;

7050 ENDPRCC

8000 DEF PROC pri ntdi spl ay(BASEADD)

8010 LOCAL HORI Z, VERT, BT, BT$

8020 FOR VERT=0 TO 15

8030 PRINT TAB(0, VERT+3);

8040 | F BASEADD<&1000 THEN PRINT ;O0;

8045 | F BASEADD<&100 THEN PRINT ;0;: |F BASEADD+8* VERT<&10
THEN PRINT ; 0;

8050 PRI NT ; "~ BASEADD+8* VERT;

8055 | F DZAP THEN PRI NT TAB(O, VERT+3);" ";

8060 FOR HORI Z=0 TO 7

8070 PRI NT TAB(3*HORI Z+7, VERT+3)

8080 BT=BASEADD?(8* VERT+HOR! Z)

8090 | F BT<16 THEN PRINT ;0;

8100 PRINT ;" BT;

8110 PRI NT TAB(HOR Z+32, VERT+3);

8120 BT$=CHR3(46)

8130 | F BT>127 AND BT<255 THEN BT=BT- 128

8140 | F (BT>31 AND BT<127) OR BT=255 THEN BT$=CHR$(BT)

8150 PRINT BT$;

8160 NEXT HORI Z

8170 NEXT VERT

8180 ENDPRCC

9000 DEF PROC inverse(X, YY)

9010 PRI NT TAB(3* X+6, Y+3); CHR$(130

9020 PRI NT TAB(3*X+9, Y+3) ; CHR$(135

9030 ENDPRCC

10000 DEF PRCC normal (X, Y)

10010 PRINT TAB(3*X+6, Y+3); CHR$(135);

10020 ENDPROC

)
)

166

11000 DEF PROC di scerror

11010 PRINT BELLS; TAB(0, 1) ; CHR$(136); CHR$(133); "DI SC ERROR
NO."; ?&7TA

11020 ENDPROC

12000 DEF PROC printsecno

12010 PRINT TAB(0, 0); CHR$(134); "TRK "; TRACK; ", SECT ";
SECTOR; "

12020 ENDPROC

13000 DEF FN val i dat e(TRACK, SECTCR)

13010 LOCAL FAI L%

13020 FAI L%0

13030 | F TRACK<O OR TRACK>79 OR SECTOR<O OR SECTOR>9 THEN
VDU 7: FAIL%1

13040 =FAI L%

14000 DEF FN_newsect or

14010 LOCAL FAI L%

14020 | F DZAP=0 OR (PG>=0 AND PC<2) THEN =FALSE: RETURN ELSE
FAI L%1

14030 SECTOR=SECTOR+SG\(PG

14040 | F SECTOR<0 OR SECTOR>9 THEN TRACK=TRACK+SG\(SECTCR):
SECTOR=SECTOR- 10* SG\(SECTOR)

14050 =FAl L%

30000 *FX 4,0

30010 PRINT TAB(0, 23)

30020 END

The key lines are 7010, where a modified byte is rewritten to memory, and
8080 where a byte at atime is read from within a double loop over VERT and
HORIZ.

The program’s output is used as follows: 128 bytes of memory are
displayed in the main portion of the screen, in rows of 8 bytes. On the left is
the address of the first byte in the row, then the 8 bytes are listed in
hexadecimal and finally, where possible, the ASCII character corresponding to
each byte is listed. Where there is no printable ASCII character, a dot is
shown, and note that the high bit isignored for this purpose.

This last listing is in many ways the most useful. It enables you to pick
out the contents of data files; find your way through BASIC programs; and to
determine which parts of memory directly represent meaningful combinations
of characters.

Near the bottom is the command line, and below that a brief reminder of
the active keys and their uses.

One of the bytes is highlighted in green (on a monochrome screen this
will appear as a paler shade), and the highlight can be moved around the
screen using the four cursor keys. If the highlight moves off the top or bottom
of the screen, a new ‘page’ of 128 bytes is displayed. The highlight can be
moved by a complete page by holding down the SHIFT key while pressing the
up or down arrow keys, and to the left or right edge by SHIFT and Ieft or right
arrow.

167

Larger movements can be made by the letter P (for Page), followed by the
new page number wanted. For example, to read the memory starting from
address & EQO, type

PE <RETURN>

The highlighted byte can be altered by typing | (for Input), followed by the
new contents of one or more bytes. Input can be in one of three modes:
hexadecimal, decimal or ASCII. The current input mode is displayed at the top
right of the screen, and the chosen mode is selected by typing H, D or A.
Multiple bytes, starting from the one highlighted, can be input in hexadecimal
or decimal by separating the bytes by a single space (not a comma, since the
INPUT command is used to collect the string of bytes). In the ASCII mode,
the ASCII codes of single characters are written to each byte, and spaces
between bytes are not necessary. In the case of hexadecimal and decimal
modes, the mode also controls the way in which the P command works
(ASCII is clearly inappropriate in this context, and is not alowed). The
program is terminated by pressing <ESCAPE>.

If you want to use this program to examine another BASIC program, this
can be accomplished quite easily by setting PAGE to a different value before
CHAINing ZAP. Any value of PAGE up to about &6800 is possible, since
ZAP operatesin Mode 7.

Use of the program ZAP for disc editing is described in Appendix M.

Exercise 10.9

Use the MEMZAP facility of ZAP to examine the various areas of memory
described in Section 10.2.

10.6 THE WAY BASIC PROGRAMS ARE STORED

With an understanding of how BASIC programs are stored in memory, and the
MEMZAP program, you can do a variety of things not otherwise possible. For
instance, it is possible in some cases to recover from ‘Bad program’ situations,
recover the existing portion of partly overwritten programs, perform some
special tricks and so on. It is not possible in this book to go into great detail
about al these features, but we can give the essential background information
to enable the adventurous programmer to explore these possibilities.

Program lines are stored as a mixture of ASCII codes and ‘tokens. All
BASIC keywords are stored in a specia form, as tokens. These are simply
single byte codes, distinguishable from ASCII codes because they are greater
than &80. MEMZAP will show them in the ASCII display as dots. Line
numbers following GOTO statements are stored in a specia format, starting
with & 8D (this format is explained in the book The BBC Revealed by Jeremy
Ruston, published by Interface). The remainder of aline, except for the initial

168

line number - formulae, strings, variable names and so on — is stored as
ASCII codes (this includes all spaces in the line, including any inadvertently
added to the end of a line, as can easily happen when screen editing). Each
line ends with & 0D, the <RETURN> code.

Each line starts with two items of ‘housekeeping’ information. First is the
line number, stored as a two-byte hexadecimal number, high byte first (in
contrast to the way in which addresses are normally stored, which is low byte
first). Second comes a single byte containing, in hexadecimal, the length of
the line, or more accurately, an offset from the start of one line to the start of
the next.

The end of a program is marked by & FF in the high byte position of the
line number, which would be the first byte of that line. (This shows up
distinctively with the MEMZAP program, as a solid white rectangle in the
ASCII listing.) When you type NEW to delete a program, all that happens is
that & FF is written over the high byte of the first line number (this will be at
address PAGE+1 - programs start with a <RETURN> character &0D at
PAGE). Thus to restore a program erased by NEW, all that is necessary is to
replace the & FF marker with the proper high byte of the first line number —
probably 0 — and then type END in immediate mode to get the BASIC
interpreter to sort out other internal pointers. This is, of course, what is done
automatically by the OLD command, and it is why there is an apparent bug if
you use it with a program starting with a line number greater than 255 - the
high byte of the line number has been overwritten and is reset to zero by OLD.

Of course, there is no point in recovering a program erased by NEW with
MEMZAP when you can do it more simply by the OLD command; but if you
accidentally enter a program line, however trivia, before typing OLD,
recovery is no longer possible. With MEMZAP, however, you can delete the
end of program marker, sort out the pointer to the first line not overwritten,
and thereby recover the remainder of the program.

Exercise 10.10

Typein ashort program such as

10 SUM=0

20 FOR J=1 TO 10
30 SUMESUMKJ

40 NEXT J

Change the value of PAGE, run MEMZAP and examine how the program has
been stored in memory. Restore PAGE to normal, delete the program with
NEW, switch back to MEMZAP and recover the program by replacing the end
of program marker with a zero. Return to normal PAGE once more, type
END, and check by LISTing and RUNning that you have recovered the
program. You could also see whether you can sort out the problem of
recovering the program after typing in a new line after NEW (typein — say —
10 REM).

169

10.6.1 Protecting a program against LISTing

Anocther example of the useful jobs that can be done with MEMZAP is
protecting a program against LI1STing. The essence of the technique is to bury
the special character 21 (&15) at the end of a REM, or on its own after a
colon. This character will switch off the screen display when listing reaches
that point. It cannot be inserted in aREM as CTRL-U, because in direct mode
it serves a different purpose, as the command to delete the current line.
However, if you put in a dummy character after a REM, you can use
MEMZAPto change the character to & 15.

If you do this and then try and LIST the program, you will see that the
remainder of the program is indeed invisible, but the protection mechanism is
less than perfect, because it is quite obvious to any inquisitive user where the
program stops listing, and the offending line can be deleted or the REM edited
out.

The complete solution is to precede the code &15 with enough delete
characters (code & 7F) to backspace over the whole line. Again these will have
to be entered with MEMZAP over a dummy line such as REM 123456789,
with the & 15 in last place. To complete the process, you should switch display
back on again after listing is complete with code 6 in afinal REM.

Regretfully this protection mechanism is far from foolproof, because a
user can just LIST that part of your program beyond the REM. A better ploy
for real protection isto conceal the fact that you have ever used the technique.
Identify some key lines in your program, insert a code & 15 before and code 6
after, and renumber the lines so that they are packed together between a pair
of lines in the normal sequence of 10s. This type of insertion will be amost
impossible to track down (without the user having aMEMZAP program of his
own).

10.6.2 Variable storage

There are two factors to be considered regarding the storage of variables: the
way in which a single variable is represented, and the way in which the table
of variablesis organized.

Real and integer variables are stored in the same format as in data files
(see Section 9.5.2) and strings are stored as ASCII codes, together with a byte
giving the string length.

The storage of integers is quite smple. All integers are four bytes long,
giving a range of about £2147 million, and the bytes are stored in sequence,
low byte first, following the norma 6502 convention. The high bit of the
highest byte is set for negative numbers.

Real variables, on the other hand, are stored in a much more complex
fashion. As with the display of numbers in exponent form or scientific
notation, the numbers consist of a mantissa and exponent, and they are stored
in five bytes, exponent first.

The mantissafor real numbersis afour byte number, stored high byte first
(in contrast to integers where the low byte is stored first). The exponent is
adjusted to be such that the most significant bit of the mantissa (the first bit to

170

the right of the point) is always a one. Thus the ‘decima’ point is to the left of
the leftmost digit and the number is a binary fraction. The final complication
is that because the first digit is always a one it is therefore redundant, and it is
used instead to represent the sign of the number, being zero for a positive
number and one for a negative number. The remainder of the mantissa simply
gives the magnitude of the number; it is not a proper two's complement
negative number.

For internal storage the exponent is the power of two stored in a single
bytein ‘excess 80' form; that is, & 89 represents 20 & 8! represents 21 and & 7E
represents 2-2. Another way of looking at this format is as a signed one-byte
number with the sign bit reversed, or with an offset of 2-2. Table 10.1 gives a
few examplesto help to clarify the format.

Table10.1 Theinternal storage format for real numbers.

Decimal number Binaryform Internal storage

+1 0.1x21 81 00 00 00 0O
-1 -0.1x21 81 80 00 00 00
+15 0.1111x24 84 70 00 00 00
-0.1875 -0.11x2-2 7E C0 00 00 00

Now let us consider how the table of variables is organized. The storage
of variables comprises three parts: first is a two byte pointer which is the
address of the next variable; next comes the variable name in ASCII form,
including the % or $ for integer and string variables and followed by a null
byte; and lastly the value of the variable itself as described above. The last
variable in the list contains a null byte in place of the high byte of the pointer
to the next variable. For example, if with no program present there are two
direct mode variables, ALPHA1 and ALPHA2% having values 0.5 and 5,
these would appear in memory starting at &1902 (assuming a disc-based
system), as

OF 19 4C 50 48 41 31 00 80 00 00 00 00

— —
pointer L PHAZ1 nul
byte
00 00 4C 50 48 41 32 25 00 05 00 00 00
— —
pointer LPHA2 % null
byte

In the case of strings a complication arises because the string may change in
length, possibly becoming longer so that it does not fit into the space initially
alocated for it. What happens then is that the original string and its storage
space is discarded, and the new string is added to the end of the variable
space. Because of this, two extra items of information are stored immediately

171

after the string name. The first is a two-byte pointer to the location af the
actual string, and the second is a single byte containing the number af bytes
alocated to the string. The actual length of the string, mentioned earlier, is
also stored in a single byte after these other two items, so initialy it will be at
the start of the string proper, but after reassignment it may be separated. The
reason for storing the number of bytes allocated is so that, on reassignment of
the string variable, the BASIC interpreter can decide whether the new string
will fit into the existing space, or whether that space must be discarded and
the string appended to the end of the variable space.

In order to speed up access to avariable, they are not all stored in asingle
list. instead, a whole series of linked lists is used, one for each letter of the
alphabet, so that all variables starting with the same initial letter form asingle
chain, and the two-byte pointer at the beginning is the address of the next
variable with the same initial. The initia letter therefore becomes redundant,
and is omitted. Only subsequent characters of the variable name are stored.
The first pointer in the chain is stored on Page 4 a address
(&400+2* ASC(<lIetter>)), following the resident integer variables.

The organization of arrays is even more complicated. When an array is
DIMensioned, enough storage space is set aside for the whole array, including
obviously the appropriate amount of space for each array element (or in the
case of string arrays, the array of pointers). For example a rea array
dimensioned as DIM A(5,10) would have 66 elements needing 66x5 or 330
bytes. In addition, immediately after the array name (which includes the
opening bracket to identify it as an array) the offset to the start of the storage
space proper is stored, and then the dimension of each index of the array, two
bytes each stored in the usua lowlhigh format. (The offset is thus a double
byte having a value of twice the number of dimensions plus 1.)

As an example, area array declared by DIM ARR(5,10) would appear in
memory as

00 00 52 52 28 00 05 06 00 0B 00 81 00 00 00 00...
- —— — — —_—
pointer R R (null offset first second first value

byte dim. dim.

Here the offset is 5 (twice the number of dimensions — 2 in this case — plus 1)
and the dimensions are 6 and 11 respectively (remember that array indexes
start from zero).

In addition to variables, addresses of procedures and functions are also
stored in the space above a program, in a further pair of linked lists. The entry
for each routine, whether procedure or function, smply contains the pointer to
the next item in the list, the routine name (including the initia letter) and the
address of the point in the program where the routine is to be found. Just as
with variables, the entry in the list is made on the first occasion that the
routine is accessed when the program is executed. The start of the chain of

172

pointers for procedures is at &4F6, and for functions is at &4F8. Readers
wanting to gain a thorough familiarity with variable storage will find it useful
to use the MEMZAP program to study some actual examples that can be set
up by making assignments in direct mode. (This will entail setting PAGE to a
different value — say & 6000 - to set up some variables, and switching back to
the value of PAGE where ZAP s stored to use the program again.)

From this description of the method of variable storage we can note three
points which are relevant to the efficient execution of aBASIC program

1. Usedifferent initial letters as far as possible, since this keeps the chains of
variables short and enables the interpreter to find the required variable
more quickly.

2. If the string stored in a string variable is increased in length, the initial
storage space allocated is insufficient. That space is therefore discarded
and the new string added to the end of the variable space. This can
eventually waste a great deal of memory in certain circumstances. If
strings may grow in this way, they should be ‘initialized’ first, at their
maximum eventual length, by setting them equal to dummy strings. This
is particularly important in situations such as sorting, where array
elements are likely to be repeatedly reassigned.

3. Procedure and function names are stored along with other variable names.
This enables the interpreter to find the appropriate procedure or function
very quickly, without searching right through the program line by line, as
has to be done for every GOTO or GOSUB. For maximum speed of
execution it is therefore advisable to use procedures and functions
wherever possible.

10.6.3 Theresident integer variables

The integer variables @% (the PRINT format variable) and A % to Z% have
special properties and purposes. Instead of being stored in the normal variable
space above a program, they are located, four bytes each, from addresses
&400 to &46B, as was mentioned earlier. This gives these particular variables
two unique features.

First, because their positions in memory are fixed, they can be accessed
extremely quickly, and these variables should be used preferentially wherever
speed of operation is critical. Second, and much more important, because they
are not stored in the usua variable space but in the reserved section of
memory below the OSHWM, their values are not cleared by any of the
Operations, such as loading a new program, that clears all other variables and
their values (even <BREAK> does not destroy them). This makes the
variablesideal for carrying values from one program to another.

Certain of the resident integer variables also have a third property. Their
current values are used to initialize certain 6502 registers whenever machine
code programs are executed with the CALL or USR commands. These
variables, and their purposes, are

173

A% — transferred to the Accumul ator

% — transferred to the Carry flag

P% — transferred to the Program counter (thisis used with the assembler)
X% — transferred to the X register

Y% — transferred to the Y register

(When the values of the variables are greater than 255, it is the low byte of the
value that is transferred. In the case of C%, only the lowest bit is transferred.)

Note that you need not be inhibited from using A% etc. in norma BASIC
programs, providing that you are not using CALL or USR.

Exercise 10.11

In direct mode, set variables A%=12, A1%=34 (or any other values that you
choose). Press <BREAK>, then try and PRINT the values of A% and A1%.

10.7 HANDLING THE FILING AND OPERATING SYSTEMS
FROM WITHIN PROGRAMS

10.7.1 Issuing operating system commands from within programs

In Example 9.9 we saw a case where we would have liked to issue an
aperating system command with parameters not known in advance. In that
particular example, we wanted to issue a * SPOOL command with a filename
supplied by the user, but other situations can occur; for instance you might
want to issue a * SAVE command with addresses calculated from within the
program, or issue a *FX command such as *FX 138 with a character
determined by the program.

It has already been explained that all commands starting with a star are mt
handled by the BASIC interpreter but are passed straight to the operating
system where they are handled by the Command Line Interpreter (CLI). This
is why the problem occurs, because variables or expressions that we might
want to use as parameters to the commands can only be handled by the
BASIC interpreter (it is aso why no further BASIC commands can be
included on theline).

The solution to the problem is to pass your command directly to the CLI,
instead of |etting the leading star force the BASIC interpreter to do this. There
are two ways to send commands straight to the CLI, but the easier one is only
available with BASIC II, in the form of a new command, OSCLI. With
OSCLI you simply form your OS command without the leading star as a
string expression following the OSCL| command.

Under BASIC | the OSCLI command is not available. It is still possible to
make a direct call to the CLI but you must first load the desired command
directly into memory as a string (again without the leading star), then set the
resident integer variables X% and Y % to point to the address of the string, and
finally CALL the CLI at address & FFF7.

174

In both cases the fundamental requirement is thus to form the command
into a string, and for BASIC | the string can be loaded into memory using the
$ indirection operator, as explained in Section 10.4. The exercise below shows
how direct access to the CLI is achieved for both versions of BASIC for the
particular problem encountered in Example 9.9.

Exercise 10.12

Make the following modifications to the program from Example 9.9 to alow
the user to specify the name of the filename for the spooled output.

100 PROC_spool

220 END

1000 DEF PROC spool

1010 LOCAL FI LENAMES

1020 PRINT "Type filename for the spooled output:": |NPUT
""" FI LENAVES

1030 CMD$="SPOCL " +FI LENAMES

1040 OSCLI CMVD$

1050 ENDPROC

or for BASIC |

1040 $&AE0=CND$

1050 X%&E0: Y9F&0A

1060 CALL &FFF7: REM CLI CALL ADDRESS
1070 ENDPROC

Line 1030 forms the required command as the string variable CMD$ (note the
space after SPOOL). For BASIC |1 all that is then needed is line 1040 to issue
the OSCLI command.

For BASIC | line 1040 uses the dollar indirection operator to place the
string into memory starting at & AEO, which is a fairly safe area of memory.
Line 1050 sets the variables X% and Y % to point at this address (low byte in
X%), and line 1060 performs the actual CLI call.

You could write a similar procedure for *SAVE or any other command
Where the parameters are not known in advance. Note that * SAVE requires
addresses to be in hexadecimal, whereas you would normally turn a number
into a decimal string with STR$. However, you can get a hexadecimal string
form by preceding the brackets after STR$ by a tilde, so you might form the
string by aline such as

CMD$="SAVE "+F$+" " +STR$”(START) +" +" +STR$"(LGTH)

10.7.2 Using commands in the function keys from within a program

There are certain occasions when you may wish to issue commands from
within a program which either are not allowed or would be overwritten before

175

completion. For instance, you might wish to load a new program in two
sections using the method of merging described in the User Guide, and then
run the resultant program. You could not do this in the norma way from
within a program, because the LOAD command may not be issued from
within a program and because, even if you could get round this problem, one
of the program sections might overwrite the old program before it could finish
the series of instructions.

The solution is to load the necessary series of instructions into one of the
function keys, where they are safe from overwriting, and from where they will
be issued as direct mode instructions. You could then have the program tell the
user to press the appropriate function key to cause the instructions to be
issued, but even this is not necessary. The command *FX 138 alows you to
load characters directly into the keyboard buffer, which would have the same
effect asif the user pressed the key.

As an example, consider how we would carry out the task mentioned
above. The origina program could program a function key with the *KEY
command, then load that function key into the keyboard buffer, and finally
END, at which point the keyboard buffer would be polled and the function
key found there and executed.

As a sophistication, you could aso disable the screen with VDU 21
before this operation, to suppress the potentially confusing display on the
screen of the commands being issued from the function key.

The process of merging requires you to LOAD the first program section,
then *LOAD the second section at address (TOP-2) for the first section, and
finaly sort out the internal pointers with a command such as OLD. It would
be simplest to work out the * LOAD address for the second section beforehand
by issuing the command

PRINT ~(TOP-2)

with the first section loaded. The resultant value can then be used with the
*LOAD command. Obviously the second section of program must have line
numbers after those of the first section.

If we suppose that the two program sections to be loaded are called
PARTI and PART2, and the load address for the second is & 3456, the
following linesin the original program would achieve the desired effect.

2000 VDU 21: REM DI SABLE SCREEN DI SPLAY

2010 *KEY 0 LOAD'PART1"| M *LOAD PART2 3456| M OLD | M RUN | F| M
2020 *FX 138,0,128

2030 END

The parameter 128 to *FX 138 is the code for function key fO. Subsequent
keys go up in sequence, to 137 for f9. The |F switches the screen display back
on after issuing the commands.

Ancther occasion where it is necessary to load commands into a function key
isto achieve true chaining of programs.

176

10.7.3 The CHAIN command

There are occasions when it may be desirable, or necessary, to chain one
program from another. Chaining here means running one program from
another, with the variables from the first being retained for use by the second
program.

The chief use of this is where a program is too big to fit into memory
complete. It must then be broken up into modules, and each module may need
to use variables set up by an earlier module. In some instances the modules
will form a linear chain, control passing from one to the next until the
program is ended. In other cases, where the path of execution through the
program may vary, the chain may be haphazard, or even circular if the
program forms a giant loop.

The command CHAIN on the BBC computer is actualy a misnomer,
because it does not provide a true chaining facility. When a new program is
CHAINed from a previous one, al variables except the resident integer
variables are cleared at the start of the new program, whereas chaining
normally implies one program being chained to the end of a previous one,
with variable values being preserved during the process.

There are at least three ways in which true chaining can be effected. The
least satisfactory isto write al the variables that need to be preserved to a data
file before passing execution to the next module, and then reading the values
back.

The best method, where it can be achieved, is to use the resident integer
variables. These were described in Section 10.6, and an important use of them
is in preserving the value of variables when chaining programs. If you also
need to preserve strings, these could be stored in a safe area of memory
(below PAGE or above HIMEM) with the dollar indirection operator ($), and
restored by the next program module. The relevant addresses could be
transferred by means of the resident integer variables.

10.7.4 Preserving real variables during chaining

If you need to preserve real variables, or alarge number of integer variables or
arrays, only the method of storing to a data file on disc would work. There is,
however, a third method by which variables can be preserved when
CHAINing a new program module, but it is ‘unofficia’, and great care must
be taken since the normal protection mechanisms and checks of the BASIC
interpreter must be overridden.

All that happens when you CHAIN a new program is that the computer
carries out an automatic CLEAR so that the pointers to the variable chains,
stored in the upper half of Page 4 of memory, are destroyed and the pointer to
the end of the variable space is reset. Provided that the new program is not
larger than the old one, or an existing program is not enlarged by editing, the
variables themselves remain in memory undisturbed.

The simplest method of preserving access to these variables is not to
CHAIN the new program, but to *LOAD it and then use GOTO to jump into
the program without CLEARINg variables first. The procedure to adopt is as
follows

177

1. To prevent a longer program module overwriting some of the variables
stored at the end of a shorter module, first load the largest of the modules,
and PRINT the value of LOMEM. Thefirst module in the chain must start
with a command setting LOMEM to this value (or a little larger still
might be advisable).

2. Each module must chain in the next by loading one of the function keys
with a *LOAD for the next module, followed by a GOTO to the first
program line (it would be possible to jump to a later line if you wished,
say to skip a DIM statement if the arrays aready existed). Note that
*LOAD must be used rather than LOAD because the latter, like CHAIN,
clearsal variables.

Example 10.4

The following pair of programs show a simple example of chaning in
operation, with a real variable and a succession of array elements being
carried from one program to the next.

Program P1
10 LOVEM=10000
20 DI'M RV(50), ST$(50)
30 J=0
40 VDU 21: REM DI SABLE SCREEN DI SPLAY
50 *KEY 0 *LOAD P2| M GOTO 10 |M
60 *FX 138,0,128

Program P2
10 REM TH' S LINE nust EXI ST
20 VDU 6: REM REACTI VATE SCREEN DI SPLAY
30 J=J+1
40 |F J>1 THEN PRINT "NEW VARI ABLE IS "; XYZ
50 I'F J>50 THEN END
60 I NPUT "TYPE A NUMBER', RV(J)
70 INPUT "TYPE A STRING', ST$(J)
80 FOR I=1 TOJ
90 PRINT ST$(1),RV(1)
100 NEXT |
110 PRINT: | NPUT "NEW VARl ABLE", XYZ
120 VDU 21
130 *KEY 0 *LOAD P2 |[M GOTO 10 |M
140 *FX 138,0, 128

10.8 USING MACHINE CODE PROGRAMS

It is not the purpose of this book to teach machine code programming.
However, it can be useful for the non-machine code programmer to have some

178

understanding of what machine code is, and how he can use it without needing
to understand it in any detail. For instance, program listings that you wish to
copy may include a section of machine code. Nevertheless, some readers may
not be interested in machine code at all, and this section may safely be
skipped if you wish, apart perhaps for Section 10.8.5.

Machine code is a very primitive language, but it is understood directly
by the 6502 microprocessor, whereas BASIC has to be decoded into machine
code by the BASIC interpreter which is resident in ROM. This makes BASIC
extremely slow compared with machine code for simple operations — typically
machine code may operate 100 times faster than BASIC. For some
applications only machine code can give the speed necessary. Arcade games
are an obvious example, though by no means the only one. (An example of a
more serious application where machine code is used is in routines to produce
copies of graphics screen displays on a printer, of which severa have been
published.)

One other instance where machine code has to be used, is to carry out
operations which simply cannot be done in BASIC because of the limitations
of the BASIC language or interpreter.

True machine code is a series of one byte numbers that are the operating
instructions for the 6502 microprocessor. Many of these are followed by oneor
two-byte addresses giving the location where data is to be fetched from, or
written to. Since these ‘op codes are exceedingly difficult to remember,
programmers invariably use mnemonic code, with three letter mnemonics for
the op codes. An assembler is used to trandate these, in essence by looking up
the corresponding numbers from a table. (An assembler also has a number of
sophistications to make life alittle easier for the programmer, in particular by
the provision of labels.)

The operations that are possible are very simple, mainly reading from and
writing to memory, adding or subtracting bytes, unconditional jumps or
conditional branches, and a variety of operations on individual bits of a byte.

A machine code program is executed by specifying the memory address
of the first instruction. This can be done from BASIC, by the command CALL
followed by the starting address. The operation codes (with their
accompanying data addresses where appropriate) are then executed in order,
unless ajump or branch instruction is encountered.

10.8.1 The BBC assembler

One of the many unusual features of the BBC microcomputer is the built-in
assembler that works directly from BASIC. In particular, the assembler can
handle BASIC variables at any point in the assembly code, substituting into
the machine code the value of the variables at the time of assembly.

The assembler is invoked, either in direct mode or more commonly from
a program, by an opening square bracket — [(note that in Mode 7, square
brackets are printed as left and right arrows). In direct mode, each assembler
line must start with a square bracket, but in a program assembly continues
until a closing square bracket is encountered (this must be at the start of a
line). Within the square brackets, the usual mnemonic forms are used, together

179

with labels which are denoted by a preceding full stop. Both labels and
BASIC variables can also be used for addresses.

Very few of the usual pseudo-op codes are provided, because there are
other ways of achieving the same operations.

The resident integer variable P% is used to set the program counter from
BASIC before entering the assembler, thus defining the origin for the
assembly. Most assemblers do this with an ORIGIN pseudo-operation.
Similarly, in place of a DATA or DFB pseudo-op, it is possible at any time to
leave the assembler temporarily and enter data into memory with the
indirection operators. P% can again be used to give the position in memory,
provided that it is incremented for every byte entered. Labels can be defined
in the same way as ordinary BASIC variables, removing the need for an EQU
or = pseudo-operation. (In BASIC I1 only, there is a set of pseudo-ops EQUB,
EQUW, EQUD, EQUS to enter respectively, 1, 2 or 4 bytes of data or a string
into memory. These are equivalent to the usual DFB rather than EQU.)

Comments can be included in a statement at the end, if they are preceded
by abackslash.

Example 10.5
Enter the following short program

10 start %&C30
20 PY%start%
30 [

40 OPT 1

50 LDA #5

60 ADC #7

70 RTS

80]

Line 20 sets the start of the assembly to & C80, which is a safe position unless
you have a large set of user defined characters. P% could have been used in
place of start% in line 10, eliminating line 20, but this form has been used in
order to be consistent with a later version of the program. RUN the program
and look at the display. OPT is not a true mnemonic but a ‘directive’ or
pseudo-operation telling the assembler what listing OPTion to use. OPT 1 lists
everything as the program is assembled for the first time. Working from left to
right the listing shows the address, the byte(s) forming the instruction, the
mnemonic notation for that instruction and lastly any comments. Instructions
need from one to three bytes. It is beyond the scope of this book to describein
detail the instructions executed by the processor — those used in this program
are

LoaD Accumulator with the number 5

ADd with Carry the number 7
ReTurn from Subroutine

180

Note the use of P% to determine the position in memory at which the machine
code will be assembled. As was pointed out in the previous section, certain of
the resident integer varisbles have specia applications for assembler
programs. A%, C%, X% and Y % are copied to the appropriate registers when
the machine code routine is called or used. P% is used during the assembly
process to set the program counter to the desired position. Note that at the end
of the routine the registers are not returned to the resident integer variables,
but they are accessible through the USR function, as explained below.

10.8.2 CALL and USR()

There are two ways of running user-defined machine code routines — CALL
<address> and USR(<address>), where <address> may be either a number
such as &1234 or a variable. CALL updates the 6502 from the relevant
resident variables and then jumps to the user routine. The RTS instruction
returns to the BASIC system. The changed values of the registers are lost.
CALL isthe machine code equivalent to PROC which simply does something
without returning values to the program.

USR calls up a machine code subroutine in a similar way to CALL, but it
is a function rather than a command and it also returns the values of the
processor status register, accumulator, and X and Y index registers, asasingle
32-bit number.

Exercise 10.13
Run the machine code program created by Example 10.5 by typing

PRINT “USR(start%

(Note that Example 10.5 did not run the machine code program. It simply
created it.)

You should see an eight character (four-byte) number. The left-hand byte
represents the status register which stores ‘flags’ such as carry, zero and
overflow; the next two bytes are the X and Y index registers and the last
(right-hand) byte represents the accumulator. This should have the value 0C
Or 0D depending on whether the carry bit was set (ADC is ADd with Carry).
Type C%-=1 first then PRINT USR(start%) again. The accumulator should
definitely be OD this time. Set X% and Y % to different numbers in immediate
mode and print USR again and notice which byte represents which index
register. To prove that A% is left unchanged set A% (the accumulator variable)
to an arbitrary value and print A% after using USR again.

Exercise 10.14

It is inconvenient to use numbers in CALL and USR statements and it is not
necessary when labels have been included in the mnemonic listing. Insert

35 .test

181

in the program from Example 10.5 and RUN it again, then try PRINT
~USR(test). The full stop in front of ‘test’ tells the assembler that a label
rather than a mnemonic follows — the dot is not part of the label name. Hence
when the label is used as an operand it is written just as ‘test’, with no full
stop in front.

Exercise 10.15
Type NEW and enter the following

10 start %&C30
20 PY%start%
30[OPT 1
40 .test

50 LDA #7

60 .l oop

70 ADC #5

80 JMP | oop
90 RTS

100]

110 END

RUN the program and look at the code generated for the JIMP (JuMP)
instruction — ‘loop’ has been replaced by the actual address of the ADC
instruction. (Do not try and CALL the machine code program — it is a closed
loop and will run until interrupted.)

Interchange lines 60 and 80 so that the jump instruction points ‘forward’,
and run the program to assemble again. Change OPT 1 to OPT 3 and note the
error message. When the assembler encounters JMP loop now it does not
know what to do as ‘loop’ has not yet been defined. We must force the
assembler to work through (pass) the code twice — once to discover al the
labels and then again to assemble properly.

We can make two passes of the assembler by using a FOR...NEXT loop
around the code. We are not interested in error messages on the first pass as
we will expect problems with labels so we need to use different OPTions for
each pass, which is achieved by using a variable as the parameter for OPT.
The OPTion number is actually a two bit number and so has the value 0 to 3.
The least significant bit enables (1) or disables (0) listing and the most
significant bit should be cleared or set according to whether it is the first or
second pass to suppress some of the error messages. We will use OPT 0 (no
listing) on the first pass and OPT 3 (listing and error messages) on the second
pass.

Exercise 10.16
Modify the program from Exercise 10.15 by adding extra lines 15 and 105.
The resultant program will be as follows

10 start %&C80
182

15 FOR Z%0 TO 3 STEP 3
20 P%start%
30 [OPT Z%
40 .test

50 LDA #7

60 JMP | oop
70 ADC #5

80 .l oop

90 RTS

100]

105 NEXT Z%
110 END

Run the program and observe that the listing (which comes from the second
pass) now has the forward address for the IMP worked out correctly.

Note that there is nothing special about Z%; any variable would do. Again
do not attempt to execute the resultant machine code program. It is a
meaningless program simply designed to explore the problems of forward
jumps.

Exercise 10.17

Why has P%=start% been included inside the FOR...NEXT loop? Test your
answer by moving it to line 12 after modifying line 15 to select OPTions 1 and
3tolist on both passes.

10.8.3 Allocating space for a machine code program

For machine code programs needing larger amounts of space than can be
safely found in areas such as & C80, it is possible to set aside memory in the
variable storage area for the machine code.

DI M start % 300

would alocate 300 bytes of memory for aroutine, the start of which is stored
in the variable start%. In the above programs, line 10 could be replaced by

10 DIM start% 20

Note that this use of DIM is at first sight quite different from the usual form,
Where a variable name is followed by a value in brackets. In fact the use is
not SO illogical: when an array is defined, enough memory is set aside for all
the elements of the array, so in both cases, DIM has the effect of reserving
memory in the variable storage area for later use.

10.8.4 System access

It would be difficult, from within machine code, to carry out such tasks as
printing a character to the screen, and in cases such as this it is possible to

183

access the relevant BASIC interpreter routine from within the machine code
program. Particularly easy routines are the *FX commands and the VDU
driver routine. *FX commands are invoked by JSR OSBYTE (JSR means
Jump to SubRoutine). OSBY TE stands for Operating System BYTE and is at
address & FFF4. (You cannot use the word OSBYTE directly in assembly
unless you have defined it earlier in the BASIC part of the program using a
LET command.)

The particular *FX is selected by the value in the accumulator, X register
and Y register. The accumulator specifies which *FX call is to be made and X
and Y supply the remaining two values sometimes required. X and Y should
be set to zero when no other values are needed so

LDA #0
LDX #0
LDY #0
JSR &FFF4

correctly assembled and CALLed is equivalent to *FX O (print the version
number).

Example 10.6
The following program will perform this call.

10 DI'M P% 10
20 [OPT 1

30 .fx LDA #0
40 TAX

50 TAY

60 JSR &FFF4
70]

80 CALL fx

(TAX and TAY mean: Transfer (copy) Accumulator to X or Y .) RUNning the
above program should print the operating system number.

VDU cdls are carried out by JSR OSWRCH, which is at address & FFEE.
Where more than one parameter is needed (as is usua with VDU statements)
the JSR is simply used repeatedly after loading the accumulator with
successive values. (BASIC programs aso carry out writing operations by
calling OSWRCH.)

Other OS calls that you may wish to use are: OSRDCH (address & FFEQ)
which reads a character from the currently selected input stream; OSNEWL
(address & FFE7) which writes a newline; and OSCLI (address & FFF7) which
has been explained in Section 10.7 .1. Other more specialized OS calls are
OSFIND (&FFCE), OSGBPB (&FFD1), OSBPUT (&FFD4), OSBGET
(&FFD7), OSARGS (&FFDA), OSFILE (&FFDD) and OSASCI (& FFE3).
These calls are all documented in the BBC User Guide.

184

One simple use of machine code is in fact to access *FX calls which
return parameters. For instance, OSBY TE call &87 (equivalent to *FX 135)
returns the character at the text cursor position in the X register, and also the
current mode number in the Y register. Thus if you want to ascertain the
current mode, for instance to save having to reguest the mode from the
program in a procedure such as PROC inverse from Chapter 11, the following
section of program could be used

100 A%135
110 MD=USR(&FFF4)
120 MD=(MD AND &FFFFFF) DIV &10000

Note that it is not even necessary to invoke the assembler in order to make an
OSBYTE call. The accumulator is set via A% (the X and Y registers could
similarly be set by X% and Y% where necessary) and the result (from the Y
register in this case) is read from the USR function.

10.8.5 Saving and loading machine code programs

There are two ways of storing machine code programs. If it is satisfactory to
assembl e the program every time, it can be stored in assembly form as part of
a BASIC program (once development is over, the OPT parameter can be
changed to 0 or 2 to suppress the assembly listing).

However, if for some reason thisis not desired, the raw machine code can
be saved direct from memory with the * SAVE command. Thisis still possible
even if it isto be combined with aBASIC program. BASIC and machine code
programs can be stored together by *SAVE, and loaded back with the BASIC
command LOAD or CHAIN.

*SAVE simply saves a section of memory to the current filing system. It
therefore requires three parameters: the filename, and two parameters which
specify the section of memory. The section of memory may be specified in
One of two forms. In either case the first parameter given must be the start
address of the section with the second being the end address or (if preceded by
a + sign) the length of the section. In al cases the parameters must be in
hexadecimal. For example

*SAVE MCPROGL C80 D00

Would save the section of memory from &C80 to & CFF. Note that the last
address specified is not saved.

*SAVE BASPROG 1900 +400

Would save the section of memory from & 1900 to & 1CFF.

There are two further optional parameters to *SAVE. The first of theseis
the execution address. If the section of memory being saved is a machine code
program, and it is subsequently executed with *RUN, this address is Where
execution will start. It is only needed when the execution address is other than

185

the start of the section of memory. Thusif a program is saved with
*SAVE MCPROG2 C80 DOO CAO
then *RUN MCPROG2 would be equivalent to

*LOAD MCPROR
CALL &CAD

The second extra parameter, which will only rarely be necessary, is the reload
parameter. Normally the section of memory would be loaded back at the same
address as it was saved from, unless otherwise specified by the *LOAD
command. But the default reload address can be specified to be elsewhere by
the fifth * SAVE parameter.

All of these parameters (except the starting address, if a different reload
address is given) can subsequently be determined by the *INFO command
once the file has been saved. On the DFS, *INFO MCPROG2 would give the
response

$. MCPRO® 000C80 000CAO 000080 nnn

where nnn is the sector on the disc where storage of MCPROG2 starts. The
extra two digits for the addresses are for future expansion of the system. (If
the file were locked, this would also be shown in the *INFO listing.)

The file can be reloaded by the *LOAD command, which has only two
parameters — the filename, and an optional reload address (in hexadecimal) if
you do not want to load the file at the default address. (If you want to *LOAD
a data or ASCII file you should always specify the reload address, since the
default is & 0000 which is unacceptable.)

If the file is a machine code program, then an alternative to *LOAD isto
load and run it in one operation, from the execution address specified in the
*SA VE command as explained above. This is the machine code eguivaent of
the BASIC command CHAIN. The command *RUN has the ultimate in
abbreviations, to a simple star. Thus instead of *RUN MCPROG2, we could
simply use

* MCPROR2
giving the file all the appearances of an extra OS command. In this form, the

file can also be accessed in the library directory (as set by the *LIB command)
if it does not exist in the current directory.

186

