The
BBC Micro

| An_--Expért Guide |

- The
BBC Micro

An Expert Guide

Mike James

Editorial Adviser: Henry Budgett

GRANADA
London Toronto Sydney New York

S SR

R SR A T, S S

TR ST S VR AR

(Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, Londcm WI1X 3LA

 First published in Great Britain 1983 by Granada Pubhs.hmg Ltd.

Reprinted 1983 (4 tlmes) 1984 (twice)
Copyright © 1983 Mike James

British L:bmry Cataloguing in Publmatmn Dam
James, Mike | -

The BBC micro |

1. BBC Mlcrucumputﬂr -

I, Title |

001.64'04 QA"?&.S.BS

ISBN 0-246-12014-2

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed in Great Britain by Mackays of Chatham Kent

All nghts reserved. No part of this publlcatmn may be repmduced
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, rccnrdmg or ntherwme,
without the prior pcrmlssmn of the pubhshers

Contents

Preface

The Hardware

BBC BASIC

The Machine Operating System
The Video Display

The Sound Generator
Interfacing

Introduction to Assembly Language
‘Assembly Language I
Postscript

Index

WD OO0 ~1 N B b e

Vil

22
43
34
76
96
115
137
153
157

Preface

The subject of this book is the BBC Micro, its hardware and its
software and it is aimed at anyone who has already started to plumb
the depths of this fascinating machine. It is not an introduction to
BASIC nor does it attempt to explain the fundamental hardware
that goes to make up any computer. Instead it plunges straight into
the complexities and intricacies of this very special micro.

The BBC Micro is a complex machine and it would be
unreasonable to expect to understand it in one go. To appreciate the
working of one part of the machine you have to understand its
interaction with other parts and this, of course, implies knowledge
of those other parts! Coming to terms with the BBC Micro is,
therefore, very like solving a jigsaw puzzle — odd pieces start to make
sense, then one or two fit together until the whole jigsaw 1s finished.
The objective of this book is to help you to view the BBC Micro as a
whole rather than just a collection of pieces.

Some of the chapters of this book are mainly about hardware and
some are mainly about software. If you understand and enjoy
hardware then don’t give up on the software chapters — they will
improve your appreciation of the hardware. Similarly, if you are a
programmer, stray outside of your field and see what the hardware
is about - you will find that it’s not as difficult asit looks! A book of
this sort, however, hastoassumea certainamount of prior knowledge
in its readers. This implies that to understand everything in every
chapter you will need to know something about both hardware and
software — not very much but something! My advice is to look up
any areas that you feel unsure of in a general computer text book.

Material that is covered in the BBC User Guide 1s, as far as
possible, not duplicated here. However, to make the book
reasonably self-contained, some repetition has been unavoidable.
Where this has happened, the information has been presented in a
different way or commented on so as to add something to the User
Guide.

viii The BBC Micro

The BBC Micro is such an interesting machine that even in a book
of this length there must be more left unsaid than said! My apologies
to anyone who feels that I have ignored some important feature in
preference for something obvious, but choosing what is important is
a matter of personal interest and deciding what is obvious is a
matter of personal knowledge! My selection is necessarily
incomplete and therefore cannot possibly please everybody all of the
time,

Finally, let me say that the BBC Micro is, in my opinion, a
machine that will be with us when others have decayed back to the
sand that their silicon chips came from! It is an excellent machine. It
1s powerful enough for most applications, it is expandable to
respond to the unforeseen needs of the future, and has enough depth
to make it a constant source of interest. This must be a winning
combination!

Grateful thanks are due to Chris Turner of Acorn, without whose
help this book would have lacked many essential pieces of
information and to Henry Budgett of Computing Today who
encouraged me to tackle some of the BBC Micro’s challenges.
Chapters Four and Five of this book are based on material that first
appeared in Computing Today.

Mike James

Chapter One
The Hardware

If you have used a BBC Micro for any length of time you will not
have missed the fact that it is a very versatile machine. This
versatility comes in part from its remarkably clever hardware design
and in part from the extensive and well-designed resident software in
the form of BBC BASIC, the assembler and the MOS (Machine
Operating System). Even if your main interest lies in software,
knowing something about the hardware that makes your BBC
Micro ‘tick” will help you to get the best from it. This knowledge
needn’t be at all detailed. It’s not important to know what every chip
does, only what the different general areas do and how they affect
each other, and you can acquire this sort of knowledge even if
electronics is not your subject.

In this chapter we take an overview of the BBC Micro's hardware
by building up a block diagram. Some of the sections of the block
diagram will be explained in more detail in other chapters where
they are discussed in connection with the other side of the story —the
software. Others are examined at length here. If you find any of the
detail tough going then don’t despair — simply skip the section or
turn to a more software-oriented chapter and wait until you need to
know about the particular subject that you found difficult before
turning back to this chapter. There are many things inside the BBC
Micro that don’t make very much sense until yvou need to know
about them!

The slements of a computer

There is nothing startling about the design of the BBC Micro. You
won’t find any powerful new microprocessor inside and its total
memory capacity 1s limited to a fairly standard 64K bytes. What
makes the design special is not any single component or feature but

2 The BBC Micro

the way a range of things have been brought together with a great
deal of skill and forethought. The BBC Micro’s design is intricate
rather than revolutionary.

If you look at Figure 1.1 you will see the parts that every
computer, including the BBC Micro, has to have in one form or
another to work. Although the BBC Micro adopts this traditional
computer pattern there is something special to say about each part.

[: VIDEO RAM 1

CPU

l [d _{ ROM l
\

Fig. 1.1. Simplified diagram of the BBC Micro.

The CPU and memory

The CPU (Central Processing Unit) is a 6502 microprocessor of the
same type that you will find in many older machines, such as the
PET and the APPLE. However, in the case of the BBC Microitisa
double speed device - in other words it operates at 2 MHz. Thisis a
great advantage that isn’t wasted by surrounding the fast 6502 with
slower memory - everything in the BBC Micro is built for speed!
However, it i1s sometimes necessary for the 6502 to talk to slower
devices and to make this possible it can run at half its usual speed —
1.e. at 1 MHz.

The RAM is special for the same reason - it is fast., Traditional
RAM will allow roughly one memory access every microsecond but
the 4816 dynamic RAMs inside the BBC Micro are accessed four
times every microsecond. As the 6502 - fast asit is — can only manage
to use two of these memory accesses, you might be puzzled why the
memory needs to be so fast. For the answer to this mystery we will
have to wait for a discussion of the video section. Apart from speed,
the 4816 dynamic RAMs are fairly standard 16K bit chips. So, for
the Model A you need eight to make 16K bytes and for the Model B
you need sixteen chips to make 32K bytes and this is the maximum

The Hardware 3

amount of RAM that can be installed. However, it’s far from the
maximum amount of memory.

The standard BBC Micro has 32K of ROM in the form of two 16K
chips. This is a very large amount of ROM storage by current
standards. One of the 16K chips holds a large program known as the
MOS (Machine Operating System) which is responsible for co-
ordinating the machine’s functions and making some of its features
easier to use. We will take a more detailed look at the MOS in
Chapter Three. Even though the MOS is a large program, it only
uses 15K of the 16K. Very little of the remaining 1K of the ROM is
used. In fact, most of its address space is given over to memory
mapped 1/ O devices, but this will become a little clearer when we
look at the memory map in detail later on in this chapter. The second
16K ROM is most definitely all used as it stores the BBC BASIC
interpreter and the 6502 assembler, which are both the subjects of
later chapters. What is interesting about this ROM is that it can be
replaced by any of three alternative ROMs under software control.

Inside the BBC Micro there are five 16K ROM sockets. One is
used for the MOS ROM already discussed and the other four can
hold various ROMs. However, only one of these four ROMs can be
in use at any one time. For example, suppose one of the sockets held
the BBC BASIC ROM (as is the case with nearly all machines) and
another held a ROM for another language such as Pascal. Then, by
using only software — in other words, without having to dive inside
the machine each time - you can select which ROM 1s to be active
and have either BASIC or Pascal. This idea of a number of ROMs
sharing the same address space is known as paging. By using paging
the BBC Micro can have as much as § X 16K (including the MOS) of
ROM installed. The range of things that you could put in the four
ROMs 1sn’t limited to languages. You could install applications
ROMs containing, for example, word processors, accounting
packages etc. As well as being able to take 16K ROMs, the four
paged sockets can also be used with four 4K ROMs to fill the full
16K or with two pairs of 8K ROMs providing only two alternative
fillings of the 16K. However, these situations are not common.

Switching between any of the four ROMs involves the use of a
register at FE30. This register is in fact a write only device, i.e. you
can use it to change ROMs but not to find out which ROM is
selected. If you open your BBC Micro then you will see a row of
ROM sockets on the right-hand side of the edge nearest the
keyboard. As mentioned earlier, most systems will have only two of
the sockets filled. The one on the far left contains the MOS and the

4 The BBC Micro

one next to it contains the BBC BASIC. If you number the ROM
sockets starting with the one that holds BBC BASIC as ROM 0 then
you can select the ROM of your choice by writing its number to the
register, So, if you want to select BBC BASIC, write zero to the
register. If you want to select the ROM in the socket to the
immediate right of the BASIC ROM, then you have to write a | to
the register. This all sounds easy enough but beware that the ROM
that you are deselecting 1sn’t necessary for your program to run. In
other words, don’t deselect the BASIC ROM from a BASIC
program!

The video section

The video section of the BBC Micro is perhaps the most interesting
of all. Its workings will be examined in some detail in Chapter Four
but it is worth sketching out its overall configuration here. The
information to be displayed on the TV screen is stored in the
machine’s RAM. In display modes 0-6 the dot pattern for the entire
display is stored in RAM. In other words every dot displayed on the
screen 1s stored in the RAM. However, in mode 7 only, the ASCII
code for each character displayed on the screen is stored in memory.
The actual dot patterns that make up the shapes of the characters on
the screen are stored in an additional ROM that is inaccessible to the
6502 and 1s used only in mode 7. Most computers produce their
video display in the same way that the BBC Micro produces its mode
7 display.

There are two main parts to the video section - a standard 6845
video generator, and a very special custom-made chip called the
video processor. The video generator chip shares access to the
RAM with the 6502 processor; it uses the two memory accesses per
microsecond that the 6502 cannot (see the previous section on the
CPU). Thus, 1n every microsecond the memory access sequence is:

6502, video generator, 6502, video generator

The video generator has access to the RAM for the simple reason
that this is where the information to be displayed is stored. However,
the video generator doesn’t handle or process any of this
information - this task is reserved for the video processor! What it
actually does 1s to generate the correct sequence of addresses at the
correct time, to ensure that the RAM gives up its information in the
correct order and at the correct time. It has other jobs to do as well

94 The BBC Micro

before a register address, the next three bits form the register address
and the last four bits form the desired attenuation. Changing this to
hex gives &FO0 as the first byte to be sent using PROCSOUND. By
similar reasoning the second byte works out to 11100100 or &E4.

Thus the final program is:

10 PROCSOUNDC(RFD)
20 FROCSOUND (XEE4)
30 STOF

(To which should be added PROCSOUND, of course.) As a final
example, consider the following program:

10 FROCSQUND(&Y0)
20 PROCSOUND(E80)
a0 FROCSOUND (RND aND &DF)

40 GOTO 30

The first byte sets the attenuation on tone generator 1 to 0dB. The
second byte sets the first four bits of the 10-bit number sent to tone
generator 1 to zero. The third byte sent by line 30 supplies the final
six bits of the number at random. (RND AND &DF) generates a
six-bit number. Lines 30 and 40 form a loop that repeatedly sends
new random values for the six bits. It i1s a feature of the sound
generator chip that any values that begin with zero will update the six
bits of the last tone register selected. The result of this is that short
random tones are generated until you press ESCAPE.

This description of the sound generator hardware within the BBC
Micro should convince you how clever and convenient the SOUND
and ENVELOPE commands are. For example, the sound generator
chip has no facility for specifying the duration of a note. A note
continues to sound until software turns it off using the attenuator
setting. The BBC Micro uses the regular timer interrupt as an
opportunity to see if the duration of a note specified in a SOUND
command has been completed. If it has not the sound generator is
left alone; if it has then the tone is switched off. By using interrupts in
this way the BBC Micro can appear to be getting on with something
else while the sound generator produces sounds! The action of the
ENVELOPE command is also based on interrupts. Each envelope
specifies a time unit after which the sound generator is updated. For
example, if an envelope specifies a step size of one hundredth of a
second then the attenuation and frequency of the selected tone
generator is updated at each timer interrupt.

The Hardware B

but they are all connected in some way with timing and organisation.
For example, the video generator produces the regular part of the
video signal in the form of line and frame sync pulses. The data that
the RAM produces as a result of being addressed by the video
generator is not at all suitable for direct conversion into a video
signal. For one thing, it is produced cight bits at a time whereas a
video signal needs one bit at a time. For another, the video signal
needs colour information and this is coded within the eight bits. As
already mentioned, the chip that takes the outputs from RAM and
turns it into a video signal is the video processor chip. This not only
converts the eight bits coming from memory into a serial stream but
also decodes the colour information to produce a standard RGB
(Red, Green, Blue) colour output, However, in mode 7 the video
processor does very little. The ASCII codes stored 1n memory are
fed directly to the character generator ROM which produces a
standard RGB output all on its own!

The video section is a little complicated so it is worth summarising
all the information in the form of a block diagram (see Figures 1.2
and 1.3). The thumbnail sketch of the way the graphics section of
the BBC Micro works will be extended considerably in Chapter
Four so don’t worry too much if you find yourself wondering
about the details. All will be revealed later!

6345
video | —
generator
= Y
Address
bus . Data
bus Video
. RAM b
processor
| N . 8
- CPU R G B hiv sync
6502 '
L] To rest of video circuits

Fig. 1.2. Simplified block diagram of video section in modes 0-6.

6 7The BBC Micro

CPU

R G B hivsync

To rest of video circuits

Fig. 1.3. Simplified block diagram of video sections in mode 7.

The interfaces

This is in fact a heading under which to gather together a wide range
of different circuits! Some of these, such as the sound generator, the
user port and the A to D convertor, for example, are dealt with at
length 1n other chapters but it is worth producing a summary of all
the interfaces circuits inside a standard BBC Micro. One thing that
all the interface circuits have in common is that they use the 1K of
address space not used by the MOS ROM.,

The interfacing circuits within a standard Model A BBC Micro
are:

1. Cassette and R5423 serial. |

2. VIA (Versatile Interface Adaptor)-A. This 1s a parallel interface
looking after internal devices such as the keyboard and the sound
generator.

3. The 1 MHz extension bus.

4. The tube. |

In the standard Model B machine we have to add:

5. VIA-B - a parallel interface that looks after two external ports,
the centronics printer and the user port.

6. An A to D convertor (a u PD7002) that can be used as a general
purpose measuring device or with joysticks.

There are other interface circuits that can be added to the BBC
Micro beyond even these six, such asthe disc interface, but these are
of less general interest and will be discussed in Chapter Nine. We will
now take alook at each of the above interfaces, apart fromthe Ato D

The: Hardware 7

convertor which is dealt with in detail in Chapter Six and is so
separate that it adds little to our understanding of the overall
machine. |

The cassette and RS423 interface

Every BBC Micro comes equipped with a cassette interface. The
interface also doubles as a general purpose serial interface. It is true
that owners of the Model A cannot use this serial interface but this is
only because the two buffer chips that provide the power to drive the
serial output to the RS423 standard are missing. (The RS423
standard is simply an improved version of the older and better
known RS8232 or V24 standards. For our purpose it may be
considered entirely compatible with both.) |

‘The cassette interface on the BBC Micro relies on two major
components. The first is a 6850 ACIA (AsynChronous Interface
Adaptor) which is responsible for changing data from a parallelto a
serial format and vice versa. This 1s all that is necessary for the
RS423 interface (apart from the aforementioned buffering).
However, the cassette interface works by recording two audio tones
corresponding to the binary zeros and ones in the serial bit stream

g
Ul

LTransmlt clock
Serial Raceive clock >
ace
control L ’ ACIA Data
DCD
I s
CTS g ' L B —
H_T_S-. — , RTS — By g
gaﬂtﬁﬂiva Hmwﬂ data b Address
a
Transmit - Transmit data .
data @ - a—
To RS423
buffers

Fig. 1.4. Serial interface set-up for R8423.

8 The BBC Micro

produced by the 6850 ACIA. Itis the second of the major chips in the
cassette interface that is responsible for changing audio tonesto bits.
This is the second custom-made chip (the first being the video
processor) in the BBC Micro. As well as changing bits to tones and
tones to bits, it is responsible for providing the clock signals that
determine how fast the ACIA receives and transmits (i.e. it sets the
baud rate) and it selects where the ACIA should take its inputs and
output from - the cassette or the R5423 buffers.

The simplest configuration is when the interface is set up to drive
the RS423 serial port. In this case the only thing that the custom
serial control chip does is to generate the transmit and receive
clocks, and pass on all the input to and output from the 6850 ACIA.
You can see this in Figure 1.4. To help anyone interested in using the
RS423 interface the following table describes the function of each of
the ACIA signals:

ACIA signal Function
DCD (No carrier) Not used on the BBC Micro’s RS423
interface,
CTS (Not clear to send) A signal to the BBC Micro indicating when
it is QK for it to send data.
RTS (Not ready to send) A sngnal from the BBC Micro 1nd1catmg that

it is ready to receive data

Connecting a printer, or anything else, to the RS423 port is very
often a matter of getting the receive and transmit rates correct and
deciding what, if anything, to connect to the control signals. The
BBC Micro’s side of the control signals 1s simple enough. To drive
a printer the only two signals required are transmit data and clear to
send (CTS). However, depending on which of the many available
printers is uséd, the printer may need rather more signals than this to
actually print anything! This is governed by the details of the
printer’s hardware, which should be explained in its documentation,

The situation is a little more complicated when the interface is set
up to drive the cassette. In this case most of the ACIA’s signals are
intercepted by the serial controller. This can be seen in Figure 1.5.
When recording data the serial controller switches on the cassette
motor and then synthesises sine waves of the correct frequencies as
the serial data is fed to it from the ACIA. The only ACIA control
line used in recording is the ready to send (RTS) line which enables
(i.e. switches on and off) the tone generator. The recording rate is set

The Hardware 9

Transmit clock
.._
Cassette .
motor High tone DCD 6850
- » leader — > ACIA
relay deiect
Clock
Hacei;-e clock
Data DATA
r-l"— separator ata ﬂecei;a data
]
Data Tone Transmit data
o generator —
RTS
-+ -
" = —
- CTS

Fig. 1.5. Serial interface set-up for cassstte.

by the frequency of the transmit clock. On playback, things arejusta
little more complicated. First, the high continuous tone (2400 Hz
for 5 seconds) is detected by a special circuit, the high tone leader
detect. When this is detected, the data carrier detect (DCD) line is set
to enable the ACIA to receive data. That is, before the high tone 1s
detected the ACIA will not accept any data that might be coming
from the tape and hence through the serial controller. The main part
of the playback circuit, however, is the data separator. This accepts
the recorded tones from the tape recorder and changes them into a
stream of zeros and ones suitable for the ACIA to convert to a
parallel form. As well as detecting whether the input tone is high or
low, the data separator generates a clock signal that is used as the
receive clock to the ACIA. The advantage of this is that it takes into
account any changes in tape speed that might have occurred between
recording and playback.

This description of how the serial interface works is all very well
but how do you select which of the cassette or the RS423 interface s
to be active? How do you select the transmit and receive rates? The
answers to these questions depend on knowing about certain control
registers in the interface area of memory. The serial interface hasthree
control registers — two belong to the ACIA and one belongs to the
serial controller. The addresses where these and other registers can
be found are given in the section below on the BBC Micro’s memory
map but for the sake of completeness the addresses and functions of
each register are given below:

10 The BBC Micro

Address Function
(in Hex)

FEOS ACIA control and status.
FE09 ACIA receive and transmit;
FE10 Serial controller’s register.

The two ACIA registers are rather strange in that their function
depends on whether you are reading or writing them. For example,
the register at FEQB 1s a control register when you wnite to it and a
status register when you read it! If you think about it this makes a
great deal of sense - why should you want to read a control register
and write a status register? The function of the bits in the ACIA’s
control register can be seen in Figure 1.6. For normal use, bits

e - ‘ [
Counter ratio and master resel salect used
In both iransmittar and receiver sections.

B1 BD Function{Tx, Rx)

Enable for receiver interrupt

B7 = 1. Enables interrupt output in
receiving mode.

: 0 0 +
B7=0: Disables infarrupt output in Q ~16
recsiving mode. 1 0 -84
1 1 MASTERARESET
| oy —
. 2 -
+— —-l-l-*—ll_

.

¥ .

B7 86 B5S B4 B3 B2 I B1 B0
- "

RIE TC2 To1] ws3 | wse W51 J chse | DSt

.

I

Transmitter control bits: controls the interrupt output* and F{TEJ Woaord length, parity, and stop bil select
output, and prowdes for trangmission of a break. B4 B3 B2 Wordlength + Parity + Stopbits
0 0 0 7 Even 2
D o 7 Odd 2
. 0 1t 0 7
B&é BS Function 0 1 1 7 E:E: jl
0 0 Sets RTS=0and inhibits Tx interrupts (TIE} 1 0 0 a None 2
0 1 Sets BTS =0 and enables Tx interrupt (TIE) 1 0 1 a None 1
1 {0 Sets RTS=1 andinhibits Tx interrupt (TIE) .11 0 a Even 1
1 1 Sets RTS = Qiransmits Break and inhibite Tx 1 1 1 8 Qdd 1
' interrupl (TIE)
*TIE is the enable 1or the interrupt ocutput in transmit mode. I
il

Fig 1.6. ACIA Control Register format.

The Hardware 11

7.6,5,1 and 0 should be left as the BBC Micro sets them, 1.¢. use the
appropriate FX commands to set the baud rates and generally
initialise the register. The only bits that might need altering are bits
4,3 and 2 to set the required serial word format (for more
information, see the VDU example in Chapter Eight). The meaning
of the bits in the ACIA’s status register can be seen in Figure 1.7. The

Bz=0
BZ=1;
1.

Darta Carriar Dategl|

ingicates carrier is present.
indicates Ihe loss of carrier.

The low-lo-high transition af the DCD -
put causes B2 =1 and generates an inlerrupt
(B7 = 11 (IRQ =0)

Reading the Siatus Regisler and Bx Data
Regisler or master reselting the ACIA
causes B2 =0 and 87 =0,

Internupi Requast

The interrupt request bil is the complement of
ihe PROQ output. Ay intarrupt that is sel and
enabled will be avaitable in the stalus ragister
in addition 1o the narmal IR0 cutput.

1

r Receiver Dala Register Full

BO=0. Indicales thal the Receiver Dala
Aegigter is ampty.

BQ =1. Indwcales thal daia has been rans-
terred 1o the Raceiver Data Regisler
and stalus bits sfatas are sel {PE.
OVRN, FE).

1. The Read Dala Cornmand on the high-to-
low E transilion or a rmasier reset causes
BC =0

2. A “high" onthe DCD input causes BO =0
and the raceiver 10 ba resat

_4,

— -

——

B7 Be BS 4
RO PE OVAN | FE

CTs

B3 82 H1 20
DCD |T«DRE | B«DAF

1

|

Framing Errar

———

B4 =1 Indicates Ihe absence of the fust siop
kit rasulting from character syncaro-
misatian esror, faully transmission. or Transmitter Data Ragistar Empty
a Break condition. B1 = 1. Indigates that the transmitter dala
1. Tha internal Rx data transfer signai causes Register 15 ermply.
B4 = 1 due 10 the above conditians and causes B1 =0 Indicates that the t-ansmitler data
B4 =0 an the next Ax data transfer signa if Reqgister s ful|¥
condiions have haen rectilied. '
1. The inlernal Tx transter signal forces B = 1.
2. The Write Data Command on Ihe high-lo-
| low E transinion causes B1 =0,
Cwerrun Errar . ——=
] 3. A “hign” on the CTS input causes B1 =0
BS =1: |ndica'es that a character or a num- -
ber of characters were recened bl
nol read fram the Fx data regisler
prior {0 subsequent characters bemng
recesved,
1. The Read Dala Command on Ihe high-to-

Haw E transition causes B5=1and B0 =1 if an

Gverrun conditian &xsts, The next Read
Data Command on the kigh-to-low E transi-
Jton cauzes BS=0angd BO = 4.

Ciear lo Send

The CTS bit reflects the CTS inpul siaius far
use by the MPU for interfacing to a modem.

MOTE: The CTS input does not reser the
transmitiar.

Parity Errar

HE=1. Indicates thal a parily errar exis!s
The parily errer bit is inhibiled f no

parily is selected.
1, The panty error slalus is updated duning

the intarna! receiver dala transter signal,

il

Fig. 1.7. The ACIA Status Register format.

12 The BBC Micro

data transmit and receive registers can be read and written as
required. If bit § of the status register 1s 1 this means that the receive
register contains a character which should be read before the next
character is received and hence overwrites it. If bit 1 of the status
register is | a character may be placed in the transmit register to be
transmitted bit by bit. If bit 1 is 0 then you shouldn’t write anything
to the transmit register because this would overwrite the character
currently being transmitted. The other bits in the status register are
concerned either with telling the user about.errors that have
occurred or with the status of the external device.

The final register of interest is the serial control register and its
format can be seen in Figure 1.8. Bit 7 controls the cassette motor

T ¥

Bit Bit Bit Bit Bit Bit Bit | Bit
7 6 5 4 3 2 1 0

| *] l - |
CM -2—34;23:- ‘Receive Rate Transmit Rate
I L i 1 A i

K

Fig. 1.8 The serial control register.

relay. If it is 1 then the relay is closed and the motor is on. To see this,
try 7& FE10=4&80 which will switch the motor on and ?2&FE10=0
which will switch it off again. Bit 6 controls which of the cassette or
the RS423 interface is selected ~ 0 selects the cassette and a [selects
the RS423. The final six bits work in two groups of three to control
the baud rate for receive and transmit. These work as indicated in
Table 1.1 below. |

Table 1.1. Baud rates produced by bit patterns in the serial control register.

Baud rate Receive bit Transmit bit

345 012

75 111 111

150 110 110
300 101 101
1200 100 100
2400 011 011
4800 010 010
2600 001 001
19200 000 000

The Hardware 13

Notice that the order of the bits is the reverse of what you would
normally expect.

A lot of information has been introduced in this section without
an example of how to useit. This is because direct access to the serial
interface is best done via the 6502 assembler and this 1s not discussed
until Chapters Seven and Eight. If you cannot wait that long, turnto
Chapter Eight where you will find a program that turns the BBC
Micro into a VDU making use of much of the information in this

section.

The VIiAs

A fully expanded machine contains two VIAs (Versatile Interface
Adaptors). VIA-A is used for internal tasks and VIA-B is dedicated
to user-defined tasks. A VIA is fundamentally a parallel interface
but it has many other functions and capabilities. For example, it
contains two independent timers and a serial shift register. In fact it
rivals the 6502 itself in its complexity! Because it is such a
complicated and versatile device a large part of Chapter Six i1s
devoted to it. As Chapter Six is mostly concerned with VIA-B, the
user’s VIA, it is worth taking a brief look at what VIA-A is doing,.
Without knowledge of how a VIA works this 1s necessarily an
incomplete description but the information in Chapter Six rounds
off the picture.

VIA-A is used by the BBC Micro to interface the keyboard, the
sound generator, the A to D convertor, and the optional light pen,
and VIA-A’s timer is used by BASIC to provide the variable TIME.
It is also used to handle hardware scrolling, a topic which 1s dealt
with in Chapter Four. There are two ten-bit ports in every VIA,
usually referred to as port A and port B. Eight bits of each port can
be individually selected to be either inputs or outputs. The
remaining two bits are a little more restricted in their use and are
normally kept for special purposes. The A side of the VIA handles
the keyboard and the B side handles the ‘odds and ends’.

The keyboard 1s connected to the eight data bits on port A. One of
the two special bits - CA2 - is also used to detect when a key 1s
pressed. The keyboard has two modes of operation — free-running
and program-controlled, When the keyboard is free-running, each
key is repeatedly scanned in turn until a key is pressed when a signal
(an interrupt) is sent by CA2 to the 6502. This causes the 6502 to stop
whatever it 1s doing and ‘pay attention’ to the keyboard. When this

14 The BBC Micro

happens, the keyboard i1s switched to its programmed mode of
operation and the keys are scanned one by one, using the eight A side
data hnes until the key that is pressed is found. To understand thisa
little more fully you have to know the layout of the keyboard, which
is presented in Figure 1.9. Being arranged into a matrix consisting

PA3
PA 2
PA1
PAD
PA laich keyboard anable
:"tP"' > 1 ot 10 selector
L
P o ~ | ” ’ | M
PAT "Esc. F* | Fe |l a1 Fr | rslre | Fo '
A P Vo P P Ve s |7
Fa 7 _
Break F VA P P P P VI P P e . Az
S
RST — — 7 77717 717 [’):
= Kay press
-]
P P P P P R ’
PAS Row aslects E ’{iﬁ ~ llﬂ&rnptfdatector
|
PA 4 7 |7 |7 |7 7
TAB A L <
r .
N [T L P Vi Vi L P Ve

Fig. 1.8. The keyboard in program mode.

of 10 columns by 8 rows means that any column can be selected
using four bits and any row can be selected using three bits. The
column number 1s specified using bits 0-3 and the row number is
specified using bits 4-6 (see Figure 1.9). In addition, bit 7 is used to
control access to the keyboard. The second special bit on the A side
of the VIA i1s connected to the vertical sync signal for timing
purposes. The important thing to notice from this description of the
keyboard is that, as the keyboard causes an interrupt every time a
key 1s pressed, keyboard service can occur at any time. In particular
the ESCAPE key is just like any other key, i.e. it doesn’t use any
special reset function - in this sense any key could be used to
interrupt program operation. However, the BREAK key is
connected to the 6502's reset line and is different from the other keys,
causing a hardware reset when it is pressed. It 1s possible, however,
for the machine to tell the difference between a reset that occurs
when the machine is first switched on — a cold reset - and a reset
caused by pressing the BREAK key — a wgrm reset. This distinction
allows the machine to decide whether it is worth taking any notice of
the memory contents, in particular user-definable key definitions.

The Hardware 15

Even though it is different from the other nine function keys, this
means that the BREAK key can be associated with a *KEY
definition. The BREAK key always causes a reset but, following a
warm reset, the machine obeys any instructions assigned to *KEY
10, i.e. the BREAK key.

The B side of the VIA has a number of jobs to do. The two special
bits CB1 and CB2 are used to detect the end of conversion of the A to
D convertor and a signal from the optional light pen respectively.
Bits 0 to 3 are fed into a 74L.S259 addressable latch which provides
eight different outputs. The first three bits, i.e. 0 to 2, determine
which output from the latch is affected. Thus, 000 alters the first
output, 001 alters the second ouput, and so on. Bit 3 determines the
state that the selected output takes. That is, if bit 3 1s 1 the selected
output changes to 1. To describe what the latch does involves
describing the effect of each output. The first output enables the
75489 sound generator. The second and third are connected to the
optional speech synthesiser. The fourth is used to enable the
keyboard, i.e. to load column and row numbers. The fifth and sixth
are used in the hardware scrolling and are set according to the
display mode that the BBC Microis in. The seventh and eighth drive
the caps lock and shift lock LEDs. What is interesting is the way the
latch is used to select any combination of a number of devices. The
sound generator chip and the optional speech synthesiser are both
connected to the A side data bits 0 to 7. You can think of the A data
side as a slow data bus communicating with whichever device 1s
selected by the addressable latch. This means that only one of
keyboard, sound generator and speech synthesiser can be activated
at any one time. The final four bits of side B are used a little more
simply. Bits 4 and 5 are used as ‘fire button’ inputs from the analog
connector. Bits 6 and 7 are used to control the optional speech
synthesiser.

This just about finishes the description of VIA-A (for a summary
see Figure 1.10) — except to remind the reader that it also provides
the timing function for the BASIC variable TIME. (In fact it uses
timer 1 but this will be explained in Chapter Six).

The 1 MHz bus

The 1 MHz bus is not so much an interface, but is more a way of
connecting other interfaces to the BBC Micro. The reason why 1t is
called the ‘1 MHzZ bus is that the speed at which the 6502 normally

16 The BBC Micro

—h»r—
o PB7 | Speech o 7 i Keyboard LEDs
PR& synth. status 6
via 57 ¢ | g 2 t CO, C1 hardware
z “£ire buttons” o _g 9 —.—4 Scrol
PB4 P~ E T E L...__a Keyboard enable
+ o=
PB3 Data 0/1 ® g -ﬁ —y—— Speech Synth.
T e 3 = > 2 { eonable
—p— it 1 Sound chip
PBO > add. _] | » o enable.
"CB2 < Light pen signal
CB1 . End of A to D conversion
PA7
A - Slow data bus
to keyboard,
| sound generator
and speech synthesiser

PAO F -

CA2 —«¢ Vertical sync

CAl —+¢ Keypress detector

i

Fig. 1.10. The use of VIA-A.

works, i.e. 2 MHz, is too fast for most standard components so the
clock which governs the speed of access 1s slowedto 1 MHz whenthe
6502 1s using addresses that correspond to the 1 MHz bus.

The bus itself 1sn’t a collection of all the address and control lines
that the BBC Micro uses internally, as is the case with the expansion
buses of most other micros. Instead it only includes the full data bus,
the eight low address lines A0-A7, and a few control lines. The
presence of A0 to A7 means that the bus can specify any one of 1,K
of address locations - but which address locations? If you are
looking only at the low eight bits of the address then 0045, say, looks
exactly the same as 3545, because the low eight address bits are the
same in both cases. To solve this problem, the 1 MHz bus includes
two extra addressing lines - NPGFC and NPGFD. These are

The Hardwsare 17

normally high, at logic 1, but if an address beginning with FC is used
NPGFC goes lowand if anaddress beginning with FDisused NPGFD
goes low. You might be able to see now why these two lines
have such long names - NPGFC stands for ‘not page FC’ and
NPGFD stands for ‘not page FD’! Obviously, if you connect
anything to the | MHz bus and use a combination of NPGFC and
A0-A7 to enable 1t, it has an address in the range FC00 to FCFF. If
you use NPGFD and A0-A7 then it has an address in the region
FDO0O to FDFF. What this means is that you can connect external
devices, running at 1 MHz to the BBC Micro, using either of the
above range of addresses. However, Acorn have already suggested
uses for most of this address space in their Application Note No. I -
The 1 MHz Bus which can be obtained from Acorn. Only addresses
between FCCO to FCFE are marked for ‘user application’ but this
should be enough for most purposes.

This short sketch of the | MHz bus in insufficient if you are
interested in connecting your own equipment to the BBC Micro. In
particular be warned that there is a slight timing problem to be
solved before any equipment will work reliably. Details of this and
other features of the] MHz bus can be found in the Application
Note mentioned above which should be obtained by anyone
considering interfacing to the 1 MHz bus.

The tube

The tube interface is superficially like the 1 MHz bus in that it
supplies a subset of the address lines — A0 to A6 and an extra address
line called the rube. There are two differences, however. First, the
tube works at the full 2 MHz and secondly it is claimed for exclusive
use by Acorn products. There is no real reason why the tube couldn’t
be used as a fast version of the 1| MHz bus but it is likely to be of
much more use as originally intended. For one thing, Acorn have
produced a custom chip that can be used to pass data between the
6502 in the BBC Micro and other processors very quickly and in a
standard format. Using only seven address lines means that the tube
can only be used to address 128 distinct locations. The tube address

control, when used in combination with A0-A#6, places the tube at
FEED to FEFF.

18 The BBC Micro
The whole machine - a block diagram and the memory map

After studying the various parts of the BBC Micro you should be
able to make something of Figure 1.11 which shows the areas of the
machine in roughly the same position that they are placed on the
printed circuit board. Some of the extra devices, such as the disc
controller and the speech synthesiser, have been left out for clarity.

ECONET ANALOGUE CASSETTE Rsaz3 RGP VIDEQ [1UME

1 P B
&) QA © urE
1 "MODULATOR
ADC gcm SER PROC
b PD7002 2C198 PAL
ENCODER
ViD. TROM {(MODE 7}
PROC 050 .
SQUND
TO pP
SPEAKER 6502
VIAA
PEECH 6522
16K DRAM
SYNTH. CONTROL Bank 1
KEYBOARD CRTC | 16K DRAM
8845 Bank D
ROM '
SEL " |
VIAB |
ides _ ol0] 1 213
S
1 1 .1% 1 1 1
SRINTER ggﬁ? IMH BUS J_LJ TUBE LJ_

Fig. 1.11. Complete block diagram.

It is also worth drawing together all the information on the
position of various things in memory. A complete memory map can
be seen in Figure 1.12. The RAM area (16K or 32K depending on
model) is used for general system storage, BASIC programs, and the
screen displays. More details will be given of RAM usage in the
relevant chapters. Notice the four paged ROMs starting at B0O0O;
remember that only one is actually present in the memory at any one
time and that which one it is is controlled by the ROM select latch.
The area of greatest interest is the 1K I/O area at the top of the
memory. This can be seen in greater detail in Figure 1.13. The lower
I, K of this area is used by devices connected to the | MHz expansion

The Hardware 19

¥
r 1O + IRQ vectors (1K)
FCOQ | ——
M.O.S. ROM {(15K)
Coon | :
ROM O0[ROM 1|ROM 2|ROM 3
8 Four paged
A ROMs
S (18K) (only one active
I at a time)
C
BOOO | 1 } J
RAM (16K)
. BANK1
m ™~ _—
RAM (16 K)
BANKO
0000 |)

Fig. 1.12. Complete memory map.

bus, as was described earlier. The 128 bytes starting at FE0QO are used
by internal I/ O devices, many of which have already been discussed.
The addresses given on the left hand side are the start addresses of
any registers that the device might have. The details of the control
and status registers of each device will be given in the chapters where
they are discussed more fully. The exceptions are the FDC - Floppy
Disc Controller - and the ADLC - Advanced Data Link Controller
- which are not part of the standard BBC machine. Notice that the
details of the serial controller and the ROM select have been given in
this chapter.

Knowing about hardware

If you know the details of the hardware of a particular computer
then the temptation is to make use of it! In other words, once you
know about hardware, easy ways of doing things and even new
things to do often occur to you. Now with most machines this is a
very acceptable way to proceed but with the BBC Micro there has to
be a note of caution. The BBC Micro is intended to be the start of a

20 The BBC Micro

M.O.S. ROM (1aK)
FFOO
TUBE AREA 128 bytes
FEEQ
p PD7002 ADC
o .
AD 8854 ADLC (Econet)
8271 FDC {Disc}
80
6522 VIA—B
60
6522 VIA—A 128 bytes
m .
— ROM select
0
-— Video processor
m — e
18
— Serial controlier
10 :
8850 ACIA
08
6845 Yideo gen.
FEOQ
{1 MH2z bus
FD area
{(YaK)
FDOO
| 1 MHz bus
FC area
(Va K}
FC00

Fig. 1.13. 1/0 area of memory.

very advanced system. In particular the tube can be used to connect
other processors. If you have written a program that runs on a
standard BBC Micro by directly ‘fiddling’ with the hardware, then
this program is hardware-dependent. If the design of the BBC Micro
changes, even slightly, then the chances are your program will not
work. In particular, your program will not work on a second
processor connected over the tube. This may, however, not worry
you too much. After all, if the program works on your BBC Micro,
why worry? However, it is something to keep in mind when
producing programs that you hope will be useful to other people.

To help with this problem, the BBC Micro’s MOS provides a
number of standard routines to enable you to modify memory and
I/O locations. In addition there are also routines that provide
standard ways of dealing with the internal devices. Acorn suggest
that if these routines are used instead of direct access to the device or

The Hardware 21

location then your programs will run on a modified BBC Micro,
even on the second processor! You will find an example of using the
MOS to deal with I/O devices in Chapter Six.

A second point to be aware of, and perhaps even beware of, is that
the BBC Micro makes extensive use of interrupts in its operation.
This makes it a much faster and more flexible machine but it can
make it more difficult to program at the machine code level if you
need to make use of interrupts yourself.

Conclusion

This chapter has presented an overview of the BBC Micro’s
hardware and looked in detail at some of the features that are not
covered extensively in later chapters. Don’t worry if you have found
parts of this chapter hard to assimilate. Looked at in isolation,
hardware is difficult to understand unless you are well-versed in
electronic¢s. In some ways, this chapter 1s meant to be treated as a
reference section and you’ll find the information it contains will
become much easier to understand when you encounter a situation
that actually requires it. So if you carry on exploring aspects of the
BBC Micro for yourself you’ll find yourself returning to this chapter
time and again. |

Chapter Two
BBC BASIC

Not only is the BBC Micro a remarkable and interesting machine
from the hardware point of view, it also has some equally impressive
software. One of the interesting characteristics of the software is the
way that it interacts with the hardware to produce something that is
extremely versatile. For example, the sound generator chip is fairly
sophisticated in that it has three tone channels and a noise channel,
but when you add in the ENVELOPE command it behaves in a way
that seems to exceed its specification! Much of the way that the
sound generator appears to the user is entirely the invention of well-
conceived software. In this chapter we look at BBC BASIC which
forms roughly half of the resident software in the machine. (The
other half, the MOS, is considered in Chapter Three.)

Rather than going through a point-by-point discussion of the
commands that make up the BASIC, a task already accomplished
by the User Guide, the first part of this chapter looks at some of the
features and commands that either make BBC BASIC special or are
in some way difficult or unusual. In the second half of the chapter we
take a look inside and find out how the BASIC interpreter runs and
stores your BASIC programs. This sort of information 1s often
interesting and is worth knowing for its own sake. Also, there are
many practical reasons for delving into the interpreter. Knowing
how the BASIC is implemented can suggest the fastest and most
economical ways of doing things. It can also suggest ‘short cuts’ and
ways of accomplishing what would otherwise be impossible (for
example, printing a list of all the variables in use). Finally, the
assembly language programmer needs to know something of how
variables are stored in order to make use of the parameter-passing
capabilities of the CALL statement (see Chapters Seven and Eight).

BBC BASIC 23

BBC BASIC, a BASIC with structure

When Acorn were approached by the BBC to produce a computer,
one of the specifications was that its BASIC should include
statements not normally thought of as being part of the language.
The reason for this was the desire to make BASIC a more
academically respectable language and to make it able to take
advantage of the method of programming known as ‘structured
programming’. The theory behind this method of programming is
not within the scope of this book but its practical interpretation has
come to mean the use of the commands:

IF ... THEN ... ELSE
REPEAT ... UNTIL

WHILE ... DO ...
and
FOR ..=.. TO ..

BBC BASIC doesn’t include all of these statements; it lacks
WHILE, but even so it can claim to be a ‘structured BASIC'. If you
want to treat BBC BASIC like an ordinary BASIC, that is
programming using only IF ... THEN, GOTO and FOR, then you
can. However, if you want to write BASIC in a structured way there
is more to it than just adding the more complete form of the IF and
the REPEAT ... UNTIL statement to your repertoire. It is the aim
of structured programming to produce programs that are easy to
undertstand and as bug-free as possibie and this can be achieved in
many ways. The most important thing is to try and make the ‘flow of
contro!’ through your program as simple and obvious as possible.
You can do this by restricting the way that you use GOTO, by using
REPEAT ... UNTIL and FOR to form loops in preference to
GOTO and by using subroutines to group statements together into
logical units. To go into any more detail about structured
programming would take us far from our subject. If this brief
introduction has whet your appetite then you can find out more
about structured programming and good programming style in
general from my other book, The Complete Programmer. However,
it 1s worth looking at the subject of subroutines a little more.

Subroutines, procedures and functions

One of the biggest criticisms of BASIC is that it has a very limited

24 The BBC Micro

ability to group statements together into logical units. True, you can
use GOSUB and RETURN to form subroutines but this has a
number of shortcomings, as follows:

1. You have to refer to subroutines by a line number rather than a
name that indicates the subroutine’s purpose.

2. Subroutines and the rest of the program have unrestricted access
to each other’s variables.

3. There is no way to isolate the variables that supply inputs to and
return results from a subroutine - in other words there are no
facilities for parameters.

The first problem can be overcome to a certain extent by assigning
the line number to an appropriately named variable. For example, if
you wanted to call a subroutine starting at line 2000 that sorted an
array into order, instead of: |

GOSUB 2000
you could use

SORT = 2000
GOSUB SORT

However, this technique makes renumbering a program very
difficult. You may not see why the second point is a problem. Why
shouldn’t a program and a subroutine share the same variables?
There are a number of valid arguments to suggest they should not.
As subroutines should be collections of statements that carry out
identifiable tasks, they are often written without reference to the rest
of the program. For example, a subroutine that sorts an array into
order is generally useful and might find its way into a number of
programs. When writing such a subroutine, what names should you
give to the variables that you use so that they don’t ‘clash’ with
variables used for other purposes in the main program and other
subroutines? Variables clashing in this way is a very common cause
of BASIC programs failing to work as expected. If you do have a
way of isolating the variables in a subroutine from the rest of the
program then the third problem comes into play. If subroutines
cannot have access to the variables in the main program how do they
receive their input values and return their results? The solution to
this problem is, of course, to use parameters in the same way asin a
standard BASIC function. In fact, in many respects, the standard
BASIC function would be superior to the BASIC subroutine if it
were extended to allow more than one statement. This 1s indeed the

BBC BASIC 25

direction that BBC BASIC takes in improving the subroutine.
A user-defined function in BBC BASIC can take the ‘one line’
form found in most other versions of BASIC. For example.

DEF FNsum(a,b,c) =a+ b+ ¢

is a function that adds three numbers together. The three parameters
a,b and c are not variables in the usual sense of the word in that they
do not ‘appear’ in the main program because they have been used in
the function. There is even no problem if the main program uses
variables with the same names. In some senses the names used for
parameters are only relevant within the function definition. In other
words, parameters are Jocal to the function. Another thing to notice
is that a function returns a single value as a result. It is this that
makes it possible to use functions within arithmetic expressions.
From the point of view of evaluating expressions, a function
behaves just like an ordinary variable except that the value
associated with its name is produced by the function rather than just
stored in memory. However, even though this is a very useful feature
there are many occasions when a subroutine needs to return more
than a single result.

BBC BASIC improves the standard BASIC function to allow
multiple statements in its definition. For example, it is possible to
write a function that finds the larger of two numbers:

100 DEF FiNmasx(a,b)
110 arns=a

120 TF a<b THEN anua=t
130 =ans

Line 100 states that what follows is the definition of a function called
FNmax. Lines 110 and 120 place the larger of a and b and place the
result in ans. Perhaps the oddest looking line is 130. Multi-line
functions always end with an assignment with no variable on the
left-hand side. The effect of this is to set the value returned by the
function to the result of the expression on the right of the equals
sign. Once the value of the function has been determined it is used in
the evaluation of the expression in which the function occurred in
the main program. Once again it is useful to think of this last
assighment statement as storing the result of the function in a
dummy variable with the same name as the function. The
parameters a and b are, again, local to the function. But, what about
the variable ans? This is declared within the function so you might
expect it to *belong’ to the function. In factitis a variable that is part

26 The BBC Micro

of the rest of the program. The variable ans is no different from any
other variable in a standard BASIC program. This is something ofa
disadvantage if there is already a variable ans in use in the main
program. If this is the case and FNmax is used then the variable will
change its value even if its use in the main program has nothing to do
with finding the maximum of two numbers. Such changes caused by
functions in innocent variables in the main program are called the
side effects of the function. If you want to write programs that are
not only easy to understand but easy to debug then the functions
used in your programs shouldn’t cause any side effects. BBC BASIC
provides the LOCAL statement for just this reason. A variable that
is declared in a LOCAL statement behaves much like a parameter in
that it has nothing to do with any variables of the same name used in
the rest of the program. For example, the FNmax function can be
written as;

100 DEF FNmax(s,ix)
110 LOGCAL sns

120 ans=a

130 IF a<b THEN anua=b
140 =ans

Now the variable ans is declared as local by line 110 and, just as the
names a and b have nothing to do with the main program, the value
of ans may be changed without affecting any variable in the main
program. This version of FNmax has no side effects! We will
consider how parameters and local variables actually work later on
in this chapter. However, it is worth pointing out that if you use a
parameter or declare a local vanablethatdoesnothave acounterpart
with the same name in the main program then one comes into being
as soon as the function is used. (Numeric variables are given the
initial value zero and string variables are set to the null string.)
Functions are very useful but they do have the drawback that they
can only return one result {excluding side effects). BBC BASIC
provides an additional feature - the procedure - that is supposed to
get around this problem. If you want to return anything other than a
single result you should use a procedure. Procedures are a very
useful feature of BBC BASIC but the one thing they do not solve is
the problem of returning more than one result! In fact there is no
clean way of getting any results back from a procedure. A procedure

is defined in much the same way as a function but it ends with
ENDPROC. For example,

BBC BASIC 27

10 DEF PROCMaxMmin{a,b)
20 TF a3xt THEN mau=gimins=bh ELSE mawxshiminss
S0 ENRFROC

Line 10 defines the procedure maxmin with two parametersaand b.
Line 20 does all the work by placing the two results correctly in the
variables max and min. The final line simply marks the end of the
procedure in the same way that RETURN ends a subroutine. The
two parameters are local in the same way that the parameters in a
function are. However, the only way that the two results can be
communicated back to the main program is by the use of two non-
local variables max and min. As these are non-local, any variables of
the same name in the main program will be altered by the use of the
procedure. In this sense the only way that a procedure can return any
results is by making use of side effects! Any variables used in a
procedure that are used purely for internal purposes should be
named in a LOCAL statement in an attempt to minimise
unnecessary side effects but, unless no results are to be returned,
procedures must produce side effects.

Even though procedures have this fundamental shortcoming they
are extremely useful - so much so that they are always to be
preferred to the standard BASIC subroutine. Although there 1s
much written in the User Guide it is worth highlighting a number of
important points concerning functions and procedures:

1. Use a function whenever a single result is to be produced.

2. Place all the variables used in a functionina LOCAL statement
to remove all side effects.

3. Allinput to functions and procedures should be via parameters
whenever possible.

4. Use a procedure if no results or more than one result is to be
produced.

5. In a procedure, name all variables not used to return resultsina
LOCAL statement to remove unnecessary side effects.

6. Parameters can be any of the three simple variables - real,
integer or string — but not an array. Arrays can only be passed as
non-local variables.

7. Functions can return strings as results,

8. Functions and procedures are always to be preferred to BASIC
subroutines and should be used as often as possible. One good
reason is that procedure calls are faster than subroutine calls.

9. The variables used in a procedure or function are only created
after the function or procedure is first used.

28 The BBC Micro

10. Functions and procedures work slightly faster the second time

they are used.
11. Functions and procedures can be called recursively.

The reasoning behind many of these points will become clear as
the chapter progresses. However, the final point is worth illustrating
with an example. Whenever a function or procedure is called it
creates a completely new set of local variables. This fact means thata
function or procedure can call itself, i.e. can be used recursively.
Recursion is a subject that is dealt with extensively in many an
academic textbook. Most people find it difficult to cope with and it
is therefore fortunate that it is rarely actually needed in the solution
of practical problems. As an example of recursion consider the
prablem of writing a function to calculate n! (nfactorial). The usual
way to write a function that calculates n!is by usinga FOR loop. (n!
is the product of all the integers from | to n, that is:

n*(n—1)*(n—2)*..... *]
from 1 to n).

100 DEF FNF(N)
110 LOCAL I, SUM
120 SlM=1

130 FOR I=1 TO N
140 SUM=SUMxT
130 NEXT I

160 =8LlINH

The FOR loop at lines 130 to 150 calculates a running product in
SUM that 1s equal to N!.

There is another way to approach the problem of calculating
factorials. If you want to know what n! is you could find out by
calculating (n—1)! and multiplying 1t by n. In other words,
n!=n*(n—1)!. For example, 4!=4%31=4%3*%21=4*3%*2*1! and we
know that 1! is 1. This idea results in the following function:

100 DEF FNF (N)

110 IF MN<k1 THEN =NXFNF (N-~1)

120 =1
Line 110 looks very strange in that the expression to the right of the
equals sign uses the function FNF. To see how this works follow
through the calculation of FNF(3). When FNF 1is first called, the
value of N is 3 so the expression following line 110 1s carried out.
This involves calling FNF once more but with the value of the
parameter N equal to 2. Remember that when FNF is called for the

»

BBC BASIC 29

second time a completely new set of variables is created. This second
call to FNF also results in FNF being called again but this time with
a parameter value of 1, which causes this third call to FNF to finish
via line 120. This results in the value 1 being returned as the result of
the third call which allows the evaluation of the expression in the
second call to be completed i.e. 2*] and the result passed back to the
first call to FNF. Finally, this result allows the expression in the first
call to FNF to be completed giving the correct answer 3*2*],

If this description has left you feeling confused then you are not
alone! It is possible to follow the execution of the function through
all its ‘incarnations’ but you really need pencil and paper to do it
easily, Recursion is something that you either feel comfortable with
or find difficult. Y ou can write recursive functions and procedures in
BBC BASIC. However, because procedures do not return results
except via non-local variables they are much more limited 1in the way
they can be used recursively.

Indirection and hexadecimal

The provision of REPEAT ... UNTIL functions and procedures
certainly make BBC BASIC a ‘higher’ level language than standard
BASIC. However, there are one or two extra facilities included in
BBC BASIC that makes it easier to use for lower level tasks. In
particular, there are three ‘indirection’ operators that make the

direct manipulation of memory casy.
Most versions of BASIC provide the POKE command to alter a

memory location and the PEEK function to examine the contents of
a memory location. BBC BASIC replaces both of these facilities by a
single indirection operator ‘7. Writing a question mark in front of a
number or a variable causes it to be interpreted as the address of a
single memory location. So, for example, 740 1s a reference to
memory location 40. To find out what is in a memory location all
you have to do is use PRINT ?address. To change the contents of a
memory location you simply write 7address=new value. If you read
the question mark as ‘the memory location whose address 1s’ then
you should be able to understand any use of the indirection
operator.

Although it is useful to be able to handle single memory locations
the BBC Micro tends to work with more than one location at a time.
For example, it uses four memory locations to store an integer. To
make the manipulation of multiple memory locations easier two

30 The BBC Micro

other indirection operators, ! and $ are available. The exclamation
mark works in the same way as the question mark but it refers to
four memory locations. To be exact the statement laddress refers to
the four memory locations whose addresses are address, address+1,
address+2 and address+3. These four locations are treated as if they
were a standard integer value (with the most significant byte stored
in address+3). The dollar sign ‘§ is a little more difficult to
understand in that the number of memory locations that it refers to
1s variable. It 1s known as the string indirection operator, because it
deals with memory in terms of strings of characters. For example,
$4000="ABCD?” stores the ASCII codes for A in memory location
4000, the code for B in 4001 and so on until it stores the code for D in
memory location 4003. To mark the end of the string it then stores
the ASCII code for carriage return in 4004. In the same way PRINT
$4000 will print the character corresponding to the ASCII codes
stored in the memory locations starting at 4000 and going on up to
the first occurrence of the ASCII code for carriage return.

You can specify an offser with any of the three indirection
operators. For example, 4000710 refers to memory location 4010, In
other words, address?offset is the same as W(address+offset). This is
a useful facility for stepping through a range of addresses but it can
be confusing for the beginner.

The indirection operators certainly provide a way of handling
memory locations but both memory addresses and memory
contents are usually specified in terms of hexadecimal rather than
decimal. The main reasons for this are that you can specify a
memory address using four hex digits and the contents of a memory
location using only two hex digits. BBC BASIC is capable of
handling numbers written in hex and printing values in hex, Writing
‘&’ in front of a constant indicates that it should be taken to be a
hexadecimal number. For example, &F is 15 and &FF is 255. In
particular, it is important not to confuse &10 with ten (to find out
what it 1s type PRINT &10). The use of & may confuse many people
because § is the most common symbol for hexadecimal but you soon
get used to it. To print a number in hex all you have to do is place ~
in front of it. For example, PRINT~255 produces FF. You can use
both & and ~ in combination with any of the indirection operators
to manipulate memory directly in hex. Thisis a very useful facility as
we shall see in this and later chapters. |

_ BBC BASIC 31

BASIC's use of memory

The memory map given in Chapter One showed the general layout
of the BBC Micro’s address space in terms of ROM, RAM or I/0.
However, when running BASIC, the available RAM has a fairly
fixed use that can be seen in Figure 2.1. The top-most portion of
RAM is always taken by high resolution graphics. The actual

8000 in 32K RAM
o 1 < 4000in 16K RAM
| ﬁ\ Hires graphics
¥ BASICstack € HIMEM
/i\ Variables <— LOMEM
J, <— TOP
BASIC program
L __| €= PAGE
0.S. + fixed storage
ms?

Fig. 2.1. RAM as used by BASIC.

amount that is used depends on the graphics mode selected (see
Chapter Four) but the address of the first memory location below
the area used for graphics is always available in the variable
HIMEM. The bottom-most portion of memory is also used for
something other than storing BASIC programs. It is used by the
MOS (see the next chapter) to store details of how the machine is set
up, i.e. what type of printer is in use etc., as storage for buffers such
as the keyboard buffer and sound buffer etc., and as RAM storage
for any programs in ROM. All-in-all, the lower area of memory is
used for just about everything! An important area from the point of
view of BASIC is &0400 to &0800 which is designated as the
language work area. This is used by the BASIC ROM to store most
but not all, of the information about a program as it 1s running. The
area of memory from &0000to &0100 1s known as page zero and it is
particularly useful because certain machine code instructions (see

32 The BBC Micro

Chapters Seven and Eight) only work with page zero. Thus, even
though BASIC has a work area set aside for it, it does use some zero
page locations. The actual amount of memory used by the MOS and
other ROM programs varies according to what the machine
configuration is. However, the address of the first free memory
location can always be found in the variable PAGE. As a BASIC
program is typed in or loaded from tape it is stored in memory
starting at 7PAGE. The ‘top’ of the BASIC program — in fact the first
free memory location after the BASIC program — can be found by
using the function TOP. The variable LOMEM contains the address
of the first memory location above the BASIC program that can be
used to store variables that are created when the program is actually
run. LOMEM usually contains the same address as TOP but you
can change LOMEM to point to another area of memory if you
want to (reasons why you might want to are suggested in Chapter
Eight). The amount of memory that a BASIC program is using, not
including any memory needed for variable storage, can be found by
typing PRINT TOP-PAGE. - -

It is interesting to go through the changes in memory use that
occur as a program is loaded and run. When the machine is first
switched on all the memory pointers are set to their correct values.
As a BASIC program is typed in or loaded, the value of TOP and
LOMEM are adjusted so that they always point to the first free
location above the program. When the program is RUN, memory is
used starting from LOMEM to store variables as they are
encountered within the program. -

The area of memory just below HIMEM is also used for storage
by a running BASIC program but only for temporary storage for
things such as the return address for subroutines and procedures etc.
Thus, as the program runs, memory is taken starting at LOMEM
and extending upward - this is often referred to as the BASIC heap -
and growing downward from HIMEM, which is often referred to as
the BASIC stack. Obviously, if the running program changes the
display mode then the value of HIMEM will change. If this were to
happen when the BASIC stack was in use then it would crash the
programs; this is the reason why you can only change modes from the
main program and not in a subroutine or procedure.

Now that we have a picture of how BASIC puts the RAM to work
it 13 time to examine in detail how things are stored. First we will
look at how the lines of a BASIC program are stored and then at
how the different types of variables are stored.

BBC BASIC 33

The way BASIC is stored

Each line of BASIC that you type in has three parts — the line
number, the keyword such as GOTO PRINT or REM, and the rest
of the statement. This division also corresponds to the way that a
line of BASIC 1s stored internally. The ASCII code for carriage
return, 1.¢. &0D, marks the start of every line. Then follow two bytes
that hold the line number in binary. The fourth memory location is
used to store the length of the line. Finally, we reach the actual text of
the BASIC statement. This is stored exactly as written in the form of
ASCII code but with a few changes. For example, any keywords in
the line are replaced by codes that can be stored in a single memory
location. This makes good sense because it saves storage space and
the code that is used is related to the ROM address of the machine
code that implements the BASIC operation. (For a full list of key
words see the User Guide.) This changing of keywords into codes is
known as fokenisation and the codes are known as tokens.

You can se¢e the format of the internal storage of a BASIC line in
Figure 2.2. When there1s no program in memory there is still a single

| C— N locations —> N |
i - —'—- Np——
t
CR High byte[Lowbyte Length of N —4bytes
—{ lineN Text
Line number
i 3 J

Fig. 2.2. Internal storage of a BASIC line.

carriage return stored so PAGE and TOP never point to exactly the
same location. The end of a BASIC program 1s marked by a line
number that has &F stored in the high byte of the line number. BBC
BASIC line numbers must lie in the range 0 to &7FFF so using
&FFxx as an end of program marker doesn’t interfere with the
normal numbering of a program. If you type NEW then allthe BBC
Micro does to delete the program is to write &FF in the high byte of
the first line number and reset the pointers TOP and LOMEM.
Because deleting a program with NEW doesn’t alter anything else
about the program, it is possible for OLD to restore the program by
setting what was the high byte of the line number of the first hne
back to zero and then use the length of line information to scan
through the memory to find the original end of the program and set
the pointers TOP and LOMEM accordingly.

34 The BBC Micro

An interesting point is that neither LIST nor SAVE actually take
any notice of TOP to find the end of a program. Instead they both
use the end of program marker in the high byte of the line number to
stop listing or saving a program. The sole purpose of TOP seems to
be to govern where a new line of BASIC would be added to the
program. It is also worth pointing out the amount of work that is
involved in obeying a simple GOTO or GOSUB command. The
program has to be searched for the line number used in the GOTO or
GOSUB. This involves starting at the beginning of the program and
comparing line numbers one at a time, using the length of line
information to move on to the next line number until either the
search is successful or the current line number is bigger than the one
being searched for. This long-winded process is, of course, the
reason why functions and procedures are faster than subroutines.

Handling variables - format and storage

There are two things of interest about the way BASIC handles
variables. First, it would be interesting to know how to find out
where any vanable was stored. Secondly, it would then be useful to
know the format used to store information in the different types of
variable.

BBC BASIC uses a very clever method of keeping track of where
it has placed a variable. When a program runs, ¢ach new vanable
that is encountered is allocated some space in the BASIC heap
(starting at LOMEM). The address of the first free memory location
in the heap 1s stored in &0002 and &0003 which, for want of a better
name we will call ‘freemem’. Thus, the storage of variables starts at
LOMEM and goes up to freemem. New variables are allocated
memory where freemem 1s pointing and then freemem is increased to
point to the next free location. So far this 1s exactly what any other
version of BASIC does to allocate storage to variables. What is
special about BBC BASIC is the way that it keeps track of where

each variable is.
Other versions of BASIC simply store the name of each variabie

as it occurs along with its value. When a variable is required a search
is carried out of the entire BASIC heap. If you use a lot of variables
this can take a long time! BBC BASIC, in an attempt to shorten the
search time, keeps a separate list of variables for each letter of the
alphabet, upper and lower case. In other words, if the first letter of a
variable’s name is A, it joins the ‘capital A’ list. If its first letteris a z,

BBC BASIC 35

then it joins the lower case z list. When BBC BASIC wants to find a
variable, it has only to search the list of variables that have the same
first letter. As longas you don’t start all your variables with the same
letter this should be a quicker way of finding them.

The way that the separate lists are maintained is fairly simple, For
each letter of the alphabet A-Z and a-z there is a start of list pointer
which contains the address of the start of the list of variables that
start with that letter. These pointers are stored in the language work-
space area of memory from &0482 and &0483, which forms the
pointer to all the variables starting with A, to &04F4 and &04F5,
which points to the start of the list of variables beginning with z. To
work out the address of the pointer to the list of all variables
beginning with the letter stored in A$, use (ASC(AS$)-65)*2+&0482
which gives the address of the least significant byte of the pointer. If
there are no variables beginning with a particular letter then the
corresponding pointer is set to zero. If there are variables beginning
with a particular letter then the corresponding pointer contains the
address of the first variable. The address of the second variable in the
list is stored in the first two memory locations allocated to the first
variable. Each variable in the list contains a pointer to the next
variable in the list, The end of the list is marked by a zero address for
the next variable.

The procedure for adding a variable to the BASIC heapisnowa
little more complicated than for the simple storage scheme described
earlier but the increase in speed that results 1s well worth the trouble,
To add a variable to the list you first have to find the end of the list by
searching down its length until you find the first zero pointer. This
may sound like a chore but of course it has to be done anyway to find
out if the variable already exists! When the variable at the end of the
list is found its pointer is changed to point to the same location as
freemem. Then the space that the variable requires is allocated and
freemem is changed to point once again to the first free memory
location. | |

Now that we know how variables are allocated space and how to
find where they are stored, the only thing left to discuss is the format
used to store each type of variable. BBC BASIC recognises three
fundamental or ‘simple’ data types — integer, real and string - and
can handle arrays made up of any of the three types.

The storage format used for an integer variable can be seen in
Figure 2.3. The first two locations form the pointer to the next
variable with the same initial letter, as discussed above. These two
bytes are zero if there i1s no next vanable. The subsequent bytes are

36 7The BBC Micro

Low address - High
2 N—1 1 4 address
T - [T 1 |
- 0 INTEGER
Pointer to next ‘Tail' of name End of
variable with name
same initial letter marker

Fig. 2.3. Storage of an integer variable with N characters in its name
{including the %).

used to record the rest of the variable’s name minus the first
letter but including the % sign to show that what follows is an
integer. So, for example, a variable called TOTALY%% would have its
name stored as OTALY%. The end of the name is marked by a
memory location with zero in it. Following this are four bytes that
hold the actual integer value associated with the variable. The
format that is used to store the value is 64-bit 2s complement. You
can use the ! indirection operator to obtain its correct value.

1 1 4

[T 1T T
o E Mantissa
End of
name
marker

Fig. 2.4. Storage of a real variable.

Figure 2.4 shows the format used to store real variables. To be
more precise, it shows only the part of the format that is different
from the integer format. A real variable starts off with a pointer to
the next variable and the rest of its name just like an integer variable
but following the end of name marker are five bytes used to store a
real value. A real value is stored in floating point form with a one
byte exponent and four byte mantissa.

A string variable also starts off in the same way as an integer
variable with a pointer to the next variable and the rest of the name
including the $ sign. The rest of the string format consists of four
bytes, as shown in Figure 2.5. The first two of these four bytes
contain the address of the actual string of characters that are stored

BBC BASIC 37

| 2 1 1
o |
0 Address of Number of | Number of
start of string bytes bytes used
l allocated
End of
name marker

Fig. 2.5. Storage of a string variable.

in the string. The third byte is used to record the number of bytes
allocated to the string for storing its value and the fourth byte
records the number of bytes actually used (in other words, the length
of the string). What is interesting about this format is that the string
of characters that forms the string’s value is stored away from the
variable itself. This will be considered in more detail in the section on
garbage collection.

Finally we come to the format used to store arrays. This initially
follows that used for the same pattern as the simple variables butthe
name that is stored not only includes the $ or % sign but the (as well.
The rest of its format can be seen in Figure 2.6. The first location
following the end of name marker records the number of dimensions

1 1 2 2
- .
- 2*DIM + 1 | No. of No. of T [
elements | elements .
0 L in first insecond | Varlable slements
dimension | dimension
i]

Fig. 2.6. Array storage.

in the array. To be precise, it is twice the number of dimensions plus
one that is stored in this location which is the number of memory
locations needed to store all of the other information about the
array. Following this byte are pairs of memory locations, one pair
for each dimension, recording the number of elements in each
dimension. Following this information are the values that form the
elements of the array.

Before leaving the subject of variable storage it 1s worth
commenting on the way functions and procedures are handled. In
the same way that variables are formed into lists so are functions and
procedures. The memory locations &04F6 and &04F7 are used as a
pointer to a list of procedures. Each item in the list has roughly the
same format as a variable. The first pair of bytes point to the next

38 The BBC Micro

procedure in the list, if any. Then comes the full name of the
procedure ending with the usual zero byte. Following this are two
bytes containing the address of the start of the procedure. The same
technique is used to form a list of functions but in this case the initial
pointer 1s formed by locations &04F8 and &04F9.

A heap dump program

To make the above information on variable storage etc. a little more
concrete a variables, procedure and function dump program is given
below. Not only does this serve to illustrate the points made above
but it is a useful program in its own right.

!

Y280
L9
2300
2310
9340

000 DEFPROCdump

2010 L.LOCAL X, Y

Y020 FOR X=80482 TO &04F4 STES 2

POI0 Ye=rPX4+254%X71

2040 IF Y0 THEN FROCvarlist(X,Y,0)
POS0 NEXT X

040 FPRINT

2070 FROCaother

2030 ENDFROC

2090 DEFFRUOCvarlist(X,Y,F)

Lo LOCAL A%,.X,TYPE

110 A$=STRINGS (S0, "X") _

2120 A$=CHRS (AS+(X-R0ABZY/ D)

2130 TYPE=(

140 FRINT TABCO)Y;AYITAR(S) !

190 T=2 |

160 IF Y?I=0 THEN GOTO 9230

FL70 A+=AS+CHRE(Y?T)

180 IF ¥Y?X=AGC("2") THEN TYPFE::1

190 IF Y?I=A8C("$")Y THEN TYPE=Z2

200 IF Y?PI=ASC("(") THEN TYFE=TYFE+100
210 T=T+1 | - |

@220 GOTO ?140

$E230 IF TYPE>99 THEN GOTO 9290

9240 IF P=]1 THEN FRINT "“PEQC":A$:GO0TO 9350
%0 IF P=2 THEN FRINT "FN"JA%:GOTO 9350
260 FRINT A$:TABC10) I TYFEITABC(20) tEVAL(AS)

IF TYFE=2 THEN FRINT TAR(Z20)$Y?(I+3):
TAEC(I0d 3Y?(T+4)

GOTO 2350

DY (T+1))~1

FRINT &%}

FOR Z=1 TO D STEF 2

FRINT STRECYPCIHI4T)+254KYPLI+242) 1) 3

1 It
J #

¥330
7340
?3%0
9340
7370

Y3R0
P390
7408
7410
?420
?430
7440
2450
24460

NEXT 2
FRINT CHR$(08)3")"

IF Y?1=0 THEM ENDFROC

Y=2?Y+2546%Y P
GATO 9121

RDEFFROCother

LOCAL X, Y
Y=PRO4F 6+ 256X 049F 7
IF ¥=0 THEN GOTO 9440
Xi=1 .
FROCvarlist(X,Y,1)
Y=PRO04FB+256%PRO04F 9
IF Y=0 THEN ENDFROC
Xz}

BBC BASIC 39

2470 FROCvarlist(X,Y,2)
Y480 ENDFPFROC

The first procedure, PROCdump, examines each of the variable
pointers in turn and calls PROCvarlist if any variables are present in
the list, Most of the work is done by PROCvarlist, which first puts
together the full name of the variable - lines 9120 to 9220. While the
full name of the variable is being constructed in AS, each character
of the name is tested against %, $ and (to determine the TY PE of the
variable. Once the full variable name i1s present in A$ the BASIC
statement EVAL is used to print the contents of the variable by line
9260. If the variable was a string then line 9270 also prints the
amount of storage allocated to the string and the amount of storage
actually used. If the variable is an array then no attempt is made to
print out its values; just its dimensions are printed. Line 9290 works
out the number of dimensions in the array and lines 9310 to 9340
print the size of each dimension in turn. After all the details of the
variable have been printed, lines 9350 to 9370 work out the address
of the next variable with the same initial letter. If there is none, then
control is returned to the dump procedure. After all the different
variable lists have been processed, PROCother is called to print the
active procedures and functions. PROCother simply checks the
initial procedure and function list pointers and calls PROCvarlist to
work out the names of each procedure or function in the list.

Notice that if you use PROCdump it will not only report any
variables etc. employed by a main program with which it is being
used in conjunction. It will also report all of its own variables,
procedures and functions.

40 The BBC Micro

The resident integer variables

Although we have discussed the storage and format of the variables
that can be used in BBC BASIC, we have ignored a set of very special
and very useful variables — the resident integer variables. The names
- of the resident integer variables are @ %A%,B%...Z%. Instead of
being stored in the BASIC heap, these variables have a fixed area of
the language work area set aside for them. As a result they exist
whether you use them or not. They are not cleared or changed in any
way by NEW, CLEAR or LOAD. In fact, apart from explicit
assignment, the only thing that changes the value of a resident
integer variable 1s switching the machine off and on again! It is often
useful to know that the resident integer variables are stored starting
with @9 at &0400 with four bytes to cach variable so that A, for
example, starts at &0404. The resident integer variables will be
mentioned again in Chapters Seven and Eight.

Garbage collection

When a numeric variable is allocated space in the BASIC heap it 1s
there to stay and it never needs to change the amount of storage
allocated to it. However, string variables are very different and they
can change their size all the way through the execution of a BASIC
program. A string may start out holding only a few characters and
then grow to the maximum size a string can be, 1.e. 235 characters,
and then shrink back to only a few characters again. As a string
grows in size, more memory in the heap has to be allocated to it.
When it grows smaller it would be efficient if the memory it released
were returned to the heap, and this is usually referred to as garbage
collection. However, garbage collection takes time and the BBC
Micro is built for speed! When a string variable is first used, an entry
in the format given in Figure 2.5 is created in the heap. The actual
characters that make up the string are also stored in the heap and the
address of the first character and its length are stored in the
appropriate locations next to the string variable’s name. In fact, a
few more bytes than are necessary to store the string are allocated to
allow the string to grow a bit before problems arise. If you reduce the
length of the string then nothing happens apart from its current
length being updated. In particular, the memory locations that are
freed are not returned to the heap; instead, they are lett ready for the
string to increase in length again. If you add characters to the string

BBC BASIC 41

to the point where all of its allocated space is used up, then to
increase its length still more requires, obviously, some more memory
to be allocated from the heap. This is not an easy matter because
other variables and strings may be located just above the string in
question. Allocating extra space, therefore, would mean moving
everything above the string up in the memory. Considering the way
that variables are linked together in separate lists, this would be no
easy operation! Instead of this difficult move, the BBC Micro simply
creates a new copy of the string’s value at the top of the heap
including some extra memory locations for future growth. If you
think about this approach to creating more space for a string value
you should be able to see that it is fast but very wasteful of memory.
There can be a considerable number of dead copies of string values
occupying valuable RAM storage because the BBC Micro fails todo
any garbage collection.

To illustrate this problem consider the following short program:

10 Ag="o

20 PROCSIZE

30 AS=A$+"A"

40 FPRINT LENCAS$),]
50 GOTO 20

180 DEFPROCSIZE
110 FRINT 7?24+2536%?3-~TOF
120 ENDFROEC

The procedure PROCSIZE prints the current size of the BASIC
heap by working out the difference between freememand TOP. The
program itself first sets up a string A$ that is initially set to the null
string. Each time through the loop formed by lines 20 to 50 a single
letter is added to the string and the size of the heap is printed. If you
run this program you might be surprised how much storage it takes
to hold 255 characters. The final line that the program prints
indicates that the heap reaches nearly 4K bytes! The solution to this
waste of storage is simple. If the string is defined to be the maximum
size that it will ever be when it is first used no extra copies of it will
ever be made. If you change line 10 of the above program to read:

10 A%=STRINGH(25S5,"X")As=""

you will find that the final line of the program now reveals that it
takes a much more reasonable 272 bytes to store a string 2535
characters long. If you set strings equal to the maximium length that
they are likely to reach during a program you will save a lot of

42 The BBC Micro

memory! The way that strings are handled by the BBC Micro might
seem a little crude but it really is the only way that it can be done and
still achieve a fast BASIC.

LOCAL variables and the stack

Although we now know a lot about the way variables are stored we
still do not know how local variables work, How can it be that a
variable named in a LOCAL statement can replace any vatiable of
the same name in the main program for the duration of the
procedure or function in which it occurs and the original value
stored in the variable still be intact at the end of the procedure? The
answer to -this question is surprisingly straightforward. When a
function or a procedure is entered, any variables that are named ina
LOCAL statement or that occur as parameters are searched for in
the heap. If a variable with the same name is found then the value
that is stored in it is stored on the BASIC stack. If the variable
doesn’t exist then it is created with an initial value of zero if it is
numeric and the null string if it is a string. After the original value
has been safely stored away on the stack, the variable can be used by
the function or procedure without any worry about aitering
anything in the main program. The action is the same if the variable
is a parameter except that after the value is stored on the stack the
local variable is initialised to the value given to the parameter by the
statement that referenced the function or procedure. Once the
function or procedure has finished, the original values stored in any
local variable are retrieved from the stack and are returned to their -
original places. Any local variable without counterparts of the same
name are not destroyed; they are simply left set either to zero or the
null string.

If you follow the way that the BASIC stack is used every time that
a function or procedure is called, you should have no trouble in
following how functions and procedures can be used recursively.

Conclusion

It would be possible to write an entire book on the subject of BBC
BASIC! This chapter has dealt with some of its more interesting and
immediately useful aspects. Much of the information it contains can
be used to write programs that not only work faster and use less
memory, but are also more logical and easier to debug.

Chapter Three

The Machine 0perating
System

The BBC Micro has so many unique features that it 18 difficult to
pick out any one for special praise. Also it is easy to overlook its
broader design philosophy because individual features capture the
attention. The MOS (Machine Operating System) is a machine code
program roughly 16K bytes in size. A program of this size rivals the
BASIC in its complexity. However, unlike the BASIC ROM, it 1s
difficult to sum up what the MOS actually does. 1t is responsible for
so many different things that it would be easy to dismiss the MOS as
simply a collection of all the ‘odds and ends’ that wouldn’t fit into the
BASIC ROM. However, this would be an underestimation of the
careful thought that obviously went into writing the MOS. There are
two approaches to building a machine. You can design the hardware
and then implement a version of BASIC by interfacing it with the
hardware directly. This can be thought of as the ‘solve the problems
as they arise’ approach. For example, you would write things like
printer drivers only when they were required by a BASIC statement
that listed a program to a printer. Writing a version of BASIC with
this sort of approach tends to take short cuts to providing access to
hardware features which results in a shorter BASIC interpreter.
However, it also tends to transmit any difficulties and shortcomings
in the hardware back to the programmer. The second approach to
building a machine starts in the same way with the design of the
hardware, but before implementing BASIC an extra layer of
software is installed to iron out any problems and generally
improve the hardware’s appearance. In the BBC Micro this extra
layer of software is provided in the MOS. In some senses 1t 1s more
accurate to think of the BBC Micro, its hardware and the MOS
providing an environment that is suitable for running BASIC or any
other high level language. Another way of looking at this is that the
MOS creates a ‘soft machine’ that is easier to use and more
sophisticated than the underlying ‘hard machine’. So although the

44 The BBC Micro

MOS has to do a very wide range of things, it has a single purpose.

The rest of this chapter looks at some of the interesting things that
you can do with the MOS. Even though the MOS has a single
purpose 1t is impossible to find a logical order in which to discuss it
because of the wide range of things that it does to achieve this
purpose. There has already been a number of versions of the MOS
i1ssued since the BBC Micro was first produced. The version
described in this book is Version 1. This is the first version of the
MOS to include all of the intended features. To find out which
version you have simply type *FX 0. If you have an earlier version
and find that you lack facilities that you wish to use, then contact
your dealer for a new ROM.

In general, it is true to say that the MOS provides software to
handle the following I/ O devices:

® The graphics display and VDU drivers.
Printer and serial I/O.

Cassette filing system.

Keyboard.

A to D convertor,

Sound generator.

The tube.

It also makes extensive use of interrupts to improve the overall
performance of the machine.

There are three ways that the MOS is used by the programmer.
First, many BASIC commands are implemented directly by the
MOS. Secondly, there is a range of MOS commands such as *FX
and *KEY which cause the MOS to carry out certain tasks. Finally,
there are machine code routines within the MOS that the assembly
language programmer can use. It is difficult to avoid considering the
use of the MOS from assembly language programs here even though
assembly language is not discussed until Chapter Seven. The MOS is
useful to a BASIC programmer but it is fascinating from the point of
view of assembly language! Any sections that make reference to
- assembly language should be read without worrying too much about
understanding the material completely. You will only find this
chapter completely comprehensible after you have made the
acquaintance of assembly language in Chapters Seven and Eight. If
you have no desire to learn assembly language then don’t worry —
there 1s still much to be gained by using the MOS from BASIC.

The Machine Operating System 4b

Indirection and MOS subroutines

One important feature of the MOS is that all its important
subroutines are available for use by the assembly language
programmer. In addition, the assembly language programmer can
actually replace any of the important subroutines by user-defined
routines. The way that this works is particularly simple. All external
MOS subroutines are used by a CALL to the region &FF00 to
&FFFF. For example, the ‘print a character on the screen’
subroutine, OSWRCH, is positioned at &FFEE. However, at this
high memory location there is very little of the code for each of the
subroutines. In fact, all that happensisajump to the true location of
the subroutine inside the main part of the MOS ROM. The address
of the true location of the subroutine is obtained from RAM in the
region &200-&2FF which is known as the indirection area. For
example, the true address of the OSWRCH subroutine is contained
in &20F. You can find a table of MQOS subroutines, their fixed
addresses and their indirection routines on page 452 of the User
Guide. The advantage of this roundabout method of getting to the
MOS subroutines is two-fold. First, the true locations of the MOS
subroutines can be changed in later versions without invalidating
user programs. Secondly, by changing the address stored in the
indirection area of RAM the user can intercept MOS calls and
supply alternative versions.

The MOS subroutines that are available to the user fall into three
categories — tape I/ O routines, screen and keyboard I/ O routines
and three miscellaneous routines. The tape [/ O routines OSFIND,
OSGBPB, OSBPUT, OSARGS and OSFILE are used by BASIC to
manipulate cassette files and may be used by the assembly language
programmer for the same purpose. They are all adequately
described in the User Guide and it is unlikely that a programmer
would ever want to replace them with special versions.

The keyboard and screen I/ O routines are OSRDCH, OSASCI,
OSNEWL and OSWRCH. These form the basic way of handling
text from BASIC and assembly language programs. Once again,
they are well described in the User Guide and no further comment is
necessary.

The three miscellancous subroutines are quite another matter,
however! Between them they carry out so many different functions
that it is worth highlighting some of the possible ways that they
could be used. The three subroutines are OSBYTE, OSWORD and
OSCLI. OSBYTE and OSWORD are general purpose subroutines

46 The BBC Micro

that can be used to configure the BBC Micro or control 1/ O devices.
The OSCLI subroutine is a command line interpreter that allows the
BASIC programmer direct access to the OSBYTE subroutine. Any
command line that starts with an asterisk, such as *MOTOR 1, is
not processed by the BASIC interpreter; instead it is passed to the
OSCLI subroutine for processing. The OSCLI decodes the
command and then calls the OSBYTE subroutine to carry out the
correct action. Most of operating system commands are of the form
*FX ‘parameters’ but some are used so often that they are given
names all of their own, for example, *MOTOR, *TAPE etc. Thus,
OSBYTE calls that do not need to return any results are available to
the BASIC programmer as operating system commands. The
OSBYTE calls that return results can only be used from BASIC via
the USR function. The OSBYTE subroutine deals with everything
that can be specified using only three bytes (these are held in the A, X
and Y registers). Anything that needs more than three bytes is
handled by the OSWORD subroutine. As there is no simple way of
passing more than three bytes to an assembly language subroutine,
OSWORD calls can really only be used by assembly language
programs. |

Although the User Guide describes all the OSBYTE and
OSWORD calls in some detail it doesn’t always make clear what
they might be used for. In order to avoid repeating the details given
in the User Guide, a complete list of calls will not be given here.
Instead, the sort of thing that the less obvious calls might be used for
will be briefly described.

The first *EX call that is worthy of further discussion is *FX 4.
Following *FX 4,1 the five cursor keys return ASCIH codes just like
the other keys on the keyboard. The normal condition is for the
cursor keys not to return ASCII codes but move the cursor round
the screen. This condition can be restored by ¥*FX 4,0. There are two
reasons why you might want the cursor keys to return ASCII codes.
First, you may simply want to disable the cursor editing facility in an
applications program to stop inexperienced users from getting out
of their depth. Secondly, if you want to use the four arrow keys to
control the movement of a graphics character in a game, then the
only way that this can be done is for the cursor keys to return ASCII
codes. |

The *FX 11 call sets the time that a key has to be held down before
it starts to auto repeat. The required time delay in centi-seconds is
the only parameter in the call, and if you specify a time of zero then
the auto repeat is disabled. *FX 12 sets the rate at which keys auto

The Machine Operating System 47

repeat. Once again there is a single parameter that sets the time
between repeats in centi-seconds. These two calls are often used
together to change the response of the keyboard. For example, itisa
good idea to turn the auto repeat facility off in applications
programs. However, in games programs where a quick response 1S
required, the keyboard can be set to auto repeat after only 1 centi-
second and produce characters at the same rate. By using *FX 11
and *FX 12, the BBC Micro’s keyboard’s response can be adjusted
to suit any situation.

One *FX call that seems particularly puzzling is *FX 138 which
inserts a character into the keyboard buffer. The format of the call is
*FX 138,0 ‘ASCII code’ which inserts the character whose code 1S
‘ASCII code’ into the keyboard buffer. Any characters placed in the
keyboard buffer in this way are treated in exactly the same way as if
they had been typed in. The BBC Micro doesn’t care where the
characters in the keyboard buffer come from, only what they are.
This means that a running program can place a string of characters
in the keyboard buffer and when the program ends the string will be
obeyed as if it had been typed in. For example, if the string ‘LIST’
followed by a carriage return is placed in the keyboard buffer by a
running program, then the program effectively lists 1tself as soon as
it stops! To see this in action try:

10 XFX 138,0,76
70 XFX 138,0,73
30 XFX 138,0,83
40 *FX 138,0,84
50 *FYX 138,0,13

This ability for a running program to ‘type on the keyboard’ is
something to be kept in mind when all else fails. It can be used to
good advantage to provide default answers to questions asked by an
applications program. For example, if you remove line 50 from the
above program, the keyboard buffer is filled with LIST but without
the carriage return. If you also add 60 INPUT Ajto the end of the
program you will see that the word LIST appears after the usual®”
prompt printed by the INPUT statement. To accept it, all you have
to do is press RETURN; to reject it you backspace and type
whatever you want.

The final *FX code that deserves special mention is *FX 229. The
call *)FX 229, 1 disables the action of the ESCAPE key and makes it
return the ASCII code 27. In other words, following *FX 229,1 the

ESCAPE key no longer interrupts the running of a BASIC
program. To restore its normal action use *FX 229,0. Using this call

48 The BBC Micro

and the definition of *KEY 10 as OLD MRUN | M makes a BASIC
program completely unstoppable. The call disables the ESCAPE
key and the definition of key 10 (the BREAK key) effectively
disables the BREAK key. The only way to stop the program is to
switch the machine off,

Adding commands

The OSCLI subroutine provides a simple method of adding new
commands to the MOS or to BASIC. Any line that starts with an_
asterisk, be it a direct command or in a BASIC program, is handled
by the OSCLI subroutine at &FFF7. As mentioned earlier, all the
MOS subroutines indirect through RAM locations and OSCLI is
no exception, The address of the actual OSCLI subroutine is stored
in &0208 and &0209. To add new commands, we could intercept the
OSCLI call by changing the address stored in &0208 to point to a
specially written assembly language routine. Although assembly
language isn’t discussed until Chapter Seven, it is worth including an
example here,.
Consider the following short program:

10 PIM CODEZ 10

20 PE208=CODEX AND &O00FF
30 PR209=(CODEX AND &FF003)/8FF
40 PA=LODEZX

90 L LDA #65

&0 JSR &FFEE

70 RTS

g0 1

0 FOR T=3 TO 10

100 %

110 NEXT I

Lines 50 to 80 form an assembly language program that simply
prints the letter A on the screen. Lines 20 and 30 change the address
of OSCLI to the address of the ‘print letter A’ routine. Lines 90 to
110 form a perfectly simple FOR loop apart from the fact that line 100
is nothing but an asterisk! If you run the program you will find that
the letter A is printed on the screen ten times, thus proving that the
asterisk now means ‘print the letter A’

In any real application, the address of the OSCLI subroutine
would be saved within the new assembly language routine, The new
routine would check to see that what followed the asterisk was a
command that was its concern. For example, we might decide to call

The Machine Operating System 49

the ‘print A’ routine by the command *PRINTA and the first job
that the routine would do would be to check that the word
‘PRINTA’ followed the asterisk. If this was not the case then the
OSCLI proper would be called using the address that was originally
stored in the RAM locations. In this way new commands can be
added to the existing set of commands rather than replacing them.

The video display

The hardware and software that makes up the video display 1s
discussed fully in the next chapter. However, it is worth pointing out
that the MOS is entirely responsible for the software that drives the
video hardware. In particular, the MOS contains the VDU drivers
and the character generator table. The method of communication
with the video section of the MOS is not via a long list of subroutine
calls. Instead, the OSWRCH subroutine detects and acts upon an
extended set of ASCII control codes. These control codes are sent to
the OSWRCH subroutine in exactly the same way as a printable
character, but their effects can be very extensive. In BASIC the
command VDU appears to be the fundamental graphics command.
In fact, all it does is to transmit the necessary control codes to the
VDU drivers via the OSWRCH subroutine. So the following are
equivalent:

vwou 8
PRINT CHR$<¢08)3;

L LDA #8

 JSR &FFEE

J
and each sends a backspace command to the VDU drivers. In
practice, many of the control codes are followed by a number of
parameters.

Interrupts

The BBC Micro makes extensive use of interrupts to improve its
overall performance. An interrupt is simply a wayv of switching the
‘attention’ of the 6502 processor inside the machine from one task to
another and back again. For example, if a BASIC program 1s

B0 The BBC Micro

running, then the 6502 1s giving its full attention to this task. If,
however, a key is pressed on the keyboard this causes an interrupt
which makes the 6502 stop what it is doing and start running the
keyboard service routine in the MOS. This finds out which key was
pressed and stores the correct ASCII value in the keyboard buffer.
Once the keyboard is dealt with, the 6502 returns to the original task
of running your BASIC program, starting from the point where it
was interrupted. This idea is not a difficult one — after all, humans
respond to interrupts. If you are reading a book and the telephone
rings then you process this interrupt by marking your place in the
book, answering the telephone and then returning to your reading at
the point where you were interrupted. However, even though the
idea of an interrupt is simple in theory, in practice things are often
difficult to handle. The trouble is that an interrupt may happen at
any time and may be caused by any number of devices. For example,
as well as the keyboard interrupt the 6502 has to service an interrupt
from a timer in VIA-A every one hundredth of a second. On
receiving this timer interrupt, all the 6502 does is to increment the
value stored in the variable TIME but how does it know where the
interrupt came from? Was it from the keyboard or was it from the
timer? In fact, there are many sources of interrupts that we haven’t
yet considered. The key to finding out which device has caused an
interrupt is contained in the hardware causing the interrupt. Each
I/O device that can cause an interrupt has an a bit known as an
interrupt flag somewhere in its status register. This flag is normally
set to zero but if the device has caused an interrupt then it is set to
one. The method of finding which device has caused an interrupt is
simply to examine each of the 1/O devices’ interrupt flags to find
which are set to one. |

As already mentioned, the BBC Micro makes extensive use of
interrupts. However, if you do not intend to become involved with
writing assembly language programs that make use of interrupts
then you can ignore this fact. The only unexpected consequence it
has is that you cannot use delay loops for exact timing simply
because you cannot always guarantee that the 6502 is executing your
program - it might be off servicing an interrupt for some part of the
time! Apart from this, interrupts simply alter the general way that
the BBC Micro behaves. For example, the fact that the keyboard is
serviced by an interrupt as described in the last paragraph means
that anything that you type on the keyboard goes into the keyboard
buffer even if the computer appears to be busy doing something else
- i.e. it provides type-ahead. The overall effect of interrupts on the

The Machine Operating System 51

BBC Micro is to give it the appearance of being able to do more than
one thing at a time!

If you are interested in making use of interrupts in assembly
language programs, then you will certainly need to know a little
more than outlined above. The 6502 recognises three distinct types
of interrupt - NMI or Non-Maskable Interrupts, IRQ or Interrupt
ReQuest and BRK or Break. The first type, NMI, is strictly reserved
for use by the disc operating system and need not concern us further.
All the other I/0O devices that can cause interrupts use the IRQ
interrupt. The BRK interrupt is a little different in that it is a
software interrupt. A software interrupt is exactly the same as a
normal interrupt except for the fact that it originates internally
rather than being caused by an external device. In fact, 6502
assembly language includes the mnemonic BRK which causes a
BRK interrupt to occur.

When the machine detects an [RQ interrupt it immediately passes
control to a routine whose address is stored in &0204 (IRQV1). In
other words, it indirects through this location in the same way as the
MOS subroutines indirect through their own particular locations.
The standard MOS routine to handle interrupts looks at the
interrupt flags of all the devices that it knows about to discover the
source of the interrupt. If it finds it then the appropriate action is
carried out. For example, if it finds that the timer is responsible for
the interrupt it will increment TIME and then return control to the
program that was interrupted. However, it is possible that some 1/ O
device that the MOS doesn’t know anything about has caused the
interrupt. In this case the standard interrupt service routine will not
locate the cause of the interrupt. When this happens, control is
passed to the routine whose address is stored in &0206 (IRQV2). Of
course, this routine has to be supplied by the user to handle the
interrupt in the appropriate way. When the user interrupt handler
has finished it should return control to the MOS interrupt handler
(by RTS) which will finish the interrupt procedure and return
control to the program that was interrupted. Thus, adding routines
is fairly straightforward. If you cannot afford to wait while the MOS
checks all its possible sources of interrupts then you could intercept
the IRQ interrupt at IRQV1 instead of IRQV2. In this case, of
course, you should check, and possibly deal with, your source of
“interrupts and then pass control to the MOS interrupt service
routine (whose address was originally in IRQV1).

The BRK interrupt is used by BASIC to report errors. How this is
done is well-described in the User Guide and so will not be repeated

582 The BEBC Micro

here. As BRK indirects through &0202, it, too can be intercepted
and handled by a user-supplied routine as required.

Interrupts that the MOS can handle might still be of interest to the
user. For example, it may be that a user program needs to know
when any key has been pressed although it is quite happy for the
MOS to handle the interrupt. To deal with this requirement the
MOS recognises a number of events. An event is either an interrupt
or something that is detected during an interrupt that the MOS can
handle perfectly well on its own. However, the MOS will inform the
user of the event’s occurrence on request. The normal state of affairs
is for all events to be disabled. If an enabled event occurs, however,
then control is passed to the routine whose address is stored in
&0220. The events are enabled using *FX 14, ‘code’ where ‘code’ is
one of the following:

Code Event
- 0 A buffer is empty X=Dbuffer identity
1 A buffer is full | X=buffer identity
Y=character that couldn’t be
stored
2 A key has been pressed
3 ADC conversion complete
4 Start of TV field pulse
5 Interval timer crossing zero
6 Escape condition detected

To disable an event, the same codes should be used in *FX 13,code.
Notice that any normal interrupt handling happens before an
enabled event indirects through &0220.

As a demonstration of how events work, type in and run the
following program:

10 DIM CODREX 20

20 PRIZZN=CODEZ AND &O00FF

30 PRIAZI=(CODEX AND RFFO0)/&FF
40 PX=CODEXL

wh L DA #a%
&0 JOHR EFFER
70 T8

a0]

The Machine QOperating System 53

Y ou might recognise the ‘print an A’ assembly language subroutine,
that has been used in earlier examples, in lines 50 to 80. However, in
this case its address is placed in &0220 and &0221. This means that
following this program, any enabled event will cause a letter A to be
printed on the screen every time it happens. Tosee thisinactionsimply
use *FX 14,code to enable the event of your choice. For example,
following *FX 14,2 you will see a letter A printed following every
character you type on the keyboard! Following *FX 14,4 you will
see the letter A appear on the screen almost continuously - a field
pulse event occurs every fiftieth of a second! To recover from most
of the above examples it is easier to press BREAK and then type
OLD and run the program again rather than try to disable the event
with *FX 13,code - the A’s appearing on the screen make typing
difficult! Although this is not a very useful example, it does show
how events can be used. A typical real example would be to
synchronise the running of a program to the start of a TV frame
display. Dealing with characters typed on the keyboard as soon as
they are typed is another practical example.

Conclusion

The MOS is a very complex piece of software. Many of its functions
are concerned with important I/Q devices such as the graphics
display, the sound generator and the A to D convertor, and these are
discussed in the next three chapters. In this chapter, some of the less
obvious features of the MOS have been described so that the BASIC
programmer and assembly language programmer can both begin to
make good use of the range of facilities available. It should also have
made apparent just how clever the BBC Micro’s MOS is. |

Chapter Four

The Video Dlsplay

A large part of the BBC Micro’s hardware and software is concerned
with producing an excellent and extremely versatile video display.
Indeed it is 50 good that many people are buying BBC Micros to use
as colour video terminals to other computers! In this chapter we will
examine both the hardware and the software aspects of the video
display. _

As with all practical arrangements of hardware and software there
is a price to be paid for every advantage gained. In the case of the
video display the biggest disadvantage is the large amount of
memory used for the high resolution screens. As much as 20K of
RAM can be used by the video display leaving only 16K of RAM for
user programs and system use. As the system can use 3-4K, an
applications program can find itself left with as little as 12K of
RAM. Because of this need for large amounts of memory, not all
modes are available on 2 Model A machine. If you have a Model A
machine then upgrade as soon as you can because you are missing a
lot! In the rest of this chapter all modes of the video display will be
discussed, including those present only on the Model B.

Not all of the display modes take so much memory. Mode 7 tele-
text graphics take a remarkably small 1K and can produce some
very good graphics in eight colours. However, the way mode 7 works
is distinctly different from all the other modes so it is given a section
at the end of the chapter all to itself. Whatever mode you are using
there is no doubt that the best quality display is produced by a colour
monitor driven by the RGB connector. However, you can still use
the highest resolution graphics on a standard colour TV set. The
BBC Micro working in black and white is useful but not nearly so
much fun!

The V:'de.:_} Display 5b
The video hérdware

A brief description of the video hardware was given in Chapter One
but without really explaining the way that the video information was
stored in memory. The BBC Micro, like many others, uses memory-
mapped graphics but it uses it in a way that is very different. Most
machines that generate their own video output set aside an area of
memory where the ASCII (or similar) codes of the characters to be
displayed are stored. As each character’s code can fit into eight bits,
one memory location is used for every possible display position on
the screen. For example, if you have a screen of 40 characters by 20
lines then you need 40 times 20 (i.e. 800) memory locations. The way
in which these memory locations are made to correspond to
positions on the screen varies from machine to machine. One
possible arrangement is that the first memory location corresponds
to the character displayed in the top left-hand corner of the screen,
subsequent memory locations corresponding to screen locations to
the left of the first until the end of the line is reached, with a new line
starting at the far left-hand side again (see Figure 4.1). The way that
the memory is associated with the different display positions on the
screen is known as the screen memory map. Obviously, if you know
the screen memory map for a particular machine then you can write

W EACH MEMORY LOCATION

HOLDS ONE CHARACTER CODE

/

43
42
41
414
a5

ﬂ? 4 3540
4243
4

-,

EACH SCREEN
POSITION DISPLAYS
ONE CHARALTER

CHSPLAY SCREEN
{NOT ALL CHARACTER
POSITIONS ARE SHOWN)

3 N

2 /
1 START QF
VIDED RAM

Fig. 4.1. The screen memory map for a 40 column screen. {Reprinted by
permission of Computing Today.)

b6 The BBC Micro

programs that can change the screen display by going straight to the
correct memory location instead of using a PRINT or PLOT
statement. This can be the quickest and sometimes simplest way of
changing the screen and is often the only way of producing good
moving graphics.

As mentioned earlier, the BBC Micro, in all but mode 7, uses a
very different method of producing a memory-mapped screen.
Instead of storing the ASCII code of the character to be displayed,
the BBC Micro stores a bit pattern corresponding to the shape of
the character. To make this clear it is worth considering the way
other micros convert the ASCII code stored at each memory
location into a character displayed on the screen.

A TV picture is built up from a series of lines and each row of
characters takes a number of lines. Each character 1s formed from a
number of dots which may be turned on or off. In this respect, the
BBC Micro is no different from the rest and uses eight lines of eight
dots for each character (see Figure 4.2). However, other micros
produce this pattern of dots on the screen by using an extra chunk of

4 - BRIGHT DOT

) = DARK pOT

Fig. 4.2. An eight by eight dot matrix showing the character "1". (Reprinted by
permission of Computing Today.)

memory that is accessible only to the video display electronics. This
extra chunk of memory is normally called a character generator but
it is nothing more than a ROM containing the information about
which dots should be off, and which on, to form the image of a
particular character. It is because this ROM memory is available

The Video Display ®7

only to the display electronics that it is normally not counted as part
of the computer’s memory. If you want to know how much memory
is involved in a character generator all you have to dois multiply the
total number of dots used to make up a character by the total number
of possible characters and divide by eight. This is because the ROM
has to store the dot pattern of every character that can be displayed
and each dot requires one bit. For the 8 by 8 array of dots used by the
BBC Micro, a ROM to generate the character set would have to be
2K bytes in size. The usual method of displaying characters on a
screen using a character generator is simply to use the ASCII code
stored in the computer’s memory as an address to select the location
in the ROM that stores the dot pattern for that character (see Figure
4.3). Instead of using this classical approach to video display, the

CPU DATA VIDEQ AOM ADDRESS
USED TO SELECT WHICH
CHARACTER WILL BE DISPLAYED
VIDED OUT
. -—-H
DATA /
g BITS 8 BIT DISPLAY
SCREEN VIDED
CHARACTER ELEC -
00T "ROW
RAM ROM TAONICS
‘B

- //115 ADDRESS LINES '

CPU ADDRESS

Fig. 4.3. A ‘classical’ video circuit design. {Reprinted by permission of
Computing Today.)

BBC Micro (except in mode 7) dispenses with a character generator
ROM and stores the dot pattern of the character to be displayed in
RAM. The disadvantage of this method is that each screen location
needs enough RAM to store all the dots for a single character - in the
case of the BBC Micro this amounts to eight bytes per screen
location. This means that in mode 4, for example, with 32lines of 40
characters the total RAM required is 32 times 40 times 8 1.e. 10K
bytes, and all this RAM is taken from the user RAM that you use to
store programs and data. In other words, for a given screen size, the
BBC Micro uses eight times the amount of screen RAM that the
classical display method would require. This is because it stores the
entire dot pattern for each character where the classical method

58 The BBC Micro

stores an eight-bit code instead. The method that the BBC Micro
uses is often called a bir-mapped display because every bit in the
screen RAM corresponds to a dot on the video screen. We can still
ask for the screen memory map in this case but now it will tell us how
dots on the screen correspond to bits in memory locations rather
than how whole characters correspond to codes stored in memory
locations.

Given the extra memory that the BBC Micro has to use to produce
its display, you might be wondering what the advantages are. The
main advantage is that you can produce high resolution graphics
and text characters using the same hardware. Every dot on the
screen corresponds to a bit in the memory location so instead of
storing the dot pattern corresponding to a character, you can change
individual bits in the memory to produce lines and other shapes.
Also, because the same basic method is used to display characters
and to produce high resolution graphics you can mix both anywhere
on the screen. A second advantage is that the character set is not
restricted to whatever is stored in the character generator ROM and
you can therefore define new characters. These two advantages give
the BBC Micro a freedom in handling both graphics and characters
that is difficult to match using any other method. For comparison,
the Apple uses a bit-mapped display for its high resolution graphics
but uses a standard character generator for its text modes and so has
difficulties in freely mixing text and graphics without extra software
(shape tables). On the other hand, the PET uses a character
generator for both text and graphics and so can mix them freely but
the range of graphics is limited to the graphics characters already

defined in its ROM.

Colour

The above discussion of the BBC video generator ignores the fact
that each dot displayed on the screen can be any of up to sixteen
colours. So far we have assumed that each bit in the video memory
produces a dot on the screen. This is true in a two-colour mode such
as mode 4. As each bit can be either a zero or a one, its value can
select one-of two colours. The colour produced by a zero bit is called
the background colour and the one produced by a one is known as
the foreground colour. The reason for this is that the shapes on the
screen are normally formed by patterns of ones against a
background of zeros. However, if you select a four- or sixteen-

The Video Display 59

colour mode then one bit per dot on the screen is clearly not enough.
To select one of four colours you need two bits, and to select one of
sixteen colours you need four bits. Thus, in a four-colour mode
(modes 1 and 5) the value of two bits in the video memory determine
the colour of one dot on the screen. In the only sixteen-colour mode,
mode 2, it takes the values of four bits stored in video memory to
determine the colour of one dot on the screen. As a memory location
can hold eight bits, a single memory location can hold the colour
values of eight dots in a two-colour mode, four dots in a four-colour
mode and two dots in a sixteen-colour mode. How to find the bits
that correspond to a single dot is discussed in the next section on
memory maps but you should now be able to see why each display
mode takes the amount of memory that it does.

The screen memory map for mode 4

What the use of a bit-mapped display means for the programmer is
that, unlike machines such as the PET where storing a byte in a
memory location causes a complete character to appear on the
screen, storing a byte in the BBC Micro’s display memory causes a
pattern of dots on a single line to appear. All that we need to know
now is how each memory location corresponds to a screen position -
in other words, the screen memory map for each mode.

For simplicity it is better to start by considering a two-colour
mode such as mode 4. The best way to discover the memory map for
mode 4 is via a small test program. If we start at the lowest screen
address and store a byte consisting of all ones then a short line of
dots will appear somewhere on the screen. If the BBC Micro uses a
fairly normal screen memory map, the line should appear in either
the top left or bottom right corner. If you run the following
program: |

10 MODE 4
20 PHIMEM=&FF
30 8TOF

then you should see a short horizontal line in the top far left-hand
corner. If you don’t then it’s possible that it’s just off the part of the
screen that your TV displays and a slight adjustment of the controls
should make the line visible. If this fails then try *TV 254, This will
move the whole display down by two lines. The program works by
first selecting mode 4 and then (in line 20) storing the hex value FF in

60 The BBC Micro

the memory location whose address is stored in HIMEM. The
variable HIMEM stores the address of the first screen location in
any mode, and FF in binary is eight ones and so produces a row of
eight dots. We now know that the first (lowest) screen address
corresponds to the top left-hand corner.

To find out how the rest of the screen memory map is arranged try
the following program:

10 MODE 4
20 FOR I=0 TO 7
30 P(HIMEM+I)=&FF
40 NEXT T
90 GOTO S0

This stores the hex value FF in eight consecutive memory locations.
What is surprising about the result of this program is that, instead of
producing a thin line eight characters long across the top of the
screen, it displays a solid block about the same size as a normal
character. The screen memory map for the BBC Micro is such that
the first eight memory locations form the dot matrix for the first
character. The next eight form the dot matrix for the character to
the right of the first and so on to the end of a line. To see the screen
memory map in action try the following:

10 MODE 4

20 T=0

30 P(HIMEM+I)=&FF

40 I=1+1

50 FOR J=1 TO 50

60 MNEXT .J

70 GOTO 3¢

You should see the screen fill up, character position by character

position. You can use this program to explore the possibilities of
storing graphics data directly into the screen. In most other versions
of BASIC, access to memory locations is via the command POKE,
which stores values in memory locations, and the function PEEK,
which returns the value stored in a memory location. For this reason
storing data directly to screen location is usually called POKEing
the screen and, similarly, finding out what is stored in a screen
location is usually called PEEKing the screen. To see that things

other than solid lines can be POKEd to the screen try altering line
30 to: |

30 POHIMEM+T) =RND (255)

The Video Display 61

and removing the delay loop formed by 50 and 60.

Using the information obtained from the above programs, we can
work out a simple equation that will give the address of any screen
location:

addrmﬁﬁmHIHEH+(K+TH40)*8+H

which gives the address of the Nth line making up the character at
the screen location X,Y. (N,X and Y all start from zero in the top
left-hand corner.)

The screen memory map - for other modes

The memory map for any two-colour mode is easy to deduce from
that of mode 4. For example, mode 3 has eighty characters to a line
and 25 lines so the address of any screen location is given by:

arddreges=HIMEM+ (X+YXRED I XN

The corresponding expression for mode 6 with 40 characters on each
of 25 lines 1s:

ardciresss=HIMNEM+ (X+YX40 I X8 +N
Finally, that for mode 0 with 80 characters and 32 lines 1s:
addresssHIMEM+ (X+Yx80) X8-+N

Natice that the only thing that affects the expression is the number
of characters to a line. The number of lines on the screen affects the
largest value of Y that can be used, of course. Modes 3 and 6 are
different from the other two-colour mode in that they are text only
displays. The only reason that they cannot handle graphics 1s that
there is dead space between each line of text that cannot be affected
in any way. In mode 4 a full 32 lines of character locations fill the
screen completely. However, there are only 25 lines of character
locations in modes 3 and 6 and these are also spread out to fill the
screen. This is done by leaving a littie space between each line and
this is the origin of the dead space seen in each of these modes. To see
this dead space try the following program:

0 MODE &
0 WD 19,0,9.0,0,0

The way that VDU 19 works will be discussed later but meanwhile

62 The BBC Micro

notice that line 20 sets the background colour to blue. The dead
space then shows clearly as black lines.

The complication that arises with four- and sixteen-colour modes
is due to the need for more than one bit to represent each dot on the
screen, How are the extra bits organised in the memory map of the
other modes? The answer to this question is that the fundamental
memory map outlined for mode 4 is used for all the other modes
except of course that each point on the screen is now determined by a
small group of bits in each memory location. For example, in mode
4 a memory location holding eight bits gives rise to eight dots but in
mode 5 (a four-colour mode) the same memory location only gives
rise to four dots. In this case each group of two bits determines which
of the four colours a point will be (see Figure 4.4).

Memory

0 Mode 5

0L1

Fig. 4.4. The correspondence between mémury and screen for Mode 4 and
Mode 5.

The best way to investigate the memory maps of the other
graphics modes is to use the programs given in the last section but
change line 10 to give the required mode. Inmode 5, as each block of .
eight memory locations now corresponds to only eight rows of four
dots and each character still needs eight rows of eight dots to be
displayed, it should be obvious that the storage of a single character
involves two such blocks - one for the left-hand side and one for the
right-hand side. Thus, the expression for the memory location

The Video Display 63

corresponding to a row of dots in mode 5 (with 20 characters to a
line) is:

address=HIMEM+ (R+2%X Y240) w340
and in mode 1 (with 40 characters to a line):
adriress=HIMEM+ (R+2XX+YXHB0) X8+N

where X and Y are the column and line numbers of the character
location, N is the number of the row of dots making up the character
and R is set to 1 if it is in the right half of the character and to zero
otherwise.

In the sixteen-colour mode 2 each memory location produces only
two dots but the same overall pattern is maintained. Each set of eight
memory locations produces a block two dots wide by eight high.
Once again, a character needs an eight by eight block of dots so four
of these smaller blocks are used to produce each character. If we
number these smaller blocks as 0 to 3 starting at the left then the
address of the memory location holding the Nth row of block B at
character location X,Y is given by:

addreas=HIMEM+ (A%X+E+YXB0) X8+N

The only question still left unanswered concerns the organisation
of the bits within each memory location. In a two-colour mode, the
contents of each memory location produces a row of eight dots, with
the most significant bit corresponding to the left-most bit on the
screen. This can be seen in Figure 4.5. In a four-colour mode the

M.S.B. LS.B.
bit7 @ 5 4 3 2 1 0
[-1 2 Fs fd “ 5 ‘ 6 7 8 lDotnumber

Fig. 4.5. Bits to dots in a two-colour mode.

contents of a memory location control the colour of a row of four
dots. The way that the bits pair to produce this row of four dots can
be seen in Figure 4.6. (Notice that this is not the most obvious
way to pair bits in a memory location.) Finally, the way that the
eight bits in each memory location group to control the colour of
two dots in a sixteen-colour mode can be seen in Figure 4.7.

All this may seem a little complicated. Compared to the way other
computers work it is, but if you want to have the sort of freedom of

64 The BBC Micro

M.S.B. L.S.B.
7 ‘ 0

HOnE

Fig. 4.6. Bits to dots in a four-colour mode.

3 4 | Dot number

action that the BBC Micro allows there is no other way of doing it!
In practice, the use of direct memory-mapped graphics is limited to
either mode 4 where it 1s easy, or involving assembler where every-
thing is more difficult! Seriously though, POKEing the screen is
something that is not as useful on the BBC Micro as on other
machines - partly because it is more difficult except in two-colour
modes and partly because the BASIC provides all sorts of features
that make 1t unnecessary. What is more important is that a
knowledge of the screen memory map allows you to find out quickly
what is stored at any screen location.

M.S.B. L.S.B.
7 0

T e Joaree

Fig 4.7. Bits to dots in a sixteen-colour mods.

PEEKing the screen

This brings us to the topic of PEEKing the screen to see what
character is stored at a particular location. This is easy in machines
such as the PET - all you have to do is to PEEK the screen location
and this returns the ASCII code of the character stored at that
position. For the BBC Micro things are not quite as easy. The first
problem 1s that PEEKing a screen location in a two-colour mode
returns the dot pattern of a row of the characters stored at the
location. This is not as useful as the ASCII code because, in general,
it 15 not enough to identify the character — for example, it is possible
for two characters to have the same dot pattern in every row except
one! The second problem is that for the modes thatuse morethan two
colours, even a single row of dots from a character is difficult to
obtain without a number of PEEKSs and quite a bit of logic.

The Video Display 65

This might make you think that screen PEEKS are not worth the
trouble on the BBC machine. However, for mode 4 things are easier
than they look. The general problem of deciding what character 1s
stored at a screen location is difficult even in mode 4 but in most
graphics-based applications this is more than we want to do. Instead
of identifying what character from the set of all possible characters is
present, it is usually enough to decide which of two or three
characters is there. For example, if you are using “O’ to represent one
type of player and ‘X’ to represent another then you only have to
discover if the character stored at a location is one of blank, O or X.
This is a much easier problem as it should be possible to find a row
of dots that is different in each character. If this is possible then you
can tell the three characters apart by PEEKing that one row! In the
case of blank, X and O, any row will distinguish them. For example,
row three corresponds to 0, 24 and 102 respectively. As we know the
screen memory map for mode 4, we can write a function that will
return the address of a particular row of a screen location:

100 DEF FNS(X,;Y,N)=HIMEM+ (X+40xY)x8+N

FNS will return the address of the screen location corresponding to
the character position X,Y and the Nth row of the character.

As an example of how to use FNS the program below prints a
character on the screen at 20,10 and then prints the value of the dot
pattern that makes up each row of the character.

10 INFUT A%
20 MODE 4
20 PRINT TABC(20,10)2A%
S 40 FOR N=0 TO 7
50 PRINT N,PFNSCZ0,10,N)
60 NEXT N
70 END
100 DEF FNS(X,Y,N)=HIMEM+ (X+40XY)xB8+N

This program can also be used to discover how any character is
made up. - it was used to find out the values of the third row of blank,
X and O, for example. In practice, the function FNS would
typically be used in IF statements to decide what action a program
should take according to what is stored at a particular location.

The character table and using the MOS to PEEK the screen

Although the BBC Micro doesn’t use an external character

66 The BBC Micro

generator ROM, it still has to have a table of what dot patterns

- should be used to make each character somewhere in ROM. This
character table can be found at the start of the MOS ROM, that is at
address &C000. The dot pattern for each printable ASCII character
is stored in this table as eight memory locations, each location
corresponding to a row of dots. The first eight locations store the
pattern for the ASCII blank, the next eight store the pattern for !
which 1s the next ASCII character and this sequence continues to the
last printable ASCII character, ~. A short program to print the
patterns stored in the character table is given below.

10 X=&C000
20 A=PX |

30 PRINT AX3TARCLS) JFNE(A)

40 X=X+]

50 IF X=8%INT(X/8) THEN FRINT
60 GOTO 20 :

100 DEF FNB(X)

110 LOCAL T,A%

120 Age=tn

130 FOR I=7 TO 0 STEP -1

140 A$=0TRE(X-2XINTI(X/2))+A%
1350 X=INT(X/2)

160 NEXT I

170 =A%

The function FNB might be useful in other programs. It converts a
number to a binary number and returns the result as a string.
Whenever a character is to be printed on the screen the MOS looks
up the dot pattern in the table and then stores it in the correct
location in the screen memory. In two-colour modes this is straight-
forward and only involves transferring the bit pattern as stored in
the table. There is quite a lot more work to be done in four- and
sixteen-colour modes. The bit pattern stored in the table has to be
used to set groups of bits in as many as 32 memory locations to the
current foreground colour. This is so complicated that it is better left
to the MOS! However, knowledge of where the character table is
located can be used to plot dots or print other letters in the correct
pattern to form very large letter displays. Apart {rom this
application the character table could be used in reverse to discover
what character was displayed at any location on the screen, This
would involve comparing each of the eight memory locations that
make up the character on the screen with each block of eight
locations of the character table that define a character until a match
is found. This is a slow and fairiy difficult procedure but fortunately

The Video Display 67

the MOS contains a subroutine that will carry out the search for us.

The OSBYTE call (see Chapter Three) with A=&87 will return
the ASCII code of the character currently under the text cursor. The
following function FNASC(X,Y) will return the ASCII code at
screen location X,Y and CHRS$(FNASC(X,Y)) will supply the
character itself: |

100 DEF FNASCIX,Y)

110 LOCAL C

120 XE=X

130 YX=Y

140 AZ=13%0

150 C=USRC&FFF4)

160 C= AND &FFFF

170 C=C DIY &100

180 =C

Finding the dot pattern corresponding to an ASCII code 1s fast

because the table is organised so that the ASCII code leads straight
to the correct pattern by a simple calculation. However, going back
from the pattern to the ASCII code is slower because it involves
finding a match for eight bytes somewhere in the table! Even so, the
User Guide claims an average time of only 120 micro-seconds to find

the character!

The 6845 video generator and the ULA video processor

Now that we have a fairly full picture of the way that information is
stored in the video RAM it is time to reconsider the two major
components of the video circuit — the 6845 video generator and the
ULA video processor. If you recall the discussion in Chapter One,
you will be aware that the 6845 1s responsible for supplying the
correct address of the memory location that contains the bit pattern
of the row of dots that has to be displayed on the screen. For
example, in mode 4 the first visible line of the TV frame is composed
of the dot pattern in the first, eighth, sixteenth, etc. screen memory
locations. In addition to generating these addresses it also produces
the signals that provide the timing for the TV picture and a signal
that is used to produce the cursor. The operation of the 6845 is
controlled by the values stored in 18 internal registers. However,
these internal registers cannot be accessed directly. Instead, the 6845
has a single address register and a single data register. To write a
value to any of the internal registers you have to store the number of
the register in the address register and then store the value in the data

68 The BBC Micro

register. To read a value from any register, the same procedure is
followed except of course that the data register is read. In the BBC
Micro, the 6845’s address register is at &FE0Q0 and its data register is
at &FE(01. The MOS provides a way of storing information in the
6845’sinternal registerusingthestatement VDU 23,0,R,X,0,0,0,0,0,0
where R is the register number and X is the value to be stored in it.
To read the value stored in a register there 1s no choice but to use
7&FE00=reg and 7& FEO1=value. You could use the 18 registers to
change the mode of operation of the 6845 to produce different screen
formats but because the BASIC and MOS expect to work with the
particular formats corresponding to modes 0 to 7 there are lots of
problems unless you intend to handle every screen function yourself.
A table of 6845 registers with brief comments is given below just to
give you some idea of the sort of things that can be changed. If you
are really interested in using the 6845 in ‘odd’ ways then my advice is
to get hold of a full data sheet.

Table 4.1 6845 registers

Register Comments
RO The total time taken for each horizontal scan line i.e. the
horizontal sync frequency. |
R1 The number of characters on a line,
R2 Position of horizontal sync pulse.
R3 Width of horizontal sync pulse.
R4 Vertical sync frequency.
RS Vertical sync frequency.
‘Ré Number of character lines displayed.
R7 Vertical sync position,
R8 Interlace mode.
R9 No. of vertical dots per character.

R10 Cursor start line,

R11i Cursor stop line,

R12 (LSB) used with register 13 to specify the memory location
corresponding to the first character location.

R13 (MSB) see R12.

R14 With R15 holds the address of the cursor.

R15 See R14,

R16 Light pen register.

R17 Light pen register.

The Video Display 69

The few registers that are useful to the user are made available via
the MOS. For example, R14 and R15 are used by the OSBYTE call
with A=86 to read the current cursor position. The cursor control
registers 10 and 11 are used by VDU 23,1,0;0;0;0 which turns the
cursor off and VDU 23,1,1;0;0;0,0 which restores it.

The 6845 is responsible for providing the address of the memory
locations in the correct order but it is the ULA video processor that
is responsible for taking the contents of the memory and converting
them to dots of the correct colour. As always, it 1s easier to consider
the two-colour case of mode 4 first. At each access a memory
location provides eight bits but the TV display requires these eight
bits one at a time in the correct order as the scan builds up a line
across the screen. The ULA takes the eight bits from memory and
feeds them out one after the other. In other words, it serialises the
bits. If this was all the ULA did the BBC Micro’s graphics facility
would be severely limited. The video output of the video processor
consists of the three signals R (Red), G (Green) and B (Blue). The
colour displayed on the screen depends on which of the outputsare ‘on’.
For example, R on and G on produces a yellow output. All three
being on produces white. You should be able to see that by takingall
combinations of G and B you can produce eight different colours.

Table 4.2 Three-bit colour codes
(N.B. 1 = on).

CODE BGR Colour

0 000 Black
1 001 Red
2 010 Green
3 011 Yellow
4 100 Blue
5 101 Magenta
6 110 Cyan
7 111 White

Now consider the problem of determining the colour of a dot
displayed on the screen. In a two-colour mode each bit coming out
of the serialiser could be used to select one of the eight possible
colours. The only sensible way to do this is to have an extra small
memory, called the palette, that is used to store a code for the colour
to be produced when the bit is a one and another code for when the

70 The BBC Micro

bit 1s a zero. The easiest code to use is a three-bit representation of
which of RGB are on and which are off, as shown in Table 4.2.

Suppose, for example, that the palette has just two memory
locations whose addresses are zero and one and that the code 011 is
stored in zero and 101 is stored in one. Then if the output of the
serialiser is fed to the palette as an address, a zero bit will produce a
colour code of 011 and a one bit will produce 101. In other words, a
yellow background with magenta dots will be displayed. By
changing the colour codes stored in the palette any two of the eight
colours can be used in a two-colour mode.

This idea extends quite easily to the four- and sixteen-colour
modes. In the four-colour case we need a palette memory with four
locations addressed as 00, 01, 10 and 11, each location again being
capable of storing three bits of information. Now each dot on the
screen 1s determined by two bits and this is reflected in the workings
of the serialiser. Instead of changing each byte into a single stream of
bits it changes each byte into two streams of bits. This is done in such
a way that at any moment the two bits coming out of the serialiser
are the correct two bits to determine the colour of a single dot. These
two bits are used to address the palette and hence are converted into
the colour codes, Obviously the four colours that appear on the
screen can be selected from any of the eight available colours.

The sixteen-colour mode works in exactly the same way, the only
problem being that there are only eight colours! The solution is that
the extra eight colours are not really colours at all. They are just
combinations of the original eight colours flashing. The palette can
in fact store four bits not just the three RGB bits. The fourth bitis a
Sflash bit in the sense that if it is 1 then the colour displayed on the
screen alternates between its code value as stored in the palette and
colour corresponding to its code value with all bits inverted. For
example, if the palette held 1101, the flash bit would be set and the
colour displayed would alternate between 101, magenta, and 010, green.
In a sixteen-colour mode the serialiser feeds four streams of bitsto be
used as an address to a palette with sixteen memory locations.

After all this description it is worth summarising the details of the
palette and the serialiser. The palette is a small area of memory
within the video processor. Each location within the palette can
store four bits which correspond to flash, B, G and R and whose
state determines which of the sixteen colours is produced on the
screen. The serialiser changes each byte retrieved from the video
memory into either one, two or four streams of bits depending on
whether the mode is a two-, four- or sixteen-colour mode. The bits

The Video Display 71

forming these streams are used to address the palette RAM and so
the colour codes stored in the video RAM are converted to actual
colours. The relationship between the serialiser and the palette is
shown in Figure 4.8.

8 blts from
memory Address | Palette RAM Data from
b7 —mnmed palﬂf;:HM [palette RAM
>— .ﬁ - Flash
A3 |
-4 - b2
> i)_A2 b 16 locations D Blue
>—1 § 5 A 4 bits b1
. stored in each Green
> . ! >
> .| | X —>»—Red
1,20r Qutput
bg —>- 4 bits o video circuits
depending on mode

Fig. 4.8. The serialiser and palette RAM.

This changing of the colour codes stored in the video RAM to the
actual colour codes produced by the palette is represented in the
BBC Micro’s software by the idea of logical and actual colour,
Within each mode the same logical colour codes are always used. In
a two-colour mode these are 0 andl, in a four-colour mode they are
0,1,2,3 and in a sixteen-colour mode they are 0 to 15. In each case
these codes are simply the result of the number of bits used to control
the colour of a dot in each mode; at this stage they have nothing to
do with colour. They are associated with actual colours by the
contents of the palette RAM. For example, if in a four-colour mode
the third location of the palette RAM contained 0110, then the
logical code 3 (11 in binary) would produce acyan dot. The contents
of the palette RAM can be changed by the VDU 19 command. The
form of this command is:

vDU 19,logical colour,actual colour,0,0,0

which causes ‘logical colour’ to produce ‘actual colour’ on the
screen. Another way of looking at this command is that it stores the
code for the actual colour in the location in the palette RAM with
the address given by the code for the logical colour. For example,
VDU 19,1,2,0,0,0 sets logical colour 1 to actual colour 2, 1.e. green,
or it stores the code 0010 in the palette RAM location 01 depending
on how you look at it!

72 The BBC Micro

To read the current contents of the palette RAM you can use an
OSWORD call with A=&0B. This is described on page 462 of the
User Guide and needs no further comment.

Hardware scrolling

There 1s one feature of the BBC Micro that is very surprising and can
make use of the screen address map very difficult. When you carry
out 2 MODE command the screen address map is set up as we have
discussed and remains unaltered during the running of a program
unless that program prints something that causes the screen to
scroll. The action of scrolling is such a common sight on VDUs and
computers that it is rare to give it a second thought. However, if you
try to write a program from first principles that will scroll an entire
screen you will realise what a time-consuming manoeuvre it is. Each
text line of the screen must be moved up by one line. The bottom line
1s cleared and the top line is lost. In the BBC Micro’s case, this screen
shift for mode 4, if done by software, would need 10K bytes of
storage to be rearranged. This would be slow, to say the least. To
overcome this speed problem, scrolling is carried out by hardware
which, in effect, alters the screen memory map so that the memory
locations correspond to screen positions one higher. The memory
corresponding to the old top line is cleared and is made to correspond
to the new bottom line. In other words, following a single scroll,
POKEing data into memory that was the top line produces output on
the bottom line. Of course this re-mapping of the screen makes a non-
sense of the screen mapping functions given earlier! The solution is
simple — either avoid scrolling the screen following a MODE
command or adjust the functions to take account of any scrolling.

" To take account of scrolling it is necessary to keep a count of the
number of times the screen has scrolled since the last MODE
command. If the scroll count is kept in SC then the f ollowing version
of FNS will work (for mode 4):

180 DEF FNS(X,Y,N)

110 YT=Y+8C

120 YT=YT~INTC(ARSCYT) /32> %37

130 =HIMEM+ (X+YX40)%8+N
Notice that YT and SC are global variables and are accessible to the
main program. Luckily, it is not often that the need to scroll the
screen occurs in the same situation as the need to use POKE or
PEEK graphics.

The Video Display 73

The way that the scrolling hardware works 15 quite simple. The
6845 video generator chip contains two registers, R12 and R13,
which hold the address (divided by 8) of the start of the video RAM.
These registers are set to the normal start of the screen following a
MODE statement. However, when a scroll occurs the starting
address held in the registers is increased so as to point to the start of
the second line of the screen. This now becomes the new top lineand
every other line is moved up one. But what about the bottom line? It
is now below the start of the area of memory that is displayed and so
will not appear on the screen? The BBC Micro has some special
electronics to overcome this problem. No matter where it starts
from, the video generator always tries to display the same amount of
RAM. As the highest video RAM address is always the same in any
mode (&7FFF in a 32K machine and &3FFF in a 16K machine) an
address produced by the video generator above the top of the video
RAM area can easily be detected. When the screen display is in its
initial state the video generator addresses memory from the start of
the video RAM right up to the top. However, following even a single
scroll, it will overshoot the top of the video RAM by exactly the
amount that it has moved up. This is detected by the BBC Micro and
a number is added to any such address to bringit back to the start of
the video RAM. In other words, the address is made to wrap round
the video RAM. This means that the previous top line isn’t lost; it 1s
now displayed (after being cleared) as the new bottom line. The
number to be added to such out-of-range addresses is different for
each mode and is set by the state of the two lines C1 and C2 from
VIA-A (see Chapter One).

The consequences of this hardware scrolling method are that you
can set the starting point of the screen display lower by changing the
“values stored in R12 and R13 without any trouble but trying to
increase it causes the screen to scroll. Only in this case the scroll is
really a screen roll because the lines that appear at the bottom are
not cleared first! By changing the contents of R12 and R13 by less
than a whole line you can implement horizontal screen rolls. Try
experimenting with the following program:

10 MODE 4

20 CLS

30 FRINT TAEC1S5,10)i"HI THERE®

10 SA=HIMEM/Q

90 VDU 23,0,13,TX+5% AND RO0OFF,0,0,0,0,0,0
60 TA=Tx+1

70 IF TZ5%39 THEN IX=D

80 FOR JX=1 T0O 1000INEXT J¥%

0 GOTO 50

74 The BBC Micro

There 1s an easy way of disabling hardware scrolling and that is to
define a text window using VDU 28. If a text window is defined then
it 1s possible that not @// of the screen will have to be scrolled.
Because of this the hardware cannot be used and each line must be
moved up by a software transfer. If you try this you will realise how
valuable hardware scrolling is in speeding things up! |

Mode 7 teletext graphics

A Mode 7 display works in a completely different way from any of
the other modes. Instead of storing the bit pattern corresponding to
the shape of each character to be displayed, only the ASCII code is
stored. The actual bit pattern for each character is stored in an extra
ROM in the video circuitry. You should recognise this as the
‘classical’ video circuit described at the beginning of this chapter.
The only difference is that the ROM, an SAA 5050 teletext
generator, produces three output signals R (Red), G (Green) and B
(Blue) for an eight-colour display (with certain limitations). The
advantage of using this classical arrangement is that it provides a 40
character by 25 line dispéay using only 1K of RAM. Even though
only 1K of RAM is used, mode 7 provides a full upper and lower
case character set and a low resolution (80 by 75) in colour!
However, even though mode 7 can solve many graphics problems in
less space than the other modes, it isn’t used as often as it could be.
The main reason for this is that the colour control in mode 7 is by the
use of control codes and the graphics take the form of block graphics
characters. These are both more difficult and more restrictive than
the methods used in the other modes. However, with a little
understanding and practice mode 7 can be used to produce very
good effects. To see the sort of results that can be achieved just look
at any of the broadcast teletext pages.

As already mentioned, only the ASCII codes of the characters on
the screen are stored in RAM in mode 7. This means that changing
the contents of a single memory location will change the dot pattern

for an entire character location. The memory map in mode 7 is:

memory locstiormn = HIMEM+X+Y%4()

e m amamat e s LT em ekt d L amm oy S . e e - . .

The Video Display 75

which is the address of the memory location corresponding to the
character at X,Y. To see this in action try the following:

10 FOR X=0 TO 39

206 FOR Y=0 TO 24

30 PFNGLIX,Y)=AGL("A")
40 NEXT Y

all NEXT X

&40 STOF

70 DEF FNS(X,Y)=HIMEM+X+40xY

Notice the use of the ASC function to store the ASCII code for the
letter A in the memory location. You can use the FNS function to
examine and change screen locations in mode 7 but OSBYTE call
with A=&87 (see earlier) is likely to be just as fast in this case.

- The colour of teletext graphics is set by the use of control codes
rather than COLOUR or GCOL statements. These codes are easy to
use in that they set the colour of all the teletext characters that follow
until another code or a new line removes their effect. However, there
is one problem in that they are not invisible on the screen. Every
control code shows on the screen as a blank character the same
colour as the current background. This makes changing colours in
mid-line impossible without leaving a space between the two
coloured zones the same colour as the current background. In other
words, two areas of different foreground colours cannot meet on a
line. There is, however, nothing stopping two lines of different fore-
ground colours ‘touching’. Even with this restriction it is still
possible to draw very good teletext pictures. As mentioned earlier,
the best way to discover more is to study the transmitted teletext
pictures on the BBC (television!).

Conclusion

This chapter has tried to explore some of the hardware and software
aspects of the BBC Micro’s graphics capabilities, It has, however,
barely scratched the surface of this vast topic. In particuiar, no
mention has been made of the standard BASIC and MOS
commands, such as PLOT and VDU. These are well described in the
User Guide, although, of course, there is a lot to be learned through
experimentation and general experience. The practical value of the
information presented in this chapter about graphics memory maps
for the different modes will be considered in Chapter Eight where
we consider the problem of writing a screen dump program.

Chapter Five
The Sound Generator

One of the attractions of the BBC Micro as a machine to have fun
with is the presence of a sound generator chip with one noise channel
and three tone channels. Just this hardware alone would lead you to
€xpect to be able to produce three note chords and a range of simple
sound effects. However, the software that is built into the MOS and
the BASIC to handle it makes it a lot more powerful than the
hardware specification might lead you to believe. By the clever use of
interrupts and a system of queues the BBC Micro can make sounds
and move things around the screen, etc. at the same time! In
addition, the ENVELOPE command gives the BASIC programmer
an amazingly high degree of control over the nature of the sound
produced. Once again, the combination of good hardware enhanced
by well thought out software makes the BBC Micro remarkable!
" Inthis chapter we will take a closer look at the sound generatorand
the sound generating software inside the BBC Micro. Some of the
discussion will be about the sound generator hardware itself and this
will be of particular interest to the assembly language programmer.
However, the first part of the chapter deals with the software - the
SOUND and ENVELOPE commands - how they work and what
they can be used for.

An overview

Before becoming too deeply involved in the details of using the
sound generator 1t is worth taking an overview of the facilities it
provides. There are three tone generators that can be used to
produce either single notes or up to three-note chords. There is, in
addition, a single noise channel that can produce eight different
effects. This fairly simple hardware is controlled using two

extensions to BASIC - SOUND and ENVELOPE. The SOUND

The Sound Generator 77

command is the only one of the pair that actually causes anything to
come out of the tiny speaker just above the keyboard. Among other
things, it controls the pitch, amplitude and duration of the notes
produced. The ENVELOPE command 1is used to change the
characteristics of the notes produced by the SOUND command.
Used without the ENVELOPE command, SOUND produces a
more or less pure tone with a given frequency, which is fine for most
applications, e.g. beeps during games or playing simple tunes.
However, if you want to try to produce more complicated sounds
then you have to use the ENVELOPE command to alter the basic
sound produced. There are two general reasons for wanting to
produce more complex noises — either you are interested in music
and making vour BBC Micro sound like a piano, a flute, an organ, a
guitar ... or you want to make especially convincing sound effects
such as a police siren, a gun shot, etc.

The study of the BBC Micro’s sound capabilities, therefore, falls
into these two categories — music and sound effects.

There are three levels of difficulty involved in making music with
the BBC Micro: |

1. Playmg simple tunes.
2. Playing music with three-part harmony
3. Synthesising the sound of other instruments.

The first two involve the use of only the SOUND command but the
last one also needs a mastery of the ENVELOPE command. To get
very far with any of the three you also need a reasonable
understanding of music but if you feel a little unsure about this then
programming sound is a very enjoyable way to learn.

The subject of sound effects is much more limited because all that
we are trying to do is to compile a catalogue of ‘recipes’ to make a
few standard noises. However, there are two ways of approaching
" sound effects. You can either use the SOUND command to control
the noise channel or you can use the ENVELOPE command to
define basic sounds. With the latter you can produce quite
remarkable effects but there’s still a great deal of scope for
producing a wide variety of noises using the SOUND command, and
it can fill the requirements of most games playing applications alone.

The SOUND command
The SOUND command has the general form

SOUND C,A,P,D

78 The BBC Micro

where C controls which channel - 0 (the noise channel), 1, 2 or 3 -
produces the sound; A controls the volume and ranges from 0
(silence) to —15 (loudest); P controls the pitch of the note and ranges
from O (lowest pitch) to 255 (highest); and D controls the duration of
the note and ranges from 1 to 2535 in twentieths of a second.
(However, it is worth noticing that if D 1s set to —1 then the note
produced will continue to sound until you take steps to stop it!)
There are various extra meanings associated with the parameters C
and A. Positive values of A in the range 1 to 4 cause the pitch and
volume of the note to be controlled by the parameters of an
ENVELOPE command. The channel parameter C is in fact quite
complicated and is best thought of as a four-digit hexadecimal
number

&HSEFN

where each of the letters stands for a digit that controls a different
aspect of sound production. What exactly each of them does is
better left until later except to say that N is the channel number as
described earlier.

Programming tunes is simply a matter of converting notes into
numbers. This is easy once you know that middle C correspondsto a
value of 53 and going up or down by a whole tone corresponds to
adding or subtracting 8. The only thing that you have to be careful to
remember is that there isn’t always a whole tone between two notes.
For example, between the notes of Cand D there is a whole tone but
between E and F there is only a semi-tone. The pattern of tones and
semi-tones from C to C an octave above is

C-D-E-F-G-A-B-C
T TSTTTS

which is easy to remember because it’s the same as the pattern of
white and black notes on the piano. Obviously, sharps and flats can
be produced by adding or subtracting 4. So you can produce the full
chromatic scale by

10 FOR F=5%3 TO 97 STEF 4

20 SOUND 1,-13,F,10
30 NEXT F

This short program can also be used to demonstrate a unique
feature of the BBC Micro. If you add line 15:

15 PRINT F

The Sound Generator 79

you will discover that the numbers are printed on the screen and
‘even though the program finishes, the sound keeps on coming. The
reason for this remarkable behaviour is that the BBC Micro
‘maintains a queue of sounds that are produced one after the other as
soon as the current sound is completed. The sound queue is
processed independently of any BASIC program that is running and
each SOUND statement simply adds a note to the end of the queue.
This means that a BASIC program isn’t held up for the duration of
each note. The only time that this fails is when the queue becomes
full and a SOUND statement tries to add another note to it. The
result is that the program then has to wait until the end of the
currently sounding note when the queue is reduced by one and the
SOUND statement can add its note. There is a separate queue for
each channel and each can hold up to four notes.

Programming tunes

To make a tune recognisable, not only must it have each note at the
right pitch, each note must also last for the correct time. The normal
system of musical notation is based on repeatedly dividing a time
interval by two to obtain shorter notes so it is a good idea to include
a variable in all music programs that sets the length of the
fundamental unit of time. As an example of programming a simple
tune consider the first few notes of Hearts of Oak (see Figure 5.1).
Translating each note to its pitch and duration value for the
SOUND statement gives the two rows of numbers under the music
in Figure 5.1. The best way to convert these numbers to sound is to
use a DATA statement thus:

5 C=5
10 DATA £9,1.89,1,89,.75,89,.25,89,1,103,.75,
Q7 o o 25,89, 1,85, 75,77 ,.25,69,.75,99,99
20 READ F,.D
30 IF F=9%99 THEN STOF
A0 SOUND 1,-1G,F,DxC
S50 S0UND 1,1,F,24
&0 GOTO 20

Line 50 has the effect of leaving short silences between each of the
notes. Without this line all the notes run together, Try deleting it and
re-running the program to appreciate the effect - it is one that you'd
want to use to ‘slur’ notes. You can program any tunes that you have
music for in the same way.

B0 The BBC Micro

£ F # _ L
c D # ﬁ b: .} ct
A B & & 'kr

g G g &

DE —li < " g

c E A A A A cf B A G§ FB €

P= 69 89 89 89 89 105 97 89 85 77 69

p= 1 1 % % 1 % ‘a . %
- R
D= 4

A ® FOLLOWING A NOTE INCREASES D BY 50%

Fig. 5.1. The first few notes of Hearts of Oak and their digital values for the
SOUND command. (Reprinted by permission of Computing Today.)

Three note chords

Most home computers with a sound generator could manage the
simple tune given in the last section. What is special about the BBC
Micro is that it is possible to generate three notes at the same time.
To see how this sounds, try the following:

10 DIM NC13D

20 DATA 53:61,69,73:81,89.99,101,109,117,
121,129,137

30 FOR I=1 T0O 13

40 READ NI

v NEXT T
60 At=INKEYHC0)
70 XF A$="" THEN GOTOQ &0

80 A=YAL (A%

Y0 SOUND 1,-15,NCA)Y,20
100 SOUND 13,---11'5,M(ﬁ+"*) » 4 U
110 SOUND 3,~15.,N(A+43, 20
120 GOYO &0

[t you RUN this program, by pressing each of the keys 1 to § you will
be able to hear the eight chords produced by adding a third and a
fifth to each of the notes of the scale of C. (A third is a musical
interval corresponding to playing a note two notes higher up the

The Sound Generator 81

scale and a fifth corresponds to playing a note four notes higher up.)
This is the simplest kind of chord, called a triad, and is very pleasing
to the ear. Typing in almost any combination of the number keys |
to 9 will produce something tuneful and it is easy to sit at your BBC
Micro and produce music. For example, if you want to hear a snatch
of tune that is almost recognisable try typing in the following
sequence.

556645778765

No prizes for guessing this one! The array N is used to hold the pitch
values for the notes of the scale of C and enough notes higher up to
form the triad on B. You can write a program to play a piece of music
with up to three-note chords using the same method as given for the
single melody in the last section.

There is one thing wrong with the previous program and that is
that each note of the chord starts at a slightly different time. In other
words, each of the SOUND commands starts off its note in the
chord as soon as it is reached. As they are executed one after
another, the note on channel 1 starts a little before that onchannel 2,
which starts a little before that on channel 3. The solution to this
problem would be to tell the sound generator to wait for two other
notes after the one initiated by line 90 before making any noise at all.
This is the purpose of the S part of the channel parameter introduced
in the section about the form of the SOUND command. If you use a
non-zero value for S, the sound generator will wait for other notes
before it starts playing. The number of notes that it waits for is given
by the value of S and the SOUND commands that produce them
must also use the same value of S. For example, in the case of the
triads played by the previous program the SOUND commands
would be replaced by

20 SOUND &0201,-10.NCAY 20
100 SOUND G202, -15,N(AY 20
110 SOUND 0203, ~15,NCA+4) , 20

The first SOUND command has a value of S equal to 2 so the sound
generator waits for two more SOUND commands with S set to 2
before producing a chord made up of all three notes.

The other parts of the channel parameter are also concerned with
the timing of notes. The H part of the parameter can eitherbealOora
1. Ifitisa 1, it adds a dummy note to the sound queue thatallows any
previous notes to continue without being cut short by another note.
This really only makes any sense when used with the ENVELOPE

82 The BBC Micro

command. The F part can be either 0 or 1 and if it is 1 1t causes any
notes stored in the channel’s queue to be removed or ‘flushed’ and
the note specified by the current SOUND command to be produced
immediately. This is useful for cutting short sound effects and
starting new ones, sychronised with external effects. For example, in
a graphics game you might want to stop the noise of a fire gun and
replace it by an explosion.

Simple sound effects

The only sound channel that we haven’t discussed as yet 1s the noise
channel - Channel 0. The noise produced by this channel depends on
the value of the pitch parameter P in the SOUND command:

Value of P Noise

High frequency periodic.

Medium frequency periodic.

Low frequency periodic.

Periodic of a frequency set by channel 1.
High frequency ‘white’ noise,

Medium frequency ‘white’ noise.

Low frequency ‘white’ noise.

Noise of frequency set by channel 1.

~1 O A R b= O

The first three noises (P=0 to 2) are rasping noises that come in very
handy for ‘losing’ noises in games! Values of P between 4 and 6
produce hissing noises of various frequencies. White noise 1s a
special sort of hissing noise that is made up by mixing a note of every
pitch in much the same way that white light is made up by mixing
light of every colour.

There isn’t very much that you can do to change the nature of the
sounds produced when P has a value of 0,1,2,4,5 or 6 apart from
altering the volume and duration. However, by changing only these
two parameters and combining noises you can still produce a useful
range of effects. For example, if you make any noise very short it
begins to sound percussive (like something being hit) and if you
combine a very short burst of white noise with a very short high
pitched tone you produce a noise like a metallic click. Try:

The Sound Generator 83

10 SOUND 0,-15,4,1iSOUND 1,~15,200,1
Similarly, mixing two noise-like sounds produces new effects. So,
for example:

10 SOUND ﬂ,"15;4p115UUND 0,-15,3,1
20 GOTO 10

produces a sound like a machine gun. Notice that as this example

uses the same channel twice, the two sounds follow each other to

give a rhythmical pulsing sound. Using this idea with two different

pitches of ‘white’ noise produces a sound very like a helicopter:
10 SOUND 0,-15,4,2

20 SOUND 0,135,731
30 G070 10

Notice that one of the sounds has to be twice as long to give the
pulsating beat of a helicopter’s rotor blades. You can go on
experimenting like this indefinitely! The range of sounds that can be
produced using channel 0 alone is so great that discovering new
sounds is easy. Putting a name to them is quite a different problem!

The pitch values 3 and 7 are special because they produce noises
on channel 0 that are controlled by the pitch on channel 1. This
opens the door to sound effects that involve noises that change in

pitch. For example.

10 SOUND 0,-15,7,3%

20 FOR I=200 TQ 255

30 SOUND 1,0,T1,1

40 NEXT I
produces a noise like a space ship taking off. The pitch of the noise
on channel 0 started by line 10 is continuously changed by line 30.
Notice that using a volume of (0 means that the notes produced by
line 30 are silent! Finally, try:

10 SOUND 0,-1%,7,55

20 SOUND 1,0,200,1

30 S0UND 1,0,235%0,1

40 G070 20
which produces a sound like a car engine being started (or rather
failing to start!)

The ENVELOPE command

The ENVELOPE command is -a very sophisticated way of
controlling the output of the sound generator. Without it there

84 The BRC Micro

would be no way of producing really complicated sounds without
resorting to assembly language. Part of the trouble with under-
standing the way an ENVELOPE command produces a sound is
that it is always used in conjunction with a SOUND command and it
is these two commands together that determine the actual sound
produced.

The ENVELOPE command is fairly difficult to use because it has
so many different parameters and because it is difficult to see how
these parameters are used to produce any desired sound. The User
Guide goes into some detail about what each of the parameters
actually does but it is still worth pointing out the general principle
behind the operation of the ENVELOPE command.

Section3 |
l

PI1*PN3 —
= Final !

pitch value

! Section 1 : Section 2
!
|
|
|
]
1
|
|

PI1*PN1 ~

Pitch value ———p

|
|
[
|
|
l l
[|
i PI2*PN2”| ’
! ; !
Initial pitch value i I I
| ')
| I |
| |
[|]
|) i
l&-————PN1 steps < PN2 steps —S3€¢PN3 steps—
L I ' 1
Time >

Fig. 5.2. Pitch graph.
Using the notation defined on page 245 of the User Guide, the
format of an ENVELOPE command is:

ENVELOPE N,T,PII1,PI2,PI3,PN1,PN2,PN3,
AAAD AS, AR, ALAALD

Broadly speaking, there are two types of parameter in an
ENVELOPE command - pitch parameters and amplitude para-

The Sound Generator 85

meters. The pitch parameters control the variation in pitch (if any)
that occur and the amplitude parameters control any variation in
volume that occurs. You can think of these two sets of parameters as
defining two graphs - a graph of pitch with time and a graph of
amplitude with time. The way that the pitch parameters determine
the pitch graph can be seen in Figure 5.2. The three parts of the pitch
graph are each controlled by two parameters. PN1 to PN3 set the
number of steps in each section and PIl to P13 set the change in the
pitch value for each step in each of the sections. There are two pieces
of information missing from this graph. We also need to know how
long each step lasts for and the starting pitch value. The first
requirement is met by the parameter T, which specifies the duration
of each step in hundredths of a second. The 1nitial pitch value is set
by the pitch value in the SOUND command that refers to the
envelope. It i1s possible that the total time specified for the pitch
graph, i.e. (PN1+PN2+PN3)Xstep duration, is shorter than the
time that the note sounds for. In this case one of two things can
happen. If bit 7 of the T parameter is a one, then the pitch value
remains at the final value specified by the graph for the rest of the
sound. However, if bit 7 of T is zero then the piatch value returns to
the inittal value and the whole pitch graph is used repeatedly until
the sound ends. Thus the parameter T conveys two pieces of
information, the duration of a step and whether the pitch graph
should ‘auto repeat’.

The way that the amplitude parameters specify the amplitude
graph can be seen in Figure 5.3. The amplitude graph is a little more
difficult to follow than the pitch graph because the time that each
section lasts isn't explicitly stated. The attack section comes to an
end when the amplitude reaches the specified attack level, ALA.
During this period the amplitude, which always starts at zero unless
continuing a previous note, increases or decreases by an amount
~given in AA at each step. The attack section is followed by the decay
section. During this period the amplitude increases or decreases by
an amount specified by AS at each step until it reaches the final
decay level specified in ALD. Notice that the times of the attack and
decay sections are not specified directly. Instead, each section lasts
until the amplitude reaches the specified final value. However, it is
easy to work out how long each lasts:

ALA

A X step duration

Attack period =

Decay period = ALD X step duration

AD

88 7The BBC Micro

Attack | Decay { Sustain | Release
A section | secltion |} section | section
| }
ALA I AL ! |
e~ AR —4— AD —ie— 5§ —le R
steps | steps | steps : steps
| |
@ I
3 | | !
S . |
& ' |

e o e e

T N A A S e s e) ey

—

<—— Duration set by sound command —>

D steps

Notes S=D—-ALA-ALD
AA AD
R=(ALA — AS*S)
AR

R may be cut short by the start
of another note.

Fig. 5.3. Amplitude graph.

The time that the third section - the sustain section — lasts isn’t set by
the ENVELOPE command. The overall time that the note lasts is set
by the duration specified in the SOUND command that makes use -
of the envelope. The sustain section lasts for however much time the
note has left to sound after the attack and decay sections. During
this period the amplitude decreases by an amount specified in AS at
each step. The final section of the graph - the release section — is the
strangest of all in that it happens after the ‘official’ end of the note as
set by the duration in the SOUND command. If the note isn’t
followed immediately by another then the amplitude continues to
fall by an amount specified in AR at each step. The note finally
terminates because the amplitude reaches zero or because another
note starts.

The Sound Generator 87
Experimenting with ENVELOPE

The above description of how the ENVELOPE command works is
all very well but how do you specify the values of the parameters to
produce a sound of your choice? There is no easy answer to this
question. Sounds have to be constructed by trial and error. To aid in
this process the following program allows the parameters of an

ENVELOPE command to be changed one at a time and the result
heard.

10 MODE 4

20 FROGCINIT
- 30 PROCPRINT
40 PROCCHANGE
ah GOTO 40

&0 STOP

70 DEF FPROCFRINT
80 CLS
Q0 PE=R000202053FPRINT TAE{(10) 3
"(T) Timve wunmit="$T/100;"
100 FRINTIFRINT TARC1G) ("Freauency SHection
110 PRINT:I@X%=10 |
120 FRINT "{(F1) Repeat ="iR%
130 PRINYT "(FP2}) Charnge in pitch section 1

=HIRT1

140 PRINT Y (F3) Number of steps in section 1
="M

1350 FRINT "“"(F4) Change in piteh section 2
="3FPIY

140 FRINT "(P5) Number of steps in section 2
=P NG |

170 PRINT "(Fé&) Change in pitch section 3
="iPI3

180 PRINT "(F7) Number of steps in section 3

- =M IPNG
10 PRINT "(FB) ITnitisl Pitch= "“}F
200 PRINT

210 FRINT TaRd(10) i "Amplitude Section™
220 PRINT
230 FRINT "“(Al) aAttack rate of chanae ="1AA3

"per step”
240 PRINT "“(A2) Alttachk taragel level = 3 ALA
250 PRINT "(A3) Decay rate of change ="jaD}
"per step"
260 FPRINT "(A4) Decay tarqget level =" 3ALD
270 FRINT "(AD) Sustain rate of charnge="145}
llpEr E.tﬁpll ;

280 FRINT Y{(A4) Release rate of chashae="}aR
Z90 FRINT

88 The BBC Micro

300

310[
320

330
340
350
360
370
380
390
400
4110
4.0
430
440
450
440
470
4430
490

500

510
320

o330
sS40

30
g &4
370
580
53910

600

6190
6210
&30
6440

&0
640
&70
680
&20
700

Z10
720
730

FRINT () Total Duration ="!D/20¢

"g {(="iD/Z20/TRIOGEY steps)™ _
FRINT TAR(S,28)1"Fress 8 to hesr sound"
ENDRDFROC | |

DEF PROCINIY
T=1
R$-"UFF“*R“I
PI=

PI2= u

TR0

ST

PN2=:0

FNG=0

F=128

AA=10

Al.A=100
ALD=10
D=t
ENDEEOC

DEF PROCSOUND

ENVELOFE 1,T+128%R,FIL1,PIZ2 ,PIB FNL, N2
FN3, AR, AD . AS, AR ALALALLD

SOUND 1,1,F,D

ENDFRROC

DEF PROCCHANGE

A =TNKEYS(0) i

IF A%="" THEN GOTO 540 |

IF A%="5" THEN PROCSOUNDIGOTO 560

IF A%="T" THEN FRINT TaARC(Z,30)3

"Time unit (in gsecsd= “J3IINPUT TIT=T%100
IF A$="D" THEN PRINT TARC(Z,30)¢

"Toltal Duratiorn (i secsd= "] IINFUT D! Q-DR?B
IF Ad="f" THEN FROCFITCHIGCOTO S&0

TF A$"”ﬁ" THEN PROCAMPIGOTO 540
FROCFRINT

GOTO %410

REF FROCFITCH

Ag=TINKEYH () -

TF A$<"0" OR A%:="9' THEMN GOT0O 640
A=EVAL{(A%) |

IF a=1 THEN GOTO 790

FRINT TAB(2,3008"Pitch parameter "!AS
il T ['I' +* INFll.J'T F:

TF amﬂ THEN PI1=PF

IF A=3 THEN PNl=PP

IF A=4 THEN FI2=pp

The Sound Generator 89

740 IF A=3 THEN PN2Z=FF

730 IF A=&6 THEN FI3=FF

760 TF A=7 THEN PN3=FF

770 IF A=8 THEN F=Ff

780 GOTO 810

7920 PRINT TAR(Z,30):"Repeat ON or OFF"3
SINPUT R%

800 IF R$="0N" THEN R=0 ELSE R=1

810 PROCFRINT

820 ENDFROL

830 DEF PROCAMF

840 A= INKEYS Q)

8%0 IF A¢<"0" Ok a$:"9" THEN GOTO 840

B4l A=EVAL (A% |

B70 FRINT TAE(Z,30)1"Amplitude parameter "161¢
W MR ETHRUT PP

g&n IF

A=l THEN AA=FF
890 IF A=2 THEN ALA=PP
00 IF A=3 THEN AD=PF
910 IF A=4 THEM ALD=FF
920 IF A=5 THEN AS=PF

30 IF A=4 THEN AR=FP
240 PROCPFRINT
Ya0 ENDFROC

The procedure PROCINIT sets inihal values to all the
ENVELOPE and SOUND parameters. PROCPRINT prints a list
of all the parameters, their meaning and their current value.
PROCCHANGE can be used to change the value of any of the
parameters by typing the parameter’s code (written in brackets on
the left by PROCPRINT). To hear the sound, simply press S. Using
this program you can construct and adjust sound effects very easily.
Once you have the sound that you want, write down the final values
for all the parameters and use them in ENVELOPE and SOUND
commands in your own programs.

The sound generator hardware

The sound generator chip used in the BBC Microis a SN 76489 bus-
controlled sound generator. This chip was designed to be used
directly with microprocessors. However, if you recall the discussion
in Chapter One of the way that VIA-A is used as a slow data bus to
various peripherals including the sound generator chip you will
realise that it is not interfaced directly to the 6502’s data or address
bus. The SN 76489 has eight data inputs, two control inputs and one
control output. The eight data lines are directly connected to the A

90 7he BBC Micro

side of VIA-A. Only one of the control lines is actually used and this
is the WE (write enable) line. This is connected to output 0 of the
741.S259 addressable latch. The WE line must be /low (i.e. logic zero)
before any data is transferred to the sound generator. Thus the
sequence to write a single byte of information to the chip is:

1. Setthe A side of VIA-A to outputs and store the data in the data
register, |

2. Set the WE line to logic zero. As WE 1s connected to output zero
of the addressable latch this is achieved by setting bits 0 to 3 of the
B side of VIA-A to zero, taking care not to alter the state of any of
the other bits in the B side data register.

3. After 32 clock pulses the data will have been read in to the chip
and the WE line must be returned to one. This is done by setting
bit 4 of the B side of VIA-A to one. After this, the sound generator
chip is ready for the next byte.

This procedure may seem complicated but it is very easy to write a
BASIC procedure to transfer bytes to the sound generator:

10600 DEF FPROCSOUND (BRYTEX)
1010 LOoCAL VIAXZ, TEMFX

1020 VIAXL=&FE4(0

1030 VIAZ?R3=&FF

1040 VIAX?RF=BYTEX

1000 TEMFX=?VIAX

1060 PVIAN=(TEMFZ AND &F0)
1090 PVIAZ=(TEMFZ AND &F8)
1100 PVIAXL=TEMP¥

1110 ENDFROC

Line 1020 sets VIA% to the address of VIA-A. Line 1030 sets VIA-
A’s A side to outputs (see Chapter Six for more explanation of the
VIA’s control registers). Line 1040 stores the data in the data register
and lines 1060 and 1090 change the WE line to zero and then back to
one. Notice the use of line 1050 and the variable TEMP%; to avoid
altering the state of any other of the outputs. The only part of the
procedure that is left to chance is the time between setting the WE
line to zero and then back again to one. As BASIC is slow compared
to the 4 MHz clock rate fed to the sound generator chip it is safe to
assume that at least 32 clock pulses occur between line 1060 and
1090. If you convert this procedure into an assembly language
~ routine then it would be necessary to add a pause while the 32 clock
pulses happened.
The only extra information necessary to control the sound

The Sound Generator 9’

generator is the format of the data bytes. This is easier to understand
after looking a little more at how the sound generator chip works.

Each of the tone generators takes the form of a 10-bit counter
connected to a four-stage attenuator. The output of each attenuator
is summed together to produce the audio signal (see Figure 5.4). The

Tone gen. Attenuators
VIA-A | control —>-l 1 L —
PAD o N
——
—> —> 2 > 2 >
—> g Audio
—> > 3 > 3 > output
PA;+ >]
— Noise gen.
Output0 ——)-{ %—l a —-
from latch s l

Fig. 5.4. Block diagram of SN76489AN sound generator.

counter is decremented once every 16 clock pulses and whenever 1t
reaches zero its output to the attenuator changes state, Le.ifitwasa
high it will go low and vice versa. To set the frequency of the output
signal the counter can be loaded with a 10-bit binary number which
is reloaded automatically each time the counter reaches zero. Thus,
the frequency of the square wave thatis fed to the attenuator is given

by:

_ N
32n

where N is the input clock frequency in Hz and nis the 10-bit binary
number. (On the BBC Micro, N=4 MHz.) Each stage of the four-
stage attenuator can be switched on and off individually. The stages
give 2dB, 4dB, 8dB and 16dB attenuation and selecting all four stages
turns the output of the tone generator off. Obviously, specifying the
attenuation requires four bits, one for each stage. The noise
generator is also connected to the audio output via a four-stage

f

92 The BBC Micro

attenuator. The noise generator itself takes the form of a shift
register with a feedback loop that can either be configured to
produce a roughly periodic signal or a sequence of pseudo-random
bits. The pseudo-random sequence when fed into the audio signal is
a good approximation to white noise — a sound that should contain
all frequencies at the same time! In addition the rate at which the
shift register is clocked can be set to one of three preset frequencies
or the output of tone generator three can be used.

The sound generator chip has eight internal registers which
control the three tone generators and their associated attenuators
and the noise generator and its attenuator. Each byte of information
sent to the sound generator chip contains a three-bit address used to
select which register the information is destined for. The only
complication is the frequency information for the tone generators.
Obviously, to send a 10-bit number to a tone generator will need two
bytes and hence two calls to the procedure PROCSOUND given
above. The first byte contains the register address and four bits of
the 10-bit number. The second byte carries the remaining six bits of

Update tone register
MSEB LSB
Reg add. Data | Data
[! |n2. R1,Ro|p3; 02, D1, Dol | © | X {po) D8] D7]D6] D5] DA
First byte Second byte
tipdate attenuator
MSB LSB
1 Rﬂg. add Data
R2|H1_1HD A3|MIA1|A0

Update noise source
MSB LSB
Reg. add. Shift freq
11 R23R1, Ro | X { FBNF1NFo

(X = don’t care}
Fig. 5.5. Data formats for sound generator.

the number and is distinguished from all the others by having its
most significant bit set to zero. The data formats used to write to
each type of register can be seen in Figure 5.5. The appropriate
register address bits select the register as follows:

The Sound Generator 93

R2 RI1 RO Register

Tone 1 frequency.
Tone 1 attenuation.
Tone 2 frequency.
Tone 2 attenuation.
Tone 3 frequency.
Tone 3 attenuation.
Noise control.
Noise attenuation.

— e e O O O
— T et O e O e O

bt O oy s e 0 D

If an attenuation register is selected then the format of the
attenuation bits is:

A3 A2 Al A0 Attenuation
0 0 0 0 0dB
0 0 0 i 2dB
0 0 1 0 4dB
0 I 0 | 8dB
] 0 0 0 16dB
1 1] 1 OFF

If the noise control register is selected, then, if FB=0, the result is
periodic noise and, if FB=1, the result is white noise. The two bits
NF0 and NF1 control the frequency of the shift register’s clock as

indicated below:

NF1 NF0 Shift rate

0 0 N/512

0 1 N/1024

1 0 N;/2048

] 1 Tone generator 3’s output

As an example, consider the problem of using PROCSOUND to
produce a white noise at full volume. This implies sending two bytes
to the sound generator — the first setting the noise attenuator to 0dB
and the second setting the noise control register to white noise. Thus
the format of the first byte is 11110000. The first 1 is always present

	THE BBC MICRO an expert guide 1.tif
	THE BBC MICRO an expert guide 2.tif
	THE BBC MICRO an expert guide 3.tif
	THE BBC MICRO an expert guide 4.tif
	THE BBC MICRO an expert guide 5.tif
	THE BBC MICRO an expert guide 6.tif
	THE BBC MICRO an expert guide 7.tif
	THE BBC MICRO an expert guide 8.tif
	THE BBC MICRO an expert guide 9.tif
	THE BBC MICRO an expert guide 10.tif
	THE BBC MICRO an expert guide 100.tif
	THE BBC MICRO an expert guide 11.tif
	THE BBC MICRO an expert guide 12.tif
	THE BBC MICRO an expert guide 13.tif
	THE BBC MICRO an expert guide 14.tif
	THE BBC MICRO an expert guide 15.tif
	THE BBC MICRO an expert guide 16.tif
	THE BBC MICRO an expert guide 17.tif
	THE BBC MICRO an expert guide 18.tif
	THE BBC MICRO an expert guide 19.tif
	THE BBC MICRO an expert guide 20.tif
	THE BBC MICRO an expert guide 21.tif
	THE BBC MICRO an expert guide 22.tif
	THE BBC MICRO an expert guide 23.tif
	THE BBC MICRO an expert guide 24.tif
	THE BBC MICRO an expert guide 25.tif
	THE BBC MICRO an expert guide 26.tif
	THE BBC MICRO an expert guide 27.tif
	THE BBC MICRO an expert guide 28.tif
	THE BBC MICRO an expert guide 29.tif
	THE BBC MICRO an expert guide 30.tif
	THE BBC MICRO an expert guide 31.tif
	THE BBC MICRO an expert guide 32.tif
	THE BBC MICRO an expert guide 33.tif
	THE BBC MICRO an expert guide 34.tif
	THE BBC MICRO an expert guide 35.tif
	THE BBC MICRO an expert guide 36.tif
	THE BBC MICRO an expert guide 37.tif
	THE BBC MICRO an expert guide 38.tif
	THE BBC MICRO an expert guide 39.tif
	THE BBC MICRO an expert guide 40.tif
	THE BBC MICRO an expert guide 41.tif
	THE BBC MICRO an expert guide 42.tif
	THE BBC MICRO an expert guide 43.tif
	THE BBC MICRO an expert guide 44.tif
	THE BBC MICRO an expert guide 45.tif
	THE BBC MICRO an expert guide 46.tif
	THE BBC MICRO an expert guide 47.tif
	THE BBC MICRO an expert guide 48.tif
	THE BBC MICRO an expert guide 49.tif
	THE BBC MICRO an expert guide 50.tif
	THE BBC MICRO an expert guide 51.tif
	THE BBC MICRO an expert guide 52.tif
	THE BBC MICRO an expert guide 53.tif
	THE BBC MICRO an expert guide 54.tif
	THE BBC MICRO an expert guide 55.tif
	THE BBC MICRO an expert guide 56.tif
	THE BBC MICRO an expert guide 57.tif
	THE BBC MICRO an expert guide 58.tif
	THE BBC MICRO an expert guide 59.tif
	THE BBC MICRO an expert guide 60.tif
	THE BBC MICRO an expert guide 61.tif
	THE BBC MICRO an expert guide 62.tif
	THE BBC MICRO an expert guide 63.tif
	THE BBC MICRO an expert guide 64.tif
	THE BBC MICRO an expert guide 65.tif
	THE BBC MICRO an expert guide 66.tif
	THE BBC MICRO an expert guide 67.tif
	THE BBC MICRO an expert guide 68.tif
	THE BBC MICRO an expert guide 69.tif
	THE BBC MICRO an expert guide 70.tif
	THE BBC MICRO an expert guide 71.tif
	THE BBC MICRO an expert guide 72.tif
	THE BBC MICRO an expert guide 73.tif
	THE BBC MICRO an expert guide 74.tif
	THE BBC MICRO an expert guide 75.tif
	THE BBC MICRO an expert guide 76.tif
	THE BBC MICRO an expert guide 77.tif
	THE BBC MICRO an expert guide 78.tif
	THE BBC MICRO an expert guide 79.tif
	THE BBC MICRO an expert guide 80.tif
	THE BBC MICRO an expert guide 81.tif
	THE BBC MICRO an expert guide 82.tif
	THE BBC MICRO an expert guide 83.tif
	THE BBC MICRO an expert guide 84.tif
	THE BBC MICRO an expert guide 85.tif
	THE BBC MICRO an expert guide 86.tif
	THE BBC MICRO an expert guide 87.tif
	THE BBC MICRO an expert guide 88.tif
	THE BBC MICRO an expert guide 89.tif
	THE BBC MICRO an expert guide 90.tif
	THE BBC MICRO an expert guide 91.tif
	THE BBC MICRO an expert guide 92.tif
	THE BBC MICRO an expert guide 93.tif
	THE BBC MICRO an expert guide 94.tif
	THE BBC MICRO an expert guide 95.tif
	THE BBC MICRO an expert guide 96.tif
	THE BBC MICRO an expert guide 97.tif
	THE BBC MICRO an expert guide 98.tif
	THE BBC MICRO an expert guide 99.tif

